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Introduction

1. Torsion invariants were introduced by Reidemeister [32], [33] about
50 years ago, and were historically the first non-homotopy invariants for
manifolds. Reidemeister defined the torsion invariants for closed three-
dimensional f>/-manifolds. As an application, he obtained the complete
piecewise-linear classification of the three-dimensional lens spaces. Franz
[11] transferred the definition of torsion to the many-dimensional situation,
and classified lens spaces in all dimensions. In the category of smooth
manifolds, torsions were defined by Whitehead [48] (using C'-triangulations)
and de Rham [34] (using the nerves of covers by geodesically convex sets).
Whitehead also developed a new, deeper, viewpoint on the Reidemeister
torsions, indicating their place in his theory of simple homotopy types, and
in particular, comparing them with the Whitehead torsions, which are defined
for homotopy equivalences. We note that as well as the term "Reidemeister
torsion", the terms "Reidemeister-Franz torsion" and "Reidemeister-Franz-
de Rham torsion" are also used.

Reidemeister torsions are by nature (dimensionally) global invariants: the
definition of the torsion of a CW-complex (or /;/-manifold) X requires the
consideration of cell-chains (and boundary homomorphisms) of X in all
dimensions. In this respect, the torsions are similar to the Euler characteristic.
The torsions have particular beautiful properties, including a multiplicativity
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recalling the additivity of the Euler characteristic. At the same time, in
contrast to the Euler characteristic, the torsions are well-suited for the study
of odd-dimensional manifolds and are usually of little interest in the four-
dimensional case. Poincare duality is reflected in torsion theory: as Franz
[12] and Milnor [26] showed, the torsions of manifolds are symmetric in
the appropriate sense.

2. In 1928, 7 years before Reidemeister first considered the torsion
invariants, Alexander [ 1 ] introduced a new link invariant in the three-
dimensional sphere, the so-called Alexander polynomial. Subsequently it
was established that the Alexander polynomial is a homology invariant
computable from the 1-dimensional homology group of the exterior of the
link with the appropriate twisted coefficients. Such an approach makes it
possible to generalize the definition of the Alexander polynomial, and to
consider Alexander polynomials of many-dimensional links and compact
manifolds. These polynomials can be viewed as slightly modified "modular"
versions of the oldest homology invariants—the torsion coefficients.

The methods of algebraic topology connected with the study of Alexander
polynomials play a fundamental role in knot theory (see [6], [17], [35]).
One can say that these methods form the nucleus of the apparatus of knot
theory.

3. As Milnor [26] first noticed, there is a close connection between
Alexander polynomials and Reidemeister torsion. Namely, Milnor showed
that the Alexander polynomial of a link in S3 is equal (up to a standard
factor) to a certain Reidemeister torsion of the exterior of the link. From
the theorems formulated below one can see that this equality is analogous
in nature to the following obvious formula of the topology of surfaces: the
one-dimensional Betti number of a connected compact surface F is equal, up
to a standard summand, to ~x(F), where χ is the Euler characteristic.

The kind of Reidemiester torsion considered by Milnor in [26] is called
Milnor torsion below. As an application of his interpretation of the
Alexander polynomial as a torsion, Milnor showed that the classical Seifert-
Torres theorem that the Alexander polynomial of a link in S3 is palindromic
is a very special case of the Franz-Milnor theorem on the symmetry of
torsions. Using torsion techniques, Fox and Milnor [9] showed that the
Alexander polynomial of a knot in S3, considered modulo a suitable
equivalence relation, is a cobordism invariant. Kervaire [22], also using
torsions, carried over the Fox-Milnor theorem to the case of many-dimensional
knots. In the paper [44] the author computed the Milnor torsion of a
closed three-dimensional manifold. It turned out that, as in the case of the
exterior of links, this torsion, up to a standard factor, is equal to the
Alexander polynomial of the manifold in question.

4. The main purpose of the present paper is to study systematically the
connections between Alexander polynomials and torsions, and relying on
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these connections, to give a survey of the main properties of Alexander
polynomials of links in the three-dimensional sphere. This approach makes
it possible to represent the numerous and diverse properties of Alexander
polynomials of links as consequences of several universal torsion properties.
Regarding the Alexander polynomial as a torsion not infrequently sheds new
light on the essence of the problem and is, in the author's opinion, the
most correct viewpoint.

It is natural that the organic merging of two extensive deeply developed
theories such as torsion theory and the theory of Alexander polynomials
leads to the enrichment of these theories by new results. Some of these
results are expounded here for the first time. We also remark that, in our
approach, many well-known theorems naturally receive new and wider
formulations and new proofs.

The methods of torsion theory and the theory of Alexander polynomials
developed in this paper transcend the framework of knot theory and links in
S3, and can be applied (and are applied in the paper) also to the study of
many-dimensional knots and links, and to the study of closed manifolds.

The circle of problems connected with the study of Alexander polynomials
and torsions in the theory of dynamical systems is beyond the scope of this
paper. For this the reader is referred to [10], [13], [27]. This article also
excludes the application of torsions to the computation of elementary ideals
and Fox-Brody invariants of three-dimensional manifolds considered by the
author (see [45], [46]).

5. We briefly describe the contents of the article by sections. In §0 we
recall the necessary definitions and results of torsion theory, and also
introduce the notation used later. In §1 we first formulate Theorems 1.1.1,
1.1.2, and 1.1.3, which establish the connection between torsions and
Alexander polynomials, and then we formulate and (using Theorems 1.1.1,
1.1.2, and 1.1.3) prove the main properties of the Alexander polynomials of
links in S3. In §2 we carry out the proof of Theorems 1.1.1. 1.1.2, and
1.1.3.

In §3 we introduce and study a new modification of Reidemeister
torsion, namely, the refined (or sign-determined) torsion. In §4 we consider
the Conway function of a link in S3. Here we adopt an axiomatic approach
to the definition of the Conway function. A model satisfying the axioms is
constructed using refined torsions.

In §5 we consider a polynomial invariant of manifolds and links close to
the Alexander polynomial (and in some cases coinciding with it), the so-
called polynomial δ. In particular, the polynomial δ of a link in S3 is the
first non-zero term in the sequence of Alexander polynomials of the link
group. Our approach to the study of the polynomial δ is founded on the
exploitation of the connection between this polynomial and yet another
modification of Reidemeister torsion, namely the torsion ω. Theorem 5.1.1.



122 V.G. Turaev

formulated in §5, which establishes the connection between δ and ω, is
proved in §6. In addition, we formulate and prove the duality theorems for
torsions that are used in the main text.

6. The present paper grew out of a series of lectures I gave at the
Seminar of V.A. Rokhlin in 1974-1984. My long contact with Rokhlin has
exerted a decisive influence on my development as a topologist. I am
deeply grateful to Vladimir Abramovich for his benevolent interest in my
scientific work, and for his great labour in reading and editing my papers.

I should also like to use this opportunity to express my gratitude to
O.Ya. Viro, who in the early seventies, during my study at the Leningrad State
University, aroused my interest in torsion theory and its applications in low-
dimensional topology.

§0. Preliminary material

0.1. The torsion of a chain complex.
In this paper, a ring is a ring with identity, 1 Φ 0. The word "module"
means a left module. A chain complex is a finitely generated chain complex
of finite length.

We say that the chain complex C = (Cm -f-Cm^ -v . . . -^C1 -*-C0) over
a ring Κ is free if the A>modules Co, C\, ..., Cm are free. The complex C is

called acyclic if H,(C) = 0, where H^C) = φ #,·(£), and H0(C) = Coker θ 0
{=0

and Hm(C) = Ker dm_,. If b = (bl br) and c = (c\ ..., cr) are two bases
for one and the same vector space over the field F, then [b/c] denotes the
determinant of the matrix taking c to b, that is, the determinant of the r χ r

τ

matrix («;,;) over F for which fr' -= 2 " ; , ; Γ"' ^ o r ' = 1 r-
3-1

Let C = (Cm -> ... ->· Co) be a chain complex over F. We suppose that for
each / = 0, .... m a (finite, ordered) basis c{ is fixed in the vector space C,-.
(The case C,- — 0 is not excluded, of course. By definition, the zero module
has a unique basis.) In this situation, we define an element T(C) of F, called
the torsion τ of the complex C corresponding to the given system of bases.
If C is not acyclic, then T(C) = 0. We suppose that C is acyclic. We

consider for i = 1, ..., m a sequence of vectors fr; = (b\, . . ., frj") in Ct for

which dj^ibi) = (5,_j (b\), . . ., d^^bi·)) is a basis of Im 5,-_j. It is obvious

that for every / = 0, 1, ..., m the sequence di(bi+1)bi ~ (dj{b\+1), . . .

. . ., #*(£>{+1), b\, . . ., bril) is a basis in Q (it is understood that b0 and
bm+1 are empty sequences). We put ε(ΐ) = (—1)'+ 1. The product

II l^i (frj+ι) bj/ciY x

i=0
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is a non-zero element of the field F which, as can easily be verified, does
not depend on the choice of the sequences bit .... bm. This element is r(C).

We require a simple generalization of the torsion τ. Let C = (Cm ->·... -»· Co)
be a free chain complex over an integral domain K. (By an integral domain
we understand a commutative ring without zero divisors.) Let the AT-modules
Co, C\, ..., Cm have given bases. The field of quotients of the ring Κ will be
denoted by Q(K). The basis in C,· determines in an obvious way a basis in
the Q(K)-module Q{K) ® K C f. The torsion τ of the chain complex
Q{K) <8>KC corresponding to the given system of bases is denoted by T(C)
and called the torsion τ of the complex C. It is clear that T(C) G Q(K).
From the equality H*(Q(K) ®KC) = Q(K) ®KH^(C) it becomes apparent
that the following four conditions are mutually equivalent: T{C) Φ 0; the
complex Q(K) ® K C is acyclic; rg Ht(G) = 0; H,(Q = Tors H,(C). Here
for a AT-module //, rg Η denotes its rank, that is, the dimension of the vector
space Q(K)®KH, and Tors Η denotes the submodule of Η consisting of
those h £ Η such that kh = 0 for some non-zero k €Ξ Κ. It is clear that if
T(C) Φ 0, then x(C) = 0, where χ is the Euler characteristic.

We note, although we do not require this later, that for an acyclic chain
complex equipped with bases the torsion can also be defined in a more
general situation, without assuming that the ground ring is a field or integral
domain. The definition of this generalized torsion is given, for example, in
the well-known survey by Milnor on torsion theory [28]. It should be said
that for an acyclic chain complex C over a field the torsion defined in [28]
is the inverse (in the multiplicative group of non-zero elements of the field)
of the torsion r(C) defined above.

0.1.1. Theorem (the multiplicativity of torsion; see Whitehead [48],
Theorem 6). Let C = (Cm -*...-+ Co) be a chain complex over an integral
domain, let C' — (C'm ->...->• C$) be a subcomplex of it, and let
C" = (C Ĵ ->•...-»• Co') be the factor complex C/C'. We suppose that for
each i = 0, 1, ..., m the modules Ci, C\, and C," = CjCl are free and are
equipped with bases, and moreover that the chosen basis in C,· is obtained
by writing down successively the elements of the chosen basis in Ci and
elements of Ct whose images under the projection C,· -*• Q" give the chosen
basis for Ci'. If r(C') Φ 0 or T(C") Φ 0, then T(C) = ±T(C')T(C").

For completeness, we give a proof of this theorem, taken from [28].

Proof of Theorem 0.1.1. By replacing the ground ring by its quotient ring,
if necessary, we may assume that it is a field. If the complex C is not
acyclic, then by the exactness of the homology sequence of the pair (C, C'),
at least one of the complexes C', C" is also not acyclic, so that both sides
of the desired formula vanish. If C is acyclic, and r(C') Φ 0 or r(C") Φ 0.
then all three complexes in question are acyclic. Let c,·, c/, and c/' be the
fixed bases for the modules Ct, Ci, and C/' respectively. By the condition,
[Cj/c'jC'/] = 1. Let bt, b'h and b\' be the sequences of vectors in Q, C,·, and C",
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respectively, which were discussed in the definition of the torsion. By
changing b{ if necessary, we can suppose that [bi/b'ib'/] — 1 for all /. Then

τ (C) = Π Id, (l>i+i) Wet)™ = ] I [d\ (fti'+i) d\ ( i W i W W t a ] * 0 =
i i

= ± ] f [3ί(6ί+ι) Wei]" 0 Π [9i (bUt) bVcW™ = ± τ (C) τ (C").
i 4

0.2. The torsion of a CW-pair.
Up to the end of this section we fix a finite CW-pair (X, Y), an integral
domain K, and a ring homomorphism φ: ZtZ/^Χ; Z)] -*· AT. Below, we omit
the coefficient group Ζ in the notation for integral homology. In accordance
with the accepted practice in torsion theory (and the theory of Alexander
polynomials) the group operation in Ηχ(Χ), namely the addition of homology
classes, is written multiplicatively and is called multiplication.

The Reidemeister torsion f(X, Y) is a subset of the field Q{K) defined as
follows. We put Η = Ηχ(Χ). We consider a maximal Abelian cover
ρ : X -*• X of the space X. This is a regular cover, whose translation group
is H. (If X is not connected, and Xo is a connected component of it, then

preserves the connected components of the space P ' ^ X Q ) , while
/^Q) permutes these components.) A CW-decomposition of X can be

lifted in an obvious way to an equivariant decomposition of X. ^We consider
the integral-valued cellular complex C*(X, p'l(Y)) of the pair (X, pHY)
The action of// on Ζ gives this complex the structure of a Z[//]-chain
complex. It is clear that the Z[H] -modules of chains are free, and moreover
the number of free generators for the module of /-dimensional chains is the
number of /-dimensional cells in X\Y. We denote the A -̂chain complex
Κ ® Z , H A(j f , p-\Y)) by CtiX, Y) (the Z[H] -module structure in Κ is
given by the formula zk = φ(ζ)Κ, where ζ S Z[H] and k G ΛΓ). Let e be a
sequence of oriented cells of X with the property that over every cell of X
there lies exactly one cell of the sequence e. (Such sequences of cells are
called base sequences.) The cells of e that lie in X\p'l(Y), written out in
the order in which they occur in e, define the "natural" basis for the
A:-chain complex Cf(X, Y). The torsion r of the complex Cf{X, Y)
corresponding to this basis is denoted by τφ(Χ, Υ, e). The totality of
torsions τφ{Χ, Υ, e) corresponding to all possible base sequences e is

It is not hard to understand how the set τφ(Χ, Υ) can be completely
recovered from any of its elements with the homomorphism ψ: if
α<Ξτφ(Χ, Υ), then ττ(Χ, Υ) -= {±φ(Λ)α \h 6 Η}. We say that τφ{Χ, Υ) is
"an element of Q{K), defined up to a factor ±φ(Η), with h G //". The
elements of the set τφ{Χ, Υ) are called the representatives of the torsion
τφ{Χ, Υ). The torsion τφ(Χ, Φ) is denoted by τφ{Χ).

By the results of Section 0.1 the torsion τφ{Χ, Υ) is non-zero if and only
if rg Hf(X, Y) = 0 for all /, where Hf(X, Y) denotes the .K-module
H,(Ct(X, Y)).
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The torsion τφ(Χ, Υ) is preserved under subdivision of the cell complexes
of the spaces X and Y, and is, moreover, an invariant under simple homotopy
equivalences. More precisely, we have the following theorem.

0.2.1. Theorem (see [48]). Let (X1, Y') be a finite CW pair, and let
(X, Y) -»· (X1, Y') be a simple homotopy equivalence induced by the
homotopy equivalence X ->· X'. Let the homomorphism φ : Z[HX{X)] -*• Κ be
the composition of the isomorphism Z[HX{X)] -> Ζ[Ηχ(Χ')] induced by the
latter equivalence and the ring homomorphism φ : Ζ[Ηλ{Χ')] -*• Κ. Then
τ*\Χ', Υ') = τφ(Χ, Υ).

Theorem 0.2.1 is easily deduced from Theorem 0.1.1 using well-known
arguments in terms of the cylinder of a map /. Below (in §3) we formulate
and give a detailed proof of a more precise version of Theorem 0.2.1.

The following two theorems represent geometric versions of the theorem
on the multiplicativity of torsion.

0.2.2. Theorem. Let /: Z[HX{Y)] -*• Z[Hi{X)] be the inclusion homomorphism.
Ifxi>°i(Y) Φ0 or τ<τ(Λ\ Υ) φ 0, then x<f(X) =.= τν(Χ, Υ)τ

The product τφ(Χ, Υ)τν-ϊ(Υ) is here understood as the product of sets:
the product AB of subsets A and Β of Κ is the set {ab | α ζ A, b ζ Β).
Theorem 0.2.2 is obtained by direct application of Theorem 0.1.1 to the
canonical embedding C%'j(Y) -

0.2.3. Theorem. Let Χγ and X2 be subcomplexes of X whose union is X,
and whose intersection is Y. Let j : Z[HX{Y)} -• Z[HX{X)] and j/.ZlH^X,)]
Z[H](X)} with r = 1, 2 be the inclusion homomorphisms. If τ^"'(Υ) φ 0,
then

This theorem is obtained by applying Theorem 0.1.1 to the embedding

CTi(Y) -*CS""'(Xi) Θ CFHXt).

0.3. The torsion of a manifold.
All manifolds and maps between them are assumed to be piecewise linear in
this paper; submanifolds are assumed to be locally flat. The fact that the
torsion of a CW complex is preserved under subdivision enables us to define
in an obvious way (using piecewise linear triangulations) the torsion of a
compact manifold. It is clear that to compute such a torsion one can use a
CIV-decomposition of the manifold, some subdivision of which is a
/?/-triangulation. (Indeed, to compute the torsion one can use an arbitrary
decomposition of the manifold: as is well known, the homeomorphisms of
CW-complexes are simple homotopy equivalences, and hence preserve
torsions. We do not require these facts.)

0.4. The order of a module.
Let Η be a finitely generated module over a commutative ring K. We
represent Η as the cokernel of a A"-linear homomorphism / : Km ->• K" with
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η = 1, 2, ... and with °°> m > n. It is well known that the ideal of a ring
Κ generated by (η χ «)-minors of the matrix of the homomorphism /
depends only on H. If Κ is a factorial ring, then the set of greatest common
divisors of the elements of this ideal is called the order of the module H,
written ord H, and is "an element of the ring Κ defined up to multiplication
by invertible elements of K". It is easy to see that ord Η Φ 0 if and only if
rg Η = 0. In particular, if Κ — Ζ and Η is a finitely generated Abelian
group, then ord Η = 0 in the case when Η is infinite, and ord Η - ±card(/f)
when Η is finite.

0.5. Notations.
If Η is an Abelian group, then //# denotes the quotient group ///Tors H. If
G is a free Abelian group, then Q{G) denotes the field of fractions of the
integral domain Z[G]. The ring Z[G] and its extension Q(G) are equipped
with the canonical involution taking g Ε G to g~l. The image of an element
a Ε Q(G) under this involution is denoted by a.

The map assigning to orientation-reversing loops in a manifold Μ the
number - 1 , and to other loops the number 1, is denoted by wx(M), or more
briefly, wx. The induced map H^M) -*• {1, —1} is also denoted by Wj.

§1. Milnor torsion and the Alexander polynomial

1.1. Computation of Milnor torsion.
Let (X, Y) be a finite m-dimensional CW-pair. We denote the group H^X)^
(=i/i(X)/Tors Ηλ{Χ)) by G. It is clear that G is a free Abelian group of
rank rg Ηλ{Χ). Let θ be the ring homomorphism Ζ[Ηχ(Χ)] -> Z[G] induced
by the projection H^X) -> G. The torsion τθ(Χ, Υ) is called the Milnor
torsion of the pair (X, Y), and is denoted by τ{Χ, Υ). By the remarks in
§ 1, τ{Χ, Υ) is an element of the field Q(G) defined up to multiplication by
±g with g Ε G.

The module Hf{X, Y) over the ring Z[G] is called the i-dimensional
Alexander module of the pair (X, Y). Obviously if q : X -*• X is a maximal
free Abelian cover, then

H\(X, Y)^

Since Z[G] is factorial and Noetherian, we can consider the orders of
Alexander modules of the pair (X, Y). The Alexander function of the pair
(X, Y) is an element of the field Q{G) defined up to multiplication by ±g

m

with g&G whose value is JJ [ord H\(X, Y)Y<» (where ε(ΐ) = (—l) i + 1) if

ord H\(X, Υ) Φ 0 for all /, and is zero otherwise. The Alexander function
of the pair (X Y) is denoted by A(X, Y).

1.1.1. Theorem. If (X, Y) is a finite CW pair, then

τ(Χ, Υ) = A(X, Υ).
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Theorem 1.1.1, as well as Theorems 1.1.2 and 1.1.3 stated later in this
section, are proved in §2. In the case when rg Ηχ(Χ) = 1, the equality
T(X, Y) = A(X, Y) (in a somewhat weaker form: up to multiplication by a
non-zero rational number) was proved by Milnor [ 27 ] .

Theorem 1.1.1 often enables us to compute the Milnor torsion explicitly.
It also follows from this theorem that Milnor torsion is invariant under
homotopy equivalences (not necessarily simple). However, the latter
statement can also be easily verified directly. For the present paper, it is
most important that Theorem 1.1.1 makes it possible to apply the techniques
of torsion theory to the study of the Alexander function.

If Μ is a compact m-dimensional manifold, then the order of its
[tn/2] -dimensional Alexander module is called the Alexander polynomial of
M, and is denoted by A(M). (Here the square brackets denote integer part.)
Thus Δ{Μ) is an element of the ring Z[HX(M)#] defined up to multiplication
by ±g with g 6 H^M)*. In the case when m = 3, the polynomial A(M) is
the first Alexander polynomial of the group πλ(Μ) in the sense of Fox (see
[6]). As the following theorem shows, for a wide class of three-dimensional
manifolds the Alexander function and the Alexander polynomial represent
(up to a standard factor) one and the same invariant.

1.1.2. Theorem. Let Μ be a connected compact three-dimensional manifold
with χ(Μ) < 0, and let Η = H^M). If rg Η > 2, then A(M) = A{M). If
rg Η = 1. and t is a generator for the infinite cyclic group H#, then

( A (M) (t — 1)-' if <Ί]\ ί φ 0 or u\ (Tors Π)φ\,

Δ(Λ/)(<-1)-?- if OM~0 and ir,(//) = l,

Λ(Λ/)(ί2—I)"1 if (λ1/=, O, u\ (Tors //) =. I and ιι\(Π)φ\.

Theorem 1.1.2 is apparently new: the Alexander function of three-
dimensional manifolds has not been particularly considered. The condition
χ(Μ) < 0 in Theorem 1.1.2 is already satisfied in the two most interesting
cases: when Μ is a closed manifold, and when Μ is the exterior of a link in
a closed manifold. In both cases χ(Μ) = 0.

The combination of Theorems 1.1.1 and 1.1.2 yields formulae expressing
the Milnor torsion of a connected compact three-dimensional manifold Μ
with χ(Μ) < 0 in terms of Δ(Μ). In the case when dM Φ φ, these formulae
were obtained by Milnor [26]. (Milnor considered only the exteriors of
links in S3 but his arguments generalize directly to the situation we
describe.) For closed Μ these formulae were obtained by the author
(see [44]).

The following Theorem 1.1.3 shows that from the Alexander function of
a three-dimensional manifold one can compute not only the Milnor torsion
but also some other torsions. When formulating Theorem 1.1.3 we use the
fact, which follows from Theorem 1.1.2, that if (under the conditions of
Theorem 1.1.2) rg # > 2, then A(M) c Z[77-J.
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1.1.3. Theorem. Under the conditions of Theorem 1.1.2, suppose that Π is
a free Abelian group and let φ: Z[H] -> Ζ[Π] be the composition of the
projection Θ: Z[H] ->-Z[H#] and the ring homomorphism ψ. Ζ[Η#] ->-Ζ[Πΐ
induced by a non-trivial group homomorphism H# ->-Π. // rg Η > 2, then
x<f(M) = ψ(^4(Λ/)). If rg Η — 1, then ψ can be uniquely extended to a ring

homomorphism ψ: Q(H#) ->-<?(Π) and τ^ΑΓ) = ψ(Α(Μ)).

1.2. The Alexander invariants of links.
A link in the m-dimensional manifold Μ is an oriented submanifold of Μ
whose components are homeomorphic to the sphere 5 m " 2 . A link is called
ordered if its components are numbered. The exterior of a link in Μ is the
complement in Μ of an open regular neighbourhood of it.

We consider an ordered link / = lx U ... U /„ in Sm, where /1; ..., /„ are the
components of /. The sphere Sm is supposed to be oriented once and for all
for each m. If V is the exterior of /, then the group HX(V) is canonically
isomorphic to a free Abelian (multiplicative) group with η free generators
tx, ..., tn: the generator tt corresponds to the homology class of a meridian
of the component /,-. (If / is a knot, that is, if η = 1, then instead of tl we
simply write t.) The ring Z[Hi{Vi)] is identified via this correspondence
with the Laurent polynomial ring ZUj, <ϊ\ . . ., tn, in1].

The Alexander polynomial (respectively, function) of the link / is the
Alexander polynomial (respectively, function) of its exterior. These
invariants are denoted by At(tx, ..., tn) and At{ti tn) respectively, or.
more briefly, by Δ; and At. Thus Δ, is a Laurent polynomial in the
variables tit ..., tn determined up to multiplication by polynomials of the

form ±t\% . . . in" with integral rr, .... rn. The Alexander function Al is an
element of the field Q(tv ..., tn) of rational functions in tY, .... tn with
rational coefficients, determined up to the same accuracy as Δ/.

The invariant A; is meaningful only when m — 3 or when / is a knot: if
m > 3 and η > 1, then A, = 0. By Theorem 1.1.2, if m = 3, then At = A,
for η > 2, and At = Δ;(ί— I)" 1 for η = 1. Although the Alexander
function and the Alexander polynomial of a link in S3 are essentially one
and the same invariant, we find it convenient to use both terms. In
particular, we shall formulate some classical theorems about Alexander
polynomials of links in S3 in terms of Alexander functions, leaving to the
reader their translation into the standard terminology.

1.3. The Alexander polynomial of an iterated link. The monodromy
theorem.
The following theorem was proved in several special cases by Burau [3],
[4], and Seifert [39], and in complete generality by Sumners and Woods
[40]. In what follows, μ(Λ:, /) denotes the linking number of the knots k
and / in S3.
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1.3.1. Theorem (see [40]). Let I = ^ U ... U ln be a link in S3, and let k
be a knot in S3\l located at the boundary of a closed regular neighbourhood
of the knot ln in S3\(Zj U · · - U A.-i)· We suppose that the knot k is
homological in this neighbourhood (which is a solid torus) to the p-th power
of the loop /„. with ρ Φ 0. Let A(tlt ..., tn), A'(tv ..., tn), and
A"(tu . . ., tn, tn+1) be the Alexander functions of the ordered links I,
I' - h U · · · U ln-i U *. a n d I" = I ' U /„ = lt i j ... U / n - i U * U h ,
respectively. We put T = t*H** . . . t^-it^ where μ( = μ{Ιί, /„) and
q = μ&, /„). Then

)(*/ A (tt, . . ., tn) = A {^t-i, . . ., tn_l, tn)

(2) A"(tu . . . , ί η + 1 ) = ^( ί 1 , ...,«„_„ ί^η

Here the expression ,4(£j, . . ., in_j, *JJ) denotes the rational function in
tx, ..., tn defined with the same accuracy as A(tx tn), and obtained from
it by the substitution tn ·—>• i£. The expression A{tx, . . ., t,,_lt tf,tn+l) is to
be understood analogously. In the case when Τ = 1, the fraction
(Tp- \)I(T- 1) is regarded as unity.

The knot k discussed in Theorem 1.3.1 is called a (p, <?)-cable of the knot
/„. One says of the links /' and /" that they are obtained from / by iterating
the component /„. The links in S3 that can be obtained by iteration from
the trivial knot are called iterated torus links. Theorem 1.3.1 enables us to
compute the Alexander polynomials of such links inductively. For example,
from this theorem it follows immediately that the Alexander polynomial of
the torus knot of type (/;, q) is (f"> — l)(f — 1) ( f — l ) " 1 ^ — I)" 1 . From
Theorem 1.3.1 it also follows that the Alexander polynomial of any
(ordered «-component) iterated torus link can be represented as the product
of polynomials of the form fftl' . . . in" — 1 a n d their divisors.

As is known, a link in S3 that is algebraic in the sense of Brauner is an
iterated torus link (see for example [40]). Theorem 1.3.1 makes it possible
to compute without difficulty the Alexander polynomial of an algebraic link
from the Puiseux numbers of the equation/(zj, z2) = 0 determining this
link. Relying on Theorem 1.3.1, Yamamoto [52] recently proved that two
ordered algebraic links are isotopic if and only if their Alexander polynomials
are equal. (In the case of knots and two-component links, this result was
already obtained in the thirties by Burau [3], [4].) We remark that the
first results in the direction of Theorem 1.3.1 were obtained by Burau [3],
[4] exactly for the purpose of computing the Alexander polynomials of
algebraic links. The computational methods used by Burau were based on a
detailed study of the presentations of the groups of links by generators and
relations. Fox writes (we quote from [7]): "the calculations in the two
Burau papers are almost too painful to contemplate, but I am sure that the
results are correct ...". The proof of Theorem 1.3.1 given by Sumners and
Woods [40] uses modern homology techniques, but is also rather complicated.
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The proof of Theorem 1.3.1 given below demonstrates to its full extent the
efficiency of applying torsions to such problems.

We mention an important consequence of Theorem 1.3.1. Since the
characteristic polynomial of the monodromy homomorphism of an algebraic
link / in S3 is AJJ, t, ..., t)(t- 1) (see [29], Lemma 10.1), Theorem 1.3.1
implies the case r = 1 of the following theorem of Grothendieck [15].

1.3.2. Theorem ([15], see also [40], [49] and their references). The
characteristic polynomial of the monodromy homomorphism of an algebraic
link in Sir+l is the product of cyclotomic polynomials.

We prove Theorem 1.3.1.

1.3.3. Lemma. Let X be a finite CW-complex, and let φ be a ring
homomorphism from the ring T.[H\(X)] to an integral domain. If X is
simply homotopically equivalent to a circle, t is a generator for HX{X), and
<f(t) Φ 1, then ( φ ( 0 ~ 1Γ1 € τφ{Χ). If X is simply homotopically equivalent
to a 2-dimensional torus and φ(Ηχ(Χ)) Φ 1, then 1 G τφ(Χ).

Proof. We may assume that the integral domain in question is a field, and
that in the first case X = S1, and in the second case X = Sl χ Sl.

Let C — (C1! -*· Co) be the chain complex Ct(Sl) corresponding to the
decomposition of the circle consisting of one zero-dimensional cell and one
one-dimensional cell. With a suitable choice of natural bases, the boundary
homomorphism Q -* Co is given by the 1 χ 1 matrix (φ(ί)- 1) for which, as
follows immediately from the definition of the torsion, r(C) = (φ(1)— 1)"1.

a, e0
Let C = (C2 ->~C1 -*-C0) be the chain complex Cf(S χ S1) corresponding

to the standard decomposition of the torus, consisting of one zero-dimensional
cell, two one-dimensional cells, and one two-dimensional cell. Let g and h
be generators of the group Hi(Sl χ S1) representable by the one-dimensional
cells. With a suitable choice of natural bases c\, (c\, c\), and c\ of the
modules Co, Cx, and C2 respectively, the boundary homomorphism θ 0 is

given by the column | ,%_' ~ . 1 , and the homomorphism 3i by the row
L<p(n) — i j

(ip(h)- 1, 1 -ip(g)). By hypothesis, <p(g) Φ 1 or <£(Λ) Φ 1. For definiteness
we suppose that ip(g) Φ 1. Then the vector dx(c\) generates Im 9 l 5 while the
vector 9o(c}) generates Im 90. Therefore

1.3.4. Proof of Theorem 1.3.1. We prove the equality (1). If ρ = ±1, then
the links /' and / are isotopic (with a change in the orientation of the knot k
in the case ρ = -1), and (1) holds. We assume that ρ Φ ±\. Then q Φ 0,
and hence Τ Φ 1. The exterior V of the link /' can be represented in a
natural way as the union of two manifolds Vx and V2, where Vx is a solid
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torus containing /„ as axis, and V2 is the exterior of the original link /; the
intersection Vx Π V2 coincides with 3 Vx Π 3 V2 and is homeomorphic to the
two-dimensional cylinder S1 χ [0, 1]. We put Ν = Vl Γ) V2. We denote the
inclusion homomorphisms Z [ ^ ( F r ) ] -> ZIH^V)] and ZIH^N)] -+ Z[Hi(V)]
by j r and / respectively, where r — 1, 2. It is easy to see that /Ί takes the
generator [/„] of H^V^) - Ζ to T, while / takes some generator of H^N) = Ζ
to Tp. By Lemma 1.3.3, the torsions T>'(F1)and τ'(Λ0 are (Τ- 1)"1 and
( Γ ρ - 1)"1 respectively. The homomorphism j2 takes the canonical generators

ti tn of Hx(V2) to £,, . . ., ίη_!, ίξ respectively. From Theorem 1.1.3 it
follows that τ>·(ν2) = A(tlt . . ., tn_u <£). Thus, by Theorem 0.2.3, the
torsion T{V) is equal to the right hand side of (1). Hence the truth of this
formula follows from the equalities A'(tlt ..., tn) = A(V) = r(V).

Formula (2) is proved analogously, using the second statement of
Lemma 1.3.3.

1.4. The Torres formula and its generalizations.
1.4.1. Theorem (Torres [41]) . Let I = lt \j l2 \J . . . [}lnbe a link in S3

with n>2. Let k = lx U h U · · · U Ή-ι. <™d let μ,· = μ(/,·, /„) for

i = 1, ..., η — 1.

(3) Al (ί,, . . . , £„_„ 1) = Λ,( (rt, . . . , «»_,) (ί^ί' ι« . . . fei- 1).

The formula (3) plays an important role in link theory. In particular, in
the case when at least one of the numbers \iu μ2, . . ., μη_! is non-zero, (3)
makes it possible to compute the Alexander polynomial of the sublink k
from that of the link /. The formula (3) also places considerable restrictions
on the form of polynomials that can be realized as Alexander polynomials
of links.

1.4.2. Theorem (generalization of Theorem 1.4.1). Let Μ be a connected
compact three-dimensional manifold, with χ(Μ) < 0, and with rg Ηγ(Μ) > 1.
Let G ••- II\{M)#. Let /t U ... U /„ be a link in Int Μ whose components
represent the elements gv ..., gn, respectively, of G. Let V be the exterior
of this link and let φ be the inclusion homomorphism Z[/7,(F)#] —*-Z\G\. If

Tfl

rg HiiV) > 2, then q(A(V)) = A(M) ][(gi - Wl(l,)). If rg H,{V) - 1, then
i=l ~

φ can be extended to an isomorphism ψ: (?(//Ί(Κ)#) -*-Q(G) and

MA(V)) = A(M)]\(g, — wl(l,)).
i = l

Theorem 1.4.2 follows from Theorems 1.1.1, 1.1.3, and the following lemma.
1.4.3. Lemma. If, under the conditions of Theorem 1.4.2, φ : Z[Hi(V)] -*•
Z[G] is the composition of the projection ZIH^V)] -*-ZlH1(V)*]and the
homomorphism \p, then

(4) τ»(Ρ) = U
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Proof. We restrict ourselves to the case η = 1. We put d = gx — ν ν ^ ) . We
denote the projection Z[HX{M)] -* Z[G] by 0. The pair (M, V) has a
CW-decomposition consisting of cells lying in F, one two-dimensional cell
(of a meridional disc of the curve lx) and one three-dimensional cell. The
non-zero part of the complex C?(M, V) is thereby reduced to the
homomorphism of one-dimensional Z[G] -modules C3 -*• C2 defined by the
1 χ 1 matrix (d). Hence if d Φ 0, then d'1 G τ(Μ, V). Obviously, the
homomorphism ψ is the composition of the inclusion homomorphism
Z[HX{V)} -> Z[HX(M)] and the projection 0. By Theorem 0.2.2, if d Φ 0,
then %{M) = x{M, V)T*{V) = d-ljt(V). Thence follows (4). If d = 0, then
#|(Λί, F) = Z[G]. It is easy to see that Hl(M) = 0. From the exactness of
the homology sequence of the pair (M, V) with (twisted) coefficients in
Z[G] it follows that rg H$(V) > 1. So T*(V) = 0 = r(Af)d.

1.5. The Seifert-Torres formula.
The following theorem, proved by Seifert [39] in the case of knots, and
Torres [41] for links with an arbitrary number of components, shows that
for a link / situated in a solid torus U C S3 the Alexander polynomial Δ, is
completely determined by the disposition of / in U and the knotted
character of the axis of U in S3.

1.5.1. Theorem (see [39], [41]). Let k be a knot in S3 and U a closed
regular neighbourhood of it. Let f be a homeomorphism from the solid
torus U to a standard (unknotted) solid torus in S3; let f preserve the
orientation (inherited from S3) and take the canonical (that is, homologous
to zero in S3\k) latitude of the knot k to the canonical latitude of the
trivial knot f(k). If I = / 1 U.. . U /„ is a link in Int U whose components are
homologous in U to the μγ-th, ..., μ,,-th power of the loop k respectively, then

(5) Λ, (/„ ...,1.,,) = Am(tu ...,ί,,)Λ,, (/','' . . . # " ) ·

Proof. By Theorem 1.1.2, the formula (5) is equivalent to the formula

(6) Λι(*ΐ ίΒ)-Λ/<θ(<ι. . . · , / „ ) Λ (<','' · · · /

We prove (6). We suppose that at least one of the numbers μ!, ..., μη is
non-zero. The torus dU divides the exterior V of the link / into two
manifolds Vx and V2, where Vx is the exterior of the knot k, and V2 is the
exterior of/ in U. From Lemma 1.3.3 and Theorems 0.2.3, 1.1.1, and 1.1.3
it follows that

A, = τ (V) = τ'Ί (F.) τ'"« (F2) = Ah ( ^ . . . t»») τ'* (F,).

where j r is the inclusion homomorphism Ζ[Ηγ(ν^] -* Z[Hi(V)]. An
analogous argument applied to the partition of the exterior of the link /(/) in
S3 by the torus f(bU) shows that

x}HV2)^Am(ti, ...,t,,)(t^ ...t\\n-i).

The required equality now follows from this.
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If μί - μ2 = ... = μη — 0, then the statement of the theorem can be
derived from the case already handled, using the following trick. We add to
/ one component that has non-zero linking numbers with the meridian of the
solid torus U and with the knots /1( ..., /„; we apply the formula (6) to this
(rt+ l)-component link; in the resulting formula we substitute *„+, = 1 and
use the Torres formula (3).

1.6. The Alexander formula and its generalizations.
As Alexander [ 1 ] showed, the sum of the coefficients of the Alexander
polynomial of a knot in S3 is ± 1. This equality can be generalized to the
following theorem.

1.6.1. Theorem. Let Μ be a connected compact three-dimensional manifold
with rg Hi(M) = 1 and χ(Μ) = 0. We put r = ord(Tors H^M)). The sum of
the coefficients of the polynomial A(M) is r if dM Φ Φ or dM = 0 and
w^Tors Hi(M)) = 1, and is r/2 in the remaining cases.

Proof. The case dM Φ φ. The manifold Μ can be compressed (or even
collapsed) into a two-dimensional subcomplex of it, say X. One can assume
that X has one zero-dimensional cell and that the closure of one of the one-
dimensional cells of X is a circle which represents a generator t of the group
HX(M)* = Z. We denote this circle by Y. By Theorems 1.1.1, 1.1.2, the
theorem on the multiplicativity of the torsion, and Lemma 1.3.3,
Δ(Λί) = A(M)(t- 1) = A(X)(t- 1) = r(X)(t- 1) = τ(Χ, Υ). If θ is the
projection Ζ[//,(λΓ)] -»-Ζ|//1(λ")1*1, then the non-zero part of the complex
Ce, (X, Y) is exhausted by the boundary homomorphism C2-+ Cx. Let Β be
the matrix of this homomorphism with respect to the natural bases. Since
χ(Χ, Y) = 0, Β is a square matrix and its determinant represents τ{Χ, Υ).
The integral matrix B° obtained from Β by replacing the entries by their
coefficient-sums is the matrix of the boundary homomorphism of the chain
complex of the pair (X, Y) with coefficients in Z. Hence r = ord Ηι(Χ, Υ) =
= ±det B° and aug(A(A/)) = aug(r(X, Y)) — r, where aug is the augmentation
(summation of coefficients).

The case dM = φ.
Let A: be a knot in Μ that represents a generator t of the group HY(M)# = Z.
Let V be its exterior. We shall assume that in the case of non-orientable Μ
the loop k is orientation-reversing. We remark that the inclusion
homomorphism H^V) -*• HX{M) is an isomorphism. If Μ is orientable, then
this follows from Poincare duality; if Μ is non-orientable, it follows from
the equalities Ht(M, V) = 0 for i Φ 2, H2(M, V) = Z/2, Tors H2(V) - 0, and
Tors H2(M) Φ 0. (The last two formulae follow from the universal coefficient
formula and the equalities H\V) = 0, H\M) = Z/2.) From Theorems 1.1.2
and 1.4.2 it follows that the inclusion homomorphism Z[//j(F)#] ->-Z[/7j(.l/)it]
takes A(V) into Δ(Λί) if w,(Tors H^M)) = 1, and into (1 + t)A(M) in the
remaining cases. From the above, aug(A(F)) = ord(Tors H^V)) = r.
Thence the desired statement follows.
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1.7. Symmetry of the Alexander function.
As Seifert [38] showed, the Alexander polynomial of an arbitrary knot k in
S3 is invariant under the canonical involution in Ζ[ί, ί~Μ (see §0.5; the
canonical involution α ·-»• a of the ring Z[/j, t~il, . . ., tn, in1] takes the
polynomial a{tv ..., tn) into α(ίγ, . . ., ί^1)). In more detail, Seifert's
theorem states that if Δ G Ak, then Δ = t"A with even v. The Alexander
function has an analogous property: if A G Ak, then A = —fA with odd v.
The following theorem, due to Torres and Fox (see [41], [42]), generalizes
these results to the case of links.

1.7.1. Theorem (Torres-Fox). Let I = /, U ... U /„ be a link in S3. If
A <EA,, then A = (—I)"*?1*?1 · · · CnA with integral vv ..., vn. Here if
Α Φ 0, then for i = 1, ..., η

(7) ν, = 1 + Σ μ (/ι, h) (mod 2).

We prove this theorem.

1.7.2. Lemma. Let Μ be an orientable compact three-dimensional manifold,
whose boundary is empty or consists of tori. Then A(M) = A(M).

Here A(M) = {A \A € A{M)}. The equality of the sets A(M) and A(M)
is of course equivalent to the fact that for some (and so for every) A E.A(M)
there is an element g of H^M)^ for which either A = gA or A — —gA.

Proof of the Lemma. By Theorem 1.1.1 the equality A{M) = A{M) is
equivalent to the equality τ(Μ) - T{M). According to the duality theorem
for torsions (see [26] or the Appendix, Theorem 2), τ{Μ) = τ(Μ, ΘΜ). The
equality τ(Μ, dM) = τ{Μ) follows from the multiplicativity of torsion.
Lemma 1.3.3, and the well-known fact that if R is a component of the
boundary dM then the inclusion homomorphism H^R) -+H1{M)i* is non-
trivial.

1.7.3. Proof of Theorem 1.7.1. By Lemma 1.7.2 we have A = zt\l . . . tl"A
with integral vx, ..., vn and ε = ± 1 . If η — 1, then the product
A(t) = (t- lM(i) represents Δ,. Here Δ(1) = ±1, Δ(-1) = Δ(1) Ξ 1
(mod 2) and ϊ = —εί ν ι ~ ι Δ. Hence it follows that e = —1 and vx is odd.
If η = 2 and the linking number μ = μ^, /2) is non-zero, then by the Torres
theorem the fraction α = A(t, i)(t»- — l)~x represents Ax\ in particular,

α Φ 0. Here a'= —εί ν ·-^α. By the above, ε = 1 and v1- μ = 1 (mod 2).
The same argument also proves the congruence v2 = 1 + μ (mod 2). In an
analogous way. by induction on H, we can prove the validity of the
statement of the theorem for all links Ιλ U ... U /„ such that all the numbers
μ(/,-, /„) with / = 1, ..., n-\ are non-zero. The general case can be reduced
to this by means of the trick used at the end of the proof of Theorem 1.5.
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1.8. The Hosokawa polynomial.
The Hosokawa polynomial of an «-component link / in S3 is the rational
function Ai(t, t, . . ., t)(t — l)~<"-2>. The Hosokawa polynomial is denoted
by hi(t), or more briefly by ht. Like the Alexander invariants, the Hosokawa
polynomial is defined only up to multiplication by -1 and powers of the
variable t. If / is a knot, then ht = A,. The main algebraic properties of the
Hosokawa polynomial are described in the following theorem.

1.8.1. Theorem (Hosokawa [18]). Let I = lx U ... U /„ be a link in S3

Then h, is a Laurent polynomial, that is, ht cz Z[t, I'1]; if h Ε h,, then
h — tvh with even v\ the number ht{\) — aug ht is equal, up to sign, to an
arbitrary minor of order n— 1 of the matrix a — (fl,j), where i, / = 1, ..., n\

au = Ah, h) f'or i ^j~and «,,,· = — 2 μ(Λ·, h).

Proof. We denote by Μ the result of surgery on the sphere S3 along /, with
the framing defined by assigning to the component /,· the number au. We
put Η = Ηγ{Μ). It is clear that in terms of the generators represented by
the meridians of the components lv ..., /„, the group Η is given by the
relation matrix equal to a. Since the sum of the columns of the matrix a is
zero, the assignment of the variable / to the indicated generators defines a
ring homomorphism Z{H#] —>-Z[t, f1]. We denote it by 77. We denote the
exterior of the link / in S3 by V, and the inclusion homomorphism
ZIH^V)] -vZLfftt] by ψ.

To prove the theorem, it suffices to consider the case η > 2. By
η

Theorem 1.4.2, ty(A,) = A(M)JJ(ι|·>(ί,·) — 1). If the minors of order « - 1 of

i = l

the matrix a are zero, then rg Η > 2, A(M) cz Z[H#\ and

hl = ( η . ^ ) μ , ) X (t— I ) 2 " * = r\(A(M))(t— I)2·

Thus in this case hl is a Laurent polynomial and h,(l) — 0. If the indicated
minors are non-zero, then rg Η — 1 and as in the previous case
hi = η(Δ(Λ/)) cr ZU, r 1 ] . It is easy to see that if rg Η = 1, then the
inidcated minors are, up to sign, equal to the order of the group Tors H.
By Theorem 1.6.1, this order is aug A(M), and hence is h,(\). The equality
h = tvh with even ν follows from Theorem 1.7.1.

1.9. The Fox formulae and their generalizations.
A traditional problem in knot theory is the computation of the homology
invariants of branched covering spaces of the sphere S3 with branching at a
given knot or link. One of the deepest results in this direction was obtained
by Fox [8]. (Fox's proof contained inaccuracies which were removed in
[47].) Up to the end of this section we fix a natural number r. We denote
by ωι, ..., ω,, the complex Mil roots of unity.
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1.9.1. Theorem (see [8]). / / Ν -*• S3 is a branched cyclic r-fold cover with
branching at a knot k C S3, then for any A(t) £ Ak

(8) οτά Ηι(Ν)=± Π Δ (ω,).
ι=ι

Associated closely with (8) is another formula, also pointed out by Fox.

1.9.2. Theorem (see [8]). Let V -*• V be a cyclic r-fold {non-branched)
cover of the exterior V of a knot k C S3. Let φ be the ring homomorphism
ZIH^V)*] -+ZIHJV)] =Z[f, r+] induced by this cover. If rg Ηλ{Ϋ) = 1,
then

ψ(Δ(7)) = {± ΤΤΔ(ω,ί)|Δ(ί)6ΔΛ}.
1=1

It should be explained that ψ(Δ(Κ)) is a subset of the ring Ζ[ί, ί"1), any
two elements of which are obtained from each other by multiplication by
±1 and a monomial power f.

We remark that if under the conditions of Theorem 1.9.1 the group
Ηγ(Ν) is finite, then (8) follows from Theorem 1.9.2: as is well known,
HaV) = Ζ χ H^N), so that rg Ηλ{Ψ) = 1 and by Theorems 1.9.2 and 1.6.1

ord ff^N) == aug Δ(ϊ~) = n\ig ^(Λ(1~)) ·-•= ± ] 7 Δ ( Μ ; ) . In the case when the
1=1

group Hi(N) is infinite, the left hand side of (8) vanishes. The fact that the
right hand side also vanishes is easily observed from the proof of the
following theorem.

1.9.3. Theorem (generalization of Theorem 1.9.2). Let Μ be an orientable
connected compact three-dimensional manifold with χ(Μ) — 0. Let
G — 7/j(7)/)^; let t, tv ..., tn be free generators of the {free Abelian) group
G, with η > 0. Let Μ -*• Μ be a cyclic r-fold cover corresponding to the
kernel of the composition of the natural homomorphism πχ(Λ/) -*• G and the
homomorphism G -*• Z/rZ taking tx, ..., tn into zero and t into 1 (mod r).

Let ψ be the ring homomorphism Z[//1(./l/)'*i]->-Z[G] induced by the cover

Μ -+ Μ. If n> \,or η = 0 and xg HX{M) = 1, then

(9) Ψ(Δ(Μ)) = {± Π Δ ( ί , ίΒ, ω ί ί ) | Δ ζ Δ ( Μ ) ) .

Ifn = 0 and rg Hx{M) > 1, then

(9') ψ(Δ(Μ)) = {±(Γ-1)-ιΠ Δ(ω,ί)|Δ6Δ(Λ/)).
1=1

Theorem 1.9.3 can be easily generalized to the case of finite Abelian
covers. Theorem 1.9.1 can also be generalized to the case of Abelian
branched covers of a sphere with branching at links—see [19], [25]. We
emphasize that the results of [19], [25] do not follow directly from the
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generalization of Theorem 1.9.3 mentioned above; to obtain these results
by the methods developed here, one requires a number of additional
considerations which go beyond the scope of this paper.

We prove Theorem 1.9.3.

1.9.4. Lemma. Let Bit B2, .... Br be square matrices of the same order
over a commutative ring. Let b{t) be the matrix polynomial
B1 + tB2 + . . . + tT-lBT. Then the determinant of the matrix

D

Γ By Β»
Bt

By

Br

FB. ...

is \] detb(a>tf).
t = l

Proof. Let Ε be the identity matrix of the same order as Bv ..., Br. We put
D = tE — diag(i, / t). We denote the following two square matrices by
a and )3 respectively:

Ε Ε

(a>r£>)-O--i)J

Direct computation shows that βα is the identity matrix, and that βΒα is the
block-diagonal matrix diag(b(oc>it), ..., δ(ω^Ο)- Thence follows the statement
of the lemma.

1.9.5. Proof of Theorem 1.9.3. We consider the case bM Φ φ. Let Υ be a
simple closed curve in Μ representing t. Since dM Φ φ and χ(Μ) — 0, the
manifold Μ can be collapsed onto one of its subcomplexes X, which
contains Υ and is obtained from Υ by gluing s one-dimensional cells and s
two dimensional cells with s > 0. We denote by X and Υ the respective
inverse images of X and Υ in M. (Clearly Υ is a simple closed curve
in M.) We identify HX{X) with H^M) and H^X) with ΗΧ{Μ) via the
inclusion isomorphisms. It is obvious that τ(Μ, Υ) = τ(Χ, Υ) and
τψ(Μ, Υ) = τ ψ ( Χ Ϋ). The non-zero part of the complex Cf{X, Y) is
reduced to the boundary homomorphism C2 -*• Q . With a suitable choice of
natural bases the matrix of this homomorphism has the form of the matrix
Β from the formulation of Lemma 1.9.4, where Blt .... Br are square
matrices of order s over the Laurent polynomial ring in the variables

t1 /„, f; the d e t e r m i n a n t s det Β and dot (7?, - IB., -]• . . . •+ f^B,)
represent respectively the tors ions τφ(Χ, Ϋ) and r(X, Y). By L e m m a 1.9.4
it follows t h a t

(10) (Μ, Ϋ) = υ τ (Μ, Υ) (*„ . . . , < „ , ω,-ί).
ί = 1
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If η > 1, then rg Ηλ{Μ) > rg HX(M) > 2 and hence r{M, Υ) = τ(Μ)(ί~ 1) =
- A(M)(t~ 1) and τφ(Μ, Υ) = τ*(Α?)(/Γ- 1) = \p(A(M))(f- 1). Hence we
see that in the case η > 1 (10) implies (9). Let η = 0. Similar calculations
show that T(M, Y) = A(M); if rg H^M) = 1, then τψ(Μ, Υ) = ψ(Δ(Μ)); if
rg Hi{M) > 1, then τφ(Μ, Υ) = ι//(Δ(Λ/))(Γ- 1). Therefore in the case
« = 0 the statement of the theory also follows from (10).

The case of closed Μ reduces to the case of a manifold with boundary by
cutting out a solid torus and applying Theorem 1.4.2.

1.10. The Alexander polynomial of a periodic link.
Let Μ be an oriented three-dimensional homology sphere (over Z) equipped
with an orientation-preserving homomorphism / : Μ -*• Μ of period r. We
suppose that the set of /-periodic points of period less than r coincides with
the set Fix(/) of fixed points and is a knot. We denote the knot Fix(/) by
k and the projection Μ -• M/f by p. It is easily verified that the factor
space M/f is a manifold, and a homology sphere.

The definition of the Alexander polynomial of a link in S 3 given in § 1.2
can be carried over in an obvious way to the case of links in Μ and M/f.
Murasugi [30], in the case of knots, and Sakuma [37], in the general case,
proved the following theorem, which makes it possible to calculate the
Alexander polynomial of a periodic link / in Μ from the Alexander
polynomials of the links p{l) and p(l U k). (For applications of this
theorem, see [30].)

1.10.1. Theorem (see [30], [37]). Let I = h u ··· u ln be a periodic link
in Μ (that is, I C M\k and /(/,·) = /,· for all i = 1, ..., n). Then

r - l

Δ, (/„ . . . , / „ ) = Δ ρ ( 0 (f „ . . ., tn) Ι ] Δ Ρ( 'υ Α ) (*1 ' η - ω »Κ

where ω1, . . ., ωΓ_! are the complex r-th roots of unity other than 1.

Proof. Let μ,· be the linking number of the knots /;>(/,) and p(k) in M/f. It
is easily seen that μ,· Φ 0 and that the linking number of the knots /,· and k
in Μ is also μ,·. By the Torres theorem

It is obvious that the projection M\(l U k) -*• p[M\(l U k)] is an r-fold
cyclic cover, which induces in the one-dimensional homology the
homomorphism /,• >-». tt for / = 1, ..., η and tn+l t-*· tjl+1. By Theorem 1.9.3

= ΠΠ
where cor = 1. Substituting tn + 1 = 1 here and comparing the resulting
formula with the formulae mentioned above, we obtain the statement of the
theorem.
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1.11. The Fox-Milnor theorem and its generalization.
We recall that the ordered «-component links / and /' in Sm are called
cobordant if there is an «-component submanifold of the cylinder Sm X [0, 1]
each component of which is homeomorphic to <Sm~2 χ [0, 1], and moreover
the boundary of the ι-th component is (/,· χ 0) U (/,· χ 1) for i = 1, ..., n.
The following theorem of Fox and Milnor gave the historically first non-
trivial obstruction to the cobordancy of knots and links in S3. (This
theorem was announced by Fox and Milnor in 1957; they published a
detailed proof in 1966 [9].) We say that two elements a and a' of the field
Q(tx, ..., tn) (or more generally two elements of the field Q(G), where G is a
free Abelian group) are c-equivalent if there are elements
b,_b' eZUj, i"\ . . ., tn, <7.M (respectively b, b' G Z[G]) for which
abb = a'b'b1 and aug(&) = aug(b') = 1.

1.11.1. Theorem (Fox-Milnor). The Alexander polynomials of cobordant
links in S3 have c-equivalent representatives.

In fact Fox and Milnor [9] considered only knots, but their arguments
generalize directly to the case of links (although the condition aug(6) =
= aug(o') = 1 requires additional consideration in this case). Kervaire [22]
proved an analogue of Theorem 1.11.1 for knots in Sm with odd m. The
following theorem generalizes the results of Fox-Milnor and Kervaire.

1.11.2. Theorem. Let (M, V, V') be an orientable compact even-dimensional
cobordism with H,{M, V) = 0, whose boundary (dM\lnt(V U V'), dV, dV)
is either empty or homeomorphic to the cylinder dV χ [0, 1]. We identify
the groups HX(V), H^V), and HX{M) using the isomorphisms induced by the
inclusions V -> M, V -> M. Then the Alexander functions A(V) and A(V')
have c-equivalent representatives.

We prove this theorem.

1.11.3. Lemma. Let C = (Cm -*•...-*• Co) be a free chain complex over a
factorial Noetherian (commutative) ring. Let A be the matrix of the
boundary homomorphism Ci+i -*-C,· (relative to certain bases). Then the
greatest common divisor of the minors of order rg A of the matrix A is
ord(Tors /

Proof. We denote by / the cokernel of the boundary homomorphism
C,+ 1 —t-C;. Since A is the relation matrix of the module /, the greatest
common divisor in question is ord(Tors /) (see [17], 31 and [2],
Lemma 4.10). From the exact sequence 0 -> Ηi(C) ->-/ -*-C i_1 it follows
that Tors J = Tors Ht(C).

1.11.4. Lemma. Let (X, Y) be a finite CW-pair, and let Et be its i-dimensional
Alexander module (see §1.1). If Ht(X, Y) = 0, then rg Et = 0 and
aug(ord Et) = ±1.
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Proof. Let 0 be the projection ZIH^X)) -*Zl#,(X)#]. Let A, be the
matrix of the boundary homomorphism C*+l(X, Y) -*• C%X, Y) relative to
the natural bases. We denote by Af the integral matrix obtained from A/
by replacing the entries by their coefficient sums. We denote the number of
/-dimensional cells in X\Y by η. The arguments in the proof of Theorem 1.6.1
and the condition Ht(X, Y) = 0 show that rg 4?_ t -f rg A\ = rg Ci(X,Y) = r (.
Hence it follows that the obvious inequalities rg A" ^ rg As and
rS Aj-i + rg Aj ^ rg C°j(X, Y) = rj become equalities for / = i. Hence it
follows in turn that rg Et = 0. By Lemma 1.11.3 the number aug(ord £,·)
divides all the minors of order rg At = rg Af of the matrix Af and so by the
same lemma divides

ord(Tors Ht(X, )"))= ± 1 .

1.11.5. Proof of Theorem 1.11.2. We denote the/-dimensional Alexander

r

module of the pair (M, V) by Et. We put r = (dim M)/2, b = [J ord
r ,=0

and b' =-- JJ ord E2i. By Lemma 1.11.4, aug(6) = aug(ft') = ±1. By
1=0

Theorem 1.1.1 τ(Μ, Υ) = b(b')~l. According to the duality theorem for
torsions (see Appendix, Theorem 3) x(M, V) = τ(Μ, V)'1. Therefore

A (V) = τ (V) = τ (Μ) τ (Μ, F)"> = τ (Λ/, F') τ (F') τ (Μ, V)~l =

= τ (Μ, Γ)-» τ (Μ, Γ)~'τ (V") = (feft)"1 (6'6f) 4̂ (V).

Remark 1. In the study of the Alexander polynomials of links in S3, there
arises naturally the problem of the algebraic characterization of these
polynomials, that is, the problem of finding algebraic conditions on a
polynomial that are necessary and sufficient for its realizability as the
Alexander polynomial of a link. The first such result was obtained by
Seifert [38], who proved that a polynomial Δ G Z[t, Γ 1 ] can be realized as
the Alexander polynomial of a knot in S3 if and only if aug(A) = ± 1 and
Δ = ί"Δ with even v. For the Hosokawa polynomial, the algebraic
characterization was obtained by Hosokawa himself [18]: for every n > 2 a
polynomial h GZ[/, Γ 1] can be realized as the Hosokawa polynomial of an
«-component link if and only if h — tvh with even v. The problem of
characterizing the Alexander polynomials of links with at least two
components is considerably more complicated (some partial results can be
found in [17]).

Remark 2. The problem of characterizing the Alexander polynomials of
links is closely related to the analogous problem concerning the Alexander
polynomials of orientable connected closed three-dimensional manifolds. We
denote this class of manifolds by 5JI. The Alexander polynomial of a
manifold Μ ζ. 3ft has the following properties: (i) if rg H^M) = 1, then
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aug(A(Af)) Φ 0; (ii) if Δ G A(M), then Δ = g2A with g ζ Η^Μ)*; (iii) if
« = rg Ηχ{Μ) and / is the kernel of the augmentation ΖΙΗ^Μ)*] ->-Z, then
Δ(Α/) cz / n " 3 ; here if η is odd and η > 3, then for some Δ G Δ(Λ/), r G Z,
and α £ /<"-3>/2 we have the inclusion ΓΔ — α2 ζ Ιη~-. Here statement (i)
follows from Theorem 1.6.1; (ii) is easily deduced from Theorems 1.4.2 and
1.7.1, representing Μ as the result of surgery on the sphere along the framed
link with even framing; statement (iii) is deduced similarly from the results
of Traldi [43], appropriately generalized to the case of links in Q-homology
spheres. It is possible that the listed conditions exhaust all algebraic
conditions on Alexander polynomials of manifolds in 9JI. This is confirmed
by the following facts. From the characterization theorem for the Hosokawa
polynomial and from the proof of Theorem 1.8.1 it is not hard to deduce
that every polynomial Δ G Ζ[ί, Γ 1 ] with aug(A) φ 0 and with Δ = t"A,
where ν is even, is realizable as the Alexander polynomial of a manifold
Μ 6 9JI with rg HX{M) = 1. If Δ is a Laurent polynomial in the variables

tx, t2 for which Δ = ί ϊ ' ^ ' Δ with even vy, v2, then Δ can be realized as the
Alexander polynomial of a manifold Μ 6 3R with rg ΗΧ{Μ) = 2. This
follows from Theorem 1.4.2 and a theorem of Bailey, according to which
the product Α{ίλ- \)U2~ 1) can be realized as the Alexander polynomial of
some link i , U I 2 C S3 with μ{Ιν l2) = 0 (see [ 17]).

§2. Proof of Theorems 1.1.1, 1.1.2, and 1.1.3

2.1. Proof of Theorem 1.1.1. Theorem 1.1.1 follows from the following
algebraic lemma.

2.1.1. Lemma. Let C — (Cm ->...-> Co) be a free chain complex over an
integral domain Κ with rg Hf(C) = 0 for all i = 0, ..., m. Let the modules
Co, Cx, ..., Cm be equipped with bases over K. If Κ is factorial and
Noetherian, then

m

T(C) =- [[ lord Hi(C)}^ (where e(i) = (—l)i+1).
i=0

This lemma is proved in §2.1.4 using the results of §§2.1.2 and 2.1.3.

2.1.2. Auxiliary definition: matrix r-chains.
Let C be the /T-chain complex discussed in the formulation of Lemma 2.1.1.
A matrix chain of the complex C is an arbitrary collection
{o0, au . . ., am; Bo, Bu . . ., 2?m_j} where at is a subset (possibly empty)
of the set {1, 2, . . ., rg C,}; Bt is the matrix obtained from the matrix of
the boundary homomorphism C / + 1 ->-C,· (relative to the chosen bases) by
crossing out the rows whose numbers are in a i + 1 and the columns whose
numbers are not in at. It is clear that Bj is a matrix over Κ of size
(rg C i + 1 — card ai+1) X card a,·. A matrix chain

{a0, Oj, . . ., am; Bo, Bu . . ., Bm_^}
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is called a τ-chain if a0 = {1, 2, . ., rg C0)and rg Ci+l — card o i + 1 = card at

for i = 0, 1, ..., m— 1. Here 5 0 , 2?lt . . ., Z?m_x are square matrices and
card a,· = «/(Ο, where

(11) α,·(Ο = rg Ct — rg C^ + . . . + (—l)jrg Co

and ι = 0, 1, ..., m. It is easy to see that C has a matrix τ-chain if and only
if af(C) > 0 for all i = 0, 1, ..., m.

2.1.3. Lemma. Under the hypotheses of Lemma 2.1.1, let At be the matrix
of the boundary homomorphism Ci+1 -*• Ct with respect to the chosen bases.
Let {a0, au . . ., am; Bo, . . ., Bm-1} be a matrix τ-chain of the complex C.
Then rg At = a,(C) and

(12) x(C) [I detf?2l = ( - l ) w \\ deti?2 i +,,

where W= 2 card{(i, y) 6 Z x Z | l < i < y , xfiatl y€fli}·

Proof. Replacing the ground ring Κ by its quotient field (see §0.1) if
necessary, we can assume that Κ is a field. We put /·,- = dim Ct and denote
the boundary homomorphism Ci+1 -*-Ct by 9,. The first statement of the
lemma follows from the equality rg Λ, = dim(Im 3,·) and from the exact
sequence Im dt -> C,· -»- C,_i -»··...-»• Co -*• 0.

We prove formula (12).
Case 1. det Bt = 0 for some / = 0, 1, ..., m— 1. We show that in this case
either det £?,·_] = Oor del Bi+l = 0, so that both sides of (12) vanish. We
suppose that the matrices Bi_t are Bi+l are non-singular and reduce this to a
contradiction. From the equality Ai+1Ai — 0 and the fact that Bi+1 is non-
singular it follows that the subspace of the space Kr' generated by the rows
of Α ι is already generated by the rows of this matrix whose numbers are not
in a i + 1 . Similarly, from the fact that Bi^1 is non-singular it follows that the
subspace of Kru, generated by the columns of Ai is already generated by the
columns whose numbers are in at. Thus, deleting from At the columns with
numbers not in a,· and rows whose numbers are in ai+1 does not affect the
rank of A,·. In other words, rg At = rg Bt. Since Bt is a square matrix of
order a,(C) and det Bt = 0, it follows that rg At < a,(C). This inequality
contradicts the equality rg A, — a,(C) established above.
Case 2. det Bt Φ 0 for all i. We denote the chosen base of the module C,
by ct — (c , . . ., Cj«). Let bt be a subsequence of the sequence c, consisting
of the vectors whose numbers are not in ah where / = 1, ..., m. Since
rg Bt — α,·(Ο = rg At, the sequence dt(bi+1) is a base for the space Im δ,·.
Direct calculation shows that [<9£(i>i+1)i>l-/cil -— (—1)"' dot /i,·, where

nt = card {(.r, y) 6 Ζ Χ Ζ | 1 < χ < y, 2·£«,·, y ζ a,}.

Hence, taking into account the definition of torsion, we have (12).



Reidemeister torsion in knot theory 143

2.1.4. Proof of Lemma 2.1.1. We denote the matrix of the boundary
homomorphism Ct+i -*-Cj by At. We denote by /,· the ideal of the ring Κ
generated by the minors of order rg At = α,·(Ο of the matrix At (see
§§2.1.2 and 2.1.3). We prove the equality

(13) T(C) Π ht= li - W
i«=0 t=0

If B2t is a square submatrix of A2i of order a2 I(C)with / = 0, 1, ..., [(m— l)/2],
then, as is easily seen, there is a (unique) matrix r-chain

{a0, a,, . . ., am; Bo, /?i, . . ., #in_i}

of the complex C such that f?2t = B2i for all i. Hence the inclusion of the
left hand side of (13) in the right hand side follows from Lemma 2.1.3.
The reverse inclusion is proved similarly.

If x(C) = xy-1, where χ and y are non-zero elements of K, then by
multiplying both sides of the equality (13) by y, taking greatest common
divisors of the elements of the resulting ideals of K, and applying the result
of Lemma 1.11.3, we obtain the equality

I] °rd Bu(C) = y 1| ordH2i+l(C).
1=0 t-0

Hence we have the statement of the lemma.

2.2. Proof of Theorem 1.1.2.
2.2.1. Lemma. Let Μ be a compact m-dimensional manifold; let σ be the
involution of the ring Z[HX{M)] taking h Ε H^M) into wi{h)h~1; and let φ
be a ring homomorphism of Z[Hi(M)] into a factorial Noetherian ring.
Then for any i

ord (Tors Hf(M)) = ord (Tors H^^i(M, dM)).

This lemma is proved in §2.2.3. For its proof we require the (well-known)
constructions of dual chain complexes and dual CW-decompositions of
manifolds. These constructions are reproduced in §2.2.2.

We prove Theorem 1.1.2. If A(M) = 0, then from the definitions
A(M) = 0 and the statement is obvious. We suppose that A(M) Φ 0. We
denote the /-dimensional Alexander module of the manifold Μ by £,·. It is
clear that Eo = Ζ and E3 = 0. Hence rg Eo — rg E3 = 0. Since

3

ord E1 = A(M) Φ 0, rg Ex = 0. Hence by the equality y_(M) = 2 (—I)1 rS E;

and the condition χ(Μ) < 0, it follows that rg E2 = 0. Thus ord Et Φ 0 for
3

all i, and so A(M) = JJ lord £(]ε<'). The order of the module E3 is

represented by the identity 1 ζ Ζ[ΙΙ*]. The order of the module Eo is
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represented by the identity if rg Η > 2, and is represented by the difference
t — 1 if rg Η = 1. So to complete the proof it suffices to calculate
ord E2 = ord(Tors E2), which is not hard to do by using Lemma 2.2.1.

2.2.2. Auxiliary definitions.
(i) Let C = (Cm -*•...-> Co) be a free chain complex over a commutative
ring K. We say that the chain complex C* = (C'm -+C'm-i ->-. . . ->-Co)
over Κ is dual to the complex C if, firstly, C\ — Hom K (C m . , , K) for all i,
and secondly, for i < m the boundary homomorphism d't: C'i+i -> C[ is
(—I)"1"' tfm_i-i (that is, for any c ζ Cm_i and d ζ C'i+i we have
d'i(d)(c) = (—Ι)7""'^™-*-^))· It is clear that if the complex C is equipped
with a distinguished basis, then the complex C* is naturally equipped with
the "dual" basis. Here the matrix of the homomorphism 9,' is obtained
from that of the homomorphism dm-i-i by transposition and multiplication
by (_i)">->. If the ring Κ is factorial and Noetherian, then by Lemma 1.11.3
ord (Tors i/i(C*))= ord (Tors #m-i-i(C))for all i.

(ii) Let I b e a piecewise-linear triangulation of the compact m-dimensional
manifold M. It is well known (see, for example, [26]) that if α is a simplex
of the triangulation X, then the union of all simplexes of the first barycentric
subdivision of X which have as a vertex the barycentre of the simplex a, and
which have no other points in common with a, is a cell of dimension
m — dim a. This cell is called the dual of a, and is denoted by a*. If
a C dM, then to the simplex a there corresponds, in addition to a*, the cell
a\, which is the dual of a in dM. It is clear that a\ C da*. The cells of type
a* and a*a form a CfV-decomposition of Μ which is "dual" to the
triangulation X. This decomposition is denoted by X*. The cells of type al
constitute a decomposition dX* of the manifold dM.

2.2.3. Proof of Lemma 2.2.1. The lemma follows from the results of
§2.2.2 and the well-known fact that if X is a piecewise-linear triangulation
of the manifold M, then the chain complex Cjo<J(X*, dX*) is dual to the
complex Cj(X) (see, for example, [26]).

2.3. Lemma (obvious). Let Κ and K' be integral domains, and let φ be a
ring homomorphism Κ -* Κ'. Let β(ψ) be the subring of Q(K) consisting of
elements of the form xy~l with x, y € K, 4>(y) Φ 0. Then Κ C <2(ψ) and
the formula ^(xy1) — •^{x)^(y)~1 defines a ring homomorphism

$3'· QH) -+K', extending φ.

2.4. Lemma. Under the conditions of Lemma 2.3, let C — (Cm -> ... ->· Co)
be a free chain complex over K; let the modules Co, Cx Cm be equipped
with the bases c0, q cm respectively; let C' be the Κ'-chain complex
K' ®RC; and for each i let the module C\ = K' ®KC,· be given the basis c\
induced by the basis ct {that is, c\ = 1 ® ct). Then, if r(C') Φ 0,
T(C) G β(ψ) and ifciT(C)) = x(C').
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Proof. We denote the boundary homomorphisms Ci+l -vC^and C'i+i -*-Ci
by 3,- and 3,· respectively. Let b\ be a subsequence of the sequence c\ for
which d'i-i(fei) is a basis for the Q(AT')-module # ( / Π ®K. Im ^ _ j . We
denote by bf the inverse image of the sequence b\ under the natural
bijection c,· -* c\ of the bases. Let Z), (respectively D\) be the transition
matrix from the basis c,· to the sequence dj(6i+1)b,· (respectively from c\ to
5ί(6ί+ι)δί)· It is obvious that D,· is a matrix over .£ and that D\ = ψφ,·)
(elementwise). If r ( C ' ) ^ 0, then the complex Q(K') ® C is acyclic, D\ is a
square matrix, and det D\ Φ 0 for all i. So det Dt Φ 0 for all i,
x(C) = H (det £>,) ε ( 0 6 ?(ψ) and

ψ π (τ (Ο) = Π (Ψ (det Ζ?,))ε(ί) = Π (det Ζ);)Εί1) = τ (C).
i i

2.5. Proof of Theorem 1.1.3. Let i|iu: <?(ψ) -^(?(Π) be the ring
homomorphism extending \jj afforded by Lemma 2.3. By the equality
A(M) = T(M), to prove the theorem it suffices to establish the inclusion
T(M) C Q(\p) and the equality ψο(τ(.1/)) = x<v(M). If τφ{Μ) Φ 0, then this
inclusion and equality follow from Lemma 2.4. We suppose that τφ(Μ) = 0,
and show that τ(Μ) c= <?(T|-) and \|-α(τ(.1/)) •-= 0.

We consider the case dM Φ 0. If χ(Μ) Φ 0, then τ(Λί) = 0, and the
required assertion is obvious. Let χ(Μ) = 0. It is clear that Μ can be
collapsed onto a finite two-dimensional subcomplex of itself, say X, which
has one zero-dimensional cell, s one-dimensional cells, and (s — 1) two-
dimensional cells, with s > 1. We identify the groups H^X) and Η = Η^Μ)
via the inclusion isomorphism. Here T{M) — τ(Χ). We denote by At the
matrix of the boundary homomorphism Cf+i(X) ->-C^(X) with / = 0, 1. It
is obvious that Ax is a matrix of size (s— 1) x s and that Ao is a column
vector whose elements, with a suitable choice of natural bases, have the
form h1— 1, ..., hs— 1, where hly ..., hs are the generators of H# represented
by the one-dimensional cells of X. Since ψ(//**) Φ 1, there is some / for
which \Jj(hj) Φ 1. If β is the matrix obtained from Ax by deleting the ;'-th
column, then by formula (12) (det Ζ?)[ψ(Λ,) — I ] " 1 6 τ(·Χ)· Hence we have
the inclusion τ(Χ) cz (?(ψ). If -ψ (clet Β) Φ 0, then, as is easily seen, the
complex @(Π) ® C{j(X) is acyclic, in contradiction to the assumption that
r*{X) = 0. Therefore i|>(det 5) = 0 and hence ψο(τ(λ')) = 0.

The case of closed Μ is considered similarly, the role of the space X being
played by a suitable CfV-decomposition of M.

Remark 1. For chain complexes over principal ideal rings Lemma 2.1.1 was
first proved by Milnor [27], using the structure theorem for modules over
such rings. A formula analogous to (13) was obtained by Buchsbaum and
Eisenbud [50] for acyclic free chain complexes over commutative Noetherian
rings.

Remark 2. Using Lemma 2.4, it is not hard to generalize the Alexander
formula aug(Afc) = ±1, where k is a knot in S3, to the following assertion:
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if Λ' is a finite CW-complex with the rational homology of a circle, and if t
is a generator of the group HX{X)*, then A(X)(t~ 1) C Q(aug), (where aug
is the augmentation Z/fi(X)#] -»-Z) and

augD (A(X) χ (t - 1)) = [J lord (Tors tfi(X))l«*>.
i

Similarly, one can also carry over Theorems 1.9.1, 1.9.2, and 1.9.3 to the
many-dimensional situation. We state here a many-dimensional version of
Theorem 1.9.1. Let Ν -*· Sm be a branched cyclic r-fold cover, with
branching at the knot k C Sm, where m > 3. Let oij, . . ., ωΓ_χ be ring
homomorphisms Z[t, Γ 1] -*• C for which ωχ(ί), . • ., ω,..^) are the r-th
roots of unity other than 1. If TV is a rational homology sphere, then
Ak C β(ω,) for all i, and for any A € Ak we have

" i f lord Ht (ΛΓ)]ε(ί) = ± r rff (a>,)c (A).
i=l i=l

This formula is significant only for odd m: if m is even, then, as is easily
verified by using Lemma 2.2.1, both the left and right hand sides of the
above formula are ± 1.

§3. Refined torsion and the refined Alexander function

3.1. Preliminary definitions.
3.1.1. The torsion r.
Let C — (Cm -*•... -* Co) be a chain complex over a field F. We suppose
that for each / = 0, 1, ..., m a basis is fixed in each of the vector spaces Q
and Hi{C). In this situation, we define the torsion f(C) Ε F in the following
way. Let c,- be the fixed basis in C,·; let Λ,· be a sequence of vectors in the space
Ker(d/_,: C( ->- C/_,) whose images under the projection Kcr (9,_, -»- Ht(C)
form the given basis in 7/,·«7); and let bt be a sequence of vectors in Q for

τη

which <?,·.,(/;;) is the basis in Im d,^. We put N(C) = 2 α/(Οβί(Ο> where
α,·(Ο is defined by (11) and <=o

β,(Ο -= Him //,(C) - dim //f.,(C) -f . . . + (-1) 1 dim # 0 (C).

For every / the sequence dl{bi+-^hibl is a basis in Q; the product

(-irc> υ id.ib^hA/cif^F
1=0

does not depend on the choices made (see [28]). This product is f(C). The
definition here differs from that given in [28] by the presence of the factor
(—1)A^C), which enables us to simplify the later statements slightly. It is
clear that f(Q Φ 0, and that if C is acyclic, then T(C) = T(C). When it is
necessary to emphasize the dependence of f(C) on the chosen bases
h0, hx, ..., hm, say, for the spaces //0(C), H^C), ..., Hm(C), this torsion is
denoted by f(C; h0, hv ..., hm).
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3.1.2. Homological orientation.
A homological orientation, or, more briefly, h-orientation, of the finite
CW-pair (X, Y) is an arbitrary orientation of the vector space

H*(X, Y; R) = e H,(X, 5 r;R). If H£X, Y; R) = 0, then the pair {X, Y)

has a single /z-orientation, in the remaining cases (X, Y) has two opposite
h -orientations.

3.2. Refined torsion.
Refined (or sign-determined) torsion is defined in the same situation as the
usual Reidemeister torsion, but with one additional condition: the
CW-complex (CW-pair, ^/-manifold) in question is supposed to be equipped
with an /z-orientation. The presence of the Λ-orientation makes it possible,
having slightly improved the definition of the torsion, to remove the
indeterminacy of its sign; the result is the refined torsion. If the A-orientation
is replaced by the opposite one (when this is possible), the refined torsion is
multiplied by — 1. The refined torsion becomes the usual Reidemeister
torsion when it is considered only up to multiplication by - 1 .

Now we pass to the precise definitions. Let (X, Y) be a homologically
oriented finite CfV-pair, and let φ be a ring homomorphism from the ring
Ζ[Ηγ{Χ)\ into an integral domain K. We define the refined torsion τ$(Χ, Υ).
We choose bases h0, hu ... for the spaces H0(X, Y; R), Ht(X, Y; R), ...
respectively, so that the basis Ao, hx, ..., for the space H£X, Y; R) determines
the chosen orientation for this space. We consider a base sequence e of
oriented cells of a maximal Abelian covering space of X (see Section 0.2).
By what was said in §0.2, the sequence e determines bases in the chain
modules of the complexes Cf(X, Y) and Ct{X, Y\ R)· We consider the
torsions τ = r(Cf(X, Y)) and £ = f(Ct(X, Y\ R); h0, ΑΙ, ...) corresponding
to these bases. Here r € Q(K) and £ G R, %Φ 0. We put TJ?(X Y, e) =
= sign(£)7, where sign denotes the sign of a number (sign(£) = ±1). The
totality of the torsions τ$(Χ, Υ, e) corresponding to all possible sequences e
is τ$(Χ, Υ). It is easily verified that on replacing the bases h0, Al5 ... by
other bases giving the chosen homological orientation, the number sign(£),
and consequently the torsion τ$(Χ, Υ, e), are unchanged. The torsion
τ$(Χ, Υ, e) is also unchanged by a change in the orientation of the cells of
e, and by renumbering these cells: in the given operations the torsions τ
and ξ change sign simultaneously. Hence we can see that τ$(Χ, Υ) is an
"element of Q(K) determined up to multiplication by <p(g) with g G H^X)".
It is obvious that τφ(Χ, Υ) = ±τ$(Χ, Υ).

3.2.1. Theorem. Under the conditions of Theorem 0.2.1, if the pairs
(X, Y) and (X', Y') are homologically oriented, and if the isomorphism
H,{X, Y; R) -* Ht(X', Y'\ R) induced by the given simple homotopy
equivalence (X, Y) -* (X', Y') preserves the homological orientation, then
T*'(X\ Υ') -•= τ?(Χ, Υ).
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This theorem enables us to study in particular the refined torsions of
Λ-oriented compact manifolds (see §0.3).

Proof of Theorem 3.2.1. We restrict ourselves to the case Υ = Υ' = φ. As
is known (see, for example, [36] or [48]), every simple homotopy
equivalence can be written as the composition of elementary (cell) expansions
and elementary collapses. We recall that the map f:X-*X' is called an
elementary cell expansion i f/ is a cell embedding; X' = f(X) U B, where Β
is a closed/-dimensional ball intersecting f(X) in a (/- 1 )-dimensional ball
D C dB; and the CW-decomposition of X' is obtained from the decomposition
of f{X) by adding two cells: Int Β and dB\D. Elementary collapses are
maps homotopically inverse to elementary cell expansions. So it suffices to
prove the theorem for an elementary cell expansion f:X-*-X'.

We identify X and f(X) by means of /. We denote the chain complexes
Cf(X) and Cf'(X) by C* and C', respectively. Let ej^ and <?,· be elements of
the modules CJ_i and Cj, respectively, that can be represented by oriented
cells in the maximal Abelian cover of X' situated over dB\D and Int B. It
may be supposed, by transferring one of these cells by a sliding homomorphism
if necessary, and changing its orientation, that these two cells are incident
with incidence coefficient 1. In addition, we can assume that the domain of
values of the homomorphisms φ and φ' is a field.

If the complex C, is not acyclic, then C» is also not acyclic, and both the
torsions in the formulation of the theorem are zero. We suppose that Ct

and Cl are acyclic. Let c,· be the natural basis in Q, and let 6,· be a
sequence of elements of the vector space C, for which d;_i(&;) is a basis for
Imidi^: Ci -»-£*,•_,). It is obvious that C[ = Q for / Φ j — 1, /, and that
Cj, et is the natural basis for C\ for ι = / - 1, /. It is not hard to verify that
Im 3,· = Im 9,· for i Φ j — 1 and that ό,·_,(£>;), ό}_ι(β;·) is a basis for Im d}_4.
It follows immediately from the definition of the torsion that the ratio
T(C:)/T(C,) is

y

It is easily verified that the first factor is equal to 1, while the second one is
equal to ( - l ) a , where α is the number of terms of the sequence bj^. Since
C, is acyclic, α = α7·-2((7#).

We put Ε = Ct(X; R) and E' = C,{X'; R). We equip Ε and E' with
bases corresponding to the same sequences of cells as the bases considered
above of the complexes C t and C'f. We equip the R-modules Hj(E) and
Hj(E'), where i = 0, 1, ..., with bases defining the given orientation in
HXX; R). Arguments analogous to the ones above show that τ(Ε')/τ(Ε) =
= (-1)", where β = a}.2(E) -j- ^j.^E) -f N(E) - A'(E'). It is obvious that
u-)-2(E) = aj_2(Ct). As is easily verified, λΤ(Ε') = Λ'(£) — β;_,(£). Hence
β Ξ α (mod 2), and so τ$(Χ) = τ$'(Χ').
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3.3. The refined Alexander function.
The refined Alexander function A^X, Y) of a homologically oriented finite
CW-pair (X, Y) is the refined torsion τ$(Χ, Y), where θ is the projection
Z[HX(X)] -»• Z[G], G = /MX)*. From the results of §3.2 and Theorem 1.1.1
it follows that A0(X, Y) is an element of the field Q(G) defined up to
multiplication by elements of the group G; A(X, Y) = ±A(£X, Y); when
the Λ-orientation is replaced by the opposite one (which is possible if
H.(X, Y; R) Φ 0), the function A0(X, Y) is multiplied by - 1 . If
H,(X, Y; R) = 0, then A0(X, Y) is calculated from A(X, Y); by
Lemma 1.11.4, A(X, Y) can be represented as the fraction ab~l with
a, f ) £ Z [ G ] , aug(a) > 0 and aug(6) > 0; here, as follows from Lemma 2.4,
ab~l G A0(X, Y). It is not hard to show that Ao is an invariant of homotopy
equivalences preserving Λ-orientation (but not necessarily simple).

3.4. Properties of the refined torsion and refined Alexander function.
Most of the properties of torsion and the Alexander function discussed in
§§0, 1, and 2 can be sharpened to properties of the corresponding refined
invariants. Here we restrict ourselves to those properties of the refined
torsion and refined Alexander function that are needed below.

3.4.1. Theorem. Under the conditions of Theorem 0.2.2, let the spaces
Χ, Υ and the pair (X, Y) be homologically oriented. Let these orientations
be coordinated in the following way: for some {and then for any) choice of
bases over R for the real homology groups of Χ, Υ and the pair {X, Y) that
determine the given orientations, the torsion of the homology sequence with
coefficients in R of the pair (X, Y), considered as a chain complex over R, is
positive. If τ*(Χ, Υ) Φ 0, orxvi (Υ) Φ 0, then xg» (X) = ( - l ^ i y i (Υ) τ? (Α', Υ)

dim X i

where μ = 2 KPJ + 1) (βί + βΰ + βί-ιβϊ) with & = Σ rgHr(X)
i»=0 r=0

βί = Σ rgHr(Y), and β ϊ= TJ rgHT(X, Y).

We remark that if H,(X, Y; R) = 0, then μ is even, and that if the
Λ-orientations of X, Y, and the pair (X, Y) are not coordinated, then by
replacing one of these orientations by its opposite we obtain a coordinated
triple of orientations.

It is not hard to deduce Theorem 3.4.1 from the following lemma, which
refines and generalizes Theorem 0.1.1.

3.4.2. Lemma. Under the conditions of Theorem 0.1.1, let the ground ring
be a field; let the homology modules of the complexes C, C', and C" be
equipped with bases; and let $β be the homology sequence of the pair
(C, C'): Hm(C) -> Hm(C) -> Hm{C") -•...-• # 0 ( C ) -• H0(C") considered as
an (acyclic) chain complex (here m — dim C). Then

T(C) = ( _ 1 ) H + V T ( C ) χ T(C')t(M)
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where ν
τη

t=0

μ =

»,(C-»

τη

Σ ι

a,_i(C") and

( β ι ( Ο + 1)1

V.G. Turaev

') +
(the definition of the numbers α,· and β,· αζ« be found in § §2.1.2 and
3.1.1). /« particular, if C, C\ and C" are acyclic, then T(Q = (-1)VT(C)T(C").

Proof. According to [28], x(C) = (—1)XT(C')T(C")T(^!?), where χ is an
integer computed as follows. We denote by xt and x'/ the dimensions of the
images of the inclusion homomorphisms i/,(C) -*• Ht(C) and Hj(C) -*• Hj(C")
respectively. We denote by d\ and d" the dimensions of the images of the
boundary homomorphisms C'i+i -+C\ and Ci+i -»- C\ respectively. Then

χ = K(C) - N(C) - N(C) + Σ (xt#i + ijdi-i -f <*ί_ι<*ί)·
i=0

All the numbers on the right hand side of the last formula can be expressed
in terms of α,(Ο, a,(C"), ft-(C), ft(C'), /3,(C") with / = 0, 1, ..., m. For
example, ά\ = a,(C')-/3,(C) and x, = PJ(C) + P,_,(C) — $t(C). Substituting
these expressions into the formula for χ, and cancelling similar terms (taking
into account the equalities a,(C) = α,-ίΟ + α,·^") and am = /3m), we obtain
χ = μ+ ν (mod 2).

3.4.3. Theorem. Under the conditions of Theorem 1.1.3, let the manifold
Μ be homologically oriented. If rgH>2, then τ$(Μ) - φ(Α0(Μ)). If
TgH=l, then τ&Μ) = V(A0(M)).

The proof of this theorem is obtained by a simple modification of the
proof of Theorem 1.1.3, and is therefore omitted. For similar reasons we
also omit the proof of the following theorem.

3.4.4. Theorem. Under the conditions of Theorem 1.11.2, let the manifolds
M, V, and V be homologically oriented, and let the inclusion isomorphisms
Ht(V; R) -• H.W, R) and Ht(V; R) -• H.(M; R) preserve the orientations.
Then the functions AQ(V) and A0(V') have c-equivalent representatives.

Remark 1. Every oriented (in the usual sense of the term) closed odd-
dimensional manifold Μ has a canonical /z-orientation. Namely, we put
m = dim M; for / = 0, 1, ..., (m~ l)/2 we fix an arbitrary orientation in
Hj(M; R) and the orientation in Hm-i(M; R) that is dual to it with respect
to the intersection form //j(M;R) X Hm_j(M; R) -*• R; the direct sum of
these orientations is the canonical orientation of the space H*(M; R). The
refined Alexander function of Μ corresponding to this orientation is denoted
by A0(M). On replacing the given orientation of Μ by the opposite
orientation, the canonical /z-orientation is also replaced by its opposite one

(m-l)/2
if s = 2 rg Hi(M) is odd, and is unchanged if 5 is even. So Ao(—M) =

i=0
= (—\)SAO(M). Hence it can be seen that in the case when A(M) Φ 0 and s
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is odd the invariant A^J\i) cannot be calculated horn A{M). From Theorem 5
of the Appendix it is not hard to deduce that if wm.x(M) = 0, then the
function A0(M) has a canonical representative: there also exists a unique
element A G A0(M) such that A = ±A. Here if m = 3 (mod 4), then A = A.

An oriented four-dimensional manifold has in general no natural
/i-orientation. This can be seen for example from the fact that complex
conjugation in CP2 preserves the usual orientation, and inverts the
Λ-orientation.

Remark 2. The problems associated with distinguishing the orientations, and
in particular the problem of the existence of an orientation-reversing
automorphism of a manifold, form the most natural area for the application
of refined torsions and refined Alexander functions. For example, from the
results of Remark 1 it follows that if Μ is an orientable connected closed
three-dimensional manifold with an even one-dimensional Betti number, and
if aug(A(M)) Φ 0 or A(M) can be represented as the square of a non-zero
polynomial, then Μ does not admit orientation-reversing automorphisms.
The Alexander polynomial can also carry other useful information on the
automorphisms of a manifold. We consider the following example. Let Μ
be the result of surgery on the sphere S3 along the two-component link /
depicted in Fig. 1, equipped with zero framing.

Fig. 1.

It is obvious that HX{M) = Z x Z . By [35], 419, we have

(<! - l)(i2 - l)(i, - <2 - 1 + /-l - t?) € Δ,.

By Theorem 1.4.2, f, + t2 + 1 -f ql + i"1 6 MM). Hence we can see that
Μ does not admit orientation-reversing automorphisms, and that the
automorphisms of the group HX{M) induced by homeomorphisms Μ -*• Μ
leave the set {i,, t2, i~\ <~1} invariant. Hence in turn it follows that the
image of the natural homomorphism Aut(M) -> AutiH^M)) consists of at
most eight elements. Using the symmetry of the link /, it can easily be
shown that this image contains the homomorphisms (i l f tt) •-»- ( r j , t«) and

(«„ u) ~- (h, r·).
Remark 3. Using refined torsions, we can prove without difficulty the
following theorem announced by Conway [5] : if an ordered link / in S3
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with an even number of components is isotopic (in the category of ordered
links) to its mirror image, then Δ, = 0. For let V and η be the exterior
and the number of components of / respectively. We give V a homological
orientation. The composition of the mirror symmetry and the isotopy
defines a homeomorphism / : V -* V that induces multiplication by -1 in the
vector space H^V; R) φ H2(V: R). Since the dimension of this space is
2n~ 1, /reverses the homological orientation. Consequently f£A0(V)) =
= -A0{V). On the other hand, if A = A(tv ..., tn). G A0(V), then by
Theorem 1.7.1 and the fact that η is even we have

= t y . . . tv

n«A

with integral vt, ..., vn. Hence it follows that f,(A0(V)) = A0(V). Therefore
Δ, = ±A0(V) = 0. (Another proof can be found in [16]; see also §4.)

§4. The Conway link function

4.1. History of the question.
In 1970 Conway [5] proposed a new method for computing the Alexander
polynomials of links in S3, based on a bright and completely unexpected
idea. The cornerstone of this method is the link invariant introduced by
Conway, which he called the potential function of the link. (The Conway
function has no relation to the potentials studied in mathematical physics.)
The potential function is defined for an arbitrary ordered (oriented)
«-component link / C S3. It is denoted by V;(<i, · · ·* tn), or more briefly
by V;, and represents a uniquely defined rational function of the variables
tv ...,tn. If « > 2, then V; is a Laurent polynomial: Vi € Z[ij, i~ \ . . . . / , . t~l).
If η — 1, then the potential function V;is a priori not a Laurent polynomial,
but nevertheless has a fairly simple form. Namely, it can be written as a
fraction whose numerator is a Laurent polynomial in t, and whose
denominator is t—t~x. The potential function is symmetric (V/ = (—l)nVi)
and is related to the Alexander function by the formula

V;(<! in) = A:(t\ tl).

where the symbol = means equality up to multiplication by —1 and powers
of the variables. From these formulae it can be seen that the function Vi,
considered up to multiplication by - 1 , is the result of symmetrization of the
function At{t\, ..., tl). In particular, the potential function considered with
this accuracy can be computed from the Alexander function. The potential
function cannot be completely restored from the Alexander function. For
example, the Alexander functions of a link / and its mirror image /' are
equal, whereas Vi· = (—l)n+1V(-

Conway showed that the potential functions of different links are
interconnected by additive relations which make it possible to compute the
potential functions (and with them the Alexander polynomials) recursively,
by successive simplification of links (see [5] or §4.2).
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The precise definition of the potential function, which in essence reduces
to the simultaneous and consistent attaching of signs to the Alexander
polynomials of links, by the traditional methods of defining the Alexander
polynomials runs into considerable difficulties. The fundamental paper of
Conway [5] does not contain a definition of the potential function. In

1981 Kauffman [20] gave a simple definition of the function Vj obtained
from V; by the substitution tx - t2 = ... - tn = t. Namely:

V; = (t — r 1 ) - 1 (let (tS — r ' 5 r ) , where S is the Seifert matrix of the link /.

The function (t — i"J)V; : <UM (IS — f ' S ^ i s called the reduced potential
function^ of the link /. In 1983 Hartley [16], on the basis of Conway's
ideas, gave a definition of the Conway function in full generality. This
definition is formulated in terms of the diagrams of links and associated
notions—Wirtinger presentations, Seifert circles, and so on. The paper of
Hartley also contains the first published proofs of the properties of the
potential function announced by Conway.

The approach of Conway and Hartley to the definition of the potential
function, using the diagrams of links, has its advantages and disadvantages.
The main advantage of this approach is that it enables one to compute the
potential function of a link directly from the diagram, in which the amount
of computation is not much larger than that in the well-known method of
computing the Alexander polynomial from the Wirtinger presentation of the
link group using the free differential calculus of Fox. The disadvantages of
the definition of Conway and Hartley include the technical complexity of
this definition, which makes it not very transparent, and also the need to
carry out a (not at all obvious) verification of the invariance of the potential
function under Reidemeister transformations of link diagrams. In addition,
this definition cannot be generalized to the case of links in three-dimensional
homology spheres.

We give two (new) definitions of the potential function: an axiomatic
one, which is an extension of Kauffman's axiomatics for the reduced
potential functions, and a constructive one, based on the use of refined
torsions. The constructive definition can be generalized verbatim to the
case of links in three-dimensional homology spheres.

4.2. Axioms for the Conway function.
We use the term Conway map for an arbitrary map V which assigns to each
ordered link / in S3 an element of the field Q(i1( ..., tn), where η is the
number of components of /, and which posesses the following properties:

is well known that the reduced potential function of any link can be uniquely
represented as a polynomial (in the usual sense of this word) in t—Γ1. The one-
variable polynomial arising in this way is called the Conway polynomial of the link. (In
some papers this polynomial is also called the potential function, which is of course
unfortunate, and may lead to confusion.) We do not require the Conway polynomial.
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4.2.1. V(0 is unchanged under (ambient) isotopy of the link /.
4.2.2. If / is the trivial knot, then v(0 = (t — t'1)'1-
4.2.3. If η > 2, then V(0 € Zlij, r\, . . ., tn, # ] .
4.2.4. The one-variable function V(0 = V(l)(t, t, . . ., /) is unchanged by a
renumbering of the components of / (in other words, V(0 is an invariant of
the unordered link).
4.2.5 (Conway identity). If /+, /_, and /0 are links coinciding (except
possibly for the numbering of components) outside a certain ball, and inside
this ball having the form depicted in Fig. 2, then

v(/+) = v(U + (t -
4.2.6 (Doubling Axiom). If the link /' is obtained from the link
/ = /i U ... U /„ by replacing the component /,• by its (2, l)-cable (see §1.3),
then

V (/') (tu . . . , tn) = (Τ + Γ"1) χ V (/}(*„.. . . *,·_„ t\, fl+1 /„),

where Γ = ί, Π tf?lj\

The conditions 4.2.1-4.2.5 appear among the properties announced by
Conway [5] and proved by Hartley [16] of the map Ζ ·-*• V; assigning to
each link its potential function. The condition 4.2.6 was not considered by
these authors, however, it is not hard to prove that their map / K + V I

satisfies 4.2.6 and so is a Conway map in the above sense.

4.2.7. Theorem. There exists at most one Conway map.

Proof. Let V be the difference of two Conway maps. Clearly V satisfies
Axioms 4.2.1 and 4.2.3-4.2.6. If/ is the trivial knot, then v(/) - 0. For
each link / we put η(Ζ) = v(l)(t, t t). We show that η = 0. Let / be
a trivial «-component link with n > 2; let /+ and /_ be trivial ( « - 1)-
component links, as shown in Fig. 3.

O...O X O...O
h

Fig. 3

By Axioms 4.2.1 and 4.2.5, ( ί - Γ 1 ^ / ) = τ?(/+)-τ?(/_) = 0, that is, η(1) = 0.
We suppose that the equality η(1) — 0 has been proved for links having
diagrams with at most m crossings. Let / be a link given by a diagram with
m + 1 crossings. In a certain number of steps, replacing underpasses by
overpasses in such a diagram, we can obtain the diagram of an unlink. By
Axiom 4.2.5 and the inductive assumption, the value of the function η is
unchanged during these operations. Therefore η(1) = 0.
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We show that V = 0. If / is a knot in S3, then V(0 = η(0 = 0. Let / be
a link with η > 2 components. We suppose that V(Z) φ 0. Then V(Z) is a
non-zero Laurent polynomial, and obviously we can choose natural numbers
ax, ..., an that are powers of two for which V(l) (lai, • • •, tan) Φ0. Let
a/ = 2b* and let A: be a link obtained from / by successive 6,-fold replacement
of its z-th component by its (2,l)-cable for all i = 1, ..., n. By Axiom 4.2.6
the polynomial V(0 (t°l, · • •> *£n) divides V(A')(*i< · · ·, tn), the quotient
being a product of polynomials of the form Τ -χ- T~\ where Τ is a monomial.
By what we have proved above, yj(k)(t, t, . . . , < ) = 0. Hence it follows
that v(0(<Oli • · ·> ί α η ) = 0. The resulting contradiction shows that
V(/) = 0.

4.2.8. Corollary. Let V be a Conway map, and let I be an ordered

η-component link in S3. Then: (i) V(Z) = (—l)nV(0; (ϋ) if k is the mirror

image of the link I, then V(k) = (—l)n+1V(0> (iu) tf π ZS a permutation

{1, . . . , « } - • {1, . . . , n), and if ΐ is the link 7 n ( 1 ) U · · · U ^(n). then

Proof. It can easily be verified that the functional I >-> (—1)" X V(Z) satisfies
the axioms for a Conway functional. By Theorem 4.2.7, (i) follows. Points
(ii) and (iii) can be verified similarly.

4.2.9. Remark. When considering the Conway identity 4.2.5, several
authors use the mirror image of Fig. 2 (or, what is equivalent, use the same
figure as we do, but use /_ for the left link, and /+ for the middle link). It
is easily seen that if V is a Conway map in our sense, then the map
assigning to an «-component link / the rational function (—l)n+1V(0 satisfies
the similarly modified identity 4.2.5.

4.3. The construction of the Conway function.
Let / be an ordered «-component link in S3. We fix a "canonical"
homological orientation of the exterior V of the link /, defined by the basis
([/)/], fj, . . ., tn, (jv . . ., 7,,_,) in HXV; R), where [pt] is the homology
class of a point; tlt ..., tn are meridional generators of the group H^V);

ql qn_t are the generators of H2(V) represented by (oriented) boundaries
of regular neighbourhoods of the knots Z,, . . ., /„_j respectively. (We
adhere to the convention on the orientation of the boundary of an oriented
manifold under which the sequence (an outward directed vector; a positively
oriented basis of the tangent space at the boundary) gives a positive
orientation of the whole manifold.)

Let A = A(tv ..., tn) be a representative of the refined Alexander function
/40(F)(see §3.3). By Theorem 1.7.1 we have ~A = (—1)"φ . . . \l*A
with integral vx, ..., vn. We put

V ( / ) = - # ...tl"A(t\, . . . , * * ) .
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As we can verify directly, V(/) is independent of the choice of representative

A of the function A<£V). It is obvious that v(T) = (—l)nV(0, and that the
function / ·->· V(0 satisfies Axioms 4.2.1 and 4.2.3. The verification of
Axiom 4.2.2 reduces to the calculation of the refined Alexander function of
an oriented circle. This function is —{t — lj-^see §1.3.3; in the calculation
one should not forget the factor (—1)Λ'<Ο, where C = C.OS1; R), see §3.1.1).
The result of symmetrization of the function — (i2 — I ) " 1 is — (t — i"1)"1.
In fact, the presence here of an "extra" minus sign leads to the necessity of
introducing the same sign in the definition of the invariant V(/).

4.3.1. The verification of Axiom 4.2.4.
Let φ be the ring homomorphism ZiH^V)] -*• Z[t, Γ 1 ] taking tx, ..., tn to t.
Both the homomorphism φ and, as we can verify directly, the canonical
Λ-orientation of the manifold V are unchanged under a renumbering of the
components of /. Hence the refined torsion r${V) is also unchanged under
this. By Theorem 3.4.3, if A(tv ..., tn) G A^V), then A(t, t, ..., t) G r$(V).
Hence 4.2.4 follows.

4.3.2. The verification of Axiom 4.2.6.
It is obvious that the exterior V of the link /' is obtained from that of the
link / by gluing a Mobius strip to its boundary. A CW-decomposition of the
manifold V can be obtained from the decomposition of V by adding a one-
dimensional cell el and a two-dimensional cell e2 (Fig. 4).

Fig. 4.

It is easy to see that with a suitable choice of liftings ^ and ~e2 °f these cells
to the maximal Abelian cover of V' the boundary of the cell chain [e2] is
equal to the sum of the chain (1 + T)&x] and the chain generated by the
cells situated over V. We remark that the inclusion homomorphism
HSV; R)->•#,(F'; R) is an orientation-preserving isomorphism. Let
φ : ZlHiiV)] -*• Z[Hi(V)] be the inclusion homomorphism: ψ(ί,) = tf and
Ψ(ϊ;) = tf for / Φ i. Arguments analogous to those used in the proof of
Theorem 3.2.1 show that A0(V) = TO(V) = (1 + T)r$(V). By Theorem 3.4.3,
4 (F) = Ao (F) (t l f . . . , t W l t\, ti+i f„). Hence we have 4.2.6.

4.3.3. Preparation for the verification of Axiom 4.2.5.
(i) Lemma (Milnor [26]). Let C and C* be dual acyclic m-dimensional
chain complexes over a field, equipped with dual bases {see §2.2.2). Then
T(C*) = ±U{C)\'^-K where e(m) = (—
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Proof. Let bt be a sequence of vectors in the space Q for which (?,_,(£>,) is
a basis in Im(df_,: Ct ->-C,_,). Let bm_i+, be a sequence of vectors in C'm_i+i

whose matrix of values on the terms of ά,-.,ίΜ is a unit square matrix. It is
easy to see that dm_»(frm-i+i) is a basis in hn d'm_{ and that if the bases c,· and
C , are dual, then l(Vi(''«-ui)6m-i/cin-|] = ±ffli(&<+i)Veil~1· Hence we
have the statement of the lemma.

(ii) We say that a CW complex is regular if for every (open) cell a of it the
ο

closure Έ is the union of cells and a homeomorphism of an open ball D onto
a can be extended to a homeomorphism of the closed ball D onto "a. For
example, all triangulations are regular.

The next lemma refines the theorem on the invariance of the torsion of a
CH'-complex under subdivision. (It is possible that the condition of
regularity in this lemma is superfluous.)

(iii) Lemma. Let X be a finite regular cell complex; let X -*• X be a
maximal Abelian cover; let X' be an (arbitrary) subdivision of the space X,
and let X' be the induced subdivision of the space X; let e be a base
sequence of oriented cells of X, and let e' be a base sequence of cells of X'
consisting of all the cells of this space contained in cells of the sequence e.
If φ is a ring homomorphism from the ring Z[Hi(X)] into a field, then
r*{X, e) = ±τ*(Χ>, e).

Proof. If Hf(X) Φ 0, then both sides of the equation to be proved become
zero. We prove the lemma in the following strengthened form, meaningful
also in the case Hf(X) Φ 0: // in the vector spaces H$(X) = H${X'\
Hf{X) = Hf(X'), ... we fix bases g0, gv ..., then (in the obvious notations)

T(C*(X), e, g0, *„ ...) = ±x(Cl(X'), e', g0, gi, . . .)·

In the course of the proof, for brevity the chain complexes Cf(X) and
Cf(X') are denoted by C(X) and C(X') respectively.

Let a be an (open) cell of the space X, of maximal dimension. It is clear
that X\a is a regular cell complex. We denote it by Y. We denote by Y'
the decomposition of the space Υ induced by X'. Let b be a cell of X'
contained in a, whose dimension is dim a. We put Ζ = X'\b. It is obvious
that Y' is a subcomplex, and a deformation retract of the space Z. We
denote by C(Y) the subcomplex of C(X) generated by the cells situated
over Y. Similarly we define subcomplexes C(Y') and C(Z) of C(X'). The
cells of the sequence e (respectively e) that lie over Υ (respectively over
Υ', Ζ) give bases of the three subcomplexes mentioned, which we denote by
u, u', and υ respectively. For every i > 0 we fix a basis ht in the vector
space HAC(Y)) = Ht(C(Y')) = H((C(Z)). We put g = (g0, g l , ...), and
h = (h0, h1, ...). Below we prove two formulae

\(C(Z\ v, h) = ± x V ( n · « ' , h) a n d > < * > > fo ( * ' > ' >
T ( C ( Y ) , u, h) T ( C ( Z ) , v, h)
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These formulae show that the equality τ(C(X), e, g) = ±T(C(X'), e', g) is

equivalent to the equality τ(Ο(Υ), w, Λ) = ±x(C(F'), U', h). Thus, by
successive removal of the cells of X we can reduce the statement of the lemma
to the case dim X = 0. In this case, X = X, e' — e, and the desired statement is
obvious.

Since Έ\α is a sphere, the inclusion Έ\a -+7i\b is a simple homotopy
equivalence, and hence ~a\b can be deformed into Έ\α by elementary cell
expansions and collapses. The pairs of base cells arising in elementary
expansions or destroyed by collapses can be assumed to be incident, with
incidence coefficient 1. Hence the arguments used in the proof of

Theorem 3.2.1 show that T(C(Z), I\ h) = ±r(C(Y'),u',h). The second of
the formulae given above follows from 3.4.2 and the obvious fact that both
the factor complexes C(X)/C(Y) and C(X')/C(Z) and the homology sequences
of the pairs C(Y) C C{X) and C(Z) C C(X') are constructed in exactly the
same way.

4.3.4. The verification of Axiom 4.2.5.
This verification is the most difficult part of the construction of the Conway
map, and is carried out in three steps.

Step 1. We assume that the common part of the links /+, /_, and /0 is
located in a closed three-dimensional ball D C S3, and intersects dD
transversely in four points (see Fig. 5, in which D is represented as the
closure in S3 of the half-space below the plane of the figure).

'.-L----iir^sr-T-Jn. 14

Fig. 5.

We denote by V the complement in D of an open regular neighbourhood of
the manifold 1+η D = L η D = lQ η D. Clearly V η dD is the complement
in dD of four open discs. We denote by Xa, where α ζ { + , —, 0}, the
result of gluing to F a two-dimensional disc Ba by a homeomorphism from
the boundary dBa onto the circle Xa C V Π dD depicted in Fig. 6.

Fig. 6.
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It is obvious that Xa is a deformation retract of the exterior of the link la.
Let Xa -*• Xa be an infinite cyclic cover whose group of covering
transformations {im}mez corresponds to the kernel of the homomorphism
πι(Χα) -*· {i>n}mez. which takes the homotopy classes of meridians into t.
Let V be the inverse image of V under this covering. Clearly
%a = l 7U U tm(Ba), where Ba is a lifting of the disc Ba to Xa. Replacing

τηΕΖ

the discs B+ and 21 by their images under covering homeomorphisms if
necessary, we can assume that the curves dB+, bB_, dB0 have a common
point (situated over the unique common point of the curves x+, x_, x0). In
Ba and Ba we fix compatible orientations, which induce the orientation of
the curve xa given in Fig. 6. We fix a triangulation of V, and the equivariant
triangulation of V induced by it. We fix in V a base sequence of simplexes
(that is, a sequence of oriented simplexes of the chosen triangulation of V
such that over every simplex of the chosen triangulation for V there lies
exactly one simplex of this sequence). We add to this sequence the cell Ba

(as the last counted cell), and so obtain a base sequence of cells in Xa. We
denote the Q(f)-chain complex Q(t) ®z[(li-i] Cm(Xa; Z) by Ca. We fix in Ca

a basis corresponding to the indicated base sequence of cells in Xa. We put
τα = T(Ca) Ε Q(i). We prove that

(14) τ+ = -<τ_ + (ί - 1)τ0.

We denote the Q(f)-chain complex Q(i) <g>ZJM-i]C*(F; Z) by C. It is
obvious that for every a = +, —, 0 the complex C is a subcomplex of Ca,
and moreover the space of two-dimensional chains of the factor complex
Ca/C exhausts the non-zero part of this complex and is equal to Q(t)[Ba].

We fix in H2(Ca/C) a generator [Ba]. Clearly x{CJC) = (—l) w < C e / o = - 1 .
If τα — 0 for all a, then (14) holds. We assume that τα Φ 0 for some

a £ {+, —, 0}. Then the complex Ca is acyclic, and hence from the
exactness of the homology sequence of the pair C C Ca it follows that
//i(O = Q(0 a n d Ht(C) = 0 for ι' Φ 1. We fix an arbitrary generator y in
Hi(C). By Lemma 3.4.2

τ α = T(Ce) = T{Ca) = %x(C)i(CJC)j(#ea),

where S£a is an acyclic chain complex with two non-zero terms H2(Ca/C)
and Hi(C); λ = ±1 and λ, as can easily be seen, is independent of the
choice of α 6 { + , —, 0} with τα Φ 0. The boundary homomorphism
H2(Ca/C) -* HaC) takes [Ba] to yay with ya e Q(i); here τ(ϋ?β) = γ β .
Thus τα = ±f(C)7a, where the sign ± is independent of the choice of a. with
τα Φ 0. If τα = 0 for some a, then the equality τα = ±r(C)7a with the
same sign is also valid: in this case the complex Ca is not acyclic and the
exactness of the homology sequence of the pair C C C O implies that ya = 0.
Hence we can see that for the proof of (14) it suffices to show that
7+ = -/7- + ( ' - l )7o ·
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We prove the equivalent equality [y+ + ty--(t- l)yo]y = 0· Let a, b, c,
and d be the loops in V (Ί 3D starting at the common point of the curves
x+, x_, and x0, depicted in Fig. 7.

Fig. 7.

The homology class of y+y is represented by the curve dB+, and so it can
be represented by a loop in V starting at the common point of the curves
dB+, 95_, and dB0 and covering the loop bd. Similarly, the classes of
7o>\ tyoy, and ty~y can be represented by loops in V starting at the same
point covering the loops ab, d~\ab)a ~ ba, and a~\ac)a ~ ca respectively.
(The loop a'1 is a meridian of the corresponding component, and represents
in the covering group the element t.) Hence the class [y+ + ty- — (t— \)yo]y
can be represented by a loop covering (bd)(ab)(ca)(ba)~l ~ b(dabc)b~l ~ 1.
The required equality follows from this.

Step 2. We prove the analogue of (14) for refined torsions. For a = +, —, 0
we fix a basis of the R-chain complex C*(Xa; R) corresponding to the base
sequence of cells in Xa fixed in step 1. We equip the homology groups of
this complex with bases over R which determine mHt(Xa, R) the orientation
induced by the canonical homological orientation of the exterior of the link
la (we recall that Xa is a deformation retract of this exterior). We denote
the sign of the torsion fiCXXa, R)) Ε R\0 by XQ,. We put Aa = λατα, and
show that

(15) Δ+ = ί Δ . + (t - 1)Δ0.

By (14) it suffices to show that λ+ = -λ_ = λ0. We restrict ourselves to
the case when the parts of the link /+ that are being rearranged lie in the
same component. (The opposite case is considered similarly.)

We number the common components of the links /+, /_, and l0 by the
numbers 1, 2, ..., n— 1. We assign the number η to the rearranged component
of the links /+ and /_. To the upper (in Fig. 2) component of l0 we assign
the number n, and to the lower one the number n+ 1. For a — +, — the
chosen orientation in H+(Xa; R) is given by the basis
[/>/], fj, . . . , / „ , <h, . . . , i/n-i (in the notation introduced at the start of
§4.3). The chosen orientation in Ht(Xo', R) is given by the basis
Ipt], <j, . . ., tn+1, <7,. . . ., <7,,. We fix in Ht{V\ R) the basis
[jo/], /J, . . ., tn+1, qx, . . ., (/„_,, and we fix in Ht{Xa, V; R) the generator
[Ba] (for <x = +, -, 0). By applying Lemma 3.4.2 to the exact sequence of
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three-dimensional chain complexes

0 -*C«(F; R) -»-C*(X.; R) +C*(Xa, F; R) ->0,

we obtain the equality λα = (_1)(μα+να> χ λλά, where μα and va are the
integers defined by the formulae in the statement of Lemma 3.4.2;
λ = sign[r(C,(F; R))r(C,(Xa, V; R))] and λ'α is the sign of the torsion τ
of the homology sequence of the pair (Xa, V) with coefficients in R. It is
obvious that λ and va are independent of the choice of α 6 {-f, —, 0}.
Direct calculation shows that μ+ = μ_ = 1 (mod 2), μ0 = η + 1 (mod 2),
λ; = — λ! = (—1)η+1, and λό = - 1 . (The equalities μ+ = μ_ and λ'+ = -λ'_
are easily seen without calculation: the homology sequences of the pairs
(X+, V) and X-, V) differ from each other only in that d([B+]) = tn — i n + 1

whereas d([BA) = tn+l — tn.) Hence we have the equalities λ+ = —λ_ = λ0,
and together with these the equality (15).

Step 3. It follows from the definitions and Theorem 3.4.3 that the function

Va = V(/a) is obtained by symmetrization of the rational function
~Aa(t2) €Ξ Q(/). More precisely: for a — +, —, 0 there is an integer ra for

which Aair1) = ±tr°Aa(t). Then να(<) = - ί Γ «Δ α ( ί 2 ) . By formula (15)

ί2) + ( ί 2 - 1) Δο (ί2)] = i(r++2-r-)V_ +

We remark that the number ra is uniquely determined if Δα Φ 0, and can be
chosen arbitrarily if Δα = 0.

We denote by Va the exterior of the link la viewed as the result of
attaching to V a handle of index 2 with axis Ba (where α = +, -, 0). We
denote by Va the infinite cyclic cover of Va resulting from the attachment
to V of handles of index 2 with axes tm(Sa), m G Z. We suppose that the
equivariant triangulation of V fixed in step 1 can be extended to an
equivariant triangulation, say Ya, of Va. We extend the base sequence of
simplexes in V fixed in step 1 to a base sequence ea of simplexes of Ya as
follows: we fix in Va\V those simplexes that lie in the handle with axis 2?a.
(The order in this set of simplexes, and their orientations, are arbitrary.)
We denote by Ea, Fa, and dFa the Q(/)-chain complexes obtained as the
result of tensor multiplication of the field Q(t) by the Z[t, Γ 1 ] -chain
complexes of cell chains of the decompositions Ya, Y&, and bY^ respectively
(see §2.2.2 (ii)). We fix the basis of the complex Ea defined by the
sequence ea, and the bases of the complexes Fa and dFa defined by the
sequence e* consisting of the cells of the decomposition Y* dual to the
simplexes of the sequence ea. We denote by R the union of the toral
components of the boundary dV. It is clear that R C dVa, and here the
difference dVa\R is either a torus or the disjoint union of two tori. The
complex dFa is the direct sum of its two subcomplexes generated by the
cells lying over R and over dVa\R respectively. By Lemma 1.3.3 these
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complexes are acyclic, and their torsions are ± i r and ± t S a respectively,
where r and sa are integers and r is independent of the choice of a.

We prove that with a suitable choice of the numbers ra corresponding to
α 6 {+, —, 0} with Δα = 0 we have the equalities

(16) r+ + 2 — r- = s- + 2 — s+; r+ + 1 — r0 = s0 + 1 — s+.

From Lemma 4.3.3 (iii) one can easily deduce that τ(Εα) = ±τα = ±Αα

for all ft = +, —, 0. Since the CW-decompositions Ya and Y« of the
manifold Va have a common subdivision, we have x(Fa) = ± t^ax(Ea) with
βα Ε Ζ. We compute βα. By Lemma 4.3.3 (iii) the torsion r(Fa) is equal,
up to sign, to the torsion of the complex Ga = Q(t) <8>Z[t, (-η 0^(Υ'α\ Ζ)
where Y'a is the first barycentric subdivision of the triangulation Ya and
where in Y'a there is chosen a base sequence of simplexes, say ait ..., aN,
consisting of simplexes contained in the cells of the sequence e*a. Similarly,
the torsion τ(Εα) is equal, up to sign, to the torsion of the same complex
Ga with another basis, namely the basis corresponding to a base sequence,

say bx bN, consisting of simplexes of the triangulation Y'a contained in
simplexes of the sequence ea. Every simplex bt can be uniquely represented
as im<'> a;-(;)With integral m(i) and with ;(f) ζ {1, 2, . . ., Ν}. Therefore

βα = — 2 e(dim a.jn))m(i). We remark that if the simplex b( does not lie

in V, then by the construction of the sequence ea it lies in the handle with
axis Ba attached to V. By similar arguments aHi) lies in the same handle, so
that α7·(ο = bj and m(i) = 0. Hence it follows that (3+ = £L = β0. Thus
x(Fa) = dzt&°Aa. On the other hand, since the torsion is multiplicative, we
have i (F a ) = ±T(dFa)T(FJdFa) = ± itr+Sa> T(FJdFa). As is easily verified,
the factor complex Fa/dFa is obtained from a complex dual to the complex
Ea by the replacement of rings j(t) >-*• / ( r 1 ) : Zlt, i"1] -»-Z[<, r 1 ] (see §2.2.3).
Hence by Lemma 4.3.3 (i), if Ea is acyclic, that is, if Δα Φ 0, then

T(FjdFa) = ±Aa. Thus if Δα Φ 0, then ίΡ»Δα = ± i(r+Sct> Δ α and so
ra — βο~ι'~Ξα for all d. Hence we have (16) (in the case Δα = 0, we
should put ra = βο—r — Sa).

We consider the case when the parts of the link /+ to be reorganized lie
in the same component. We put u = s_ + 2 — s+ and υ — so+ 1 — s+. By
what we proved above,

(17) V(Z+) = iuV(M + tv(t - t-^

We put S = dV\R. It is obvious that the numbers s+, s_, and s0, and with
them the numbers u and υ, are completely determined by the following
data: the triangulation of the two-handled sphere S; the infinite cyclic
cover 5 -> S; the embedding dBa χ [0, 1 ] -> S by which the handle of
index 2 with axis Ba is attached, where a — +, —, 0; the triangulations of
these three handles, made compatible with the triangulation in S; the base
sequence of simplexes in S. All these data are in fact independent of the
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links /+, /_, and /0. Hence we easily conclude that k+, k_, and k0 is another
triple of links satisfying the conditions of Axiom 4^2.5, and if the portion of
k+ to be reorganized lies on one component, then V(k+) = i"v(k-) -}-
+ f(t— ί-χ)ν(Α:0) with the same u and ν as in (17). So to complete the
verification of the axiom it suffices to point out a model triple /+, /_, l0 for
which (17) holds if and only if u = υ - 0. Such a triple is depicted in Fig. 8.

Fig. 8.

Here V(i-) = l/(i — t" 1); V(i+) = ±(t* — 1 + i^)/(t — f1) (since the
Alexander polynomial of the trefoil is t2~t+ 1); V(/o) = db 1 (by similar
arguments; in fact the signs here are +, but for us this is unimportant). It
can easily be verified that these three rational functions have the desired
property.

In the case when the portions of /+ to be reorganized lie on different
components, the proof is carried out in a similar way. As a model example,
we can take the triple depicted in Fig. 9. Here V(/+) = — 1 and
V(Z_) = - (/- + /-»).

D CLZD C

Fig. 9.

Remark 1. Further properties of the potential function can be found in
[5], [14], [16]. These properties can be proved by the methods of the
present paper; it would be instructive to deduce them directly from the
axioms for a Conway map. We point out one new property of the potential
function, which follows directly from Theorem 3.4.4; the potential
functions of cobordant links are c-equivalent. This statement is stronger
than the corresponding statement for Alexander polynomials. It implies, for
example, that if a link / in S3 with an even number of components is
cobordant to its mirror image or to its mirror image with the opposite
orientation, then Δ; = 0 (compare with Remark 3 to §3).

Remark 2. From the potential function of a link / it is possible in many
cases to compute the refined Alexander function of the closed manifold Μ
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obtained by surgery of a sphere along / and given the orientation extending
the canonical orientation in S3\l. In the simplest case, when all the linking
coefficients of the components and the framing numbers of the components
are equal to zero, the function A<£M)(tl, ..., t^) is represented by the
product ViU,1 - I ) " 1 · · · (t\ — I ) " 1 .

Remark 3. It would be interesting to carry over the above axiomatic
definition of the potential function to the case of links in homology spheres
so that the uniqueness property is satisfied. It is possible that for this it
might be necessary to modify or extend the list of axioms.

§5. The torsion ω and the polynomial δ

5.1. The torsion ω.
In contrast to the torsions considered above, the torsion ω is defined only
for odd-dimensional compact manifolds (possibly with boundary). The
definition of the torsion ω is based on a modification of the standard
constructions of the theory of torsions, taking into account the Poincare
duality. The main advantage of the torsion ω is that this torsion never
vanishes. However, this is achieved at the expense of increasing the
indeterminacy.

Now we move to the precise definitions. Up to the end of this section
we fix an orientable compact manifold Μ of odd dimension m = 2r+ 1, an
integral domain Κ with an involution a >-*• α: Κ -*~Κ, and a ring
homomorphism ψ: Z[HX{M)} -> Κ for which φ(Η) - φ{ΐΓι) for any h EH^M).
We denote the inclusion homomorphism Ζ[Ηλ(ΰΜ)] -*• Z[HX{M)] by in
(possibly dM = <£>). We suppose that rg H%°in(dM) = 0.

We define the torsion ωφ(Μ). First we consider the case when Κ is a
field. Then the condition rg Hv°in(dM) = 0 means that HfoiJl(dM) = 0.
Hence it follows that the sesquilinear form of the intersection numbers
H'i (.1/) Χ //&_,·(Λ/) -*• Κ corresponding to some orientation of Μ is
nondegenerate for any /. We fix a triangulation of M. We consider the
product

g) n
where g — (g0, gv ..., gm) is a sequence of bases of the ίΓ-modules
H$(M), Hf(M), ..., EfniM), and ut is the matrix of the above sesquilinear
form with respect to the bases gf and gm-i (we recall that —ε(ι) = (—I)1).
The collection of such products corresponding to all the possible sequences
g and to all natural bases of the complex Cf(M) is ωφ(Μ). Equivalently,
ωφ(Μ) can be defined as the collection of the torsions r(Cf(M), g)
corresponding to all possible natural bases of the complex Cf(M) and
sequences g — (g0, gly ..., gm) for which gt and gm_( are dual for all /. In the
case when Κ is not a field, the torsion ωφ(Μ) is defined as oPc*(M), where /
is the inclusion of the ring Κ in its quotient field Q(K).
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It is not hard to verify that the torsion ωφ(Μ) is independent of the
choice of triangulation of M, and is an "element of Q(K) defined up to
multiplication by ±<p(/i)/fwith h G H^M) and / ε Q(K), f Φ 0". It is clear
that ωφ(Μ) Φ 0 and that if τφ(Μ) Φ 0, then τφ(Μ) C ωφ(Μ).

5.1.1. Theorem. Let J be the image of the inclusion homomorphism
Hf^(dM) -*-H*(M). If the ring Κ is factorial and Noetherian, then up to
multiplication by kff where k is an invertible element of Κ and f is a non-
zero element of the field Q(K), we have

r-i

(18) ω" (Μ) = ord (Tors H* {M, dM)) (ord J)Z(T) χ [] [ord HTin e(t)

In particular, if Μ is closed, then (up to the accuracy mentioned)

ω" (Μ) = ord (Tors Hf (M)).

This theorem is proved in §6. In the case when Κ is a factorial Noetherian
ring whose invertible elements are exhaused by the elements of the form
±ip(/z) with h G Hi(M), Theorem 5.1.1 enables us to calculate the entire
torsion ωφ(Μ) from the homology invariants of Μ and its boundary.

If Μ is oriented and homologically oriented, then in the same way as in
§3.2 we can define a refined torsion ω$(Μ), which is "an element of Q(K)
defined up to multiplication by <p(fc)/f with h G HX(M) and / G β(ϋΓ),/^Ο".
It is obvious that ωφ(Μ) — ±ω%(Μ). When the homological orientation of Μ
is changed, the torsion ω$(Μ) is multiplied by —1; under change of the
(ordinary) orientation this torsion is multiplied by (~l)a, where

5.2. The polynomial δ.
As in the previous subsection, let Μ be an orientable compact (2r+ 1)-
dimensional manifold. We denote by Ε its /--dimensional Alexander
module, that is, the Ζ[//^Λ/")**]-module H?(M), where θ is the projection
Ζ[//,(Λ/)] ->-Ζ[/Λ(-1/)^ 1. By δ(Μ) we denote the order of the Z[//i(71/)« )-
module Tors E. By what was said in §0.4, δ(Μ) Φ 0. If the Alexander
polynomial A(M) = ord Ε is different from zero (and this happens if and only
if rg Ε = 0), then δ(Μ) = Δ(Λ/). The number rg Ε is denoted below by y(M).

As can be seen from Theorem 5.1.1, the polynomial δ(Μ) is closely
associated with the torsion ωθ(Μ). This association is analogous to the
connection between the Alexander polynomial and Milnor torsion considered
in § 1, but has a more complicated character. The torsion ωθ(Μ) is denoted
below by ω(Μ) (this torsion is defined if and only if rg //J-'in (dM) — 0). In
particular, if Μ is a closed manifold, then the torsion ω(Μ) is defined, and
δ(Μ) C ω(Μ). Thus in the case of closed Μ the torsion ω(Μ) can be
completely calculated from the polynomial δ(Μ); this polynomial in turn
can be calculated from ω(Μ) up to factors of the form //.
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We remark, although we do not require this below, that if Μ is closed and
oriented, then we can define the refined polynomial 60(M) = {δ | 6 ζ δ(Μ)
and δ ζ ωο(Μ)}. Here the refined torsion ωο{Μ) corresponds to the
canonical homological orientation of Μ (see Remark 1 of §3). If A0(M) Φ 0,
then, as is easily deducible from Lemma 2.1.1,

r - l

A0(M) = βο(Λ/)/7, where / = [] (ord H*. (A/))«(« .
t=0 '

5.3. The invariants δ and ω for links.
Let / = /j U ... U /„ be a link in S2T+l with exterior V. Let δ,, 7(7), ω(/),
and ωο(Ο denote the invariants 8(V), y(V~), ω(Κ), and CUO(V) respectively
(see §5.2; the torsion oo(F), as is easily verified, is defined; the refined
torsion GJ O (F) corresponds to the homological orientation of V defined as in
§4.3). If r > 2, then the invariants introduced here give nothing new as
compared with the Alexander polynomial Δ,. For by Lemma 1.11.4,
7(/) = 0 so that δ, = Δ,; as is easily deduced from Theorem 5.1.1 and the
results of §3, Δ,(*ι — 1) . . . (tn — l ) c ω(1) and

— 1) . . . (fn — 1) | Δ € Δ,, aug(A) = —l}c : ωβ(/).

We consider the case r = 1. It can easily be seen that δ, is the first non-
zero term in the sequence of Alexander polynomials of the link /. Its
number in this sequence is 7(0 + 1 • Here 0 < 7(0 < n- \; this can be
proved by applying Lemma 1.11.4 to the pair (V, the meridian of the
component /j).

5.3.1. Theorem. Let I = lx U ... U /„ be a link in S3 with η > 2. Then:
(i) there is a unique subset a. = a(l) of the set {1, 2, . . ., n) for which
δ ; Π ('< — !)<= ω(Ζ); (ϋ) // δ £ δ,, then δ"= (—1)™ .̂ . . .jvng ; where

i€a
m = η — c a r d ( a ) , and where vt is an integer congruent modulo 2to^ μ(Ζ,·, l})

J-Fi

in the case i £ a, and to 1 4- ^] μ(1ί, lj) in the case i £ a; (iii) // / £ a, then

μ(/,-, If) = 0 for all j Φι.

Points (i) and (ii) show that a(/) and ω(/) can be calculated from δ, and
the linking numbers of the components. Point (ii) also gives the symmetry
relation for δ,.

Theorem 5.3.1 makes it possible in some cases to describe explicitly the
set a(/). For example, if every component of / has a non-zero linking
number with some other component, then a(/) = 0. If Δ, φ 0, then
δ ; = Δ, and comparison of Theorems 1.7.1 and 5.3.1 shows that a(l) = φ.
If 7(0 = n- 1, then μ(/,·, /;) = 0 for all / Φ] and aug(6,) = ±1 (see for
example [17]). From the last equality it follows purely algebraically that
the numbers r, vXl ..., vn in the formula 6 = (— l ) r i}'>. . .ts

un δ are even.
Therefore, if 7(0 = n- 1, then a(l) = {1, 2, . . ., n). For example, if / is a
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2-component link with Δ, = 0, then γ(/) = 1 and a(Z) = {1, 2}. From
Theorems 5.4.1 and 5.4.2 stated below it is easy to deduce that the set a{l)
is an invariant for cobordism of links.

We prove Theorem 5.3.1.

5.3.2. Lemma. Under the conditions of Theorem 5.3.1, if ω £ ω(7), then
"55 = (—1)" ψ. . . ί*"ω with χ, = 1 + Σ μ(/(, Ι,) (mod 2) for all i = 1, ..., n.

Proof. As is well known (see for example [24]), there is a link
/' = /i U ... U l'n in S3 for which Δ Γ φ 0 and μ(1-, Ι}) = μ(/,, /,·) for all ι φ j .
We denote by Μ the closed manifold obtained as the result of gluing the
exteriors V and V of the links / and /' by a homeomorphism of the
boundaries taking the meridian and parallel of the component /,- to the
meridian and parallel of the component l\ respectively, for all /. It is
obvious that the canonical isomorphisms from the groups HX(V) and H^V)

to the free Abelian group with free generators rt /„ induce a ring
homomorphism ZIH^M)] ->Z[i l 5 t~\, . . ., tn, in1]. We denote this by φ.
From the multiplicativity of torsion and Lemma 1.3.3 it can easily be
deduced that ω(/)ω(/') C ωφ(Μ). From the results of §1 and §5.1 it
follows that Δ,-cr ω(Γ). Thus if Δ 6 Δ,- then ωΔ G ω*(Μ). By the duality
theorem for the torsion ω of a closed manifold (see Appendix, Theorem 6),
we have ωΔ = if» . . . ί£"ωΔ with even μ1 ; ..., μη. Hence by Theorem 1.7.1
we have the statement of the Lemma.

5.3.3. Proof of Theorem 5.3.1. Let Κ be a maximal Abelian cover of the
exterior V of the link /. We denote the ring Z[tu t~[, . . ., tn, t^1] by K.
We denote the order of the .K-module Ht{dV) by a, (where i = 0, 1). By
Theorem 5.1.1, the torsion ω(1) = ω(Κ) can be represented by the product
ord(Tors H-y(V, dV)) X (ord J)a~\ where / is the image of the inclusion
homomorphism H^dV) -> H^V). From Lemma 2.2.1 it follows that

ord (Tors Η j (V, dV)) = ord (Tors Ht (V)) = 6,.

Since by Lemma 5.3.2, ω(/) = ω(1) it follows from this that ω(/) can be
represented as the product δ x ord J χ a~o

x. We denote the set

{i 11 < i < n, u(lh L) = 0 for all / Φ i) by /. We put 7\· = Π w«i.W for
ΐψί 3

i = 1, .... n. It can easily be verified that H0(dV) = φ K/(tt — 1, Tt — i)K
~ t=i

and H^dV) = φ K/{tt — \)K. If / ^ /, then the polynomials tt- 1 and

Tj— 1 are mutually coprime; if / £ / then 7*,- = 1. Hence the orders a0 and

αγ are equal, and are represented by the product Π (tt — 1). Since the

order of the module / divides ax, the fraction ord J/a0 is represented by the

product Π (ti — I)" 1 , where α is some subset of /. Hence it follows that
i
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δ Π (ij — 1) ξ. (ύ(1). From this inclusion and Lemma 5.3.2 there follow all
iEa

the statements of the theorem.

5.4. The invariants ω, δ and cobordisms.
5.4.1. Theorem. Under the conditions of Theorem 1.11.2, ω(Κ0 = ω(Κ2).
Under the conditions of Theorem 3.4.4, w o (F t ) = ωο(Κ2).

The proof of this theorem is similar to the proof of Theorem 1.11.2 and
is therefore omitted.

5.4.2. Theorem. If I and I' are cobordant links in an odd-dimensional sphere,
then the polynomials δ/ and bf have c-equivalent representatives {see §1.11).

In the case of links in S3, this theorem was proved in 1978 by Kawauchi
[21] and independently by Nakagawa [31] (these authors did not use
torsions). From Theorem 5.4.2 one can easily deduce the existence (which
was problematic for some time) for r > 2 of links in S2r+1 not cobordant to
split links. We consider for example the link / in S~r+l composed of η > 2
parallels of a knot k a S2r+1. It is easily seen that the polynomial δ, can be
obtained from Ak by the substitution t >-*• ij£2 . . . tn. From Theorem 5.4.2
it follows that if / is cobordant to a split link, then the polynomials
Akihh ••• tn) a n d ^fc(i1)AA.(i2) ·•· Ak(tn) have c-equivalent representatives.
The latter happens if and only if the polynomial Ak has representatives of
the form ff, where / G Z[t, Γ 1] holds. ( 1 )

Proof of Theorem 5.4.2. From Theorem 5.4.1 and the results of §5.3 we
have the existence of non-zero Laurent polynomials/; / ' and integers
ru ..., rn such that

(19) fi,//~ = bvtf (t, - φ ...(tn- l)rn,

where η is the number of components of the links / and /'. By considering
the homology sequences relating the homology groups of the exteriors of /
and /' and the exterior of the cobordism between / and /', and using the
multiplicativity of the order and Lemma 1.11.4, it is not hard to prove the
existence of g, g' gZUj, ς 1 , . . ., tn, t^1] with aug(g) = aug(g') = 1 such
that διίτ = δι-g' (see [21]). From this the statement of the theorem follows
purely algebraically in view of (19).

5.4.3. Theorem. If the η-component link I in S3 is cobordant (in the
category of ordered links) to its mirror image or to its mirror image with
reversed orientation, then y(l) = n+ 1 (mod 2).

This theorem strengthens Conway's theorem discussed in Remark 3 to
§3: if the numbers η and y(l) — n— 1 are even, then γ(/) Φ 0, and hence
Δ, - 0.

Kawauchi [53] showed, if r > 2, then the link / in question is cobordant to a split
link if and only if k is a truncated knot.
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Proof of Theorem 5.4.3. Let k be the image of the link / under mirror
symmetry, and let k' be the link k with the reversed orientation. The
natural homeomorphism of the exteriors of the links / and k changes the
(canonical) orientation and /j-orientation and takes the generators tv ..., tn

of the one-dimensional homology group to t'1, . . ., t^1 respectively. From
the results of §5.1 and Lemma 5.3.2 it follows that

It is not hard to show that ωο(Α:') = (*)0(k). Hence if / is cobordant to k or
k', then by Theorem 5.4.1 the sum y(l) + n + 1 is even.

5.5. The analogue of the Torres formula for the polynomial δ.
5.5.1. Theorem. Let I = Zx U . . . U ln be a link in S* with n>3, and let

k be the link lt [j l2 \J . . , (J ln_r Let at least one of the numbers
n - l

μ(1ι, *„)> μ(*2.
 ln), • · ·, μ(^η-ι, ln) be non-zero and let T= \] «<'«·.'*>. Then

y{k) > 7(/); ify(k) > y(l), then 6,(t l t . . ., t^, 1) = 0; * if y{k) = T(/),
then there is a polynomial h ζ Zltlt t~\, . . ., in_,, tnli] for which

/oQ\ g ŝ  /j' j\__g/* f i.) yc h

where β = (α (fc)\o (Ζ)) U (α ( Ι ) \ α (Λ)).

Outwardly, formula (20) differs from the Torres formula (3) by the
appearance of two additional factors hh and Π(ί,·— 1). These factors have
different nature. The factor Π(/,— 1) arises from the presence of a non-
empty boundary in the exteriors of the links. In particular, this factor
compensates for the difference between the symmetry relations satisfied by
the polynomials 8k χ (T~ 1) and δ ; ^ , . . ., tn_ly 1). The presence of the
factor hh reflects the fact that in the transition from the Zn"1-fold cover of
the exterior of an «-component link to the Z"-fold cover, part of the
information about the order of the homology modules is lost. The special
form of the factor hh indicates that these losses occur within certain limits.

In the case when 7(0 = 0, the polynomial δ; coincides with the Alexander
polynomial Ah and the statement of Theorem 5.5.1 follows directly from
the Torres theorem 1.4.1 (for h one should take 1). We consider (20) in
greater detail in the case when y{l) = y(k) = η-2. Then
a(k) = {1, 2, . . ., η — 1} and if μ(/;·, /„) Φ 0, then by Theorem 5.3.1,
/ φ. α(0, so that j G |3. Since aug(6fe) = ±1, and 5k χ (Τ- 1) is divisible by
J~| (i,· — 1), the set β consists of the single element /. From (20) it follows

that
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where μ = μ(/7·, /„). In the case when k is the trivial knot, from this it

follows that 6,(i l t . . ., tn-i, 1) = 1 + t} + . . . + ίψ^. The last
example may give the impression that we always have hh = 1. That this is
not so is shown by the examples given in §5.6.

For the proof of Theorem 5.5.1 we require the following lemma, which is
a version of Lemma 2.4 for the torsion ω.

5.5.2. Lemma. Let Μ be an orientable connected compact manifold of odd
dimension, and let G = H^M)^. Let φ be the composition of the projection
θ : Z[Hi(M)] -> Z[G] and the projection ψ from the ring Z[G] into the
group ring of a free Abelian factor group of G. Let the torsions ω{Μ) and
ωφ{Μ) be defined, and let rg Hf(M) = rg Hf(M) for all i. If ω is an element
of the ring Z[G] representing ω(Μ), then either ψ(ω) — 0 or ψ(ω) Ε ωφ{Μ).

Proof. An argument similar to that given in the proof of Lemma 2.4 shows
that there are elements a and b of the ring Z[G] with the properties:
ab-1 ξ ω(Μ), ψ(α) Φ 0, ψ(δ) φ 0, ψ(α)ψ(δ)-χ £ ω»(Λ/). Then there are
elements f g G Z[G] for which ff and gg are mutually coprime and

ω// = ab~lgg. Here a is divisible by / and hence <//(/) Φ 0. Therefore

ψ(ω) = ψ(α)ψ(&)"1ψ(?)^(^ψ(^)~ΙϊΚ/)~1· Hence one can see that either
φ (ω) = \p(g) = 0 or ψ(ω) Ε ωφ(Μ).

5.5.3. Proof of Theorem 5.5.1. Let U be the exterior of the link k. Let V
be the exterior of the knot /„ in U. We put Κ = Z|f lt t~\, . . ., *„_!, i ^ l
and L =Z[t1, V , . . ., tn, in1!- We denote the canonical isomorphisms
Ζ[#!(£/)] -»• Κ and Z [ ^ ( F ) ] -• I by τ? and θ respectively. We denote by ψ
the ring homomorphism /(i,, . . ., in_ l t in)»-». /(i,, . . ., i n - l t 1): L -+ K.
We put φ = φ ο θ : Ζ[Ηλ{Υ)] •+ Κ.

We consider a segment of the homology sequence of the pair (U, V) with
twisted coefficients in K:

H\ (U,V)-» tf\ (V) -> ΗψΓ) -+ 0.

According to the definitions, 5k — ord(Tors Η\{υ)). It is obvious that the
^-module H%{U, V) is isomorphic to K/(T- \)K, and in particular, it is a
periodic module. Hence it follows that y(k) = rg //?(£/) = rg Hf(V) and
that the polynomial ord(Tors Hf(V)) divides the product (T~ l)8k.

Let υ be a point of the manifold V. From the exactness of the homology
sequence of the pair (V, v) with coefficients in L, it follows that
7(7) = TgH\{V)= 1 +rg H\(V, v) and that Tors H\{V) = Tors H\(V, v).
Similarly, Tors Hf(V) = Tors Hf(V, v) and y(k) = 1 +rg Hf(V, v). It is
obvious that //? (V, v) == /i ®L//f (!", v).

Let 4̂ be the relation matrix of the L-module H\(V, v). Let m be the
number of columns of A. We denote by A' the matrix obtained from A by
replacing the entries by their images under the homomorphism ψ. It is clear
that A' is the relation matrix of the if-module Hf(V, v). Therefore
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γ(/) = l + » i - r g y l < l + m - r g / l ' = y{k). If γ(/) < y(k), then rg A > rg A'
and hence all the minors of order rg A oi A belong to Ker ψ. Since Ker ψ
is a principal ideal of the ring L, the greatest common divisor of these
minors, which is equal to δ; by Lemma 1.11.3, also belongs to Ker ψ. From
Lemma 1.11.3 it also follows that if γ(/) = y(k), then ψ(δ,) divides
ord(Tors Hf(V)) and a fortiori divides (T~ \)bk. In particular, ψ (δ,) Φ 0.

We suppose that γ(/) = y{k). We put

e = IT (ii-1), b= TT (it —1) and c= Π (/,-1).
t€a(7t) i£a(O i£a(/i)\a(0

By Theorem 5.3.1, a6hcz ω(λ·) = ω'ΐ(^) and b8lcz ω{1) = we(V). It is
obvious that rg Ην(ν) = rg I/? (F) for all / (for i — 0, both ranks are zero,
for i = 1, the ranks are y(k) and γ(/), for i = 2 the equality of the ranks
follows by consideration of the Euler characteristic). Since μ(/;·, /„) φ 0 for
some /, the number η does not appear in a(/) and so ψ(δδ,) Φ 0. By
Lemma 5.5.2, ψ(δδ ;) C ωφ{ν). From the multiplicativity of the torsion it
follows that ωφ{Υ) = {Τ- \)ω\ΙΓ) (see §L4.3). Hence there exist non-
zero fg&L for which the polynomials // and gg are coprime and

(21)

Since ιΚδ,) divides (Τ- \)8k, from (21) it follows that gg· divides b. Hence
gg = 1. Since a divides bff c divides /. Thus from (21) we have (20) with
h = fc-\

5.6. Examples. To illustrate Theorem 5.5.1 we formulate a realization
theorem for the Alexander modules of three-component links. We recall
that the Alexander module of a link in S3 is the one-dimensional Alexander
module of the exterior of this link.

5.6.1. Theorem. A module over the ring L = Ζ[ί,, ί~\ ί2, f~\ ί3, ij
1] can

be realized as the Alexander module of a three-component link Ιλ U l2 U /3 C S 3

with μ(Ιχ, l2) = μ(/ι, /3) = 0 and μ(/2, /3) = 1 if and only if it has a relation
matrix

• < 3 - l l - f , 0

0 0 (ix — 1) (i2 — i)7'-r(<i — !) Cs — l ) i '

. / g Β

where t denotes transposition; f and g are columns, and Β is a square
matrix over L with Β = Bt and aug Β = diag(±l, ±1, ..., ±1). Here the
Alexander modules of the links /j U l2 and Ιγ U /3 are given respectively by
the matrices

Γ 0 «ι-1)(ί,-1)/(ίι, h, Ι)»"! Γ Ο (/,-ΙΧί,-Ιί ί ί ί , . 1, ί,)'1

If (tu <2, 1) B(tu t2, 1) J ' U( ' i . 1. '3) B(tu 1, ts) J
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This theorem is analogous to Bailey's theorem on the Alexander modules
of two-component links, and is proved similarly (see for example [23]).

We consider a concrete example. Let a S 2\t\, t2] with aug(a) = 1. We
put b = a + t3- 1. By Theorem 5.6.1 there is a link / = /x U l2 U l3 whose
Alexander module is given by the matrix

• f s - l 1 - / , 0 0

0 0 (h-l)(tt-i)i (<,-l)(<2-l)

a 0 bb 0

. α 0 0 — bb

We put k — lx U l2. Direct calculation shows that γ(/) = y(k) - 1, 1 £ δ,
and da Ε 8k. Formula (20) in this case reduces to the equality
δ * ( ' 2 - Ο = *i(tu h, Ο x aa(t2- 1). Here a(l) = {1} and ct(/c) = {1, 2}.

§6. Proof of Theorem 5.1.1

6.1. Auxiliary construction: the torsion p.
Let C - (Cm -*•... -*• Co) be a chain complex over the principal ideal ring K.
The modules C,/Tors C,· and #,-(C)/Tors Ht{C) are free; we equip them with
certain bases over Κ (for all /). These bases are simultaneously bases for the
vector spaces Q(K) <g>KC,· and Hi(Q(K) ®K C). To these bases there

corresponds the torsion T(Q(K) ®KC) 6 Q(K). It is easy to see that this
torsion, considered up to multiplication by invertible elements of K, is
independent of the choice of bases, and hence is completely determined by
the complex C. This torsion, considered up to the accuracy mentioned, is
denoted by p(C). We show that

m
(22) p ( C ) = Π [ord (Tors Ql-^^ford (Tors/r f(C))] e ( < ).

404=0

We put Zt = Ker(a,_,: C, -+CUl) and G,· = ^,(C)/Tors H,(Q. We denote
by s( a cross-section G,· -• Z,· of the projection Z,· -*• G,·. We consider the
chain complex Ε — {Em -*• ... ->• Eo), where Et — Ct φ GUl, and where the
boundary homomorphism Et -*-^,_1 takes the pair (c, g) with c G Ct and
g 6 <?,·_, to dj^c) + Si^ig) ζ C,_i· It follows immediately from the
definitions that #,·(£) = Tors # f (C) for all i, and p(E) = p(C). Hence we
can see that it suffices to establish (22) in the case when //,(C) is a periodic
module (that is, when //,(C) = Tors Ht{C) for all /).

We denote by C the subcomplex Tors Cm -»Tors C.m_x ->-... -»-Tors Co

of the complex C. We denote the factor complex C/C' by D. It is obvious
that the projection C -*• D induces an isomorphism of the acyclic chain
complexes Q{K) <8>K C -+Q{K) ®KD. Hence p(Q = p(D). By Lemma 2.1.1,

m

= [] [ord Hi(D)]*M . We recall that the order ord is multiplicative:
t=0
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if 4̂ is a periodic ^-module and Β a submodule of it, then ord A = ord Β χ
χ οτά(Α/Β). From the multiplicativity of order and the exactness of the
homology sequence of the pair (C, C') it is easily deduced that

U \ovdHt{D)Y(i)= \] [ordHl{C)]*i) Π loTdHiiC'))-*».
i=0 t=0 i=0

Similar considerations show that

i=0 t=0

Hence we have (22).

6.2. Proof of the theorem. We fix a triangulation of the manifold M. We
denote the chain complex Q(K) <8> K C%{M) by C. We fix a sequence
g = (#o> Sv ·.. gm) of bases for the Q(£)-modules H0(Q, H^C), ..., Hm{C).
We denote by ut the matrix of the sesquilinear form of the intersection
numbers //j(C) X Hm_;(C) -±Q(K) with respect to the bases g,· and gm_/.
By the definitions, the torsion ωφ(Μ) can be represented as the product

T(C> £) 11 ( ( ' e l w,)"r( i ). We denote this product by ω. We denote by ω' the
4=0

product of the right hand side of (18) by
2r

] I [ord (Tors Hi (71/)) χ ord (Tors Hi (M))]m.

We say that the elements a and a' of the field Q(K) are equivalent, and write
a ~ a', if there are invertible elements λ, λ' of the ring Κ for which
λα = λ'α'. We represent «(co '^as the product of integral powers of
pairwise inequivalent irreducible elements of K. We denote the degree to
which an irreducible element ir appears in this product by s(n). To prove
the theorem, it suffices to verify that s(F) = λ(π) and that if π ~ π, then
5(π) is even.

We denote by Κπ the result of localizing the ring Κ by the multiplicative
system consisting of the elements prime to π. We denote the composition
of the homomorphism ψ: ΖίΗ^Μ)] ->· Κ and the inclusion Κ -*• Κπ by ψ(π),
or, more briefly, by ψ. It is clear that Κπ is a local ring, and in particular,
a principal ideal ring. We fix a basis ht of the free ^-module
#/"(Af)/Tors Hf{M). The inclusion Kn -»· Q{K) induces an embedding of the
latter module in HfiC); here the image of the basis ht is a basis for the
<2(.if)-module //;(C). Let [hi/gt] == jip i, where the sign = denotes equality up
to multiplication by an invertible element of the ring Kn, and where
Pi ~ Ρί(π) e z · We denote by g* the basis of the Q(iT)-module
Hm-;(Q(K) ®KCl(M, dM)) dual to the basis g,· relative to the sesquilinear
form of the intersection numbers

(23) Ht (C) χ Hm_t (Q (K) ® K Cl (M, dM)) -+Q(K).
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Let h\ be a basis for the free ^-module H^M, dM)/Tors H%_,(M, dM),
and let [h'i/g*] == π " , where qt = q^ir) €E Z. We remark that the numbers pt

and qt are independent of the choice of the bases ht and h\. Below we
m

prove two assertions: (i) s(n) = 2 ε(ΐ) (pi — g,·); (ii) P/(7r) = ~<7/(ir) for
l-r+l _

any /. Hence it follows that •?(¥) = s(n), and that if π ~ π, then s(n) is even.
ν · ν m

We prove (i). It is obvious that x(C, g) = t(C, fc) χ Π π ε ( Ο ί " , where
i=0

Λ = (h0, hx, ..., hm). The fact that the complex Cf(M) is free implies that
Tors H^(M) = 0, and by the results of §6.1, also

T(C, h) = Π [ord(Tors Hf (Μ))]ε<<>. Since the localization function is exact,

we have Hf (M) = Kn ®KH% (M), so that

ord (Tors Hf (M)) = ord (Tors ̂ ? (M)).

Thus
v m— 1 m

( ( ( ) Π
i=0 i=0

It is obvious that the matrix «,· is equal to the matrix of the inclusion
homomorphism H^C) -+Hi(Q(K) ® K C*(M, dM)) with respect to the bases
gi and gm-i- Let vt be the matrix of this homomorphism with respect to ht

and hm-i- It is clear that dot ut -^ del vt χ κ?''"'""-'. Hence

U ((]c lu ( )- E ( i ) - Π («1ο1ι;()-ε(Ο Π n-tWi-'m-i».
i=0 t=0 i=0

r

It follows immediately from the definitions that the product Π (^ e t f/)~E(i)

is equal to the torsion ρ of the following acyclic chain complex over Kn:
^Hf (M) -»- # • (M, dM) -> tf *!'," (βΛ/) - > . . . - > ^ J 0 i n

-κ Ht (Μ) -»- //J (ΛΓ, 571/) -^ 0.

(We remark that rg / = rg Hf~in(dM) = 0.) By formula (22) and the
exactness of the localization functor

Π (detv,)-e(1)=i= Π [ord (Tors ^ ( ^ ) ) ] " ε ω Χ
«=0 1=0

Χ Π [ord (Tors Hf (M, dM))]m X 'fj [ord Hf** (dM)]** (ord / ) E ( r ) .
i=0 i=0

We remark that ord (Tors H?(M, dM)) = ord (Tors H%r-i (M)) (see §2.2.1).
Combining all these formulae, we obtain

τη

ω^ω' ΓΙ
i=r+i

From this (i) follows.
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We show that ρ,·(π) = -?,(*) . We denote the ^-module H*£l(M, dM)
by E. It suffices to prove that some basis h] of the free ATs-module
£/Tors Ε is dual to the basis h, of the module H?(M)/Tors Hf(M) (where
φ = ψ(π)) with respect to the sesquilinear form

(24) # ? (M)/Tors Η* (Μ) χ E/TorsE-+Q(K),

obtained by restriction of the form (23). Hence it follows that

πρ« ( π ) = [htlg,] = ΐΊΪΜ}-* = π-«' ( Η ) = π"5.™,

that is, that ρ,·(π) = -<7,·(π).
If π ~ π, then ΑΓ̂  = .£„, and the existence of the basis h] dual to the

basis hi is a well-known corollary of the duality theorem and the universal
coefficient formula (for principal ideal rings). The following argument goes
through for any π. We denote by σ the canonical involution of the ring

Ζ[Ηχ(Μ)]. Since φ = φ ο σ, the change of rings a >-*• a: K^ ->-Κπ yields an
isomorphism Ε -*-/Γ*1°(Μ, dM). This isomorphism takes (24) to the form,
bilinear over Κπ:

Hf (M)/Tors Hf (Μ) χ HV°-i (M, 5M)/Tors Ht-i (M, dM) ->K n.

The latter form is non-singular (see §§2.2.2 and 2.2.3). Hence we have the
existence of the h* with the desired property.

Appendix

Duality theorems for torsions

1. Description of the situation.
Up to the end of this appendix, we suppose that we are given a compact
w-dimensional manifold M, an integral domain K, and a ring homomorphism
φ: Ζ [//((Μ)] -*• Κ. We assume that the ring Κ is equipped with an involution

a >-+ ο: Κ -ν/ν such that φ(/() ^ (^(/^(/i"1) for any h G H^M). The
induced involution Q(K) -* Q(K) will also be denoted by a bar.

2. Theorem (Franz [ 12], Milnor [26]). // m is odd, and if τφ(Μ) Φ 0, then

τΦ (Μ, dM) = [ τ ^ ΰ ) ] ^ ' " ' {where ε (m) = (— 1)"!+1).

Proof. We denote by σ the involution of Z[HX{M)\ taking h G HX(M) to
1. It is obvious that φ = φοο, and τ*^/) = %v(M). Hence the

equality in question is equivalent to the equality τ" 1^/, dM) — [τφο° (M)]f('">,
which follows from Lemma 4.3.3 (i) and the fact, which has already been
used above, that if X is a piecewise-linear transformation of M, then the
chain complex Cf°(Ar*, dX*) is dual to the complex Ci(X)(see §2.2).
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3. Theorem (a generalization of Theorem 2). Let V and V be disjoint
compact (m— \)-dimensional submanifolds (possibly with boundary) of dM
for which dM\lnt(V U V') is a cylinder with the bases dV and "dV. If m is
odd, and if τφ(Μ, F) =£ 0, then

τ<ρ (Μ, V) = [τ* (Μ, V))t(m).

The proof of this theorem is similar to the proof of Theorem 2, with the
difference that instead of triangulations and the CW decompositions dual to
them we use dual decompositions into handles (see [36]).

4. The Stiefel-Whitney class
We recall that in the category of ^/-manifolds we can define the so-called
Stiefel-Whitney homology classes (see for example [51]). In particular, if
the manifold Μ is closed, then its first Stiefel-Whitney homology class ^
is defined as the element of the group HX(M) if m is even, and the element of
the group H^M, Z/2Z) if m is odd, that can be represented by the cycle

(25) Σ ( — l ) d i m b - d i m o ( a , b),
a<b — -

where: a and b are simplexes of some piecewise-linear triangulation X of M;
the notation a < b means that α is a proper face of b\ α is the barycentre
of the simplex a; (a, b) is the one-dimensional simplex of the first
barycentric subdivision of X with vertices <z and b_. (It is known that the
class Vi(M) is independent of the choice of triangulation X.) According to
the classical theorem of Whitney, if the piecewise-linear structure on Μ is
induced by a smooth structure, then the class v^M) is the Poincare dual to
the (m - 1 )-dimensional Stiefel-Whitney cohomology class of Μ (a detailed
formulation and proof of this theorem can be found in [51]). In particular,
if Μ is an orientable closed three-dimensional manifold, then w2(M) — 0 and
so v^M) = 0.

5. Theorem (refinement of Theorem 2 in the case dM = 0 ) . Let Μ be
closed and orientable. We put

0 if m = 2 (mod 4) or m = 3 (mod 4),

[m/2]

Σ rgfft(M) ifm = \ (mod 4),
t=0

2 = m/2

z ' + Σ TS^i 0^)> where ζ is the number of negative squares in the

diagonal representation of the form of intersection numbers in
Ηm/2 (Λ/; R), ifm = 0 (mod 4).

// m is even and τφ(Μ) Φ 0, then τϊφίυ^Μ)) = (~l)z for any τ G τφ(Μ). If
m is odd, then for any τ Ε τφ(Μ) there is an element g of the group HX(M)
for which g (mod 2) = υλ(Μ) and! = (-l)z<p(g)T.
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We remark that if m = 0 (mod 4) and τφ(Μ) Φ 0, then the residue z'
(mod 2) is independent of the choice of orientation of M, since then
rg IIm/2(M) = χ(Μ) (mod 2) and χ(Μ) = 0.

Theorem 5 is proved in §9, using Lemmas 7 and 8. The given proof of
Theorem 5 can be carried over to the case of a non-orientable closed M, and
gives in this case a weaker form of the statement of Theorem 5:
ττφίυ^Μ)) = ±1 if m is even, and "r = ±<fig)T with g (mod 2) = υλ{Μ) if m
is odd.

6. Theorem (duality for the torsion ω). Let Μ be closed, orientable, and
odd-dimensional; dim Μ = 2r + 1. Then for any ω Ε ωφ(Μ) there is an
element g of the group Hi(M) for which g (mod 2) = vx{M) and

ω - {~\Υψ^)ω, where y = 0ifr is odd, and y = Σ (rg H^M) + rg H<¥ (M))

// r is even.

The proof of this theorem is similar to the proof of Theorem 5 given
below, and is therefore omitted.

7. Lemma (variant of Lemma 4.3.3 (i) for the torsion r). Let
C = (Cm -»·... -*• Co) and C* = {C'm -*...-> CO) be dual chain complexes over
a field F, with x(C) = 0. For each i = 0, 1, ..., m, let the bases cml,· and
hm'_i of the vector spaces Cm'_t and Hm_i(C*) be dual to the bases c,- and ht

of the vector spaces Q and Η((Ο with respect to the Kronecker pairings
Ci X Cm'_i -+Fand H^C) X Hm_i(C*) -+F. Then the torsions τ of the
complexes C and C* corresponding to these bases are related by the equality

x(C*) = (— l)nT(C)E<m>, where

m [m/2]

η = Σ [α, (C) α,_, (C) + β , (C) β,., (Q) + Σ [<*2< (Ο + β2ί (C)].
i=0 i=0

Proof. We use the notation introduced in the course of the proof of
Lemma 4.3.3 (i). We put x, = dim Im 9,· and yt = x { dim Ht{C) -f
-f x^ (dim Hi(C) -f x,· -f i). It can be verified directly that

(We remark that the appearance of the term ixUl in yt is connected with the
presence of the sign in the equality dml,· = (—l)'di!i; see §2.2.2.) Using
the condition x(C) = 0, it can easily be verified that N(C*) = N(C). Hence
the statement of the lemma follows from the congruence
>Ό+>Ί+ ··• +7m — n (mod 2). This congruence can be verified directly by
considering the equalities xt = a,(C)-|3,(C), dim H^C) = PJ(C) — βί_ι(Ο,
and am(Q = 0 m ( O .

8. Lemma (refinement of Lemma 4.3.3 (iii)). Under the conditions of
Lemma 4.3.3 (iii), if the space X is homologically oriented, then

e) = T&X', e').
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The proof of this lemma is obtained by a simple modification of the
proof of Lemma 4.3.3 (iii), and is therefore omitted. (We remark that if
fig) τ*= — 1 for all g Ε Ηγ{Χ), then the statement of Lemma 8 follows from
Lemma 4.3.3 (iii) and Theorem 3.2.1.)

9. Proof of Theorem 5. We assume that τφ(Μ) Φ 0. Here χ{Μ) = 0. By
replacing the ring Κ by its quotient field if necessary, we can assume that Κ
is a field.

Let X be a piecwise-linear triangulation of M. Let ρ : Μ -*• Μ be a
maximal Abelian cover. Let e = (alt ..., aN) be a base sequence of oriented
simplexes induced by the triangulation X of the manifold M. It is obvious
that the sequence e* = (a\, ..., a^f) of dual cells is a base sequence of cells of
the CW decomposition X* of Μ dual to X. We orient Μ and the cells
a\, ..., a*N so that for each i = 1, ..., Ν the orientations of the cells at and a*
define the chosen orientation in M. The sequences e and e* define dual

bases of the dual chain complexes C%(X) and C$(X*) (compare with the
proof of Theorem 2). By Lemma 7 it then follows that

(2G) τ ( C (A'*), e*) = ( - 1)" τ (Cj (X), e)£ ( m\

tn [t"/2]

where » = V α,α,·^ -|- ^ cc2i; a,· is the number of simplexes of X of
i 0 i 0i = 0

dimension </.
We consider an arbitrary basis ht in Hj(M; R), and denote by h* the basis

of Hm_j(M; R) dual to it with respect to the form of the intersection
numbers H^M; R) X 77m_f(.1f; R) ->- R (where 2 = 0, 1, ..., m). It is
obvious that the chain complexes C*(X; R) and Ct(X*; R) over R, when
equipped with the bases of the spaces of chains corresponding to the
sequences e and e* respectively, and equipped with the respective bases
h0, hit ..., hm and h*m, ..., h*0 in the homology, are dual. By Lemma 7

(27)

m [τη/21 i

where n' = n + Σ βιβι-ι+ Σ Pso βι = Σ rg H} (M).
t=0 i=0 j=0

We fix the homological orientation in Μ given by the basis h0, hx hm

in Ht{M; R). We put λ = 1 if the basis h%, / i m ! l t . . ., 1ι*ΰ gives the same
orientation, and λ = —1 otherwise. By multiplying the left and right hand
sides of (26) by the signs of the corresponding sides of (27), we obtain

(28) T J ( * · , e*) = ( - l ) n ' - l

We remark that if a and b are simplexes in Μ with p(a) C p(b), then there
is a unique covering transformation Μ -> Μ taking α to a subset of b. We
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denote the element of the group HX{M) corresponding to this covering
transformation by g(a, b). We put

g = Π

The following statements hold:

(i) (_1)" '- η λ = (_1)=;

(ii) x$(X*,e*) = <p(g)Tf(X,e);

(iii) if m is even, then vx(M) = g; if m is odd, then Vi(M) = g (mod 2).
Hence by (28) it follows that the statement of the theorem holds for

τ = τ$(Χ, e). Since τ<Ρ(Μ) = {±<p(h)xl(X, e) \ h 6 H^M)}, the statement
of the theorem also holds for arbitrary τ ξ, if (Μ).

The proof of statement (i) consists in applying Poincare duality (taking
into account the equality χ(Μ) = 0), and is omitted.

We prove (ii). Let X' be the first barycentric subdivision of the
triangulation X of M, and let X' be the induced triangulation of M. Let e
(respectively e") be the base sequence of simplexes of the triangulation X'
consisting of the simplexes lying in simplexes of the sequence e (respectively
in cells of the sequence e*). By Lemma 8, τ%(Χ, e) = τ^(λ", e') and
x$(X*, e*) = τ$(Χ', e"). Each simplex a of the triangulation X' can be lifted
uniquely to simplexes a S e and a" E e". It can easily be verified that

τ* (Χ', e') = τ? (X't e·) χ φ( fl *(α\ a")-«dima)).
o€A-

If a - (bjy, bj, ..., bjj), where ft0
 c &i C ... C bq are simplexes of the

triangulation X, then a' C ba and a" C (Z>0)*, where V denotes the unique
simplex of the sequence e situated over b. Hence g(a , a ) = g(b0, bq)~

Π S(a\a

where b and c are simplexes of X, and /(&, c) is the Euler characteristic of
the complex whose ^-dimensional simplexes are all possible sequences
b = b0 C £>j C ... C bq = c (with q = 1, 2, ...). If d is the simplex spanned
by the vertices of c that do not appear in b, then the <7-dimensional
simplexes mentioned are in bijective correspondence with the (q— 1)-
dimensional simplexes of the first barycentric subdivision of d that contain
the barycentre d_ (as a vertex). Hence

f(b, c) = — l%(d) — x(dd)) = — [1 — x(S*™ Ι"1)] = - 6 ( d i m b — dim c).

From this we have (ii).
We prove (iii). We fix a point χ in Μ and for every simplex a of the

triangulation X we fix a path la in M, going from χ to a_. If ρ(α,) C ρ(α,),
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then the class g(ah a,) € H^M) can be represented by the singular cycle
(P°la.) — (p°lai) — <aM aj)· Hence g can be represented as the sum of the
cycles (25) and the cycle 2 ka(po la), where

K= Σ ε (dim 6 —dim α)— 2 e (dimt — dima).
b<a a<b

The boundary of the cycle (25), as is easily verified, is equal to — 2 &αα·
a

So if m is even, then ka = 0 for all a, and if m is odd, then ka Ξ Ο (mod 2)
for all a. Hence we have (iii).
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