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Abstract. We discuss some relations between the invariant originated in Fukumoto-
Furuta and the Neumann-Siebenmann invariant for the Seifert rational homology
3-spheres. We give certain constraints on Seifert 3-manifolds to be obtained by
surgery on knots in homology 3-spheres in terms of these invariants.
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In this paper we consider a Seifert rational homology 3-sphere S equipped
with spin structure c and the Neumann-Siebenmann invariant µ(S, c), which is an
integral lift of the Rochlin invariant of (S, c) (see §3 for the definition). In case of a
Seifert integral homology 3-sphere µ(S, c) is equal to Fukumoto-
Furuta invariant up to sign [4], and is a homology cobordism invariant [6]. In
case of a spherical 3-manifold we define an analogous invariant δ(S, c) originated
in Fukumoto-Furuta’s theorem, which is also equal to µ(S, c) (if S is a lens space
L(p, q) then δ(S, c) is represented by a σ -function σ(q, p, ±1), [7]). In this paper
based on Saveliev’s observation on Seifert integral homology 3-spheres [6], we
extend the results in [6] and [8] to general Seifert rational homology 3-spheres.
In Theorem 1 we show the spin homology cobordism invariance of the Neumann-
Siebenmann invariant of Seifert rational homology 3-spheres. In Theorems 2 and
3 we give some constraints on Seifert rational homology 3-spheres to be obtained
by surgery on knots in homology 3-spheres in terms of the Neumann-Siebenmann
invariants. These theorems generalize the results in [8], where similar constraints
on spherical 3-manifolds obtained by surgery on knots are discussed.

A lot of results have been proved about obtaining Seifert 3-manifolds by sur-
gery on knots, in particular, hyperbolic knots in S3. The cases of integral surgeries
are of particular interest since it is conjectured that no non-integral surgery on a
hyperbolic knot in S3 could yield a Seifert 3-manifold. As integral surgeries are
concerned, our result (Theorem 2) only gives a constraint for even surgeries, in
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which case our condition is independent of the knot type. We note that the value
of the Neumann-Siebenmann invariant of a Seifert 3-manifold obtained by an odd
surgery on a knot in S3 certainly depends on the knot type. Nevertheless our results
lead to some interesting conclusions. For example, Dean [2] proved that for any
given integers p, q, r with gcd(p, q) = 1, there exists a Seifert 3-manifold with
three singular fibers with multiplicity p, q and r that is obtained by an integral
surgery on a hyperbolic knot in S3 (see also [5]). On the other hand for any integers
p, q, r such that gcd(p, q, r) = 1 and the number of even integers among {p, q, r}
is 0 or 2, Theorem 2 provides infinitely many Seifert 3-manifolds with three singu-
lar fibers of multiplicities p, q, r and with even cyclic H1 that are not obtained by
integral surgery on knots in S3 (see §5). Throughout the paper we denote by Kp/q

a p/q surgery on a knot K in an integral homology 3-sphere M . We note that the
number of the spin structures on Kp/q is 1 if p is odd and 2 if p is even. We also
assume that a Seifert 3-manifold considered in this paper is orientable and has an
orientable base 2-orbifold unless otherwise specified.

Acknowledgements. The author thanks Professors K. Motegi, Y. Yamada and the referee
for their useful comments on surgery problems and suggestions on the preliminary draft
of this paper.

1. Main results

In [6] it is proved that the Neumann-Siebenmann invariant of Seifert integral homol-
ogy 3-spheres is a homology cobordism invariant. The following result generalizes
this to Seifert rational homology 3-spheres.

Theorem 1. Suppose that for given Seifert rational homology 3-spheres with spin
structures (Si, ci) (i = 1, 2) there exists a spin cobordism (W, c) such thatb2(W) =
0 and ∂(W, c) = (S1, c1) ∪ −(S2, c2). Then µ(S1, c1) = µ(S2, c2).

In particular for a Seifert Z2 homology 3-sphere (in this case the spin struc-
ture is unique), the Neumann-Siebenmann invariant is a Z2 homology cobordism
invariant. The proof is based on Proposition 3, which was observed by Saveliev in
case of Seifert integral homology 3-spheres. This proposition is also used to give
some conditions on µ(S, c) for a Seifert 3-manifold S to be obtained by surgery
on knots in homology 3-spheres in Theorems 2 and 3 below. In Theorem 2 the
condition is given in terms of the σ function σ(q, p, −1), whose value is easily
computed recursively as is stated in §2, Remark 2 (see also [4]). These results have
been proved in [8] for spherical 3-manifolds.

First we note that a spin structure c on Kp/q for a knot K in a homology 3-
sphere M is determined by giving a Z2 value c(µ) for the meridian µ of K , which
corresponds to a spin structure on M \K . This structure extends to a spin structure
on Kp/q if and only if pc(µ) + pq ≡ 0 (mod 2). Hence if p is even c(µ) may be
arbitrary, while c(µ) ≡ q (mod 2) if p is odd .

Theorem 2. (1) Let K be a knot in a Z homology 3-sphere M that bounds an acy-
clic 4-manifold. Suppose that Kp/q is Seifert for pq ≡ 0 (mod 2), p �= 0. Then
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for a spin structure c characterized by the equation c(µ) ≡ 0 for a meridian µ

of K ,

µ(Kp/q, c) = −σ(q, p, −1).

(2) In particular if Kp is Seifert with p even and p �= 0, then

µ(Kp, c) = sgn p for the same c.

Theorem 3. Let K be a knot in any Z homology 3-sphere M , and suppose that both
Kα1 and Kα2 are Seifert for some nonzero integers αi with α1 < α2. Then

(1) For spin structures c1, c2 on Kα1 and Kα2 characterized by c1(µ) ≡ c2(µ)

≡ 1,

µ(Kα2 , c2) − µ(Kα1 , c1) =
{

α1 − α2 or α1 − α2 − 16 if α1α2 > 0,

α1 − α2 + 2 or α1 − α2 + 18 if α1α2 < 0.

(2) Moreover if α1 ≡ α2 ≡ 0 (mod 2), then for c′
1 �= c1, c

′
2 �= c2 (characterized

by c′
1(µ) ≡ c′

2(µ) ≡ 0),

µ(Kα2 , c
′
2) − µ(Kα1 , c

′
1) =

{
0 or − 16 if α1α2 > 0,

2or 18 if α1α2 < 0.

Remark 1. (1) In [8] we showed that if the resulting manifolds are spherical then
the values α1 −α2 −16, α1 −α2 +18 in (1) and −16, 18 in (2) in the statement
of Theorem 3 never occur. But these extra values actually occur if the resulting
manifold is a non-spherical Seifert 3-manifold (see §5, Remark 5).

(2) The existence of irreducible Seifert integral homology 3-spheres (for example
those with exactly three singular fibers) never obtained by surgery on knots in
S3 seems to be still unknown. According to Theorem 2, if 1/q surgery on a
knot K in S3 is Seifert then its Neumann-Siebenmann invariant (in this case
the spin structure is unique) must be zero if q is even, while we have no such a
criterion if q is odd. In fact the µ invariant of K1/q for q odd depends on K (the
simplest such examples are given by S3 and �(2, 3, 7), which are obtained by
1 surgery on the unknot and the figure-eight knot respectively). But it not clear
what kind of knot invariants should be related to the µ invariant.

2. The �-invariants and the Fukumoto-Furuta invariant

We define an integer invariant δ(S, c) for a spherical 3-manifold S and its spin
structure c as follows.

Definition 1 ([7]).(1) For a spin 4-manifold Y with ∂Y = S, b1(Y ) = 0, a closed
4-orbifold Z = cS∪(−Y ) has a spin structure, where cS is a cone over S. Then
the index of the spin Dirac operator on Z is given as follows by the V-index
theorem.

ind DZ = −(sign Z + δ(S, c))/8 = (sign Y − δ(S, c))/8.

Here signZ is the signature of Z and δ(S, c) is a contribution from the singu-
larity of Z and depends only on (S, c).
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(2) δ(S, c) (mod 16) is the Rochlin invariant of (S, c) due to the fact that ind DZ

is even.

Our results in this paper are based on the following “orbifold 10/8-theorem”.

Theorem 4 (Fukumoto-Furuta [3]).(1) For a closed spin 4-orbifoldZ withb1(Z) =
0, we have either ind DZ = 0 or

1 − b−(Z) ≤ ind DZ ≤ b+(Z) − 1.

(2) (The vanishing theorem) If b+(Z) ≤ 2 and b−(Z) ≤ 2, then ind DZ = 0.

In [7] we have a complete list of the values of δ(S, c).

Remark 2. A lens space L(p, q) is obtained by −p/q-surgery on a trivial knot
in S3 and its spin structure c is represented by assigning a mod 2 value c(µ)

for a meridian µ of the trivial knot satisfying pc(µ) ≡ pq (mod 2). Then the δ-
invariant ofL(p, q) is represented by aσ -functionσ(q, p, ±1) so that δ(L(p, q), c)

= σ(q, p, (−1)c(µ)−1). Here σ(q, p, ε) for gcd(p, q) = 1, ε = ±1 is originally
defined as a contribution from the cone over L(p, q) to the index of the Dirac
operator over a spin 4-orbifold, and is uniquely determined and computed by the
following recursive formulae.

(1) σ(q + cp, p, ε) = σ(q, p, (−1)cε).
(2) σ(−q, p, ε) = σ(q, −p, ε) = −σ(q, p, ε).
(3) σ(q, 1, ε) = 0.
(4) σ(p, q, −1) + σ(q, p, −1) = −sgn pq if p + q ≡ 1mod 2.

See [4], [8] for the more detailed properties of σ(q, p, ±1).

Next we consider a rational homology 3-sphere M that bounds a 4-orbifold X

with spin structure c whose singularities are all isolated.

Definition 2. We define δ(X, c) to be a sum of δ(S, c|S), where S runs over all the
links of the isolated singularities of X and c|S is the spin structure on S induced
from c.

Then sign(X) + δ(X, c) is considered to be the Fukumoto-Furuta invariant for
(M, X, c) since for any spin 4-manifold Y with ∂Y = M whose spin structure
restricted on M coincides with that induced from c, we have

sign(X) + δ(X, c) = −8ind DX∪(−Y ) + sign(Y ).

We note that if M is a Z homology 3-sphere then this invariant is equal to the
Fukumoto-Furuta invariant w(M, X, c) originally defined in [4] up to multiplica-
tive constant. The value of the Fukumoto-Furuta invariant depends on the choice
of (X, c) in general. But if M is a Seifert 3-manifold this invariant is related to the
Neumann-Siebenmann invariant of M defined in the next section by some canonical
choices of (X, c) (see Proposition 3 in §3).
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3. The Neumann-Siebennmann invariant

Let S be a Seifert 3-manifold over an orientable 2-orbifold with |H1(S, Z)| < ∞.
Then the base orbifold of S is a 2-orbifold S2(p1, . . . , pn) of genus 0 with n singu-
lar points whose multiplicities are p1, . . . , pn respectively for some n > 0, pi > 1
(i = 1, . . . , n). Then S is represented by (unnormalized) Seifert invariants of the
form

S = {(1, b), (p1, q1), . . . , (pn, qn)} (1)

with

e(S) := −(b +
∑

(qi/pi)) �= 0. (2)

If b = 0 then the term (1, b) is omitted. Here H1(S, Z) is generated by the general
fiber h and the cross sectional curves g0, g1, . . . , gn with the following relations.

g0 + bh = pigi + qih = 0 (i = 1, . . . , n),

g0 + g1 + · · · + gn = 0. (3)

Then S is represented by a framed link L(S) with n + 1 components such that
their meridians correspond to h, g1, . . . , gn with framings −b, p1/q1, . . . , pn/qn

respectively. We describe the spin structure c on S by assigning the Z2-values
c(h), c(gi) for the meridians h, gi (which corresponds to the spin structure on the
complement of the link L(S)) satisfying the following conditions:

−
n∑

i=1

c(gi) + bc(h) ≡ b (mod 2),

pic(gi) + qic(h) ≡ piqi (mod 2). (4)

If we replace gi by g′
i = gi − aih with

∑
ai = 0 for i = 0, . . . , n, then the

corresponding Seifert invariants are given by

{(1, b + a0), (p1, q1 + a1p1), . . . , (pn, qn + anpn)}.
Note that S also bounds a plumbing P(�) for some integrally weighted tree �.

We can assume without loss of generality that � is star-shaped with n branches,
which corresponds to the above Seifert invariants as follows. The central vertex
(denoted by v0) has a weight −b, and the weights of the vertices in the ith branch
(denoted by vi

1, . . . , v
i
ki

) are αi
1, . . . , α

i
ki

respectively for some ki satisfying

pi/qi = [αi
1, . . . , α

i
ki

] := αi
1 − 1

αi
2 − 1

. . .− 1
αi
ki

.

(5)

Here αi
j can be chosen so that

|αi
j | ≥ 2 for all j if pi > |qi |,

αi
1 = 0, |αi

j | ≥ 2 for j ≥ 2 if pi < |qi |.
(6)
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Then S = ∂P (�) is represented by a standard framed link picture L(�) corre-
sponding to �, where we denote the link component corresponding to the vertex vj

by the same symbol and the meridian of vj by µj . A spin structure c on S = ∂P (�)

is also represented by assigning a Z2 value c(µj ) for each meridian µj satisfying
the conditions described in (7) below. The two representations of the spin structure
c of S associated with L(S) and L(�) are related as follows (see [6]).

Proposition 1. Let gi be the meridian of the component with framing pi/qi of L(S)

and µi
1 be the meridian of the component with framing αi

1 in the ith branch of L(�).
Then for any spin structure c on S, the assignments c(gi) and c(µi

1) coincide.

Proof. The meridian of the component corresponding to the central vertex v0 of
L(�) is the general fiber h of S. We can see easily that piµ

i
1 + qih is null homol-

ogous in a solid torus in ∂P (�) and that L(S) and L(�) are identified so that gi

corresponds to µi
1. Therefore c(gi) = c(µi

1). �	
For given (S, c) and P(�) with ∂P (�) = S, there exists a unique characteristic

element called a spherical Wu class w(�, c) ∈ H2(P (�), Z), which is described as
follows. If we denote the zero section of the 2-disk bundle over the 2-sphere corre-
sponding to the vertex vj (with weight nj ) by the same symbol, then H2(P (�), Z)

is generated by vj whose intersection form is given by

vi · vj =



ni if i = j,

1 if i �= j and vi and vj are connected by an edge,
0 otherwise.

Then the spherical Wu class w = w(�, c) is defined to be

w(�, c) =
∑

c(µj )vj ∈ H2(P (�), Z),

where the coefficient c(µj ) is an integer 0 or 1 according to the mod 2 value of
c(µj ) and satisfies

w · vj ≡ vj · vj (mod 2). (7)

The set of vj with c(µj ) �= 0 is called a Wu set. It is easy to see that the Wu set
contains no vj ’s corresponding to the adjacent vertices simultaneously. Now we
can define the Neumann-Siebenmann invariant µ(S, c) as follows.

Definition 3 (The Neumann-Siebenmann invariant).

µ(S, c) = sign P(�) − w · w ∈ Z.

It is known that µ(S, c) depends only on (S, c), although the choices of P(�) with
S = ∂P (�) and w(�, c) are not unique.

If S is an integral homology 3-sphere, then µ(S, c) is divisible by 8 and usually
µ(S, c)/8 is called the Neumann-Siebenmann invariant.

Proposition 2 ([6] for lens spaces, [7] for the general cases). If S is spherical,

δ(S, c) = µ(S, c).
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We note that µ(−S, −c) = −µ(S, c) (and that δ(S, c) has the same property).
The following proposition generalizes the observation by Saveliev [6].

Proposition 3. For a Seifert Q homology 3-sphere S and its spin structure c, there
exist spin 4-orbifolds (X+, c+), (X−, c−) with isolated singularities such that

(1) ∂(X±, c±) = (S, c),
(2) sign X+ + δ(X+, c+) = sign X− + δ(X−, c−) = µ(S, c),
(3) b1(X+) = b1(X−) = 0, b+(X+) ≤ 1 and b−(X−) ≤ 1.

Here δ(X±, c±) is defined in Definition 2.

Remark 3. If S is spherical, we can put X+ = X− = cS. If S is not spherical, the
above X± can be chosen so that they have only isolated singularities whose links
are lens spaces. As is seen in the proof below, we can put X+ = X− if either pi is
even for some i or the spin structure c satisfies c(h) ≡ 0 for the general fiber h. In
this case b+(X±) = 1, b−(X±) = 0 if e(S) > 0, and b+(X±) = 0, b−(X±) = 1
if e(S) < 0.

The rest of this section is devoted to the proof of Proposition 3. Hereafter we
assume that n ≥ 3 since if n ≤ 2 then S is a lens space. To obtain the orbifolds
in Proposition 3 we use the following constructions. Start with the star-shaped
weighted tree � with S = ∂P (�). In the rest of this section we always assume that
the weights αi

j of � satisfy the conditions (6). Let �0 = ∪�i
0 be a subgraph of �

consisting of a disjoint union of subtrees �i
0 with no multivalent vertices such that

there are no edges that interpolate between them. Suppose that ∂P (�i
0) is a lens

space for each i (this is the case unless ∂P (�i
0) is S2 × S1). Then we can construct

an 4-orbifold X from P(�) by replacing P(�i
0) naturally embedded in the interior

of P(�) by the cone over ∂P (�i
0). Let I (�) and I (�0) be the intersection forms

of P(�) and P(�0) respectively.

Proposition 4. There exists a matrix P ∈ GL(rankH2(P (�)), Q) with det P =
1 such that tP I (�)P is a direct sum of I (�0) and a matrix B with rational
entries, which represents a rational intersection form of X. In particular signX +∑

sign P(�i
0) = sign P(�).

Proof. This is proved essentially in the same way as in [6]. The second claim also
follows from the Novikov additivity of the signature. See [6] for the details. �	

To construct X± more concretely we consider the following two cases.

3.1. The case when pi is even for some i

We can assume that p1 is even. Then since p1c(g1) + q1c(h) ≡ p1q1 (mod 2)

and gcd(p1, q1) = 1, we must have c(h) ≡ 0. Therefore the Wu set for the corre-
sponding P(�) does not contain the central vertex v0. Thus we define �0 to be the
disjoint union of n branches �i

0 that is obtained from � by removing v0 and all the
adjacent edges. Then ∂P (�i

0) is the lens space L(pi, −qi) and we can construct X
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from P(�) by deleting P(�i
0) and replacing it by the cone over L(pi, −qi). Then

X has a spin structure since �0 contains the Wu set and hence the spin structure
c on ∂P (�) extends to that on the complement of P(�0) and the induced spin
structure on ∂P (�i

0) (which we denote by ci) extends to that on the cone over it
(see [7]). If we denote by wi the sum of the elements of the Wu set contained in
�i

0, then wi is a spherical Wu class for (P (�i
0), ci) and w is the sum of wi . In this

case b1(X) = 0 and b2(X) = 1. Moreover we have an element z ∈ H2(X, Q)

such that z · z = −b − ∑
qi/pi = e, and hence sign X = sgn e. By Proposition 4

sign X = sign P(�)−∑
sign P(�0

i ). On the other hand by Saveliev’s observation
[6] we have δ(∂P (�i

0), ci) = sign P(�i
0) − wi · wi . Hence we have

sign X = sign P(�) −
∑

(wi · wi + δ(L(pi − qi), ci))

= sign P(�) − w · w −
∑

δ(L(pq, −qi), ci)

since w · w = ∑
wi · wi . Therefore we have

sign X + δ(X) = µ(S, c).

Hence in this case it suffices to put X+ = X− = X.

3.2. pi is odd for every i

In this case we have c(gi) + qic(h) ≡ qi (mod 2) and
∑n

i=1 c(gi)

+ bc(h)≡b (mod 2). Suppose that c(h) ≡ 0. This is the case when c(gi)≡ qi

and
∑

qi ≡ b (and |H1(S, Z)| is even). Then we can choose the spin orbifold
X just as in the first case and put X1 = X2 = X. Suppose that c(h) ≡ 1. Then
we must have c(gi) ≡ 0. Thus by Proposition 1 we can see that the Wu set for the
corresponding P(�) contains the central vertex v0 but does not contain the adjacent
vertices whose weights are αi

1. We define the subtree �1
0 as the union of v0 and all

the vertices in the first branch and the edges connecting them. Also we define the
subtree �i

0 for i ≥ 2 as the union of all the vertices in the ith branch except for the
first vertex with weight αi

1 and the edges connecting them. Then the disjoint union
�0 of �i

0 contains the Wu set. Moreover since

[−b, α1
1, . . . , α1

k1
] = −b − q1/p1,

we see that ∂P (�1
0) is the lens space L(bp1 + q1, p1) (note that bp1 + q1 �= 0).

Likewise since

[αi
2, . . . , α

i
ki

] = qi/(α
i
1qi − pi)

for i ≥ 2 we see that ∂P (�i
0) is the lens space L(qi, pi −αi

1qi). We denote by X the
orbifold obtained from P(�) by deleting P(�i

0) for i ≥ 1 contained in the interior
of P(�) and attaching the cones over ∂P (�i

0). Then as in the first case the spin
structure c on S extends to that on X. Moreover b1(X) = 0 and b2(X) = n−1. We
will construct such 4-orbifolds in two ways corresponding to the different choices
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of the Seifert invariants and will obtain the desired orbifolds X±. To this end we
first observe sign X. We can see that I (�) is congruent to a diagonal matrix with
diagonal entries

αi
ki

, [αi
ki−1, α

i
ki

], . . . , [αi
1, . . . , α

i
ki

] = pi/qi (i = 1, . . . , n),

−b −
∑

qi/pi = e(S).

Likewise I (�i
0) is congruent to a diagonal matrix with diagonal entries

[αi
j , α

i
j+1, . . . , α

i
ki

] (j = 2, . . . , ki)

if i ≥ 2 and

[−b, α1
1, . . . , α1

k1
], [α1

j , α
1
j+1, . . . , α

1
k1

] (j = 1, . . . , k1)

if i = 1.
Note that by arranging the Seifert invariants so that |b| is sufficiently large

relative to q1/p1, we can assume that

sgn [−b, α1
1, . . . , α1

k1
] = sgn − (b + q1/p1) = sgn e(S). (8)

Thus under this condition we can see by Proposition 4 that b+(X) (resp. b−(X)) is
the number of the positive (resp. negative) values among

{[αi
1, α

i
2, . . . , α

i
ki

] | i ≥ 2}.
On the other hand we can replace the Seifert invariants (1) by

{(1, b), (p1, q
′
1), (p2, q

′
2), . . . , (pn−1, q

′
n−1), (pn, q

′
n)}

such that

q ′
1 = q1, q ′

i = qi + Npi (2 ≤ i ≤ n − 1), q ′
n = qn − (n − 2)Npn

without changing the value of b + q1/p1. Hence by choosing N appropriately we
can arrange the Seifert invariants in two ways so that they satisfy (8) and either
qi > 0 for 2 ≤ i ≤ n − 1 and qn < 0, or qi < 0 for 2 ≤ i ≤ n − 1 and qn > 0
(note that we have assumed that n ≥ 3). Now noticing

sgn[αi
1, . . . , α

i
ki

] = sgn (pi/qi) = sgn qi,

we have two spin 4-orbifolds X± corresponding to the above two choices of the
invariants satisfying b+(X+) = 1 and b−(X−) = 1. As in the first case we can see
that

sign X+ + δ(X+) = sign X− + δ(X−) = µ(S, c).

Thus X± are the desired orbifolds.

4. Proofs of the main theorems

In this section we prove the main theorems.
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4.1. Proof of Theorem 1

We can assume that b1(W) = 0 (perform spin surgery on W to kill b1(W) if
necessary). Let (X1±, c1±) and (X2±, c2±) be spin 4-orbifolds bounded by (S1, c1)

and (S2, c2) respectively provided by Proposition 3. Consider two closed spin 4-
orbifolds X̂± with b1(X̂±) = 0 defined by

(X̂+, c+) = (−X1
−, −c1

−) ∪ (−W, −c) ∪ (X2
+, c2

+),

(X̂−, c−) = (−X1
+, −c1

+) ∪ (−W, −c) ∪ (X2
−, c2

−).

Then

ind DX̂+ = −(sign(X2
+) − sign(X1

−) + δ(X2
+, c2

+) − δ(X1
−, c1

−))/8

is equal to

ind DX̂− = −(sign(X2
−) − sign(X1

+) + δ(X2
−, c2

−) − δ(X1
+, c1

+))/8.

Here we note that δ(−X, −c) = −δ(X, c). Moreover by Theorem 4 either ind DX̂±
= 0 or 1 − b−(X̂±) ≤ ind DX̂± ≤ b+(X̂±) − 1. But

b+(X̂+) = b+(X2
+) + b−(X1

−) ≤ 2

and

b−(X̂−) = b−(X2
−) + b+(X1

+) ≤ 2,

and hence we must have ind DX̂± = 0 since ind DX̂± is even. This implies that

µ(S1, c1) = sign(X1
±) + δ(X1

±, c1
±) = sign(X2

±) + δ(X2
±, c2

±) = µ(S2, c2).

�	

4.2. Proof of Theorem 2

Suppose that M bounds an acyclic 4-manifold W , and Kp/q for a knot K in M

is a Seifert 3-manifold S. We denote by MK the complement of the knot K in a
homology 3-sphere M and let µ and λ be the meridian and the (preferred) longitude
of K . We construct a certain spin 4-orbifold X, which is essentially the same one as
is given in the proofs of the main results in [8]. Let � be the 2-simplex with edges
ej (j = 1, 2, 3) and construct a 4-manifold X of the form

X = T 2 × � ∪ (MK × e1) ∪ (D2 × S1 × e2) ∪ (D2 × S1 × e3). (9)

Here ∂MK × e1 and ∂D2 × S1 × ej are glued with T 2 × ej ⊂ T 2 × ∂�(j =
1, 2, 3) respectively via the following identifications. Let µ0 = S1 × ∗ and λ0 =
∗ × S1 in T 2, and mj = ∂D2 × ∗ and 	j = ∗ × S1 in the D2 × S1 factor (which
we denote by (D2 × S1)j ) of D2 × S1 × ej for j = 2, 3. Then these curves are
identified so that
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µ = µ0, λ = λ0,

m2 = pµ0 + qλ0, 	2 = rµ0 + sλ0,

m3 = µ0, 	3 = λ0,

where r and s are integers withps−qr = 1.ThenX is oriented so that ∂X consists of
the three components −M = −MK ∪−(D2×S1)3, S = Kp/q = MK ∪(D2×S1)2,
and L(q, −p) = (D2 × S1)3 ∪ −(D2 × S1)2. In the third component we identify
(D2×S1)3 with the complement of the trivial knot in S3 so that (	3, m3) correspond
to the meridian and the longitude of the trivial knot. Thus the resulting manifold is
the q/p-surgery on the trivial knot, which is L(q, −p). Note that the above X is
the same as the one constructed in the proof of the main theorem in [8]. It is easy to
see that b1(X) = 0, b2(X) = 1, and the self-intersection number of the generator
of H2(X) is pq. We also see that the spin structure on T 2 determined by the values
c(µ0) and c(λ0) extends to that on X if and only if

c(µ0) ≡ c(λ0) ≡ 0 (mod 2),

pc(µ0) + qc(λ0) + pq ≡ 0 (mod 2).

Hence if pq is even (hereafter we assume this condition) then we have a spin
structure c on X defined by the above equation. The restriction of c on M induces
the unique spin structure on M , which extends uniquely to that on W . Moreover
(S, c|S) bounds two spin 4-orbifolds (X±, c±) provided by Proposition 3. Thus we
can construct closed 4-orbifolds of the form

X̂± = X ∪ W ∪ cL(q, p) ∪ (−X±).

We can see that c extends to a spin structure on X̂± and we have

ind DX̂± = −(sign X − sign X± − δ(X±, c±) + δ(L(q, p), c))/8.

Again by Proposition 3 and Theorem 4 we have ind DX̂+ = ind DX̂− , which is

either 0 or satisfies 1 − b−(X̂±) ≤ ind DX̂± ≤ b+(X̂±) − 1. On the other hand

b+(X̂−) − 1 = b+(X) + b−(X−) − 1 ≤ 1

since b+(X) ≤ 1 and b−(X−) ≤ 1, and likewise

1 − b−(X̂+) = 1 − b−(X) − b+(X+) ≥ −1

since b−(X) ≤ 1 and b+(X+) ≤ 1. Therefore ind DX̂± = 0 since this value must
be even. It follows that

µ(S, c) = sign X± + δ(X±, c±) = δ(L(q, p), c) + sign X

= σ(p, q, (−1)c(µ0)−1) + sgn pq = −σ(q, p, −1).

The last equality is deduced from the reciprocity of σ(q, p, −1) (see [8]). This
proves Theorem 2. �	
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4.3. Proof of Theorem 3

First we construct a 4-manifold X as in (9), where T 2 × ej and ∂MK × e1, ∂D2 ×
S1 × ej are identified as follows (we use the same notations as above).

µ = µ0, λ = λ0,

m2 = α2µ0 + λ0, 	2 = −µ0,

m3 = α1µ0 + λ0, 	3 = −µ0.

Then ∂X consists of −Kα1 = −MK ∪ −(D2 × S1)3, Kα2 = MK ∪ (D2 × S1)2,
and L(α2 − α1, 1) = (D2 × S1)3 ∪ −(D2 × S1)2. In the third component we have
the identification of the form

m2 = m3 − (α2 − α1)	3,

and hence the third one corresponds to the −(α2 − α1)-surgery on the trivial knot
in S3, which is L(α2 − α1, 1). Next we examine the topology of X. Consider the
connecting homomorphism

δ : H2(X, T 2 × �) → H1(T
2 × �)

in the exact sequence for (X, T 2 × �). Then via the excision H2(X, T 2 × �) is
isomorphic to Z3, which is generated by the meridian disks D2

i of (D2 × S1)i and
the Seifert surface SK of K . Thus we have

H1(X) = coker δ

= Z2〈µ0, λ0〉/{λ0 = α1µ0 + λ0 = α2µ0 + λ0 = 0} ∼= Zgcd(α1,α2).

Likewise we have

H2(X) = ker δ ∼= Z,

which is generated by α′
2(D

2
3 − SK) − α′

1(D
2
2 − SK) for α′

i = αi/ gcd(α1, α2). If
we consider z = α2(D

2
3 − SK) − α1(D

2
2 − SK) we have

z · z = −α2
2α1 + α2

1α2 = −α1α2(α2 − α1),

and hence sign X = −sgnα1α2(α2−α1). Next we consider the condition on X to be
spin. Start with the spin structure on T 2, which is determined by c(µ0), c(λ0) ∈ Z2.
To extend this spin structure to those on MK and (D2 × S1)i (i = 1, 2) we must
have

c(λ0) ≡ 0 (mod 2),

αic(µ0) + c(λ0) + αi ≡ 0 (mod 2) (i = 1, 2).

Thus we can see that the spin structure on T 2 given by c(µ0) ≡ 1 and c(λ0) ≡ 0
extends to the spin structure c on X. Now we construct two closed 4-orbifolds with
b1 = 0 as follows.

X̂+ = X ∪ X1
+ ∪ (−X2

−) ∪ (−cL(α2 − α1, 1)),

X̂− = X ∪ X1
− ∪ (−X2

+) ∪ (−cL(α2 − α1, 1)),
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where X
j
± are the spin 4-orbifolds with spin structure c

j
± provided by Proposition

3 for Kαj
. Then c also extends to the spin structures on X̂±. Moreover we deduce

from the equation µ(Kαj
, c) = sign X

j
± + δ(X

j
±, c

j
±) that

ind DX̂+ = ind DX̂−
= −(sign X + µ(Kα1 , c) − µ(Kα2 , c) − δ(L(α2 − α1, 1), 1))/8.

Again either this value is zero or satisfies 1−b−(X̂±) ≤ ind DX̂± ≤ b+(X̂±)−
1. We have the following inequality according to the sign of

sign X = −sgn α1α2(α2 − α1).

(1) The case when α1α2(α2 − α1) > 0. Then since b+(X) = 0 and b−(X) = 1,
we have

b+(X̂+) − 1 = b+(X) + b+(X1
+) + b−(X2

−) − 1 ≤ 0 + 1 + 1 − 1 = 1,

and

1 − b−(X̂−) = 1 − b−(X) − b−(X1
−) − b+(X2

+) ≥ 1 − 1 − 1 − 1 = −2.

It follows that either ind DX̂± = 0 or

−2 ≤ ind DX̂± ≤ 1,

and hence ind DX̂± is either 0 or −2.
(2) The case when α1α2(α2 − α1) < 0. Then since b+(X) = 1 and b−(X) = 0 we

have

b+(X̂+) − 1 ≤ 1 + 1 + 1 − 1 = 2,

1 − b−(X̂−) ≥ 1 − 0 − 1 − 1 = −1.

It follows that either ind DX̂+ = ind DX̂− = 0 or

−1 ≤ ind DX̂± ≤ 2,

and hence ind DX̂± is either 0 or 2.

Now since

δ(L(α2 − α1, 1), c) = σ(1, α2 − α1, (−1)(c(µ)−1))

= σ(1 − (α2 − α1), α2 − α1, −1)

= −σ(α2 − α1 − 1, α2 − α1, −1) = α2 − α1 − 1,

(see Remark 2 or [4]) and µ(Kαi
, ci) = sign Xi± + δ(Xi±, ci±) we see that

µ(Kα2 , c2) − µ(Kα1 , c1) = −(α2 − α1) or − (α2 − α1) − 16

if α1α2(α2 − α1) > 0, while

µ(Kα2 , c2) − µ(Kα1 , c1) = 2 − (α2 − α1) or 18 − (α2 − α1)
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if α1α2(α2 − α1) < 0. Here the spin structure ci on Kαi
is given by ci(µ) = 1

for the meridian µ of K and hence is different from that given in Theorem 2 in
the case that αi is even. If both α1 and α2 are even then the spin structure c′ on
T 2 determined by c′(µ0) ≡ c′(λ0) ≡ 0 also extends to that on X̂±. We denote
by c′

i the spin structure induced on Kαi
(which satisfies c′

i (µ) ≡ 0 for the merid-

ian µ of K). In this case δ(L(α2 − α1, 1), c′) = σ(1, α2 − α1, (−1)c
′(µ0)−1) =

σ(1, α2 − α1, −1) = −sgn(α2 − α1) = −1. It follows that if α1α2 > 0, we have

µ(Kα2 , c
′
2) − µ(Kα1c

′
1) = 0 or − 16,

while if α1α2 < 0, we have

µ(Kα2 , c
′
2) − µ(Kα1 , c

′
1) = 2 or 18.

Note that if M bounds an acyclic 4-manifold then the cases with values −16 and
18 do not occur by Theorem 2. This proves Theorem 3. �	

5. Some remarks

Now we give some remarks and examples derived from the main theorems.

Corollary 1. Suppose that k copies of a Seifert 3-manifold with spin structure (S, c)

bounds a Q-acyclic spin 4-manifold for some k. Then |µ(S, c)| < 8.

Proof. Let (W, c) be a Q-acyclic spin 4-manifold with ∂(W, c) = k(S, c). Then
for spin 4-orbifolds (X±, c±) with ∂(X±, c±) = (S, c) provided by Proposition
3, we can put X̂± = W ∪ k(−X±), for which we have either ind DX̂± = 0

or 1 − b−(X̂±) ≤ indDX̂± ≤ b+(X̂±) − 1. Since ind DX̂+ = ind DX̂− =
−(0 − kµ(S, c))/8, b+(X̂−) ≤ k, and b−(X̂+) ≤ k, we have either µ(S, c) = 0 or

1 − k ≤ kµ(S, c)/8 ≤ k − 1.

In either case we have |µ(S, c)| < 8. �	
Remark 4. Under the same assumption µ(S, c) = 0 if either S is a Seifert integral
homology 3-sphere (since µ(S, c) is divisible by 8) [4], or S is spherical (since we
can put X± = cS in this case) [7].

Corollary 2. Suppose that K is an amphicheiral knot in S3, and Kp is a Seifert
3-manifold over an orientable orbifold for p > 0. Then for a spin structure c on
Kp determined by c(µ) ≡ 1 for the meridian µ of K , we have

µ(Kp, c) = 1 − p or 9 − p.

Moreover if p is even

µ(Kp, c′) = 1

for the spin structure c′ different from the above c.
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Proof. Note that K−p = −K∗
p for the mirror image K∗ of K . Hence if K is am-

phicheiral, then K−p = −Kp. Furthermore if we denote by c the spin structure on
Kp determined by c(µ) ≡ 1 (mod 2) for the meridian µ of K , then −c on −Kp

is also the spin structure on K−p with the same property. Thus by Theorem 3 (and
by its proof) we have

2µ(Kp, c) = µ(Kp, c) − µ(K−p, −c) = 2 − 2p or 18 − 2p.

The second claim in the case that p is even is deduced from Theorem 2 since the
spin structure c′ different from c is the same as that given in Theorem 2. �	
Remark 5. In [8] we showed that if K is amphicheiral and hyperbolic then Kp is
never spherical by using the fact that the value 9 − p in the first claim does not
occur together with Boyer-Zhang’s result [1] on finite surgery. But the value 9 − p

actually appears when the resulting manifold is a non-spherical Seifert 3-mani-
fold. For example, let K be the figure eight knot (which is amphicheiral). Then
K1 = �(2, 3, 7), and µ(�(2, 3, 7), c) = 8 for the unique spin structure c.

We can show by the main theorems that certain Seifert 3-manifolds are not
obtained by integral surgery on knots in S3. First of all, H1(S, Z) must be cyclic if
S is obtained by surgery on a knot in a homology 3-sphere.

Proposition 5. Let S be a Seifert 3-manifold over an orientable 2-orbifold
S2 (p1, . . . , pn) with e(S) �= 0. Then H1(S, Z) is cyclic (of order | ∏ pie(S)|)
if and only if

gcd(
∏

k �=i,j

pk | i �= j) = 1.

Proof. We can assume that the Seifert invariants of S are given by (1) with b = 0.
The presentation matrix of H1(S, Z) is given by the (n + 1) × (n + 1) matrix (cij )

satisfying

cij =




pi if i = j ≤ n,

qi if i ≤ n and j = n + 1,

1 if i = n + 1 and j ≤ n,

0 otherwise.

Then det(cij ) is equal to | ∏ pie(S)| = | ∑n
i=1 p1 . . . pi−1qipi+1 . . . pn|. Next let


ij be the n × n minor of (cij ) obtained from (cij ) by deleting the ith row and the
j th column. Then H1(S, Z) is cyclic if and only if

gcd(
ij | 
ij �= 0) = ±1.

It is easy to see that


ij =




∏
pi if i = j = n + 1,∏
k �=i pk(e(S) + qi/pi) if i = j ≤ n,

± ∏
k �=i pk if i ≤ n and j = n + 1,

±qi

∏
k �=i pk if i = n + 1 and j ≤ n,

±qj

∏
k �=i,j pk if i, j ≤ n and i �= j.
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Since gcd(pj , qj ) = 1 we have

gcd(
ij ) = gcd(
∏
k �=i

pk, qj

∏
k �=i,j

pk | i �= j) = gcd(
∏

k �=i,j

pk | i �= j).

Thus we obtain the required result. �	
In particular if n = 3 then H1(S, Z) is cyclic if and only if gcd(p1, p2, p3) = 1

(see [5]). Next we examine the value of µ(S, c) according to the parity of pi for a
suitable choice of the Seifert invariants of the form (1). We use the notations in the
previous sections.

5.1. The case when pi is even for some i

First note that from the relations (4) on c we deduce that if pi is even then qi is
odd and hence we must have c(h) ≡ 0. We can also arrange the Seifert invariants
so that |qi | < pi for every i and if pj is odd then qj is even (replace qj by qj ± pj

if necessary). Then we must have c(qj ) ≡ 0 if pj is odd. Moreover we can also
assume that c(qi) ≡ 0 even if pi is even since if we replace gi by gi ±h if necessary
then c(gi ± h) ≡ c(gi) + 1. It follows that c(gi) ≡ 0 for every i and b ≡ ∑

c(gi)

is even. Under these conditions we obtain the plumbing P(�) with spherical Wu
class w = 0 bounded by (S, c) whose weights of the vertices on the branchs in �

are given by even nozero integers αi
j with

pi/qi = [αi
1, . . . , α

i
ki

].

Note that since |αi
j | ≥ 2 we have

sgn[αi
j , α

i
j+1, . . . , α

i
ki

] = sgn αi
j (10)

for all i, j . Thus as in the proof of Proposition 3 we have

µ(S, c) = sign P(�) = sgn e(S) +
∑

sgn αi
j

= sgn e(S) −
∑

σ(qi, pi, −1).

Note that under the above conditions on the Seifert invariants |H1(S, Z)| is odd if
and only if pi is even for just one i. We can also see by Proposition 5 that H1(S, Z)

is even cyclic if and only if the number of i with pi even is 2. In this case we have the
representation of (S, c) such that pi > |qi |, pi and qi have opposite parity for all
i, pi is even for i = 1, 2, pi is odd for i ≥ 3, b is even and c ≡ 0. Under these con-
ditions the other spin structure c′ on S is given by c′(g1) ≡ c′(g2) ≡ 1, c′(gi) ≡ 0
for i ≥ 3 and c′(h) ≡ 0. Hence by replacing gi by gi + sgn (qi)h for i = 1, 2, we
have another representation of S of the form

{(1, b + ε1 + ε2)), (p1, q1 − ε1p1), (p2, q2 − ε2p2), (p3, q3), . . . , (pn, qn)}
for which c′ ≡ 0, where εi = sgn (qi). Then as before we have

µ(S, c′) = sgn e(S) −
∑

σ(qi − εipi, pi, −1).
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5.2. The case when pi is odd for every i

We can also arrange the Seifert invariants so that |qi | < pi and qi is even. Thus
we must have c(gi) ≡ 0 and b(c(h) + 1) ≡ 0. Under these conditions we have
|H1(S, Z)| ≡ b (mod 2). Moreover H1(S, Z2) is Z2 if b is even and 0 otherwise.

(1) The case when c(h) ≡ 0. This case occurs only when |H1(S, Z)| is even. Then
(S, c) bounds a plumbing P(�) with spherical Wu class w = 0 of exactly the
same type as in the first case. The formula for µ(S, c) is also the same.

(2) The case when c(h) ≡ 1. This case occurs not depending on the parity of
|H1(S, Z)|. In this case we have the continued fraction expansion

pi/qi = [αi
1, α

i
2, . . . , α

i
ki

]

with αi
1 odd, αi

j even and nonzero for j ≥ 2. (If we write pi/qi = α − p′
i/qi

then we can replace it by either α + 1 − (p′
i + qi)/qi or α − 1 − (p′

i − qi)/qi

if necessary). We note that under the above condition we also have the relation
(10) even if αi

1 = ±1. Thus we can see that (S, c) bounds a plumbing P(�)

such that the spherical Wu class w is given by the central vertex with weight
−b and the weights of the other vertices are given by αi

j above. Therefore

µ(S, c) = sgn e(S) +
∑

sgn αi
j − w · w = sgn e(S) +

∑
sgn αi

j + b.

Finally we show the existence of Seifert 3-manifolds not obtained by inte-
gral surgery on knots stated in the introduction. That is, we can see that for any
(p1, p2, p3) with gcd(p1, p2, p3) = 1 such that the number of i with pi even is
either 0 or 2, there exist infinitely many Seifert 3-manifolds over S2(p1, p2, p3)

with H1 even cyclic that are not obtained by integral surgery on knots in S3. We
will give the Seifert invariants of such examples as follows. We denote by c the spin
structure defined by c ≡ 0 with respect to the given representation and the other
spin structure by c′.

5.2.1. The case when p1, p2 are even and p3 is odd

(1) The case when p3 = 4k − 1 for some k. Consider

(∗) S = {(1, b), (p1, 1), (p2, 1), (p3, 2)}, (b even).

Then according to the above calculation we have µ(S, c) = sgn e(S) + 4 for c

define by c ≡ 0. The other spin structure c′ is defined by c′ ≡ 0 with respect to
the Seifert invariants of the form

(∗∗) {(1, b + 2), (p1, 1 − p1), (p2, 1 − p2), (p3, 2)}
and we have µ(S, c′) = sgn e(S)+4−p1−p2. Hence unless p1 = p2 = 2, nei-
ther µ(S, c) nor µ(S, c′) is ±1 if b > 0 (and sgn e(S) = −1). If p1 = p2 = 2
we consider

S = {(1, b), (2, 1), (2, −1), (4k − 1, 2)}, (b even).

Then we have µ(S, c) = µ(S, c′) = sgn e(S) + 2. Thus if b < 0, then
µ(S, c) = µ(S, c′) = 3.
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(2) The case when p3 = 4k + 1 for some k. Unless p1 = p2 = 2, consider S

represented by (∗) with b < 0. Then we have µ(S, c) = sgn e(S) + 2 = 3 and
µ(S, c′) = sgn e(S) + 2 − p1 − p2 = 3 − p1 − p2. If p1 = p2 = 2, consider

S = {(1, b), (2, 1), (2, 1), (p3, p3 − 1)}, (b even, b < 0).

Then we have µ(S, c) = sgn e(S) + 4k + 2 = 4k + 3, and µ(S, c′) =
sgn e(S) + 4k − 2 = 4k − 1.

5.2.2. The case when pi is odd for every i

(1) The case when pi = 4ki + 1 for i = 1, 2, 3. We consider

S = {(1, b), (p1, 2), (p2, 2), (p3, p3 − 1)}, (b even, b > 0).

Then we have µ(S, c) = sgn e(S) + 4k3 = 4k3 − 1. As is explained above
considering the continued fractions of the form

(4k1 + 1)/2 = [2k1 + 1, 2], (4k2 + 1)/2 = [2k2 + 1, 2],

(4k3 + 1)/4k3 = [1, −4k3],

we have µ(S, c′) = sgne(S) + b + 4 = b + 3 for c′ �= c.
(2) The case when p1 = 4k1 + 1, p2 = 4k2 + 1, and p3 = 4k3 − 1. We consider

(∗ ∗ ∗) S = {(1, b), (p1, 2), (p2, 2), (p3, 2)}, (b even, b < −6).

Then we have µ(S, c) = sgne(S) + 2 = 3. Since

(4k3 − 1)/2 = [2k3 − 1, −2],

we have µ(S, c′) = sgn e(S) + b + 4 = b + 5 for c′ �= c.
(3) The case when p1 = 4k1 + 1, p2 = 4k2 − 1, and p3 = 4k3 − 1. Again consider

S of the form (∗ ∗ ∗) with b > 2. Then we have µ(S, c) = sgn e(S) + 4 = 3,
and µ(S, c′) = sgn e(S) + b + 2 = b + 1.

(4) The case when pi = 4ki − 1 for i = 1, 2, 3. We consider S of the form (∗ ∗ ∗)

with b > 2. Then we have µ(S, c) = sgn e(S) + 6 = 5, and µ(S, c′) =
sgn e(S) + b = b − 1.

In either case we have a Seifert 3-manifold S for infinitely many choices of b

such that the Neumann-Siebenmann invariant of S is not ±1 for any choice of spin
structures. It follows from Theorem 2 that S is not obtained by an integral surgery
on a knot in S3.
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