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BRANCHED COVERINGS OF MANIFOLDS WITH BOUNDARY

AND LINK INVARIANTS. 1
UDC 513.8
0. Ja. VIRO

Abstract. In this paper relationships are found between invariants of a knot
K C5%*~1 of codimension 2 and invariants of cyclic branched coverings of the ball
D?® branched over orientable compact submanifolds spanning K; analogous relation-
ships are studied in a more general situation.

Bibliography: 10 titles.

The present paper deals with a new interpretation of some well-known invariants
of knot theory, for example the signature and the Minkowski units. It turns out that
they can be regarded as invariants of cyclic branched coverings of a ball branched
over an orientable surface spanning a link. In particular, the signature of a one-
dimensional link is equal to the signature of a branched double covering manifold of
a ball.

This interpretation allows us to define similar invariants in a more general situa-
tion. Moreover, on the basis of this we succeed in: 1) showing a relationship between
the approaches of Rohlin [3] and Tristram [9] to the problem of realizing two-dimensional
homology classes of four-dimensional manifolds; 2) generalizing the results of Rohlin
[3] to the case of a surface with singularities; 3) generalizing the inequalities of
Murasugi [8] and Tristram [9] to higher dimensions. The second part of the article will
deal with these applications.

The terminology of differential topology will be used in the article. In particular,
manifolds will mean smooth manifolds and submanifolds will mean submanifolds of
smooth manifolds in the sense of differential topology.

In the first three sections mainly well-known material is presented in a form
suited to the needs of the present paper. In $1 we describe a construction of canonical
branched coverings that represents a modification of a construction in 32 of [3}; in
§§2 and 3 we study invariants of an even-dimensional Zm-manifold with boundary
related to its quadratic form. The main results are formulated and partially proved

in $4; in $5 the proof of the main theorem is completed.

AMS (MOS) subject ¢lassifications (1970). Primary 55A10; Secondary 57C45.

Copyright © 1975, American Mathematical Society

1239



1240 0. Ja. VIRO

The author would like to thank V. A. Rohlin for formulating the problem and for
his help.

§1. Canonical coverings

1.1. Cyclic branched coverings. A submanifold A of a manifold X will be called
proper if X [ A =0A and at points of its boundary A is transversal to 9X.

Let Y be a manifold of dimension 7+ 2 and let A be a proper n-dimensional sub-
manifold of the (7 + 2)-dimensional manifold X. The mapping P: Y+ X is called an
m-fold cyclic branched covering of X with branching over A or, shorter, an m-fold
cyclic branched covering of the pair (X, A) if it satisfies the following conditions:

a) the mapping p: Y\P~1(A) » X\A determined by P is a smooth m-~fold cyclic covering;
b) for every point @ € A there exists embeddings $a: D"x D? > Y and ¢, D" x D%
X such that ¢ (D™ x D?) is a neighborhood of @ and

P°q3;(v1 w) =q)¢(vr wm)’

where v € D" and w € D? (w is viewed as a complex number).

1.2. Definition. A pair consisting of an oriented connected compact (n + 2)-
dimensional manifold X with H'(X) = H1(dX) = 0 and an oriented compact proper n-
dimensional submanifold A realizing the zero of -the group Hn(X. 9X) will be called
a special pair.

1.3, Construction of canonical coverings. Let (X, A) be a special pair with
dim A = n, and let A: HI(X\A) -+ Z be the linking coefficient with the fundamental
class of A. For each natural number m we construct a covering p,:Z, - X\A cor-

responding to the kernel of the composition

tm
7 (XN A) = Hy (XN\A) > Z L,

where 5 is the Hurewicz homomorphism and (m is the natural projection.

Let B be a (closed) tubular neighborhood of A in X; it has the structure of a
smooth SO(2)-fibration over A with fiber D2, Insofar as the boundary C of a fiber of
this fibration is singly linked with A, the composition of the inclusion homomorphism
m, (C) - nl(X\A) with the homomorphism { _Ab is surjective. From this it follows that
the fibers of the fibration p_ 1(B\A) » A obtained as the composition of the restriction

p- 1(B\\A) » B\A of the covering p_: Z + X\A and the restriction B\A » A.of the
fxbtatwn B + A are connected, and therefore the fibration p_ 1B\4) » 4 is provided
with the structure of a SO(2)-fibration with fiber D2\§O§ Let pm Bm - A be the
associated fibration with fiber D2, and let i b (B\4) » B, be the natural embedding.
We define the fiber embedding i p, }B\A4) » B_ by the formula i () = |w| 1 =™ ™ ;(x),
and we attach the manifolds Zm and B,, by means of this embedding. The natural
differential structures of Z_ and B, define the differential structure of the manifold
obtained. We denote it by N_(X, A), and we define a mapping P_: N _(X, A) > X by

the formula
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by [P it xeZ,,
pm(x)’ if xSEZm.

Obviously this mapping is an m-fold cyclic branched covering of the pair (X, A).

We orient N (X, A) such that the projection P has degree + m. Automorphisms
of the branched covering P _: Nm(X, A) » X (i.e. diffeomorphisms f: Nm(X, A) »
N, (X, A) with P_f=P ) preserve the orientation; they form a group canonically
isomorphic to the group

T (XN AP, (Lm) = 1 (XN A)/Ker (ExAh)

of automorphisms of the covering b L, > X\A, which in turn is canonically isomor-
phic to Z . Let T: N (X, A) » N_(X, A) be the automorphism of the covering P :
N (X, A) » X corresponding to the standard generator of the group Z .

The branched covering P : N_(X, A) » X and the Z -manifold(N)(N (X, A), T)
depend only on the initial data: the special pair (X, A) and the natural number m. We
shall call Pm: Nm(X, A) » X the canonical m-fold covering, and the Zm-manifold
(N, (X, A) T) will be called the canonical m-fold cover of the pair (X, A).

1.4. Cobordism of Zm-mani/olds with boundary. We shall call the n-dimensional
Z_-manifolds (X,, T,) and (X,, T,) cobordant if there exists a Z -manifold (X, T)
of dimension 7 + 1 whose boundary can be obtained by attaching (X,, T,) to (= X,, T,)
by means of some equivariant diffeomorphism (X, T,|dX,) » (3X,, T,|dX,).

For closed manifolds this definition is equivalent to the usual one ([2], Chapter V).
Similar to the way it is done in the closed case, it can be shown that cobordism of
Z -manifolds with boundary is an equivalence. However, the classes of cobordant
Z_-manifolds with boundary do not form a group with respect to disjoint summation.

1.s. If (XO, Ao) and (XI’ A)) are special pairs with Xo=X,=X and dA = aAl,
then for each natural number m the canonical m-fold covers (Nm(XO, AO), T) and
(N_(X,, A)), T) are cobordant.

Proof. Let dim Ay =7 The submanifold {0} x (-~ A)) U IxdA, U 11ix A,
realizes the zero of the group H_(d(/ x X)). Therefore there exists a proper submani-
fold A with boundary

0A={0} X (—A,) UIX0A,J {1} XA,
realizing the zero of Hn“(l x X, I x X)). Obviously (I x X, A) is a special pair.
We define the embedding i: X\AO +1x X\A by the formula {x) =(0, x). From

the commutativity of the diagram

(DBy a Zm-manifold we shall mean a pair consisting of an oriented compact manifold X
and an orientation-preserving diffeomorphism T: X » X with 77 = L
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Ho . Mo
M (XNA) S H(XNAS,

LS {1 / —— Zm

2 (% XNA) S H (% XA

in which b, and b are Hurewicz homomorphisms, Cm is the natural projection, A, is
the linking coefficient with A in X, and A is the linking coefficient with A in Ix X,
it follows that the covering p_: N_(X, AO)\P;II(AO) > X\AO corresponding to the
kernel of ém)‘obo is equivalent to the restriction of the covering

Pm: Nl X X, A\ P (A)— T X X\ A,
corresponding to the kernel of { Ah; this equivalence extends naturally to the embed-
ding
Jo:Nu(X, A)—0ON, (IXX,A).

Obviously j, reverses orientation and commutes with 7. In an analogous way we con-
struct an embedding

iviNa(X, A) 0N, (IX X, A)

with Imj, =dN_(Ix X, ANInt Imj,, which agrees with the orientations and commutes
with T. The embeddings j, and j; give a representation of the boundary of the Z -
manifold N_(I'x X, A) in the form of the result of attaching (- N (X, 4.), T) to

AN (X, A}, T).

$2. Invariants of Z_-manifolds

2.1. Forms with isometries. Let J be a field of characteristic 0. The triple
consisting of a finite-dimensional vector space O over F, a bilinear symmetric or
skew-symmetric form ¢ on @, and an isometry 7: 0 » C will be called a Z-form (over
$). A Z-form (O, g, 7 with 7”7 = 1 will be called a Zm-/orm.

The nondegenerate part of the Z-form (0, ¢, 7) will mean the Z-form obtained from
(0, 9. 1 after factoring by the radical of ¢ (i.e. by the annihilator of the whole space
0). The Z-form (0, 4, ) will be called null-cobordant if its nondegenerate part @, 7.7

. . ~N . . . . . oy » .
is such that V] contains the 7 -invariant totally isotropic (i.e. self-annihilating) sub-

space of half the dimension. The Z-forms (@I, 4y, 7;) and (@2, g4, 7,) will be
called cobordant if they are both symmetric or both skew-symmetric and if the
Z-form

(Ole 021 ql@ (_qz) ’ T1®TZ)

is null-cobordant. It is not hard to verify that cobordism of Z-forms is an equivalence
(cf. Levine [5, 6]).

The set of classes of cobordant symmetric Z-forms over F will be denoted by
A+1(§), and the set of classes of cobordant skew-symmetric Z-forms over ¥ will be
denoted by A _ 1(3"). As is easy to see, these sets are groups with respect to orthogonal

summation.
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2.2. The form of a Z_-manifold. Let (X, T) be a Z_-manifold of dimension 2k.
The diffeomorphism T induces a linear mapping.

T.:H (X; Q)—H,(X; Q)
of period m, which preserves the intersection index
Q: Hu(X; QR H.(X; Q) — Q.

Thus (H (X; Q), O, T*) is a Z-form over Q; we shall call it the form of the form of
the Z -manifold (X, T).

2.3. The forms of cobordant L _-manifolds are cobordant.

This theorem follows from the following two lemmas in an obvious way:

1) The form of the L  -manifold obtained by attaching the 7 -manifolds (X, T,)

and (X,, T,) by means of an equivariant diffeomorphism
(0X,, T,|0X,) > (—0X,, T,|0X,),

is cobordant to the orthogonal sum of the forms of (X, T,) and (X,, T,).

2. The form of a null-cobordant 1_-manifold is null-cobordant.

The proof of the first lemma is contained in the proof of the additivity of the G-
signature ([ 1], Proposition 7.1); the proof of the second is contained in the proof of

the fact that the G-signature of a null-cobordant G-manifold is equal to zero.

$3. Invariants of Z-forms
3.1. Decomposition of a Z-form. Let T be a field of characteristic 0, and let ® =
(8, 4. 7) be a Z-form over F. If A is an irreducible polynomial over F, then by U,
we shall denote the A-primary component of the space U:

O,=KerA(r)™ for large N;

the restriction of ® to G)‘ will be denoted by ®, or by (C)‘, "NEN?
If A2) =%+ altk-1 + s+ +a, is a polynomial with coefficients in F, then the

polynomial

1
Aty = Z(akfk tap )

will be called symmetric to the polynomial A. As Milnor has shown ([7], Lemma 3.1),
if the polynomial A is not symmetric to the polynomial A’, then the subspace 0)‘ is
orthogonal (with respect to ¢) to @A . From this it follows that the Z-form & =
(C, ¢, D can be decomposed into the orthogonal sum of Z-forms of two types: 1) o,,
where A is a symmetric (i.e. symmetric to itself) irreducible polynomial over ?, and 2)
(OA + @;‘, gl 0)‘ + GR’ bl ®A+ C3), where A is an asymmetric irreducible polynomial
over F, and that terms of the second type are null-cobordant. Furthermore, the Z-form
® is null-cobordant if and only if all of its terms of the first type are null-cobordant;
see Levine [6].

3.2, Extensions of a L-form. 1f ® = (0, g, D is a Z-form over § and X is an

extension of the field F, then there is an obvious extension of ® to a Z-form over K.
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We shall denote this Z-form by oX o by (OX qK, ).

3.3. Lemma (Levine [G], Proposition 17). A symmetric Z-form over Q is null-
cobordant if and only if its extensions to Z-forms over every completion of Q are null-

cobordant.

3.4. Lemma (Levine [6], Proposition 16). If (O, g, 7) is a nondegenerate symmetric
Z-form over one of the completions of Q and if the characteristic polynomial of r is
equal to A%, where A is an irreducible symmetric polynomial, then the Z-form (©, g 7

is null-cobordant if and only if the exponent e is even.

3.5. Invariants of symmetric Z,-forms. Let O be a vector space of dimension
over J, and let ¢ be a bilinear symmetric form on 0. Let €y, +++y €, be an orthogonal
(with respect to g) basis of O with #e, @e) = a, where a, € 3, a;40 for 1<i<r,
and a,=0 for r<igm ..

We shall denote by d(g) the element of the factor group F/(F)? of the multiplicative
group of F by the subgroup of squares defined by the formula

r r
4@ = (— k) 11 & (mod (7).
fam1

We shall denote by €e(g) the number 7 reduced modulo 2. It is clear that dg) and e(q)
are invariants of the class of Z,-forms cobordant to the Z,-form ©, 4, D.

Let F = Qp be the field of p-adic numbers. We shall denote the product 14, by
D; let D = p°d, where d is a unit of the ring of p-adic integers. From the classifica-
tion of quadratic forms over Q_(see , for example, [4]) it follows that the class of Z,
forms cobordant to the Z,~form (U, g, 1) is completely determined by the invariants
¢e(g), A q), and the Minkowski unit

(p, DY Il (ana) if p+2.

1Iigi<r

' r L@, e
[(__1){7-X+(1+[2 1./ :] sa, Il (@a) it p=2

IiC<r

qu

(here ( , ) is the Hilbert symbol). When r is even the Minkowski unit can be replaced

by the invariant introduced by Levine [6]:

rrse) 2
H(Q)_—‘-(—l,——l) ’ (—'I!D)2 H (a"af)'

IKISisSr

Indeed, it is not hard to verify that

C(g) =@, (—1Y"" p) 1 (9) (1)
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3.6. Invariants o/ symmetric ZL-forms. Let ® = (U, ¢, ) be a symmetric Z-form
over (), and let (8 4, 7) be its nondegenerate part.

a) For each symmetric irreducible polynomial A we denote by ¢, (®) the exponent
reduced modulo 2 with which A appears in the characteristic polynomial of 7.

b) For each symmetric irreducible polynomial A we denote the invariant d(qx) by
d,(®).

c) For each symmetric polynomial A irreducible over R we denote the signature
a(q‘;) by ox((b).

Note. The signature 0,(®) can be obtained by starting with the Hermitian form
g"¢: (0 ®C) ®(D ®C) » C defined by the formula

(1, R2) R (V) ®2,)) = zlz_zq (v, ®v,). (2)

Namely, for { € C with |{] =1 and {# £ 1 the signature o 2 2imelal
- eG4
the doubled signature of the restriction of ¢'C to (v ® O,_r

(®) is equal to

d) For each symmetric polynomial A irreducible over Q we denote the Minkowski
unit C(q??) by CP((I))

e) Since every symmetric polynomial of odd degree is divisible by t =1 or ¢ + 1,
every irreducible symmetric polynomial A with A1) # 0 £ M~ 1) has even degree.
Therefore for such A the A-primary components of Z-forms are even dimensional. Con-
sequently for each symmetnc polynomial A irreducible over Q with M1) £ 0 £ M-1)
Levine’s invariant pu(q Ap) is defined. This invariant will be denoted by p.p(CD)

3.7. The symmetric L-forms ® and &' are cobordant if and only if d,_, (@) =
d,_ I((I>'), dHl((D) = dH_l((D'), e)‘(@) = e)‘((b'), 0)‘(@) = a)‘(q)') and C‘;(‘I)) = Cg‘((b') for
every A and p for which these invariants are defined.

Prool. Let us represent our Z-forms in the form
D= Dy DDy GO and O = Dp, p Dry DI

The cobordism of the Z-forms ® and ®' is equivalent to the cobordism of correspond-
ing terms in these decompositions (see $3.1). By virtue of the results of 3S 3.3-3.5,
it is necessary and sufficient for the cobordism of the Z-forms ®, ., ‘Dt' _ and
®,,,, ®,, that d,(®) = d,(®) =¢,(®) =¢ (@, 6,(®) = 0, (D) and (@) = Ch@"
for Mf) =t -1 and M)=1+1 and for every prime p.

For every symmetric polynomial A irreducible over Q, with MD £ 0£M=1) we
have

d(@) = (= DM & (—1)™,

where deg A is the degree of A (see (4], §§7 and 21). Therefore formula (1) permits

us to express the invariants pf in terms of C% and ¢, :

a e)(d)

BE(D) = ((— 18 (1) & (—1), (— 11 VR @), 3
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where a depotes the exponent of p in the factorization of the number (A(1)M(- 1))(’\(4)).
On the other hand, as Levine has shown ({6], Theorem 21), the invariants €,» 0, and
u completely determine the class of Z-form with trivial (¢ — 1)-primary and (¢ + 1)-
primary components. Consequently the Z-forms @ and @’ are cobordant if and only if
(@) = ‘)‘(q’,)’ o,(®) = a)‘(CD') and C‘;((D) = Ci’((b') for every prime p and for every A
with AM(1) # 0 £ A~ 1) for which these invariants are defined.

3.8. Lemma. Every skew-symmetric Z-form coinciding with its A-primary compo-

nent, where Nt) =t -1 or A{) = t + 1, is null-cobordant.

Proof. As Levine has shown ([6], Lemma 12), a Z-form coinciding with its A-
primary component is cobordant to a Z-form (0, ¢, 7) such that A is the minimal poly-
nomial of r. Therefore in the case A(f) =t 1 we can suppose that every subspace is
r-invariant. On the other hand, the nondegenerate part of the form ¢ has (as a non-
degenerate skew~symmetric form) a totally isotropic subspace of half the dimension.

3.9. The homomorphism M. We define the homomorphism
M: A (F)—>An(F),

taking the class of the symmetric Z-form (G, plg, 7), 1) to the class of the skew-
symmetric Z-form (0, ¢, 7), where the form (g, 7) is defined by the formula

n(g, 1) (0,®,) =4 ((t—17")v,®v,)

(cf. Milnor [7]). It follows directly from the definition that this mapping is well defined
and a homomorphism.

3.10. The homomorphism M is injective. In fact, let (C, ¢, r) br a skew-symmetric
Z-form such that the Z-form (0, u(q, 7), 7 is null-cobordant. According to the discus-
sion in $83.1 and 3.8, it is sufficient to consider the case { = 0)‘, where A is a
symmetric irreducible polynomial with A(1) # 0 £ A(~ 1). In this case 7~ r!

automorphism, and therefore g can be expressed by p(g, 7):

is an

g(v,Qv,) =p (g, 7) ((x—1~")~'v.:®v,).

Consequently the radicals and the 7-invariant totally isotropic subspaces of the forms
g and u(g, 7) coincide, and hence the Z-form (C, ¢, » is null-cobordant.

3.11. The skew-symmetric L-forms ® and ®' are cobordant if and only if
¢ ,(MO) = ,(M®"), o \(M®) = 0,(MD") and CB(M®) = C(M®") for every prime p and every
A with M1) £ 04 M~ 1) for which these invariants are defined.

This theorem follows from the resuits of §§3.7, 3.8 and 3.10.

Note. By virtue of equation (3) Theorem 3.11 remains true if in its formulation we
replace the condition C;’(M(D) = C‘;(M‘D') by the condition ph(M®) = pi(M‘D'),

$4. Main results

4,1. The construction of invariants of a closed special pair. Let (M, L) be a

special pair with dim M = 2k + 1 consisting of closed manifolds, and let A be an
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oriented compact proper 2k-dimensional submanifold of the product / x M having bound-
ary 0A = {1} x L. By virtue of Theorem 1.5 the class of Zm-manifolds cobordant to
the canonical cover (N_{I x M, A), T) does not depend on the submanifold A but only
on the differential topological type of the pair (M, L), and therefore invariants of this
class are invariants of the pair M, L) In particular, as Theorem 2.3 shows, the class
of Zm-forms cobordant to the form of the canonical cover (Nm(l x M, A) T) belongs to
the set of invariants of the pair (M, L), and hence so do the invariants of this class
described in $3.

4.2. Seifert pairing. Let M be a closed oriented (2k + 1)-dimensional manifold
and N a compact oriented 2k-dimensional submanifold of M. We shall denote by flk(N)
the kernel of the inclusion homomorphism

Hy(N; Q) — H,(M; Q).

The orientations of N and M determine a normal vector field on N. Let s: N » M\N

be a small translation along this field. The pairing
8: Ay (N) ® Hp(N)—Q,
defined by the formula
8(vs ® v2) =4 (Vs ® 5.(v2)), 4

is called the Seifert pairing of the pair (M, N), where A is the linking coefficient.
4.3, Zm-[orms of a pairing. Let O be a finite-dimensional vector space over Q.
For each pairing ¢q: 0 ® 0 - Q and each natural number m > 2 we shall construct in

this subsection two Z_-forms over Q: a symmetric one (Cm-1

R 7), and a skew-
symmetric one (0™~1, ¢ _ 1> 7); we shall call them the Z_-forms of the pairing q.

Let &,,---,& _ | be the coordinate projections of the {m - 1)Xh Cartesian power
Om=1 of the space C), and let 7y, .-+ ,7__, be the coordinate embeddings. We

define the operator 7: Om=1,0m~1 by the formula

m-=2 m-—

T(v) = 2 Nen§i (V) — 2 NiSm-1 (V). (%)

{ m {=m]

Obviously ™ =1, For €=t 1 we define the form g : Om~! ® Um=1 ., Q by the
y € y

formula

9.(0:®0:) = z (9 (5 () ® & (o) + 24 (& (09) D & (0))

(6)

m-2

— Z (g G (07) @ &i(vy)) + &9 (Biwr (U2) D & (v))-

{ =1
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It is not hard to verify that ¢ is invariant with respect to 7.

4.4. Main Theorem. Let (M, L) be a special pair with dim M = 2k + 1 consisting
of closed manifolds; let N be a compact oriented 2k-dimensional submanifold of M
spanning L (i.e. with ON = L), and let A be a compact oriented proper 2k-dimensional
submanifold of the product 1 x M having boundary 0A = {1} x L. Then for each m > 2
the form of the canonical m-fold cover (N_(I x M, A), T) is cobordant to the (symmetric

when k is odd and skew-symmetric when k is even) Zm-/orm of the Seifert pairing of
M, N).

4.5. Corollary. Let L be a closedoriented (2k ~ 1)-dimensional submanifold of
the sphere 52k+1; let N be a compact oriented 2k-dimensional submanifold of §2k4l
spanning L, and let A be a compact oriented proper 2k-dimensional submanifold of
the ball D?*+2 having boundary dA = L. Then for each m > 2 the form of the canoni-
cal m-fold cover (Nm(D2k+2, A), T) is cobordant to the (symmetric when k is odd
and skew-symmetric when k is even) Zm-/orm of the Seifert pairing of (52k+1 N).

Derivation of the corollary from the main theorem. Let D be a submanifold of

D2**? Jiffeomorphic to D2**2? and not intersecting A |J SZ**!. Since the restriction

of the canonical covering P_: Nm(DZk"’z, A) » D?**2 o D2*+2\Int D is diffeomorphic
to the canonical covering Nm(D“”z\Int D, A) » D?**2\Int D, we can obtain the z -
manifold (Nm(DZI”Z, A), T) by attaching the Z_-manifold (P;I(D). TIP;I(D)) to

(N, (D?¥+\Ine D, A) T). Bur P_}(D) is diffeomorphic to the disjoint union of m
copies of D. Consequently the forms of (Nm(Dz’“'z. A), T) and (Nm(DZk"'z\lnt D, A, T
are isomorphic. The pair (D2%*?\Int D, §2**+!) is diffeomorphic to

(1 X Snk+1, {l} X Szk+1)

and therefore by virtue of the main theorem the form of the canonical cover

(Na(D**\IntD, A),T)
is cobordant to the corresponding Z_-form of the Seifert pairing of (52641, N).
4.6. Classical knot theory invariants. Let (S2%*!, K) be a knot of dimension
2k - 1 (i.e. a pair consisting of a sphere 52k+1 and an orientable submanifold K
homeomorphic to §2%=1) The Seifert pairings of pairs of form (s2k+1, N), where
N is a compact oriented submanifold of §2k+1 spanning K, are also called Seifert
pairings of the knot (52541 K), and the quadratic forms obtained by symmetrization

§2k+1 K). The signature

of these pairings are called quadratic forms of the knot (
and Minkowski units of a quadratic form of a knot are called the signature and
Minkowski units of the knot; they are actually invariants of it, i.e. they do not depend
on the choice of N (see, for example, [10]).

The symmetric Z,~form of a pairing is obtained by the usual symmetrization of the
pairing. Therefore if k is odd, then the quadratic form of the knot ($2k+1 k) s
cobordant (as a L,-form) to the quadratic form of a branched double covering manifold

of D2k+2 yith branching over an arbitrary compact oriented proper submanifold
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spanning K, and hence the signature and Minkowski units of (S2**!, K) are equal

respectively to the signature and Minkowski units of the quadratic form of this manifold.

4.7. Hermitian forms of a pairing. Let U be a finite-dimensional vector space
over Q, and let ¢g: O ®0 » Q be a pairing. For { € C with |{] =1 and £ £ 1 we
define the Hermitian form q,7 (0 ®C) ®(0 @C) » C by the formula

Iyt ®2) Rv: ® 2,) = 212_2 (1 — Z)q (0 Qv+ (1 —0)q(va D vy) 7

(cf. [5], $25, or [9]).

1f { is a primitive mth root of 1, then the form 97y is isomorphic to the restric-
tion to (U™~ 1@ C),_¢ of the Hermitian form (q+1 YHC (see $3.6) constructed from
the symmetric L _-form of gq.

Proof. Define the embedding v: C® C » 0™~ ! ® C by the formula

m—1

Ve®)= =5 ue® ¢ =z (®)

m f-l

We shall show that Imv = (0"~ ! @ O),_¢. Infact, let
ve ("' ® C)—i=Ker(r—1),
Then

(T - g)l/ = Z— N (Ei-l - gm—l T ggl) v - Em—r - cgl) v=0.

{ w2

Consequently (&, + ¢§)v=0,and (§;,_|-¢ | —C€)v=0fori=2, ..., m=1.

13
From these equations we obtain

m=i — 1
8O = Sk ) ©)

g —

We set w=+\m({-1)" l/{"m_.l(v). By virtue of (9) we have

1 it m— VE ;‘—1 s —_
V(w)=l—/—,_r_l—§l(ﬁ f— 1)"‘EZTEETE"(")= glmét(v)-—vv

Now we shall show that v is an isometry. In fact, by virtue of (8), (2), (6) and

(7,
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@) V0, ®2)® V(v ®2))

=23 3 E = DET— D) 2 g ) ® (o)

i=xl ju=]

___% 2’ C—DE™ — D@ ®v,) + g0 ® 1))

f==)

— 3 T DT = D, @)

(==}

— = DT — g ® vy
fo=)

2329

';n—{z’n Gt ®v)+ q(v: D vy))
—m(l+0q@ Qv —m(l +1)q(v:s Qv,)}
= 212’2 (1-- Z)q(vl R vy) + (1 —5) g (va ® 1)) = g0) (1, @ 2) ® (0, 2,)).

4.8. Levine-Tristram signature. The signatures of the Hermitian forms of a

Seifert pairing (in the case of knots of arbitrary dimension and one-dimensional links)
have been considered by Tristram [9] and Levine [5, 6). (In Tristram’s article [9] the
signature of the form % exp(p — 1)7i/p) is denoted by 0,(9), and in Levine’s article
[5] if A is the mauix of g, then the signature of the form g7, is denoted by
LACKAN

By virtue of the main theorem and the result of the preceding subsection the signa-
tures of the Hermitian forms of a Seifert pairing corresponding to roots of unity can be
obtained as invariants of cyclic branched covers. More precisely, if in the conditions
of the main theorem % is odd and { is a primitive mth root of 1, then the signature of
the Hermitian form of the Seifert pairing of (M, N) corresponding to { is equal to the
signature of the restriction to Ker(7T,~ {) of the Hermitian form constructed from the
form of (Nm(I x M, A), T).

$5. Proof of the main theorem
5.1. Choice of the submanifold A. As was proved in $4.1, the class of Z-forms
cobordant to the form of the canonical cover (Nm(l x M, A), T) does not depend on A.
Therefore it is sufficient to prove the main theorem for any particular A. We shall

“‘submanifold with

suppose that A has been obtained by rounding the corners of the
corners” [%, 11 x L U {%} x N. More precisely, let c: I x L » N be an embedding
with (1, x) = x for x € L, and let f: I » ] be a smooth function with f(#) = % for

t<%, A =1, and f'(1)> 0 for t>%. Define the function h: N » | by the formula
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f@), if x=clty)scld xL),
hx)=1{ 4 :
> if xeNN\c( XL)
Set A ={(z, x) €1 x N|t> h(x)}.
5.2. Auxiliary objects. We shall denote by S the set

{(t, x)IXN|t=h(x)}

rI=R  (T}xN {1}xL 4

{1pm
N —_

Ww ™

(0}»R (1ET

Figure 1

(see Figure l); it is clear that § is a submanifold of dimension 2k + 1 with corners on
the boundary along {1} x L. We introduce the abbreviations

U=IxM\S, X=IxM, U=P}U),
X=Na(l XM 4, A=P;(A)

Since the linking coefficient of the class x € HI(X\A) with the fundamental class
[A] of A is equal to the intersection index of x with the class in H2k+1(x' A U dX)
realizable by §, the linking coefficierts of the classes in the image of the inclusion
homomorphiim H(U) - HI(X\A) with the class ['é] are equal to zero.N’I'herefore the
restriction U » U of the canonical covering P _: X » X is trivial, i.e. U consists of
m components each of whi'\c‘h is mapped diffeomorphically onto U by P_. Let U, be
one of the components of U; we set U, = TNUg) for j=1,¢., m— 1.

We shall denote by 7 the natural projection of X =[x M onto M. We fix an
arbitrary Riemannian metric on X. Let Cy, ++-, Cg be compact, connected, oriented,
(k + 1)-dimensional proper submanifolds of [0, %] x M satisfying the following conditions:

1) 9C,, -, GCgC A.

2) AThe submanifolds m{(dC,), < ¢+, n'(an) realize some basis d, :--, de of the
space H,(N) = Ker (H (N; Q) » H (M; Q).

3) Cyy ==+, C, are orthogonal to the boundary of (o, ¥l x M.

Fori=1,+...,g and =0, +++, m -2 we denote by Ci‘]. the “‘submanifold with

corners’’
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PRCYN U UAU Uy,

we orient C, . so that the restriction C, . ) W, i U 2)—»C of the projection P _
has degree + 1. We denote by e i the element of Hk+1(X Q) whose representative
is Cz-",
l,oov,87=0,c00 ,m=2).

It is clear that TZ;Fi,O jfor j<m~-2 and T"'-l = - 2"'_'0 ;,;+ Thus

let & be the subspace of Hy,, I(X Q) generated by the vectors e. y (i =

& is T,-invariant.
5.3. Reduction to lemmas. The main theorem obviously follows from the following

two lemmas.

Lemma 1. The nondegenerate part of the Zm-/orm (HIHI(')\('; Q), 0, T,) and its restric-

tion to & are canonically isomorphic.

Lemma 2. The restriction o/ (Hk 1(X 0).,0.7,) o0 & is isomorphic to the Z, -
form of the pairing 0: H L) ®H (N) » Q (symmetric if k is odd and skew-symmetnc

if k is even).

5.4. Proof of Lemma 1. Let R be a regular neighborhood of N in M. We set

V=IxR, W=UUV, V=Pi(), W=Pa(W),
M= P5 ({0} x M), N =P; ({0} x N),
W, =WNU, N=NNU,.

«. "\l"he natural deformation retraction V » I x N » A induces a deformation retraction
»>A. It is clear that the composition of the inclusion {0} x N - V and the retraction
V - A is a diffeomorphism. This composition induces a mapping N A whose restric-
tion to N) is also a diffeomorphism. Therefore the inclusion homomorphism v,:

H,W; Q) > H,(V; Q) is surjective.

Consider the segment of the homology addition sequence of the triad (X U V)

Hia (V3Q) — Hiar (V; Q) D Hen (U, Q)"*

> Hea (X;Q) 3 Hy (W3 Q) He (V; Q) 1 He (T Q).

Since v, is sur;ecuve it follows that Im ¢ coincides with the image of the inclusion
homomorphxsm K Hy, 1(U Q) » Hy, 1(X Q). The natural deformation retraction

»{0ix M mduces a deformation retraction U M and therefore Im K, is contained
in the image of the inclusion homomorphism H 1(c?X Q-H,, 1(X Q) coinciding with
the radical of Q. Thus Im ¢ is contained in the radical of Q, and hence the non-
degenerate parts of (Hk+l(;(" 0), 0, T,) and its restriction to any T ,-invariant direct
completion of Im ¢ are isomorphic.

We shall show that & is a direct compleuon of Im ¢ = Ker ¥. For this it is

sufficient to prove that the classes Xe, with i=1,-.-,gand j=0,... ,m =2

form a basis of the space Im x = Ker ¢.
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Let R’ be a tubular neighborhood of A in W, and let F,be C. N JR' oriented
like the boundary of Ci\Int R'. Set F.;= P;I(Fi) N U;. Itis clear that F, ., U
(-~ F, ) realizes the class xe; .. On the other hand, F, . realizes the image of 4,
under the composition of the natural 1somorphxsm H (N; Q) - H (N i Q) and the
inclusion homomorphism Hk(N Q-H (W Q). The natural deformauon retractions
W {0l x N and U » {0} x M induce deformation retractions W > N and U > M There-
fore in the diagram

Hy(N;Q)— He (M; Q)
| 1,

Hy (W;Q) %% H, (U; Q)

formed by inclusion homomorphisms, the vertical arrows are isomorphisms. Thus the

classes d; . €H (W Q) realizable by the submanifolds F, . form a basis of Ker o,.
~

Since the composxuon of the inclusion NI - V and the deformation retraction V -+ A

is a diffeomorphism and N}. is a deformation retract of W., the inclusion homomorphism
(v Hy (W5 Q) : Hy(W;; Q) - H,(V; Q)

is an isomorphism. Furthermore, it is clear that V*di,jl = V*dl.'jz for any #,7; and j,.

Consequently the classes xe; ;= di’“l - di.j form a basis for the space

Ker v+ Ker w.=Ker 1.

5.5. Proof of Lemma 2. As was shown in the previous subsection, the class xe, .
form a basis for Im x. From this it follows that the classes e, . are linearly independ-

ent. Furthermore,

e,,,-, if ]<m—2,

— D ein if j=m—1.

=0

Therefore it is sufficient for the proof of Lemma 2 to prove that

& as i il > 1,
. oy = ) T UG, i) i ji=jy + 1,
Qenn ®ui) =1 _oo(d, @ dy), T

6 (dil ® di:) + ef (dl'z ® d"x)’ if il = jz'

First we construct smooth manifolds realizing e Let 8 be the set of unit
vectors of the normal bundle of A (] {%4} x M in X directed to the inside of [%, 1] x M,
and let y be the unit vector field on A N {4} x M tangent to {}4} x M and normal to A
determined by the orientations of A and M. We denote by B, the preimage of JC,
under the natural projection B+ A N {%4}x M. We extend the fields y N B, -+ ,y N
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B, to nomal fields ¥y, -+ ,¥, on Cy,-++,C_ such that the sets ¥; U By»-e-»Y
U Bg are smooth submanifolds of the tangent bundle 7X and such that y;, .-, ¥

&

e
are transversal to each other and to the zero section.

Since UfCl. is compact, the lengths of the vectors in U?yi do not exceed some
number r. Let p > 0 be a real number such that there exist geodesic tubular neighbor-
hoods of the submanifolds Cy, ... ,C_and A ) 1%} x M in X of radius p. For i =
1,...,g and ¢ €[~ 1, 1] we denote by C! the image of the submanifold ty, of the
tangent bundle 7X under the mapping x »exp(px/r), andfor i=1,... ,g and t €
(0, 1] we denote by D! the image of 8, under the same mapping. The sets C} and
D:. are smooth submanifolds of X. We orient C:. such that the natural diffeomorphism
C} -+ C, has degree + 1 if ¢ >0 and degree -1 in the opposite case.

Set C’ = P"I(C') N U,; we denote by Di.']. the component of P;I(D:) inter-

secting C i and for t > 0 we set
Eij=Cijsa U Di; U Cij.

Orient E! ii to correspond to the orientation of C! Obviously E:. i is pl-isotopic
»

i,j+41°

to the submamfold with corners C i Thus E’ i realizes €

Now we shall concern ourselves with calculatmg Q(e‘I'JI Re; ). For this we

g7

shall find the intersection index of E‘Al'fl E,lz.]2 Obviously

Dis N Dy, C P32 (DF, (1 DY) C P (exo (28 N 28))= 2.

Consequently

1

1
Eipy - Eiyje=(Cihjy1 UChj) - Clhrivr U Cip)-

l.-

©

Moreover, C ;j CUj. Therefore, if li; =7l > 1, then

1

‘E'f_l-ll ) E;t-]z = 0.

Furthermore, if 2,, ¢, € [-1,1] and ty # t2, then the intersection of C,ll', C,zz‘, =

) t
Cill . ,-22 is equal to linking coefficient of aC, and 3C in {%4} x M. We shall de-
note this linking coefficient by £(ac§i, acﬁ-;).
Now let j, = j, =j. We have
1 1 1 1

Eij- Ehjy=Ch - Ch +C,* - Ci' = 2(3C, 9C}) + £ (3C,,*, 9CE)).
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Obvious isotopies take dC% Y 9C} o 9C; U OCE and oCT* U ICT) o
- ac‘fl) U 9Cy,). Thus

1 1

L L L
E?l-l' : Eill-i =2 (aCi,. aC?z) + z (_ ac"z‘ y T aCl.) = 2(6Cl|9 acz)

+ (— 1)**'2(aC,,, aCL).

But by definition of the Seifert pairing we have

1

2(3Cs,, 0CL) = 0(d;, ® di,)

and

£(3C,, 3C) = 6(dy, ® du);

hence, if 1=172 then
L

Eluin Eiyjy=0(d, @ di) + (— 1)**'0 (di, @ du).

Analogous arguments show that if j, =j, + 1, then

1
E;‘l-fl ’ E;l-ll = O(dfx ® di:)'
and if fa=71+ 1, then

Eiii - Eboio= (— 1)0(ds, ® day).

Received 24/0CT/72
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