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Abstract— The genus of a knot or link can be defined via
Seifert surfaces. A Seifert surface of a knot or link is an
oriented surface whose boundary coincides with that knot or
link. Schematic images of these surfaces are shown in every text
book on knot theory, but from these it is hard to understand
their shape and structure. In this article the visualization of
such surfaces is discussed. A method is presented to produce
different styles of surface for knots and links, starting from the
so-called braid representation. Application of Seifert’s algorithm
leads to depictions that show the structure of the knot and
the surface, while successive relaxation via a physically based
model gives shapes that are natural and resemble the familiar
representations of knots. Also, we present how to generate closed
oriented surfaces in which the knot is embedded, such that the
knot subdivides the surface into two parts. These closed surfaces
provide a direct visualization of the genus of a knot. All methods
have been integrated in a freely available tool, called SeifertView,
which can be used for educational and presentation purposes.

I. INTRODUCTION

To introduce the topic discussed in this article, we start with
a puzzle. Consider a trefoil, the simplest knot (Fig. 1). It is
easy to define a surface that has this knot as its boundary:
Take a strip, twist it three times, and glue the ends together.
If we try to color the sides of the surface differently, we see
that there is something strange. The strip is a kind of Möbius
strip, and cannot be oriented, because there is only one side.
The puzzle now is to define an orientable surface that has the
trefoil as its boundary.

Fig. 1. Trefoil

A second puzzle. It is easy to embed a trefoil in a closed
surface: A trefoil is a so-called torus knot. However, this knot
does not divide the torus into two parts, contrary to what one
might expect from local inspection. Can we embed the knot
on a closed surface, in such a way that it divides this surface
into two parts?

The first puzzle has been solved in 1930 by Frankl and
Pontrjagin [7], who showed that such a surface can be found
for any knot.
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Oriented surfaces whose boundaries are a knot K are called
Seifert surfaces of K, after Herbert Seifert, who gave an algo-
rithm to construct such a surface from a diagram describing the
knot in 1934 [13]. His algorithm is easy to understand, but this
does not hold for the geometric shape of the resulting surfaces.
Texts on knot theory only contain schematic drawings, from
which it is hard to capture what is going on. In the cited paper,
Seifert also introduced the notion of the genus of a knot as
the minimal genus of a Seifert surface. The present article is
dedicated to the visualization of Seifert surfaces, as well as
the direct visualization of the genus of knots.

This article is an extended version of a paper presented at
IEEE Visualization 2005 [15]. The most important extensions
are the inclusion of Scharein’s method to produce smooth
and natural knots and links, and the work we have done on
dissemination of the results described here.

In section II we give a short overview of concepts from
topology and knot theory. In section III we give a solution
for the second puzzle: We show how a closed surface can be
constructed in which a knot is embedded, in such a way that
it divides the surface in two parts. Whereas a Seifert surface
consists of disks and bands, such a closed surface consists of
spheres and tubes. In section IV we discuss how these elements
can be derived and positioned from an abstract notation of a
knot. In section V we show how surfaces can be generated.
Results are shown in section VI, in the form of images of well-
known knots and links. Also, SeifertView, our freely available
tool which can be used to generate and view knots and Seifert
surfaces, is described. Finally, in section VII the results are
discussed and suggestions for future work are made.

II. BACKGROUND

In this section we informally introduce a number of defini-
tions and concepts from topology in general and knot theory in
particular. We limit ourselves to those results that are directly
relevant for the work presented here. More information can be
found in several books, and also on the Web many resources
are available. The Knot Book [1] of Colin Adams gives a very
readable and accessible introduction for non-experts; more
depth can be found in [11], [8], [9].

Knot theorists have enumerated knots by means of diagrams
or braid words, with invariants like the genus for distinguishing
them. Results can be found in the literature and on the Web.
The Knot Atlas of Bar-Natan provides many tables of knots
and invariants [2]; the KnotInfo table [10] of Livingston and
Cha was a very valuable resource for us.

A. Topology
Knot theory is a subfield of topology. Topology is the math-

ematical study of the properties of objects that are preserved
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Fig. 2. Knot and link diagrams

through deformations of objects. Two surfaces are homotopic
if each of them can be continuously deformed into the other.
If this can be done without passing the object through itself,
they are not only homotopic but also isotopic. For instance,
a torus is isotopic (and hence also homotopic) to a cup with
one handle, and homotopic (but not isotopic) to a tube in the
shape of a trefoil.

Two surfaces are homotopic when three conditions are
satisfied. First of all, either both should be orientable or
neither; secondly, the number of boundary components must
be the same; and finally, the Euler characteristic χ must be the
same. The Euler characteristic χ is an invariant for surfaces.
Given an arbitrary (but regular) polygonalization of a surface,
χ = V −E +F , with V the number of vertices, E the number
of edges, and F the number of faces. Closed oriented surfaces
are homotopic to a sphere with g handles (or, equivalently,
a donut with g holes). The number g is called the genus of
the surface. For surfaces with m boundaries χ = 2− 2g−m.
The genus of a surface with boundaries is defined to be equal
to that of the surface that results when all components of the
boundaries are capped off with (topological) disks.

B. Knot theory
Knot theory studies the properties of mathematical knots

and links. A mathematical knot is a tamely embedded closed
curve embedded in IR3. Here an embedding of a closed curve
is called tame if it can be extended to an embedding of a
tube (of fixed diameter) around the curve. A link consists of
multiple components, each of which is a knot. A knot or link
can be continuously deformed as long as it does not intersect
itself. The result of such a deformation is a knot isotopic to
the original one. Up to isotopy, a knot can be represented
by a non-intersecting closed polyline (finite sequence of line

segments in three-space).
Knots and links are usually studied using projections or

diagrams, such as shown in Fig. 2. One knot can be
projected in many different ways; as an example two different
projections of the trefoil are shown. A diagram consists of
edges and crossings. If an orientation is assigned to the knot,
we see that two different types of crossings exist: right-hand
crossings and left-hand crossings (Fig. 3).

Some important questions in knot theory are whether two
knots are the same or not, and especially if a knot is equal
to the unknot; how many different knots do exist (given
constraints), and how to classify knots. One approach to this
is to define invariants of knots. A classic one is the minimum
number of crossings in a diagram of a knot; more powerful and
distinctive are so-called knot polynomials, such as the Jones
polynomial [1].

C. Seifert surfaces

The genus of a knot, introduced by Seifert [13], is another
classic invariant in knot theory. The Euler characteristic for
a 1-dimensional object is 0 when applied to a knot, hence
that does not lead to a distinction. Seifert therefore used a
connected, oriented, compact surface that has the knot as its
boundary to define the genus of a knot. At first sight, it is
surprising that such a surface exists for any knot or link. Seifert
showed that such a surface can be derived from a knot diagram
using a simple algorithm. It consists of four steps (Fig. 4). First
of all, assign an orientation to the components of the knot
or link. Secondly, eliminate all crossings. At each crossing
two strands (say, A and B) meet. A crossing is eliminated
by cutting the strands, and connecting the incoming strand of
A with the outgoing strand of B, and vice versa. This gives
a set of non-intersecting (topological) circles, called Seifert
circles. Thirdly, if circles are nested in each other, offset them
in a direction perpendicular to the diagram. Fill in the circles,
giving disks. Finally, connect the disks using twisted bands.
Each band corresponds to a crossing, and has one twist, with
orientation derived from the crossing type. A twist is a rotation
over plus (right-hand) or minus (left-hand) 180 degrees. Note
that the crossing type does not influence the circles that are
generated. The resulting surface satisfies the requirements.
Different projections of the knot lead to different surfaces,
possibly also with a different genus. The genus of a knot is
defined as the minimal genus of all oriented surfaces bounded
by the knot. Note that not all surfaces bounded by a knot arise
from Seifert’s algorithm, and there are examples with genus
lower than that computed from the algorithm.

left-hand crossing       right-hand crossing

-1                                    +1

Fig. 3. Two different types of crossings
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Fig. 4. Seifert’s algorithm: Assign orientation, eliminate crossings, and add
bands; shown for a knot and a crossing

D. Challenge
Texts on knot theory show figures similar to Fig. 4. From

these it is hard to understand the shape of the surface. One
reason is that such surfaces are not familiar and are rarely
encountered in the real world. We have searched the literature
and the Web, but could not find satisfying visualizations of
Seifert surfaces. The KnotPlot package of Robert Scharein [12]
has a very rich set of features and is a delight to work (and
play) with, but even this has no option to show Seifert surfaces.
We therefore found it a challenge to develop a method to
visualize Seifert surfaces. Specifically, our aim was to enable
the viewer to generate and view Seifert surfaces interactively
in 3D for arbitrary knots and links in different styles.

One possible route is to consider a Seifert surface as a
minimal surface (i.e., the surface with zero mean curvature,
also known as the soap bubble surface) using the knot as its
fixed boundary. However, this requires that a three-dimensional
knot is available. Also, the definition of a suitable initial
surface mesh and the iterative calculation of the minimal
surface are not easy to implement and are compute intensive.
We therefore opted for a different approach. Given an abstract
notation of a knot, derive the structure of the Seifert surface
and find a smooth geometry in a quick and deterministic way.

E. Braid representation
To generate Seifert surfaces for arbitrary knots and links,

we need an encoding for these knots and links. Many different
encodings have been developed, such as the Conway notation
and the Dowker-Thistlethwaite notation. For our purposes we
found the braid representation to be very useful. By means
of braids, several different styles of surfaces can be generated
easily; and also, the braid representation lends itself well to
experimentation. It does have its limitations though, as we
discuss in section V.

A braid consists of a set of n strings, running (here) from
a left bar to a right bar (Fig. 5). Strings are allowed to cross,
and the pattern can be encoded by enumerating the crossings
from left to right. A crossing is denoted by σ j

k , which means
that strings at the k’th and k + 1’th row are twisted j times,
where j = 1 denotes a right-hand crossing and j = −1 a left-
hand crossing cf. Fig. 3. The closure of the braid is defined
by attaching the left bar to the right bar, such that no further

σ1 σ1σ2
−1 σ2

−1

1

2

3

Fig. 5. Braid representation of figure-eight knot

crossings are introduced. In other words, we add n extra strings
that connect the beginnings and ends of strings at the same
row, without further crossings. Every knot and link can be
defined as a braid. A trefoil has the braid word σ1σ1σ1 = σ 3

1 ,
a figure eight knot can be represented as σ1σ−1

2 σ1σ−1
2 . An

alternative notation for braids is to use uppercase letters for
right crossings and lowercase letters for left crossings, and
where the character denotes the strings effected, according to
alphabetic order. Hence, a trefoil is encoded by AAA, and a
figure eight knot by AbAb. Furthermore, every possible braid
word defines a knot or a link, which makes this representation
well suited for experimentation.

III. CLOSED SURFACES

Besides visualization of Seifert surfaces, another aim was
to make the genus of a knot ’more visible’. A trefoil or a
figure eight knot has genus 1, hence the corresponding Seifert
surfaces are homotopic to a torus with a hole in the surface.
Via a number of steps in which the Seifert surface is deformed,
cut, and glued, this equivalence can be shown, but it is not
really intuitive. Closed surfaces are easier to understand, hence
we studied how a closed surface can be generated that contains
the Seifert surface as an embedded subsurface. We call such
a surface a closed Seifert surface. The following reasoning is
straightforward, but we could not find it in the literature.

The standard approach of topologists is to cap off bound-
aries (here the m boundaries of the Seifert surface) with
(topological) disks. This leads to a surface that is homotopic
to a closed surface, but not isotopic. What we need here to
close the surface in a more decent way, is an oriented surface
that has the m components of the link as boundary. But this
is exactly the definition of a Seifert surface itself, which leads
us immediately to a solution. Using a physical analogy, the
solution is to take two identical Seifert surfaces, glue them
together at the boundaries, and inflate the closed object. This
is shown in Fig. 6 for a trefoil (which also shows a possible
solution to the puzzles posed in the introduction). The Seifert
surface consists here of two disks, connected by three bands;
the closed Seifert surface consists of two spheres, connected
by three tubes. The knot splits the closed surface into two
parts.

The genus of a closed Seifert surface can be determined
as follows. The Euler characteristic of a Seifert surface is
χs = 2 − 2gs − m, with gs the genus and m the number of
components of the knot. For the Euler characteristic χc of the
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Fig. 6. Inflating two Seifert surfaces, glued together at their boundaries

closed surface we find χc = 2χs: The number of vertices, faces
and edges doubles, but at the boundaries a certain number of
edges and the same number of vertices disappear. However,
as V and E have opposite signs in the definition of χ , this
does not influence the resulting value. For a closed surface
χc = 2− 2gc, with gc the genus of the closed surface. This
leads to

gc = 2gs +m−1.

This gives us a direct way of finding oriented closed surfaces
in which to embed a knot or link of genus gs such that the knot
divides it into two parts. For instance, for a trefoil or figure
eight knot a genus 2 surface can be used (such as a donut with
two holes, or two spheres connected by three tubes), and in
greater generality, for a knot of one component a donut with
2gs holes can be used.

IV. STRUCTURE

In this section we derive the structure of the Seifert surfaces,
starting from the braid word. The aim here is to determine the
number of disks (or spheres) and their position in space, and
the bands (or tubes), with the number of twists and attachment
positions to the disks as attributes. The disks are positioned in
3D (x,y,z) space. We take x and y in the plane of the diagram,
and z perpendicular to the plane. Disks are parallel to the x,y
plane. Each disk has two sides, denoted A and B. For each
disk a decision must be made if the A or B side is positioned
upwards.

Because of the regular structure of braids, various styles of
Seifert surfaces can easily be derived from these. Fig. 7 (next
page) shows four styles for a figure eight knot, using ellipsoids
and tubes. First, the stacked style. If all closing strings are
positioned in the default way, it is easy to see that the Seifert
circles are all nested. Hence, the corresponding Seifert surface
consists of a stack of disks, where each disk is connected
with bands to its neighbors (Fig. 8). All disks have the A side
facing upwards, their position is (0,0,(i− 1)D), where i is
the index of the row to which the disk corresponds, and D a
distance between the disks. A nice geometric representation
is obtained by subdividing each disk into k sectors, where k
is the total number of crossings. Sectors of neighboring disks
are connected with bands when appropriate. Using a suitable
setting for the geometry, we generate an object similar to a
wedding-cake.

As a variation, one set of closing strings can be positioned
above, and the remaining set can be positioned below the braid.
This gives the split style: two sets of stacked disks in wedding-
cake style, where the lower disks of each set are connected

Fig. 8. Standard braid representation gives stacked disks

by bands in the plane. One set has the A side facing up, the
other set has the B side upwards. As an example, in Fig. 9 two
strings are positioned above and one is positioned below the
braid. We introduced this style in order to produce for instance
the Seifert surface that results from the standard projection of
the figure eight knot.

Fig. 9. Split style

An alternative style, the flat style, is obtained as follows.
The upper closing string is positioned above of the braid, the
lowest closing string below the braid, and the closing strings in
between are put downward, pushed perpendicular to the plane
of the braid. Strings of the last kind introduce extra crossings.
Their number can be minimized by carefully choosing the
path of the string (Fig. 10). From this lay-out of the strings,
disks and bands can be derived using Seifert’s algorithm. Thus
a set of non-nested, disjoint Seifert circles will be obtained,
so they can be positioned in a plane. The structure can be
constructed as follows. Suppose that σ j

k is the i-th crossing. We
add two disks, one with A up (brown) at position (iD,kD,0)
and one with B up (yellow) at (iD,(k+1)D,0). In other words,
at each upper and lower triangle of an original crossing disks
are positioned. Next, vertical bands are added that represent
the original crossings, with a twist according to the crossing.
Finally, horizontal bands are added between disks on the same
row. If both disks have the same side up, no twists are added.
An A up disk on the left and a B up disk on the right are
connected by a band with a single negative twist, and a single
positive twist is used for the reverse order.

Fig. 10. Flat style

The flat style is not particularly interesting, but this planar
lay-out can be simplified further, giving the more attractive
reduced style. Several disks have only two bands attached
to them. Such a disk can be removed, and the original two
bands can be replaced by a single band, with the number of
twists equal to the sum of the number of twists of the original
bands. Application of this rule to the figure eight knot leads
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Fig. 7. Figure eight knot in stacked, split, flat, and reduced style

to a simple structure of two disks, connected by three bands
with 1,1 and −3 twists respectively (Fig. 11). Such a knot,
with a Seifert surface that consists of two disks, connected by
parallel twisted bands, is known as a pretzel knot. The trefoil
is a (1,1,1) pretzel knot. The structure of the pattern of disks

Fig. 11. Reduced style

and bands can be described as a planar graph, with each disk
mapped to a vertex, each band to an edge, and each hole to
a face. For the optimal lay-out of such graphs a number of
algorithms exist [5]. We implemented a simplistic one (using
a trial-and-error approach), which gave satisfactory results for
the graphs produced here.

V. GEOMETRY

In the previous section we have discussed how to generate
disks and bands from a braid word, and how to position
and orient the disks. The next step is to produce a surface
to visualize the Seifert surface or the corresponding closed
surface. We use ellipsoids as the basic shape for disks and
spheres, and curved cylinders with an elliptical cross section
for the bands and tubes. These are approximated with poly-
gons. Smoothing can be applied to obtain smoother knots and
surfaces. Furthermore, we describe two extensions of the basic
method: definition of multiple vertical twists and of double
knots.

A. Ellipsoids
In the standard position, an ellipsoid with two axes of equal

length (representing a squeezed sphere) can be described by

p(u) = (d cosucosv, d sinucosv, hsinv)/2,

with spherical coordinates u = (u,v) ∈ [−π,π)× [−π/2,π/2],
and with the diameter d and height h as parameters. Obviously,
setting h close to zero gives a disk, setting d = h gives a sphere.

The ellipsoid is subdivided into ns sectors, where each sector
has at most one tube attached. Consider one such a sector
(u,v)∈ [−U,U ]× [−V,V ], where U = π/ns and V = π/2. The
top half (v ∈ (0,V ]) belongs to either A or B, the bottom part
belongs to the other part of the surface. If no band is attached,
then this sector can be straightforwardly polygonized with a
rectangular mesh with size parameters I and J. The vertices
are pi j = p(uR(i, j)), with

uR(i, j) = (Ui/I,V j/J)

and (i, j)∈ [−I, I]× [−J,J]. Obviously, the vertices at the poles
coincide. If a band or tube is attached, a hole must be made

U-U

-V

V

uA

ab

I-I
-J

J

u i

v j

i0

j0

-j0

-i0

Fig. 12. Sector of ellipsoid in (u,v) and (i, j) coordinates
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β 

Fig. 13. Upper right quadrant in (u,v) and (i, j) coordinates

in this mesh, and some care is required to make sure that this
hole conforms with the end of the tube. The cross-section of
bands and tubes is described as an ellipse, with width w and
height d. Obviously, setting w close to 0 gives a band, setting
w = d gives a tube. Suppose that the attachment point of the
centerline of the tube is pA = p(uA). Typically, uA = 0, and
vA is an optional offset in the direction of the poles to move
the attachment point closer to the disk to which the other side
of the tube points. This was used for instance in Fig. 6. We
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model the boundary of the hole in the ellipsoid in spherical
coordinates as

uB(s) = uA +(acossπ/2, bsinsπ/2),

with s ∈ [0,4) (Fig. 12). The lengths of the semi-axes a
and b are chosen so as to match the distances of p(uB(0))
and p(uB(1)) to p(uA), measured along the surface of the
ellipsoid, with w/2 and d/2, respectively. This hole is a perfect
ellipse in (u,v) space, and, for our purposes, a good enough
approximation of an ellipse in 3D space.

Also, we define a rectangular hole in the mesh space:
(−i0, i0)× (− j0, j0). The mesh has to be warped such that
the inner boundary conforms with the hole in the ellipsoid,
while the outer boundary still conforms with the standard
boundary of the sector. We have modeled this as follows.
Consider the upper-right quadrant of the sector (Fig. 13). We
measure the position of a mesh-point (i, j) in a kind of polar
coordinates (α,β ), where β ∈ [0,1] denotes the angle, and
α ∈ [0,1] how close we are to the inner boundary (α = 0) or
the outer boundary (α = 1). Specifically, we use

αi j = max(αi,α j) with

αi =
i− i0
I − i0

and α j =
j− j0
J− j0

;

and

βi, j =

{

j/L(i, j) if αi > α j
1− i/L(i, j) otherwise

with
L(i, j) = (1−αi j)(i0 + j0)+αi j(I + J).

If only the hole has to be taken care of, mesh points can be
found using

uC(i, j) = uA + ((αi ja+(1−αi j)(U −ua))cosβi jπ/2,

(αi jb+(1−αi j)(V − va)))sinβi jπ/2).

To obtain a smooth transition from the inner to the outer
boundary, we determine the vertices pi j = p(uH) by blending
circular and rectangular coordinates via

uH(i, j) = (1−h(αi j))uC(i, j)+h(αi j)uR(i, j) with

h(t) = −2t3 +3t2.

The blending function h(t) gives a smooth transition at the
boundaries because h′(0) = 0 and h′(1) = 0. The other quad-
rants are dealt with similarly. A result is shown in Fig. 14.

B. Tubes
The tubes are also modeled via a rectangular mesh of

polygons. We use a mesh ci j, i ∈ [0..P− 1], j ∈ [0..Q], where
i runs around the cross section of the tube, and j along the
centerline. The centerline of a tube is modeled by use of a
cubic Bézier curve [6]. Such a curve is given by

b(t) = (1− t)3b0 +3(1− t)2tb1 +3(1− t)t2b2 + t3b3

Fig. 14. Mesh of ellipsoid

with t ∈ [0,1]. For b0 and b3 we use the end points of the
tube, i.e., the attachment points pA. The control point b1 is
derived from the normal n0 on the surface of the ellipsoid

b1 = b0 + µn0/3|b3 −b0|

where µ (typically 1) can be tuned to vary the offset of the
tubes. The other control point b2 is defined similarly.

To generate the surface of the tube, contours must be rotated
and interpolated. We use a Frenet frame as a natural reference
frame along the centerline, given by

f3(t) = b′/|b′|, f2(t) = f′3/|f′3|, f1(t) = f3 × f2,

where b′ = db/dt. A Frenet frame is undefined when the
curvature is zero. When the control points are colinear, an
arbitrary frame can be chosen instead. When locally the
curvature is zero, the frame can rotate over 180 degrees, which
has to be checked and corrected for.

Suppose that the start contour consists of a sequence of
points pi, with i = 0, · · · ,P−1, such that p0 is located at the
boundary between the A and B part of the surface, and with
a counterclockwise orientation when viewed from outside the
ellipsoid. Here P = 4i0 +4 j0. The end contour with points qi
is defined similarly, also with P points, except that we assume
here a clockwise orientation. We use a rotating frame for the
rotation of the contour, given by

g1(t) = cosφ f1 − sinφ f2

g2(t) = sinφ f1 + cosφ f2

g3(t) = f3

with
φ = φ(t) = (φ1 −φ0 +T 2π)t +φ0.

The offset φ0 is set in such a way that initially g1 is aligned
with p0 − b0. We measure this initial offset relative to the
Frenet frame with

φ0 = arctan
p∗

0 · f2(0)

p∗
0 · f1(0)

where
p∗

0 = p0 −b0 − ((p0 −b0) · f3(0))f3.

The final offset φ1 is defined similarly. The value of T is
chosen such that the total rotation φ(1)−φ(0) matches with
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the desired number of twists R of the tube, e.g.,

T = round φ0 −φ1 +Rπ
2π

.

Contours are interpolated in a local frame, using a cubic Bézier
spline again, i.e.,

c∗i (t) = (1− t)3c∗i0 +3(1− t)2tc∗i1 +3(1− t)t2c∗i2 + t3c∗i3.

For c∗i0 we use start contour points, transformed by use of the
g(0) frame:

c∗i0 = (g1(0) · (pi −b0), g2(0) · (pi −b0), g3(0) · (pi −b0)) .

For c∗i3 the end contour points are used:

c∗i3 = (g1(1) · (qi −b3), g2(1) · (qi −b3), g3(1) · (qi −b3)) .

For the contours in between we use ellipses:

c∗i1 = c∗i2 = (wcos2πi/P, d sin2πi/P, 0).

The points of the mesh of the tube are now finally given by

ci j = b( j/Q)+(g1( j/Q), g2( j/Q), g3( j/Q)) · c∗i ( j/Q).

C. Smoothing
The preceding approach gives ellipsoids and tubes. To

obtain smoother surfaces, especially to render less abrupt
transitions between tubes and ellipsoids, smoothing can be
applied. In [15] we proposed to use geometric smoothing,
based on Catmull-Clark subdivision [3]. This does indeed
give more attractive shapes, but the resulting knots and links
often still did not resemble their natural counterparts, shown in
textbooks, or produced by Scharein’s KnotPlot [12]. The latter
immediately suggests a solution: Apply Scharein’s method for
smoothing the links here also, and let the surface follow. In
the following we describe this procedure in more detail.

Scharein’s approach is to use a relatively simple physics-
based iterative procedure. Each vertex of a link is considered
as a point mass, and is attracted by its neighbors and repelled
by all other vertices of all links. The positions of the vertices
are incrementally updated taking the forces into account, until
a stable or attractive configuration results. In more detail, in
his model for the magnitude of the attracting force Fa between
two neighboring vertices

Fa(r) = Hr1+β

is used, modeling a generalization of Hooke’s law. The use
of β = 0 gives the standard linear version. For the repelling
force Fr between vertices a generalized electrostatic model is
used, i.e.,

Fr(r) = Kr−(2+α),

where the use of α = 0 gives the standard inverse quadratic
version. We used a slight adaptation. Instead of Fa(r) and Fr(r)
we use Fa(r/ra) and Fr(r/ra), where ra is the initial average
distance between neighboring vertices. This reduces the effect
of the initial scale of the model on the final result.

For the calculation of the motion of the vertices Newton’s
laws and a simple Euler scheme are used. Each vertex has

an associated velocity v, which is updated for time step i
according to

vi+1 = (1− γ)vi +F∆ti.

The amount of damping (and hence dissipation of energy) can
be controlled via γ , and F is the sum of all forces acting on
a vertex of a link. The new position pi+1 follows from

pi+1 = pi +min(dmax, |vi+1∆ti|)
vi+1∆ti
|vi+1∆ti|

.

For the vertices of the surfaces we used almost the same
force model (including normalization by ra), except that only
attracting forces and no repelling forces are used. As a result,
the surface follows the link, but does not influence it. Using a
physical analogy, the knot is modeled as a steel rod, and the
surface as a thin flexible rubber sheet. This simple model for
the surfaces does not lead to a minimal surface, but it does
lead to smooth surfaces with faces of similar size and shape.

Fig. 15. Smoothing using relaxation

The amount of displacement is clamped to a value dmax.
Furthermore, if the new position of the vertex is closer than
dclose(> dmax) from non-neighbouring edges, the update is
ignored. Scharein has proved [12] that this combination of
measures prevents self-intersection of the knot. Surfaces are
not checked for self-intersection. Self-intersection can occur
when the simulation is continued in search of a minimal
energy, but often such a configuration is visually not attractive.
Also, a check for self-intersecting surfaces would give a high
performance penalty.

The time taken per time step is quadratic in the number
of vertices of the link, and linear in the number of vertices
of the surfaces. For a smooth interactive performance, a low
number of vertices has to be used. Hence, we use by default
low resolution settings for the meshes. For the mesh of the
disks we use a scheme in which the number of meridians
is constant between two tubes, and independent of the angle
between the tubes.

Furthermore, selection of a proper time step ∆ti is important.
Too high a value gives an unstable result, too low a value does
not give enough progress. To prevent both extremes, we use
an exponentially decreasing time step

∆ti+1 = (1−µ)∆ti,

where µ denotes the strength of the decrease. As a result,
initially large steps are made, whereas later on the shape
stabilizes to a smooth shape. This is not necessarily the
minimal energy configuration, but that one did not always
seem to be the most attractive anyway. In our implementation,
each time the user presses a smooth button, a new cycle of
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iterations is started: the time step is reset to an initial large
value, and the model is smoothed further, which gives an easy
control over the amount of relaxation desired. Each cycle takes
typically 5-10 seconds, shown as a smooth animation on the
screen. Fig. 15 shows the effect of this smoothing procedure.
On the left the original mesh is shown, followed by application
of one, three, and a large number of cycles of iterations.
Already after one cycle an attractive result is obtained. The last
version is the minimal energy configuration for this parameter
setting, where the collision check prevents further smoothing.
The resulting shape is geometrically simple, but less attractive
than its predecessors.

Fig. 16. Use of a high value for α

We used here α = 0 and β = 1, which we found to give nice
results for stacked disks configurations. Scharein recommends
to use a higher value for the repulsion coefficient α , such as
α = 4. This gives a result as shown in Fig. 16. A high α has
the effect that the knot is surrounded by a hard tube, the force
quickly increases when the knot is approached. This gives a
more irregular knot and surface. However, when the aim is
to show a knot represented by a thick tube in a small space,
which is typical for KnotPlot, a high value of α is required.

Fig. 17. Different initial configurations for Whitehead link.

Different initial configurations lead to different results. An
example using the Whitehead link is shown in Fig. 17. On the
left, a stacked disks style is used, which gives a ring, around
which another link is twisted in a figure eight way. On the
right, a reduced style is used, which leads to two symmetric
links. In this case, the simple relaxation scheme used will
never lead to the same result, because the lengths of the links

are different in the first and the same in the second case. Also,
it seems as if there are several local minima. As the aim here
is mainly to obtain a smooth and understandable result, rather
than a global optimum, this is not a problem. Usually, the most
pleasant results were obtained with the simple stacked disks
style. This model is regular (all bands are similar) and leads
to three-dimensional shapes, in contrast to the other styles.
Smoothing therefore leads fluently to spatial surfaces.

If one would aim at a quick and useful implementation
of visualization of Seifert surfaces, our recommendation is
to start with the stacked disks style in combination with
relaxation as described before. This combination is relatively
easy to implement, leads to results that show the structure of
the surface, and yields smooth surfaces bounded by natural
representations of the knot.

For presentation purposes, higher resolution meshes are
convenient, and we therefore kept an option for geometric
refinement. Upon user request, the links are refined by means
of an interpolation scheme following the Catmull-Rom spline
[4]; for the surfaces Catmull-Clark subdivision [3] is used.

D. Knot representation
It is convenient to have an explicit representation of the knot

or the components of the link that correspond to the surfaces.
For this purpose, the geometry of the knot is derived from
the surfaces. Each polygon is assigned to part A or B of the
surface, components are found by tracing edges that bound
polygons that belong to different parts. The knot is shown as
a tube. Optionally, an offset can be specified, such that the knot
is shifted perpendicular to the surface in an outward normal
direction. In Fig. 7 we used an offset of the radius of the tube,
such that the knot touches the surface. Also, this is useful for
visualizing the linking number of the offset with the original
knot, a quantity that plays a role in knot invariants like the
Alexander polynomial.

We have added an option to use transparency for more
insight in the resulting shape. Transparency itself is not
without problems using the Z-buffer algorithm employed in
graphics cards. For an optimal result with transparent surfaces,
all polygons should be sorted and rendered in back to front
order, which is a time consuming operation. We use a shorter
route. For insight into the structure, understanding the shape
of the knot is vital, hence it is advantageous to see the knot
through surfaces. We implemented this idea by rendering first
all surfaces, followed by rendering the knot transparently but
only when behind the surfaces, and finally rendering the knot
again opaquely when the knot is in front of the surfaces.

E. Extensions
In the approach so far, a knot or link separates two surfaces

(say A and B). We can split the knot into two parallel knots and
introduce a new surface C in between them. We implemented
this as follows. The algorithms produce a mesh where each
face is labelled A or B. If we now change these labels to
C for all faces that meet a face with a different label, we
obtain a strip of two faces wide that is labeled C, assuming
that the knot is bounded by at least two faces on each side



VAN WIJK AND COHEN: VISUALIZATION OF SEIFERT SURFACES 9

Fig. 18. Double figure eight knot

with the same label. Repeated application of this step gives a
wider strip labeled C. Next, if the standard tracing method for
finding links in space is used, a parallel knot emerges. This
extension was easy to implement, but the results are complex,
as shown in Fig. 18, where for a figure eight knot a stacked
balls version, and various views of a smoothed version are
shown. The blue surface C is a ribbon in the shape of a figure
eight knot.

51 - diagram

61- diagram

51 - flat

61 - reduced

Fig. 19. 51 cinquefoil knot (AAAAA) and 61 knot (AABacBc)

Another extension is related to a limitation of the braid
representation: It does not always yield a minimal genus
surface. Consider Fig. 19, where knot 51, also known as the
cinquefoil knot, and the almost similar 61 knot are compared.
The knot 51 has the braid word AAAAA, the knot 61 has the
braid word AABacBc. If we use these braid words to generate
Seifert surfaces, we find a good result for the cinquefoil knot.
The closed Seifert surface has four holes, which matches
with its genus 2. However, the surface for the 61 knot also
has four holes. The 61 has genus 1, and to visualize this,
the shape should have two holes, which can be achieved by
visualizing the 61 knot as a (5,-1,-1) pretzel knot. The flat style,
closest to the original braid representation, is messy. Merging

bands and eliminating disks gives the more compact reduced
representation, but these steps cannot reduce the genus.

This limitation can be explained in various ways. The
main difference between the upper parts of 51 and 61 is that
in the former the strands run parallel, while in the latter
their directions are opposite. The braid notation excels in
representing parallel twisted strands, but cannot compactly
represent twisted strands with opposite directions. Knots with
many crossings and a low genus typically have twisted strands
with opposite directions, pretzel knots are a good example of
these.

A a5A3

Fig. 20. Extended braids: multiple vertical twists

Fig. 21. Chain ring (A2A2A2A2)

We implemented a simple extension to handle a large
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number of such knots as well. In the letter based braid notation,
each symbol represents a single twist of two parallel strands.
We extended this by allowing also the definition of vertical
twists (Fig. 20). Each letter can be followed by a number that
gives the number of vertical twists, such that for instance a
(1, 3, -5) pretzel knot is defined as AA3a5. One limitation we
impose is that the number of vertical twists should be either
odd or even for all bands connecting the same disks, i.e., the
same for all A’s and a’s, all B’s and b’s, etc. If this condition is
met, then processing these extra twists is straightforward. One
change is that when even twists are used, the orientation of
disks changes. With this extension shapes such as chain rings
can be defined easily via a sequence A2A2... (Fig. 21).

VI. RESULTS

A. Examples
Interactive viewing provides much better insight in the 3D

shape than watching static images. Nevertheless, we show
some more examples of results. As mentioned in the previous
section, the braid representation does not always yield a
surface with minimal genus. This property can also be used as
a feature, i.e., to produce surfaces with a high genus that are
bounded by simple knots and links. Consider the knots and
links produced by a sequence AaAaAa... One strand is always
on top of the other here (Fig. 22), hence this produces either
two loose rings or one unknot, for an even or odd number L

A a A a

Fig. 22. AaAa gives simple boundaries, but a complex topology of the surface

Fig. 23. AaA (left) and AaAa (right)

of letters, respectively. The Seifert surface is more complex,
and contains L − 1 holes (Fig. 23). The result of AaAa is
intriguing. Locally, the shape is simple to understand, but it is
hard to form a mental image of the complete shape, like one
can imagine a sphere or a torus.

Fig. 25 shows a number of standard knots, Fig. 26 shows
a number of standard links. For each knot or link two views
are given: one with a minimal number of crossings and one
that shows the spatial structure of the surface. In [15] we have
given examples of the same set, using stacked and reduced
styles, in combination with geometric smoothing. Whereas
these images showed the structure clearly, the use of physically
based smoothing leads to results that resemble the natural
shapes of the knots much better.

B. Dissemination
The visualization of Seifert surfaces is useful for knot the-

orists to illustrate and explain their work. Our first experience
in a course on knot theory was very positive in this respect.
Also, we think that the concepts presented and methods used
here are interesting for a wider audience. Knot theory is pure
mathematics, but can be presented at a basic level without any
formula. In this spirit, our work could be used for tutorial and
educational purposes, such as for instance special projects on
higher mathematics at high schools. We already spent some
effort in bridging the gap between our research results and
application on a wider scale.

Fig. 24. User interface SeifertView

First of all, we have tried to turn our research prototype
into a useful and interesting tool for an extended audience.
The result is a Microsoft Windows application, which we
have called SeifertView. A snapshot of the user interface is
shown in Fig. 24. The user can view and rotate the knot (here
knot 77) in the main area. With the controls below the main
view area, the user can select which parts have to be shown,
trigger a smoothing cycle, refine the mesh, or reset to the
original shape. The first tab sheet, shown on the right, provides
basic functionality which enables an occasional user to have a
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Fig. 25. From left to right: Figure eight knot, knot 63 (AAbAbb), knot 71 (AAAAAAA), and knot 85 (AAAbAAAb)

Fig. 26. From left to right: Hopf link (AA), link 41
2 (AAAA), Whitehead link (AbAbb), and Borromean rings (AbAbAb)

quick result. The user can define knots and links by pressing a
button, via specification of a braid word, or by selection from a
table with all knots having up to ten crossings (obtained from
[10]). A schematic representation of the corresponding braid is
shown. Eight presets are offered to select a presentation style.
Pressing such a button not only selects a different algorithm,

but also dimensions are tuned to obtain a satisfying result.
Furthermore, a selection for weak or strong repulsion during
smoothing is offered. The other tab sheets contain a large
number of options for tuning various aspects, such as the
shading, the geometry, and the mesh generation and relaxation.

We have added various features based on discussions with
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prospective users, For instance, an option is provided to hide
all controls for classroom presentation purposes. Also, an
option is offered to produce anti-aliased high resolution images
for printing purposes directly from the application. As an
illustration, in Fig. 27 the effect of oversampling each pixel 25
times, using a jittered grid, and averaging with a Mitchell filter
is shown for a small (200×100) image. By means of tiling,
images with a resolution of 3000×3000 can be produced.
Finally, we offer a special feature for a younger public: users
can study a knot in detail with a thrill ride in a roller coaster
(Fig. 28).

SeifertView is available for download from [14]. On this
web site we furthermore provide a short and informal introduc-
tion to Seifert surfaces, the braid representation, and various
options and features of our tool.

Fig. 27. Anti-aliasing: left a screenshot, right an anti-aliased version

Fig. 28. A special effect

VII. DISCUSSION

We have presented a method for the visualization of Seifert
surfaces, and have introduced closed Seifert surfaces. These
surfaces are generated starting from the braid representation;
several styles can be used, and by varying parameters the
user can produce different versions. Via physically based
smoothing, attractive knots can be generated in seconds.

In this field, one answer gives immediately rise to new
questions. Some examples are the following. Physically based
smoothing leads to attractive surfaces; we would like to have a
procedure that gives smooth closed surfaces (see section III).
This requires a modified relaxation method with for instance
extra outward pressure on the surface.

We are interested in producing minimal genus surfaces for
knots and links. Allowing multiple twists does increase the
flexibility, but we have not yet found an algorithm to convert
a braid representation (or other representation) into this new
representation, and also we do not know if this extended
braid notation suffices to produce any minimal genus knot. If
this can be done for all different knots, tables and overviews
of Seifert surfaces can be generated automatically. Another
future goal is to create Seifert surfaces from arbitrary given
closed loops. That is, the input would be a geometric model
of the knot, rather than the braid notation or other symbolic
representation.

Another remaining puzzle concerns the morphing of shapes.
For instance in Fig. 7, all shapes are isotopic, but we would
like to exhibit this via a smooth animation.

Finally, so far we concentrated on visualizing Seifert sur-
faces, but these are not the only possible surfaces bounded
by knots. Also, Seifert surfaces play an important role in
computing linking numbers, fluxes, and circulations for space
curves. Visualizing these would be helpful in a wide range of
applications ranging from knot theory to electromagnetism to
fluid dynamics.
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