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Introduction

1. Torsion invariants were introduced by Reidemeister [32}, [33] about

50 years ago, and were historically the first non-homotopy invariants for
manifolds. Reidemeister defined the torsion invariants for closed three-
dimensional p/-manifolds. As an application, he obtained the complete
piecewise-linear classification of the three-dimensional lens spaces. Franz
[11] transferred the definition of torsion to the many-dimensional situation,
and classified lens spaces in all dimensions. In the category of smooth
manifolds, torsions were defined by Whitehead [48] (using C!-triangulations)
and de Rham [34] (using the nerves of covers by geodesically convex sets).
Whitehead also developed a new, deeper, viewpoint on the Reidemeister
torsions, indicating their place in his theory of simple homotopy types, and
in particular, comparing them with the Whitehead torsions, which are defined
for homotopy equivalences. We note that as well as the term ““Reidemeister
torsion”, the terms ‘‘Reidemeister-Franz torsion” and ‘‘Reidemeister-Franz-
de Rham torsion” are also used.

Reidemeister torsions are by nature (dimensionally) global invariants: the
definition of the torsion of a CW-complex (or pl-manifold) X requires the
consideration of cell-chains (and boundary homomorphisms) of X in all
dimensions. In this respect, the torsions are similar to the Euler characteristic.
The torsions have particular beautiful properties, including a multiplicativity
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recalling the additivity of the Euler characteristic. At the same time, in
contrast to the Euler characteristic, the torsions are well-suited for the study
of odd-dimensional manifolds and are usually of little interest in the four-
dimensional case. Poincaré duality is reflected in torsion theory: as Franz
[12] and Milnor [26] showed, the torsions of manifolds are symmetric in
the appropriate sense.

2. In 1928, 7 years before Reidemeister first considered the torsion
invariants, Alexander {1] introduced a new link invariant in the three-
dimensional sphere, the so-cailed Alexander polynomial. Subsequently it
was established that the Alexander polynomial is a homology invariant
computable from the 1-dimensional homology group of the exterior of the
link with the appropriate twisted coefficients. Such an approach makes it
possible to generalize the definition of the Alexander polynomial, and to
consider Alexander polynomials of many-dimensional links and compact
manifolds. These polynomials can be viewed as slightly modified “modular”
versions of the oldest homology invariants—the torsion coefficients.

The methods of algebraic topology connected with the study of Alexander
polynomials play a fundamental role in knot theory (see {6], [17], [35]).
One can say that these methods form the nucleus of the apparatus of knot
theory.

3. As Milnor [26] first noticed, there is a close connection between
Alexander polynomials and Reidemeister torsion. Namely, Milnor showed
that the Alexander polynomial of a link in S3 is equal (up to a standard
factor) to a certain Reidemeister torsion of the exterior of the link. From
the theorems formulated below one can see that this equality is analogous
in nature to the following obvious formula of the topology of surfaces: the
one-dimensional Betti number of a connected compact surface F' is equal, up
to a standard summand, to —x(F), where x is the Euler characteristic.

The kind of Reidemiester torsion considered by Milnor in [26] is called
Milnor torsion below. As an application of his interpretation of the
Alexander polynomial as a torsion, Milnor showed that the classical Seifert-
Torres theorem that the Alexander polynomial of a link in S3 is palindromic
is a very special case of the Franz-Milnor theorem on the symmetry of
torsions. Using torsion techniques, Fox and Milnor [9] showed that the
Alexander polynomial of a knot in $3, considered modulo a suitable
equivalence relation, is a cobordism invariant. Kervaire [22]. also using
torsions, carried over the Fox-Milnor theorem to the case of many-dimensional
knots. In the paper [44] the author computed the Milnor torsion of a
closed three-dimensional manifold. It turned out that, as in the case of the
exterior of links, this torsion, up to a standard factor, is equal to the
Alexander polynomial of the manifold in question.

4. The main purpose of the present paper is to study systematically the
connections between Alexander polynomials and torsions, and relying on
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these connections, to give a survey of the main properties of Alexander
polynomials of links in the three-dimensional sphere. This approach makes
it possible to represent the numerous and diverse properties of Alexander
polynomials of links as consequences of several universal torsion properties.
Regarding the Alexander polynomial as a torsion not infrequently sheds new
light on the essence of the problem and is, in the author’s opinion, the
most correct viewpoint.

It is natural that the organic merging of two extensive deeply developed
theories such as torsion theory and the theory of Alexander polynomials
leads to the enrichment of these theories by new results. Some of these
results are expounded here for the first time. We also remark that, in our
approach, many well-known theorems naturally receive new and wider
formulations and new proofs.

The methods of torsion theory and the theory of Alexander polynomials
developed in this paper transcend the framework of knot theory and links in
S3. and can be applied (and are applied in the paper) also to the study of
many-dimensional knots and links, and to the study of closed manifolds.

The circle of problems connected with the study of Alexander polynomials
and torsions in the theory of dynamical systems is beyond the scope of this
paper. For this the reader is referred to [10], {13], [27]. This article also
excludes the application of torsions to the computation of elementary ideals
and Fox-Brody invariants of three-dimensional manifolds considered by the
author (see [45], [46]).

5. We briefly describe the contents of the article by sections. In §0 we
recall the necessary definitions and results of torsion theory, and also
introduce the notation used later. In §1 we first formulate Theorems 1.1.1,
1.1.2, and 1.1.3, which establish the connection between torsions and
Alexander polynomials, and then we formulate and (using Theorems 1.1.1,
1.1.2, and 1.1.3) prove the main properties of the Alexander polynomials of
links in 3. In §2 we carry out the proof of Theorems 1.1.1, 1.1.2, and
1.1.3.

In §3 we introduce and study a new modification of Reidemeister
torsion, namely. the refined (or sign-determined) torsion. In §4 we consider
the Conway function of a link in $%. Here we adopt an axiomatic approach
to the definition of the Conway function. A model satisfying the axioms is
constructed using refined torsions.

In §5 we consider a polynomial invariant of manifolds and links close to
the Alexander polynomial (and in some cases coinciding with it), the so-
called polynomial 8. In particular, the polynomial & of a link in S3 is the
first non-zero term in the sequence of Alexander polynomials of the link
group. Our approach to the study of the polynomial § is founded on the
exploitation of the connection between this polynomial and yet another
modification of Reidemeister torsion, namely the torsion w. Theorem 5.1.1.
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formulated in §5, which establishes the connection between 6 and w, is
proved in §6. In addition, we formulate and prove the duality theorems for
torsions that are used in the main text.

6. The present paper grew out of a series of lectures I gave at the
Seminar of V.A. Rokhlin in 1974-1984. My long contact with Rokhlin has
exerted a decisive influence on my development as a topologist. I am
deeply grateful to Vladimir Abramovich for his benevolent interest in my
scientific work, and for his great labour in reading and editing my papers.

I should also like to use this opportunity to express my gratitude to
0O.Ya. Viro, who in the early seventies, during my study at the Leningrad State
University, aroused my interest in torsion theory and its applications in low-
dimensional topology.

§0. Preliminary material

0.1. The torsion of a chain complex.

In this paper, a ring is a ring with identity, 1 ¥ 0. The word “module™
means a left module. A chain complex is a finitely generated chain complex
of finite length.

Om- 8,
We say that the chain complex € = (Cp, "—‘Sc,,,_l - ...—=C; »>C,) over
a ring K is free if the K-modules Gy, C;, ..., C,, are free. The complex C is

called acyclic if H (C) = 0, where H,(C) = éna H(C), and Hy(C) = Coker 9,
=0

and Hp,(C) = Ker dpy. If b = (b ..., b)) and ¢ = (¢!, ..., ¢") are two bases

for one and the same vector space over the field F. then [b/c] denotes the

determinant of the matrix taking ¢ to b, that is, the determinant of the r x
r

matrix (a; ;) over F for which bt := Ea,-,,- cfori=1.,..r.
Je=1

Let C = (C,, = ... > Cy) be a chain complex over F. We suppose that for
each i = 0O, ..., m a (finite, ordered) basis c¢; is fixed in the vector space C;.
(The case C; = 0 is not excluded, of course. By definition, the zero module
has a unique basis.) In this situation, we define an element 7(C) of F, called
the rorsion 7 of the complex C corresponding to the given system of bases.
If C is not acyclic, then 7(C) = 0. We suppose that C is acyclic. We

consider for i = 1, ..., m a sequence of vectors b, = (b}, . .., b5i)in C; for
which 8,_,(b;) = (8;_, (bY), . .., 9;,4(b})) is a basis of Im §;,. It is obvious
that for every i = 0, 1, ..., m the sequence 8;(b;+,)b; = (9;(b}4,), . . .

. 04(b5Y), bY, ..., bli) is a basis in C; (it is understood that b, and

bm+; are empty sequences). We put e(i) = (—1)i+1. The product

_ﬂ; 18; (Bisy) bilei )™V
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is a non-zero element of the field /' which, as can easily be verified, does
not depend on the choice of the sequences b, ..., b,,. This element is 7(C).

We require a simple generalization of the torsion 7. Let C = (C,, = ... 2> (p)
be a free chain complex over an integral domain K. (By an integral domain
we understand a commutative ring without zero divisors.) Let the K-modules
Co, Cy, ..., C,, have given bases. The field of quotients of the ring X will be
denoted by Q(K). The basis in C; determines in an obvious way a basis in
the Q(K)-module Q(K) ® ¢ C;. The torsion 7 of the chain complex
Q(K) ® xC corresponding to the given system of bases is denoted by 7(C)
and called the rorsion 7 of the complex C. It is clear that 7(C) € O(X).
From the equality H(Q(K) @ (C) = Q(K) ® H,(C) it becomes apparent
that the following four conditions are mutually equivalent: 7(C) # 0; the
complex Q(K) & C is acyclic; rg H(G) = 0; H/(C) = Tors H(C). Here
for a K-module H, rg H denotes its rank, that is, the dimension of the vector
space Q(K)® xH, and Tors H denotes the submodule of H consisting of
those & € H such that k4 = 0 for some non-zero kK € K. It is clear that if
7(C) # 0, then x(C) = 0, where x is the Euler characteristic.

We note, although we do not require this later, that for an acyclic chain
complex equipped with bases the torsion can also be defined in a more
general situation, without assuming that the ground ring is a field or integral
domain. The definition of this generalized torsion is given, for example, in
the well-known survey by Milnor on torsion theory [28]. It should be said
that for an acyclic chain complex C over a field the torsion defined in [28]
is the inverse (in the multiplicative group of non-zero elements of the field)
of the torsion 7(C) defined above.

0.1.1. Theorem (the multiplicativity of torsion; see Whitehead [48],
Theorem 6). Let C = (C,, = ... = Cy) be a chain complex over an integral
domain, let C' = (C,, = ... = Cqy) be a subcomplex of it, and let

C" = (C,, = ... = Cg) be the factor complex C/C’. We suppose that for
each i = 0, 1, ..., m the modules C;, C{, and C;' = C,;/C| are free and are
equipped with bases, and moreaver that the chosen basis in C; is obtained
by writing down successively the elements of the chosen basis in C{ and
elements of C; whose images under the projection C; = C/' give the chosen
basis for C{'. If 7(C") # 0 or 7(C") # 0, then 1(C) = +7(CHT(C").

For completeness, we give a proof of this theorem, taken from [28].

Proof of Theorem 0.1.1. By replacing the ground ring by its quotient ring,
if necessary, we may assume that it is a field. If the complex C is not
acyclic, then by the exactness of the homology sequence of the pair (C, C'),
at least one of the complexes C', C'' is also not acyclic, so that both sides
of the desired formula vanish. If C is acyclic, and 7(C") # 0 or 7(C'") # 0.
then all three complexes in question are acyclic. Let ¢;, ¢/, and ¢;' be the
fixed bases for the modules C;, C{, and C;' respectively. By the condition.
[c;/cic’]1= 1. Let b;, b}, and b;' be the sequences of vectors in C;, C{, and C;'.



124 V.G. Turaev

respectively, which were discussed in the definition of the torsion. By
changing b; if necessary, we can suppose that [b;/b;b;'} = 1 for alli. Then

T(C)= Il [0 (by4y) byfe; 15 = l 1183 (biy1) 9 (Big)bibi/cic;) ™V =
—i]l[a (bwnb/c,]‘“’ ll 18 (bi41) bi/e;]*D = & v (C') T(C")-

0.2. The torsion of a CW-pair.
Up to the end of this section we fix a finite CW-pair (X, Y), an integral
domain K, and a ring homomorphism ¢ : Z[H,(X; 2Z)] = K. Below, we omit
the coefficient group Z in the notation for integral homology. In accordance
with the accepted practice in torsion theory (and the theory of Alexander
polynomials) the group operation in H,(X), namely the addition of homology
classes, is written multiplicatively and is called multiplication.

The Reidemeister torsion (X, Y) is a subset of the field Q(K) defined as
follows. We put H = H,(X). We consider a maximal Abelian cover
p : X = X of the space X. This is a regular cover, whose translation group
is H. (If X is not connected, and X, is a connected component of it, then
H(X,) preserves the connected components of the space p~(X,), while
H/H,(X,) permutes these components.) A CW- decompos1t10n of X can be
lifted in an obvious way to an equ1var1ant decomposition of X. _We consider
the integral-valued cellular complex C*(X p~{Y)) of the pair (X pUY)).
The action of H on X gives this complex the structure of a Z[H]-chain
complex. It is clear that the Z[H]-modules of chains are free, and moreover
the number of free generators for the module of i-dimensional chains is the
number of i-dimensional cells in X\'Y. We denote the K-chain complex
K &z y1Cu(X, pHY)) by C?(X, Y) (the Z[H]-module structure in X is
given by the formula zk = ¢(z)k, where z € Z[H] and k € K). Let e be a
sequence of oriented cells of X with the property that over every cell of X
there lies exactly one cell of the sequence e. (Such sequences of cells are
called base sequences.) The cells of e that lie in X\ p~}(Y"), written out in
the order in which they occur in e, define the ‘““natural” basis for the
K-chain complex C?(X, Y). The torsion 7 of the complex C¢(X, Y)
corresponding to this basis is denoted by 7¥(X, Y, e). The totality of
torsions 7¥(X, Y, e) corresponding to all possible base sequences ¢ is
(X, ).

It is not hard to understand how the set 7¥(X, Y) can be completely
recovered from any of its elements with the homomorphism ¢: if
ac€ (X, Y), then 19(X, Y) = {2 o@(h)a [h € H}. We say that 79(X, Y) is
“an element of Q(K), defined up to a factor xp(h), with » € H. The
elements of the set 79(X, Y) are called the representatives of the torsion
7°(X, Y). The torsion 79(X, ) is denoted by 79(X).

By the results of Section Q.1 the torsion 7¥(X, Y) is non-zero if and only
if rg HY(X, Y) = O for all i, where Hf(X, Y) denotes the K-module
H{(CY(X, Y)).
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The torsion 7¥(X, Y) is preserved under subdivision of the cell complexes
of the spaces X and Y, and is, moreover, an invariant under simple homotopy
equivalences. More precisely, we have the following theorem.

0.2.1. Theorem (see [48]). Let (X', Y') be a finite CW pair, and let

(X, Y) = (X', Y') be a simple homotopy equivalence induced by the
homotopy equivalence X -~ X'. Let the homomorphism ¢ : Z|H,(X)] = K be
the composition of the isomorphism Z[H(X)] > Z[H(X")) induced by the
latter equivalence and the ring homomorphism ¢’ : Z|H{(X')] > K. Then
(X, Y) = 19X, Y).

Theorem 0.2.1 is easily deduced from Theorem 0.1.1 using well-known
arguments in terms of the cylinder of a map f. Below (in §3) we formulate
and give a detailed proof of a more precise version of Theorem 0.2.1.

The following two theorems represent geometric versions of the theorem
on the multiplicativity of torsion.

0.2.2. Theorem. Letj:2ZIH,(Y)]~> ZIH(X)] be the inclusion homomorphism.
If 1929(Y) 3£ 0 or (X, Y) == 0, then t9(X) = 19(X, Y)199(Y).

The product t®(X, ¥)tw(Y) is here understood as the product of sets:
the product AB of subsets 4 and B of K is the set {ab |a € A, b € B}.
Theorem 0.2.2 is obtained by direct application of Theorem 0.1.1 to the
canonical embedding C3/(Y) — CYX).

0.2.3. Theorem. Let X, and X, be subcomplexes of X whose union is X,
and whose intersection is Y. Letj:Z(H\(Y) > ZIH{(X)] and j,:Z2{H«(X)]~>
Z[H(X)] with r = 1, 2 be the inclusion homomorphisms. If 1%°(Y) 5= 0,
then 1%(X) = 11X ,)t93s(X,)[tei(Y)] 1.

This theorem is obtained by applying Theorem 0.1.1 to the embedding
CPi(Y) - Ch(X,) @ CF(X,).

0.3. The torsion of a manifold.

All manifolds and maps between them are assumed to be piecewise linear in
this paper; submanifolds are assumed to be locally flat. The fact that the
torsion of a CW complex is preserved under subdivision enables us to define
in an obvious way (using piecewise linear triangulations) the torsion of a
compact manifold. It is clear that to compute such a torsion one can use a
CW-decomposition of the manifold, some subdivision of which is a
pl-triangulation. (Indeed, to compute the torsion one can use an arbitrary
decomposition of the manifold: as is well known, the homeomorphisms of
CW-complexes are simple homotopy equivalences, and hence preserve
torsions. We do not require these facts.)

0.4. The order of a module.
Let H be a finitely generated module over a commutative ring K. We
represent H as the cokernel of a K-linear homomorphism f: K — K" with
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n=1,2,..and with s 2 m =2 n. It is well known that the ideal of a ring
K generated by (n x n)-minors of the matrix of the homomorphism f
depends only on H. If K is a factorial ring, then the set of greatest common
divisors of the elements of this ideal is called the order of the module A,
written ord H, and is “an element of the ring K defined up to multiplication
by invertible elements of K*’. It is easy to see that ord H # 0 if and only if
rg H = 0. In particular, if X = Z and H is a finitely generated Abelian
group, then ord H = 0 in the case when H is infinite, and ord H = *card(H)
when H is finite.

0.5. Notations.
If H is an Abelian group, then //# denotes the quotient group H/Tors H. If
G is a free Abelian group, then @Q(G) denotes the field of fractions of the
integral domain Z[G]. The ring Z[G] and its extension @Q(G) are equipped
with the canonical involution taking g € G to g''. The image of an element
a € Q(G) under this involution is denoted by a.

The map assigning to orientation-reversing loops in a manifold M the
number —1, and to other loops the number 1, is denoted by w,(M), or more
briefly, w;. The induced map H,(M) — {1, —1} is also denoted by w;.

§1. Milnor torsion and the Alexander polynomial

1.1. Computation of Milnor torsion.
Let (X, Y) be a finite m-dimensional CW-pair. We denote the group H,(X)#
(=H{(X)/Tors H(X)) by G. 1t is clear that G is a free Abelian group of
rank rg H(X). Let 6 be the ring homomorphism Z[H,(X)] = Z[G} induced
by the projection H;(X) = G. The torsion 7°(X, Y) is called the Milnor
torsion of the pair (X, Y), and is denoted by 7(X, Y). By the remarks in
81, (X, Y) is an element of the field Q(G) defined up to multiplication by
tg with g € G.

The module HY(X, Y) over the ring Z[G] is called the i-dimensional
Alexander module of the pair (X, Y). Obviously if ¢ : X > X is a maximal
free Abelian cover, then

HY(X, Y)=H, (C3(X, V) =H, (X, 7 (Y)).
Since Z[G] is factorial and Noetherian, we can consider the orders of

Alexander modules of the pair (X, Y). The Alexander function of the pair
(X, Y) is an element of the geld Q(G) defined up to multiplication by *g

with g € G whose value is H lord H3(X, Y)le(9) (where e(i) = (—1)H+1) if
i=0

ord H3(X, Y) 5« Ofor all i, and is zero otherwise. The Alexander function

of the pair (X, Y) is denoted by A(X, Y).

1.1.1. Theorem. If (X, Y) is a finite CW pair, then
X, Y)=A4(X, Y).
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Theorem 1.1.1, as well as Theorems 1.1.2 and 1.1.3 stated later in this
section, are proved in §2. In the case when rg Hy(X) = 1, the equality
7(X, Y) = A(X, Y) (in a somewhat weaker form: up to multiplication by a
non-zero rational number) was proved by Milnor [27].

Theorem 1.1.1 often enables us to compute the Milnor torsion explicitly.
It also follows from this theorem that Milnor torsion is invariant under
homotopy equivalences (not necessarily simple). However, the latter
statement can also be easily verified directly. For the present paper, it is
most important that Theorem 1.1.1 makes it possible to apply the techniques
of torsion theory to the study of the Alexander function.

If M is a compact m-dimensional manifold, then the order of its
{m/2]-dimensional Alexander module is called the Alexander polynomial of
M, and is denoted by A(M). (Here the square brackets denote integer part.)
Thus A(M) is an element of the ring Z{H,()/)#] defined up to multiplication
by g with g € H,(M)*%. In the case when m = 3, the polynomial A(M) is
the first Alexander polynomial of the group m(M) in the sense of Fox (see
[6]1). As the following theorem shows, for a wide class of three-dimensional
manifolds the Alexander function and the Alexander polynomial represent
(up to a standard factor) one and the same invariant.

1.1.2. Theorem. Let M be a connected compact three-dimensional manifold
with x(M) < 0, and let H = H(M). If rg¢ H > 2, then A(M) = AM). If
rg H = 1. and t is a generator for the infinite cyclic group H¥, then

A @—1)"1 if oM =G or wy(Tors )1,
AMN=¢ AM)@E—1)7 if oM=3 and w (H)=1,
AM) 2—1)"1 if oM = O, w (Tors H)=1 and w, (I} 5=1.

Theorem 1.1.2 is apparently new: the Alexander function of three-
dimensional manifolds has not been particularly considered. The condition
x(M) < 0 in Theorem 1.1.2 is already satisfied in the two most interesting
cases: when M is a closed manifold, and when M is the exterior of a link in
a closed manifold. In both cases x(M) = 0.

The combination of Theorems 1.1.1 and 1.1.2 yields formulae expressing
the Milnor torsion of a connected compact three-dimensional manifold M
with x(M) < 0 in terms of A(M). In the case when oM # O, these formulae
were obtained by Milnor [26]. (Milnor considered only the exteriors of
links in 83 but his arguments generalize directly to the situation we
describe.) For closed M these formulae were obtained by the author
(see [44]).

The following Theorem 1.1.3 shows that trom the Alexander function of
a three-dimensional manifold one can compute not only the Milnor torsion
but also some other torsions. When formulating Theorem 1.1.3 we use the
fact, which follows from Theorem 1.1.2, that if (under the conditions of
Theorem 1.1.2) rg H = 2, then A(M) < Z[H*].
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1.1.3. Theorem. Under the conditions of Theorem 1.1.2, suppose that Il is
a free Abelian group and let @ : Z{H] — Z[I1] be the composition of the
projection 8: Z{H| —2Z[H*]and the ring homomorphism : Z{H#] —2{11]
induced by a non-trivial group homomorphism H¥* - 11. If rg H 2 2, then
(M) = Y(A(M)). If rg H = 1, then Y can be uniquely extended to a ring

homomorphism {[{: Q(H#) —Q(IT) and (M) = iE(A(M)).

1.2. The Alexander invariants of links.

A link in the m-dimensional manifold M is an oriented submanifold of M
whose components are homeomorphic to the sphere S™-2. A link is called
ordered if its components are numbered. The exrerior of a link in M is the
complement in M of an open regular neighbourhood of it.

We consider an ordered link / =/, U ... U/, in 8", where ], ..., I, are the
components of /. The sphere S™ is supposed to be oriented once and for all
for each m. If V is the exterior of /, then the group H,(V) is canonically
isomorphic to a free Abelian (multiplicative) group with »n free generators
ty, ..., t,: the generator ¢; corresponds to the homology class of a meridian
of the component /;. (If [ is a knot, that is, it » = 1, then instead of f, we
simply write ¢.) The ring Z[H(V,)] is identified via this correspondence
with the Laurent polynomial ring ZIt,, (7%, . . ., ¢, ta'l.

The Alexander polynomial (respectively, function) of the link / is the
Alexander polynomial (respectively, function)of its exterior. These
invariants are denoted by A (¢, ..., t,,) and A,(¢;, ..., t,) respectively. or.
more briefty, by 4A; and 4;. Thus 4, is a Laurent polynomial in the
variables ¢,, ..., t, determined up to multiplication by polynomials of the

form =+tJ* . .. £;® with integral r|, ..., r,. The Alexander function 4, is an
element of the field Q(t¢,, ..., t,) of rational functions in ¢, .... {,, with
rational coefficients, determined up to the same accuracy as 4.

The invariant 4, is meaningful only when m = 3 or when / is a knot: if
m >3 and n > 1, then A; = 0. By Theorem 1.1.2, if m = 3, then A, = A,
fornz=2 and A, = Ayt — 1)7! for n = 1. Although the Alexander
function and the Alexander polynomial of a link in S3 are essentially one
and the same invariant, we find it convenient to use both terms. In
particular, we shall formulate some classical theorems about Alexander
polynomials of links in S3 in terms of Alexander functions. leaving to the
reader their translation into the standard terminoiogy.

1.3. The Alexander polynomial of an iterated link. The monodromy
theorem.

The following theorem was proved in several special cases by Burau [3].
[4], and Seifert [39], and in complete generality by Sumners and Woods
[40]. In what follows, u(k, /) denotes the linking number of the knots k
and / in S3.
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1.3.1. Theorem (see [40)). Let Il =1, U .. U1, be a link in S3 and let k
be a knot in S3\I located at the boundary of a closed regular neighbourhood
of the knot I,, in S3\(4L U ... U l.,). We suppose that the knot k is
homological in this neighbourhood (which is a solid torus) to the p-th power
of the loop I,. with p # 0. Let A(ty, ..., t,), A'(t1, ..., t,), and

A'(ty, ..., L., t,4,) be the Alexander functions of the ordered links |,
U=LU... ULyaUkandl =0 Jl,=4Y ... Ulosqy Uk U In,
respectively. We put T=1t41the ... t'n-1ut? where p; = p(l;, 1,) and

q = ik, 1,). Then

TP —1

(1) Aty o t) =4ty o b, ) 5,

(2) 11” (t‘, .oy tn+‘) = A (t17 ey tn-—h tztn+’) (T"t?l+i— 1).

Here the expression A(¢,, . .., t,., th) denotes the rational function in
t;, ..., t, defined with the same accuracy as A(¢4, ..., t,), and obtained from
it by the substitution ¢, — t. The expression A(¢,, . . ., t,_;, tht,4,)is to

be understood analogously. In the case when T = 1, the fraction
(T?— 1)/(T— 1) is regarded as unity.

The knot k discussed in Theorem 1.3.1 is called a (p, g)-cable of the knot
l,. One says of the links /" and /"' that they are obtained from [ by iterating
the component /,,. The links in S3 that can be obtained by iteration from
the trivial knot are called iterated torus links. Theorem 1.3.1 enables us to
compute the Alexander polynomials of such links inductively. For example,
from this theorem it follows immediately that the Alexander polynomial of
the torus knot of type (p, q) is (#*? — 1)t — 1) (t* — 1)~1(¢* — 1)~1. From
Theorem 1.3.1 it also follows that the Alexander polynomial of any
(ordered n-component) iterated torus link can be represented as the product
of polynomials of the form 13 . .. t;* — 1 and their divisors.

As is known, a link in S? that is algebraic in the sense of Brauner is an
iterated torus link (see for example [40]). Theorem 1.3.1 makes it possible
to compute without difficulty the Alexander polynomial of an algebraic link
from the Puiseux numbers of the equation f(z,, z,) = 0 determining this
link. Relying on Theorem 1.3.1, Yamamoto [52] recently proved that two
ordered algebraic links are isotopic if and only if their Alexander polynomials
are equal. (In the case of knots and two-component links, this result was
already obtained in the thirties by Burau [3], [4].) We remark that the
first results in the direction of Theorem 1.3.1 were obtained by Burau [3],
[4] exactly for the purpose of computing the Alexander polynomials of
algebraic links. The computational methods used by Burau were based on a
detailed study of the presentations of the groups of links by generators and
relations. Fox writes (we quote from [7]): “the calculations in the two
Burau papers are almost too painful to contemplate, but I am sure that the
results are correct ...”’. The proof of Theorem 1.3.1 given by Sumners and
Woods [40] uses modern homology techniques, but is also rather complicated.
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The proof of Theorem 1.3.1 given below demonstrates to its full extent the
efficiency of applying torsions to such problems.

We mention an important consequence of Theorem 1.3.1. Since the
characteristic polynomial of the monodromy homomorphism of an algebraic
link 7 in S3is ALz, ¢, ..., £)(¢— 1) (see [29], Lemma 10.1), Theorem 1.3.1
implies the case r = 1 of the following theorem of Grothendieck [15].

1.3.2. Theorem ({15], see also [40], [49] and their references). The
characteristic polynomial of the monodromy homomorphism of an algebraic
link in S*+! is the product of cyclotomic polynomials.

We prove Theorem 1.3.1.

1.3.3. Lemma. Let X be a finite CW-complex, and let ¢ be a ring
homomorphism from the ring Z[H\(X)] to an integral domain. If X is
simply homotopically equivalent to a circle, t is a generator for H(X), and
o(t) # 1, then (p(t)— 1) € 9(X). If X is simply homotopically equivalent
to a 2-dimensional torus and o(H(X)) # 1, then 1 € 19(X).

Proof. We may assume that the integral domain in question is a field, and
that in the first case X = S!, and in the second case X = S! x S..

Let C = (C, = Cp) be the chain complex C#(S') corresponding to the
decomposition of the circle consisting of one zero-dimensional cell and one
one-dimensional cell. With a suitable choice of natural bases, the boundary
homomorphism C; = C, is given by the 1 x 1 matrix (p(#)— 1) for which, as
follows immediately from the definition of the torsion, 7(C) = (p(¢)— 1)~

Let € = (C, —T-Cl —a-;Co) be the chain complex C¥(S! x S!) corresponding
to the standard decomposition of the torus, consisting of one zero-dimensional
cell, two one-dimensional cells, and one two-dimensional cell. Let g and &
be generators of the group H,(S! x S?) representable by the one-dimensional
cells. With a suitable choice of natural bases ¢}, (¢}, ¢3), and ¢} of the
modules C;, C;, and C, respectively, the boundary homomorphism 9, is
given by the column [igi; : 1], and the homomorphism 9; by the row
(p(h)— 1, 1 —¢(g)). By hypothesis, p(g) # 1 or ¢(h) #+ 1. For definiteness
we suppose that p(g) # 1. Then the vector 9,(c}) generates Im 9,, while the
vector dy(cl) generates Im 9,. Therefore

T(C) =10, (c)/eal™ [0y (e3), €feq, il lex/ey]) ™ =

n—1 1—
=(p(g)—1)" det [“’(1) t 101,

1.3.4. Proof of Theorem 1.3.1. We prove the equality (1). If p = %1, then
the links /' and / are isotopic (with a change in the orientation of the knot &
in the case p = —1), and (1) holds. We assume that p # +1. Then q # 0,
and hence T # 1. The exterior V of the link I’ can be represented in a
natural way as the union of two manifolds ¥, and V,, where V, is a solid
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torus containing I, as axis, and V, is the exterior of the original link /; the
intersection V; N V, coincides with 8V N 0V, and is homeomorphic to the
two-dimensional cylinder S* x [0, 1]. We put N = V; N V,. We denote the
inclusion homomorphisms Z[H(V,)] = ZIH(V)] and Z[H(N)] = Z[H(V)]
by j, and j respectively, where r = 1, 2. It is easy to see that j; takes the
generator [l,] of Hy(V,) = Z to T, while j takes some generator of H{(N) =2
to T?. By Lemma 1.3.3, the torsions ti(V,) and 7/(N) are (T—1)"! and
(TP — 1)"! respectively. The homomorphism j, takes the canonical generators
ty, ..., t, of H(V,)to t,, ..., t,_,, t5 respectively. From Theorem 1.1.3 it
follows that ©i((V,) = A(t;, . . ., ta_,, tB). Thus, by Theorem 0.2.3, the
torsion 7(¥V) is equal to the right hand side of (1). Hence the truth of this
formula follows from the equalities A'(¢,, ..., t,) = A(V) = (V).

Formula (2) is proved analogously, using the second statement of
Lemma 1.3.3.

1.4. The Torres formula and its generalizations.

1.4.1. Theorem (Torres [41]). Let l =1, U L, U ... Ul,bealink in S3
withn=22 Letk=1 Ul U...U . andlet u; = u(, 1,) for
i=1,..,n—1. Then

(B) Aty ooy tyogy )=Ay(ty, .y bag) (B3858 L. i),
The formula (3) plays an important role in link theory. In particular, in
the case when at least one of the numbers w,, p,, . . ., a1 is non-zero, (3)

makes it possible to compute the Alexander polynomial of the sublink k&
from that of the link /. The formula (3) also places considerable restrictions
on the form of polynomials that can be realized as Alexander polynomials
of links.

1.4.2. Theorem (generalization of Theorem 1.4.1). Let M be a connected
compact three-dimensional manifold, with x(M) < 0, and with tg HH(M) = 1.
Let G = H,(M)+*. Let 1, U ... Ul, be a link in Int M whose components
represent the elements g, ..., g8,, respectively, of G. Let V be the exterior
of this link and let § be the inclusionmhomomorphism ZIH(V)#] = 2ZIGl. If

1g Hi(V) = 2, then Y(A(V)) = AM) [[(g: — wi(ly)). If 1g H(V) = 1, then
V¥ can be extende;d to an isomorphi;r=n1 aph; Q(H(V)#®) —Q(G) and
YAV = 40D T] (g — wy(2).

i=1

Theorem 1.4.2 follows from Theorems 1.1.1, 1.1.3, and the following lemma.
1.4.3. Lemma. If, under the conditions of Theorem 1.4.2, ¢: Z[H\(V)] —
Z{G] is the composition of the projection ZIH (V)] —Z{H(V)*] and the
homomorphism {, then

(4) w @) =% (M) J] (:—w, ().
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Proof. We restrict ourselves to the case n = 1. We put d = g;— w(l;). We
denote the projection Z[H,(M)] = Z[G] by 0. The pair (M, V) has a
CW-decomposition consisting of cells lying in ¥, one two-dimensional cell
(of a meridional disc of the curve /;) and one three-dimensional cell. The
non-zero part of the complex C8(M, V) is thereby reduced to the
homomorphism of one-dimensional Z[G]-modules C; = C, defined by the

1 x 1 matrix (d). Hence if d # 0, then d™! € 7(M, V). Obviously, the
homomorphism ¢ is the composition of the inclusion homomorphism
ZIH(V)] = ZIH;(M)] and the projection 8. By Theorem 0.2.2, if d # 0,
then (M) = ©(M,V)t®(V) = d~'t®(V). Thence follows (4). If d = 0, then
H{M, V) = 2[G]. It is easy to see that Hg(M) = (0. From the exactness of
the homology sequence of the pair (M, V) with (twisted) coefficients in
Z[G] it follows that rg H¥(V) = 1. So 7%(V) = 0 = 7(M)d.

1.5. The Seifert-Torres formula.

The following theorem, proved by Seifert {39] in the case of knots, and
Torres [41] for links with an arbitrary number of components, shows that
for a link / situated in a solid torus U C S° the Alexander polynomial 4, is
completely determined by the disposition of / in U and the knotted
character of the axis of U in S3.

1.5.1. Theorem (see [39], (41]). Let k be a knot in S and U a closed
regular neighbourhood of it. Let f be a homeomorphism from the solid
torus U to a standard (unknotted) solid torus in S3; let f preserve the
orientation (inherited from S®) and take the canonical (that is, homologous
to zero in S3\k) latitude of the knot k to the canonical latitude of the
trivial knot f(k). If 1=1V ... Ul isalinkin Int U whose components are
homologous in U to the uy-th, ..., u,-th power of the loop k respectively, then

(5) Aty oo ) =0y (t, oo ) A (L thn).
Proof. By Theorem 1.1.2, the formula (5) is equivalent to the formula
(6)  A(ty, ooy ty)=Auy(fy oo ) A (@Y ) (@ — 1),

We prove (6). We suppose that at least one of the numbers y,, ..., u,, is
non-zero. The torus oU divides the exterior V of the link / into two
manifolds V; and V,, where V is the exterior of the knot k, and V), is the
exterior of / in U. From Lemma 1.3.3 and Theorems 0.2.3, 1.1.1, and 1.1.3
it follows that

A=t (V)= (V)2 (V) = A4, (" ... ") T2 (V).

where j, is the inclusion homomorphism Z{H(V,)] > ZIH{(V)]. An
analogous argument applied to the partition of the exterior of the link f(/) in
S3 by the torus f(80) shows that

152 (VZ) = A/(l) (tiv ceus ty) (till O 1)'

n

The required equality now follows from this.
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If gy = uy = ... = y, = 0, then the statement of the theorem can be
derived from the case already handled, using the following trick. We add to
! one component that has non-zero linking numbers with the meridian of the
solid torus U and with the knots /,, ..., /,,; we apply the formula (6) to this
(n+ 1)-component link; in the resulting formula we substitute ¢,4, = 1 and
use the Torres formula (3).

1.6. The Alexander formula and its generalizations.

As Alexander [1] showed, the sum of the coefficients of the Alexander
polynomial of a knot in S3is £1. This equality can be generalized to the
following theorem.

1.6.1. Theorem. Let M be a connected compact three-dimensional manifold
with rg Hi(M) = 1 and x(M) = 0. We put r = ord(Tors Hi(M)). The sum of
the coefficients of the polynomial AM) is r if OM # O or oM = @ and
wy(Tors Hy(M)) = 1, and is r{2 in the remaining cases.

Proof. The case dM # ©. The manifold M can be compressed (or even
collapsed) into a two-dimensional subcomplex of it, say X. One can assume
that X has one zero-dimensional cell and that the closure of one of the one-
dimensional cells of X is a circle which represents a generator ¢ of the group
H,(A)% = 2. We denote this circle by Y. By Theorems 1.1.1, 1.1.2, the
theorem on the multiplicativity of the torsion, and Lemma 1.3.3,
AM)=AME- 1) =AX)E—- D =1X)¢—- 1) =7(X, V). If 8 is the
projection ZIH,(X)] —2ZIH,(X)*], then the non-zero part of the complex
C%X, Y) is exhausted by the boundary homomorphism C, = C;. Let B be
the matrix of this homomorphism with respect to the natural bases. Since
x(X, Y) = 0, B is a square matrix and its determinant represents 7(X, Y).
The integral matrix B°® obtained from B by replacing the entries by their
coefficient-sums is the matrix of the boundary homomorphism of the chain
complex of the pair (X, Y) with coefficients in Z. Hence r = ord Hy(X, Y) =
= *+det 8% and aug(A(M)) = aug(7(X, Y)) = r, where aug is the augmentation
(summation of coefficients).

The case oM = Q.

Let k be a knot in M that represents a generator ¢ of the group H,(M)* = Z.
Let V be its exterior. We shall assume that in the case of non-orientable M
the loop k is orientation-reversing. We remark that the inclusion
homomorphism H(V) - H,(M) is an isomorphism. If M is orientable, then
this follows from Poincaré duality; if M is non-orientable, it follows from
the equalities H;(M, V) = 0 for i # 2, Hy(M, V) = Z/2, Tors H,(V) = 0, and
Tors Hy(M) # 0. (The last two formulae follow from the universal coefficient
formula and the equalities H3(V) = 0, H3M) = Z/2.) From Theorems 1.1.2
and 1.4.2 it follows that the inclusion homomorphism Z[H,(V)#] —2Z[H,()])]
takes A(V) into A(M) if w(Tors Hi(M)) = 1, and into (1+ t)A(M) in the
remaining cases. From the above, aug(A(¥V)) = ord(Tors H(V)) = r.

Thence the desired statement follows.
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1.7. Symmetry of the Alexander function.

As Seifert [38] showed, the Alexander polynomial of an arbitrary knot & in
S$3 is invariant under the cgnonical involution in 2[%, t“] (see §0.5; the
canonical involution a - a of the ring Z[¢,, t7', . . ., t,, t;!] takes the
polynomial a(¢y, ..., t,) into a(ty', . .., t3")). In more detall, Seifert’s
theorem states that if A € A, then A = YA with even v. The Alexander
function has an analogous property: if A € 4,, then 4 = —t*4 with odd .
The following theorem, due to Torres and Fox (see [41], [42]), generalizes
these results to the case of links.

1.7.1. Theorem (Torres-Fox). Letl =1, U .. Ul, be alink in S3 If

A €A, then A = (—1)"t{'t3* . . . ti"A with integral v, ..., v,. Here if
A F 0, then fori =1,
(7) vi=1+ 2 u(n lj) (mod2).
Ja=i

We prove this theorem.

1.7.2. Lemma. Let M be an orientable compact three-dimensional manifold,
whose boundary is empty or consists of tori. Then A(M) = AM).

Here A(‘![ {A | A € A(M)}. The equality of the sets A(M) and A(M)
is of course equivalent to the fact that for some (and so for every) 4 € A(M)
there is an element g of H,(M)* for which either 4 = g4 or 4 = —gA.

Proof of the Lemma. By Theorem 1.1.1 the equality A(M) = A(M) is
equivalent to the equality 7(M) = 7(M). According to the duality theorem
for torsions (see [26] or the Appendix, Theorem 2), 7(M) = (M, dM). The
equality 7(M, oM) = (M) follows from the multiplicativity of torsion,
Lemma 1.3.3, and the well-known fact that if R is a component of the
boundary oM then the inclusion homomorphism H,(R) — H,(M)# is non-
trivial.

1.7.3. Proof of Theorem 1.7.1. By Lemma 1.7.2 we have 4 = &t}* . .. ti"4
with integral vy, ..., v, and & = +1. If n = 1, then the product

A(t) = (t— 1)A(¢) represents A;. Here A(1) = 1, ACDH=E A= 1

(mod 2) and A = —etv+-1A. Hence it follows that e = —1 and », is odd.

If n = 2 and the linking number u = u(/,. /,) is non-zero, then by the Torres
theorem the fraction a = A(¢, 1)(t* — 1)~! represents 4, ; in particular,

a # 0. Here a = —etvi-#a. By the above, ¢ = 1 and v,—u = 1 (mod 2).
The same argument also proves the congruence v, = 14+ u (mod 2). In an
analogous way. by induction on n, we can prove the validity of the
statement of the theorem for all links /; U ... U [, such that all the numbers
u(l;, 1) with i = 1, ..., n— 1 are non-zero. The general case can be reduced
to this by means of the trick used at the end of the proof of Theorem 1.5.
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1.8. The Hosokawa polynomial.

The Hosokawa polynomial of an n-component link / in S? is the rational
function A4,(t, ¢, . . ., t)(t — 1)"-2, The Hosokawa polynomial is denoted
by #,(t), or more briefly by h,. Like the Alexander invariants, the Hosokawa
polynomial is defined only up to multiplication by —1 and powers of the
variable ¢. If / is a knot, then #; = A,. The main algebraic properties of the
Hosokawa polynomial are described in the following theorem.

1.8.1. Theorem (Hosokawa [18]). Let I =1, U ... Ul, be a link in S>
Then hy is a Laurent polynomial, that is, hy < Zlt, t7']; if h € hy, then
h = th with even v; the number h/(1) = aug h, is equal, up to sign, to an

arbitrary minor of order n— 1 of the matrix a == (a;;), where i, j =1, ..., n;
aj; = w(ly ) fori #jand a;; = —Z w(li, ).
i

Proof. We denote by M the result of surgery on the sphere S2 along /, with
the framing defined by assigning to the component /; the number a; ;. We
put H = H(M). It is clear that in terms of the generators represented by
the meridians of the components /;, ..., [,,, the group H is given by the
relation matrix equal to a. Since the sum of the columns of the matrix q is
zero, the assignment of the variable ¢ to the indicated generators defines a
ring homomorphism Z[A#] — Z[t, ¢t-1]. We denote it by . We denote the
exterior of the link / in S® by V, and the inclusion homomorphism
ZIH (V)] —Z[H#] by V.

To prove the theorem, it suffi'ces to consider the case n =2 2. By

Theorem 1.4.2, p(4;) = A(M)H(\]»(t,-) —- 1). If the minors of order n—1 of
i=t

the matrix a are zero, then rg H = 2, A(M) — ZIH#¥] and
By =mey)(d) X (¢t — 1)*" = n(AM))(E —1)%

Thus in this case /; is a Laurent polynomial and 4,(1) = 0. If the indicated
minors are non-zero, then rg H = 1 and as in the previous case

h, = n(A(M)) < ZIt, t72]. It is easy to see that if rg H = 1, then the
inidcated minors are, up to sign, equal to the order of the group Tors H.
By Theorem 1.6.1, this order is aug A(M), and hence is #,(1). The equality
h = t*h with even v follows from Theorem 1.7.1.

1.9. The Fox formulae and their generalizations.

A traditional problem in knot theory is the computation of the homology
invariants of branched covering spaces of the sphere S3 with branching at a
given knot or link. One of the deepest results in this direction was obtained
by Fox [8]. (Fox’s proof contained inaccuracies which were removed in
[471.) Up to the end of this section we fix a natural number r. We denote
by wy, ..., w, the complex r-th roots of unity.
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1.9.1. Theorem (see [81). If N = 5% is a branched cyclic r-fold cover with
branching at a knot k C S5, then for any A(t) € Ay

(8) ord Hy (N)= + i]ji A (o).

Associated closely with (8) is another formula, also pointed out by Fox.

1.9.2. Theorem (sce [8]). Let V—>Vbea cyclic r-fold (non-branched)
cover of the exterior V of a knot k C 8% Let { be the ring homomorphism
ZIH, (V)] - ZIH (V)] = 2It, t=Y)induced by this cover. If 1g H(V) = 1,
then

(A (V) = {iﬁ, A@t)IA () €A,

It should be explained that Y(A(P)) is a subset of the ring Z[¢, t-1}, any
two elements of which are obtained from each other by muitiplication by
+1 and a monomial power .

We remark that if under the conditions of Theorem 1.9.1 the group
H(N) is finite, then (8) follows from Theorem 1.9.2: as is well known,
H(V) = Z x Hy(N), so that rg Hy(V) = 1 and by Theorems 1.9.2 and 1.6.1

ord H,(N) = aug A(V) = aug ¢(A(¥)) = = [JA(®;). In the case when the
i=1

group H;(N) is infinite, the left hand side of (8) vanishes. The fact that the

right hand side also vanishes is easily observed from the proof of the

following theorem.

1.9.3. Theorem (generalization of Theorem 1.9.2). Let M be an orientable
connected compact three-dimensional manifold with x(M) = 0. Let

G = I, (M)¥#; let t, t,, ..., t, be free generators of the (free Abelian) group
G, withn>=0. Let M> M be a cyclic r-fold cover corresponding to the
kernel of the composition of the natural homomorphism m(M) - G and the
homomorphism G — Z/rZ taking t,, ..., t, into zero and t into 1 (mod r).

Let  be the ring homomorphism Z[Hl(ﬂ7)**]—+Z[G] induced by the cover
M->M Ifn>=1,o0rn=0and g H(M) = 1, then

@ @@=k [ Al .t o)A CA (D).
If n = 0 and g H(M) > 1, then
@ e @E=(= -1 [ s@nIAEs ().
Theorem 1.9.3 can be easily generalized to the case of finite Abelian
covers. Theorem 1.9.1 can also be generalized to the case of Abelian

branched covers of a sphere with branching at links—see [19], [25]. We
emphasize that the results of [19], [25] do not follow directly from the
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generalization of Theorem 1.9.3 mentioned above; to obtain these results
by the methods developed here, one requires a number of additional
considerations which go beyond the scope of this paper.

We prove Theorem 1.9.3.

1.9.4. Lemma. Let By, B,, ..., B, be square matrices of the same order
over a commutative ring. Let b(t) be the matrix polynomial
B, +tB, + . . .+ t7\B,. Then the determinant of the matrix

B, B, By ... B

B, B, B, ... By,
B=|tB,., B, B, ... B,

is ]] detb (o).
i=1

Proof. Let E be the identity matrix of the same order as By, ..., B,. We put
D = tE£ = diag(s, ¢, ..., 1). We denote the following two square matrices by
« and B respectively:

oD @, D v @pD E (eD)' (0D)-2 ... (0,D)~(r-1)

(w0, D)2 (wyD)2 ... (0.D)2 i E (0,D)' (w0,D)"? ... (0,D)~(7-1)
] Tl o ¢ o o 06 6 06 6 6. 8 ¢ ¢ 5 o o o » .

(0-)11))7‘—1 (('1)2.[)).7._.1 : . .. E(D;-D‘)r.—l E ((l),.l))"1 (mrD)-B . ((l)rD)‘(T"l)

Direct computation shows that fo is the identity matrix, and that 8B« is the
block-diagonal matrix diag(d(w;t), ..., b(w,?)). Thence follows the statement
of the lemma.

1.9.5. Proof of Theorem 1.9.3. We consider the case M # Q. Let Y be a
simple closed curve in M representing ¢. Since OM # @ and x(M) = O, the
manifold M can be collapsed onto one of its subcomplexes X, which
contains Y and is obtained from Y by gluing s one-dimensional cells and s
two dimensional cells with s 2 0. We denote by X and Y the respective
inverse images of X and Y in M. (Clearly Yisa simple closed curve

in M.) We identify H,(X) with Hy(M) and H,(X) with H,(M) via the
inclusion isomorphisms. It is obvious that 7(M, Y) = (X, Y) and

v YY) = %X Y). The non-zero part of the complex C¥(X, Y) is
reduced to the boundary homomorphism C, > C,. With a suitable choice of
natural bases the matrix of this homomorphism has the form of the matrix

B from the formulation of Lemma 1.9.4, where By, ..., B, are square
matrices of order s over the Laurent polynomial ring in the variables
ty, ... ty, t"; the determinants det B and det(B3, — tB, - ... + t"7B))

represent respectively the torsions (X )7) and 7(X, Y). By Lemma 1.9.4
it follows that

(10) w (i1, ¥)= ]r] T (M, Y)(ty, ..., 1, o).

j=1
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If n > 1, then rg Hy(M) > rg H(M) = 2 and hence 7(M, Y) = 7(M)(t— 1) =
= AM)(t— 1) and 7¥(M. ¥) = r¥@D("— 1) = Y(AGD)(" = 1). Hence we
see that in the case n =2 1 (10) implies (9). Let » = 0. Similar calculations
show that (M, Y) = A(M); if rg Hy(M) = 1, then %M, ¥) = wa@)); if
rg Hl(ﬁ) > 1, then 7%(M, }N’) = W(A(ﬁ))(t'— 1). Therefore in the case
n = 0 the statement of the theory also follows from (10).

The case of closed M reduces to the case of a manifold with boundary by
cutting out a solid torus and applying Theorem 1.4.2.

1.10. The Alexander polynomial of a periodic link.

Let M be an oriented three-dimensional homology sphere (over £) equipped
with an orientation-preserving homomorphism f: M — M of period r. We
suppose that the set of f-periodic points of period less than r coincides with
the set Fix(f) of fixed points and is a knot. We denote the knot Fix(f) by
k and the projection M — M/f by p. It is easily verified that the factor
space M/f is a manifold, and a homology sphere.

The definition of the Alexander polynomial of a link in S given in §1.2
can be carried over in an obvious way to the case of links in M and M/f.
Murasugi [30], in the case of knots, and Sakuma [37], in the general case,
proved the following theorem, which makes it possible to calculate the
Alexander polynomial of a periodic link / in M from the Alexander
polynomials of the links p(/) and p(Il U k). (For applications of this
theorem, see [30].)

1.10.1. Theorem (see [30], [37)). Letl =1 V.. Ul, be a periodic link
in M (that is, | C M\k and f(I;) = [; foralli = 1, ..., n). Then

r-1
Al (th v e ey tn) ‘:Ap(l) (th emey tn) 'I]i Ap(luh) (th D) tn? (Dl')v
i=
where w,, . .., w,_ are the complex r-th roots of unity other than 1.

Proof. Let y; be the linking number of the knots p(/;) and p(k) in M/f. 1t
is easily seen that yu; # 0 and that the linking number of the knots /; and &
in M is also u;. By the Torres theorem

AiUr (tyy o oos o D) =D (ty, ..o, ty) (322 L thn—1),

AP(—’U“) (B ..o tns 1) =A7’(l)(tu Y] tn) (t;‘ltf_)lz e t:n_ 1).

It is obvious that the projection M\( U k) = p[M\( U k)] is an r-fold
cyclic cover, which induces in the one-dimensional homology the
homomorphism ¢; — t; fori = 1, ..., n and t,4; *—> t};+;. By Theorem 1.9.3

r

A’U" (tyy - oh 1n, l:,+1) = H AT’(lUk) (tys - ooy Eny ©il544),

i=1
where w, = 1. Substituting ¢, +; = 1 here and comparing the resulting
formula with the formulae mentioned above, we obtain the statement of the
theorem.
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1.11. The Fox-Milnor theorem and its generalization.

We recall that the ordered n-component links / and /' in $™ are called
cobordant if there is an n-component submanifold of the cylinder S™ x [0, 1]
each component of which is homeomorphic to S™-2 x [0, 1}, and moreover
the boundary of the i-th component is (; x Q) U (/; x 1) fori =1, ..., n.
The following theorem of Fox and Milnor gave the historically first non-
trivial obstruction to the cobordancy of knots and links in $3. (This
theorem was announced by Fox and Milnor in 1957; they published a
detailed proof in 1966 [9].) We say that two elements a and a’ of the field
Q(#, ..., t,) (or more generally two elements of the field Q(G), where G is a
free Abelian group) are c-equivalent if there are elements

b, b €2, t72, . . ., t,, t3'] (respectively b, b’ € Z[G]) for which

abb = a'b'd’ and aug(b) = aug(d’) = 1.

1.11.1. Theorem (Fox-Milnor). The Alexander polynomials of cobordant
links in 83 have c-equivalent representatives.

In fact Fox and Milnor [9] considered only knots, but their arguments
generalize directly to the case of links (although the condition aug(d) =
= aug(h’) = 1 requires additional consideration in this case). Kervaire [22]
proved an analogue of Theorem 1.11.1 for knots in $” with odd m. The
following theorem generalizes the results of Fox-Milnor and Kervaire.

1.11.2. Theorem. Let (M, V, V') be an orientable compact even-dimensional
cobordism with H(M, V) = 0, whose boundary (dM\Int(V U V"), 3V, oV")
is either empty or homeomorphic to the cylinder oV x [0, 11. We identify

the groups Hi(V), H(V"), and H\{(M) using the isomorphisms induced by the
inclusions V.= M, V' = M. Then the Alexander functions A(V) and A(V")

have c-equivalent representatives.

We prove this theorem.

1.11.3. Lemma. Let C = (C,, = ... > () be a free chain complex over a
factorial Noetherian (commutative) ring. Let A be the matrix of the
boundary homomorphism C; 4+, —C; (relative to certain bases). Then the
greatest commoan divisor of the minors of order rg A of the matrix A is
ord(Tors H;(C)).

Proof. We denote by J the cokernel of the boundary homomorphism
Ci+y —C;. Since A is the relation matrix of the module J, the greatest
common divisor in question is ord(Tors J) (see {17}, 31 and [2],
Lemma 4.10). From the exact sequence 0 — H;(C) - J —C;_, it follows
that Tors J = Tors H;(C).

1.11.4. Lemma. Let (X, Y) be a finite CW-pair, and let E; be its i-dimensional
Alexander module (see §1.1). If H(X, Y) = O, then rg E; = 0 and
aug(ord £;) = x1.
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Proof. Let 0 be the projection ZIH,(X)] —ZIH,(X)¥]. Let 4; be the
matrix of the boundary homomorphism C?.H(X , YY) - C?(X , ) relative to
the natural bases. We denote by A}’ the integral matrix obtained from A;

by replacing the entries by their coefficient sums. We denote the number of
j-dimensional cells in X\Y by r;. The arguments in the proof of Theorem 1.6.1
and the condition H(X, Y) = 0 show that rg 4}_(4-rg A} =rg C(X,Y) = r,.
Hence it follows that the obvious inequalities rg 4} << rg A; and

rg A, +rgd; g C?(X , Y) = r; become equalities for j = i. Hence it
follows in turn that rg £; = 0. By Lemma 1.11.3 the number aug(ord £;)
divides all the minors of order rg 4; = rg A? of the matrix A? and so by the
same lemma divides

ord(Tors Hy(X, Y))= 1.
1.11.5. Proof of Theorem 1.11.2. We denote the i-dimensional Alexander
module of the pair (M, V) by E;. We put r = (dim M)/2, b = H ord E,, 4,

, i=0
and b’ = [[ ord E,;. By Lemma 1.11.4, aug(b) = aug(d’) = 1. By
i=0

Theorem 1.1.1 (M, V) = b(b")). According to the duality theorem for
torsions (see Appendix, Theorem 3) w(M, V') = ©(M, V)~'. Therefore

AV)=1(V)=1(M)T(M, V)"t=t(M, V)T (V)1 (M, V)=
=T(M, V)t (M, V)t (V) = (bb) 1 (b') A (V').

Remark 1. In the study of the Alexander polynomials of links in S3, there
arises naturally the problem of the algebraic characterization of these
polynomials, that is, the problem of finding algebraic conditions on a
polynomial that are necessary and sufficient for its realizability as the
Alexander polynomial of a link. The first such result was obtained by
Seifert [38], who proved that a polynomial A € Z[¢, r'] can be realized as
the Alexander polynomial of a knot in S? if and only if aug(A) = £1 and

A = t’A with even v. For the Hosokawa polynomial, the algebraic
characterization was obtained by Hosokawa himself [18]: forevery n =2 a
polynomial # € Z[¢, £1] can be realized as the Hosokawa polynomial of an
n-component link if and only if # = ¢*4 with even v. The problem of
characterizing the Alexander polynomials of links with at least two
components is considerably more complicated (some partial results can be
found in [17]).

Remark 2. The problem of characterizing the Alexander polynomials of
links is closely related to the analogous problem concerning the Alexander
polynomials of orientable connected closed three-dimensional manifolds. We
denote this class of manifolds by M. The Alexander polynomial of a
manifold M € M has the following properties: (i) if rg H,(M) = 1, then
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aug(A(M)) # 0; (i) if A € A(M), then A = g?A with g € H,(M)#; (iii) if

n = rg Hi(M) and [ is the kernel of the augmentation Z[H,(A)#] — 2Z, then
A(M) < I"-3; here if n is odd and n > 3, then for some A € AM), r € Z,
and a € I®-3/% we have the inclusion rA — a* € ™2, Here statement (i)
follows from Theorem 1.6.1; (ii) is easily deduced from Theorems 1.4.2 and
1.7.1, representing M as the result of surgery on the sphere along the framed
link with even framing; statement (iii) is deduced similarly from the results
of Traldi [43], appropriately generalized to the case of links in Q-homology
spheres. It is possible that the listed conditions exhaust all algebraic
conditions on Alexander polynomials of manifolds in . This is confirmed
by the following facts. From the characterization theorem for the Hosokawa
polynomial and from the proof of Theorem 1.8.1 it is not hard to deduce
that every polynomial A € Z[¢, 1] with aug(A) # 0 and with A = ¥A,
where v is even, is realizable as the Alexander polynomial of a manifold

M € M with rg H(M) = 1. If A is a Laurent polynomial in the variables

f,. t, for which A = }'}*A with even »,, v,, then A can be realized as the
Alexander polynomial of a manifold M € MM with rg H,(M) = 2. This
follows from Theorem 1.4.2 and a theorem of Bailey, according to which
the product A(¢;— 1)(¢;— 1) can be realized as the Alexander polynomial of
some link /; U [, C 83 with u(l;, 1) = 0 (see [17]).

§2. Proof of Theorems 1.1.1, 1.1.2, and 1.1.3

2.1. Proof of Theorem 1.1.1. Theorem 1.1.1 follows from the following
algebraic lemma.

2.1.1. Lemma. Let C = (C,, > ... > C,) be a free chain complex over an
integral domain K with rg H(C) = 0 foralli = 0, ..., m. Let the modules
Gy, Ci, ..., C,, be equipped with bases over K. If K is facrorial and
Noetherian, then

©(C) = H lord H (C)let)  (where e(i) = (—1)i+1),
i=0

This lemma is proved in §2.1.4 using the results of §82.1.2 and 2.1.3.

2.1.2. Auxiliary definition: matrix 7-chains.

Let C be the K-chain complex discussed in the formulation of Lemma 2.1.1.
A matrix chain of the complex C is an arbitrary collection

{ay, a;, - . ., a@m; By, By, . .., By} where a; is a subset (possibly empty)
of the set {1, 2, ..., rg C;} B; is the matrix obtained from the matrix of
the boundary homomorphism C; 4+, — C; (relative to the chosen bases) by
crossing out the rows whose numbers are in a;4; and the columns whose
numbers are not in g;. It is clear that B; is a matrix over K of size

(rg C;4+y — card a;4+,) X card a;. A matrix chain

{ag, @y, ..., am; By, By, - -, B}
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is called a r-chain if ay = {1, 2, . ., rg Cp}and rg C;4+, — card @;4+, = card a;

fori=0,1,..,m—1. Here B, B,, ..., Bp_, are square matrices and
card a; = o;(C), where

(11) al(C)=rgC;,—rgCiy + ... + (—1)rg C,
andi =0, 1, ..., m. It is easy to see that C has a matrix 7-chain if and only

ifa(C)=20foralli=0,1, .., m

2.1.3. Lemma. Under the hypotheses of Lemma 2.1.1, let A; be the matrix
of the boundary homomorphism C,;4, — C; with respect to the chosen bases.
Let {a,, a,, ..., am; B,, ..., By_,} bea matrix t-chain of the complex C.
Then 1g A; = o4(C) and
{(m-1);2} [m/21-1
(12) T(C) _I]0 det By, = (— 1)V iI__|0 det By; 4y,

=

m-1{
where W= card{(z, y) €EZxZ|{1<z <y, & a;, Y€a;}.

=0
Proof. Replacing the ground ring K by its quotient field (see §0.1) if
necessary, we can assume that K is a field. We put ; = dim C; and denote
the boundary homomorphism C;4+, — C; by 9;. The first statement of the
lemma follows from the equality rg A; = dim(Im 9;) and from the exact

sequence Imd; - C; - C;.;, —» ... > Cy —0.
We prove formula (12).
Case 1. det B; =0 forsomei=0,1, .., m—1. We show that in this case

either det B;_; = Oor det B;,, = 0, so that both sides of (12) vanish. We
suppose that the matrices B;_, are B;;, are non-singular and reduce this to a
contradiction. From the equality 4;,,4; = 0 and the fact that B;,, is non-
singular it follows that the subspace of the space K’ generated by the rows
of A; is already generated by the rows of this matrix whose numbers are not
in a;4,- Similarly, from the fact that B;_, is non-singular it follows that the
subspace of Kr;.., generated by the columns of A; is already generated by the
columns whose numbers are in a;. Thus, deleting from A4; the columns with
numbers not in @; and rows whose numbers are in a;4, does not affect the
rank of 4;. In other words, rg A; = rg B;. Since B; is a square matrix of
order o;(C) and det B; = 0, it follows that rg 4; < o;(C). This inequality
contradicts the equality rg A; = o;(C) established above.

Case 2. det B; # O for all i. We denote the chosen base of the module ;
by ¢; == (¢, ..., cii). Let b; be a subsequence of the sequence ¢; consisting
of the vectors whose numbers are not in @;, where i = 1, ..., m. Since

rg B; = o4(C) = 1g A;, the sequence 8;(b;+,) is a base for the space Im 3;.
Direct calculation shows that [9;(b;4+,)0;/c;] = (—1)nt det B;, where

ng=card {(r, ) €EZXZ 1<z <y, 2¢a;, y€a;})

Hence, taking into account the definition of torsion, we have (12).
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2.1.4. Proof of Lemma 2.1.1. We denote the matrix of the boundary
homomorphism C;4, -+ C; by 4;. We denote by /; the ideal of the ring K
generated by the minors of order rg A; = o4(C) of the matrix A; (see
§8§2.1.2 and 2.1.3). We prove the equality

[(m=1)/2] [m/2] - 1
(13) ©(C) H Iy= '“o Ipysy.

== =
If B,;is a square submatrix of 4,; of order a,;(C)withi =0, 1, ..., [(m~1)/2],
then, as is easily seen, there is a (unique) matrix 7-chain

{a¢, a1, . .« @m; Bg, By, ..., Bn_y}

of the complex C such that Bs; = B,; for all i. Hence the inclusion of the
left hand side of (13) in the right hand side follows from Lemma 2.1.3.
The reverse inclusion is proved similarly.

If ©(C) = zy~!, where x and y are non-zero elements of K, then by
multiplying both sides of the equality (13) by y, taking greatest common
divisors of the elements of the resulting ideals of K, and applying the result
of Lemma 1.11.3, we obtain the equality

[(m-1)/2] [m/2]-1
z I ord#y €)=y || ordHss (C).

Hence we have the statement of the lemma.

2.2. Proof of Theorem 1.1.2.

2.2.1. Lemma. Let M be a compact m-dimensional manifold; let o be the
involution of the ring Z[H,(M)] taking h € H\(M) into wi(h)h™Y; and let ¢
be a ring homomorphism of Z{H\(M)] into a factorial Noetherian ring.
Ther for any i

ord (Tors HY(M)) = ord (Tors HY 2, (M, 0M)).

This lemma is proved in §2.2.3. For its proof we require the {(well-known)
constructions of dual chain complexes and dual CW-decompositions of
manifolds. These constructions are reproduced in §2.2.2.

We prove Theorem 1.1.2. If A(M) = O, then from the definitions
A(M) = 0 and the statement is obvious. We suppose that A(M) # 0. We
denote the i-dimensional Alexander module of the manifold M by E;. It is
clear that E, = Z and £3 = 0. Hence rg £, = 1g F3 = 0. Since

ord £, = A(M) # 0, rg E; = 0. Hence by the equality y(}f) = 23 (—Virg E;
and the condition x(M) < 0, it follows that rg E, = 0. Thusizid E; # 0 for
all i, and so 4{M) = f[ [ord Ele(1), The order of the module Ej is
represented by the idein=t?ty 1 € ZLHH#]. The order of the module Ej is
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represented by the identity if rg A 2 2, and is represented by the difference
t—1if rg H = 1. So to complete the proof it suffices to calculate
ord E, = ord(Tors E,), which is not hard to do by using Lemma 2.2.1.

2.2.2. Auxiliary definitions.

(i) Let C = (C,, = ... > () be a free chain complex over a commutative
ring K. We say that the chain complex C* = (C;, -~ Cp—y —. .. —Cg}
over K is dual to the complex C if, firstly, C; = Homg(Cp,_;, K) for all i,
and secondly, for i < m the boundary homomorphism 93: Ciyq — Ciis
(—1)™% a%_;-1 (that is, for any ¢ € C,,_; and d € Ciyy we have

i d)(c) = (—1)™"'d(@m-i1-,(c)). It is clear that if the complex C is equipped
with a distinguished basis, then the complex C” is naturally equipped with
the ““‘dual” basis. Here the matrix of the homomorphism 9; is obtained
from that of the homomorphism 8,,_;_; by transposition and multiplication
by (—1)™-%. If the ring K is factorial and Noetherian, then by Lemma 1.11.3
ord (Tors H(C*))= ord (Tors Hyp,_;,(C})for all i.

(ii) Let X be a piecewise-linear triangulation of the compact m-dimensional
manifold M. It is well known (see, for example, [26]) that if ¢ is a simplex
of the triangulation X, then the union of all simplexes of the first barycentric
subdivision of X which have as a vertex the barycentre of the simplex 2, and
which have no other points in common with q, is a cell of dimension
m—dim a. This cell is called the dual of a, and is denoted by a”. If

a C oM, then to the simplex a there corresponds, in addition to a”, the cell
a,, which is the dual of @ in dM. It is clear that a5 C da". The cells of type
a” and a; form a CW-decomposition of M which is “dual” to the
triangulation X. This decomposition is denoted by X" The cells of type a;
constitute a decomposition 3X* of the manifold aM.

2.2.3. Proof of Lemma 2.2.1. The temma follows from the results of
§2.2.2 and the well-known fact that if X is a piecewise-linear triangulation
of the manifold M, then the chain complex Cg°9(X*, dX*}is dual to the
complex CP(X) (see, for example, [26]).

2.3. Lemma (obvious). Let K and K' be integral domains, and let y be a
ring homomorphism K — K'. Let Q({) be the subring of Q(K) consisting of
elements of the form zy= with x, y € K, Y(y) # 0. Then K C Q(¥) and
the formula Y(2y=?) = @)W (y)™* defines a ring homomorphism

¥ Q) — K', extending .

2.4. Lemma. Under the conditions of Lemma 2.3, let C = (C,, > ... > ()
be a free chain complex over K; let the modules Cy, Cy, ..., C,, be equipped
with the bases ¢y, ¢y, ..., Cpy respectively; let C' be the K'-chain complex

K' ®xC; and for each i let the module C; = K' @ xC; be given the basis c;
induced by the basis c¢; (that is, c;i =1 ® ¢;). Then, if 7(C') # 0,

7(C) € Q(¥) and yc(1(C)) = (C').
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Proof. We denote the boundary homomorphisms C;4+y = C;and Ciyq — C;
by 9; and 9; respectively. Let b; be a subsequence of the sequence ¢; for
which 8;_4(bi) is a basis for the Q(K')}module Q(K’) @ k- Im d;_,. We
denote by b; the inverse image of the sequence b; under the natural
bijection ¢; = ¢; of the bases. Let D, (respectively D;) be the transition
matrix from the basis ¢; to the sequence 8;(b;4+,)b; (respectively from c; to
di(bi+1)bi). 1t is obvious that D; is a matrix over K and that D; = y(D;)
(elementwise). If 7(C') # 0, then the complex Q(K') ® C' is acyclic, D; is a
square matrix, and det D; # O for all i. So det D; # 0 for all i,

(€)= ] (et D))ot € Qfy)and

¥ (1(€) =1] (b (det D))** =[] (det DY*? == (C).

2.5. Proof of Theorem 1.1.3. Let ¢y Q@) — Q(I1) be the ring
homomorphism extending Y afforded by Lemma 2.3. By the equality
AM) = (M), to prove the theorem it suffices to establish the inclusion
7(M) C Q(¥) and the equality yn(t(M)) = 19(A). If 79(M) #* O, then this
inclusion and equality follow from Lemma 2.4. We suppose that r%(M) = 0,
and show that (M) < Q) and yo(r(M)) == 0.

We consider the case oM # ©O. If x(M) # 0, then 7(M) = 0, and the
required assertion is obvious. Let x(M) = 0. It is clear that M can be
collapsed onto a finite two-dimensional subcomplex of itself, say X, which
has one zero-dimensional cell, s one-dimensional cells, and (s— 1) two-
dimensional cells, with s 2 1. We identify the groups H{(X) and H = H,(M)
via the inclusion isomorphism. Here 7(M) = 7(X). We denote by A4; the
matrix of the boundary homomorphism Cg,(X) —»C?(X) withi =0, 1. 1t
is obvious that A, is a matrix of size (s— 1) x s and that 4, is a column
vector whose elements, with a suitable choice of natural bases, have the
form hy— 1, ..., hy,— 1, where h,, ..., hy are the generators of H# represented
by the one-dimensional cells of X. Since Y(H#) %= 1, there is some j for
which y(h;) # 1. If B is the matrix obtained from A4, by deleting the j-th
column, then by formula (12) (det B)ly(h;) — 117! € ©(X). Hence we have
the inclusion ©(X) < Q). If ¢ (det B) 5= 0, then, as is easily seen, the
complex Q(II) @ C&(X)is acyclic, in contradiction to the assumption that
79(X) = 0. Therefore y(det B) = 0 and hence yn(1(X)) = 0.

The case of closed M is considered similarly, the role of the space X being
played by a suitable CW-decomposition of M.

Remark 1. For chain complexes over principal ideal rings Lemma 2.1.1 was
first proved by Milnor [27], using the structure theorem for modules over
such rings. A formula analogous to (13) was obtained by Buchsbaum and
Eisenbud [50] for acyclic free chain complexes over commutative Noetherian
rings.

Remark 2. Using Lemma 2.4, it is not hard to generalize the Alexander
formula aug(Ay) = %1, where k is a knot in S3, to the following assertion:
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if X is a finite CW-complex with the rational homology of a circle, and if ¢
is a generator of the group H,(X)#, then A(X)(t— 1) C Q(aug), (where aug
is the augmentation Z H,(X)*#] — 2 ) and

augn (A(X) X t —1)) = H lord(Tors H,(X))leth.

Similarly, one can also carry over Theorems 1.9.1, 1.9.2, and 1.9.3 to the
many-dimensional situation. We state here a many-dimensional version of
Theorem 1.9.1. Let N = S™ be a branched cyclic r-fold cover, with
branching at the knot k£ C S, where m 2 3. Let w;, ..., ©,; be ring
homomorphisms Z[¢, 1] = C for which w,(t), . - ., ©,_,(t)are the r-th
roots of unity other than 1. If N is a rational homology sphere, then

A, C Q(w;) for alt i, and for any 4 € 4, we have

m-1 X r—1
T tord 1,10 =21 T (@) (4)-

This formula is significant only for odd m: if m is even, then, as is easily
verified by using Lemma 2.2.1, both the left and right hand sides of the
above formula are 1.

§3. Refined torsion and the refined Alexander function

3.1. Preliminary definitions.

3.1.1. The torsion 7.

Let C = (C,, = ... > () be a chain complex over a field /. We suppose
that for each 7 = 0, I, ..., m a basis is fixed in each of the vector spaces C;
and H,(C). In this situation, we define the torsion #(C) € F in the following
way. Let ¢; be the fixed basis in C;; let 4; be a sequence of vectors in the space
Ker(d;.,: C; — C,_,) whose images under the projection Ker 8;,_;, — H;(C)
form the given basis in H;(C); and let b; be a sequencemof vectors in C; for

which 4;_,(b}) is the basis in Im d,.,. We put N(C) = 2 a;(C)B;(C), where
o;(C) is defined by (11) and i=0

Bi(C) = dim H,(C) — dim H;,(C) + ... + (—1) dim H,(C).

For every i the sequence 8;(b; +,)h;b; is a basis in C;; the product

m
(=M 1) 101 (Bre) hibife*V € F
does not depend on the choices made (see {28]). This product is #(C). The
definition here differs from that given in [28] by the presence of the factor
(—1)NO, which enables us to simplify the later statements slightly. It is
clear that #(C) # 0, and that if C is acyclic, then 7(C) = 7(C). When it is
necessary to emphasize the dependence of 7(C) on the chosen bases

hy, hy, ..., h,,, say, for the spaces H(C), H(C), ..., H,,(C), this torsion is
denoted by 7#(C; hg, hy, ..., h,,).
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3.1.2. Homological orientation.

A homological orientation, or, more briefly, h-orientation, of the finite

CW-pair (X, Y) is an arbitrary orientation of the vector space

H (X,Y;R) = ;(9 H,(X,Y;R). If H(X, Y; R) = 0, then the pair (X, Y)
i=0

has a single /h-orientation, in the remaining cases (X, Y) has two opposite
h-orientations.

3.2. Refined torsion.

Refined (or sign-determined) torsion is defined in the same situation as the
usual Reidemeister torsion, but with one additional condition: the
CW-complex (CW-pair, pl-manifold) in question is supposed to be equipped
with an h-orientation. The presence of the h-orientation makes it possible,
having slightly improved the definition of the torsion, to remove the
indeterminacy of its sign; the result is the refined torsion. If the 4-orientation
is replaced by the opposite one (when this is possible), the refined torsion is
multiplied by —1. The refined torsion becomes the usual Reidemeister
torsion when it is considered only up to multiplication by —1.

Now we pass to the precise definitions. Let (X, Y) be a homologically
oriented finite CW-pair, and let ¢ be a ring homomorphism from the ring
Z[H(X)] into an integral domain K. We define the refined torsion 7§(X, Y).
We choose bases kg, #, ... for the spaces Hy(X, Y; R), Hi(X, Y; R), ...
respectively, so that the basis kg, 4y, ..., for the space H (X, Y; R) determines
the chosen orientation for this space. We consider a base sequence e of
oriented cells of a maximal Abelian covering space of X (see Section 0.2).
By what was said in §0.2, the sequence e determines bases in the chain
modules of the complexes CAX, Y) and C(X, Y; R). We consider the
torsions 7 = 7(CA(X, Y)) and § = #(CAX, Y; R); hy, hy, ...) corresponding
to these bases. Here r€ Q(K) and E €R, ¢ F# 0. Weput 7§(X, Y, e) =
= sign(§)r, where sign denotes the sign of a number (sign(¢) = *1). The
totality of the torsions 7§(X, Y, e) corresponding to all possible sequences e
is 78(X, Y). It is easily verified that on replacing the bases Ay, Ay, ... by
other bases giving the chosen homological orientation, the number sign(§),
and consequently the torsion 7§(X, Y, e), are unchanged. The torsion
7§(X, Y, e) is also unchanged by a change in the orientation of the cells of
e, and by renumbering these cells: in the given operations the torsions 7
and £ change sign simultaneously. Hence we can see that 7§(X, Y) is an
“element of Q(K) determined up to multiplication by ¢(g) with g € H,(X)”".
It is obvious that 79X, Y) = £7§(X, Y). ‘

3.2.1. Theorem. Under the conditions of Theorem 0.2.1, if the pairs
(X, V) and (X', Y') are homologically oriented, and if the isomorphism
H(X, Y; R)=>H/(X' Y'; R)induced by the given simple homotopy
equivalence (X, Y) ~> (X', Y') preserves the homological orientation, then
WX, Y) = 10X, Y).
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This theorem enables us to study in particular the refined torsions of
h-oriented compact manifolds (see §0.3).

Proof of Theorem 3.2.1. We restrict ourselves to the case Y = Y' = Q. As
is known (see, for example, [36] or [48]), every simple homotopy
equivalence can be written as the composition of elementary (cell) expansions
and elementary collapses. We recall that the map f: X = X' is called an
elementary cell expansion if f is a cell embedding; X' = f(X) U B, where B
is a closed j-dimensional ball intersecting f(X) in a (j— 1)-dimensional ball

D C 3B; and the CW-decomposition of X' is obtained from the decomposition
of f(X) by adding two cells: Int B and 0B\D. Elementary collapses are
maps homotopically inverse to elementary cell expansions. So it suffices to
prove the theorem for an elementary cell expansion f: X = X'.

We identify X and f(X) by means of f. We denote the chain complexes
C9(X) and Cf'(X) by C, and C, respectively. Let ¢;_, and ¢; be elements of
the modules Cj_, and C,-', respectively, that can be represented by oriented
cells in the maximal Abelian cover of X' situated over 8d8\D and Int B. It
may be supposed, by transferring one of these cells by a sliding homomorphism
if necessary, and changing its orientation, that these two cells are incident
with incidence coefficient 1. In addition, we can assume that the domain of
values of the homomorphisms ¢ and ¢' is a field.

If the complex C, is not acyclic, then C, is also not acyclic, and both the
torsions in the formulation of the theorem are zero. We suppose that C,
and C, are acyclic. Let ¢; be the natural basis in C;, and let b; be a
sequence of elements of the vector space C; for which 8;_,(b;) is a basis for
Im(d;_,: C; = C;_;). It is obvious that C/ = C,; fori -1, j, and that
c;, e; is the natural basis for C/ for i = j—1,j. It is not hard to verify that
Im 3; = Im 9, for i #/— | and that 9;_,(b;), d}—4(e;) is a basis for Im 4j_,.
It follows immediately from the definition of the torsion that the ratio
7(CHI7(C,) is

([ai (bjs1) bjeflcz'eil)e(n ( [85-1(b5) 65_4 (e5) Bj-y/ej-1€5-1] )eu-:)
[0 (Bje1) bylej] (01 (bj)bj-1/c 1] ’

It is easily verified that the first factor is equal to 1, while the second one is
equal to (—1)%, where « is the number of terms of the sequence b;_,. Since
C, is acyclic, a = a;_,(Cy)-

We put £ = C,(X; R)and £’ = C(X'; R). We equip £ and E' with
bases corresponding to the same sequences of cells as the bases considered
above of the complexes C, and C,. We equip the R-modules H;(F) and
H/(E", where i = 0, 1, ..., with bases defining the given orientation in
H/(X; R). Arguments analogous to the ones above show that 7¥(E')/7(E) =
= (—1)®, where B = a;_,(E) -+ B;_(E) - N(E) - N(E’). 1t is obvious that
aj_o(E) = a;_,(C,). As is easily verified, N(E’) = N(E) —- f;_,(E). Hence
B = o (mod 2), and so 78(X) = 7§ (X").
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3.3. The refined Alexander function.

The refined Alexander function AyX, Y) of a homologically oriented finite
CW-pair (X, Y) is the refined torsion 75(X, Y), where 0 is the projection
Z[H,(X)] = Z[G], G = H(X)#. From the results of §3.2 and Theorem 1.1.1
it follows that A((X, Y) is an element of the field Q(G) defined up to
multiplication by elements of the group G; A(X, Y) = 44X, Y); when
the h-orientation is replaced by the opposite one (which is possible if

H.(X, Y; R) # 0), the function Ao(X, Y) is multiplied by —1. If

H (X, Y; R) = 0, then Ay(X, Y) is calculated from A(X, Y); by
Lemma 1.11.4, A(X, Y) can be represented as the fraction ab™! with

a, b € Z[G], aug(a) > 0 and aug(b) > 0; here, as follows from Lemma 2.4,
ab™' € A|(X, Y). It is not hard to show that A, is an invariant of homotopy
equivalences preserving h-orientation (but not necessarily simple).

3.4. Properties of the refined torsion and refined Alexander function.
Most of the properties of torsion and the Alexander function discussed in
§80, 1, and 2 can be sharpened to properties of the corresponding refined
invariants. Here we restrict ourselves to those properties of the refined
torsion and refined Alexander function that are needed below.

3.4.1. Theorem. Under the conditions of Theorem 0.2.2, let the spaces
X, Y and the pair (X, Y) be homologically oriented. Let these orientations
be coordinated in the following way: for some (and then for any) choice of
bases over R for the real homology groups of X, Y and the pair (X, Y) that
determine the given orientations, the torsion of the homology sequence with
coefficients in R of the pair (X, Y), considered as a chain complex over R, is
positive. If T9X, Y)# 0, or 19 (Y) =0, then 1@ (X) =(—1)"18 (1)1 (X, Y)
dim X i

where p= go [B:+1) (B +B) + Bi- (B7] with B, = 20 rg H, (X)

i i
g;=}30 rg H,(Y), and 5;:20 rgH, (X, Y).

We remark that if (X, Y; R) = 0, then u is even, and that if the
h-orientations of X, Y, and the pair (X, Y) are not coordinated, then by
replacing one of these orientations by its opposite we obtain a coordinated
triple of orientations.

It is not hard to deduce Theorem 3.4.1 from the following lemma, which
refines and generalizes Theorem 0.1.1.

3.4.2. Lemma. Under the conditions of Theorem 0.1.1, let the ground ring
be a field;, let the homology modules of the complexes C, C', and C'' be
equipped with bases; and let & be the homology sequence of the pair

(C, CY: H,(C") = H,(C)=~> H,(C'")~> ... > H(C") > H{(C'") considered as
an (acyclic) chain complex (here m = dim C). Then

1C) = (—+ve(C) X TC")T(SK)
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m

where v = 3} a,(C")a;_4(C’) and

=0
B =§o [(B:(C) + 1) (B:(C") + Bi(C") + Bi-1(CIBLCT)]

(the definition of the numbers o; and B; can be found in §8§2.1.2 and
3.1.1). In particular, if C, C', and C" are acyclic, then 7(C) = (=1)’r(C")(C"").

Proof. According to [28], ;(C) = (—1)1';(0‘);(C”)-r(%), where x is an
integer computed as follows. We denote by x; and x;’ the dimensions of the
images of the inclusion homomorphisms H(C') = H;(C) and H,(C) - H,(C'")
respectively. We denote by d/ and d;’ the dimensions of the images of the
boundary homomorphisms Ci,y — C§ and Ciyy — Cjrespectively. Then

g = N(€) — N(C') ~ N(C") + _2_30<x,-d;' + zidi_y + di_ydy).

All the numbers on the right hand side of the last formula can be expressed
in terms of o;(C), o,(C""), B(C), B(C"), B(C') with i = 0, 1, ..., m. For
example, d; = a;(C")— B(C’) and z; = B;(C) + Bi1(C’) — B;(C"). Substituting
these expressions into the formula for x, and cancelling similar terms (taking
into account the equalities o;(C) = a(C")+ o,(C"') and «,, = B,,), we obtain
X = u+v (mod 2).

3.4.3. Theorem. Under the conditions of Theorem 1.1.3, let the manifold
M be homologically orienied. Ifrg H 2 2, then 7§(M) = y(4,M)). If
rg H = 1, then 78(M) = Y(AyM)).

The proof of this theorem is obtained by a simple modification of the
proof of Theorem 1.1.3, and is therefore omitted. For similar reasons we
also omit the proof of the following theorem.

3.4.4. Theorem. Under the conditions of Theorem 1.11.2, let the manifolds
M, V, and V' be homologically oriented, and let the inclusion isomorphisms

H(V;, R)y-> H,WM; R)and H(V'; R) > H(M; R) preserve the orientations.
Then the functions A|(V) and Ao(V') have c-equivalent representatives.

Remark 1. Every oriented (in the usual sense of the term) closed odd-
dimensional manifold M has a canonical A-orientation. Namely, we put
m=dim M; fori=20,1, .., (m—1)/2 we fix an arbitrary orientation in
H:(M; R) and the orientation in H,,_;(M; R) that is dual to it with respect
to the intersection form H;(M;R) x H,_;(M; R) — R; the direct sum of
these orientations is the canonical orientation of the space H,(M; R). The
refined Alexander function of M corresponding to this orientation is denoted
by Ao(M). On replacing the given orientation of M by the opposite

orientation, the canonical s-orientation is also replaced by its opposite one
(m-1)/2
if s =) rg H(M)is odd, and is unchanged if s is even. So Ay(—M) =

i=

= (—1)°Ay(M). Hence it can be seen that in the case when A(M) # 0 and s
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is odd the invariant A4(M) cannot be calculated from A(M). From Theorem 5
of the Appendix it is not hard to deduce that if w,,_,(3) = 0, then the
function Ay(M) has a canonical representative: there also exists a unique
element A € Ay(M) such that A = +4. Here if m =3 (mod 4), then 4 = A.

An oriented four-dimensional manifold has in general no natural
h-orientation. This can be seen for example from the fact that complex
conjugation in CP? preserves the usual orientation, and inverts the
h-orientation.

Remark 2. The problems associated with distinguishing the orientations, and
in particular the problem of the existence of an orientation-reversing
automorphism of a manifold, form the most natural area for the application
of refined torsions and refined Alexander functions. For example, from the
results of Remark 1 it follows that if M is an orientable connected closed
three-dimensional manifold with an even one-dimensional Betti number, and
if aug(A(M)) # 0 or A(M) can be represented as the square of a non-zero
polynomial, then M does not admit orientation-reversing automorphisms.
The Alexander polynomial can also carry other useful information on the
automorphisms of a manifold. We consider the following example. Let M
be the result of surgery on the sphere S3 along the two-component link /
depicted in Fig. 1, equipped with zero framing.

)

5

Fig. 1.
It is obvious that H(M) = Z x Z. By [35], 419, we have
t, — D, — D =1, -1 -1 = 15" € A,

By Theorem 1.4.2, t, 4+ t, +1 + t7* + ;' € A(M). Hence we can see that
M does not admit orientation-reversing automorphisms, and that the
automorphisms of the group H(M) induced by homeomorphisms M - M
leave the set {t,, t,, t;*, t;'} invariant. Hence in turn it follows that the
image of the natural homomorphism Aut(M) — Aut(H,(M)) consists of at
most eight elements. Using the symmetry of the link /, it can easily be
shown that this image contains the homomorphisms (¢,, ¢,) + (7}, t.) and
(t;) t2) = (s 1))

Remark 3. Using refined torsions, we can prove without difficulty the
following theorem announced by Conway [5]: if an ordered link / in $3
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with an even number of components is isotopic (in the category of ordered
links) to its mirror image, then A; = 0. For let V and n be the exterior
and the number of components of / respectively. We give V' a homological
orientation. The composition of the mirror symmetry and the isotopy
defines a homeomorphism f: ¥V — V that induces multiplication by —1 in the
vector space H,(V; R) @ H,(V: R). Since the dimension of this space is
2n— 1, f reverses the homological orientation. Consequently f,(Ax(V)) =

= —AyV). On the other hand, if A = A(¢,, ..., 1,). € A(V), then by
Theorem 1.7.1 and the fact that n is even we have

Fold) = A(TY .. o 7)) =1ty ... 174
* 1 1

with integral vy, ..., »,. Hence it follows that f,(4o(V)) = 4(V). Therefore
A, = +Ao(V) = 0. (Another proof can be found in [16]; see also §4.)

§4. The Conway link function

4.1. History of the question.

In 1970 Conway [5] proposed a new method for computing the Alexander
polynomials of links in S3, based on a bright and completely unexpected
idea. The cornerstone of this method is the link invariant introduced by
Conway, which he called the potential function of the link. (The Conway
function has no relation to the potentials studied in mathematical physics.)
The potential function is defined for an arbitrary ordered (oriented)
n-component link / C §3. It is denoted by V,(¢;, . - .. t,), or more briefly
by V., and represents a uniquely defined rational function of the variables
... ty. If n 22, then V, is a Laurent polynomial: v, € Zlt,, i*,.... t,. t;}].
If n = 1, then the potential function V:is a priori not a Laurent polynomial,
but nevertheless has a fairly simple form. Namely, it can be written as a
fraction whose numerator is a Laurent polynomial in ¢, and whose
denominator is —¢"!. The potential function is symmetric (V; = (—1)"V})
and is related to the Alexander function by the formula

Villss - - o ) = A ..., 1)

where the symbol = means equality up to multiplication by —1 and powers
of the variables. From these formulae it can be seen that the function Vi,
considered up to multiplication by —1, is the result of symmetrization of the
function A4,(t3, ..., t2). In particular, the potential function considered with
this accuracy can be computed from the Alexander function. The potential
function cannot be completely restored from the Alexander function. For
example, the Alexander functions of a link / and its mirror image /' are
equal, whereas V- = (—1)"*'y,.

Conway showed that the potential functions of different links are
interconnected by additive relations which make it possible to compute the
potential functions (and with them the Alexander polynomials) recursively,
by successive simplification of links (see [5] or §4.2).
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The precise definition of the potential function, which in essence reduces
to the simultaneous and consistent attaching of signs to the Alexander
polynomials of links, by the traditional methods of defining the Alexander
polynomials runs into considerable difficulties. The fundamental paper of
Conway [5] does not contain a definition of the potential function. In

1981 Kauftman [20]) gave a simple definition of the function G, obtained
from V; by the substitution ¢, = t, = ... = ¢, = t. Namely:

61 = (t — t~1)"1 det (tS — ¢+-'ST), where S is the Seifert matrix of the link /.

The function (t — t™1)v,; - det (1S — ¢-187)is called the reduced potential
function of the link /. In 1983 Hartley [16], on the basis of Conway’s
ideas, gave a definition of the Conway function in full generality. This
definition is formulated in terms of the diagrams of links and associated
notions—Wirtinger presentations, Seifert circles, and so on. The paper of
Hartley also contains the first published proofs of the properties of the
potential function announced by Conway.

The approach of Conway and Hartley to the definition of the potential
function, using the diagrams of links, has its advantages and disadvantages.
The main advantage of this approach is that it enables one to compute the
potential function of a link directly from the diagram, in which the amount
of computation is not much larger than that in the well-known method of
computing the Alexander polynomial from the Wirtinger presentation of the
link group using the free differential calculus of Fox. The disadvantages of
the definition of Conway and Hartley include the technical complexity of
this definition, which makes it not very transparent, and also the need to
carry out a (not at all obvious) verification of the invariance of the potential
function under Reidemeister transformations of link diagrams. In addition,
this definition cannot be generalized to the case of links in three-dimensional
homology spheres.

We give two (new) definitions of the potential function: an axiomatic
one, which is an extension of Kauffman’s axiomatics for the reduced
potential functions, and a constructive one, based on the use of refined
torsions. The constructive definition can be generalized verbatim to the
case of links in three-dimensional homology spheres.

4.2. Axioms for the Conway function.

We use the term Conway map for an arbitrary map V which assigns to each
ordered link / in S3 an element of the field Q(¢,, ..., ¢,), where # is the
number of components of /, and which posesses the following properties:

M1t is well known that the reduced potential function of any link can be uniquely
represented as a polynomial (in the usual sense of this word) in #— 7. The one-
variable polynomial arising in this way is called the Conway polynomial of the link. (In
some papers this polynomial is also called the potential function, which is of course
unfortunate, and may lead to confusion.) We do not require the Conway polynomial.
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4.2.1. v(l)is unchanged under (ambient) isotopy of the link /.

4,2.2. If ! is the trivial knot, then V() = (t — t™)-L.

4.23. If n =2, then V() €2lt,, 7, . . ., t,, t71l.

4.2.4. The one-variable function V(l) = v{D(t, ¢, ..., t) is unchanged by a
renumbering of the components of / (in other words, V(l) is an invariant of
the unordered link).

4.2.5 (Conway identity). If /., /_, and [, are links coinciding (except
possibly for the numbering of components) outside a certain ball, and inside
this ball having the form depicted in Fig. 2, then

V(is) = V) + (¢ — V().

4.2.6 (Doubling Axiom). If the link /' is obtained from the link
=1 U ..Ul by replacing the component /; by its (2, 1)-cable (see §1.3)
then

V) Ry oo ) =(THTY) XV (s ooun tings B, tingy oony B2),

b

where T =1, [] 4 1),
jwi
The conditions 4.2.1-4.2.5 appear among the properties announced by
Conway [5] and proved by Hartley [16] of the map [ — Vv, assigning to
each link its potential function. The condition 4.2.6 was not considered by
these authors, however, it is not hard to prove that their map [ — v,
satisfies 4.2.6 and so is a Conway map in the above sense.

4.2.7. Theorem. There exists at most one Conway map.

Proof. Let ¥V be the difference of two Conway maps. Clearly V satisfies
Axioms 4.2.1 and 4.2.3-4.2.6. If [ is the trivial knot, then v(I) — 0. For
each link / we put (1) = v()(¢, ¢, ..., t). We show that n = 0. Let !/ be
a trivial n-component link with # 2 2; let [, and I_ be trivial (n— 1)-
component links, as shown in Fig. 3.

NS 8
XXX O;fogo,f'o

+ 1’_
Fig. 2 Fig. 3

By Axioms 4.2.1 and 4.2.5, (t— ¢ V)n(l) = n(,)—n(-) = 0, that is, n(!) = 0.
We suppose that the equality n(/) = 0 has been proved for links having
diagrams with at most m crossings. Let [ be a link given by a diagram with
m+ 1 crossings. In a certain number of steps, replacing underpasses by
overpasses in such a diagram, we can obtain the diagram of an unlink. By
Axiom 4.2.5 and the inductive assumption, the value of the function 7 is
unchanged during these operations. Therefore n(l) = 0.
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We show that v = 0. If / is a knot in S3, then V(I) = n(l) = 0. Let / be
a link with » = 2 components. We suppose that V(I) = 0. Then vy(l)is a
non-zero Laurent polynomial, and obviously we can choose natural numbers
a,, ..., a, that are powers of two for which v(l) (19, . .., ten) 5=0. Let
a; = 2% and let k£ be a link obtained from [ by successive b;-fold replacement
of its i-th component by its (2,1)-cable for alli = 1, ..., n. By Axiom 4.2.6
the polynomial v(I) (t¢, . . ., tar)divides V(k)(¢,. . . ., t,), the quotient
being a product of polynomials of the form T — T where T is a monomial.
By what we have proved above, v(k)(¢, t, . . ., t) = 0. Hence it follows
that v(I)(te:, . .., ten) = 0. The resulting contradiction shows that
v({l) = 0.
4.2.8. Corollary. Let V be a Conway map, and let | be an ordered
n-component link in S Then: (i) v{) = (=1*v(l); (ii) if k is the mirror
image of the link 1, then V(k) = (—=1)»*'v(l); (ii) if 7 is a permutation
{1, ....n}y >, ..., n},andif l'isthe link Inqy U ... U lam) then

V(l’)(tl, . ey f,,) = V(l)(t,,“) Y e e ey tn(n))-

Proof. 1t can easily be verified that the functional / — (—1)” x V(I) satisfies
the axioms for a Conway functional. By Theorem 4.2.7, (i) follows. Points
(ii) and (iii) can be verified similarly.

4.2.9. Remark. When considering the Conway identity 4.2.5, several
authors use the mirror image of Fig. 2 (or, what is equivalent, use the same
figure as we do, but use I_ for the left link, and /. for the middle link). It
is easily seen that if V is a Conway map in our sense, then the map
assigning to an n-component link / the rational function (—1)*'v(l)satisfies
the similarly modified identity 4.2.5.

4.3. The construction of the Conway function.
Let / be an ordered n-component link in S3 We fix a “‘canonical”
homological orientation of the exterior V of the link /, defined by the basis
(Upth, 1y, oo o bty T1e «+ o qu—y) in H(V; R), where [pt] is the homology
class of a point; ¢, ..., #, are meridional generators of the group H(V);
g1+ - - -+ Gn- are the generators of H,(V) represented by (oriented) boundaries
of regular neighbourhoods of the knots I,, . . ., I, _, respectively. (We
adhere to the convention on the orientation of the boundary of an oriented
manifold under which the sequence (an outward directed vector; a positively
oriented basis of the tangent space at the boundary) gives a positive
orientation of the whole manifold.)

Let A = A(¢,. ..., t,) be a representative of the refined Alexander function
Ao(V) (see §3.3). By Theorem 1.7.1 we have 4 = (—1)ityr ...y
with integral v, ..., v,. We put

V)= —t1... tn4 (th ..., t2).
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As we can verify directly, v(!) is independent of the choice of representative

A of the function Ag(V). It is obvious that V(I) = (—1)"V(J), and that the
function ! — V(I) satisfies Axioms 4.2.1 and 4.2.3. The verification of
Axiom 4.2.2 reduces to the calculation of the refined Alexander function of
an oriented circle. This function is —(¢ — 1)~!(see §1.3.3; in the calculation
one should not forget the factor (—1)¥©), where C = C,(S'; R), see §3.1.1).
The result of symmetrization of the function —(¢* — 1)-1is — (¢ — t-1)~%

In fact, the presence here of an “extra’ minus sign leads to the necessity of
introducing the same sign in the definition of the invariant v(l).

4.3.1. The verification of Axiom 4.2.4.

Let ¢ be the ring homomorphism Z[H,(V)] - Z[¢t, '] taking ¢, ..., f, to t.
Both the homomorphism ¢ and, as we can verify directly, the canonical
h-orientation of the manifold ¥ are unchanged under a renumbering of the
components of /. Hence the refined torsion 7§ (V) is also unchanged under
this. By Theorem 3.4.3, if A(¢;, ..., t,) € Ay(V), then A(s, 1, ..., 1) E TJ(V).
Hence 4.2.4 follows.

4.3.2. The verification of Axiom 4.2.6.

It is obvious that the exterior V' of the link /' is obtained from that of the
link / by gluing a Mdbius strip to its boundary. A CW-decomposition of the
manifold V' can be obtained from the decomposition of ¥ by adding a one-
dimensional cell e; and a two-dimensional cell e, (Fig. 4).

&y

Fig. 4.

It is easy to see that with a suitable choice of liftings €, and &, of these cells
to the maximal Abelian cover of V' the boundary of the cell chain [¥,] is
equal to the sum of the chain (1+ 7)[€;] and the chain generated by the
cells situated over V. We remark that the inclusion homomorphism

H(V; R)—= HJ(V'; R)is an orientation-preserving isomorphism. Let

¥ : Z[H, (V)] = Z[Hy,(V")] be the inclusion homomorphism: ¢(¢;) = t? and
V(t;) = ¢; for j # i. Arguments analogous to those used in the proof of
Theorem 3.2.1 show that Ao(V') = 7o(V') = (1 + TN7§(V). By Theorem 3.4.3,
W (V)=A4,(V) (2, ... tigs t5h tisgs -- -, t,). Hence we have 4.2.6.

4.3.3. Preparation for the verification of Axiom 4.2.5.

(i) Lemma (Milnor [26]). Let C and C* be dual acyclic m-dimensional
chain complexes over a field, equipped with dual bases (see §2.2.2). Then
T(C*) = +[t(C)le™) . where e(m) = (—1)m+L.



Reidemeister torsion in knot theory 157

Proof. Let b; be a sequence of vectors in the space C; for which d;_,(b;) is
a basis in Im(9;.,: C; - C;_;). Let bl,_;4+, be a sequence of vectors in Cr_j+4
whose matrix of values on the terms of ¢;_;(4;) is a unit square matrix. It is
easy to see that d,,_;(bm_i+,) is a basis in 1m d;,_; and that if the bases ¢; and
Cin_i are dual, then [05,_;(b1_s, )bm_s/Cm_g] = [0:(bi4,)bi/c;]7t. Hence we
have the statement of the lemma.

(ii) We say that a CW complex is regular if for every (open) cell a of it the

closure a is the union of cells and a homeomorphism of an open ball D onto
a can be extended to a homeomorphism of the closed ball D onto @. For
example, all triangulations are regular.

The next lemma refines the theorem on the invariance of the torsion of a
CW-complex under subdivision. (It is possible that the condition of
regularity in this lemma is superfluous.)

(iii) Lemma. Let X be a finite regular cell complex; let X~>Xbea
maximal Abelian cover; let X' be an (arbitrary) subdivision of the space X,
and let X' be the induced subdivision of the space X; let e be a base
sequence of oriented cells of X, and let ¢' be a base sequence of cells of X'
consisting of all the cells of this space contained in cells of the sequence e.
If ¢ is a ring homomorphism from the ring ZIH\(X)] into a field, then
7YX, ) = 79X, e").

Proof. I HA(X) # 0, then both sides of the equation to be proved become
zero. We prove the iemma in the following strengthened form, meaningful

also in the case HA(X) # 0: if in the vector spaces H{(X) = H{(X"),

H{X) = H{(X"), ... we fix bases gy, £, ..., then (in the obvious notations)

T(C2(X), €, 8or G1» )= T(CL(X'), €, &o» &1 -..)-

In the course of the proof, for brevity the chain complexes CA(X) and
C#(X') are denoted by C(X) and C(X") respectively.

Let @ be an (open) cell of the space X, of maximal dimension. It is clear
that X \a is a regular cell complex. We denote it by Y. We denote by Y’
the decomposition of the space Y induced by X'. Let b be a cell of X'
contained in a, whose dimension is dim a. We put Z = X'\b. It is obvious
that Y’ is a subcomplex, and a deformation retract of the space Z. We
denote by C(Y) the subcomplex of C(X) generated by the cells situated
over Y. Similarly we define subcomplexes C(Y') and C(Z) of C(X'). The
cells of the sequence e (respectively e') that lie over Y (respectively over
Y', Z) give bases of the three subcomplexes mentioned, which we denote by
u, u', and v respectively. For every i 2 0 we fix a basis 4; in the vector
space H;(C(Y)) = H(C(Y")) = H(C(Z)). We put g = (g,. . ...), and
h = (hy, hy, ...). Below we prove two formulae

HC@), vy k) = £UC(Y). u'y k) and SEXh e @) | LX< g)

T(C(Y), u, k) T(C(Z), vy h)
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These formulae show that the equality ;(C(X), e, g) = :t';(C(X D, e, g)is

equivalent to the equality T(C(Y), u. h) = +1(C(Y"), u', k). Thus, by
successive removal of the cells of X we can reduce the statement of the lemma
to the case dim X = 0. In this case, X' = X, ¢’ = e, and the desired statement is
obvious.

Since @\a is a sphere, the inclusion @\a = a\b is a simple homotopy
equivalence, and hence @\b can be deformed into @\a by elementary cell
expansions and collapses. The pairs of base cells arising in elementary
expansions or destroyed by collapses can be assumed to be incident, with
incidence coefficient 1. Hence the arguments used in the proof of

Theorem 3.2.1 show that ;(C(Z), v, h) = j;rr(C()”),u',h). The second of
the formulae given above follows from 3.4.2 and the obvious fact that both
the factor complexes C(X)/C(Y) and C(X')/C(£) and the homology sequences
of the pairs C(Y) C C(X) and C(Z) C C(X') are constructed in exactly the
same way.

4.3.4. The verification of Axiom 4.2.5.
This verification is the most difficult part of the construction of the Conway
map, and is carried out in three steps.

Step 1. We assume that the common part of the links /., /_, and [, is
located in a closed three-dimensional ball D C S3, and intersects 8D
transversely in four points (see Fig. 5, in which D is represented as the
closure in $3 of the half-space below the plane of the figure).

We denote by V the complement in D of an open regular neighbourhood of
the manifold I, "D =1_ N D =1[,ND. Clearly ¥V N aD is the complement
in 8D of four open discs. We denote by X,, where a € {4. —, 0}, the
result of gluing to V a two-dimensional disc B, by a homeomorphism from
the boundary 8B, onto the circle X, C V' N dD depicted in Fig. 6.

O

Fig. 6.



Reidemeister torsion in knot theory 159

It is obvious that X, is a deformation retract of the exterior of the link /.

Let X, = X, be an infinite cyclic cover whose group of covering

transformations {t™}nez corresponds to the kernel of the homomorphism
l(X o) —> {t™}mez, Which takes the homotopy classes of meridians into £.

Let 14 be the inverse image of V under this covering. Clearly

X VU U t"‘(Ba) where B, is a lifting of the disc B, to X,. "Replacing

the discs B+ and B_ by their images under covering homeomorphlsms if
necessary, we can assume that the curves aB+, aB_, aBo have a common
point (situated over the unique common point of the curves x., x_, xo).

B, and B, we fix compatible orientations, which induce the orientation of
the curve x, given in Fig. 6. We fix a triangulation of V, and the equivariant
triangulation of ¥ induced by it. We fix in V' a base sequence of simplexes
(that is, a sequence of oriented simplexes of the chosen triangulation of V
such that over every simplex of the chosen triangulation for V there lies
exactly one simplex of this sequence). We add to this sequence the cell B o
(as the last counted cell), and so obtain a base sequence of cells in Ya. We
denote the Q(f)-chain complex Q(t) ®z(s.1-17 Co(Xai Z) by Co. We fix in C,
a basis corresponding to the indicated base sequence of cells in X,. We put
7o = T(Cy) € Q(¢). We prove that

(14) T4 = —tt_+ (I — 1)t,.

We denote the Q(¢)-chain complex Q(t) ®z”,,-1]C,,(ﬁ; 2)by C. Itis
obvious that for every o = +, —, 0 the complex C is a subcomplex of C,,
and moreover the space of two-dimensional chains of the factor complex
C,/C exhausts the non-zero part of this complex and is equal to Q(t)[ﬁa].

We fix in H,(C,/C) a generator [By]. Clearly ;(CG/C) = (—1)N<C°‘/c) = —1.
If 7, = 0 for all ¢, then (14) holds. We assume that 7, ¥ 0 for some

a € {+, —, 0}. Then the complex C, is acyclic, and hence from the

exactness of the homology sequence of the pair C C C, it follows that

H(C) = Q) and H(C) = 0 for i # 1. We fix an arbitrary generator y in

H(C). By Lemma 3.4.2

To = TCa) = TCq) = M(C)T(Co/C)T(5K ),

where H« is an acyclic chain complex with two non-zero terms Hy(C,/C)
and H,(C); X = %1 and A, as can easily be seen, is independent of the
choice of a € {+, —, 0} with 7, ¥ 0. The boundary homomorphism
Hy(Cy/C) = H,(C) takes [B,] to v,y with v, € Q(¢); here ©1(H,) = Yo-
Thus 7, = 7(C)y,, Where the sign * is independent of the choice of a with
7o 0. If 7, = 0 for some «, then the equality 7, = £7(C)y, with the
same sign is also valid: in this case the complex C, is not acyclic and the
exactness of the homology sequence of the pair C C C, implies that vy, = 0.
Hence we can see that for the proof of (14) it suffices to show that

Y = T+~ v
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We prove the equivalent equality [y;+y-—(— 1)ye]ly = 0. Leta b, c,
and d be the loops in ¥ N 38D starting at the common point of the curves
X4, x_, and x,, depicted in Fig. 7.

Fig. 7.

The homology class of vy, y is represented by the curve a§+, and so it can
be represented by a loop in 14 starting at the common point of the curves
0B ,, 38_, and 98, and covering the loop dd. Similarly, the classes of

Yoy, Yoy, and ty.y can be represented by loops in V starting at the same
point covering the loops ab, a'(ab)a ~ ba, and a “(ac)a ~ ca respectively.
(The loop a™! is a meridian of the corresponding component, and represents
in the covering group the element 7.) Hence the class [y, +¢ty_— (¢ — D)yely
can be represented by a loop covering (bd)(ab)(ca)(ba)™* ~ b(dabc)b™ ~ 1.
The required equality follows from this.

Step 2. We prove the analogue of (14) for refined torsions. Fora=+,— 0
we fix a basis of the R-chain complex C(X,; R) corresponding to the base
sequence of cells in X, fixed in step 1. We equip the homology groups of
this complex with bases over R which determine in H (X,, R)the orientation
induced by the canonical homological orientation of the exterior of the link
I, (we recall that X, is a deformation retract of this exterior). We denote
the sign of the torsion #(C.(X,; R)) € R\0O by A,. We put A, = A\,7,, and
show that

(15) Ay = tA_ + (t — 1)A,.

By (14) it suffices to show that A, = —A_ = A,. We restrict ourselves to
the case when the parts of the link /, that are being rearranged lie in the
same component. (The opposite case is considered similarly.)

We number the common components of the links /,, /_, and [, by the
numbers 1, 2, ..., n— 1. We assign the number # to the rearranged component
of the links /, and /_. To the upper (in Fig. 2) component of /, we assign
the number #n, and to the lower one the number n+ 1. For o = +, — the
chosen orientation in H,(X,; R) is given by the basis

[ptl tys <« - tay Qus - - -y G-y (in the notation introduced at the start of
§4.3). The chosen orientation in H,(X,; R) is given by the basis

{ptl, t;, -« s tugps G1e + + o qu. We fix in H(V; R) the basis

[p1). tiy « - oy tat1s Gus - - - Gu_r, and we fix in H(X,, V; R) the generator

[B,] (for « = +, —, 0). By applying Lemma 3.4.2 to the exact sequence of
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three-dimensional chain complexes
0 = Cu(Vi R) > Cy(Xa; R) > Ci(Xq, Vi R) -0,

we obtain the equality A, = (~1)("a+"<=’ X Mg, where u, and v, are the
integers defined by the formulae in the statement of Lemma 3.4.2;

A = sign[#(C(V; R)F(C. (X, V; R))] and A, is the sign of the torsion 7
of the homology sequence of the pair (X,, V) with coefficients in R. It is
obvious that A and v, are independent of the choice of a € {4, —, 0}.
Direct calculation shows that u, = u- =1 (mod 2), ug=n+1 (mod 2),
A, = —AL = (—1)"*, and A\ = —1. (The equalities u, = p_ and A}, = —A_
are easily seen without calculation: the homology sequences of the pairs
(X4, V) and X_, V) differ from each other only in that d({B4]) = ¢, — t,+,
whereas d(IB_]) = t, 4, — t,.) Hence we have the equalities A, = —A_ = },,
and together with these the equality (15). '

Step 3. 1t follows from the definitions and Theorem 3.4.3 that the function

Ga = %(la) is obtained by symmetrization of the rational function
—A,(t?) € Q(t). More precisely: for « = +, —, 0 there is an integer r, for

which Ag(t™) = +t"aA, (). Then V,(t) = —t A, (t?). By formula (15)

6_’_ = —Ir+A, (12) = —tr+ [2A_ (12) 4+ (12— 1) Ay (1)) = t(r++2—r-)’Vv_+
4+ treti-ro (1 —171) V,.

We remark that the number r, is uniquely determined if A, # 0, and can be
chosen arbitrarily if A, = 0.

We denote by V, the exterior of the link /, viewed as the result of
attaching to V a handle of index 2 with axis B, (where o« = +, — 0). We
denote by V, the infinite cyclic cover of ¥, resulting from the attachment
to ¥ of handles of index 2 with axes t"’(Ea), m € Z. We suppose that the
equivariant triangulation of V fixed in step 1 can be extended to an
equivariant triangulation, say Y,, of Va. We extend the base sequence of
simplexes in V fixed in step 1 to a base sequence e, of simplexes of Y, as
follows: we fix in Va\v those simplexes that lie in the handle with axis Ea.
(The order in this set of simplexes, and their orientations, are arbitrary.)

We denote by E,, F,, and dF, the Q(f)-chain complexes obtained as the
result of tensor multiplication of the field Q(¢) by the Z[¢, r1]-chain
complexes of cell chains of the decompositions Y,, Y., and 8Y, respectively
(see §2.2.2 (ii)). We fix the basis of the complex E, defined by the
sequence e, and the bases of the complexes F, and 90F, defined by the
sequence e, consisting of the cells of the decomposition Y, dual to the
simplexes of the sequence ¢,. We denote by R the union of the toral
components of the boundary aV. It is clear that R C 9V, and here the
difference aV,\R is either a torus or the disjoint union of two tori. The
complex 0F, is the direct sum of its two subcomplexes generated by the
cells lying over R and over 9V, ,\R respectively. By Lemma 1.3.3 these
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complexes are acyclic, and their torsions are +¢" and --t°* respectively,
where r and s, are integers and r is independent of the choice of a.

We prove that with a suitable choice of the numbers r, corresponding to
o € {+, —, 0} with A, = 0 we have the equalities

1) ry +2—r- =5+ 2—sq4;ry +1—rg =38+ 1-—s.:.

From Lemma 4.3.3 (iii) one can easily deduce that 7(£,) = 1, = £A,
for all @ = +, — 0. Since the CW-decompositions Y, and Y, of the
manifold ¥, have a common subdivision, we have t(F,) = =+ tPar(E,) with
B, € Z. We compute 8,. By Lemma 4.3.3 (iii) the torsion 7(F,) is equal,
up to sign, to the torsion of the complex G, = Q(t) @z, 1) Cu(Ya: Z)
where Y, is the first barycentric subdivision of the triangulation Y, and
where in Y, there is chosen a base sequence of simplexes, say ay, ..., ay,
consisting of simplexes contained in the cells of the sequence e,. Similarly,
the torsion 7(£,) is equal, up to sign, to the torsion of the same complex
G, with another basis, namely the basis corresponding to a base sequence,
say by, ..., by, consisting of simplexes of the triangulation Y, contained in
simplexes of the sequence e,. Every simplex b; can be uniquely represented
as ™ a,-(,-}vwith integral m(i) and with j(i) € {1, 2, ..., N}. Therefore

By = — 2 e(dim aj;)m(i). We remark that if the simplex b; does not lie
i=1

in 7, then by the construction of the sequence e, it lies in the handle with
axis Ea attached to V. By similar arguments a;;, lies in the same handle, so
that a;; = b; and m(i) = 0. Hence it follows that 8, = f_ = B,. Thus
©(Fg) = +thA,. On the other hand, since the torsion is multiplicative, we
have ©(F,) = 1(0F ,)T(Fo/0F ;) = + tv+* (F,/dF,). As is easily verified,
the factor complex F,/0F, is obtained from a complex dual to the complex
E, by the replacement of rings f(t) + f(t71): ZIt, t7] - 2I[¢, t~1] (see §2.2.3).
Hence by Lemma 4.3.3 (i), if E, is acyclic, that is, if A, # 0, then

7(F,/0F,) = *A,. Thus if A, # 0, then thA, = - t™+® A_ and so
ro = Bo—r—s, for all . Hence we have (16) (in the case A, = 0, we
should put rp, = Bo—7—54)-

We consider the case when the parts of the link /, to be reorganized lie
in the same component. We put u = s_+2—s, and v = s+ 1—s,. By
what we proved above,

(17) V(l4) = BV(L) + 150t — t)V(L,).

We put § = aV\R. It is obvious that the numbers 5., s_, and sy, and with
them the numbers « and v, are completely determined by the following
data: the triangulation of the two-handled sphere S; the infinite cyclic
cover S = §; the embedding 08, x [0, 1] = § by which the handle of
index 2 with axis B, is attached, where o = +, —, 0; the triangulations of
these three handles, made compatible with the triangulation in S; the base
sequence of simplexes in 5. All these data are in fact independent of the
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links 7, I_, and l,. Hence we easily conclude that k., k_, and k, is another
triple of links satisfying the conditions of Axiom 4.2.5, and if the portion of
k+ to be reorganized lies on one component, then V\k+) == t“V(k_) -+

+ t°(t — t")V(ko) with the same « and v as in (17). So to complete the
verification of the axiom it suffices to point out a model triple I, I_, [, for
which (17) holds if and only if « = v = 0. Such a triple is depicted in Fig. 8.

;

Here ?7(1,_) = 1/(t — t); %(l.*.) = (8 — 1 4+ t-2)/(t — ¢t1) (since the
Alexander polynomial of the trefoil is 12—+ 1); V(l,) = + 1 (by similar
arguments; in fact the signs here are +, but for us this is unimportant). It
can easily be verified that these three rational functions have the desired
property.

In the case when the portions of [, to be reorganized lie on different
components, the proof is carried out in a similar way. As a model example,
we can take the trlple depicted in Fig. 9. Here V(l+) = — 1 and
V(o) = — (1 + 173).

SIS

- 0
Fig. 9.

+ﬂ
U

Remark 1. Further properties of the potential function can be found in
[5], [14], [16]. These properties can be proved by the methods of the
present paper; it would be instructive to deduce them directly from the
axioms for a Conway map. We point out one new property of the potential
function, which follows directly from Theorem 3.4.4; the potential
functions of cobordant links are c-equivalent. This statement is stronger
than the corresponding statement for Alexander polynomials. It implies, for
example, that if a link / in §3 with an even number of components is
cobordant to its mirror image or to its mirror image with the opposite
orientation, then A; = 0 (compare with Remark 3 to §3).

Remark 2. From the potential function of a link / it is possible in many
cases to compute the refined Alexander function of the closed manifold M
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obtained by surgery of a sphere along / and given the orientation extending
the canonical orientation in S?\/. In the simplest case, when all the linking
coefficients of the components and the framing numbers of the components
are equal to zero, the function A(M)(#?, ..., t2) is represented by the
product vV, {t — 1)1 ... (t7 — 1)L

Remark 3. It would be interesting to carry over the above axiomatic
definition of the potential function to the case of links in homology spheres
so that the uniqueness property is satisfied. It is possible that for this it
might be necessary to modify or extend the list of axioms.

§5. The torsion w and the polynomial §

5.1. The torsion w.

In contrast to the torsions considered above, the torsion w is defined only
for odd-dimensional compact manifolds (possibly with boundary). The
definition of the torsion w is based on a modification of the standard
constructions of the theory of torsions, taking into account the Poincaré
duality. The main advantage of the torsion w is that this torsion never
vanishes. However, this is achieved at the expense of increasing the
indeterminacy.

Now we move to the precise definitions. Up to the end of this section
we fix an orientable compact manifold M of odd dimension m = 2r+1, an
integral domain K with an involution a ~ a: K — K, and a ring
homomorphism ¢ : Z[H;(M)) = K for which p(h) = p(h™") for any h € Hy(M).
We denote the inclusion homomorphism Z{H,(oM)] = Z{H,(M)] by in
(possibly aM = ). We suppose that rg He®(@M) = 0.

We define the torsion w¥(M). First we consider the case when K is a
field. Then the condition rg H$*n(0M) = 0 means that H¥inoM) = 0.
Hence it follows that the sesquilinear form of the intersection numbers
HY (M) x HY,_(M) — K corresponding to some orientation of M is
nondegenerate for any i. We fix a triangulation of M. We consider the
product

T(C2 (M), g)x [] (detuy)™®,
§=0

where ¢ = (gq, &, ... &) is a sequence of bases of the K-modules
H{M), HY M), ..., H (M), and u; is the matrix of the above sesquilinear
form with respect to the bases g; and gm-; (we recall that —e(i) = (—1)%).
The collection of such products corresponding to all the possible sequences
g and to all natural bases of the complex CP(M) is w¥(M). Equivalently,
w?(M) can be defined as the collection of the torsions #(CAM), g)
corresponding to all possible natural bases of the complex C#(M) and
sequences g = (&, &1, ..., &) for which g; and g,,.; are dual for all i. In the
case when K is not a field, the torsion w?(M) is defined as wi*®*(M), where j
is the inclusion of the ring K in its quotient field Q(K).
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It is not hard to verify that the torsion w¥(M) is independent of the
choice of triangulation of M, and is an “‘element of Q(X) defined up to
multiplication by *p(h)ff with & € Hi(M) and f € Q(K), f # 0”. It is clear
that w?(M) # 0 and that if 79(M) # 0, then 79(M) C w(M).

5.1.1. Theorem. Let J be the image of the inclusion homomorphism
Hem(@GM) — HY(M). If the ring K is factorial and Noetherian, then up to
multiplication by kff, where k is an invertible element of K and f is a non-
zero element of the field Q(K), we have

r—1 X
(18) «® (M)=ord (Tors H? (M, aM)) (ord J)*™ x []0 [ord HE*I™ (aM) 5D,
i=

In particular, if M is closed, then (up to the accuracy mentioned)
@® (M) = ord (Tors HY (M)).

This theorem is proved in §6. In the case when K is a factorial Noetherian
ring whose invertible elements are exhaused by the elements of the form
tp(h) with h € H\(M), Theorem 5.1.1 enables us to calculate the entire
torsion w?(M) from the homology invariants of M and its boundary.

If M is oriented and homologically oriented, then in the same way as in
§3.2 we can define a refined torsion w§(M), which is “‘an element of Q(K)
defined up to multiplication by go(h)ffwith h € H(M) and f € Q(K), f# 0.
It is obvious that w?(M) = *w§(M). When the homological orientation of M
is changed, the torsion w$(M) is multiplied by —1; under change of the
(ordinary) orientation this torsion is multiplied by (—1)?, where

-
a= ngH“‘? (M).
i=0

5.2. The polynomial 6.
As in the previous subsection, let M be an orientable compact (2r+ 1)-
dimensional manifold. We denote by E its r-dimensional Alexander
module, that is, the Z[H (M)%l-module H)(M), where 6 is the projection
ZI (M) -2zl ()% ). By 8(M) we denote the order of the Z[H,(M)#* ]-
module Tors £E. By what was said in §0.4, 6(M) # 0. If the Alexander
polynomial A(M) = ord E is different from zero (and this happens if and only
if rg E = 0), then 8(M) = A(M). The number rg E is denoted below by y(M).

As can be seen from Theorem 5.1.1, the polynomial §(M) is closely
associated with the torsion w’(M). This association is analogous to the
connection between the Alexander polynomial and Milnor torsion considered
in §1, but has a more complicated character. The torsion w?(M) is denoted
below by w(M) (this torsion is defined if and only if rg H" (M) = 0). In
particular, if M is a closed manifold, then the torsion w(M) is defined, and
S(M) C w(M). Thus in the case of closed M the torsion w(M) can be
completely calculated from the polynomial §(M); this polynomial in turn
can be calculated from w(M) up to factors of the form ff.
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We remark, although we do not require this below, that if M is closed and
oriented, then we can define the refined polynomial §,(M) = {6 | & € 6(M)
and 8 € wy(W)}. Here the refined torsion wy(M) corresponds to the
canonical homological orientation of M (see Remark 1 of §3). If 44(M) # 0,
then, as is easily deducible from Lemma 2.1.1,

r—4
Ao(M) = 8,(M)ff, where f=.[|0 (ord H® (AD))etd .
i /
5.3. The invariants & and w for links.
Let! =1, U .. U, be a link in S*+! with exterior V. Let §;, y(I), w(),
and wqy(l) denote the invariants 8(V), ¥(V), w(V), and wy(V) respectively
(see §5.2; the torsion w(V), as is easily verified, is defined; the refined
torsion wy(V) corresponds to the homological orientation of V defined as in
§4.3). If r 2 2, then the invariants introduced here give nothing new as
compared with the Alexander polynomial A,. For by Lemma 1.11.4,
¥(I) = 0 so that §, = A,;; as is easily deduced from Theorem 5.1.1 and the
results of §3, Ay(t;, — 1) ... (t, — 1)< w(l) and

{(Aty—1) ... (ta—1) ] A €4, aug(A) = —1}= wq(l).

We consider the case r = 1. It can easily be seen that §, is the first non-
zero term in the sequence of Alexander polynomials of the link /. Its
number in this sequence is v(/)+ 1. Here 0 < y(!) < n—1; this can be
proved by applying Lemma 1.11.4 to the pair (¥, the meridian of the
component /).

5.3.1. Theorem. Letl =1V .. Ul, be alink in S> with n =2 2. Then:

(i) there is a unique subset o = ofl) of the set {1, 2, ..., n} for which

8,1 ¢: — Y o), Gi)if 6 €6, then § = (—A)meys . . .ty , where
i€a

= n— card(a), and where v; is an integer congruent modulo 2 to 3 u(l;, 1)
jFi
in the case i € & and 10 1 + M\ u(ly, ;) in the case i € o (iii) if | € «, then

wly 1) =0 forallj+i

Points (i) and (ii) show that a(/) and w(/) can be calculated from &, and
the linking numbers of the components. Point (ii) also gives the symmetry
relation for §,.

Theorem 5.3.1 makes it possible in some cases to describe explicitly the
set (/). For example, if every component of / has a non-zero linking
number with some other component, then a(/) = Q. If A; # 0, then
8, = A; and comparison of Theorems 1.7.1 and 5.3.1 shows that a(/) = Q.
If y(/) = n—1, then u(/;, ;) = 0 for all i ¥ and aug(8,) = 1 (see for
example [17]). From the last equality it follows purely algebraically that
the numbers r, vy, ..., v, in the formula § = (— 1)" ty1...23n 8 are even.
Therefore, if y(/) = n—1, then a(l) = {1, 2, ..., r). For example, if [ is a
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2-component link with A; = 0, then y(!) = | and «() = {4, 2}. From
Theorems 5.4.1 and 5.4.2 stated below it is easy to deduce that the set a(/)
is an invariant for cobordism of links.

We prove Theorem 5.3.1.

5:3.2. Lemma, Under the conditions of Theorem 5.3.1, if w € w(), then
o = (=" .. o with xe =14 3 n(li, L) (mod?2) foralli=1,...n

#1i
Proof. As is well known (see for exarr;ple {241), there is a link
I'=17U ..U/, in S3 for which Ay = 0 and w(/;, }) = p(l;, ;) for all i #J.
We denote by M the closed manifold obtained as the result of gluing the
exteriors V and V' of the links / and /' by a homeomorphism of the
boundaries taking the meridian and parallel of the component /; to the
meridian and parallel of the component [} respectively, for all i. It is
obvious that the canonical isomorphisms from the groups Hy;(V) and H (V")
to the free Abelian group with free generators ¢y, ..., #,, induce a ring
homomorphism Z[H,(A)] —2[t,, t7}, ..., t,, £3']. We denote this by ¢.
From the multiplicativity of torsion and Lemma 1.3.3 it can easily be
deduced that w()w(!') C w?(M). From the results of §1 and §5.1 it
follows that A, o(l’). Thus if A € Ap then wA € w?(M). By the duality
theorem for the torsion w of a closed manifold (see Appendix, Theorem 6),
we have oA = th ... tuneA with even yy, ..., u,. Hence by Theorem 1.7.1
we have the statement of the Lemma.

5.3.3. Proof of Theorem 5.3.1. Let 7 be a maximal Abelian cover of the
exterior V' of the link /. We denote the ring Zlt,, 7, . . ., Ia, L3 bY K.
We denote the order of the K-module H;(d V) by a; (where i=0,1). By
Theorem 5.1. 1 the torsion w(/) = w(V) can be represented by the product
ord(Tors H,(V, 6V)) X (ord J)a~} where J is the image of the inclusion
homomorphism H,(a V) - HI(V) From Lemma 2.2.1 it follows that

ord (Tors H, (V, 6V)) = ord (Tors H, (V)) =3,.

Since by Lemma 5.3.2, w(/) = w(l) it follows from this that (/) can be
represented as the product & x ord J X a". We denote the set

{iM<ig<n, i, ) =0foralljs=i}byl WeputT; = H t“(“"i) for

i =1, .., n [t can easily be verified that Ho(aﬁ) Q) Kit; —1, T, — 1)K
and H,(aV) = @ K/(t; — 1)K. If i €1, then the polynomlals t;— 1 and
T,— 1 are mutually coprime; if i € [ then 7; = 1. Hence the orders g, and

a, are equal, and are represented by the product n (t; — 1). Since the
i€1
order of the module J divides a;, the fraction ord J/a, is represented by the

product [] (¢; — 1)7!, where o is some subset of /. Hence it follows that
ica
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8 [] ¢: — 1) € o()). From this inclusion and Lemma 5.3.2 there follow all
ica

the statements of the theorem.

5.4. The invariants w, § and cobordisms.

5.4.1. Theorem. Under the conditions of Theorem 1.11.2, w(Vy) = w(V,).
Under the conditions of Theorem 3.4.4, wo(Vy) = wo(V>).

The proof of this theorem is similar to the proof of Theorem 1.11.2 and
is therefore omitted.

5.4.2. Theorem. Ifl and l' are cobordant links in an odd-dimensional sphere,
then the polynomials 8; and &y have c-equivalent representatives (see §1.11).

In the case of links in S3, this theorem was proved in 1978 by Kawauchi
{21] and independently by Nakagawa [31] (these authors did not use
torsions). From Theorem 5.4.2 one can easily deduce the existence (which
was problematic for some time) for r 2 2 of links in $2+! not cobordant to
split links. We consider for example the link / in $¥+! composed of n = 2
parallels of a knot k& = S+, It is easily seen that the polynomial §, can be
obtained from A; by the substitution ¢+ ¢, . .. t,. From Theorem 5.4.2
it follows that if / is cobordant to a split link, then the polynomials
A1ty ... t,) and A (1)AR(L,) ... Ar(2,) have c-equivalent representatives.
The latter happens if and only if the polynomial A, has representatives of
the form ff, where f € Z[t, '] holds.()

Proof of Theorem 5.4.2. From Theorem 5.4.1 and the results of §5.3 we
have the existence of non-zero Laurent polynomials f, f' and integers
ry, ..., r, such that

(19) Suff =007 (}y— 1) ... (t,—1)'m,
where n is the number of components of the links / and /. By considering
the homology sequences relating the homology groups of the exteriors of /
and !’ and the exterior of the cobordism between / and /', and using the
multiplicativity of the order and Lemma 1.11.4, it is not hard to prove the
existence of g, g’ € 2Zlt,, t7%, ..., t,, t3']l with aug(g) = aug(g’) = 1 such
that 6,2 = 8,.¢" (see [21]). From this the statement of the theorem follows
purely algebraically in view of (19).

5.4.3. Theorem. If the n-component link [ in S®is cobordant (in the
category of ordered links) to its mirror image or to its mirror image with
reversed orientation, then y(I) =n+1 (mod 2).

This theorem strengthens Conway’s theorem discussed in Remark 3 to
§3: if the numbers n and y(/)—~n — 1 are even, then (/) # 0, and hence
A =0

(W As Kawauchi [53] showed, if 7 > 2, then the link / in question is cobordant to a split
link if and only if k is a truncated knot.
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Proof of Theorem 5.4.3. Let k be the image of the link / under mirror
symmetry, and let k' be the link k with the reversed orientation. The
natural homeomorphism of the exteriors of the links / and k changes the
(canonical) orientation and h-orientation and takes the generators ¢4, ..., [,
of the one-dimensional homology group to t;!, ..., t;! respectively. From
the results of §5.1 and Lemma 5.3.2 it follows that

wp (k) = — (— 1)+ o, (1) = (— 1)1 e, (1),

It is not hard to show that wgy(k') = we(k). Hence if [ is cobordant to k or
k', then by Theorem 5.4.1 the sum y(/)+n+1 is even.

5.5. The analogue of the Torres formula for the polynomial 5.
5.5.1. Theorem. Letl=1 ... U I, bealink in S* with n = 3, and let
k be the link 1, Yy 1, U ... Ul.y Let at least one of the numbers

n—1
plls, )y vlles L), - - oy pllacyy &) be non-zero and let T= [] thdidn) - Then

i=1

(k) = (D) if Y(k) > (), then §y(ty, . . ., th—, 1) = 05 if y(k) = (),
then there is a polynomial h € ZIt,, 71, . . ., ta_q, t31] for which

(20) 6h x (T—i) =61 (th ey tn—h 1) X hz L]B(tl—i)v

where B= (a (k)\a (1) U (@ (1)\a (k).

Outwardly, formula (20) differs from the Torres formula (3) by the
appearance of two additional factors 4k and TI(t;— 1). These factors have
different nature. The factor I1(¢;,— 1) arises from the presence of a non-
empty boundary in the exteriors of the links. In particular, this factor
compensates for the difference between the symmetry relations satisfied by
the polynomials 6, x (T— 1) and §,(ty, . . ., t,_q, 1). The presence of the
factor hh reflects the fact that in the transition from the Z™-*-fold cover of
the exterior of an n-component link to the Z”-fold cover, part of the
information about the order of the homology modules is lost. The special
form of the factor hh indicates that these losses occur within certain limits.

In the case when y(/) = 0, the polynomial §, coincides with the Alexander
polynomial A;, and the statement of Theorem 5.5.1 follows directly from
the Torres theorem 1.4.1 (for & one should take 1). We consider (20) in
greater detail in the case when ¥(/) = v(k) = n—2. Then
ak) = {1, 2, ..., n—1}and if u(;, I,) # 0, then by Theorem 5.3.1,
j € «(l), so that j € 8. Since aug(8;) = 1, and §; x (T— 1) is divisible by
ﬂ (t; — 1), the set f consists of the single element ;. From (20) it follows
i€p
that

O X (A4t 84 oo ) =8, (tyy «..y by, 1) X B,
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where u = u(l;, /,). In the case when k is the trivial knot, from this it

follows that 8,(t;, + . ., oy, 1) =1+ £; 4+ ... + t-L The last
example may give the impression that we always have 22 = 1. That this is
not so is shown by the examples given in §5.6.

For the proof of Theorem 5.5.1 we require the following lemma, which is
a version of Lemma 2.4 for the torsion w.

5.5.2. Lemma. Let M be an orientable connected compact manifold of odd
dimension, and let G = H,(M)*. Let ¢ be the composition of the projection
0 : ZIH(M)] = Z|G] and the projection y from the ring Z[G] into the
group ring of a free Abelian factor group of G. Let the torsions w(M) and
w?(M) be defined, and let rg HAM) = rg HA(M) for all i. If w is an element
of the ring Z|G] representing w(M), then either Y(w) = 0 or Y(w) € WAM).

Proof. An argument similar to that given in the proof of Lemma 2.4 shows
that there are elements ¢ and b of the ring Z{G] with the properties:

ab™! € o(M), Y(a) 5= 0, P(b) 5= 0, P(a)Pp(b)! € w®(M). Then there are
elements f, g € Z[G] for which ff and gg are mutually coprime and

off = ab-gg. Here a is divisible by f and hence Y(f) # 0. Therefore

P(o) = Y@y P (f)~2. Hence one can see that either
Y(w) = Y(g) = 0 or Y(w) € wiM).

5.5.3. Proof of Theorem 5.5.1. Let U be the exterior of the link k. Let V
be the exterior of the knot /,, in U. We put K = Z{¢t,, t-}, ..., th_y, t24]
and L =21[¢, ¢, ..., t,, t;']. We denote the canonical isomorphisms
Z[H(U)] = K and Z[H,(V)] = L by n and 0 respectively. We denote by
the ring homomorphism f(t,, . . ., t,_, t;)— f(ty, - - -, tp—y, 1): L > K.
We put ¢ = Yo 0: Z[H(V)] = K.

We consider a segment of the homology sequence of the pair (U, V) with
twisted coefficients in K:

HY(U, V)— HS (V) —> HY(U) -0,

According to the definitions, §, = ord(Tors H{(U)). It is obvious that the
K-module HJ(U, V) is isomorphic to K/(T— 1)K, and in particular, it is a
periodic module. Hence it follows that y(k) = rg H}(U) = rg H{(V) and
that the polynomial ord(Tors Hf(V)) divides the product (T— 1)8.

Let v be a point of the manifold V. From the exactness of the homology
sequence of the pair (¥, v) with coefficients in L, it follows that
() = rg HAV) = 1+1g HY(V, v) and that Tors H(V) = Tors H(V, v).
Similarly, Tors Hf(V) = Tors H{(V, v) and y(k) = 1 +rg Hf{(V, v). ltis
obvious that HY (V, v) = K & ,H% (T, v).

Let 4 be the relation matrix of the L-module H{(V, v). Let m be the
number of columns of 4. We denote by A’ the matrix obtained from A by
replacing the entries by their images under the homomorphism . It is clear
that A’ is the relation matrix of the K-module Hf(V, v). Therefore
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YO =1+m-1g A<1+m-rg A" = y(k). If y() < y(k), thentg A >rgA’

and hence all the minors of order rg 4 of A belong to Ker Y. Since Ker ¢

is a principal ideal of the ring L, the greatest common divisor of these

minors, which is equal to §; by Lemma 1.11.3, also belongs to Ker yy. From

Lemma 1.11.3 it also follows that if (/) = y(k), then ¥(§,) divides

ord(Tors Hf(V)) and a fortiori divides (T'— 1)8,. In particular, ¥(§,) # 0.
We suppose that y(/) = y(k). We put

a= [I (ti—1), b=T] (ti—1) and c= T[] (@t;—1).
i€a(h) iEa( i€a(iN o)

By Theorem 5.3.1, ad< o(k) = oWU) and b8, wo(l) = V). Itis
obvious that rg H%(V) = rg H:? (V) for all i (for i = 0, both ranks are zero,
for i = 1, the ranks are (k) and ¥(/), for i = 2 the equality of the ranks
follows by consideration of the Euler characteristic). Since u(l;, I,) # O for
some j, the number n does not appear in a(/) and so Y(b8,) # 0. By
Lemma 5.5.2, ¢(b6;) C w¥ V). From the multiplicativity of the torsion it
foliows that w?(V) = (T— 1)w™(U) (see §1.4.3). Hence there exist non-
zero f, g € L for which the polynomials ff and gg are coprime and

1) P(6.)bff = 8ragg(T — 1).

Since Y(6,) divides (7— 1)6_k, from (21) it follows that gg divides b. Hence
gz = 1. Since a divides bff, ¢ divides f. Thus from (21) we have (20) with
h = fc L.

5.6. Examples. To illustrate Theorem 5.5.1 we formulate a realization
theorem for the Alexander modules of three-component links. We recall
that the Alexander module of a link in S3 is the one-dimensional Alexander
module of the exterior of this link.

5.6.1. Theorem. A module over the ring L = 2Z[t,, 1%, t,, t;*, tg, t3'] can
be realized as the Alexander module of a three-component link 1, U1, Ul C §3
with u(ly, 1) = u(ly, 13) = 0 and u(l,, I3) = 1 if and only if it has a relation

matrix
tg—1 1—1, 0

0 0 (=) t—DTF+(t—1) (ts—1)gt | »
f £ B

where t denotes transposition; f and g are columns, and B is a square
matrix over L with B = B! and aug B = diag(%1, %1, ..., £1). Here the
Alexander modules of the links I, U I, and 1, U 15 are given respectively by
the matrices

{ 0 (tr—1) (t,—1) f (t1, 1, 1)!] [ 0 t—1) (ts—N gty 1, ts)t:'.
7t t 1) B (t;, 15, 1) gty 1, 13) B(ty, 1, t3)
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This theorem is analogous to Bailey’s theorem on the Alexander modules
of two-component links, and is proved similarly (see for example [23]).

We consider a concrete example. Let a € Z{¢, t,] with aug(a) = 1. We
put b = a+t¢3;— 1. By Theorem 5.6.1 there is a link / =/, U [, U [; whose
Alexander module is given by the matrix

ty3—1 1—14 0 0
0 0 (h—Dt—1ae (Hh—1)(,—1)a
a 0 bb 0

0 0 —bb

We put k = [, U I,. Direct calculation shows that y(I) = v(k) = 1, 1 € §,
and 4@ € §,. Formula (20) in this case reduces to the equality
Su(ty— 1) = §,(ty, t;, 1) x aa(t,—1). Here a(l) = {1} and a(k) = {1, 2}.

§6. Proof of Theorem 5.1.1

6.1. Auxiliary construction: the torsion p.

Let C = (C,, = ... > () be a chain complex over the principal ideal ring K.
The modules C;/Tors C; and H;(C)/Tors H,(C) are free; we equip them with
certain bases over K (for all i). These bases are simultaneously bases for the
vector spaces Q(K) ® xC; and H,;(Q(K) ® ¢ C). To these bases there

corresponds the torsion ;:(Q(K) ® 4 C) € Q(K). It is easy to see that this
torsion, considered up to multiplication by invertible elements of K, is
independent of the choice of bases, and hence is completely determined by
the complex C. This torsion, considered up to the accuracy mentioned, is
denoted by p(C). We show that

(22) p(C) = ‘ﬂo [ord (Tors C;)]~*? [ord (Tors H, (C))]*?.
We put Z; = Ker(d;_,: C; —C;_)and G; = H;(C)/Tors H(C). We denote
by s; a cross-section G; > Z; of the projection Z; > G;. We consider the
chain complex £ = (E,, > ... > Ey), where E; = C; @ G;_,, and where the
boundary homomorphism E; — E;_, takes the pair (¢, g) with ¢ € C; and
g EGi_yto 9;4(c) + s;4(8) € C;_4. It follows immediately from the
definitions that H;(E) = Tors H;(C) for all i, and p(E) = p(C). Hence we
can see that it suffices to establish (22) in the case when H,(C) is a periodic
module (that is, when H;(C) = Tors H;(C) for all i).

We denote by C' the subcomplex Tors C,, — Tors Cpy — . . . = Tors C,
of the complex C. We denote the factor complex C/C’' by D. It is obvious
that the projection C = D induces an isomorphism of the acyclic chain
complexes Q(K) ® x C - Q(K) ®xD. Hence p(C) = p(D). By Lemma 2.1.1,

m

o(D) =[] lord H,(D)l=» . We recall that the order ord is multiplicative:
0

i=
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if A is a periodic K-module and B a submodule of it, then ord 4 = ord B x
x ord(4/B). From the multiplicativity of order and the exactness of the
homology sequence of the pair (C, C’) it is easily deduced that

1 tord 7, (D)*” = [[ ford &, (€)1*® [] ford &, (€)17**.
i=0 i=0 §==0
Similar considerations show that

{1 tora &1, €172 = [] toracp=.
i=0 i

i=0
Hence we have (22).

6.2. Proof of the theorem. We fix a triangulation of the manifold M. We
denote the chain complex Q(K) ® ¢ C(M)by C. We fix a sequence

g = (go, 81, ---» &n) of bases for the Q(K)-modules Hy(C), H,(C), ..., H,(C).
We denote by u; the matrix of the sesquilinear form of the intersection
numbers H;(C) X H,_i(C) —Q(K) with respect to the bases g; and g,,_;.
By the definitions, the torsion w¥(M) can be represented as the product

;(C, 1] (det u;)~t®), We denote this product by w. We denote by w' the
i==0
product of the right hand side of (18) by

2r
11 ,lord (Tors H? (1)) X ord (Tors HY (M),
i=r+

We say that the elements a and @’ of the field Q(K) are equivalent, and write
a ~ 4', if there are invertible elements A, A" of the ring X for which
Aa = Na'. We represent o(w’)™" as the product of integral powers of
pairwise inequivalent irreducible elements of K. We denote the degree to
which an irreducible element 7w appears in this product by s(w). To prove
the theorem, it suffices to verify that s(m) = s(7) and that if ¥ ~ #, then
s(m) is even.

We denote by K, the resuit of localizing the ring K by the multiplicative
system consisting of the elements prime to 7. We denote the composition
of the homomorphism ¢ : Z{H,(M)] = K and the inclusion K = K, by y(m),
or, more briefly, by . It is clear that K, is a local ring, and in particular,
a principal ideal ring. We fix a basis h; of the free K,-module
HY(M)/Tors H¥(M). The inclusion K, = Q(K) induces an embedding of the
latter module in H;(C); here the image of the basis #; is a basis for the
Q(K)-module H,(C). Let [h;/g;] = nPi, where the sign = denotes equality up
to multiplication by an invertible element of the ring K, and where
p; = pi(m) € Z. We denote by g; the basis of the Q(K)-module
H,,_{Q(K) ®xC2(A, dM)) dual to the basis g; relative to the sesquilinear
form of the intersection numbers

(23) H(C)X Hp i (Q(K) @ C3 (M, 0M)) — Q (K).
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Let 4 be a basis for the free K,-module HY,_,(M, dM)/Tors H¥,_,(M, oM),
and let {h}/g}) == noi, where q; = q;(w) € Z. We remark that the numbers p;,

and g, are independent of the choice of the bases 4; and h;. Below we
m

prove two assertions: (i) s(n) = 2 e(i) (p; — ¢:); (i) py(m) = —q;(7) for

any i. Hence it follows that s(ﬁ;-:+;(w) and that if # ~ m, then s(7) is even.
We prove (i). It is obvious that r(C g) = T(C h) x H n&dri where

h = (hy, hy, ..., hy). The fact that the complex C¥(M) 1;—foree implies that

Tors HY, (M) 0, and by the results of §6.1, also

T(C k) = ﬂ [ord(Tors HY (M))letd. Since the localization function is exact,
i=0
we have HY (M) = K, ® gHY (M), so that

ord (Tors HY (M)) = ord (Tors HY (M)).
Thus

"(C g) = ” [ord (TorsH‘p(M))]E‘” H s

It is obvious that the matrix u; is equal to the matrix of the inclusion
homomorphism H(C) - H(Q(K) ® x C¥(M, dM)) with respect to the bases
g; and gr_;. Let v; be the matrix of this homomorphism with respect to A;
and k,_;. It is clear that det u, :== del v; X smpi-em-t. Hence

i r T .
11 (@etu) 2P =[] (detv,) 8D [] o= P=m-p,
i=0 i=0 i=0

It follows immediately from the definitibns that the product ﬁ (det v;)-=(®
is equal to the torsion p of the following acyclic chain complé:oover K,:
Ky @y J— HY (M)~ HY (M, aM)— HYY (M) — ... -~ HE™ (0M) —
— H‘é,’ (M)— HY (M, M) -0,
(We remark that rg J = rg H¥*"(9M) = 0.) By formula (22) and the

exactness of the localization functor

n (detv,) "8 = H [ord (Tors HY (M))]™*9 x

X .HO [ord (Tors HY (M, aM))1*P x lj {ord HY™ (aM)]*D (ord J)¥7,
i= i=0

We remark that ord (Tors HY (M, dM))=ord (Tors HE,_; (M)) (see §2.2.1).
Combining all these formulae, we obtain
— ’ 'l B(i)(p~—<1,-)'
0= il]“ T i
From this (i) follows.
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We show that p,(r) = —q,(%). We denote the K5-module H¥*}M, oM)
by E. It suffices to prove that some basis 4; of the free Kz-module
E/Tors E is dual to the basis 4; of the module H¥(M)/Tors HY(M) (where
Y = Y(m)) with respect to the sesquilinear form

(24) HY (M)/Tors HY (M) x E[Tors E — Q (K),

obtained by restriction of the form (23). Hence it follows that

AP = [k Jgy] = TG == R0 = 0,

that is, that p;(w) = —q;(7).

If ¥ ~ m, then Kz = K, and the existence of the basis #; dual to the
basis /; is a well-known corollary of the duality theorem and the universal
coefficient formula (for principal ideal rings). The following argument goes
through for any m. We denote by ¢ the canonical involution of the ring

Z[H(M)]. Since ¢ = po 0, the change of rings @ — a: K5z — K yields an
isomorphism E —+Hx‘;(M, dM). This isomorphism takes (24) to the form,
bilinear over K,:

H¥ (M)/Tors HY (M) x H¥S, (M, 0M)/Tors H¥°, (M, 8M) — K ...

The latter form is non-singular (see § §2.2.2 and 2.2.3). Hence we have the
existence of the h; with the desired property.

Appendix
Duality theorems for torsions

1. Description of the situation.

Up to the end of this appendix, we suppose that we are given a compact
m-dimensional manifold M, an integral domain K, and a ring homomorphism
¢: Z[H,(M)] —~ K. We assume that the ring X is equipped with an involution

@ +— a: K — K such that @) = w,(R)q(h1) for any h € H,(M). The

induced involution Q(K) = @Q(K) will also be denoted by a bar.

2. Theorem (Franz [12], Milnor [26)). If m is odd, and if v9(M) # O, then
10 (M, OM) = [1° D] (where & (m) = (— 1)"*1).

Proof. We denote by o the involution of Z[H,(M)] taking 4 € H,(M) to

w,()k-L. 1t is obvious that g = po g, and T9(M) = 1¢(M). Hence the
equality in question is equivalent to the equality t@(af, dM) == [1v0 (M)]etm,
which follows from Lemma 4.3.3 (i) and the fact, which has already been
used above, that if X is a piecewise-linear transformation of M, then the
chain complex C%9(X*, 6X¥*) is dual to the complex C%(X)(see §2.2).
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3. Theorem (a generalization of Theorem 2). Let V and V' be disjoint
compact (m— 1)-dimensional submanifolds ( possibly with boundary) of oM
for which dM\Int(V U V') is a cylinder with the bases 0V and 3V'. If m is
odd, and if T°(M, V) # 0, then

w0 (M, V') =[% (3, V))*™.

The proof of this theorem is similar to the proof of Theorem 2, with the
difference that instead of triangulations and the CW decompositions dual to
them we use dual decompositions into handles (see [36]).

4. The Stiefel-Whitney class v,(M).

We recall that in the category of p/-manifolds we can define the so-called
Stiefel-Whitney homology classes (see for example [5S1]). In particular, if
the manifold M is closed, then its first Stiefel-Whitney homology class v;(M)
is defined as the element of the group H(M) if m is even, and the element of
the group H,(M; Z/22) if m is odd, that can be represented by the cycle

25 2 (—q)timb-dima g py,
a<b - -

where: a and b are simplexes of some piecewise-linear triangulation X of M;
the notation a < b means that a is a proper face of b; a is the barycentre
of the simplex a; (g, b) is the one-dimensional simplex of the first
barycentric subdivision of X with vertices 2 and b. (It is known that the
class vy(M) is independent of the choice of triangulation X.) According to
the classical theorem of Whitney, if the piecewise-linear structure on M is
induced by a smooth structure, then the class v,(M) is the Poincaré dual to
the (m— 1)-dimensional Stiefel-Whitney cohomology class of M (a detailed
formulation and proof of this theorem can be found in [51]). In particular
if M is an orientable closed three-dimensional manifold, then w,(M) = 0 and
so vy (M) = 0.

5. Theorem (refinement of Theorem 2 in the case OM = Q). Let M be
closed and orientable. We put

0 if m =2 (mod 4) or m = 3 (mod 4),

[m/2]

D rgH, (M) if m =1 (mod 4),

i=0

2= m/2

2’4 2 rg H (M), where z' is the number of negative squares in the
i=0

k]

diagonal representation of the form of intersection numbers in
Hpypp (M; R), if m =0 (mod 4).

If m is even and T9(M) # 0, then T7p(vi(M)) = (=1)* for any T € t°M). If
m is odd, then for any T € TYM) there is an element g of the group H,(M)
for which g (mod 2) = vy(M) and 7 = (—1)Yp(g)r.
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We remark that if m = 0 (mod 4) and 79(M) # 0, then the residue z'
(mod 2) is independent of the choice of orientation of M, since then
rg Il 0(M) = y(M) (mod 2) and x(M) = 0.

Theorem 5 is proved in §9, using Lemmas 7 and 8. The given proof of
Theorem 5 can be carried over to the case of a non-orientable closed M, and
gives in this case a weaker form of the statement of Theorem 5:

1o (M)) = £1 if m is even, and 7 = *p(g)r with g (mod 2) = v,(M) if m
is odd.

6. Theorem (duality for the torsion w). Let M be closed, orientable, and
odd-dimensional, dim M = 2r+ 1. Then for any w € wA(M) there is an
element g of the group H\(M) for which g (mod 2) = v,(M) and

7
w = (—1)’p(g)w, where y = 0ifrisodd, and y =i§0 (rg Hy(M) + rg H? (M))
if r is even.

The proof of this theorem is similar to the proof of Theorem 5 given
below, and is therefore omitted.

7. Lemma (variant of Lemma 4.3.3 (i) for the torsion 7). Let
C=(C,—>..>C)and C" = (C,, = ... > Cgp) be dual chain complexes over
a field F, with x(C) = 0. For each i = 0, 1, ..., m, let the bases c,," ; and
h,..;0f the vector spaces Cy; and Hy, ;(C*) be dual to the bases c; and h;
of the vector spaces C; and H;(C) with respect to the Kronecker pairings

Ci X Cply >Fand Hi(C) X Hp,_i(C*¥) —F. Then the torsions 7 of the
complexes C and C” corresponding to these bases are related by the equality

TC*) = (—1)" 1(C)=™, where
[m/2]

n= igo [a; (C) @y (C) +B: (C) By (C)) + i;{) [tz (C) + B2 (O)).

Proof. We use the notation introduced in the course of the proof of
Lemma 4.3.3 (i). We put x; = dim Im 0; and y; = z; dim H(C) +
+ ziy (dim H(C) + x; + i). It can be verified directly that

[Om—i (bm—it1) b ibm_i'Cm_i] = (— 1)1/,— [0¢ (bi+y) Rybilei]ts

(We remark that the appearance of the term ir;_, in y; is connected with the
presence of the sign in the equality a,,”; = (—1)19;*,; see §2.2.2.) Using
the condition x(C) = 0, it can easily be verified that N(C") = N(C). Hence
the statement of the lemma follows from the congruence

Yot yit ... +y,, = n (mod 2). This congruence can be verified directly by
considering the equalities x; = o;(C) — ;(C), dim H;(C) = B;(C) — B:_,(C),
and 6,(C) = fn(O).

8. Lemma (refinement of Lemma 4.3.3 (iii)). Under the conditions of

Lemma 4.3.3 (iii), if the space X is homologically oriented, then
18X, e) = 18X, €').
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The proof of this lemma is obtained by a simple modification of the
proof of Lemmad 4.3.3 (iii), and is therefore omitted. (We remark that if
p(g) # — 1 for all g € H{(X), then the statement of Lemma 8 follows from
Lemma 4.3.3 (iii) and Theorem 3.2.1.)

9. Proof of Theorem 5. We assume that r¥(M) # 0. Here x(M) = 0. By
replacing the ring K by its quotient field if necessary, we can assume that K
is a field.

Let X be a piecwise-linear triangulation of M. Let p:M - M be a
maximal Abelian cover. Let e = (a;, ..., ay) be a base sequence of oriented
simplexes induced by the triangulation X of the manifold M. It is obvious
that the sequence e” = (a;, ..., ay) of dual cells is a base sequence of cells of
the CW decomposition X* of M dual to X. We orient M and the cells
ai, ..., ay so that for each i = 1, ..., N the orientations of the cells ¢; and a;
define the chosen orientation in M. The sequences e and e¢" define dual

bases of the dual chain complexes CI(X) and C¢(X*)(compare with the
proof of Theorem 2). By Lemma 7 it then follows that

(26) T (('? (X%), e*) = (—1)" me(m)’

m [in/2)
where n = > a;o;; + & og;; o is the number of simplexes of X of

i=0 i=0
dimension <i.

We consider an arbitrary basis 4; in H;(M; R), and denote by h; the basis
of H,,_;(M; R) dual to it with respect to the form of the intersection
numbers H;(M; R) X Hp_i(M; R) >R (wherei =0, 1, ..., m). Itis
obvious that the chain complexes C,(X; R) and C,(X"; R) over R, when
equipped with the bases of the spaces of chains corresponding to the
sequences e and e’ respectively, and equipped with the respective bases
he. hy, ..., h,, and h,,, ..., hy in the homology, are dual. By Lemma 7

(27) T(Ca (X% R)) = (—1)" 7 (Cy (X3 R)™™,
m [m/2} i
where n'=n+4- 1_2'0 BiPiy+ ‘Z") Boi; Bi= jgo rg Hj (M).

We fix the homological orientation in M given by the basis kg, 4y, ..., A,,
in H(M; R). We put A = 1 if the basis h}, hp?y, - . ., I} gives the same
orientation, and A = —1 otherwise. By multiplying the left and right hand
sides of (26) by the signs of the corresponding sides of (27), we obtain

(28) 19 (X*, e*)=(—1)" A [P (X, e)]"™.

We remark that if ¢ and b are simplexes in M with p(a) C p(b), then there
is a unique covering transformation M — M taking a to a subset of b. We
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denote the element of the group H;(M) corresponding to this covering
transformation by g(a, b). We put

g= U g(ai, aj)e(dimai—dim aj)_

1<i, jN
P(ﬂ")cp(ﬂj)

The following statements hold:

(i) (=)™ " A=(—1)5

(i) 1§ (X*, e*) =0 (g) ¥ (X, €);

(iii) if m is even, then vi(M) = g; if m is odd, then v,(M) = g (mod 2).

Hence by (28) it follows that the statement of the theorem holds for
T = 19(X, e). Since 19(M) = {£@)tY(X, e) | h € H,(M)}, the statement
of the theorem also holds for arbitrary © € 19(M).

The proof of statement (i) consists in applying Poincaré duality (taking
into account the equality x(M) = 0), and is omitted.

We prove (ii). Let X' be the first barycentric subdivision of the
triangulation X of M, and let X' be the induced triangulation of M. Let e’
(respectively e'") be the base sequence of simplexes of the triangulation X'
consisting of the simplexes lying in simplexes of the sequence e (respectively
in cells of the sequence e*). By Lemma 8, 13(X, ¢) = tJ(X’, ¢') and
T9(X*, e*) = 19(X’, ¢"). Each simplex a of the triangulation X' can be lifted
uniquely to simplexes a’ € ¢' and @'’ € ¢''. It can easily be verified that

T((jp (X’, e”) == T‘? (X', e") N (p(agl' g (al’ an)—E(dim a)).

If @ = (bgy, by, ..., by), where by C bl . C b, are simplexes of the
triangulation X, then @' C b and @' C (bo) where (3 denotes the unique
simplex of the sequence e 51tuated over b. Hence g(d', a'') = g(bo q)“
and

H g(ar, a) e(dxma) Hg(b )‘/(b C)

aEX’

where b and c¢ are simplexes of X, and f(b, ¢) is the Euler characteristic of
the complex whose g-dimensional simplexes are all possible sequences
b=byChb C..Ch,=c(withqg=1,2,.). Ifdisthe simplex spanned
by the vertices of ¢ that do not appear in b, then the g-dimensional
simplexes mentioned are in bijective correspondence with the (g — 1)-
dimensional simplexes of the first barycentric subdivision of d that contain
the barycentre d (as a vertex). Hence

ib, ) = — [x(d) — %(6d)]) = — [1 — y(S¥m d-1)] = —g(dim b — dim ¢).

From this we have (ii).
We prove (111) We fix a point x 1n M and for every simplex a of the
triangulation X we fix a path l, in M, going from x to a. If p(a;) C p(ay),
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then the class g(a;, a;) € H,(M) can be represented by the singular cycle
(pols )— (pols,) — (@i, ay). Hence g can be represented as the sum of the
cycles (2%) and the cycle 2 k,(pol,), where

k,= 2 &(dimb— dima)— 2, &(dimb—dima).

b<i a<bd

The boundary of the cycle (25), as is easily verified, is equal to —2 kqa.

a
So if m is even, then k, = O for all a, and if m is odd, then k, = 0 (mod 2)
for all a. Hence we have (iii).
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