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i. Introduction 

Let G ~ Sp (n, R) be the symplectic group (n~i) and G 6 be the same group with the dis- 
crete topology. The present paper is devoted to the study of the element u of the group 
H ~ (G~; Z), which is determined up to sign in any of the following (equivalent) ways: a) u is 
the image under the canonical homomorphism H 2 (BG; Z)-~ H 2 (BG~: Z) of the generator of the 
group H 2 (BG; Z)~ Z; b# u is the cohomology class corresponding to an extension of the group 
G by its universal covering, provided with the natural group structure (recall that ~I(G) ~ Z); 
c) u is the first Chern class of the complex vector bundle obtained from the real vector 
bundle over BG~(~ K (G6,1)) associated with the universal principal G6-bundle and the action 
of G on R 2~ introduced by the natural complex structure (see [2, 3]). 

In this paper we consider the question of finding an explicit formula for a two-dimen- 
sional cocycle in the bar-resolution of the group G, representing u. This question is not 
new; see Sec. 2. The interest in it is due to firstly the interest in a broad scheme for 
constructing explicit cocycles which represent nontrivial cohomology classes of Lie groups 
and algebras, and secondly to the specific role which the class u and its reduction mod 2 
play in the theory of representations of Lie groups and in the theory of symplectic and meta- 
plectic structures. 

Even for widely studied groups and their cohomology classes the construction of explicit 
cocycles representing these classes is not a mechanical matter and usually requires additional 
arguments. Here the role of such arguments was played by the following observation relating 
to the elementary theory of cobordism. Let V be an orientable closed smooth manifold of 
dimension 4m + 2 with m~0. Let ~ be the group of orientation-preserving diffeomorphisms 
V + V. The torus of the diffeomorphism / : V-~ V (the manifold V × [0, i]/a X 0 ~ f (a) × 
for a ~ V) is denoted by T(f). If f, g ~ ~, then by N(f, g) we denote the result of gluing 
the lower bases of the cylinders T (/) × [0, i] and T (g) × [0, I] to the upper base of the 
cylinder T (/g) X [0, i] according to the following rule: we identify a X t × 0 ~ T (f) × 0 
with a × (t ~ i)/2 × ] ~= T (]g) × ~ and a × t X 0 ~ T (g) X 0 with a × (t/2) X i ~T (fg) X ], where 
a ~ V and t~ [0, i]. It is easy to verify that: (i) N(f, g) is a compact orientable (4m + 
4)-dimensional manifold, whose boundary is equal to the disjoint union of T(f), T(g), and 

T(fg); (ii) if h~-_ Q, then the result of gluing N(f, g) with N(fg, h) along the common bound- 
ary component, the torus T(gf), is homeomorphic with the result of gluing N(g, h) with N(f, 
gh) along T(gh). In view of (ii) and the additivity of the signature, the function~: Q2--~Z 
(associating /:he pair f, g with the signature of the suitably oriented manifold N(f, g)) 
satisfies the relation ~ (/, g)~ ~ (~g,h) = ~ (g,h) ~ ~ ([,gh), i.e., ~ is a two-dimensional co- 
cycle (see [12]). It turns out that the construction made can be modeled algebraically. 
This leads to a cocycle ~: G~-+Z representing 4u (see Sec. 3). Adjusting T/4 by a co- 
boundary, we construct an integral cocycle representing u. Both these cocycles are inva~ 
riant with respect to inner automorphisms of the group G. 

Another result of the paper is that the cocycle ~ considered here is closely connected 
with the Maslov indices of Lagrangian Spaces (see Sec. 4). 

2. History of the Question 

Dupont and independently Guechardet and Wigner constructed the same real cocycle which 
represents the image of the class u under the natural homomorphism B~(G6; Z)-+H~(G~; R) (see 
[3, 5, 6]). An explicit but quite involved formula for this cocycle is given in [3, p. 152]. 
If n = i, Guechardet and Wigner found a simple explicit formula for an integral cocycle which 
represents u (see [6, p. 289]). For any n a cocycle G2--~Z, representing 4u was constructed 
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by Weil in the course of constructing the Shale--Weil representation of the metaplectic group. 
Later Lion proved that this cocycle is defined by the rule (f,g)~+ ~ (k,/(k), /g (k)), where ~ is 

the ternary Maslov index and k is a fixed Lagrangian space (see [i0]; different k correspond 
to cocycles obtained from one another by inner automorphisms of the group G). The Weil-- 
Lion cocycles can be expressed in terms of T, see Sec. 4. The interconnections of the co- 
cycles of Dupon and Guechardet--Wigner on the one hand, and the cocycles of Weil--Lion and 

~, on the other, are not clear to the author. 

3. Cocycle 

Let H be a finite-dimensional real vector space; B: // X H--~ R be a nonsingular skew- 
symmetric form; G be the group of linear automorphisms of the space H, preserving B. The 
existence of the form B allows us to fix an isomorphism Z-+ ~i (G), which eliminates the am- 
biguity in the definition b) given in Sec. i of the class u (the other isomorphism corre- 
sponds to --u). Namely, if a, b ~ // with B (a, b) ----- i, then one fixes the isomorphism which 
carries i into the homotopy class of the loop [0, 2~] -+ G which assigns to the number t the 
homomorphism which is the identity on the B-annihilator of the plane Ra -~ Rb and which car- 
ries a into a cost-- bsin t and b into asin t ~- b cost (i.e., rotating the plane Ra-~ Rb by the 
angle t clockwise). 

For /, g~ G in the space (/ -- I) (H) ~ (g -- i) (H), where i denotes the identity operator, 
we define a binary real-valued form by 

(a, b) ~+ B ((f - -  ~)-1 (a) + (g - -  t )  -1 (a) -6 a, b). ( i )  

It is easy t® verify that this is a well-defined symmetric bilinear form. In general, 
it is degenerate. We denote by 9 the map Gi-+Z which associates with the pair f, g the 
signature of the form (i) (factored by the annihilator). 

THEOREM i. The map T is a cocycle and represents 4u. 

It follows from Theorem I that the cocycle ~/4 with values in Q represents the image 
of u under the inclusion homomorphism /f~ (G6; Z)-+ H a (G6; Q). We shall construct an integral 

cocycle which represents u. It is easy to verify that if /~ G, /~= I and x~,...,xa is a 
basis of the space (f -- i) (H), then the determinant of the matrix {B ((/- i) -I (xz), xj)}, i, j : 
I,..., d is different from 0, and its sign is consequently independent of the choice of 
basis. We set s(f) = i, if this determinant is positive, and s(f) =--I if not. We set 
s(1) = i. We denote by p the coboundary G"-~Z of the cochain /-~ dim (/-- I) (H) ~- e (/) -- I: 

G-+Z. 

THEOREM 2. The cocycle (~- p)/~ takes integral values and represents u. 

COROLLARY. For any ra ~ 2 the cocycle I/4 (~ -- 9) (rood m) represents ~ (rood m) ~ H "2 (G6; 
Z/mZ). 

An interesting consequence of Theorem 1 is the existence of a primitive function for 
the cocycle ~. Namely, let p: G-+ G be the universal covering, where G is provided with 
the natural group structure. Since p*(u) = 0 and ~-----[C, ~], there exists a unique one- 
dimensional cochain q0: ~-+ Z whose coboundary is equal to the lift of T to G; for any 

El, F 2 ~_ (7 

cp (p (F~), p (F.,_)) = cD (F1) -6 op (Fi) -- q) (F,Fi).  (2) 

The function q0 has a number of remarkable properties: q0 gives rise to the Maslov in- 
dex; (I) is a Borel function; q) is invariant with respect to inner automorphisms of the group 
G. One can expect that (D is connected with the generalized character of the Shale--Weil 

representation (see [8]). 

The values of the cochains ~ and q) on elements of the unitary group can be calculated 
from the eigenvalues of the operators. We restrict ourselves to the formulation relating 
to (D. In H we fix a complex structure compatible with B, i.e., a homomorphism J: II--~ H, 
preserving B, such that j2 ~--I and B (J (a), a)~ 0 for any nonzero a ~ H. We denote by U 
the subgroup of the group G consisting of automorphisms of the Hermitian form 

(a, b) -+ B (Y (a), b) -6 iB (a, b): H ~ - +  C. (3) 

We d e n o t e  by  U t h e  s u b g r o u p  o f  t h e  g r o u p  U X l~ c o n s i s t i n g  o f  p a i r s  (h ,  d) w i t h  d e t  h = e i d .  
The projection U-~ U is the universal covering and hence lifts to a monomorphism i]: U-~ G. 
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We define a function ~: R-+ Z by: if m ~ Z, then ,~ (ran) = 2m and ~ (Imp, (m-7 ~) ~ [) = 

2m -7 1. 

THEOREM :3. If (h, d) ~ ~ and if O~, . .., 0~ are real numbers such that e ~0~, . .., e ~°~ are 
eigenvalues of the operator h (taking multiplicities into account), then 

* (n (~, d))  : -  ~ o,. - d )  - -  ~ ~ (0/2). 
r = l  r : - i  

(4) 

4. Maslov Indices and the Cochains T and • 

Let A be the manifold of Lagrangian subspaces of the space H (a subspace is Lagrangian 
if it coincides with its B-annihilator). Let q: A-+ A be the universal covering (~i (A)= Z). 

In symplectic geometry an important role is played by the maps T: A X A X A-+ Z .and m: A x 
A-+Z, called respectively the ternary and binary Maslov indices and defined as follows. 

If kl~ ki, k 3 :~ A, then T (kl, k~, k3) is the signature of the symmetric bilinear form A in (kl -7 
ki) IQ k3 de.fined by: if a, b ~ (k I-7 ki) f] k 3 and x is an element of k2 such that a-- x ~ kl, 
then A (a, b) = B (x, b). If kl and k2 are transverse, this definition of the index T coincides 
with the usual one (up to a linear transformation; see [7, 9, i0]). 

In general it is equivalent with the definition of Kashiwara (see [i0]). 

The binary Maslov index is most easily defined axiomatically. 

THEOREM 4. There exists a unique function m: A~-+ Z locally constant on the set of 
pairs KI, K~A, suchthat q(K I) is transverse to q(Ki), which for any KI, Ki, ff 3 ~ A satis- 
fies the formula 

(q (K~), q (K~), q (K~)) = m ( K .  K~) - -  m ( K .  K~) + m (K~, ~7~). (5) 

This theorem was proved in somewhat restricted form by Leray [9]: he considered the 
Maslov index only for transverse pairs. 

To describe the connection between the Maslov indices and the cochains T and (D, we fix 
in H a complex structure compatible with B (see Sec. 3) and a basis al,..., a~ for the space 
H over C, which is orthonormal with respect to the form (3). According to [i0], for any 
]~ A there exists a unitary operator /: H-+H such that k ---- / (Ral -7 . . . -7 Ra,). Here if 
g: H-+H is the linear operator over C, defined with respect to a~,...,an by the matrix 
obtained by transposing the matrix of the operator f with respect to the same basis, then 
the composition /o g is independent of the choice of f, and the rule k ~+ /o g defines an 
imbedding of A + G. We denote it by y. (The image of T consists of unitary operators, de- 
fined by symmetric matrices with respect to the basis al,..., a~ .) Since T induces an isomor- 

phism ~I(A)-+~I(G) (see [I]), the composition ?o q: A-+G liftsto an imbedding A-+G. We 
denote such a lift by F. We denote by ~ and P, respectively, the maps (]i~/2,/3) ~+ ~ (JT~fi, ff~f~): 
G ~ -+ Z and (f~, fi) ~+ ~ (f71Fi): G2 -+ Z. According to [ 12] , @ is the "two-dimensional cocycle in 
homogeneous generators of the bar-resolution" of the group G," corresponding to ~ and P is 

a primitive of it. 

THEOREM 5. For any kl, k 2, k 3 6E_ A , 

(~'. k~, k:~) : ~ .  (? (1~), ~ (k~), ~ (~:~)). (6) 

For  any  K~, K 2 ~_ ~_ 

(7) 

Thus, the composition ~ o (T × ? X ?): A3-+ Z is independent of the choice of complex 
structure and basis in H, used in constructing the imbedding T, and is equal to 2T. The 
composition qf o (F 7< F):Ai-+Z is also independent of the choice of F in the class of imbed- 
dings A-+C constructed and is equal to 2m. In other words, up to multiplication by a con- 
stant the cochains ~ and ~ are respectively extensions of the ternary and binary Maslov in- 
dices to the symplectic group and its universal covering. This point of view allows one to 
describe the relations between the Maslov indices in terms of homological algebra. We shall 
say that Leray's formula (5) is a specialization of the assertion "the coboundary of the 
cochain P is equal to the lift of @ to G." The specialization of the assertion T,~ is a co- 
cycle" is the familiar formula 
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for 

( k .  k: ,  k~) - T (k~, k~, k~) + T (kx, k~, k~) - ~ (k2, ~ ,  k~) = 0 

any  k 1 ,k  2,k3,k~ ~ A. 

COROLLARY OF THEOREMS 3 and  5 ( S o u r i a u ' s  F o r m u l a  i n  L ion - -Ve rgne  Form,  
i 

s e e  [ 1 0 ,  1 6 ] ) .  

( 8 )  

L e t  K1, K 2(:_- ~ ;  F(Kr)  ~ ~]ihr, dr) w i t h  r ~ 1 ,2 ;01  . . . .  , Or, be  r e a l  n u m b e r s  s u c h  t h a t  e ~,, . . . , e  i% 
n n 

are eigenvalues of the operator h~lh~ and ~ 0 , . ~  do.-- dl. Then rn(K1, K2)---=--- ~,~ tt(Or/2 ) . ,  
r=l r ~ l  

5. Remarks 

a) Since the Weil--Lion cocycles (see Sec. 2) represent 4u and the values of these co- 
cycles do not exceed n = (dim H)/2 in modulus, the real class of u can be represented by co- 
cycles whose values do not exceed n/4 in modulus. Hence the norm of the class u in the sense 
of the theory of bounded co~omology is not greater than n/4. The estimate II u II < ( 2n- I)/2 
was noted previously (see [4]) . It seems likely that II u II ---- n/4 (this is true for n = i; 
see [14]). 

b) In [13] the Maslov index of a triple of positive Lagrangian subspaces of a complexi- 
fied symplectic vector space is defined. It satisfies (8) and for real Lagrangian spaces 
is equal to T. It would be interesting to give it a homological interpretation. 

c) We note a definite parallelism between the present paper and Novikov [15], where, 
just as here, the considerations of relations to cobordism theory led to a purely algebraic 
construction which turned out to be connected with the Maslov indices. 

6. Outline of the Proofs of Theorems 1-5 

(i). The fact that ~ is a cocycle, i.e., that for any f,g,h~ G 

q,  g) + ~ (fg, h) = ~ (g, h) + T q ,  gh) (9) 

is proved by imitating the proof in linear algebra of the additivity theorem for the signa- 
ture for the special manifolds considered in Sec. i. It is easy to see that ~ is a Borel 
cocycle. By results of [Ii], the image of the Borel cohomology group H~ (G; Z) under the 
natural homomorphism H~ (G; Z)-+ H 2 (G~; Z) is generated by the class u. Hence T represents 
mu, where mE Z. Calculation of the restrictions of ~ and u to S l shows that m = 4. 

(2) . Since H ~ (G6; Z) has no torsion, it suffices to show that ~ (f, g) ------- p (f, g) (rood 4) 
for any f, g. If Ker (g- i) = Ker (fg- i) = 0, then the congruence needed follows from 
the fact that the determinant of the form (i) is equal to s (f)e (g)e (]g) (the latter is proved 
with the help of the identity [(f-- i) -I ~- (g-- i) -I ~- ~] (]-- i) = (g-- I) -I (gf-- i)). From this, 
using (9), the general case follows. 

(3). It follows from (9) that in a neighborhood of i ~ C the map f ~ ~ (--i, p (f)) sat- 
isfies (2) and hence coincides with ~. Now (4) is verified in a neighborhood of 1 by direct 
calculation. It follows from (2) that if (4) is valid for (h, d), then (4) is also valid 
for (h 2, 2d). 

(4 and 5). The proof of Theorems 4 and 5 reduces to the proof of (6): the uniqueness 
in Theorem 4 is obvious, and the existence and (7) follow from the fact that by (2) and (6) 
the map (KI, K2)~+ ~ (F (KI), r (K2))/2 satisfies the hypotheses of Theorem 4. It follows from 
Leray' s results [9] that the number ~ (y (kl), y (k2), ? (ka)) does not change under continuous 
deformation of the complex structure and basis used in defining the imbedding y. Since the 
space of these structures and bases is path connected, it suffices to prove (6) for one y. 
For suitable choice of the complex structure and basis it turns out that up to factorization 
by the annihilator, the bilinear form used in the definition of the right side of (6) splits 
into the direct sum of two forms which are isomorphic with one another and to the form used 
in the definition of the left side. 

The author intends to publish detailed proofs later. 
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CLASSIFICATION OF NONSINGULAR SURFACES OF DEGREE 4 IN R/~3 WITH RESPECT 

TO RIGID ISOTOPIES 

V. M. Kharlamov UDC 513.62 

The fundamental objects of the topology of real algebraic varieties are nonsingular 
curves in RP 2 and nonsingular surfaces in RP s. There are several classical versions of 
their division into classes. In all versions the degree of the curve or respectively of the 
surface is assumed to be given. In the first version surfaces are considered up to a homeo- 
morphism between their sets of real points. In the second up to arbitrary topological 
isotopies in RP 3 of the set of real points of the surface; such isotopies are called real, 
following Rokhlin [i]. Finally, in the third version, surfaces of degree m are considered 
up to real isotopies composed of surfaces of degree m; following Rokhlin [i], such isotopies 
are called rigid. In the case of curves these versions are analogous -- it is only neces- 
sary to replace surfaces by curves and RP s by RP 2. 

The classification with respect to homeomorphisms in the case of nonsingular curves in 
RP 2 of arbitrary degree is given by Harnack's theorem (see, e.g., [2]), while in the case 
of nonsingular surfaces in RP a it has been finished up to degree 4 (see [2, 3]), and start- 
ing with degree 5 it remains open. The classification with respect to real isotopies is 
completed for nonsingular curves of degree q7 in I{P 2 (see [2, 4]) and for nonsingular 
surfaces of degree ~4 in Rp ~ (see [2, 5]). The classification with respect to rigid iso- 
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