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REALIZATION THEOREMS FOR END OBSTRUCTIONS

BOGDAN VAJIAC

(communicated by Daniel Grayson)

Abstract
A stratified space is a filtered space with manifolds as its

strata. Connolly and Vajiac proved an end theorem for stratified
spaces, generalizing earlier results of Siebenmann and Quinn.
Their main result states that there is a single K-theoretical
obstruction to completing a tame-ended stratified space. A nec-
essary condition to completeness is to find an exhaustion of the
stratified space, i.e. an increasing sequence of stratified spaces
with bicollared boundaries, whose union is the original space.
In this paper we give an example of a stratified space that is
not exhaustible. We also prove that the Connolly-Vajiac end
obstructions can be realized.

1. Introduction

The results of this paper are closely related to the problem of characterizing those
topological manifolds which can be the interior of a compact manifold with boundary.
After the starting result due to Browder, Levine and Livesay in [5], L.C. Siebenmann
showed that a topological manifold of dimension n > 6, X, which is tame at infinity,
is the interior of a compact manifold with boundary if and only if a single obstruction
σ(X) ∈ K̃0(Zπ) vanishes. Here π denotes the fundamental group of the end of X.

An important contribution in this direction is due to F. Quinn ([29, 30, 32]).
He defines an obstruction, q0(X, A) ∈ K̃lf

0 (A, pX), which vanishes if A has a map-
ping cylinder neighborhood in X. Quinn’s results generalize Siebenmann’s theorem;
in particular, a mapping cylinder neighborhood can be described as a “controlled”
completion of X −A. We will review the definitions and the statement of Quinn’s
theorem in Section 3 below.

In [12] Connolly and Vajiac proved the following end theorem for stratified spaces:

Theorem. For any tame ended stratified space X one can define a “controlled Quinn-
type” obstruction γ∗(X). Assume it vanishes; i.e., γ∗(X) = 0. Assume that the
5-dimensional skeleton, X5, already has a completion; i.e., it is the interior of a
compact stratified space. Then X itself is the interior of a compact stratified space X̄.
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The obstruction γ∗(X) lies in a localization of the Quinn’s group mentioned above,
and it is a direct sum of obstructions (one for each stratum):

γ∗(X) = ⊕
m

γm(X) ∈ ⊕
m

Klf
0 ((X̂m−1, pX̂m)(∞)).

See [12] for more details on the definition of γ and of the obstruction groups.
When a completion is impossible, one can ask at least to find an exhaustion of

X. By this we mean an increasing sequence of compact stratified subspaces of X,
with bicollared boundaries in X, whose union is X. Note that a stratified space
that admits a completion is, in particular, exhaustible. Suppose now that X is
a stratified space with n-dimensional top stratum. Since the obstruction γ∗(X) is
a direct sum of obstructions, one for each stratum, we can concentrate our dis-
cussion on the top stratum of X. That is to say, assume that Xn−1, its (n− 1)-
dimensional skeleton, has a completion Y . Let B = ∂Y . Choose a collar neighbor-
hood for ∂Y in Y , say, B × (0,∞] ⊂ Y . Then the open cone of B, OB, can be
identified to B × (0,∞]�B × {∞}. The open cone becomes a neighborhood of {∞}
in X̂n−1, the one-point compactification of Xn−1. Let pX̂ |OB be the projection

map Holink(X̂, X̂n−1)|OB
pX̂ |OB−−−−→ OB and denote by pB the restriction of pX̂ |OB

to B × {1}, where we identify B with B × {1} ⊂ B × (0,∞) ⊂ Xn−1. The Holink is
discussed in detail in Section 2.

In this particular case Theorem 1.12 in [12] can be stated as follows:

Theorem (Exhaustibility Theorem from [12]). Let X be a tame ended n-dimensional
stratified space, n > 6, so that Xn−1 has a completion Y . Let B = ∂Y be as
above. Assume that X5 admits an exhaustion and that all the fundamental groups
of the holink fibers Holink(Xn, Xn−1) → Xn−1 are good. Then there is an element
∂γn(X) ∈ K−1(B, pB) so that ∂γn(X) = 0 if and only if X admits an exhaustion.

Remark 1.1. A group G is good if Ki(Z[G]) = 0 for i 6 −2. No example of a bad
group is known.

The main results of this paper are Theorems 4.1 and 4.2. The first one provides a
simple example of a stratified space which is not exhaustible.

Theorem (Theorem 4.1). Let n > 3. There exist manifolds M̃2n+1, homeomorphic
to R2n+1 − {0}, with a properly discontinuous cocompact semifree action of C6 × Z
so that:

(i) M̃C6 is isomorphic to Rq R and it is locally flat embedded in M̃ .

(ii) (M̃, C6) has two ends; neither end is exhaustible (and therefore M̃ is not ex-
haustible).

(iii) (M̃, C6 × Z) is equivariantly h-cobordant to (R2n+1 − {0}, C6 × Z). The action
of C6 is linear on R2n+1, and Z acts (linear also) by multiplication by powers
of two.

The second theorem states that any element in the group K−1(B, pB) above can
be realized in the form ∂γn(W ), for some stratified space W . Here is the precise
statement:
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Theorem (Theorem 4.2). Let Y be a compact n-dimensional stratified space. Denote
by σY its (n− 1)-skeleton. Let pY : Holink(Y, σY ) → Y be the projection map. Denote
by a the forget-control assembly map ([35]):

K̃−1(σY, pY ) a−→ K̃−1(Zπ1(Y − σY )).

Let x ∈ Ker(a) be an arbitrary element. Then there exists a stratified space W , con-
taining Y , so that σW ≈ σY × R, and the obstruction to exhaust W is ∂γn(W ) =
i∗(x). The map i∗ is induced by inclusion and gives an isomorphism between

K−1(σY, pY ) = K̃lf
0 (σY × R, pY × 1R) and K̃lf

0 (σW, pW ).

The structure of this paper is the following: in Section 2 we review the theory of
geometric modules and continuously controlled K-theory. More details are provided
in [41]. Section 3 recalls the definition of the finiteness obstruction as introduced by
F. Quinn in [30]. We will use a more algebraic approach, as suggested by F. Quinn
in [33] and Ranicki and Yamasaki in [35]. We provide a quick account, for the reader’s
convenience. More details are provided in [41]. We also discuss the relation between
the torsion of an h-cobordism and the mapping cylinder obstructions.

The last section, Section 4, contains the proofs of the main theorems, Theorems 4.1
and 4.2.

The author wants to thank his advisor, Professor Frank Connolly, for his guidance
and support during the process of completing this work.

2. Geometric modules and K-theory

We will briefly recall the theory of geometric modules and the definition of the
K-theory groups. These concepts were first introduced by Connell and Hollingsworth
in [11]. We follow an approach similar to the ones of Quinn ([29, 30]) and
Ranicki ([34, 35]). The full details are provided in [40] and [41].

Let X be a topological space and let Π(X) be the fundamental groupoid of X.
This is a category with objects being the points of X and morphisms from x1 to x0

being the homotopy classes of paths from x0 to x1.
The homotopy category of finite geometric modules on X is:

G(X) = Ad Z[Π(X)].

Here the categorical constructions Ad Z[Π(X)] mean the abelian category generated
by Π(X). See [41] for a detailed description.

The continuously controlled K-theory of a pair (X, B) was introduced in [2]. Here
is a very short explanation.

An abelian category over a space X, is an abelian category where every morphism
is assigned a compact subset of X, called its support. The support of a morphism
satisfies the following properties:
• supp(σ ◦ τ) ⊂ supp(σ) ∪ supp(τ).
• supp(σ + τ) ⊂ supp(σ) ∪ supp(τ).
• If σ = Σk

i=1niσi, then supp(σ) is the union of the supports of those σi for which
ni 6= 0.
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Definition 2.1. Let B be a subspace of X. A collection, {Sλ : λ ∈ Λ}, of compact
subsets of X −B, is continuously controlled, or cc over (X,B), if:
(a) For each X-neighborhood U of B, {λ ∈ Λ: Sλ 6⊂ U} is a finite subset of Λ.
(b) For each point p ∈ B and each X-neighborhood, U(p), there is an X-neighbor-

hood V (p) so that any set Sλ meeting V must lie in U .

Using the continuously controlled notion, we define the homotopy category of geo-
metric modules of a pair G(X, B) in a similar way. Objects in this category are pairs
(S, j), where S is a set, and j : S → |C| is a function for which the indexed collection
{supp(j(s)) : s ∈ S} is a cc-collection over (X, B). For a morphism f = (fs

t )(s,t)∈S×T ,
we require that {supp(fs

t ) : (s, t) ∈ S × T} is a cc-collection over (X, B).
In particular, the locally finite geometric modules over X are the geometric modules

of the pair (X̂,∞). Here X̂ is a one point compactification of X.

Definition 2.2. Let B be a subset of the topological space X. The groups
Ki(X,B) = Ki(G(X, B)), i 6 1 are defined in the sense of Quillen (see [28] and [39]).

Similarly, Klf
i (X, B) = Ki(G(X̂, B̂)), Klf

i (X) = Ki(G(X̂,∞)) = Ki(Glf (X)).

The reduced K0-groups for these categories are defined as the cokernel of the nat-
ural map, K0(G(X, B)) → K0(Gid(X,B)), where the Gid(X, B) denotes the idempo-
tent completion (see [34] for more details).

The Whitehead group, Wh(X, B) is defined as

Wh(X, B) = K1(X, B)/H, Wh(X) = Wh(X, ∅) = K1(GM(X))/H.

Here H is the subgroup of K1(X, B) generated by basis change matrices. Note that
Wh(X) ≈ Wh(π1(X, x0)) if X is path connected.

The Whitehead torsion of an isomorphism in G(X, B) is defined as usual:

τ(f) = [b ◦ f ] ∈ K1(X, B)/H = Wh(X,B);

here b is a base change isomorphism.
By using the ideas from [35] one can think of Wh(X, B) as the equivalence classes of

contractible continuously controlled chain complexes over G(X, B). Hence an element
in Wh(X, B) will be one of those complexes.

Since we will use the following notions, we recall a few definitions from [32], for
the reader’s convenience.

Definitions 2.3. Let A be a subspace of a topological space X.
1. Holink.

Holink(X, A) = {σ ∈ Map([0, 1], X) | σ−1(A) = 0}.
(It is a topological space, using the compact-open topology.) There are two
evaluation maps:

pX : Holink(X, A) → A; pX(σ) = σ(0)

and

jX : Holink(X, A) → (X −A); jX(σ) = σ(1).
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2. Forward tame. If A is closed, then A is said to be forward tame in X if
there exists a neighborhood U of A in X a map F : U × [0,∞] → X such that
F−1(A) = A× [0,∞] ∪ U × {∞}, and F (a, t) = a,∀(a, t) ∈ A× [0,∞].

3. Reverse tame. If A is closed, then A is said to be reverse tame in X if there
is a map R : (X −A)× [0,∞] → X −A so that:
(a) for each t ∈ [0,∞)ClXR((X −A)× [0, t]) ⊂ X −A.
(b) each point x ∈ X −A has a neighborhood U and a number tx ∈ [0,∞) so

that Rt|U = identity|U for all t > tx. Here Rt : X −A → X −A is defined
by Rt(x) = R(x, t).

(c) R extends continuously to a map (X −A)× [0,∞] ∪ (A× {∞}) → X by
setting R(a,∞) = a, ∀a ∈ A.

4. Tame. A closed subset of X is tame if it is both forward and reverse tame.
5. Stratified space. A stratified space is a finitely filtered, locally compact Haus-

dorff space (X, {Xi}n
0 ) such that:

(a) Each stratum Xk is a k-dimensional topological manifold (possibly with
boundary).

(b) For each i < j, Xi is tame in Xi ∪Xj .
(c) Holink(Xi ∪Xj , Xi)

p−→ Xi is a fibration, and the inclusion

Holink(∂Xi ∪ ∂Xj , ∂Xi) → Holink(Xi ∪Xj , Xi)|∂Xi

is a fiber homotopy equivalence over ∂Xi.
The k-th skeleton of a stratified space is defined as Xk = X1 ∪X2 ∪ · · · ∪Xk.

3. Finiteness obstructions

The controlled K̃0-groups of the controlled finiteness obstruction were first intro-
duced by Quinn in [30]. We will recall their definitions, using the algebraic approach
of [33] and [35]. See also [40] and [41] for more details.

Definition 3.1. K̃lf
0 (B, p) is defined as lim

←
δ

K̃lf
0 (B, p; δ), as δ ranges over the con-

tinuous functions δ : B → (0,∞). (If B is compact, then ε and δ can be chosen to
be positive real numbers; in this case the K0 groups will not have the locally finite
superscript.)

The negative controlled K groups of (B, p) are defined (B compact) as

K̃−i(B, p) = K̃lf
0 (B × Ri, p× 1Ri).

A few explanations are necessary about the above notation.
p : E → B is a continuous map from a topological space E to a locally com-

pact metric space B, and δ : B → (0,∞) is a continuous map. A subset S ⊂ E is a
δ-subset if p(S) lies in the δ(p(x)) ball around p(x), for each x ∈ S. A morphism is a
δ-morphism if supp(fs

t ) is a δ-subset for each (s, t). Following the ideas in the pre-
vious section, we can define the “category of δ geometric modules”. A δ-projective
module is a pair (M, e), where e : M → M has the property that e2 is δ-homotopic to
e. The group K̃lf

0 (B, p; n, δ) is defined as the set of equivalence classes of δ-projective
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chain complexes of geometric modules. We suppress quite a few details. See [35] for
a full account.

In the above notation, we will define now Quinn’s mapping cylinder obstruction
([30]). Let C be an n-dimensional locally finite δ-chain complex over E which is
δ-dominated by a δ-chain complex over (B, p). In [35, Section 3.1], it is shown that
(C, 1) is ε-chain equivalent to an n-dimensional ε-projective chain complex, (D, e),
over (B, p). The class

qδ(C) = χ([D, e]) ∈ Klf
0 (B, p; 9δ)

depends only on C ([35, 41]) and is called the δ-controlled finiteness obstruction of C
over B.

Definition 3.2 (Quinn’s mapping cylinder obstruction). Let f : M → B be a map
from a manifold M with compact boundary to a compact metric space B. Assume
that dim(M) > 6, and (M,f) is tame ([29, Section 1.1]. Quinn defines the obstruction
q0(M, f) as follows.

Let M = M(0) ⊃ M(1) ⊃ M(2) ⊃ · · · be an infinite sequence of submanifolds with
compact boundaries and relatively compact complements in M . Assume that
∞∩

k=1
M(k) = ∅. By using the tameness, one can choose this sequence so that M(k)

deforms, rel ∂M(k), into the set N(k) = M(k)− Int(M(k + 1)), and the diameter of
the deformations are 〈δ(k), where δ(1) > δ(2)〉 · · · , and lim

k→∞
δ(k) = 0. All measure-

ments are made in B. Set f(k) = f | M(k) : M(k) → B.
Choose a handle decomposition of (N(k), ∂M(k)) and an infinite handle decom-

position of (M(k), ∂M(k)) of diameter much less than δ(k). The chain complex
C(M(k), ∂M(k)) is δ(k)-finitely dominated by the finite complex C(N(k), ∂M(k)),
so qε(k)(C(k)) is defined as above. It turns out that the sequence

q0(M,f) = {qε(k)(C(k))}∞k=1

is an element of the group: lim
k

K̃0(B, f(k), 9ε(k)) ≈ K̃0(B, p). Recall that p is the

holink projection. The element q0(M, f) is called the controlled end obstruction of
(M, f).

Remark 3.3. In [29, Chapter 7] and [30], Quinn proves that q0(M, f) = 0 if and only
if M is the interior of a compact manifold M such that f extends to a map f : M → B.

According to [1] (see also [41] for details), the following sequence

Wh(X,B) ∆−→ K̃0(B, p) a−→ K̃0(Zπ1(X −B))

is exact at K̃0(B, p).
A relative manifold is a compact Hausdorff pair (X, A), for which X −A is a

paracompact manifold of dimension dim(X −A) > 5, possibly with boundary, with
A tame in X.

A cobordism of relative manifolds between (X,A) and (Y,A) is a relative manifold
(W,A) such that ∂W −A is the union of the two open sets X −A and Y −A.
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An h-cobordism of relative manifolds is a cobordism (W,A) between (X, A) and
(Y, A) for which there are strict maps rt

i : (W,A) → (W,A), 0 6 t 6 1, i = 1, 2 deform-
ing (W,A) into (X, A), respectively, (Y, A), by a deformation which fixes X, respec-
tively Y . The set of equivalence classes of h-cobordisms on (X, A) is parametrized by
Wh(X, A) ([41]).

We will denote Quinn’s mapping cylinder obstruction of A in X by q0(X, A).
(Recall that there is a map X −A → A, given by the Holink.)

Theorem 3.4 ([41]). Let (X, B) be a relative manifold. Let W be an h-cobordism of
relative manifolds, from (X, B) to (Y, B). Let τ ∈ Wh(X, B) be the torsion of (W,B).
Then

∆(τ) = r∗q0(W,B)− q0(X,B). (∗)
The map ∆ is explicitly constructed in [41] and r∗ : K̃0(B, pW ) → K0(B, pX) is the
isomorphism induced by the retraction r from W to X.

4. A stratified space which is not exhaustible

This section contains the two main results. They are closely related to Theorem
1.12 in [12], as was already mentioned in the introduction.

Recall that, for a stratified space X, an exhaustion means an increasing sequence
of compact stratified subspaces of X, with bicollared boundaries in X, whose union
is X.

Suppose now that Xn−1 has a completion Y . Let B = ∂Y . As explained in the
introduction, Theorem 1.12 in [12] identifies an element ∂γn(X) ∈ K−1(B, pB) so
that ∂γn(X) = 0 if and only if X admits an exhaustion.

The goal of the present section is to describe a simple example of a tame ended
stratified space which is not exhaustible. We then go on to prove that any element in
the kernel of the assembly map can be represented, in a sense explained below, in the
form ∂γn(X ′), for some X ′. This can be viewed as a realization theorem for elements
in K−1(B, p).

Let C6 be the cyclic group of order 6. Let ZC6 denote its group ring, equipped
with the standard involution. It is known that K̃0(ZC6) = 0 and K−1(ZC6) ≈ Z.
Moreover, the standard involution acts trivially on K−1(ZC6). Hence every non-
zero element x ∈ K−1(ZC6) satisfies the equation x + x̄ 6= 0, where x̄ stands for the
involution applied to x.

The proof of the fact that K̃0(ZC6) = 0 is number-theoretic in nature. It was
first done (in a more general setting) by Bass and Murthy [4]. The method involves
including ZCn in the Z-maximal order in QCn and carefully analyzing the kernel.
See also [14] for a detailed exposition. The computation of K−1(ZG), for G finite
abelian, is done in the book of H. Bass [3]. An easier approach that is specific to the
group C6 can be found in [36]. For complete details, refer to [3] or [36].

Construction of the counterexample
Theorem 4.1. Let n > 3. There exist manifolds M̃2n+1, homeomorphic to
R2n+1 − {0}, with a properly discontinuous cocompact semifree action of C6 × Z so
that:



8 BOGDAN VAJIAC

(i) M̃C6 is isomorphic to Rq R and it is locally flat embedded in M̃ .

(ii) (M̃, C6) has two ends; neither end is exhaustible (and therefore M̃ is not ex-
haustible).

(iii) (M̃, C6 × Z) is equivariantly h-cobordant to (R2n+1 − {0}, C6 × Z).The action
of C6 is linear on R2n+1, and Z acts (linear also) by multiplication by powers
of two.

Idea of proof. Let V be a (2n + 1)-dimensional RC6 module so that C6 acts semi-
freely, and V C6 is 1-dimensional. Let Z act on V − {0} multiplying by powers of two.
Set M(V ) = (V − {0})/Z. M(V ) is a compact manifold which is (non-equivariantly)
homeomorphic to S1 × S2n. The C6-fixed point set, σM(V )C6 , consists of two copies
of S1. The construction of M̃ goes as follows: we will first alter M(V ) by an
h-cobordism which will be a product cobordism on the singular set. At the other
end of the h-cobordism we will get a C6-manifold, say M , whose universal cover M̃
will satisfy the conclusion of the theorem. The proof involves an analysis of the rela-
tionship between the Whitehead group parametrizing the h-cobordisms in question,
and the mapping cylinder neighborhood obstruction of the singular set in the ambient
manifold.

The proof relies on the following facts:

1. The C6-equivariant h-cobordisms on M(V ), which are product cobordisms on
M(V )C6 , are parametrized by Wh(M(V )�C6,M(V )C6�C6). We will further
denote the stratified space M(V )�C6 by X in order to simplify the notation.
It follows that σX = X − top stratum = M(V )C6�C6 ≈ S1 q S1.

2. There is an exact sequence

Wh(X, σX) ∂−→ K̃0(σX, p)
j−→ K̃0(Zπ1(X − σX).

See the previous section for references.
In our case it is easy to see that

K̃0(Zπ1(X − σX)) ≈ K̃0(C6 × Z) ≈ K̃0(ZC6)⊕K−1(ZC6) ≈ Z.

This follows from the Bass-Heller-Swan formula and the previous observations.
Also, K̃0(S1, p) ≈ Z. This can be accomplished either by an E2-term compu-
tation, using Quinn’s spectral sequence (see [30]), or invoking the controlled
version of the Bass-Heller-Swan formula (see [35, Chapter 7]). Note that, by
the homogeneity of the above construction, the map

p : Holink(X, σX) → σX

is fiber homotopy equivalent to ppt × 1S1 . It follows that the map j above can
be identified with

Z⊕ Z j−→ Z,

j(1, 0) = j(0, 1) = 1.

3. The boundary map in the exact sequence above takes the torsion, τ , of the
homotopy equivalence between the two ends of an h-cobordism to the difference
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of the mapping cylinder obstructions of the singular sets for the two ends of the
h-cobordism. More precisely: Let W be a stratified h-cobordism from X to Y ,
so that σW is homeomorphic to σX × I. Let τ = τ(W,X) ∈ Wh(X, σX). Then

∂(τ + τ̄) = q0(X,σX)− r∗q0(Y, σY ). (∗)
This formula follows from Theorem 3.4.

The proof is quite formal from now on.
Note that

Ker(j) = {y ⊕ (−y) | y ∈ Z}.
Let 0 6= x ∈ K−1(ZC6). Then (x⊕ (−x)) = 0; hence there exist τ ∈ Wh(X,σX) so
that ∂τ = x⊕ (−x). By the above cc-h-cobordism theorem, τ is the torsion of an
C6-equivariant h-cobordism from (M(V ), C6) to a topological C6-manifold, say M .
By formula (∗) we have:

q0(M�C6,M
C6�C6) = −∂(τ + τ̄) 6= 0.

One can easily conclude now that neither end of (M̃, C6) has any stratified space
neighborhoods. Recall that a stratified space neighborhood is a stratified space with
bicollared boundary, required to be a neighborhood of only one end. Suppose that
there exists a stratified space neighborhood N of one of the ends of M̃ , say ε. One
can assume without loss of generality that

(σN, σ∂N) ≈ ([0,∞), 0).

(If this is not the case, then one can pass to a smaller subneighborhood.) Con-
sider the non-compact manifold (∂N − σ∂N)

/
C6; because σ∂N is a point, it follows

that the Siebenmann obstructions for the ends of this manifold, in K̃0(ZC6), are
zero. So by [37], σ∂N has a mapping cylinder neighborhood W in ∂N . By Quinn’s
collar extension theorem ([32, pp. 492–494]), the C6-collar [0,∞) for σ∂N in σN
extends to a C6-collar of ∂N in N . Similarly, if N

′
= M̃ − IntM̃N , ∂N

′
= ∂N , then

(σN
′
, σ∂N

′
) ≈ ((−∞, 0], 0). This is a collar for σ∂N

′
in σN

′
, and it extends by the

same argument to a collar for ∂N
′

in N
′
. Therefore we have a neighborhood U of

σM̃ ∪ ∂N of the form U = R× ∂N so that σU = R× σ∂N . R×W is then a mapping
cylinder neighborhood of σM̃ in M̃ . But this is absurd, by the above calculation.

Realization theorem for elements of K−1(σY, pY )

Let Y be a compact n-dimensional stratified space. Denote by σY be its (n− 1)-
skeleton. Let pY : Holink(Y, σY ) → Y be the projection map. Denote by a the forget-
control assembly map (as defined above or see [35]):

K̃−1(σY, pY ) a−→ K̃−1(Zπ1(Y − σY )).

Here is the main result:

Theorem 4.2. In the above notation, let x ∈ Ker(a) be an arbitrary element. Then
there exists a stratified space W , so that σW ≈ σY × R, and the obstruction to exhaust
W , as explained before, is represented by x. This means that ∂γn(X) = i∗(x). The
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map i∗ provides an (inclusion induced) isomorphism between K−1(σY, pY ) and the
group K̃lf

0 (σW, pW ). It will be explained below.

Proof. The argument is similar to the one used in the construction of the counterex-
ample above. Here is the outline. First form Y × S1. It is clear that σY × S1 has
a mapping cylinder neighborhood in Y × S1. This follows from an argument due to
S. Ferry [17]. See also Corollary 1.15 in [12]. By [35], we have the isomorphism:

K̃0(σY × S1, p(Y×S1)) ≈ K̃0(σY, pY )⊕ K̃−1(σY, pY ).

Look now at the exact sequence:

Wh(Y × S1, σY × S1) ∆−→ K̃0(σY × S1, pY×S1)
a−→ K̃0(Zπ1(Y × S1 − (σY × S1))) −→ · · · .

Since x ∈ Ker(a), it follows that there exists an element

τ ∈ Wh(Y × S1, σY × S1),

so that ∆(τ) = x. Construct an h-cobordism W ′ on (Y × S1, σY × S1), so that,
according to formula (∗) mentioned above, we have:

q0(W ′, σW ′) = x.

Take the infinite cyclic cover and get a stratified space W , with σW ≈ σY × R, so
that the mapping cylinder obstruction of σW in W is exactly as required. To be more
precise, we should identify K−1(σY, pY ) and K̃lf

0 (σW, pW ) ≈ K−1(σY, pW |σY ). But
the construction provides a fiber homotopy equivalence between the corresponding
holinks, and hence an induced isomorphism i∗ for the K-groups.
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