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FIRST SYMPLECTIC CHERN CLASS AND MASLOV INDICES 

V. G. Turaev UDC 517.43 

An explicit formula is given in this paper for a two-dimensional cocycle in the bar 

resolution of the group G=~p(~,~), which represents the first Chern class of the 

natural n-dimensional complex vector bundle over B~ G . It is shown that this co- 

cycle is closely connected with the Maslov indices of Lagrangian subspaces of R ~ . 

i. Introduction 

The present paper is a continuation of a version of the author's note [17] and contains, 
in particular, detailed proofs of the theorems announced in [17]. ~ 

i.i. Nature of the Results. Let ~=$p(~) be the symplectic group (where ~I ) 

and ~ be its universal covering with the natural group structure. The fundamental group 

~ i~) is isomorphic to ~ and in what follows it is identified with ~ (cf. point 1.3). The 

present paper is devoted to the study of the two-dimensional cohomology class of the group G, 

corresponding to the exact sequence 

0 ,I 

This class is denoted by u and is an element of the group H a QG~i Z), where for a topological 

group L , we denote by L ~ the same group with the discrete topology and where the action of 

G~ on ~ is trivial. It is easy to describe the class u in terms of the standard theory of 

characteristic classes: it is equal to the first Chern class of the complex vector bundle 

obtained from the real vector bundle overBG~#=K~l~, associated with the universal 

principal ~-bundle and the action of G on R g~ , introduced by the natural complex structure 

(cf. [2, 3], and the Appendix). Up to sign the class u can be described as the image under 

the canonical homomorphism Hgi~}Z) -~ ~gQBG ~} ~)of a generator of the group Hg(5~i 

Z) - Z 

In the paper we consider the question of finding an explicit formula for a two-dimen- 
sional cocyc!e in the bar resolution of the group ~ which represents u. This question is 
not new, cf. point 2, "History of the Question." The interest in it is due, in the first 
place to interest in the broad scheme of constructing explicit cocycles representing non- 
trivial cohomology classes of Lie groups and algebras, and secondly, to the specific role 
which the class u and its reduction mod2 play in the theory of representations of Lie groups 
and in the theory of symplectic and metaplectic structures. 
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Even for well-studied groups and their cohomology classes the construction of explicit 
cocycles representing these classes is not a mechanical matter and usually requires addi- 
tional considerations. Here the role of such considerations is played by the following ob- 
servation concerning elementary cobordism theory. Let V be a closed orientable smooth mani- 

fold of dimension &~ § with,V, O. Let .O~ be the group of orientation-preserving diffeo- 

morphisms V.--~%/. The torus of the diffeomorphism {;V--~V [the manifold V~[O~|]/~O -{ 

(~)~J forbear ] is denoted by V(~). If ~, %gg'~, then N(~) denotes the result of gluing 

the lower bases of the cylinders V(~)~[0,{] and V(%)x[0~l] to the upper base of the cylinder 

~[~x[0j~] according to the following rule: we identify @~t~0 gA/(~)~ 0 with @x~ x ] 

V~I~) ~ I and @~t~06V~)~0 with ~<~/a)~ 1~V(~)~l, where ~ ~A/ and ~ ~ [0~i]. It is 

easy to Verify that: i6) N <~,~) is a compact orientable ~4~'~4) -dimensional manifold, whose 

boundary is equal to the disjoint union of VQ~), ~f(~) , andV<I~)~(~ if ~s then the 

result of gluing 'N <~,~) with ~ (~, ~) along the common component of the boundary to the 

torus V[~) is homeomorphic with the result of gluing ~(%,~) with N (~,~) along%/(~).. 

In view of(~) and the additivity of the signature, the function ~: ~a---~Z , assigning to 

the pair ~,~ thesignature of the appropriately oriented manifold N<I,~), satisfies the rela- 

tion ~,~)+~<~)=~<I' ~)~ ~'~)' i.e., ~ is a two-dimensional cocycle (cf. [12]). 

It turns out that the construction made can be modeled algebraically. This leads to a map 

q: ~z ~ Z, where ~- Sp(% ~) and ~ - I,g ..... Modeling the proof of the additivity of the 

signature one proves that ~ is a cocycle. As it turns out, ~lrepresents4~ ~ H z ~} Z) . 

Modifying ~ somewhat, one can also construct a cocycle representing u. 

Along with the cocycle ~ , in this paper we study its primitive ~ : ~ -~, which is 

a one-dimensional cochain, whose coboundary is equal to the lift of ~ to ~ , so that if q is 

the projection ~----~ and FI, Fz ~ ~, then 

The existence of the cochain ~ follows from the equation q*(~) I0, and its uniqueness from 

the equation Ht <~ Z)- 0 (this Lie group G is simple). It turn out that ~ and ~ are 

closely connected with the Maslov indices of Lagrangian spaces. 

We recall that if there is fixed in a 2n-dimensional real vector space H a nonsingular 
skew-symmetric form, then a subspace of the space H, which coincides with its annihilator 
with respect to this form, is called Lagrangian. The Lagrangian subspaces constitute a 

closed submanifold A of the Grassmanian of n-dimensional subspaces of the space H (cf. [7]). 

The Maslov indices of Lagrangian subspaces are three interconnected objects (cf. [7, 9, i0]): 

the function on the set of curves in ~k with values in the group of half-integers, corre- 

sponding to a fixed Lagrangian space k~A,is the Maslov index of curves with respect to k 

(the index of a curve in A , whose ends coincide or are transverse to k, is an integer); the 

ternary Maslov index (index of inertia) ~:A~A~A - , Z ; the binary Maslov indexw%:~ . . . .  

Z, where ~ is the universal covering manifold of A [we recall that ~t (A) - Z ]. We shall 

follow the definitions of the binary and ternary Maslov indices used in [i0]; the correspond- 

ing functions in [7, 9] are obtained from these by linear transformations. The first two of 

the functions listed can be calculated in terms of the third. Namely~ if q is the covering 

~A, then: the Maslov index of a curve in A with respect to k~Aiis equalto (~Z>[~(KI, 

K)-m~Ko,K)] , where K~ and K,, respectively, are the beginning and end of an arbitrary lift 
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of the curve to ~ and K is any element of the set ~4(k) (cf. [9, !.6]); for any KI,Ka,K s6~ 

(Leray~s formula [9]). 

Arnol'd [i] proved that the Maslov index of curves relative to any k~A, considered as 

a singular cocycle on A, represents a generator of the group HI(A;Z) -Z. It turns out 

that T and m also admit interpretations in terms of homology theory. Namely, we consider 

maps ~ : U s ----~ andS: ~z ~ Z, defined, respectively, by the formulas l~(~it~a,~= 

~[711~, i~ i[s) and ~(~)=q0(~71~), where ~1,'~z~ ~ ~ and ri~r~ ~ G �9 According to [12, 

p. 158], t~ is the two-dimensional cocycle in the homogeneous generators of the bar resolu- 

tion of the group ~, corresponding to ~ I, andi~ is a primitive of it. Thus~ for any 

~A~ ~, [~, l~ ~ ~ , and F ~ , ~  

where q is the projection;~ ~ ~. In [9, 16] a family of smooth imbeddings ~i_..~-was con- 

structed. It is proved here that if ~ is any of these imbeddings, then the function ~o ~ 

~):s Z is independent of the choice of ~ and is equal to g~ . If ~:~-----~.~is 

the imbedding induced by ~, then the function ~F~F):~ ~ ~Z is equal tog~. Thus, up 

to multiplication by a constant, the cochains ~ and ~ are, respectively, extensions of the 

binary and ternary Maslov indices to the symplectic group and its universal covering. This 

point of view reveals the nature of Leray's formula (2), which turns out to be a specializa- 

tion of the assertion "the coboundary of the cochain ~ is equal to the lift of ~ to ~ ." 

The familiar formula 

( kt, k~, k~) - ~ (k~, k~,k~)+ ~ (k{,k ~,k~)-% (k~, k~,k~) =0 ( 5 ) 

for any k~, k~, k~ k~ ~ A is a specialization of the assertion "~ is a cocycle." Another 

well-known formula in the theory of Maslov indices is the Souriau formula, which is a conse- 

quence of the calculation of the values of the cochain ~ given below. 

1.2. History of the Question. The question of finding an explicit cocycle representing 
u has been studied by a number of authors. Dupont, and independently Guechardet and Wigner, 
constructed the same cocycle, which represents the image of the class u under the natural 

homomorphism HzQ~)-~ H ~ Q~i ~)(cf. [3, 5, 6]). An explicit formula for this cocycle is 
given in [3, p. 152]~ This formula is rather complicated and includes taking the logarithm 
of matrices of operators, raising them to real powers, and integration. If n = I, Guechardet 
and Wigner gave a simple explicit formula for an integral cocycle representing u (cf. [6, p. 
289]).  

For any n, a cocycle G~__----~ representing 4u was constructed by A. Weil in the course 

of constructing the Shale-Well representation of the metaplectic group. Later, Lions proved 

that this cocycle is defined by the rulei<II~)~-~(k,~(k)~ ~%ik~, where k is a fixed La- 

grangian space (cf. [i0]). To different k there correspond cocycles obtained from one an- 
other by transport by inner automorphisms of the group G. As is evident from what was said 
in point i.i (cf. also point 1.4), the Weil-Lions cocycles can be expressed in terms of the 
cocycle ~ constructed in this paper by means of a simple formula. The author does not know 
whether ~. can be calculated from the Weil-Lions cocycles (although the invariance of ~ with 
respect to inner automorphisms of the group G suggests that ~ can be calculated in terms of 
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the Weil-Lions cocycles over A ). In particular, knowledge of only one of the Weil-Lions 
c~,cycles does not permit one to see the phenomenon described at the end of point i.i directly. 

The interrelations of the Dupont and Guechardet-Wigner cocycles on the one hand, and the 
Weil-Lions cocycles and the cocycle ~ on the other hand are unclear to the author. 

1.3. The Cocycle ~ . Let H be a finite-dimensional real vector space, let 8: H x H ~ 
be a nonsingular skew-symmetric form, and let G a group of linear automorphisms of the space 

H, containing B. The presence of the form B permits one to fix an isomorphism Z ,~i (~), 

which is necessary for defining the class u (cf. point i.I; -u corresponds to the other iso- 

morphism). If ~7~ e H with ~a,~) = I, then the isomorphism with which we are concerned takes 

1 into the homotopy class of the loop [012~] ~ G, which makes correspond to the number t 

the homomorphism H--~H , which is the identity on the B-annihilator of the plane ~ + ~ and 

rotates this plane clockwise through the angle t [so that a goes into ~BQ~)~-5~i~ and b 

into 5[~(0~ +C05~)~ ]. 

For ~,%E6 we define a binary real-valued form on the space (~-{)(H)~ (~-i) (H) (where 

1 denotes the identity homomorphismlH * H ) by the rule 

It is proved below that this is a well-defined symmetric biliear form. Generally it is de- 

generate. We denote by ~ the map ~z ~ ~, which associates with the pair ~I ~, the signa- 

ture of the form (6) (i.e., the signature of its quotient by the annihilator). 

THEOEM i. The map @ is a cocycle and represents 4u. 

It follows from Theorem 1 that the cocycle ~/4 with values in ~ represent the image 

of u under the inclusion homomorphism H~(~i~)--'HZ(~i ~). We construct an integer-valued 

cocycle which represents u. 

It is proved below that for~ EG , the annihilator with respect to the form B of the 

space (~71)[~) is equal to K~(~I). Hence, if ~ +~ and ~I/...~ ~ are elements of the 

space H, whose images under the homomorphism I-I form a basis for the space (~-l)(H), then 

the determinant of the matrix 

i s  d i f f e r e n t  from z e r o ,  and i t s  s ign  i s  c o n s e q u e n t l y  independent  of  t he  cho ice  of  ~ i ~ . " J ~ $ .  

Let ~ (~) =i, if this determinant is positive, and 5(I)=. -I otherwise. Let 5(I) =!' We 

denote by ~' the cocycle ~-~: ~z ,.Z , where ~:G z ~ is the coboundary of the cochain 

THEOREM 2. The cocycle ~4 assumes integral values and represent u. 

COROLLARY. For any ~ the cocycle ~/4 (w~$ ~) represents a(m~)EHZ(~i~/~Z). 

We note that ~(~t0~2)=~Yg(~) , where ~ is the vector bundle over ~with fiber H, asso- 

ciated with the universal principal ~ -bundle and the natural action of G on H. Apparently 

explicit cocycles representing Io~a(~) were not known. It is interesting to note that the 

author has been unable to find an explicit formula in the literature for a cocycle repre- 

senting the class %0~aof the universal flat n-dimensional vector bundle, or, what is the same, 

the class in H ~ ($0 ~)~I;!Z/~Z), corresponding to the extension Sphr (~)of the group 80(~). 
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1.4. Maslov Indices and the Cochains @ and q D . Let H, B, and G be the same objects as 

in point 1.3. Let ~ be the manifold of Lagrangian subspaces of the space H. If k~ , ~, 

ks~/~, then ~(k~, k~, k~) is the signature of the symmetric bilinear form A onik i+kz) N k s , 

defined by the following formula: if ~, $ e (k~ +k~.)~ ks and x is an element of the space ~ kg, 

such that ~-~k• then A(s . That the form A is well-defined, symmetric, and 

biliear, follow from the fact that if ~ ~ ~ and ~-~ ~ kl , then 

If kl and ka are transverse, the definition of the Maslov index given coincides with the ordi- 

nary one (cf. [7, 9, i0]). In general it is equivalent with the definition of Kashiwara (cf. 

[i0]), but seems more convenient to the author. 

Let ~:~---~ be the universal covering. It is easier to define the binary Maslov in- 

dex ~ ,- Z axiomatically with the help of the following theorem. 

THEOREM 3. There exists a unique function ~:~z ~, satisfying (2) for any KI, Kz, K~ 

~, which is locally constant on the set of pairs Kt, K2 ~ ~ such that ~ (Ki) is transverse 

to %~K~). 
This theorem was proved by Leray in somewhat restricted form [9]: he considered the Mas- 

lov index only for pairs K~,Kz ,such that ~iKi) is transverse to ~iKz). 

We define the natural imbedding ~---~G , mentioned in point i.I. For this we fix a com- 

plex structure on H, compatible with B, i.e., a homomorphism ~: ~ - ~, preserving B, such 

that ~=-~and ~i~) ~ 0 for any nonzero ~H �9 As is easy to verify, the form 

(~ ,g ) ,  , 5 i ~ & , ~ )  + ~5( r  : H z * C  (7) 

is Hermitian. We fix a basis ~[~..., ~ of the space H over C , which is orthonormal with 

respect to this form. According to [9], for any k ~ there exists a unitary operator ~: 

H ~H [i.e., one which preserves the form (7)], such that k=~ (R~+... + ~@~). Here, if 

~;H > H is a linear operator over ~ , defined with respect to the basis ~I~..-~ ~ by the 

matrix which is the transpose of the matrix of the operator f with respect to the same basis, 

then the composition ~ o~ is independent of the choice of f, and the rule ke~-~o~defines 

an imbedding ~ ~ ~. We denote it by ~ . [The image ~ ~) is the set of unitary operators, 

defined with respect to the basis ~i~...~ ~ by symmetric matrices.] Since ~ induces an iso- 

morphism ~z~)--*~i~) (cf. [i]), the composition ~o~ :~--~G lifts to an imbedding~ ~ ~ . 

We denote such a lift by F. Let �9 and ~, respectively, be the maps i~,~z~)e--*~i~llIz 

- and ) ,  . Z .  

THEOREM 4. For any k~ ,k z~k ss and K~K~s 

m'QKt' K~) = i  ~ (rQKt), F ~ K~. (9) 

It is interesting to note that like ~ and m, the functions ~ and ~ are skew-symmetric 

(change sign under the interchange of two variables). 

1.5. Calculationof the Cochains ~ and ~ on the Unitary Group. Let ~0 be the sub- 

group of the group G consisting of automorphisms of the form (7) (the unitary group). We 

denote by ~o the subgroup of the group ~o ~ ~ consisting of those pairs (h, d), such that 
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~e~ ~ = r The projection ~0 

way to a monomorphism ~o �9 ~'. We denote it by ~ . We define the function 

the formula: if ~ ~, then ~(~)= P~ and ~~,(~+[)~)~=g~+l. 

THEOREM 5. If ( ~ , ~ ) ~  ~0 and if Ot~ . . . .  ~O~v are real numbers such that 

are the eigenvalues of the operator h (counting m u l t i p l i c i t i e s ) ,  then 

' ~ = 1  = 

COROLLARY. 

and that the collections 

~0 is the universal covering and hence lifts in a natural 

~ :  R --4-Z by 

are, respectively, 

~ . . .  

(lO) 

Let ~, (~ ,~  G O and let O~,...,O~ be real numbers such that O}+...+O~,=@g~,+~*._+O~ 

"~ J~( ,  ' " ' ~  J ' b  " ~'" " , ~  J 

collections of eigenvaluesof the operators f, g, and fg. Then 

COROLLARY (Souriau's formula, cf. [i0, 16]). Let KI, K a e~ FQKz)=~Q~$,~)C~=~,g; 

@i~.-.~ @~ be real numbers such that e~i~...j e ~0~ are eigenvalues of the operator ~ ~a and 

@~+..+@~ = ~g-~. Then ~QK~,K~)=,~ ~i@r 

1.6. Remarks. i. The function qO:~ ~Z constructed here has a number of remarkable 

properties: one can recover the Maslov indices from q~; ~ is a Borel function; ~ is in- 

variant with respect to inner automorphisms of the group ~ (cf. point 3.3 also). One can 

hope that ~ is connected with the generalized character of the Shale-Wail representation 

(cf. [8]). 

2. Since the Wail-Lions cocycles (cf. point 1.2) represent 4u and the values of these 

cocycles do not exceed ~ __~H__ in modulus, the real class u is represeuted by cocycles 

whose values do not exceed n/4 in modulus. It follows from this that the norm of the class u 

in the sense of the theory of bounded cohomology does not exceed n/4. 'rhe estimate ~<(Z~- 

~)/Z was noted previously (cf. [4]). It seems likely that JI~=~/4 (for n = i this is so, cf. 

[14]). 

3. In [13] the Maslov index of a triple of positive Lagrangian subspaces of a complexi- 
fied symplectic vector space is defined entirely implicitly. It satisfies (5) and for real 
Lagrangian spaces it coincides with the ordinary Maslov index. It would be interesting to 
construct a cocycle related to this generalized index in the same way that ~ is related to ~ . 

4. We note the definite parallelism of the present paper with Novikov [15], where, like 
here, considerations which relate to cobordism theory were reduced to a purely algebraic con- 
struction, which turned out to be connected with the Maslov indices. 

1.7. When this paper was already finished, it became known to the author that the cocy- 
cle ~ was considered previously by Meyer [18]. In [18] an assertion was also formulated 
which is equivalent with our Theorem i (this assertion is unproved in [18], where Meyer refers 
the reader to his dissertion for a proof). The cocycle ~ and the relation with the Maslov 
indices are missing from [18]. 

2. Proof of Theorems 1 and 2 

2.1. LEMMA. For any ~ , ~ the form (6) in Q~-~)(H)N(~-!)(H) is well-defined, sym- 

metric, and bilinear, so that @ is a well-defined map. 
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Proof. It suffices to prove that for any ~ ~ ~ the form 

C~,~ '- ~B<(~-O -~<~)+ ~ /z ,  6) 
in (~-j)QH) is w~ll-defined, s~nnmetric, and bilinear. These properties follow from the fact 

t h a t  Ob={CZ)-T~ and ~=~(~)-~, with ~, ~6H, then 

2.2. LEF~4A. If ~s then the annihilator of the space K%T<~-[)with respect to the 

form B is equal to <~-[]<H). 

Proof. If ~,~# 6H , then 

Hence [~ -{)(H) is contained in the space Awws<Ke~(;-J)) and for dimensional reasons coincides 

with it. 

2.3. LEMMA. If ~,~, ~ ~T , then 

~ C{,t)+f ~ , ~ )  = ~ < f , ~ )  + ~ <1,~). (1i) 
Proof. We denote by E the subspace of the space Hg~)H, consisting of triples (~j;~&, 

~5), such that @l+~g#~$=O; ~leQ~-l)(H), ~(~-J)(H)I~e(~-J)(H ). We denote by El and E z the 

subspaces of the space E defined, respectively, by the equations ~=0 and 6[~=0. We denote 

by E% (respectively, by ~) the subspace of the space E, consisting of triples <s 

such that ~=C~-k)iz) and ~=~-[)(~) for some ~6~ [respectively, such that ~=i~- 

~)(~) ~nd O~z=(~-[)~ ) for some ~t~_H ]. We define the map '~:E~---~ by the rule 

As is easy to verify 

Hence, as is clear from the proof of Lenrma 2.1, ~ is a well-defined symmetric form. It is 

prov~ below that: (i) the signatures of the restrictions of ~ to E i , E z ,]Es, and ~ are 

equal, respectively, to ~C~,~,~tI,~]~ ~ , ~ ' ~ ) ,  ~d ~<~%,k)i <~OA.% ~ n.Ep=h +% 
and ~m~(Ezf~E4)=~.*E~o It follows from (ii) that the signature of the form ~ is ~!ual to 

the sum of the signatures of the forms #)i El and ~I E~ and is also equal to the sum of the 

signatures of the forms ~[[z and ~)I[~. 

Hence (ii) follows from (i). We prove (i). We denote the form (6) in.Q~-J)[H)f](~d>~H) 

byOi$,~). Obviously the map 

is an isomorphism, carrying oiI,~:) andS] i:~-~ " H e n c e  the signature of the form ~]IE z is equal 

to ~II i~)" One proves analogously that the signature of the form ~I [i is equal to ~[~J~)I" 

Obviously the image of the space ~ under the projection (@i~ ~Ob5] w--~i:E---~ is 
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~=(I~!)(~) with ~, ~ ~H, then 

It follows from this that the form 0 (I,~)is isomorphic with the quotient of the form ~ I E~ 

by some subspace of the annihilator. Hence the signature of the form ~l~s is equal to 

~(~,]~). Analogously one proves that the signature of the form ~I E4 is equal to ~(~@). 

We prove (ii). As is easy to verify, EIN~={(0,(q'~-~)(~ ) , i~-i)(~)) I ~ Ke~(~-.i)}, and 

Ei+E~={(~i,~,~)e ~I ~ Ei~-J)(H) ~ . If ~ Ke~(~-~) and ~= (~,~,~s)~ ~, then 

Hence the inclusion B ~_ A~*~ (E~ n F_z) is equivalent with the inclusion B! e A~ BIKe~ ((~l-i)) 
and by Lemma 2.2, equivalent with the inclusion ~e Ei+~. The equation A~(E~)= 

~a + ~ is proved analogously. 

2.4. LEMMA. If #, ~ ~ ~, then the annihilator of the form (6) is equal to • 

Proof. The fact that the space (l-~)(Ke~I~l-i)) is contained in the annihilator of the 

form (6), is verified without difficult. We prove the opposite inclusion. Let z be an ele- 

ment of this annihilator and let ~e(~-0-~(Z) and ~ E (~J)-~(Z). Then ~+~ ~B (i~- 

i)i~ ) ~ (q-J#(~)). By eemma 2.2 the latter space is equal to Ne~i~-J)+Ke~(~-J), so that 

Q~e~+Z = Q~+~ for some ~EKe~(~- 0 and ~ e Ke~ (~'i) �9 Here Z=(~-J)(~-~) and ~-~ ~ Ke~ x 

(~_J), since ~(~f~)=~(~(~)-~) = ~(~+Z-~)=~(~-~)~O~-~(~)-~-~-~ =~-~. 

2.5. LEMMA. (i) For any inteBers p, q, r, and s, the function ~ :~g ~ ~ is constant 

on path connected components of the set 

(ii) The function ~ is a Borel function. 

Proof. Point (i) follows from Lemma 2.4, point (ii) from (i). 

2.6. LEMMA. Let: H--0, ~: ~z , ~ be the form (@,~) : > I ~ G be the group 

of automorphisms of the form B. Then the group of rotations of $~ is contained in G and the 

restriction of @ to ~ represents the image of the class 4u under the restriction homomor- 

phism H'~(~i Z)- >Hg(($~)~ Z). This image is an element of infinite order. 

Proof. Since the inclusion ~ ~ is a homotopy equivalence, the restriction of ~ to 

$I represents its class, corresponding to the exact sequence 0---~Z--'~ -~ ~ ~ 0, in which 

the projection ~ > ~ is defined by the rule ~ ~ >8~. This class is represented by the 

cocycle~:~ ~>~, defined by the formula ~Q~,~)= $i~) + ~(~)-8~)' where ~(~ J~/2~ 

for s E0,Z~). Thus, for ~,~e[0,2~), 
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Obviously if ~-=0 or~--O, then ~(e~e~)=0. Let0<~<Z~r . Then the form (6) with 

~e ~& and ~ =e~ is defined on the whole space H=C by the formula 

As is easy to verify, (e[~-t)-i=-({/gj-(~/&)6~(J~/g) for any ~E ~ -  Hence the values of the 

form (6) for ~ ~|,~ =~, and Cb=~, ~=I , are equal to 0, and for ~=~ =J and 0b=~=~are 

equal to -~[O~(s ~ (~/g)). The last number is positive, if #- +~ > g~, equal to 0, 

if s +~ =Z~t , and negative, if J. +# < g~. Thus, for ~,~e[0,ZW) 

I O~ if ~=0 or ~=O,or 
�9 " ~. +~ = z ~  

-z, 

It follows from this that for any ~,p~[0,Z~) 

where 0) is the map of 51----Z which carries i to 0 and the other elements of the group 5~ to 

-2. Hence, q and 4r represent the same element of the group Ha((5~)~iZ ). 

The last assertion of the lemma follows, for example, from the fact that if the element 

of the group H~([$~) ~j Z) with which we are concerned had finite order m, then its restric- 

tion to a cyclic subgroup of the group $~ of order relatively prime to m, would equal 0, i.e., 

would correspond to a split extension, which is obviously not so. 

2.7. Proof of Theorem i. It follows from the results of [Ii] that the two-dimensional 

Borel cohomology group H~ (6 i Z) is isomorphic to H0~ (~T~Q~)~ Z)=Z, where the image of the 

natural homomorphism ~ ~ iZ)---~g(~iZ) is generated by the class u. Since by Lem~na 2.3 

and point (ii) of Lemma 2.5, ~ is a Borel cocycle, ~ represents mu for some integer m. It 

follows from Lemma 2.6 that m = 4. 

2.8. Proof of Theorem 2. By Theorem i, q' is a cocycle which represents 4u. Since G 

is a simple Lie group, HI IC~i Z) =0 ' and consequently the group Hz(~sl Z) is torsion-free. 

Hence to prove the theorem it suffices to prove that@'[~ ~') C4Z. We prove that if I,~e~ 

and KS~(~-I) = K ~ J )  = 0, then ~'(~,~) ~ ~Z. The general case will follow from this: 

for any #;~ ~ one can find an element h of the group G such that i is not an eigenvalue of 

the operators h, gh, and fgh, and hence 

Let ;, ~ ~ ~ and let Ke~[~-l)= Ke~([I-{), 0 . We denote by C the form (6) in <~-.l)Qa) �9 

By Lemma 2.4, the form C is nonsingular. We calculate its determinant (which is an element 

of the set {r ~, [~ ). Let ~I,... ; ~ be elements of the space H, whose images under the homo- 

morphism.~-[ constitute a basis of the space ~-I)[H). Obviously 

c O( P, ;- OC i)) - s ( [  C % - 

- CCt 
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Since the homomorphism (~-i)~(~-~) is the identity onKe, (; -~), it follows from this that 

the determinant of the form C is equal to the product of the determinant of the homomorphisms 

~I ,~-i , and the number g(~). This product is equal to 6(~$(~)8(~) , since le[(~-i)= 

&(~) and~(~r~=~e[(~-O--$(~) . Obviously, if d e ~ ' = l ,  then the number of negative 

squares in the diagonal representation of the form C is even, and if 4~ ~ ~ -.[, then this 

number is odd. Hence the signature ~ (.~, ~ of the form C is congruent modulo 4 with ~(~- 

l)(H)+ d~C-l. From this, in view of the evenness of the numbers g(.~)'-l~ g(~)'7 i, and 

8 ( ~ ) - i  ' the following congruences modulo 4 follow: 

.ence e 4 Z .  

3. Proof of Theorems 3, 4, and 5 

3.1.  LEHMA. I f  under the condi t ions  of point  1.4, k,kir. , k ~  g ~  with ~ > [ ,  then 

n Ke,(  (k)4 (k,).-t) - Z'd (k n k, n...n k . ) .  

Proof: of. [9, p. 35]. 

3.2. Proof of (8). It follows from eemmas 2.5 and 3.i that the number~Q~ (k~)~ ~ (kk), 
~..(ks)) does not vary under continuous deformation of the complex structure and basis in H, 

used in defining the imbedding ~ Since the space of complex structures on H, compatible 
with B, is path connected (cf. [7]), and since for a fixed complex structure the space of 
orthonormal bases is aso path connected, it suffics to prove (8) for any one complex struc- 
ture and one basis. 

We set ~=~(kiAk~) and ~ =(~H)/g �9 It is easy to construct a symplectic basis 

~I,.--, ~, ~ for the space H, such that ~,...~ ~is a basis for k~ and ~,---~, 

~+i,- ".~ ~ is a basis for k a. We introduce a complex structure on H by the formula 

z, =-~ and ~, = ~,, where ~ =It.. ~ ~ . Obviously this complex structure is compatible 

with B and ~i,.--~ ~ is a basis for H over ~ , which is orthonormal with respect to the form 

(7). Let ~:A- * ~ be the imbedding corresponding to this complex structure and this basis, 

We set ~= ~ (k,) with ~ =i,g~8, and we calculate ~(~k~i,~)[in our notation it is easier 

to calculate this ntunber than t~(~t, ~&, ~) ]. As a direct calculation shows, ~I-i and ~z 

is given in the basis g,, .... ~ ~ be the diagonal matrix in which the first m diagonal elements 

are equal to 1 and the other ~ -~ are equal to -i. Let Z be a unitary operator carrying k i 

into ka. We represent Z in the form X + ~Y , where X and Y are operators H---~H which are 

linear over ~ , whose matrices in the basis ~i, .... ~ ~ ~ are real (or, equivalently, ~ (k~) 

k~.,. Yikl) ~ k~ ). Then 

We denote the space 

F_  (Enk,)e (E n 
(~a-I)iH)A(~$-I)i~) by E. Obviously E -- ~) ~ ~ N Y (H) and hence ~>~ 

By definition tili~&l{$11s) is the signature of the form 
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We denote this form by C. Obviously if ~E and~ ~ (~srl) -I (Oh) , then -05/~ (.~_l)-i (~,) 

and-i~/2)+s Thus, if ~b.~s and Os=Z~Y(~) with~6~ , 

then 0~,~)=B~X~z),5). It follows directly from this that the spaces Ff] k i andE(% ~kl are 

orthogonal with respect to C. Since multiplication by i leaves the form C invariant, its 

restrictions to s and ~f)~i are isomorphic. Hence the number l~(Iz , II, 15) is equal to 

twice the signature of the restriction of C to [ (~ ~k i . We show that this signature is equal 

to ~; (kz, k~,k~). 
By definition, ~(k,,kt,k~) is the signature of the form A on (kl ,kz) n k~, defined 

by the rule: if �9 , ~ 6 ~k~+kz)(~ ~ and x is sn element of the space k~ such that ~b-~66 kz, 

then A({I~)=B(~c~). We denote by p the projection H = ki~k~ ~k~. Since k~=QX+ 

~Y)ikl), p((k,§ ks) = E n ~ k~. If ~b,6 s Qki+k&) (~ k~ and(~ =<~+~Y)Q~c) with ~ E kt , then 

The assertion required follows from this. 

3.3. LEMMA. Let %:~--~6 be the projection and f be an element of the group G, such 

thatKe~(~Ll)=0. Then: (i) in some neighborhood of 1 in G the map ~-~(~%(~ is equal 

to q)'; (ii) if Poe ~-i(~), then q~ is constant in some neighborhood of the element % . 

Proof. If ~ ~; are sufficiently close to I, then by Lemma 2.5, ~i;~) = ~#~). 
Hence, 

Comparison of this formula with {i) shows that the map •; ~qg(F)- ~(~, ~ (F)) is a local 

homomorphism of a neighborhood of 1 to Z . Since G is semisimple, this homomorphism is zero. 

(i) follows from this. Point (ii) follows from (i) and (ii). 

3.4. Proof of Theorem 3 and (9). If two functions satisfy the conditions of the theo- 

rem, then their difference, say X, is locally constant on the set of transverse pairs, and 

satisfies the relation ;tiKI,Kz)=;6[Ki~K~)-~QKz, K~). Since for two Lagrangian spaces one 

can find a third, transverse to both of them, it follows from this that X is locally constant 

everywhere, and hence, constant and equal to zero. 

To prove (9) and the existence of a function m, it suffices to prove that the map ~o<F~ 

F)'~ z ---~ satisfies the conditions of Theorem 3. (2) follows from (4) and (8). The local 

constancy follows from Lemma 3.1 and point (ii) of Lemma 3.3. 

3.5. Proof of Theorem 5. By Lemma 3.3,qg(~Q~i))= %0~-i~ ~) for ~,i) in some neighbor- 

hood of the identity in ~0 �9 By definition, ~(-I,~) is equal to the signature of the form 

(0L7~)~-~5~-I)-i(s +6L/Z~$) in (~-I)(H). The calculation of the values of this form on eigen- 

vectors over (~ of the operators h, analogous to that done in point 2.6, shows that in some 

basis over ~ of the space H this form is given by a diagonal matrix, whose diagonal elements 

run twice over the set{-~@~/g)l~=i~...~ ~i ~ ~FZ~ Hence, if l@i:l~...~I@~I<~r and if s 

of the numbers@it .... ~@~ are positive, and r are negative, then ~ Q-l, ~) =Z(f~-$). It is easy 

to verify that if lil~l@il, .., I@~l<ll/~ then the right side of (i0) is also equal to gi~-$) 

Thus, (I0) is valid for ~, ~) in some neighborhood of the identity. To prove (I0) in com- 

plete generality it suffices to prove that if this formula is true for (~,~), then it is also 

true for (~z,Z~).  

As follows d i r e c t l y  from the d e f i n i t i o n s ,  ~ (~.i~) =~(-t ,~)- Hence ~ (~ ,  ~) = g (g i+ . . .  + ~W), 

where: ~ = 0  , i f  the number ~ . ( ~ / Z )  i s  undefined or equal to zero; 95=! , if~% ({)S/Z) <0; 
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#~ =-i, if ~(,~)$/g)> O. It is easy to verify that ~(@~)-g~i@~/g). By ( i ) ,  

%=I = ~=I 

~ = J .  = 

APPENDIX. THE CLASS u IS THE CHERN CLASS 

Let G be the group of real-linear automorphisms of the form ~ ~ ~ Zm Zz) in ~m. 

Let ~b~ H ~ Q~i ~) be the class corresponding to the universal covering ~--~ and the isomor- 

phism ~ ~Yi(~) , defined by the form ]1~=~ Z$ Z~) (cf. points i.i and 1.3). We con- 

sider the maps i :~G~ ;~G and e:~U(~) , ~, induced, respectively, by the identity map of 

the group G and the inclusion of the unitary group in G. Since U i~) is a maximal compact 

subgroup of the group G, e is a homotopy equivalence. Let p: ~ ~ ~SU ~) be a homotopy 

inverse. 

THEOREM. If o~ e H z (SU i~) ~ Z) is the first universal Chern class, then Q p o i) ~ <C[) = ~. 

This theorem is well known (cf., e.g., [2]). Here is the outline of one possible proof. 

Since HZi5~<s , where D(~) is the universal covering of the group U<s the lift of 

the class ipoi? (~z) to Hz~i~) is equal to 0. Hence, ~poi)~ (~1) =~ , where ~ 

The equation ~t=i is proved with the help of reduction to 5~ (cf., points 2.6 and 2.7), con- 

sidering the standard model of the space ~5 i$*)~ and taking into account the fact that if �9 = 1 

the class 0, is the Euler class. 
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CLASSIFICATION OF ORIENTED MONTESINOS LINKS BY INVARIANTS 

OF SPIN STRUCTURES 

V. G. Turaev UDC 515.162 

In this paper we give the isotopy classification of oriented Montesinos links. The 
definition of the invariants of links needed for this and the proof of the classi- 
fication theorem are based on a new construction, which establishes a correspon- 
dence between orientations of a link ~c~ on the one hand, and spin structures on 
the two-sheeted branched covering of the sphere, branched over ~, on the other. 
New numerical invariants of spin structures on three-dimensional Seifert manifolds 
are introduced in the paper; these invariants are used to classify the Montesinos 
links. 

The Montesinos links constitute an extensive class of links in the three-dimensional 
sphere, including, in particular, all pretzel links and links with two bridges. This class 
of links was introduced by Montesinos [ii] in 1973 and was subjected to intensive investiga- 
tion in the following decade (cf. [1-4, 12, 14]). In his unpublished paper [4], Bonahon 
gave the complete isotopy classification of Montesinos links in the category of nonoriented 
links. In the present paper we establish a theorem of isotopy classification for oriented 
Montesinos links. The definition of the invariants of oriented links necessary for this 
classification (and also the proof of the classification theorem) are based on a new con- 
struction, which leaves the realms of the theory of Montesinos links far behind. This con- 
struction establishes a correspondence between orientations of links, on the one hand, and 
spin structures on the two-sheeted branched covering of the sphere, branched over this link, 
on the other. 

I. Montesinos Links 

i. Terminology and Notation. We recall the definitions we need from knot theory. Let 
and $ be relatively prime integers with ~ > i and let ~h...,~w be integers such that 

~___= I 

-~+ i 

~+. 

+ l 

A rational tangle of type (~, ~) [rational tangle of type (~, $)] is the following one-dimen- 
sional submanifold of the three-dimensional ball (see Fig. i). (In Fig. i,~-?, ~i=$ , ~=-g , 

~=-2 , ~4=I , ~5 =$, ~e'-$~=-4,g-S~S~=IS2.) It is known that a rational tangle of type 
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