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(1. Introduction

1.1. Poincare complexes are homotopy analogues of closed manifolds. They were
introduced by S. P. Novikov and by W. Browder at the beginning of the 1960's for the
requirements of the surgery theory of simply-connected manifolds (see [1]). Later,
the range of application of Poincare complexes widened substantially. In particular,
they play an important part in the surgery theory of non-simply-connected manifolds,
which was developed by Wall [20].

Let us recall the definition of an n-dimensional Poincare complex (the term
"Poincare complex of formal dimension n" is also used). Let X be a connected
cell complex which is dominated by a finite cell complex. Let ttf e H'(X; Z/2),
We denote the fundamental group of the complex X by z. We denote by Ztp the
group Z furnished with the structure of a right Z[z]-module in the usual way by
means of the homomorphism c3,t (â€”1)": z (+1]. Let [X] C H„(X; Z").
The triple (X, to, [X]) is called an n-dimensional Poincare complex if for every left
Z[z]-module B the homomorphism

ii ~ ii ll [X] H (X ' B) Hn (X ' Z t3Z[nlB)

is an isomorphism. For the details, the reader is referred to [19] (see also II4). The
Poincare complex (X, tLt, [X]) is usually denoted simply by X; the class ttf is
denoted ttt(X) . The Poincare complex X is calledfinite if the space X is homotopy
equivalent to a finite cell complex. It is known that every closed topological manifold
of dimension n has the homotopy type of a finite n-dimensional Poincare complex.

In the topology of three-dimensional manifolds, Poincare complexes do not play
the same role as they do in high-dimensional topology. The point is that the methods
of high-dimensional surgery theory are not applicable in dimension 3. On the other
»nd, as is clear from the results stated below, the class of three-dimensional Poincare
complexescan be described in purely algebraic terms. In view of this, the comparison
«the classof three-dimensional Poincare complexeswith the classof homotopy types
«closed three-dimensional manifolds is of particular interest.

It ts not difficult to construct three-dimensional Poincare complexes with finite
fundamental groups which are not homotopy equivalent to three-dimensional mani­
fotds. The existence of such complexes follows already from the fact that the class of
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finite groups which are fundamental groups of three-dimensional Poincare complexes
coincides with the class of finite groups with periodic cohomology of period 4 (see
[19]). By results of Milnor [11] there exist finite groups with periodic cohomology of
period 4 which are not realizable as the fundamental groups of three-dimensional
manifolds. The simplest such group is the group of permutations of a set of three
elements.

The supply of examples of three-dimensional Poincare complexes (up to homotopy
equivalence) at the present time runs to no more than the closed three-dimensional
manifolds, the Poincare complexes with finite fundamental group, and the connected
sums of these. In fact, nothing contradicts the following conjecture: every finite
three-dimensional Poincare complex whose fundamental group has no torsion (that
is, has no nontrivial elements of finite order) is homotopy equivalent to a closed
three-dimensional manifold. It is even possible that the hypothesis of finiteness is
superfluous here: there are at present no examples of nonfinite Poincare complexes
of dimension 3 with torsion-free fundamental groups, Note that even the analogous
problems in two-dimensional topology proved to be very difficult. They were solved
comparatively recently by Eckmann, Muller and Linnell, who proved that all two­
dimensional Poincare complexes are homotopy equivalent to closed two-dimensional
manifolds (see [3] and [4]). Relying upon this theorem, Hillman [6], [7] and Thomas
[14] obtained a series of results towards the conjecture formulated above.

1.2. The homotopy classification problem for three-dimensional Poincare com­
plexes was considered by Hendriks [5]. He constructed a complete system of homo­
topy invariants of a three-dimensional Poincare complex X. This system consists of
the fundamental group z = z>(X, x), where x E X, the class tv(X) E H {z; Z/2),
and the class p(X) E H3(z; Z'"') representing the image of the fundamental class
[X] e H3(X; Z") under the homomorphism H3(X; Z ) ~ H,(z; Z ) induced by
the natural map X ~ K(z, 1). Wecall the triple (X, tLt(X),p(X)) thefundamental
triple of the Poincare complex X, and say that X realizes (z, tv(X), p{X)).

In the class of triples (group z, class vj c H (z; Z/2), class p e H3(z; Z ))
the relation of isomorphism is defined in the natural way: two triples (z, tv, p)
and (G, v, ri) are isomorphic if there exists an isomorphism p: z ~ G such that
the homomorphism p': H (G; Z/2) H (z; Z/2) carries v into tv, and the
homomorphism p.: H3(z; Z"') H3(G; Z') carries p into rt. It is easy to see
that the fundamental triple of a three-dimensional Poincare complex X does not
depend, up to isomorphism, upon the choice of the distinguished point x c X.

THEQREM0 (Hendriks [5]). Two three-dimensional Poincare complexes are homo­
topy equivalent if and only if their fundamental triples are isomorphic.

A homotopy equivalence of Poincare complexes is understood to mean a homotopy
equivalence which preserves the class w and the fundamental class.

For the convenience of the reader, a proof of this theorem {different from the
proof given in [5]) is detailed in the Appendix to this paper. In the case of three­
dimensional closed manifolds, Theorem 0 was first proved by Swarup [13],

In the author's paper [15] an algebraic characterization was given of the pairs
(z, tv) which correspond to three-dimensional Poincare complexes. In the present
article, that result is strengthened to give a characterization of the triples (z, tv, p)
which correspond to three-dimensional Poincare complexes. More precisely, we
state algebraic conditions on the triple (group z, class tv e H (z; Z/2), class
p e H>(z; Z" )) which are necessary and sufficient for its realizability as the fun­
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damental triple of a three-dimensional Poincare complex. The formulation of these
realizability conditions is rather complex and requires the algebraic apparatus devel­
oped to frame its introduction (see f)2 and 3). The realization theorem is comple­
mentary to Theorem 0, and completely reduces the problem of homotopy classifica­
tion of three-dimensional Poincare complexes to a purely algebraic problem. This
reduction allows one in particular to answer a series of questions concerning split­
tings of Poincare complexes into connected sums. (The connected sum operation for
Poincare complexes was defined in [19]; this definition is reproduced in f3.)

THEQREM1. If the fundamental group of a three-dimensional Poincare complex
X isisomorphic to the free product of the groups G, and G2, then X is homotopy
equivalent to the connected sum of two three-dimensional Poincare complexes with
fundamental groups G, and G2.

This theorem represents a translation into the category of three-dimensional
Poincare complexes of the classical splitting theorem of Kneser and Stallings for
three-dimensional manifolds. The question of whether this translation was possible
was posed by Wall ([19], p. 235).

THEQREM2. If the fundamental group of a three-dimensional Poincare complex X
has no torsion, then X is homotopy equivalent to a connected sum of aspherical three­
dimensional Poincare complexesand a number of copiesof the manifolds S x S andI 2

SI S2

Here S xS is the total space of the nonorientable fibration over S with fiber
S . Recall that a cell complex is called aspherical if its universal cover is contractible.

2

The converse of Theorem 2 is also true (and well known):
If a Poincare complex X is homotopy equivalent to a connected sum of aspherical

threedimensional Poincare complexesand a number ofcopies of the manifolds S x SI 2

and S'xS, then the group zI(X) has no torsion.
We shall denote the relation of homotopy equivalence of topological spaces by

the symbol =. A three-dimensional Poincare complex X is called prime if it is
homotopically distinct from S (i.e. X $ S ) and if for any three-dimensional3 3

PoincarecomplexesX, and X2 suchthat X= XIIX2,either X, =S or X2-S .
It follows from Theorem 1 that X is prime if and only if its fundamental group is
nontrivial and does not split into a free product of nontrivial subgroups. (Note that
for a three-dimensional Poincare complex X the conditions X = S and ttI (X) = 1

3

are equivalent.)
Elementary group-theoretic considerations show that every three-dimensional

Poincare complex decomposes into a connected sum of prime three-dimensional
Poincare complexes. The following theorem shows that this decomposition is unique
except for the known (and obvious) relation

X¹S xS =X¹S xS (1.2.1)

where X is a three-dimensional Poincare complex with w(X) g 0.

THEoREM3. The decomposition of a three-dimensional Poincare complex into a
connected sum of prime three-dimensional Poincard complexes is unique up to per­
mutation of the summands, replacement of them by their homotopy equivalents, and
modulo relation (1.2.1), where w(X) g 0.
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Theorems 1, 2, and 3 remain true if the words "Poincare complex" in their state­
ments are everywhere replaced by the words "finite Poincare complex". This follows
from Theorems 1, 2, 3, and the following fact; the connected sum of two Poincare
complexes X and Y is a finite Poincare complex if and only if X and Y are finite
Poincare complexes. This fact is well known. It follows immediately from the addi­
tivity of the Wall invariant cr with respect to connected sum. (Recall that a Poincare
complex X is finite if and only if the invariant o (X) c Ko(Z[tt]) introduced by Wall
[17] takes the value zero, where z is the fundamental group of the space X and
Ko(Z[z]) is the factor group of Ko(Z[z]) by the infinite cyclic subgroup generated
by the class of the module Z[tt]. Recall also that o is invariant under homotopy
equivalences.)

The results of this paper can be generalized to higher dimensions: more precisely,
to the class of n-dimensional Poincare complexes with (n â€”2)-connected universal
coverings, where n > 3. This allows one to prove the analogues of Theorems 1, 2,
and 3 for n-dimensional manifolds with (n â€”2)-connected universal coverings, when
n > 5. The author intends to discuss related results elsewhere.

It would be interesting to generalize the results of this paper to the case of three­
dimensional Poincare pairs.

Theorems 1, 2, 3, and the realization theorem for fundamental triples were an­
nounced by the author in [16].

1.3. Plan of the paper. The necessary algebraic apparatus is introduced in II2. The
realization theorem for fundamental triples of three-dimensional Poincare complexes
(Theorem 4) is stated in II3. Theorems 1, 2, and 3, are also deduced there from
Theorem 4, as is the theorem on characteristic pairs (z, ttj) mentioned above. In
)4, Theorem 4 is proved. In I15a formula is given which permits one to calculate the
Wall invariant of a three-dimensional Poincare complex from the fundamental triple
of the complex. In the Appendix Theorem 0 is proved.

)2. Homotopies of homomorphisms, the module F" (C),
and the homomorphism vc

Until the end of the section, we fix an associative ring A with unit.
2.1. Homotopies of A-homomorphisms. In this subsection we review the elements

we shall need later on from the homotopy theory of homomorphisms, which was
developed by Hilton and Eckmann in the 1950's (see [8]).

Let A and B be (left) A-modules. The A-homomorphisms f, g: A ~ B are
called homotopic if their difference f â€”g can be represented as a composition A ~
A â€”.B, where m is a natural number or zero. (As usual, A is the m-fold sum
A 8 A 8 . 8 A.) One verifies without difficulty that homotopy is an equivalence
relation on the set of homomorphisms. It is denoted by the symbol . The set
of homotopy classes of A-homomorphisms A ~ B is denoted by [A, B]. It is
evident that addition of homomorphisms defines the structure of an abelian group
on [A, B].

A A-homomorphism f: A ~ B is called a A-homotopy equivalence if it possesses
a homotopy inverse, i.e. if there exists a A-homomorphism g: B ~ A such that
gf - id„and fg â€”id'. Clearly, a homomorphism which is homotopic to a ho­
motopy equivalence is also a homotopy equivalence. The (possibly empty) subset of
[A, B] consisting of the homotopy classes o. homotopy equivalences is denoted by
Equi(A, B) .
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An ample supply of A-homotopy equivalences is provided by the following simple
observation: if A is an arbitrary A-module and P is a finitely generated projective
A-module, then the inclusion A ~ ASP and the projection AESOP~ A are mutually
homotopy inverse and therefore are homotopy equivalences. (Note that the class of
finitely generated projective A-modules coincides with the class of direct summands
of the modules A with m = 1, 2, ....) The following lemma shows that every
A-homotopy equivalence can be represented as a composite of isomorphisms and
homotopy equivalences of the above form. {This lemma is dual to Theorem 13,7 of
Hilton's book [8].)

2.2. LEMMA.Let A and 8 be A-modules, and let f; A ~ 8 be a homotopy
equivalence. Then f can be represented in the form of a composite

ASP BSA 8, (2.2.1)

where P is a finitely generated projective A-module, i is the canonical inclusion, j
an isomorphtsm over A, m e {0, 1, 2, ... ), and pr the projection.

PRooF. Let g be a homomorphism 8 ~ A such that fg - id' and gf­
id„. Suppose that id~ â€”gf = Pa, where o, and P are homomorphisms A ~ A
and A ~ 8 .respectively,and m > 0. We set 8 = 8 eA . We denote the
homomorphisms (f, n): A ~ 8 and (g, P): 8' ~ A by f and g respectively.
We set P = Kerg'. It is clear that g'f' = id„, Therefore f' is an injection and
8' = f (A)e P.

From the fact that fg - id~, it followsthat jg' - id~.. Therefore id~ â€”jg =
Sy, where y and 8 are homomorphisms 8 ~ A" and A" ~ 8 respectively,
with n > 0. On the other hand, f g ~ = 0 and jg'~<~„~ â€”â€”idf (g) Hence
Im(id~ â€”jg') c P. Therefore the relation id~ â€”f'g' = 8y remains true if 8 is
replaced by its composite with the projection 8' = f'(A) 8 P ~ P. Thus we may
assume that Im8 c P. In that case By~ = (id~ â€”jg')~ = id . That means that
y~ is an embedding P ~ A", and A" = y(P) 8Ker8. Therefore P is a finitely
generated projective A-module.

Clearly f is the composition of the embedding A ~ A e P, the isomorphism
f 6 id: A8 P ~ f'(A) 8 P = 8 e A, and the projection8 9 A ~ 8 . The lemma
follows from this.

2.3. The module F"(C). We shall suppose that the ring A is provided with an
antiautomorphism 2 ~ 2: A ~ A. To every A-module A there corresponds a dual
module A' = HomA{A, A), where the A-module structure on A* is defined by the
rule that if a c A, x c A', and 2 e A, then (1x)(a) = x(a)A. To eve~ chain

8
complex C = ( ~ C„, ~ C, ~ ) over A, there corresponds a dual complex

C' = ( ~ C„, ~ C„~ ), where the homomorphism d„' is definedby the rule
that if a e C,, and x 6 C„', then 0,'(x)(a) = (â€”1)" x (<9„(a)). For integral r, we
denote by F"(C) the A-module Coker0„' I = C,'/Im0„' I .

2.4. The homomorphism uc. We assume that the ring A is provided with an
antiautomorphism 2 ~ 2 and an augmentation {ringhomomorphism) aug: A ~ Z .
We denote by I the ideal Ker{aug) of the ring A, and we regard it as a left A­
module. We denote by Z' the group Z provided with a right A-module structure
by the formula zR = aug(X)z, where z c Z and 2 c A.
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Let C = ( ~ C„, ~ C„~ ) be a free {left) chain complex over A. The
aim of this subsection is the construction of an additive homomorphism

vc,. H„,(Z ®AC) [F (C), I] (2.4.1)

for every r c Z. In fact, we only need the homomorphism vc 2. It will also be
denoted by vz.

Wedefin v< „. Itisevident that the kernelof the homomorphism 2 ~ 1®il:A ~
Z SA A = Z is equal to I. Since the complex C is free, there exists an exact
sequence

O~IC~C ~ Z ®AC~0. (2.4.2)
To this sequence there corresponds a boundary homomorphism

(Z ®AC) H„(IC) (2.4.3)

We shall define an additive homomorphism

H„(IC) ~ [F (C), Ij. (2.4.4)

We note that every element c of the module C„defines a A-homomorphism x ~
x{c): C„' ~ A. If 0„,(c) = 0, then this homomorphism can be factored through
the projection C„' ~ F"(C). We denote the resulting homomorphism F"(C) ~ A
by c. Now suppose h c H„{IC), and that c c IC„c C„ is a cycle representing h.
Since 8„,(c) = 0, the homomorphism c: F" (C) ~ A is defined, and its image is
contained in I. We denote the resulting homomorphism F"(C) ~ I by c". We
now show that the homotopy class of the homomorphism c' does not depend upon
the choice of the cycle c representing h . It sufficesto show that if d = c+ 0„(ae),
where a c I and e c C„,, then d' â€”c'. The latter follows from the fact that the
difFerence d" â€”c" is equal to the composition

F (C) ~ A ~ I.

The homomorphism (2.4.4) is defined by assigning to the class h the homotopy class
of the homomorphism c" .

The composition of the homomorphism {2.4,3) and (2.4.4) gives the homomor­
phism (2.4.1).

2.5. LEMMA.Suppose that C = ( ~ C,, ~ C„~ ) is a free chain complex
over A. If the module C„ is finitely generated and H„(C) = H„, {C) = 0, then the
homomorphism vc „ is an isomorphism.

PRooF. From the exactness of the homology sequence associated with the exact
sequence (2.4.2), it follows that the homomorphism (2.4.3) is an isomorphism. We
shall show that the homomorphism (2.4.4) is an isomorphism. From this will follow
the statement of the lemma. We first prove surjectivity. If p is a homomorphism
F'(C) ~ I, then the composition

C„~ F (C)~ I ~ A

is given by a formula x ~ x(c), where c is some element of the module C„. Since
the homomorphism x ~ x(c): C„*~ A factors through the projection C„'~ F" {C),
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it follows that 0„ I(c) = 0. Since x(c) E I for all x c C,', it follows that c c IC„. It
is apparent directly from the definition that the homotopy class of the homomorphism
p corresponds to the class [c] c H,(IC) under the homomorphism (2.4.4).

We now prove that the homomorphism (2.4.4) is injective. Let h be an element
of the kernel of that homomorphism. Let c e IC„be a cycle representing h. Then
c' â€”0, i.e. there exist homomorphisms o.. F'(C) ~ A and P: A ~ I (where
0 < m < oo) such that c" = p On. We denote by p, the image of the ith term of
the canonical basis in A under the homomorphism p, so that pI, ..., p e I.
As above, there exist cycles c,, ..., c c C such that the composition

C„~F (C)~A

is given by the formula x ~ (c,(x), ..., c (x)). It follows from the equation
c" = p o e that c = g, p,.c, Since H„(C) = 0 and cI„ I(c,.) = 0 for all i, there
exist chains d,, ..., d e C„, such that 0„(d,.)= c, for all i. Then

m

c = 0, QP,d,. e ct,(IC,,).
i=l

This means that h = 0.

)3. Statement of the realization theorem. Applications

3.1. Statement of the realization theorem. Let tr be a group, tti c H (tt; Z/2),
and p C H,(tr; Z ).

It is known (see [17]) that the fundamental group of a cell complex dominated by
a finite cell complex is finitely presentable, i.e. can be given by a finite number of
generators and relations. Therefore without loss of generality we shall assume that
the group 7t is finitely presentable.

We set A = Z[tr]. We denote by aug the standard augmentation (summation of
coefficients) A ~ Z. W'edenote by I(tr) the ideal Ker{aug) of the ring A, regarded
as a left A-module.

Let C (' ' ' ~ C2 C~ ~ Co) be a free (left) chain complex over A having
the following properties: H,.(C) = 0 for i > 0; Ho(C) = Z, where Z is given
the trivial A-module structure; and Co, C,, and C2 are finitely generated (free)
A-modules. Such a complex can be constructed, for example, from any cell complex
of type E(7t, 1) which has a finite two-dimensional skeleton. It is evident that the
complex C can be completed into a resolution of the trivial A-module Z by means
of a homomorphism Co Z. Applying the results of )2.4 to the augmentation aug
and the involution of the ring A which takes a E tr into (â€”1)" o., one defines
a homomorphism

vc.' H3(tt; Z ) = H3{Z ®AC) ~ [F (C), I(tr)].

Though it is not essential at the moment, we note that vc is an isomorphism
because of Lemma 2.4.5.

THEQREM4. The triple (tr, tti, p) is isomorphic to the fundamental trt'pie of some
three-dimensional Poincare complexif and only if

vc(p) < Equi(F (C), I(tr)). (3.1.1)

(For the definition of the set Equi, see )2.1.)
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Theorem 4 is proved in )4. In particular, it follows from Theorem 4 that the
validity of the inclusion (3.3.1) does not depend upon the choice of the complex C,
In addition, this fact is proved algebraically in the course of the proof of Theorem 4.

3.2. PRooF oF THEoREM 1. We recall first of all the definition of the connected
sum of three-dimensional Poincare complexes. According to Corollary 2.3.1 in [19]
(see also [18], p, 137) every three-dimensional Poincare complex can be obtained,
to within homotopy equivalence, by gluing a three-dimensional cell e (along its
boundary) to a "homologically two-dimensional" cell complex. Here a cell complex
L is called homologically two-dimensional if the cellular chain Z[z, (L)]-complex of
the universal covering L of the space L is chain homotopy equivalent to a two­
dimensional chain complex. If X = Luf e and X' = L Uf e are representations of
this type for the three-dimensional Poincare complexes X and X', then XIX =
{L V L ) U e, where the homotopy class of the map g: Oe ~ L V L is equal to
the sum of the homotopy classes of the maps f: Oe L and f: Oe ~ L'. In
this situation hatt(x@X')= tJJ{X)+ HAJJ(X')and [XIX ] = [X]+ [X']. According to
[19], Corollary 2.4.1, the operation 5' is well-defined on the set of homotopy types
of three-dimensional Poincare complexes.

Let (z, zo, p) be the fundamental triple of a Poincare complex X. Suppose that
z = 6, * G2 . We denote by HAJJ,the restriction of the class zo in H (6,.; Z/2) . The
splitting z = G, * Gz induces a splitting

H3(z; Z ) = H3{Gi, Z ') (9H3(G2,' Z '),

Let p = p, + p2, where p, e H3(6,.; Z ') for i = 1, 2. We shall show that the
triples (G,, to,, p,) and (G2, HAJJ>,p,) are realized by three-dimensional Poincare
complexes, let us say X, and X2. From this the assertion of the theorem will
follow: the connected sum X, PX2 realizes the triple (6, *G2, zo,+m2, p, + p2) =
(z, HAJJ,p), and this means, by Hendriks theorem, that the complex X is homotopy
equivalent to Xi 0 X2 .

Since G, *G2 â€”â€”z, the groups G, and 62 are finitely presentable. Let K,. be a
cell complex, having one zero-dimensional cell and a finite two-dimensional skeleton,
which is an Eilenberg-Mac Lane space of type K(G,, 1), where i = 1, 2. The
cellular wedge K = K, V K2 is an Eilenberg-Mac Lane space K(z, 1) . We denote
by C' the cellular chain Z[G,.]-complexof the universal covering of the space K,,
where i = 1, 2. We denote by C the cellular chain Z[z]-complex of the universal
covering of the space K. It is evident that for j > 1

C. = o (C,.)en (C,),

where a,' is the change of rings functor corresponding to the inclusion Z[6,] ~ Z[z] .
The boundary homomorphism 0.: C., ~ C, for j > 1 is here the direct sum ofJ' J+I J

the homomorphisms n (0,.) and o: {0,.). Hence

F (C) = cx(F (C )) Sn (F (C )).
We note that

1(z) = o. (1(G,)) $0' (1(G )), (3.2.1)
where the (canonical) inclusion

a (1(G.)) = Z[z] jsz G 1(G.) ~ I(z)
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is defined by the formula z 8 2 ~ zR, where z C Z[II] and AIC 1(G,.) { I(2r) . The
equality (3.2.1) is well known; one proves it most simply by noting that

I(II) = Im(00. C, Co) = Coker6l)

and that, analogously, I(G,.) = Coker8I, i = 1, 2.
Suppose that f,.: F (C,) ~ I(GI) is a homomorphism representing the class

I,(p.), where i = 1, 2. It is immediately verifiedthat the class vc(p) = vc{pI + p2)
is represented by the homomorphism

(+ (C )) @+ (+ (C )) ' + (r(G))) 6 > {r(G2))

F (C) 1(II) .

In view of Theorem 4, it suffices, for the proof of realizability of the triple
(G,, II),, p,.) by a three-dimensional Poincare complex, to show that f,. is a ho­
motopy equivalence. For definiteness we shall assume that i = 1. Since the triple
(II, III, p) is realized by a Poincare complex, it follows from Theorem 4 that the
homomorphism n (f,) 8 cr (f2) is a Z[II]-homotopy equivalence. On account of

I 2

Lemma 2.2, it then follows that for any finitely generated projective Z[ir]-modules
P and Q there exists an isomorphism j which completes the following diagram and
makes it commutative:

~ (+ (c ))+~ (+ (c )) â€”'' ~ (r(G,))e~ (r(G2))
1 pr (3.2.2)

cr'(F (C ))equi(F (C ))(3P ~ cr{l(GI))ea (I(G2))eQ.

To this diagram we apply the change of rings functor P which corresponds to the
natural projection Z[2r]= Z[GI +G2]~ Z[GI] It is clear tllat p(P) and p{Q) are
finitely generated projective Z[G,]-modules. It is easy to verify that p on = id and

I

that the application of the functor p oa to a finitely generated Z[G2]-module gives
2

a module of the form H {sz Z[G,], where H is a finitely generated abelian group.
This last module is isomorphic to the direct sum of rkH copies of the module
Z[G,] and the module Tors H m)zZ[G,], all elements of which have finite order over
Z. Thus the diagram (3.2.2) gives a commutative diagram of Z[G,]-modules and
homomorphisms

2

F (C )SATB ' ' l{G,)SA e!B

1 g pr (3.2.3)

F (C ) IE)A 8 B®~(P) l(GI) ISA e B 8 P(Q)

where A arid A' are finitely generated free Z[G, ]-modules, and all the elements
of the modules B and B have finite order over Z. It is obvious that the mod­
ules 1(GI), p(P), and p(Q) have no elements of finite order over Z, From the
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commutativity of the diagram (3.2,3) it follows that

P(j)(F (C )) < I(G ) @P(Q).

Since p(j) is an isomorphism, it therefore follows that Torsz F (C') = 0. Thus
the Z-torsion of the modules which enter into diagram (3.2.3) lies entirely in the
modules B and B'. Therefore p(j)~~ is an isomorphism B B'. On factoring
out by B and B, we obtain the commutative diagram

F (C)SA ~ I(G~)eA

1 t"

F (C ) e Ae/I(P) I(G ) 8A 8 P(Q),

where f is some homomorphism A ~ A . It follows from the commutativity of the
latter diagram that f, is the composite of the homomorphisms

F (C ) ~ F (C ) e Ae P(P) I(G>)e A $ /I(Q) I(G>)

Therefore f, is a homotopy equivalence.
3.3. PRooF QF THEoREM2. We represent the group 7t,(X) in the form of a free

product G, * *G„, where each of the groups G,, ..., G„ is nontrivial and does not
decompose as a free product. By Theorem 1, the complex X is homotopy equivalent
to a connected sum X, ¹ ¹ X„, where X, is a three-dimensional Poincare complex
with 7r,(X,)= G, for i = 1, ..., n. If G. = Z, then X is homotopy equivalent to
S x S or to S' xS . (This follows from Theorem 0, since there are two possibilities
for the class u7 c H (Z; Z/2) = Z/2, and only one possibility for the class p e
H3(Z; Z ) = 0.) Suppose that G,.g Z. We shall show that 7r.(X,.)= 0 for j > 2.

Let X, ~ X, be the universal covering, By the Hurewicz and Poincare duality

theorems, 7r2(X) = H2(X.) = Hf (X.), where Hf is the one-dimensional cohomology

with compact supports. If Hf(X,.) j 0, then the group G, has not fewer than two
ends (see [12], )1.A). By Stalling's theorem (see [12], )5.A), either G,. has nontrivial
elements of finite order, or G, = Z, or G,. is a free product of nontrivial groups.
The first, the second, and the third possibility all contradict the assumptions. Thus
7r2(X,.)= 0. An inductive application of Poincare duality shows that 7r.(X,.)= 0 for
allj>2.

3.4. PRooF oF THEoREM3. Suppose that X = X, ¹ ¹X = Y,¹ ¹Y„are
two decompositions of the three-dimensional Poincare complex X into a connected
sum of prime three-dimensional Poincare complexes. We shall show that m = n
and that the family X,, ..., X is obtained from Y,, ..., Y by the following
operations: replacement of a space by a homotopy equivalent one; replacement of a
pair X,, S x S with u7(X,,)g 0 by the pair X,, S xS; and replacement of a
pair X,, S xS with w(X,) g 0 by the pair X,, S' x S .

We shall assume that the complexes X,, ..., X are numbered in such a way
that for some k < m the fundamental groups of the complexes X,, ..., X„are
diff'erentfrom Z, and the fundamental groups of X<,, ..., X are isomorphic
to Z. Let (7r, w, p) be the fundamental triple of the complex X. 'Ihe splitting
X = X, ¹ . ¹X induces a decomposition 7r= F, * *F, where F,.= 7r,(X,,),
so that F,, ..., F< g Z and F<, â€”â€” â€”â€”F = Z.
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In an analogous fashion the splitting X = Y,¹ ¹ Y„ induces a decomposition
z = G, * . * G„, where G,. = zI(Y,.) and it can be assumed that for some I < n
the groups G,, ..., G< are different from Z, and the groups GI I, ..., G„are
isomorphic to Z. Since the Poincare complexes XI, ..., X and Y,, ..., Y„are
prime, it follows from Theorem 1 that the groups F,, ..., F and G,, ..., G„
cannot be decomposed as free products. By a famous theorem of Kurosh ([10],
)35) it then follows that, first, k = I and m â€”k = n â€”I (so that m = n) and,
second, one can set up a bijective correspondence between the families F,, ..., FI,
and G,, ..., G, so that corresponding groups are conjugate in 7r. We assume that
the enumeration is chosen so that the group F, is conjugate to G,. for i = 1, ..., k .
Suppose that G,.= a, F,a,, where a, e 7r, i = 1, ..., k.

We shall show that for i = 1, ..., k the Poincare complexes X,. and Y,, are
homotopy equivalent. We set u. = Iv~„c H (F.; Z/2) . The splitting 7r= F,* *F
induces a direct sum decomposition

H(7r Z )=g(H(F 'Z'))8 eg (H(F Z )) (3.4.1)

where g, is the (injective) inclusion homomorphism H3(F,; Z"') ~ H3(7I;Z ).
Let p = g,.(pI) + + g (p ), where p,. e H3(F,.; Z"') . It is obvious that the

Poincare complex X realizes the triple (F,, u,, p,.) . In analogous fashion, the split­
ting z = G, * * G induces a decomposition

H(7r;Z )=h(H(G;Z"))8 Sh (H(G;Z )), (342)

where v,. = III~Ge H (G,; Z/2) and h,. is the (injective) inclusion homomorphism

H,(G,.; Z") ~ H3(7I;Z") . Let p = h,((I) + + h (( ), where (, E H3(G,; Z") .
As above, the Poincare complex Y,, realizes the triple (G,, v,, g,) .

In order to prove that X,.= Y,, it suffices to show that the isomorphisms

H (F,.;Z/2) ~ H (G,.;Z/2), (3.4.3)

H3(F,; Z ') H3(G,; Zl'), (3,4.4)

inducedby the conjugation x ~ a, xa,: F,.~ G,, carry u, into v,. and p,. into (,
From the commutativity of the diagram

â€” I

1 1 (3.4.5)
â€” 1x~a, xa,

and from the fact that inner automorphisms of the group 7r act as the identity on
H (7I; Z/2), it follows that the isomorphism (3.4.3) carries u,. into v,. Analogous
considerations show that

g,.(H3(F,.; Z ')) = h,.(H3(G,.; Z ')) (3.4.6)

for i < k. If i ) k, then H3(F,.;Z"') = H3(G,.;Z") = 0. This means that
(3.4.6) holds for all i, so that the decompositions (3.4.1) and (3.4.2) coincide. Hence
g,(p,.) = h,.(4,.) for all i . On using once more the commutativity of diagram (3.4.5)
and the fact that inner automorphisms of the group n act identically on H3(7r;Z"),
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we therefore deduce that the isomorphism (3.4.4) takes p,, into 4, Therefore X,.=
Y,.for i<k.

Eachof the complexesXk,, ..., X and Y„,, ..., Y is homotopyequivalent
either to S' x S or to S xS . Therefore if w(X) = 0, then X, = S x S = Y,.
for all i > k. If w(X) g 0, then w(X,.)g 0 and w(Y) g 0 for some i, j > 1.
Therefore, applying the operations referred to in the statement of the theorem, we
can arrange that X,.= S xS = Y,,for all i > k. Thus X, = Y, for all i.

3.5. A characterization of the pairs (z, w) which correspond to Poincare com­
plexes. One says that an m x n matrix M over a ring A is a matrix of relations
for the (left) A-module I, or that M presents I, if the module I is isomorphic
to the cokernel of the homomorphism A'" ~ A" defined by the matrix M. Two
A-modules I and J are called projectively equivalent if for some finitely generated
A-modules P and Q the modules I 8 P and I EBQ are isomorphic.

THEQREM5 ([15],Appendix 1,Theorem 2). Let tt be a group and w c H (7t; Z/2) .
Let 2 ~ A,betheinvolutionofthering A = Z[tt] which takes a E tt into (â€”1)"' a
Thefollowing two assertions are equivalent:

(i) There exists a three-dimensional Poincare complex X such that the pair
(tt,(X), w(X)) isisomorphic to (7t, w).

(ii) The group z is ftnitely presentable, and for some (hence also for any) matrix
M of relations for the A-module I(7t) (introducedin al3.1)the matrix M presents
a module which is projectively equivalent to the module I(z) .

â€” T
(Here M is the matrix obtained from M by transposing and elementwise ap­

plication of the involution 2 ~ A.)
PRooF. Let M be a matrix of relations for the module I(tt), and suppose it has

m rows and n columns. The matrix M gives a A-homomorphism 0: A A"
with CokerO = I(tt). The homomorphism d determines the initial terms of a
resolution of the trivial A-module Z:

C3~ C2~ C~ +Co~ Z

A~A" ~ A~Z.
We denote the chain complex ( ' ~ C2 ~ C2 ~ Co) by C It is evident that the
module F (C) is presented by the matrix M

If the pair (z, w) is realized by a three-dimensional Poincare complex, then by
Theorem 4 the set Equi(F (C), I(tt)) is nonempty. It follows from Lemma 2.2 that
the A-module F (C) and 1(tt) are projectively equivalent.

Conversely, if F (C) and I(z) are projectively equivalent, then there exists a
2

A-homotopy equivalence F (C) ~ I(z) . From Theorem 4 and the surjectivity of
2

the homomorphism vc (Lemma 2.4.5) it follows that for some p E H3(tt; Z"') the
triple (z, w, l2) is realized by a three-dimensional Poincare complex. In particular,
this complex realizes (tt, w).

)4. Proof of Theorem 4

4.1. Preparation for the proof. In this section, A denotes an associative ring with
1 equipped with an involutory antiautomorphism. The mapping constructed in )2.3,
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which assigns to a chain complex over A the module F" (C}, extends in a natural
fashion to a contravariant functor from the category of chain complexes over A and
chain homomorphisms into the category of A-modules. This functor is also denoted
by F'. Its value on the chain homomorphism

C = ( C„ , C„ C, , )

l
C'= ( C„, C„' C„, . )

is the homomorphism F"(C ) ~ F"(C) induced by the homomorphism f .

4.1.1. LEMMA.Suppose that f, g: C ~ C' are chain homotopic homomorphisms
of chain complexes over A. If the A-module C„ is finitely generated and free, then
the homomorphisms F"(f) and F'(g) are homotopic.

PRooF. One can see directly from the definition of chain homotopy that the dif­
ference F"(f) â€”F'(g) can be represented as a composition of the homomorphism
F"(C'} ~ (C„',)' induced by the boundary homomorphism {C,')* (C„,)', some
homomorphism (C„',)' ~ C,, and the projection C„*~ F"(C). If C„= A, then
C, = A, so that, by the definitionof homotopy, F'(f) - F'(g) .

4.1.2. LEMMA.Suppose that C = ( ~ C, ~ C0) and C (''' ~ CI ~ C0)
are free chain complexes over A. Suppose that r > 0 and that f: C ~ C' is a
chain homomorphism over A. If the modules C,. and C,'. are finitely generated for
all i < r and f.: H,.(C) ~ H,.(C') is an isomorphism for all i < r â€”1, then F'(f }
is a homotopy equivalence.

PRooF. We shall prove the lemma in the special case where f,: C, ~ C, is an
isomorphism for all i < r â€”1. From the fact that f.: H„, (C) H„,(C') is an
isomorphism, it is easy to deduce that the isomorphism f„ I C I ~ C I carries
c)„ I(C„) onto c),' I{C„) . Since the module C,' is free, this implies the existence of
a homomorphism g: C„'~ C„such that d,' If„g = 0„' I . We consider the diagram

(8,, ) (((),', )", 0) (i),, 0) r9,

(C„')* ~ (C„)* 8 C„* ' C„*(E)(C„')* " C„',

where j(x, y) = {f (x)+y, x â€”g (f (x)+y)) for x e (C) and y p C . It is
easy to verify that j is an isomorphism and that the diagram is commutative. We
consider the cokernels of the homomorphisms corresponding to the vertical arrows
of this diagram. The horizontal arrows induce homomorphisms of the cokernels

Coker(c)„ I) ~ Coker(c), I) (1)C„Cokero)„ I 8 (C„) ~ Cokerc)„ I .

The composition of these three homomorphisms is equal to F"(f), as is easy to
verify. Hence it follows that F'(f) is a homotopy equivalence.

The general case of the lemma is reduced to the one considered above by means
of Schanuel's construction {see, for example, [2]). Specifically, we assume that for
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I

some number n < r â€”1 and for all i < n the map f,: C,. ~ C,. is an isomor­
phism, and that f.: H„(C) ~ H„(C') is an isomorphism. It is easy to see that the
homomorphism C„/ImB„~ C„'/Im8„' inducedby the homomorphism f„ is an iso­
morphism. Since the module C„ is free, there exists a homomorphism g: C„~ C„
such that id~ â€”fg = 0„0l, where l is some A-homomorphism C„~ C„,. We

I
consider the following chain complexes D and D and the chain homomorphism
f: D~D:

I7n-I/ ~0 I 0n I4 I n â€”I '
n+2 n+1® n n@ n nâ€”I

7 fn+2 I I rn- I

I I 0n+I '0 I
I

n â€”I '
I I7,0

+2 n+1 ® n n +<

where f,. = f,. for i g n, n + 1, j (c, c ) = (c + f„(c â€”g(c )), c â€”g(c')), and
h(c, c') = (f„,(c)+l(c'), 8„(c) â€”g(c')). The complexes C and C are regarded as
direct summands in D and D' respectively in the obvious fashion. The following
diagram is then commutative:

C ~ D

l (4.1.3)C~D.
By using the fact that C„and C„' are finitely generated free modules, it is easy
to verify that the inclusion C ~ 0 and the projection D' ~ C induce homotopy
equivalences of the modules F' for all i . Therefore, in view of the commutativity
of diagram (4.1.3), the assertion of the lemma for f is equivalent to the analogous
assertion for f. The homomorphism f,.: D,.~ D, is an isomorphism for i < n+1.
In this way, beginning with n = 0, we can reduce the assertion of the lemma to the
case examined above.

4.2. PRooF oF THETHEGREM.%'e shall first prove that the validity of the inclusion
relation (3.1.1) does not depend upon the choice of the complex C. In fact, any two
resolutions of the module Z are connected by a chain homomorphism

C ~ Ci Co Z2

f, f, fII id

C2 C,' C0~ Z.

It follows immediately from the definition of the homomorphism v = v~ and v' =
v< that v'(p) = v(p) F (f): F (C') ~ J(z). If the modules C,. and C,'. are
finitelygenerated for i = 0, 1, 2, then F (f) is a homotopy equivalence by virtue
of Lemma 4.1.2. Therefore v (p) is a homotopy equivalence if and only if v(p)
has this property.

We now prove the necessity of the condition in the theorem. On account of
what was said at the outset of the proof, it is sufficient to prove (3.1.1) for any one
complex C which satisfies the conditions of )3.1. We assume that (z, tt~, p) is
the fundamental triple of a three-dimensional Poincare complex X. Since X is
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dominated by a finite cell complex, the space X is homotopy equivalent to a cell
complex with finite skeleta of all dimensions (see [17], Theorem A). Therefore we
may assume immediately that X has a finite two-dimensional skeleton. We shall
also assume that X has exactly one zero-dimensional cell.

By gluing cells of dimension > 3 to X, we can obtain an Eilenberg-Mac Lane
space of type E(7r, 1) . We denote this space by K. We denote the cellular chain
Z[II]-complexes of the universal coverings of the spaces X and E by D
( . D, ~Dp) and C= ( C, ~ Cp) respectively. Clearly D isasubcomplex
of C and the "two-dimensional skeleta" of the complexes C and D coincide. In
particular, F (C) = F (D). We shall show that vc(p) E Equi(F (C), I{7r)).

We select a zero-dimensional cell pt in the universal covering space of E, and
we identify the module Cp with A = Z[7r] by identifying [pt] with 1. We set I =
Coker(cII: C2 C,) . Since H,(C) = 0, the boundary homomorphism cIp:C, ~ Cp
induces an isomorphism I ~ I{7r). We denote this isomorphism by b,.

Let x be an element of the A-module D3 whose image under the homomorphism

a ~ 1®a: D3~ Z ISAD3 (4.2.1)

is a cycle representing [X] . We denote by nx the chain homomorphism d ~
d nx: D' ~ D . We recall the definition of this homomorphism. Let g: D ~ D®z D
be an approximation to the diagonal and let g(x) = Q, n,.®P,, where a,, and P,.
are chains of the complex D. Then d n x = Q, d(a,.)p,., where the bar denotes the
involution of the ring A which corresponds to the class tII (see, for instance, 3.1),
and where d(n,) = 0 if dim a,. g dim d . As usual, the chain homotopy class of the
homomorphism nx does not depend upon the choice of x and g .

Since X is a Poincare complex, the homomorphism nx is a chain homotopy
equivalence {see[19], p. 215). The homomorphism nx induces a A-homomorphism
(nx),: F (D) ~ I . It is easy to deduce from Lemma 4,1.1 and the finite generation
of the modules Dp, D,, and D2 that (nx), is a homotopy equivalence {see I12.1):
a homotopy inverse for this homomorphism is induced by a chain homomorphism
D ~ D' which is a homotopy inverse for nx.

We shall show that the following diagram is homotopy commutative:

F (D)~ F (C)

~nx~. (4.2.2)

I ~ 1(II).

Let [dj be the element of the module F (D) represented by the cochain d c Dz .
Since nx is a chain homomorphism,

{4 o (nx),) {[d]) = 0p(d n x) = d, (d) n X.

Let g(x) = y8[ptj+z, where y CD, and z eDz®DI+DI SD2+DpIID3 Byre­
placing the approximation to the diagonal g by a chain homotopic homomorphism
if necessary, we may assume that the image of the chain y under the homomor­
phism (4.2.1) is a cycle representing [Xj. (For the singular chain complex and the
Alexander-Whitney diagonal approximation, the corresponding assertion is obvious.
The transition from the singular complex into the cellular one is standard.) Thus

d (d) n x = 0'(d){y) = d{cI (y)) .
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According to the definitions, the homomorphism d ~ d(d2(y)); F (D) ~ 1(2r) rep­
resents the homotopy class v~(p). This proves the homotopy commutativity of
diagram (4.2.2). Since (Ax). is a homotopy equivalence, v~(p) is also a homotopy
equivalence. Thus the necessity of the condition in the theorem is proved,

We prove suPciency. Let K be a cell complex which is an Eilenberg-Mac Lane
space of type K(2r, 1) and has one zero-dimensional cell and a finite two-dimensional
skeleton K . We denote by p: K ~ K the universal covering of the space K, and(2)

by E = ( ~ E, ~ Eo) the cellular chain A-complex of the space K. As above,
the augmentation completes the complex E to a resolution of the module Z. By
reason of what was said at the beginning of the proof of the theorem, it follows
from the inclusion (3.1.1) that vE(p) c Equi(F (E), l(2r)) . Let h: F (E) ~ I(7r)
be a homomorphism representing vz(p) . It follows from Lemma 2.2 that h can be
represented as a composition

F (E) ~ F (E)eA ~1(z) SP ~1(2r), (4,2.3)
where 0 < m < oo and P is a finitely generated projective A-module. We replace
the space K by a wedge of that space and m three-dimensional balls, where the
latter have a cell decomposition consisting of one zero-dimensional cell, m two­
dimensional cells and m three-dimensional ones. Then K is replaced by a wedge(2) .

of K ' and m two-dimensional spheres, and the module F of the corresponding(2) 2

chain complex of the wedge is equal to F (E) EbA . Therefore we may assume
straightawaythat h is the composition of some isomorphism j: F (E) ~ I(7r)e P
and the projection 1{2t)(E)P ~ I{2r) .

To begin with we consider the case when P is a free module: P = A" with
0 < n < oo. We denote by p the composition of the projection E2 ~ F (E),
the isomorphism j, and the inclusion I(2r)8 P ~ A 8 P. We consider the dual
homomorphism p': (AeP)' E,. (Asusual, (E2)' isidentifiedwith E2 by means
of the isomorphism taking e e E, into the homomorphism a ~ a(e); E,' A.)
From the equation poO,' = 0 it follows that c),op = 0. This means that

Imp C KerO, = H2(p (K )) = 7r2(K ).

Therefore we can glue n + 1 three-dimensional cells to K in such a way that the(2)

cellular chain complex of the universal covering of the cell complex so obtained is
equal to

(AeP)'~E, ~E, ~E,.
(4.2.4)

An+)
We denote by X the (connected finite three-dimensional) cell complex so obtained.
Since 2r2(K)= 0, theinclusion K ' ~K extendstoacontinuousmap X K. We(2)

denote it by f . It is clear that f induces an isomorphism of fundamental groups.
We identify these groups using this isomorphism. Then

u) E H (2r; Z/2) = H (X; Z/2) .

We shall show that H3(X; Z ) = Z. We denote the chain complex (4.2.4) by D.
It is easy to verify that

Z ®AD = HomA(D, Z) .
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From this equality and the definitions of the homomorphism {()and of the complex
D, it follows that

H,(X; Z ) = H3{HomA{D, Z)) = Z.

Let [X] be a generator of the group H3(X; Z" ). We show that (X, III, [X])
is a three-dimensional Poincare complex, and that f,([X]) = +p e H3(K; Z ) .
This will signify that the triple (7r, u), p) is realized either by the Poincare complex
{X, to, [X]) or by the Poincare complex (X, tu, â€”[X]) .

We now verify that the homomorphism A[X]: H'(D ) ~ H3,.(D), defined by
a ~ a A[X], is an isomorphism for all i . The followingargument is analogous to the
one given in [16]. If a e H (D') = Z, then a fl [X] = (a, [X]) c Ho(D) = Z, where
the brackets (, ) denote the Kronecker index. It is clear that if a is a generator of
the group H {D ), then (a, [X]) = kl. Therefore A[X]: H (D ) ~ Ho(D) is an
isomorphism. That the homomorphism A[X]: H (D ) H,(D) is an isomorphism
follows from the equations H (D') = H, {D) = 0. Since the chain homomorphism
A[X]: D ~ D induces isomorphisms H (D ) Ho(D) and H (D ) ~ H,(D),
the dual chain homomorphism (tl[X]): D ~ D induces isomorphisms H (D*) ~
H3(D) and H {D' ) H2(D) . As we know, the homomorphisms tl[X] and (tl[X])'
are chain homotopic. Therefore A[X]: H'(D') ~ H3,.(D) is an isomorphism for
all i. Hence X is a Poincare complex (see [19], p. 215).

From the functoriality of the construction of the homomorphism v (see (2.4) it
follows that the diagram

F (E) ' ' l(z)

id id

F (D) ~ 1(7r)
is homotopy commutative. It is easy to see that the class [X] e H3(Z 3D) is
represented by the chain + I 8 x, where

x = (1, 0) e A 8 P = (A8 P) = D,.

From this it follows immediately that vD([X]) is the homotopy class of the homo­
morphism +h. This means that

vE(f.([X])) = vn([X]) = +vE(u) .

By Lemma 2.4.5, vE is an isomorphism. Hence f.{[X]) = +p.
In the general case, when P is a finitely generated projective module, the argu­

ments are analogous, with the following modification: instead of the complex (4.2.4)
it behooves us to consider the chain complex

{Ae P) eA " E, eA ' E, E,. (4.2.5)

The chain modules of this complex are free: if Q is a module such that P' 8 Q = A"
with 0 < n < (x), then P (13A = P e(QsP' i13QSP'(13 ) = A . The only
additional point in which our arguments are lacking in the general case concerns the
necessity of verifying that L is dominated by a finite cell complex. Since X is a
finite-dimensional cell complex (dimX = 3), it follows from results of Wall [17]
that, in order to prove X is dominated by a finite cell complex, one need only show



278 V. G. TURAEV

that X is homotopy equivalent to a cell complex all of whose skeleta are finite. This
last property is a consequence of Theorem 2 of Wall's paper [18] and the fact that
the chain complex (4.2.5) is homotopy equivalent to the chain complex

A A '''AePeQ ' E, ' E, 'E,,
where p and q are the projections on P* and Q in the decomposition A" = P*eg.

)5. Calculation Ofthe Wall invariant

5.1. LEMMA.Under the hypotheses of Lemma 2.2, the class [P] of the module P
in Ko(A) depends only upon the homotopy class of the homomorphism f .

From this lemma and Lemma 2.2 it follows that assigning to a homotopy equiv­
alence f: A ~ B the class [P] c Ko{A) defines a map Equi(A, B) Ko(A) . This
map is denoted by 0. It is easy to see that 0(f) = 0 if and only if f can be factored
into a composition (2.2.1) where P isa free finitely generated module.

PRooF oF THELEMMA.It suffices to prove the following assertion:
If P and P' arefinitelygeneratedprojectiveA-modulesandif g: ASP ~ ABP'

is a A-isomorphism such that the composition

A~ASP g ASP A

is homotopic to id~, then [P] = [P'].
We shall assume that id~ â€”prog 0 i = P o a, where n and P are homomor­

phisms A ~ A" and A" ~ A respectively, with 0 < n < oo. We consider the
homomorphism

h:ASPERA ASP SA,
defined by

h(a, x, 2) = (g(a, x), 0) + (P(o(a) + 2), 0, a(a) + 2) .

Weshall show that h is an isomorphism. If (a, x, 2) e Kerb, then n(a)+i = 0, so
that h(a, x, 2) = (g(a, x), 0) . Since g is an isomorphism, it followsfrom this that
a = 0, x = 0, and 2 = â€”a(a) = 0. Thus h is injective. If (b, y, 2) c A 8 P e A",
then (b â€”P(k), y) = g(a, x) for some a e A and x c P. Then

{b, y, il) = (g(a, x), 0) + (P(A), 0, 2) = h(a, x, i1â€”o(a)) .

Thus h is surjective.
We note that h(a, 0, 0) = (g(a, 0), 0)+ (Pa(a), 0, o(a)) . Thus by the choiceof

the homomorphisms cv and P it follows that the homomorphism h~„ is a section
of the projection ASP SA" ~ A. Therefore

P gA" = (A@PWCA")/A= (A9 P SA )/h(A) = P SA

It follows from this that [P] = [P'].

5.2. THEoREM6. Let (z, tti, p) be the fundamental triple of a three-dimensional
Poincarecomplex X. Let A = Z[tt]. If C is a chain complexsatisfying theconditions
of I]3.1, then

o(X) = (0(v (lt))),

where * is theinvolution [P] ~ [P'] of Ko(A).

This theorem is proved in (5.4.
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5.3. CoRoLLARv. Let It, Io, p, and C be the same as in ()3.L The triple
(It, Itj, p) is isornorphic to the fundamental triple of a finite three-dimensional
Poincare complex if and only if the inclusion (3.1.1) is satisfied and 8(vc(p)) = 0.

From this corollary it is easy to deduce an analogue of Theorem 5 (see ()3.5)
for finite three-dimensional Poincare complexes. In the corresponding variant of

â€” T
condition (ii) of Theorem 5, one has to require that the matrix M presents a A­
module J such that for some natural numbers m and n the modules I(tt) ®A
and J (1)A" are isomorphic (cf. [15], Theorem C).

5.4. PRooF oF THEQREM6, We recall the definition of the Wall invariant cr(X)
(see [17]). Let D = ( D2 ~ D, Dp) be the cellular chain A-complex of the
universal covering of the space X. From the fact that X is dominated by a finite
cell complex, it follows that the complex D is homotopy equivalent to some chain
A-complex of finite length

0 P P, P, {5.4.1)

where Pp, P,, ..., P„are finitelygenerated projective A-modules. The class
n

P( â€”1)'[P,.] c E (A)
0

does not depend on the choice of the complex (5.4.1) within its homotopy class. This
class is cr{X).

Replacing X by a homotopy equivalent space if necessary, we may assume that X
has a finite three-dimensional skeleton and exactly one zero-dimensional cell (cf. the
proof of Theorem 4). In particular, Dp = A. The following argument, due to Wall
[18], allows us to compute o'{X) explicitly. From the equality H (X; B) = 0, where
B = D4/Im(04. D, ~ D4), it follows that the projection D4 ~ B factors through
the boundary homomorphism c)3.D4 ~ D3, that is, it is equal to s o c)3, where s
is some homomorphism D3 ~ B. Then D3 = B (1)Kers. Since D3 is a finitely
generated free module, B and Kers are finitely generated projective modules. It is
clear that the chain complex D splits into the direct sum of two complexes

.~DS~D4~B~0~0~0 and O~Kers~D2~DI~Dp.
Since the space X is homotopy equivalent to a three-dimensional cell complex (see
[19], Theorem 2.2), the first of these chain complexes is acyclic and therefore con­
tractible. Therefore D is homotopy equivalent to the second of the given complexes.
Hence o(X) = â€”[Kers].

Let I, A, and Ax: D ~ D be the objects introduced in (j4.2 in the course of
proving the inclusion (3.1.1). We set J = Ker(c)3'.D3 ~ D4) = (Kers) . Since
H (D') = H,(D) = 0, the homomorphism c)z induces an inclusion F (D) ~ J.
Since the homomorphism Ax induces an isomorphism H (D ) ~ Hp(D) = Z, the
following diagram is commutative, and its rows are exact:

O~F(D)~ J~Z~ 0
(nx) ~ (nx), 'd0 I ~A~ZOO.
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The construction of Schanuel allowsus to represent the homomorphism (Ax).: F (D)
2

~ I as a composition

F (D)c F (D)SA~ Ie I ~ I
(cf. the proof of Lemma 4.1.2). Hence 0((fix),) = â€”[J]. From the homotopy
commutativity of diagram (4.2,2) it follows that 0((nx),) = 0(v<(p)), where C is
the chain complex constructed in the course of proving (3.1.1). Thus

o(X) = â€”[K«s] = â€”[~ ] = (0( (lt))) .

By using the argument explained in the course of proving Lemma 4.1.2, one can
easily verify that 0(v<(p)) does not depend upon the choice for the chain complex
C satisfying the conditions of )3.1. Therefore the equality o(X) = (0(vc(p)))'
holds for any such complex.

Appendix. Proof of Theorem 0

1. LEMMA.Let X and Y be three-dimensional Poincare complexes. Let f be a
map X ~ Y which induces an isomorphism offundamental groups and is such that
f*(w(Y)) = w(X) and f.([X]) = [Y]. Then f isa homotopyequivalence.

This assertion is well known. I shall state the basic considerations which are
needed for the proof. Since f induces an isomorphism of fundamental groups, f
also induces an isomorphism of one-dimensional cohomology of the spaces X and
Y with arbitrary twisted coefficients. By applying duality it is easy to verify that

f.: H.(X; Z[2r,(X)]) H.(Y; Zl<)(Y)])
is an isomorphism. By Whitehead's theorem, f is a homotopy equivalence.

2. PRooF QF THETHEQREM.Suppose that (z, w, p) and (G, v, ri) are the fun­
damental triples respectively of the Poincare complexes X and Y with distinguished
points x c X and y e Y. Let p be an isomorphism z ~ G inducing an isomor­
phism of these triples. We shall prove the existence of a homotopy equivalence
(X, x) ~ (Y, y) which induces the isomorphism p on z, .

According to the argument in Il3.2,we may assume that X is obtained as a result
of gluing a three-dimensional cell e to a homologically two-dimensional cell complex
X' by means of some map h: Oe ~ X'. Let p: X ~ X be the universal covering.
Let D be the cellular chain A-complex of the space X, where A = Z[z]. Let D' be
the subcomplex of D generated by the cells lying in X = p (X ) . Since the space
X' is homologically two-dimensional, D can be decomposed into a direct sum of
two chain subcomplexes

D4 D, Im(02: D, D2) 0 0 and 0 S D~ D0,

where S is a submodule of D2 (cf. the argument in )5.4).
Let e be an oriented three-dimensional cell of the space X lying above e. Accord­

ing to the definitions, the module Im 0< is generated by chains which are represented
by the gluing maps of three-dimensional cells of the space X'. Therefore, replacing
h by a homotopic map if necessary, we may assume that 02([e]) c S, where [e]
is the element of the module D3 represented by the cell e, and where 82 is the
boundary homomorphism D3 ~ D2. Thus the complex D is the direct sum of two
complexes

D4 D3 1m' 0 0 ar.d 0 A[e] ~ S ~ D, D0,
where A[e] is the free A-module with generator [e].
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Let (e,) be a collection of oriented two-dimensional cellsof the space X such that
over every two-dimensional cell of X there lies exactly one cell from this collection.
The chains [e,.]e D2 represented by these cells comprise a basis of the A-module
D,. Let B2([e])= Q,.a,[e,.], where a,.EA.

We use an overbar to denote the involution of the ring A taking a E Ir into
(â€”1)"' a . We set I = I(II) = Ker(aug: A ~ Z). Using the above-indicated
decomposition of the complex D as a direct sum, and the equality H3(X; Z ) = Z,
we easily see that a, C I for all i and that the chain 18[e] e Z 8A D is a cycle
representing a generator of the group H3(X; Z ). We assume that the cell e is
oriented so that the chain 18 [e] represents the homology class [X]. It is easy to
deduce from the equality H (D ) = Ho(D) = Z that the set (a,.) generates I as a
(left) A-module.

Similarly we assume that the Poincare complex Y is obtained by gluing an oriented
three-dimensional cell e to a homologically two-dimensional cell complex Y', the
chain [e'] of the cellular chain complex C,(Y; Z') being a cycle representing the
class [Y].

We denote by K an Eilenberg-Mac Lane space of type K(G, 1) obtained from
Y by attaching cells of dimension > 3. Let q: K ~ K be the universal covering.
We denote by C the cellular chain Z[G]-complex of the space K. We fix a three­
dimensional cell e' of K which lies over e'.

We assume that x c X and y c Y . Since the space X' is homologically two­
dimensional, there exists a cellular map g': (X, x) ~ (Y', y) inducing the given
isomorphism of fundamental groups p: z ~ G . (Allthe obstructions to the existence
of such a map lie in zero groups.) Since II2(K) = 0, the map g extends to a cellular
map g: (X, x) ~ (K, y) . Let g. be the chain homomorphism D ~ C induced by
g. It follows from the equation p.(p) = Ii that

g, ([e]) â€”[e ] 6 Im(B: C4 ~ C3) = I(G) . C3,

where the bar denotes the involution in Z[G] taking a c G to (â€”1)' o.. Thus

g.(B([e])) â€”B{[e']) e I(G) B{C,). (3)

We denote the ring homomorphism A = Z[z] ~ Z[G], induced by the isomor­
phism p, by the same symbol p. Since p'(II) = III, p(X) = @{2) for any A,e A.
From this it follows that 1(G) = p(I). Since the set (a,.) generates I as a right
A-module, it follows from (3) that

g. (B([e])) â€”B([e 1) = P p(a;)d; ~
l

where d,. is a chain in C2 which is representedbya certain two-dimensional spheroid
in Y' = q (Y'). Thus

B(fe])= Pp(a;) (g.([e;])-d,)
I

By modifying the map g: X' ~ Y' inside the two-dimensional cells (e,,) by the
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corresponding spheroids di, we obtain a new map which we call k: (X', x) ~
(Y', y) and which has the property that

k,(c)([e])) = k, ga,[e,.] = Pp(a,) (g.([e,]) â€”di) = c)([e]).
I I

On account of the equality n2(Y') = H2(Y'), it follows from this that the map
k o h: c)e ~ Y' is homotopic to the attaching map of the cell e . Therefore k
extends to a map X ~ Y satisfying the conditions of Lemma 1. By that lemma, the
map so constructed is a homotopy equivalence.

Leningrad Received 3/MAR/88
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