JI0 J.o L1, onway

REFERENCES

1. J. W. ALEXANDER and G. B. BRIGGS: On types of knotted curves. Ann. of Math. 28
(1926-27), 562.

2. A.L. ANGER: Machine calculation of knot polynomials. Princeton Senior Thesis,
1959.

3. R. H. Fox: A quick trip through knot theory. Topology of 3-manifolds and related
topics (Prentice-Hall, Englewood Cliffs, N.J., 1962).

4. C. N.LirtLE: On knots, with a census to order 10. Trans. Conn. Acad. Sci. 18 (1885),
374-378.

5. C. N. LirTLE: Alternate + knots of order 11. Trans. Roy. Soc. Edin. 36 (1890),
253--255.
6. C. N, LirrLe: Non-alternate + knots. Trans. Roy. Soc. Edin. 39 (1900), 771-778.
7. K. MURASUGI: On a certain numerical invariant of link types. Trans. Amer. Math.
Soc. 117 (1965), 387-422.
8. K. REIDEMEISTER . Knotentheorie (reprint) (Chelsea, New York, 1948).
9. P. G. Tarr: On knots, I. First published separately, but available togeth-
10. P. G. Tarr: On knots, II. } er in Tait’s Scientific Papers, Vol. I, pp. 273-
11. P. G. Tarr: On knots, III. 347 (C.U.P., London, 1898).

Computations in knot theory

H. F. TROTTER

1. Computer representation of knots. The commonest way of presenting
a specific knot to the human eye is by a diagram of the type shown in Fig. 1,
which is to be interpreted as the projection of a curve in 3-dimensional

space.
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There are obviously many ways of coding the information in such a dia-
gram for a computer. Conway’s notation [2](which I learned of for the first
time at the conference) seems to me much the best both for handwork and
(perhaps with some modification) for computer representation. In some
work done at Kiel [3, 4, 11] under the direction of Prof. G. Weise, one
notation used is based on noting the cyclic order of vertices around the
knot, and another is related to Artin’s notation for braids. The simple nota-
tion described below is what I have actually used for computer input. It
has proved reasonably satisfactory for experimental purposes.

To each vertex of the diagram there correspond two points on the knot,
which we refer to as the upper and lower nodes. Each node has a successor
arrived at by moving along the knot in the direction indicated by the arrows.
Each vertex has one of two possible orientations, as indicated in Fig. .2.
If the vertices are then numbered in an arbitrary order, a complete descrip-
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tion of the diagram is obtained by listing, for each vertex, its orientation

and the successors of its upper and lower nodes. The descriptions of the
diagrams in Fig. 1 are then

(@ 1+L2 U2 (b) 1-L4 L2
24+L3 U3 2—U4 U3
3+L1 Ul 3—Ul U2

4—L1 L3

where L, U stand for “lower” and “upper”.

This description is highly redundant, but the redundancy is at least in
part a virtue, since it increases the likelihood that a coded description is
correct if it is self-consistent. In practice, the notation is fairly easy to use,
although errors in recording the orientations of vertices do crop up.

The coding just described is intended to be convenient to write down,
and does not correspond directly to a useful internal representation for a
knot. Some sort of list organization appears to be most appropriate, and
the list-processing language L6 [7] was chosen because it was available and
seemed to be well-suited to the problem. In addition to efficient mechanisms
for storage allocation and subroutine organization, L6 has several distinc-
tive features. It deals with blocks of computer words as single objects, and
provides for declaration of fields (denoted by single letters) within blocks.
A field may contain either a pointer to another block, or numerical or coded
data. Indirect referencing (up to five levels deep) is denoted simply by con-
catenation. For example, XAT refers to field T of the block pointed to by
field 4 of the block pointed to by pseudo-register X.

A program has been written which reads a knot description, making
some elementary checks for consistency, and produces a linked list of
blocks in which there is one block for each node. Each block contains fields
which point to the preceding and following nodes and to the other node at
the same vertex. Other fields contain the vertex number and indicators for
the orientation of the vertex and the type of the node (upper or lower). The
program will also handle links (i.e. knots with more than one component)
and another field contains the number of the component to which the node
belongs. In addition, each block contains two fields used to link it tempor-

arily into various lists for housekeeping purposes during computation. In
this representation it turned out to be quite easy to write a program to per-
form trivial simplifications of diagrams by application of the Reidemeister
moves 2.1, 2.2 ([12], p. 7) (see Fig. 3).

2. Computation of algebraic invariants of knots. The most straightfor-
ward application of computers to knot theory is in the computation of
known algebraic invariants. The first work of this kind that I know of
was done in 1959 at Princeton [1] on an IBM 650 computer, and consisted
of the calculation of Alexander polynomials for the alternating 10-crossing
knots in Tait’s tables [15]. Similar calculations were later made for the non-
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alternating 10-crossing knots and for the alternating 11-crossing knots in
the tables of Tait and Little [8, 9, 10, 15]. (Conway independently did th.ese
calculations by hand for his own knot tables [2].) Programs for .com;.)utmg
the Alexander polynomial and several other invariants are described in [}].

The most generally useful algebraic invariants of knots are connected \fvnh
the homology of cyclic coverings of the complement of the' knot. Selfe}'t
[14] showed that these invariants can be computed from an integer matrix
constructed as follows. The first step is to find a non-self-intersecting orien-
table surface with the knot as boundary. (It is not altogether obvious that

‘such a surface always exists, but Seifert actually indicates a method of con-

structing one for any knot diagram.) Unless the knot is tr.ivial, the S}lrface
has a genus & greater than 0, and its first homology group is free ab<?11an on
2h generators. A system of 2h closed curves which represent an 1ntcgr'f11
basis for this homology group can be found on the surface. A Seifert matrix
for the knot is then obtained by taking as ijth entry the linl.(il}g numb.er
(in 3-space) of the ith basis curve with a curve obtained by lifting tl}e ]t.h
basis curve slightly above the surface. (The side of the surface which is
“above” is of course determined by the orientation of the sur.face.) Any
knot has infinitely many different Seifert matrices belonging to it (and any
Seifert matrix belongs to infinitely many distinct knots). '

Programming an algorithm to find a Seifert matrix from a knot de§cr1p-
tion is an interesting problem. An especially noteworthy program in {31
actually finds a Seifert surface and transforms itintothe canomc:,al form. ofa
disk with attached bands, from which a Seifert matrix is then easily obtained.
I have written an L6 program which finds a set of basis curves and com-
putes the matrix without first altering the surfac.e. .

Let us say that two Seifert matrices are s-equivalent if they are the first

. and last members of some finite sequence of matrices such that for each

consecutive pair in the sequence there is some knot to which both matrices
of the pair belong. ‘ ' o
No purely algebraic characterization of s-equivalence is known, but it is
closely related to the property of congruence of matrices. We sa,y' that
matrices 4 and B are congruent over a ring R if 4 = PBP'. where P is tpe
transpose of P, and both P and its inverse have elements in R. It is quite
obvious that two Seifert matrices which are congruegt over the integers
are s-equivalent, since any such change in the matrix can be obtained
simply by choosing a different basis for the first homology group of th.e
Seifert surface. The converse is known to be false, but a modified converse 1s
true [16]. . o
Before stating this converse we must remark that any Seifert matrix is
s-equivalent to a non-singular one (unless it is s-equivalent to one belonging
to the trivial knot), and that if ¥'and W are s-equivalent non-smglular ma-
trices then det (V) = det (). (In fact det (V' — tV) =det (W - t.W) = A(?),
the Alexander polynomial of the knot.) The statement then is that two

24¢



-~ 44. £, R TVULICT

s-equivalent non-singular Seifert matrices are congruent over the subring
of the rationals generated by the reciprocal of their common determinant,
and are a fortiori congruent over the rationals. Note that for the special
case of the determinant equal to + 1, integral congruence and s-equivalence
coincide.

Even the question of whether two Seifert matrices are congruent over the
rationals presents some difficulty. Seifert matrices are not symmetric
(indeed ¥V— ¥V'is always non-singular, with determinant 1), so that ordinary
quadratic form theory does not apply. This problem has been studied (see
[17] and its bibliography) and it appears to reduce to questions about quad-
ratic forms in algebraic number fields for which algorithmic solutions are
(at least in principle) known.

Questions of congruence over the integers or some other subring of the
rationals are of course much more complicated. One becomes involved
with determining whether matrices are similar over the ring as an initial
step. This problem is connected with that of determining whether two
ideals in an algebraic number field are in the same class, and is in general
even more difficult.

The prospect for completely general algorithms for determining the
congruence classes of Seifert matrices does not therefore seem very hopeful.
Something less than complete generality, however, can still be useful. A sys-
tem of Fortran programs for manipulating integer matrices has been writ-
ten, and has been used so far for computing Alexander polynomials from
the Seifert matrices. Some calculations on individual knots have also been
carried out, and in particular the knots labelled 9-28 and 9-29 in
Reidemeister’s table [7] have been shown to have integrally congruent
Seifert matrices. This experience indicates that programs which will
automatically decide the s-equivalence of Seifert matrices in a great many
cases may be quite feasible. Such programs must combine calculation of
nivariants which potentially may distinguish the matrices with a search
(guided by the theory) for a demonstration of equivalence if the invariants
turn out not to distinguish the matrices.

3. Manipulation of knot diagrams. The major project in knot theory in
which it appears most reasonable to use a computer is to check and extend
the tables of knots and their various computable invariants. Tables which
are generally believed to be complete and accurate (except for a few errata
noted by Seifert [14]) are given in Reidemeister’s book [12] for all prime
knots of less than ten crossings. These tables include, besides diagrams of
the knots themselves, the Alexander polynomials, the torsion numbers of
degrees 2 and 3, and the Minkowski invariants of the quadratic forms of
these knots. Tables of knot diagrams for knots of up to 10 crossings, and of
alternating knots of 11 crossings, published by Tait, Kirkman, and Little
[S, 6, 8,9, 10, 15] during the 1880’s, have already been referred to. Conway
has made more extensive tables, and found a few errors in the earlier ones.
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So far as I know, no other attempts at tables of 10- or 11-crossing knots
have been made. ,

While it seems feasible, although perhaps not easy, to get a program to
create all possible knot diagrams of a given complexity, a real difficulty
(which becomes more and more serious as the complexity of the diagrams
increases) is that a given knot may appear in a number of different forms.
Within the limits of the tables that have been made so far, it is humanly
possible to recognize the equivalence of these forms, but it is not clear
how to make a computer program to do this with any reasonable degree
of efficiency.
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If two diagrams are suspected of representing the same knot, then one
may attempt to transform one into the other by a sequence of Reide-
meister moves, which are indicated schematically in Fig. 3. It is known
that if the knots are in fact equivalent, then some sequence of moves which
will convert one into the other does exist. It is not hard to make a program
to carry out individual moves, but it appears difficult to program anything
more efficient than an exhaustive search of all possibilities. Some interest-
ing programs have been written at Kiel [4, 11] which seem to work quite
well and have been used successfully to tabulate all knots of up to 8 cross-
ings. The empirical evidence furnished by the handwork of Tait, Little,
and Conway, however, shows that the number of distinct diagrams of a
given knot rises rapidly as the number of crossings increases, and it is
not clear that these programs would be usable for classifying knots of
more than 9 crossings. ‘

Another possible technique is that of trying to reduce given projections
of knots to a form with a minimum number of bridges or overpasses.
(A bridge is 2 maximal sequence of consecutive upper nodes. In Fig. 1(a)
there are 3 bridges. Figure 1(b), in spite of having more vertices, has only
2 bridges.) Practically all the knots of less than 12 crossings can be put in
a form with not more than 4 bridges, and the great majority can be reduced
to2or 3.

The advantage of diagrams with only a few bridgesisthat even though they
may contain many vertices, they can be characterized by a comparatively
small number of integers. A knot with only 2 bridges, for example, can be
characterized by a pair of integers (a, b), with « odd and b relatively prime
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to a. Schubert [13] showed that knots (a, b) and (c, d) are equivalent if
and only if ¢ = ¢ and either b = d (mod a) or bd = 1 (mod a). The situa-
tion with 3 and 4 bridges is certainly a good deal more complicated. It
appears to be easy enough to reduce diagrams to forms that have a good
chance of having a minimal number of bridges. The crucial (as yet un-
answered) question is whether there are criteria for the equivalence of the
corresponding knots which are powerful enough to be helpful and simple
enough to be usable. (Simple necessary and sufficient conditions are pro-
bably too much to hope for.)

Note added in proof. As his senior undergraduate thesis at Princeton in
1968, D. Lombardero wrote a Fortran program which accepts as input
the description of a knot or link in Conway’s notation and calculates a
Seifert matrix for it. In part, the program uses an algorithm due to
A. Tristram which was communicated to me by Conway at the conference.
The computation of matrices and Alexander polynomials for all the knots
listed by Conway required less than five minutes on an IBM 7094,
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- Computer experiments on sequences which form
integral bases

SueEN LN

Ler § = {s1, 52, ..., &, ...} be a sequence of positive integers and
consider the set P(S) consisting of all numbers which are representable as
a sum of a finite number of distinct terms from S. We say S is complete
if all sufficiently large integers belong to P(S). For a complete sequence,
we call the largest integer not in P(S) the threshold of completeness and
denote it by 6(S). Necessary and sufficient conditions for various sequences
to be complete have been studied by many authors [1, 2, 3, 4]. In particular,
R.L. Graham [4] showed by elementary methods that any sequence
generated by an integral valued polynomial f{(x) is complete if f(x) satisfies
the following (obviously necessary) conditions:

(1) The polynomial f(x) has positive leading coefficient, and
(2) For any prime p, there exists an integer m such that p does not divide
f(m).

The method he used in the proof is constructive in nature, and with it he
also determined the threshold of completeness for the sequence of squares
S =1{1,4,9, ...} as 128 and for the sequence of cubes S = {1,8,27,...}
as 12758. A closer look at his method reveals that it is easily adaptable for
machine implementation. Indeed, it is possible to prove that some se-
quences are complete and find their thresholds of completeness by a compu-
ter in spite of the fact that the solution to this problem appears to require
the verification of an infinite number of cases, namely, that all numbers
larger than the threshold are indeed representable as a sum of distinct
terms from S. To be able to do this, we require that the sequence S satisfy
the following property which we shall call condition A4.

Condition A. There exists an integer js such that for all k = jy we have
28 = Spq1

All sequences which we shall consider satisfy this condition trivially.
In addition, we may without loss of generality assume that the sequence
S = {51, S, ..., S ...} is arranged in a nondecreasing manner, i.e.
si=<gifi<j. ‘

In the following, we shall show how one may use the computer to prove
some sequences complete and find their thresholds of completeness. The
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