
Math. Proc. Camb. Phil. Soc. (1998), 124, 205

Printed in the United Kingdom c© 1998 Cambridge Philosophical Society

205

Reciprocity for Gauss sums on finite abelian groups

By VLADIMIR TURAEV
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1. Introduction

1·0. Outline

A classical reciprocity formula for Gauss sums due to Cauchy, Dirichlet, and
Kronecker states that

|b|−1/2
∑

x∈Z/bZ

e
πia
b (x+w)2

= e
πi
4 sign(ab)|a|−1/2

∑
x∈Z/aZ

e−
πib
a x2−2πiwx (1)

where a, b are nonzero integers and w ∈ Q such that ab + 2aw ∈ 2Z. For a detailed
proof and historical background, see [4, chapter IX]. Various versions of formula
(1) have been extensively studied in connection with transformation properties of
theta functions. A version of (1) for multivariate Gauss sums was first obtained by
A. Krazer [10] in 1912, see also [2, 5, 11, 14]. Krazer’s formula generalizes the case
w = 0 of (1) via replacing one of the numbers a, b by an integer quadratic form of
several variables.

Recently, Florian Deloup [6] found a new and most beautiful reciprocity formula
for multivariate Gauss sums. His formula is a far reaching generalization of Krazer’s
result. Roughly speaking, Deloup replaces both numbers a, b with quadratic forms.
Deloup involves Wu classes of quadratic forms which allows him to remove the even-
ness condition appearing in Krazer’s formulation. However, Deloup’s formula covers
only the cases w = 0 and w = b/2 of (1).

In this paper we establish a more general reciprocity for Gauss sums including the
Krazer and Deloup formulas and formula (1) in its full generality. Our reciprocity
law involves two quadratic forms and a so-called rational Wu class, as defined below.

The original proofs of Cauchy, Dirichlet, Kronecker and Krazer are analytical and
involve a study of a limit of a transformation formula for theta-functions. Deloup’s
proof goes by a reduction to the case w = b/2 of (1) based on a careful study of Witt
groups of quadratic forms. Our proof is more direct and uses only (a generalization
of) the van der Blij computation of Gauss sums via signatures of integer quadratic
forms. In particular, our argument provides a new proof of (1).

1·1. Quadratic forms on finite abelian groups and Gauss sums

By a quadratic form on a finite abelian group G, we mean a function q:G→ Q/Z
such that the associated pairing bq:G × G → Q/Z defined by bq(x, y) = q(x + y) −
q(x)− q(y), for x, y ∈ G, is bilinear. In generalization of the standard definition, we
do not require q to be homogeneous, i.e., we do not require that q(nx) = n2q(x),
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for n ∈ Z, x ∈ G. For instance, a sum of a linear homomorphism G → Q/Z with a
quadratic form G→ Q/Z is considered to be a quadratic form on G. Note that the
‘free term’ q(0) of a quadratic form q:G→ Q/Z is always zero:

q(0) = q(0) + q(0)− q(0) = −bq(0, 0) = 0.

The Gauss sum (or the Gaussian sum) associated with a quadratic form q:G →
Q/Z is defined by

Γ(G, q) = |G|−1/2
∑
x∈G

e2πiq(x) ∈ C

(cf. [13, chapter 5]). The factor |G|−1/2 is convenient for normalization purposes. For
instance, if q = 0 then Γ(G, q) = |G|1/2; if G is the trivial group then Γ(G, q) = 1.

The standard properties of the quadratic Gauss sums generalize to our setting. It
is obvious that the invariant Γ(G, q) is multiplicative with respect to the direct sum
of quadratic forms. The absolute value of Γ(G, q) can be explicitly computed (see
Lemma 1 below). For example, if bq is non-degenerate then |Γ(G, q)| = 1. Note also
that if Γ(G, q)� 0 then Γ(G, q)/|Γ(G, q)| is a root of unity.

1·2. A computation of the Gauss sums

Van der Blij [1] computed the Gauss sums in terms of signatures of symmetric
bilinear forms on lattices. This generalizes Gauss’ original evaluation of the Gauss
sums. We give here a slightly generalized version of the van der Blij formula. By a
lattice we shall mean a free abelian group of finite rank.

We first introduce the notion of a rational Wu class. Let f :L × L → Z be a
symmetric bilinear form on a lattice L. Consider the vector space Q ⊗ L = Q ⊗Z L
and denote by fQ the Q-linear extension (Q ⊗ L) × (Q ⊗ L) → Q of f . An element
v ∈ Q ⊗ L is said to be a rational Wu class for f if fQ(v, x) − f (x, x) ∈ 2Z for any
x ∈ L. This definition generalizes the usual one where v ∈ L. Note that for any
rational Wu class v ∈ Q⊗ L and any x ∈ L, we have fQ(v, x) = fQ(x, v) ∈ Z.

A standard construction produces from f and a rational Wu class v ∈ Q ⊗ L a
quadratic form on a finite abelian group (cf., for instance, [7]). Let f̂ denote the
homomorphism L→ L∗ = Hom(L,Z) adjoint to f . Set

Gf = Tors (Cokerf̂ ) = Tors (L∗/f̂ (L))

and define a mapping qf,v:Gf → Q/Z by

qf,v(x mod f̂ (L)) =
1
2

(
x(x′)
n
− x̃(v)

)
modZ

where: x ∈ L∗; n is a nonzero integer such that nx ∈ f̂ (L); x′ is an arbitrary
element of f̂−1(nx); and x̃ is the Q-linear extension Q ⊗ L → Q of x:L → Z. An
easy verification shows that qf,v is a well defined quadratic form on the finite abelian
groupGf . It is instructive to note that this form is homogeneous if and only if v ∈ L.
The bilinear form bf :Gf ⊗Gf → Q/Z associated with qf,v does not depend on v; it
is given by

bf (x mod f̂ (L), y mod f̂ (L)) =
y(x′)
n

modZ,

where x, y ∈ L∗ and n, x′ are as above. The form bf is nondegenerate in the sense that
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its annihilator is trivial. Indeed, if x mod f̂ (L) ∈ Gf lies in the annihilator of bf then
y(x′) ∈ nZ, for any y ∈ L∗. Hence x′ is divisible by n in L and x = f̂ (x′/n) ∈ f̂ (L).

The Gauss sum corresponding to qf,v can be computed in terms of the signature
σ(f ) ∈ Z of f :

Γ(Gf , qf,v) = e
πi
4 (σ(f )−fQ(v,v)). (2)

In the case v ∈ L this formula is due to van der Blij [1]; his argument applies to the
rational Wu classes word for word.

1·3. The reciprocity formula

Now we can formulate our reciprocity law for the Gauss sums. Consider symmetric
bilinear forms f :L×L→ Z and g:M×M → Z on lattices L,M . Consider the lattice
K = L⊗M and the symmetric bilinear form e:K ×K → Z defined by e(x⊗ y, x′ ⊗
y′) = f (x, x′) g(y, y′), for x, x′ ∈ L, y, y′ ∈ M . Clearly, the adjoint homomorphism
ê:K → K∗ = L∗ ⊗M∗ is equal to f̂ ⊗ ĝ. Consider the finite abelian groups

Gf = Tors (Coker f̂ ), Gg = Tors (Coker ĝ), Ge = Tors (Coker ê).

There is a homomorphism αf,g:Gf ⊗M → Ge defined by

αf,g(x mod f̂ (L)⊗ y) = x⊗ ĝ(y) mod ê(K),

where x ∈ L∗, y ∈M . Similarly, there is a homomorphism βf,g:L⊗Gg → Ge defined
by

βf,g(z ⊗ t mod ĝ(M )) = f̂ (z)⊗ t mod ê(K),

where z ∈ L, t ∈M∗.
Let u ∈ Q ⊗K be a rational Wu class for e. The quadratic form qe,u:Ge → Q/Z

induces quadratic forms qe,u ◦αf,g and qe,u ◦βf,g on Gf⊗M and L⊗Gg, respectively.
Here is the main reciprocity formula obtained in this paper:

Γ(Gf ⊗M, qe,u ◦ αf,g)
|Gf |corank(g)/2

= e
πi
4 (σ(f )σ(g)−eQ(u,u)) Γ(L⊗Gg, qe,u ◦ βf,g)

|Gg|corank(f )/2
, (3)

where corank denotes the rank of the annihilator of a symmetric bilinear form and
the overline on the right-hand side denotes the complex conjugation. Formula (3)
will be proven in Section 3 using the lemmas established in Section 2.

Note the symmetry of (3) in f and g: exchanging f and g and replacing u with
its image under the permutation Q ⊗ L ⊗M → Q ⊗M ⊗ L we get an equivalent
formula.

Under further assumptions on f and g formula (3) simplifies. If f and g are non-
degenerate then corank(f ) = corank(g) = 0 and we obtain

Γ(Gf ⊗M, qe,u ◦ αf,g) = e
πi
4 (σ(f )σ(g)−eQ(u,u)) Γ(L⊗Gg, qe,u ◦ βf,g).

If at least one of the forms f, g is even then e is even and we can take u = 0. This
yields

Γ(Gf ⊗M, qe,0 ◦ αf,g)
|Gf |corank(g)/2

= e
πi
4 σ(f )σ(g) Γ(L⊗Gg, qe,0 ◦ βf,g)

|Gg|corank(f )/2
.

If g is unimodular then Gg = 0, corank(g) = 0 and formula (3) yields

Γ(Gf ⊗M, qe,u ◦ αf,g) = e
πi
4 (σ(f )σ(g)−eQ(u,u)).
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To end this subsection we give an explicit formula for the quadratic form qe,u ◦
αf,g:Gf ⊗M → Q/Z:

(qe,u ◦ αf,g)(x mod f̂ (L)⊗ y) =
1
2

(
x(x′)
n

g(y, y)− (x⊗ ĝ(y))(u)
)

modZ,

where x ∈ L∗, y ∈M , n is a nonzero integer such that nx ∈ f̂ (L) and x′ is an arbitrary
element of f̂−1(nx). The bilinear form onGf⊗M associated with qe,u◦αf,g is nothing
but the tensor product of bf :Gf × Gf → Q/Z and g:M ×M → Z. Similar results
hold for qe,u ◦ βf,g.

1·4. Special cases and corollaries

We formulate a few important cases of formula (3).

1·4·1. The Cauchy–Dirichlet–Kronecker formula

We shall deduce formula (1) from (3). To this end, take L = M = Z. Let f : L×L→
Z and g : M ×M → Z be the bilinear forms defined by f (x, y) = axy, g(x, y) = bxy,
for x, y ∈ Z. Clearly, K = L⊗M = Z and the bilinear form e = f ⊗ g on K is given
by e(x, y) = abxy. For any r ∈ Z, the number ur = 1 − 2r/ab ∈ Q is a rational Wu
class for e. The form qe,u ◦ αf,g on Gf ⊗M = Z/aZ sends x mod a with x ∈ Z to
1
2 ((b/a)x2 + ((2r/a) − b)x). Similarly, the form qe,u ◦ βf,g on L ⊗ Gg = Z/bZ sends
x mod b with x ∈ Z to 1

2 ((a/b)x2 + ((2r/b)−a)x). Substituting these values in (3) and
applying the complex conjugation we obtain (1) with w = r/a − b/2.

1·4·2. The generalized van der Blij formula

The generalized van der Blij formula (2) is a special case of (3). To see this, set
M = Z and take g to be the bilinear form g:M ×M → Z defined by g(1, 1) = 1.
Clearly, Gg = 0 so that the Gauss sum on the right hand side of (3) equals 1. It is
clear that Gf ⊗M = Gf and qe,u ◦ αf,g = qf,u. Therefore in this case formula (3)
yields (2).

1·4·3. The Deloup formula

We state here a reciprocity formula due to Deloup [6] and deduce it from (3).
We need the following construction. Given a quadratic form q:G→ Q/Z on a finite
abelian group G and a symmetric bilinear form g:M ×M → Z on a lattice M there
is a unique quadratic form q⊗g:G⊗M → Q/Z such that (q⊗g)(x⊗y) = q(x) g(y, y)
for any x ∈ G, y ∈ M (see [8, 12]). The associated bilinear form on G ⊗ M is
just the tensor product of bq:G × G → Q/Z and g. Similarly, we can consider the
quadratic form g ⊗ q:M ⊗G→ Q/Z, it is isomorphic to q ⊗ g via the permutation
M ⊗G ≈ G⊗M . Hence Γ(G⊗M, q ⊗ g) = Γ(M ⊗G, g ⊗ q).

Let f :L × L → Z and g:M ×M → Z be symmetric bilinear forms on lattices
L,M . Let v ∈ L and w ∈ M be Wu classes for f and g, respectively. Here is a
slightly modified version of the Deloup reciprocity formula:

Γ(Gf ⊗M, qf,v ⊗ g)
|Gf |corank(g)/2

= e
πi
4 (σ(f )σ(g)−f (v,v) g(w,w)) Γ(Gg ⊗ L, qg,w ⊗ f )

|Gg|corank(f )/2
. (4)

Formula (4) is obtained from (3) by setting u = v ⊗ w. Indeed, it is easy to deduce
from the inclusions v ∈ L,w ∈M that qe,u ◦αf,g = qf,v ⊗ g and qe,u ◦ βf,g = f ⊗ qg,w.
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Note a few special cases of (4). If g is even and w = 0 then we have

Γ(Gf ⊗M, qf,v ⊗ g)
|Gf |corank(g)/2

= e
πi
4 σ(f )σ(g) Γ(Gg ⊗ L, qg,0 ⊗ f )

|Gg|corank(f )/2
. (5)

Observe that the quadratic form qf,v ⊗ g = qe,0 ◦ αf,g does not depend on the choice
of v.

If g is unimodular then g(w,w) = σ(g) mod 8 (this well known fact follows from
(2)) and (4) yields

Γ(Gf ⊗M, qf,v ⊗ g) = e
πi
4 (σ(f )−f (v,v))σ(g) = (Γ(Gf , qf,v))σ(g).

If g is both unimodular and even then σ(g) ∈ 8Z and we obtain Γ(Gf⊗M, qf,v⊗g) = 1.

1·4·4. The Krazer formula

We formulate the Krazer formula [10] following H. Braun [2] and deduce it from
(5).

LetA be a nondegenerate symmetric integer (m×m)-matrix and let a, b be positive
integers such that either ab is even or all the diagonal entries of A are even. Set
s = |det (A)| and denote by σ(A) the signature of A. Then

b−m/2
∑

x∈(Z/bZ)m

e
πia
b xtAx = e

πiσ(A)
4 a−m/2s1/2−m

∑
y∈(Z/saZ)m

e−
πib
a ytA−1y. (6)

It is easy to see that∑
y∈(Z/saZ)m

e−
πib
a ytA−1y = sm−1

∑
y∈Zm/aAZm

e−
πib
a ytA−1y.

Therefore setting A′ = aA we can rewrite (6) in the following equivalent way:

b−m/2
∑

x∈(Z/bZ)m

e
πi
b x

tA′x =
e
πiσ(A′ )

4

|det (A′)|1/2

∑
y∈Zm/A′Zm

e−πib y
t(A′)−1y.

This formula is obtained from (5) by the following substitution. If b is even then we
take f to be the bilinear form Zm×Zm → Z defined by A′ and take g to be the form
Z× Z→ Z given by g(1, 1) = b. If b is odd then we make the opposite choice.

In her study of genera of integer quadratic forms H. Braun [2] used a special case
of (6) where b is divisible by 2as. In this case the sum on the right-hand side is equal
to the number of summands and (6) yields

b−m/2
∑

x∈(Z/bZ)m

e
πia
b xtAx = e

πiσ(A)
4 am/2s1/2.

1·5. Remarks

1. The Gauss sum Γ(G, q) is often considered in the case where G is a direct sum of
a finite number of copies of Z/2Z. In this case any quadratic form q:G→ Q/Z takes
values in Z/4Z ⊂ Q/Z (this follows from the bilinearity of the pairing bq:G ×G →
Z/2Z ⊂ Q/Z and the identity 2q(x) = 2q(x)− q(2x) = −bq(x, x)). If the pairing bq is
nondegenerate and q(G) ⊂ Z/2Z then Γ(G, q) is the classical Arf invariant of q. It
is equal to 1 if q takes value 0 more often than 1 and is equal to −1 otherwise. This
allows us to apply the formulas stated above to the Arf invariant.

2. In order to apply formula (2) to a quadratic form q:G → Q/Z on a finite
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abelian group G, one should present q as qf,v with f, v as above. This is possible if
and only if the associated bilinear form bq:G × G → Q/Z is nondegenerate. The
necessity of this condition follows from the discussion in Section 1.2. Conversely, if
bq is nondegenerate then it can be realized as the form bf associated with an even
symmetric form f :L× L→ Z on a lattice L (see [16]). When v ∈ Q⊗ L varies over
the rational Wu classes for f , the form qf,v:G = Gf → Q/Z runs over all quadratic
forms on G with associated bilinear form bf = bq. Therefore q = qf,v, for a certain v.

3. The Gauss sums appear systematically in the topology of manifolds, see [3,
9, 15]. This often encourages the algebraic study of Gauss sums. In particular,
the Deloup reciprocity formula discussed above has been inspired by his study of
quantum-like invariants of 3-manifolds. The proof of formula (3) given below was
suggested by the following topological construction. One can realize the bilinear
form f :L × L → Z as the intersection form H2(X;Z) × H2(X;Z) → Z of a com-
pact oriented 4-dimensional manifold (with boundary) X. Moreover, one can assume
that X is simply connected or at least H1(X;Z) = 0. Clearly, ∂X is a closed ori-
entable 3-dimensional manifold. It is easy to see from the homological sequence of
the pair (X, ∂X) that Gf = TorsH1(∂X;Z). The bilinear form bf :Gf × Gf → Q/Z
can be interpreted as the homological linking form of the 3-manifold ∂X (pro-
vided with the orientation opposite to the one induced from X). Similarly, the
bilinear form g:M × M → Z can be realized as the intersection form of a com-
pact oriented 4-manifold Y with H1(Y ;Z) = 0. Then bg:Gg × Gg → Q/Z is the
linking form of the 3-manifold ∂Y . It is clear that X × Y is a compact oriented
8-manifold. The form e = f ⊗ g appears as the homological intersection form on
H4(X × Y ;Z) = L⊗M . As above, Ge = TorsH3(∂(X × Y );Z) and the bilinear form
be:Ge×Ge → Q/Z is the linking form of the 7-manifold ∂(X×Y ). The decomposition
∂(X × Y ) = (∂X × Y ) x (X × ∂Y ) induces the embeddings

αf,g:Gf ⊗M = TorsH1(∂X;Z)⊗H2(Y ;Z)→ TorsH3(∂(X × Y );Z) = Ge

and

βf,g:L⊗Gg = H2(X;Z)⊗ TorsH1(∂Y ;Z)→ TorsH3(∂(X × Y );Z) = Ge.

A further analysis of this geometric situation suggested a proof of (3).

2. Lemmas

In the following lemmas q:G → Q/Z is an arbitrary quadratic form on a finite
abelian groupG. The symbol b denotes the associated symmetric bilinear form bq:G×
G→ Q/Z. For a subgroup H of G set H⊥ = {x ∈ G | b(x,H) = 0}.

Lemma 1. Let B be the kernel of the homomorphism G → Hom(G,Q/Z) adjoint to
the pairing b. If q(B)� 0, then Γ(G, q) = 0. If q(B) = 0, then |Γ(G, q)| = |B|1/2.

Proof. We have

|Γ(G, q)|2 =
1
|G| |

∑
x∈G

e2πiq(x)|2 =
1
|G|

∑
x∈G

e2πiq(x)
∑
y∈G

e−2πiq(y)

=
1
|G|

∑
x,y∈G

e2πiq(x+y)−2πiq(y) =
1
|G|

∑
x∈G

(∑
y∈G

e2πib(x,y)

)
e2πiq(x).
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Observe that when y runs over G the complex number e2πib(x,y) runs over a finite
subgroup of the unit circle. We have

∑
y∈G e

2πib(x,y) = 0 unless this subgroup is
trivial. The latter holds iff x ∈ B and in this case

∑
y∈G e

2πib(x,y) = |G|. Therefore

|Γ(G, q)|2 =
∑
x∈B

e2πiq(x).

The restriction of q to B is a linear homomorphism B → Q/Z. If q(B)� 0, then∑
x∈B e

2πiq(x) = 0. If q(B) = 0, then
∑

x∈B e
2πiq(x) = |B|. This implies the claim of the

lemma.

Lemma 2. Let H be a subgroup of G. If q(H) = 0, then H ⊂ H⊥, the form q induces
a quadratic form q′ : H⊥/H → Q/Z, and

Γ(H⊥/H, q′) =
(

|G|
|H| |H⊥|

)1/2

Γ(G, q). (7)

In particular, if q(H) = 0 and b(G,H) = 0, then H⊥ = G and Γ(G/H, q′) =
|H|−1/2 Γ(G, q).

Proof. The first two claims of the lemma are obvious because q(H) = 0 implies that
b(H,H) = 0. Let us prove formula (7). Let s:G/H → G be a set-theoretic section of
the projection G → G/H. Every element of G can be uniquely presented as a sum
s(y) + z with y ∈ G/H and z ∈ H. Therefore∑

x∈G
e2πiq(x) =

∑
y∈G/H

(∑
z∈H

e2πiq(s(y)+z)

)
.

Note that q(s(y) + z) = q(s(y)) + b(s(y), z) for z ∈ H. Hence∑
z∈H

e2πiq(s(y)+z) = e2πiq(s(y))
∑
z∈H

e2πib(s(y),z).

The same argument as in Lemma 1 shows that the right hand side equals e2πiq(s(y))|H|
if s(y) ∈ H⊥ and equals 0 otherwise. Therefore∑

x∈G
e2πiq(x) =

∑
y∈H⊥/H

e2πiq(s(y))|H| = |H|
∑

y∈H⊥/H

e2πiq′(y).

This formula is equivalent to (7).

Lemma 3. If the form b:G × G → Q/Z is nondegenerate, then |H| |H⊥| = |G|, for
any subgroup H of G.

Proof. By definition, H⊥ is the kernel of the homomorphism G→ Hom(H,Q/Z)
induced by b. Therefore |G/H⊥| 6 |H|.

Consider the homomorphism H → Hom(G/H⊥,Q/Z) induced by b. Since b is
nondegenerate, this homomorphism is injective. Therefore |H| 6 |G/H⊥|. Hence
|G/H⊥| = |H| or, equivalently, |H| |H⊥| = |G|.

Remark. If there is a subgroup H ⊂ G such that q(H) = 0 and H⊥ = H, then the
quadratic form q:G→ Q/Z is said to be metabolic. Lemmas 2 and 3 imply that for
a metabolic q with nondegenerate associated bilinear form, Γ(G, q) = 1.
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3. Proof of formula (3)

3·1. The nondegenerate case

Assume up to the end of Section 3·1 that both forms f and g are nondegenerate.
Then the adjoint homomorphisms f̂ :L→ L∗ and ĝ:M →M∗ are isomorphisms over
Q. Therefore the adjoint homomorphism ê = f̂ ⊗ ĝ:K → K∗ is also an isomorphism
over Q and the pairing e:K ×K → Z is nondegenerate. It follows from definitions
that

Gf = Coker f̂ = L∗/f̂ (L) and Gg = Coker ĝ = M∗/ĝ(M ).

Similarly Ge = Coker ê = K∗/ê(K). It is useful to note that the homomorphisms
f̂ :L→ L∗, ĝ : M →M∗, ê:K → K∗ are injective.

We claim that the homomorphism αf,g:Gf ⊗M → Ge is injective. Indeed, we can
present ê = f̂ ⊗ ĝ as the composition of f̂ ⊗ idM :L ⊗M → L∗ ⊗M and idL∗ ⊗
ĝ:L∗ ⊗ M → L∗ ⊗ M∗. Since the latter homomorphism is injective, it induces a
monomorphism of the cokernel of f̂⊗idM into the cokernel of ê. This monomorphism
is nothing but αf,g:Gf ⊗M → Ge. Clearly,

Cokerαf,g = Coker (idL∗ ⊗ ĝ) = L∗ ⊗Gg

which gives an exact sequence

0 −→ Gf ⊗M
αf,g−→ Ge −→ L∗ ⊗Gg −→ 0. (8)

A similar argument shows that the homomorphism βf,g:L ⊗ Gg → Ge is injective
with cokernel Gf ⊗M∗.

In the remaining part of the proof we treat Gf ⊗M and L⊗Gg as subgroups of
Ge via the embeddings αf,g and βf,g, respectively. Denote their intersection by H.
We can describe H more explicitly as a subgroup of Gf ⊗M and L⊗Gg. Composing
the inclusion Gf ⊗ M ↪→ Ge with the projection Ge → Gf ⊗ M∗ we obtain the
homomorphism idGf⊗ĝ:Gf⊗M → Gf⊗M∗. ThereforeH = Ker (idGf⊗ĝ) ⊂ Gf⊗M .
Similarly, H = Ker (f̂ ⊗ idGg ) ⊂ L⊗Gg.

Let us check that the subgroups Gf ⊗M and L ⊗ Gg of Ge are orthogonal to
each other with respect to the bilinear form be:Ge ×Ge → Q/Z. The first subgroup
is generated by elements (x ⊗ ĝ(y)) mod ê(K) where x ∈ L∗, y ∈ M . The second
subgroup is generated by elements (f̂ (z) ⊗ t) mod ê(K) where z ∈ L, t ∈ M∗. It
suffices to verify that such elements are orthogonal. Choose a nonzero integer n such
that nx = f̂ (x′) with x′ ∈ L. Then nx⊗ ĝ(y) = ê(x′ ⊗ y) and

be((x⊗ ĝ(y)) mod ê(K), (f̂ (z)⊗ t) mod ê(K)) =
(f̂ (z)⊗ t)(x′ ⊗ y)

n

=
f (x′, z) t(y)

n
=
nx(z) t(y)

n
= x(z) t(y) = 0 modZ.

Let q1 = qe,u ◦ αf,g and q2 = qe,u ◦ βf,g be the reductions of the quadratic form
qe,u:Ge → Q/Z to Gf ⊗M ⊂ Ge and L ⊗ Gg ⊂ Ge, respectively. We should prove
that

Γ(Gf ⊗M, q1) = e
πi
4 (σ(f )σ(g)−eQ(u,u)) Γ(L⊗Gg, q2). (9)

Consider first the case when qe,u(H)� 0. We claim that Γ(Gf ⊗M, q1) = 0. Denote
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by h the homomorphism

Gf ⊗M → Hom(Gf ⊗M,Q/Z) = Hom(Gf ,Q/Z)⊗M∗

adjoint to the bilinear form associated with q1. This bilinear form is the tensor prod-
uct of the bilinear forms bf :Gf ×Gf → Q/Z and g:M ×M → Z. Therefore

h = ad(bf )⊗ ĝ = (ad(bf )⊗ idM )(idGf ⊗ ĝ),

where ad(bf ):Gf → Hom(Gf ,Q/Z) is the homomorphism adjoint to bf . It follows
from the discussion in Section 1·2 that ad(bf ) is an isomorphism. Hence Ker h =
Ker (idGf ⊗ ĝ) = H. By assumption, q1(H) = qe,u(H) � 0. By Lemma 1, Γ(Gf ⊗
M, q1) = 0. A similar argument shows that the kernel of the homomorphism L⊗Gg →
Hom(L⊗Gg,Q/Z) adjoint to f ⊗ bg is equal also to H. Therefore Γ(L⊗Gg, q2) = 0.
This implies (9).

Assume that qe,u(H) = 0. Then q1(H) = q2(H) = 0. Since the subgroups Gf ⊗M
and L ⊗ Gg of Ge are mutually orthogonal, their sum in Ge, say H ′, is orthogonal
to their intersection H. Thus, H ′ ⊂ H⊥. Note that

|H ′| = |Gf ⊗M | |L⊗Gg|/|H| = |Ge|/|H|,

where the last equality follows from (8). Comparing this formula with Lemma 3
(and using the nondegeneracy of the form be) we obtain that |H ′| = |H⊥| and hence
H ′ = H⊥.

Denote by q′ the quadratic form onH ′/H induced by qe,u:Ge → Q/Z. By formulas
(7) and (2),

Γ(H ′/H, q′) = Γ(Ge, qe,u) = e
πi
4 (σ(e)−eQ(u,u)) = e

πi
4 (σ(f )σ(g)−eQ(u,u)).

(The equality σ(e) = σ(f )σ(g) is easily obtained by considering the diagonal forms
of f and g.) On the other hand,

(H ′/H, q′) = ((Gf ⊗M )/H, q′1)⊕ ((L⊗Gg)/H, q′2),

where q′1 and q′2 are the quadratic forms induced by q1 and q2, respectively. Therefore

Γ(H ′/H, q′) = Γ((Gf ⊗M )/H, q′1) Γ((L⊗Gg)/H, q′2)
= |H|−1 Γ(Gf ⊗M, q1) Γ(L⊗Gg, q2),

where we use the multiplicativity of Γ with respect to direct sum of quadratic forms
and the last claim of Lemma 2. By Lemma 1 and the equality Ker h = H obtained
above,

|H| = |Ker h| = |Γ(Gf ⊗M, q1)|2 = Γ(Gf ⊗M, q1) Γ(Gf ⊗M, q1).

Combining these formulas we obtain

e
πi
4 (σ(f )σ(g)−eQ(u,u)) = Γ(L⊗Gg, q2)/Γ(Gf ⊗M, q1).

Applying the complex conjugation we obtain (9).

3·2. The general case

Note that f (resp. g) is a direct sum of a 0-form and a non-degenerate form
f ′:L′ × L′ → Z (resp. g′:M ′ × M ′ → Z) where L′,M ′ are direct summands of
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the lattices L,M , respectively. Projecting u into Q ⊗ L′ ⊗M ′ we obtain a rational
Wu class, u′, for e′ = f ′ ⊗ g′. Clearly, Gf = Gf ′ . We have

Γ(Gf ⊗M, qe,u ◦ αf,g) = Γ(Gf ⊗M ′, qe′,u′ ◦ αf ′,g′) Γ(Gf ⊗ (M/M ′), 0)

= |Gf |corank(g)/2 Γ(Gf ′ ⊗M ′, qe′,u′ ◦ αf ′,g′).

Similarly,

Γ(L⊗Gg, qe,u ◦ βf,g) = |Gg|corank(f )/2Γ(L′ ⊗Gg′ , qe′,u′ ◦ βf ′,g′).

Note that σ(f ) = σ(f ′), σ(g) = σ(g′) and e(u, u) = e′(u′, u′). Applying the results of
Section 3.1 to f ′, g′, u′ and using the formulas above we obtain (3).
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