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BRANCHED COVERINGS OF MANIFOLDS WITH BOUNDARY

AND LINK INVARIANTS. I

UDC 513.8

O. J a. VIRO

Abstract. In this paper relationships are found between invariants of a knot
Κ C S ~ of codimension 2 and invariants of cyc l ic branched coverings of the ball

0 branched over orientable compact submanifolds spanning K; analogous relation-

ships are studied in a more general situation.

Bibliography: 10 t it les.

The present paper d e a l s with a new interpretation of some wel l-known invariants

of knot theory, for example the s ignature and the Minkowski u n i t s . It turns out that

they c a n be regarded as invariants of c y c l i c branched c o v e r i n g s of a ba l l branched

over an or ientab le sur face spann ing a l ink. In particular, the s ignature of a o n e -

d i m e n s i o n a l link i s equa l to the s ignature of a branched double cover ing manifold of

a ba l l .

T h i s interpretation a l l o w s u s to def ine s imi lar invariants in a more genera l s i tua-

t ion. Moreover, on the b a s i s of th i s w e s u c c e e d in: 1) showing a r e l a t i o n s h i p b e t w e e n

the approaches of Rohl in [ 3 ] and Tristram [9] to the problem of r e a l i z i n g two-dimens ional

homology c l a s s e s of four-dimensional manifolds; 2) g e n e r a l i z i n g the r e s u l t s of Rohl in

[ 3 ] to the c a s e of a sur face with s ingularit ies; 3 ) g e n e r a l i z i n g the i n e q u a l i t i e s of

Murasugi [ 8 ] and Tristram [9] to higher d i m e n s i o n s . The s e c o n d part of the ar t ic le wi l l

d e a l with t h e s e a p p l i c a t i o n s .

The terminology of differential topo logy w i l l be u s e d in the a r t i c l e . In particular,

manifolds w i l l mean smooth manifolds and submanifolds wi l l mean submani fo lds of

smooth manifolds in t h e s e n s e of di f ferential topo logy .

In the first three s e c t i o n s mainly wel l-known material i s p r e s e n t e d in a form

s u i t e d to the n e e d s of the present paper. In § 1 we d e s c r i b e a cons t ruct ion of c a n o n i c a l

branched c o v e r i n g s that r e p r e s e n t s a modi f icat ion of a cons t ruct ion in §2 of [ 3 ] ; in

§ § 2 and 3 we s tudy invar iants of an e v e n - d i m e n s i o n a l Z^-manifold w i th boundary

re lated to i t s quadratic form. T h e main r e s u l t s are formulated and part ia l ly proved

in § 4 ; in § 5 the proof of the main theorem i s c o m p l e t e d .
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y 1. Canonical coverings

1.1. Cyclic branched coverings. A submanifold A of a manifold X will be cal led

proper if dX f] A * dA and at points of i ts boundary A is t ransversa l to dX.

Let Υ be a manifold of dimension η + 2 and let Λ be a proper η-dimensional sub-

manifold of the (n + 2)-dimensional manifold X. The mapping Ρ: Υ -* X is called an

m-fold cyclic branched covering of X with branching over A or, shorter, an m-fold

cyclic branched covering of the pair (X, A) if it sa t i s f ies the following condit ions:

a) the mapping p: Y\P~ (A) -» X\A determined by Ρ is a smooth ra-fold cycl ic covering;

b) for every point a € A there ex i s t s embeddings %a: Dn χ D2 -* Υ and φαι D" χ D2 -*

X such that φ (Dn χ D 2 ) is a neighborhood of a and

Ροψα(ν, ΐ ί > ) = φ β ( ι / , wm),

where ν e Dn and w e D {w i s viewed as a complex number).

1.2. Definition. A pair cons i s t ing of an oriented connected compact (n + 2)-

dimensional manifold X with Η (X) = Η (dX) = 0 and an oriented compact proper n-

dimensional submanifold A real izing the zero of the group HJ.X, dX) will be cal led

a special pair.

1.3. Construction of canonical coverings. Let (X, A) be a s p e c i a l pair with

dim A = n, and let λ: Η 1(X\A) -* Ζ be the linking coefficient with the fundamental

c l a s s of A. For each natural number m we construct a covering pm: Z m -» X\A cor-

responding t o the kernel of the composition

where h i s the Hurewicz homomorphism and ζη i s the natural projection.

Let Β be a (closed) tubular neighborhood of A in X; it has the structure of a

smooth SO(2)-fibration over A with fiber D . Insofar as the boundary C of a fiber of

this fibration is singly linked with A, the composition of the inclusion homomorphism

ffj(C) -» 77j(x\/4) with the homomorphism Cm^h i s surjective. From this i t follows that

the fibers of the fibration p~ l(B\A) -» A obtained as the composition of the restr ict ion

P~1(B\A) -» B\A of the covering p : Ζ -» x\A and the restr ict ion B\A -» A.of the
r m σ rn m

fibration Β -* A are connected, and therefore the fibration p ~ (B\A) -» A i s provided

with the structure of a 50(2)-fibration with fiber D 2 \ i 0 l . Let p'm: Bm -» A be the

a s s o c i a t e d fibration with fiber D2, and let i: p~ H f i \ ^ ) -» Bm be the natural embedding.

We define the fiber embedding i': P^1(B\A) -> Bm by the formula i\w) = \w\{l~m)/m i(w),

and we attach the manifolds Z m and Bm by means of th is embedding. The natural

differential structures of Ζ and Β define the differential structure of the manifold

obtained. We denote it by N m (X, A), and we define a mapping Ρm: Nm(X, A) - X by

the formula
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Ρ ω _ j P m ( x ) ' i f

" m ( X ) — 1 .

( P m ( x ) , i f

O b v i o u s l y t h i s m a p p i n g i s a n m - f o l d c y c l i c b r a n c h e d c o v e r i n g o f t h e p a i r ( X , A ) .

We orient Nm(X· A) such that the projection Ρ m has degree + m. Automorphisms

of the branched covering Ρm: Νm(X, A) -* X ( i .e . diffeomorphisms /: NmiX, A) •*

N m (X, A) with Ρmj = Pm) preserve the orientation; they form a group canonical ly

isomorphic to the group

«i(X\A)/Pm.ni (Zm) = «ι (X\A)/Ker (£JA)

of automorphisms of the covering ρ : Ζ -• X\A, which in turn is canonical ly isomor-

phic to Ζ . Let Τ: Ν (X, A) -> Ν (X, A) be the automorphism of the covering Ρ :
* τη τη τη σ τη

Nm(X, Α) -* Χ corresponding to the standard generator of the group Z m ·
The branched covering Ρ : Ν (Χ, Α) •* X and the Ζ -manifoldOH/V (X, A), T)

σ τη τη τη τη

d e p e n d o n l y o n t h e i n i t i a l d a t a : t h e s p e c i a l p a i r ( X , A) a n d t h e n a t u r a l n u m b e r m. W e

shal l cal l Ρ : Ν (Χ, Α) -* X the canonical m-fold covering, and the Ζ -manifold
τη τη τη

(Ν. (Χ, Α) Τ) will be called the canonical m-fold cover of the pair (X, A).

1.4. Cobordism of Ζ -manifolds with boundary. We shal l cal l the «-dimensional

Ζ -manifolds (X,, T.) and (X,, T,) cobordant if there exis t s a Z -manifold (X, T)
τη ί ι L ι. τη

of dimension η + 1 whose boundary can be obtained by attaching (Xj, Tj) to (- X2> T ? )

by means of some equivariant diffeomorphism (<?Xj, T j |dXj) -» (dX 2 , T 2 | d X 2 ) .

For c losed manifolds this definition is equivalent to the usual one ([2], Chapter V).

Similar to the way it is done in the closed c a s e , it can be shown that cobordism of

Zm-manifolds with boundary is an equivalence. However, the c l a s s e s of cobordant

Zm-manifolds with boundary do not form a group with respect to disjoint summation.

1.5. // (X o , Λ ο ) and{Xv A J are special pairs with XQ = χχ = X and dAQ = dA,,

then for each natural number m the canonical m-fold covers ( N m ( X Q , AQ), T) and

(Ν (Χ,, ΑΛ, T) are cobordant.
771 L I

Proof. Let dim AQ = n. The submanifold | θ ! χ (- AQ) \J Ι χ ΘΑχ {j \l\ χ Αχ

rea l izes the zero of the group Hn{d(I χ Χ)). Therefore there ex i s t s a proper submani-

fold A with boundary

realizing the zero of Ηn j(/ χ Χ, (9(/ χ X)). Obviously (/ χ Χ, A) is a specia l pair.

We define the embedding i: A \ ^ 0 -» / χ X\A by the formula ;'(x) = (0, x). From

the commutativity of the diagram

a Z^-manifold we shall mean a pair consisting of an oriented compact manifold X

and an orientation-preserving diffeomorphism T: X -» X with Tm — 1.
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in which hQ and h ate Hurewicz homomorphisms, ζη is the natural projection, kQ is

the linking coefficient with AQ in X, and λ is the linking coefficient with A in / χ Χ,

it follows that the covering pm: N m (X, A^P^HAQ) •* X\AQ corresponding to the

kernel of ζ,^Χ^^ i s equivalent to the restr ict ion of the covering

pm: Nm(Ι χ X, A)\P%(A)-,/xX\A,

corresponding to the kernel of Cm^-h; this equivalence extends naturally to the embed-

ding

j0:Nm(X,A0)-+dNm(IXX,A).

Obviously /'0 reverses orientation and commutes with T. In an analogous way we con-

struct an embedding

with Im/'j = dNm(l χ X, A)\ lnt Im/ 0 , which agrees with the orientat ions and commutes

with T. The embeddings ; 0 and ;'j give a representation of the boundary of the Z f f l -

manifold Νm(I χ X, A) in the form of the result of attaching (— Nm(X, Ao), T) to

iNjX, A,) . T).

§ 2 . Invariants of Zm-manifolds

2 . 1 . Forms with isometries. Let Ϊ be a field of character is t ic 0. The triple

consis t ing of a finite-dimensional vector space 0 over J , a bil inear symmetric or

skew-symmetric form q on C, and an isometry r: 0 -> L will be cal led a Tj-form (over

5). A Z-form ( 0 , ?, r) with rm = 1 will be called a Zm-form.

The nondegenerate part of the Z-form ( 0 , 9, r) will mean the Z-form obtained from

( 0 , q, τ) after factoring by the radical of q ( i .e . by the annihilator of the whole space

0 ) . The Z-form ( 0 , q, r) will be ca l led null-cobordant if its nondegenerate part (0, "q, ?0

is such that 0 contains the ^-invariant totally isotropic ( i .e . self-annihilating) sub-

space of half the dimension. The Z-forms ( 0 j , q v τ^) and ( C 2 , ^ 2 > r 2 ) will be

called cobordant if they are both symmetric or both skew-symmetric and if the

Z-form

(Oj©C 2, ?.®(—1%), τ ,θτ 2 )

is null-cobordant. It is not hard to verify that cobordism of Z-forms is an equivalence

(cf. Levine [5, 6]).

The set of classes of cobordant symmetric Z-forms over J will be denoted by

Λ jC?), and the set of c l a s s e s of cobordant skew-symmetric Z-forms over J will be

denoted by Λ_ j(30. As is easy to see , these se t s are groups with respect to orthogonal

summation.
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2.2. The form of a Z -manifold. Let (X, T) be a Z -manifold of dimension 2k.
777 TJJ

The di ffeomorphism Τ induces a l inear mapping.

of period m, which preserves the intersection index

Q:Hh(X;Q)(gHk(X;Q)-+Q.

Thus (//j,(X; Q), Q, T*) is a Z-form over Q; we shall cal l it the form of the form of

the Ζ -manifold (X, T).m

2.3. The forms of cobordant Ζ -manifolds are cobordant.

This theorem follows from t h e following two lemmas in an obvious way:

1) The form of the Zm-manifold obtained by attaching the Zm-manifolds (Xj,

and (X 2 > 7*2) by means of an equivariant diffeomorphism

(dXlt Tt\dXt)-+(-dXt,

is cobordant to the orthogonal sum of the forms of (X,, T.) and (X 2 . T2).

2. The form of a null-cob or dant Ζ -manifold is null-cobordant.

The proof of the first lemma is contained in the proof of the additivity of the G-

signature ([ l ] , Proposition 7.1); the proof of the second is contained in the proof of

the fact that the G-signature of a null-cobordant G-manifold is equal to zero.

§ 3 . Invariants of Z-forms

3.1. Decomposition of a Z-form. Let J be a field of character i s t ic 0, and let Φ

(C, q, τ) be a Z-form over 3". If λ is an irreducible polynomial over 3", then by ϋ λ

we shal l denote the λ-primary component of the space L·:

0 λ = Κ θ Γ λ ( τ Γ for large N;

the restr ict ion of Φ to 0 λ will be denoted by Φ χ or by ( ϋ χ , q^, τ^).

If \(t) = t + a.t ~ + · · · + a. is a polynomial with coefficients in J , then the

polynomial

will be called symmetric to the polynomial λ . As Milnor has shown ([7], Lemma 3.1),

if the polynomial λ i s not symmetric to the polynomial λ', then the subspace ϋ λ is

orthogonal (with respect to q) to L/ λ . From this it follows that the Z-form Φ =

( 0 , q, r) can be decomposed into the orthogonal sum of Z-forms of two types : 1) Φ λ ,

where λ is a symmetric ( i .e . symmetric to itself) irreducible polynomial over J , and 2)

( L . + O'vt ?| ^ λ + ^λ» 'Ι λ + ^ λ ) > w n e r e λ i s an asymmetric irreducible polynomial

over J , and that terms of the second type are null-cobordant. Furthermore, the Z-form

Φ is null-cobordant if and only if al l of i ts terms of the first type are null-cobordant;

see Levine [6].

3.2. Extensions of a Z-form. If Φ = ( 0 , q, τ) i s a Z-form over 3" and Κ is an

extension of the field ? , then there is an obvious extension of Φ to a Z-form over K.
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We shall denote this Z-form by Φ Κ or by ( 0 * ? K , r K ) .

3.3. Lemma (Levine [6], Proposition 17). A symmetric Z-form over Q is null-

cobordant if and only if its extensions to Z-forms over every completion of Q are null-

cobordant.

3.4. Lemma (Levine [6], Proposition 16). // (0, q, τ) is a nondegenerate symmetric

Z-form over one of the completions of Q and if the characteristic polynomial of τ is

equal to \e, where λ is an irreducible symmetric polynomial, then the Z-form (G, q, τ)

is null-cobordant if and only if the exponent e is even.

3.5. Invariants of symmetric Z^-forms. Let D be a vector space of dimension η

over J , and let q be a bilinear symmetric form on 0 . Let e ] t · · · , e^ be an orthogonal

(with respect to q) basis of 0 with q(e { ® e ) = e f l where a{ € ? , α. Φ- 0 for 1 < i < r,

and a . = 0 for r < i < n.

We shall denote by a\q) the element of the factor group J / ( J ) of the multiplicative

group of ? by the subgroup of squares defined by the formula

dfo) = ( - l ) ^ Π «(modify»).
/—I

We shall denote by f(q) the number τ reduced modulo 2. It is clear that a\q) and ((q)

are invariants of the class of Zj-forms cobordant to the Zj-form (L, q, 1).

Let ? = Q be the field of p-adic numbers. We shall denote the product Π|β (. by

D; let D = pad, where d is a unit of the ring of p-adic integers. From the classifica-

tion of quadratic forms over Q (see , for example, [4]) it follows that the class of Zj-

forms cobordant to the Zj-form (0 , q, 1) is completely determined by the invariants

e(q), a\q), and the Minkowski unit

Cq =

(P,D)a Π («;.α/)- i f P=t=2-

-r-+—+I π

(here ( , ) is the Hubert symbol). When r is even the Minkowski unit can be replaced
by the invariant introduced by Levine [<>]:

Indeed, it is not hard to verify that
(1)
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3.6. Invariants of symmetric Z-forms. Let Φ = (C, q, ή be a symmetric Z-form

over Q, and let ( 0 , q, r) be i ts nondegenerate part.

a) For each symmetric irreducible polynomial λ we denote by £ λ ( Φ ) the exponent

reduced modulo 2 with which λ appears in the character is t ic polynomial of r .

b) For each symmetric irreducible polynomial λ we denote the invariant d(q ) by

* χ ( Φ ) .

c) For each symmetric polynomial λ irreducible over R we denote the signature

σ<«7*) by σ λ ( Φ ) .

Note. The signature σ χ (Φ) can be obtained by starting with the Hermitian form

qHC: ( 0 β C) ® ( 0 ® C) - C defined by the formula

qHC ((£>! (g) 2 l ) 0 (v2 ® 2,)) = z^q ( O l ® v2). (2)

Namely, for ζ € C with 141 = 1 and ζ^ ± 1 the signature σ 2 r (Φ) is equal to
u p f —2iRes + l

the doubled signature of the restr ict ion of q to (ν ® C) r.

d) For each symmetric polynomial λ irreducible over Q we denote the Minkowski

unit C(qQp) by C^(Φ).

e) Since every symmetric polynomial of odd degree is divisible by t — 1 or t + 1,

every irreducible symmetric polynomial λ with λ(1) ^ 0 Φ- λ(— 1) has even degree.

Therefore for such λ the λ-primary components of Z-forms are even dimensional. Con-

sequently for each symmetric polynomial λ irreducible over Q with λ(1) Φ- 0 ^ λ(— 1)

Levine's invariant μ(? χ

ρ) is defined. Thi s invariant will be denoted by μ^(Φ).

3.7. The symmetric Z-forms Φ and Φ ' are cobordant if and only if d(_ ^ Φ ) =

^ - 1 ( φ Ι ) ' ^ + 1 ( Φ ) = ^ + 1 ( φ / ) ' < λ (Φ) - « Χ ( Φ ' > . ^ λ ( Φ ) = σ λ ( Φ ' ) and C^Q) = ^(φ1) for

every λ and p for which these invariants are defined.

Proof. Let us represent our Z-forms in the form

Φ = Φ,_, 3 Φ,+ ι θ Φ and Φ' = φ;., 3 φ; + ι 9 φ ' .

The cobordism of the Z-forms Φ and φ ' is equivalent to the cobordism of correspond-

ing terms in these decompositions (see § 3 . 1 ) . By virtue of the resul ts of §§ 3.3-3.5,

it is necessary and sufficient for the cobordism of the Z-forms Φ ί _ ρ Φ, _ t

 a n d

Φ ί + 1 , Φ / + 1 that </λ(Φ) - ί/χ(Φ') - f λ(Φ) = ί χ ( Φ ' ) , σ χ (Φ) - σ λ ( Φ ' ) and C{W = (Γ$(Φ')

for λ(ί) = t - 1 and λ(ί) = / + 1 and for every prime p.

For every symmetric polynomial λ irreducible over Qp with λ(1) ^ 0 ^ λ ( - 1) we

have

where deg λ is the degree of λ (see [6], §§7 and 21). Therefore formula (1) permits

us to express the invariants μ£ in terms of C^ and e^:

μΙ(Φ) = ( ( - 1 ) ^ λ ( 1 ) λ ( - 1 ) , ( - 1 ) ^ Υ λ ( Φ Ι α ( Φ ) , (3)
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where a denotes the exponent of p in the factorization of the number (λ(1)λ(- 1)) £ χ (Φ).

On the other hand, as Levine has shown ([6], Theorem 21), the invariants f , σ and

μ^ completely determine the c l a s s of Z-form with trivial (/ - l)-primary and (t + 1)-

primary components . Consequently the Z-forms Φ and Φ ' are cobordant if and only if

£ χ(Φ) = * λ ( Φ ' ) , σ λ (Φ) - σ χ ( φ ' ) and (Γζ(Φ) = <Γ$(Φ') for every prime p and for every λ

with λ(1) ^ 0 ^ λ ( - 1) for which these invariants are defined.

3.8. Lemma. Every skew-symmetric Tj-jorm coinciding with its X-primary compo-

nent, where λ(ί) = t — 1 or λ(ί) = t + 1, is null-cobordant.

Proof. As Levine has shown ([$], Lemma 12), a Z-form coinciding with i t s λ-

primary component is cobordant to a Z-form ( 0 , q, τ) such that λ is the minimal poly-

nomial of r. Therefore in the c a s e X(t) = t ± 1 we can suppose that every subspace is

r-invariant. On the other hand, the nondegenerate part of the form q has (as a non-

degenerate skew-symmetric form) a totally isotropic subspace of half the dimension.

3.9. The homomorphism M. We define the homomorphism

taking the c l a s s of the symmetric Z-form (D, μ(q, τ), τ) to the c l a s s of the skew-

symmetric Z-form ( 0 , q, r), where the form μ(q, r) i s defined by the formula

(cf. Milnor [7]). It follows directly from the definition that this mapping is well defined

and a homomorphism.

3.10. The homomorphism Μ is injective. In fact, let ( 0 , q, T) br a skew-symmetric

Z-form such that the Z-form ( 0 , μ{q, τ), τ) i s null-cobordant. According to the d i s c u s -

sion in §§3.1 and 3.8, it i s sufficient to consider the c a s e 0 = 0 χ , where λ is a

symmetric irreducible polynomial with λ(1) 4 0 ^ λ(— 1). In this c a s e τ - τ~ i s an

automorphism, and therefore q can be expressed by μ(q, τ):

q (t>i®f 2 ) = μ(Q, τ ) ( ( τ — τ - 1 ) "

Consequently the radicals and the r-invariant totally isotropic subspaces of the forms

q and μ(^, r) coincide, and hence the Z-form (U, q, r) i s null-cobordant.

3.11. The skew-symmetric Z-forms Φ and Φ ' are cobordant if and only if

ί χ (ΜΦ) = ί λ (ΜΦ'), σλ(ΜΦ) = σ λ(ΜΦ') and <Γ»(ΜΦ) = (^(ΜΦ') for every prime p and every

λ with λ(1) 4 0 Φ- λ ( - 1) for which these invariants are defined.

This theorem follows from the resul t s of §§3.7, 3.8 and 3.10.

Note. By virtue of equation (3) Theorem 3.11 remains true if in its formulation we

replace the condition <Τ£(ΜΦ) = (Τ£(ΜΦ') by the condition μ*[(ΜΦ) = μζ(Μφ'),

§4. Main results

4 . 1 . The construction of invariants of a closed special pair. Let (M, L) be a

spec ia l pair with dim Μ = 2k + 1 consist ing of c losed manifolds, and let A be an
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oriented compact proper 2£-dimensional submanifold of the product / χ Μ having bound-

ary dA = {1 j χ L. By virtue of Theorem 1.5 the c l a s s of Z^-manifolds cobordant to

the canonical cover 0VOT(/ χΛΙ, Α), Τ) does not depend on the submanifold A but only

on the differential topological type of the pair (Μ, L), and therefore invariants of this

c l a s s are invariants of the pair (M, L). In particular, a s Theorem 2.3 shows, the c l a s s

of Ζ -forms cobordant to the form of the canonical cover (/V (/ χ Μ, Α) Τ) belongs to

the se t of invariants of the pair (M, L), and hence so do the invariants of this c l a s s

described in § 3 .

4.2. Seifert pairing. Let Μ be a c losed oriented {2k + l)-dimensional manifold

and Ν a compact oriented 2£-dimensional submanifold of M. We shal l denote by Wfe(/V)

the kernel of the inclusion homomorphism

Hk(N;Q)—»Hk(M;Q).

The orientations of Ν and Μ determine a normal vector field on N. Let s: Ν -* M\N

be a small t ranslat ion along this field. The pairing

defined by the formula

θ ( ) (4)

is cal led the Seifert pairing of the pair (Μ, N), where λ is the linking coefficient.

4 .3 . Informs of a pairing. Let 0 be a finite-dimensional vector space over Q.

For each pairing q: 0 ® 0 -> Q and each natural number m > 2 we shal l construct in

this subsect ion two Ζ -forms over Q: a symmetric one (C ~ , q . , τ), and a skew-

symmetric one ( 0 " 1 " , q _ j , r); we shal l cal l them the Zm-forms of the pairing q.

Let C j , · · · , s m _ ι be the coordinate projections of the (m — l)th Cartes ian power

Om~ of the s p a c e 0 , and let ηχ, · · · , rlmm,i be the coordinate embeddings. We

define the operator τ: Ο " 2 " 1 - . Ο " 1 ' 1 by the formula

x (o) = 2 ηΐ+ιξ* (σ) - 2 Ί/ξ— (»)· (5)
1—1 i=-l

Obviously r"» = 1. For e = ± 1 we define the form qf: Om~ l ® 0m~ ! - Q by the

formula

m-i

(6)
m-2
^ (?(ξί+ι (σι) ® Si(o,)) 4- ε^(ξί+ι (ο,) ® 1/ (&!»).
1=1
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It is not hard to verify that q is invariant with respect to r.

4.4. Main Theorem. Let (M, L) be a special pair with dim Μ = 2k + 1 consisting

of closed manifolds; let Ν be a compact oriented 2k-dimens ional submanifold of Μ

spanning L (i.e. with dN = L), and let A be a compact oriented proper 2k-dimensional

submanifold of the product Ι χ Μ having boundary dA = \l\ χ L. Then for each m>2

the form of the canonical m-fold cover (Nm(l χ Μ, Α), Τ) is cobordant to the (symmetric

when k is odd and skew-symmetric when k is even) Ζ -form of the Seifert pairing of

(Μ, Ν).

4.5. Corollary. Let L be a closed oriented (2k — l)-dimens ional submanifold of

the sphere S 2 f e + 1 ; let Ν be a compact oriented 2k-dimensional submanifold of S2k+l

spanning L, and let A be a compact oriented proper 2k-dimensional submanifold of

the ball D + 2 having boundary dA = L. Then for each m > 2 the form of the canoni-

cal m-fold cover (N (D , A), T) is cobordant to the (symmetric when k is odd

and skew-symmetric when k is even) Ζ -form of the Seifert pairing of (S2 + 1 , N).

Derivation of the corollary from the main theorem. Let D be a submanifold of

D 2 * + 2 diffeomorphic to D * + and not intersecting A [j 5 * + . Since the restriction

of the canonical covering Ρm: N m ( D 2 f c + 2 , A) - D 2 * + 2 to D 2 * + 2 \ l n t D is diffeomorphic

to the canonical covering N m ( D 2 f e + 2 \ l n t D, A) -* D 2 f e + 2 \ l n t D, we can obtain the Z m -

manifold 0Vm(D2 f e + 2, A), T) by attaching the Zm-manifold ( P ' H D ) . T\P^HD)) to

( N m ( D 2 f e + 2 \ l n t D, A) T). But P ~ H D ) is diffeomorphic to the disjoint union of m

copies of D. Consequently the forms of (Nm(D 2 f e + 2 . A), T) and (Nm(D2k+2\}nt D, A), T)

are isomorphic. The pair (D 2 f e + 2 \ lnt D, S 2 f e + 1 ) is diffeomorphic to

1, {1} X S2*+))

and therefore by virtue of the main theorem the form of the canonical cover

(JV m (D 2 * + 2 \IntD, A)'T)
is cobordant to the corresponding Zm-form of the Seifert pairing of (5 + , N).

4.6. Classical knot theory invariants. Let (S , K) be a knot of dimension

2λ — 1 (i.e. a pair consisting of a sphere S + and an orientable submanifold Κ

homeomorphic to S ). The Seifert pairings of pairs of form (S , N), where

Ν is a compact oriented submanifold of S2k+l spanning K, are also called Seifert

pairings of the knot ( S 2 i + 1 , K), and the quadratic forms obtained by symmetrization

of these pairings are called quadratic forms of the knot (S2k* , K). The signature

and Minkowski units of a quadratic form of a knot are called the signature and

Minkowski units of the knot; they are actually invariants of it, i.e. they do not depend

on the choice of Ν (see, for example, [ΐθ]).

The symmetric Z2-form of a pairing is obtained by the usual symmetrization of the

pairing. Therefore if k is odd, then the quadratic form of the knot (S 2 * , K) is

cobordant (as a 1^-form) to the quadratic form of a branched double covering manifold

of D 2 k + 2 with branching over an arbitrary compact oriented proper submanifold
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spanning K, and hence the signature and fAinkowski units of ( 5 2 * + 1 , K) are equal

respectively to the signature and fAinkowski units of the quadratic form of this manifold.

4.7. Hermitian forms of a pairing. Let 0 be a finite-dimensional vector space

over Q, and let q: 0 ® 0 -» Q be a pairing. For ( s C with |£] = 1 and <£V 1 we

define the Hermitian form αιζγ ( 0 ® C) ® (0 ® C) -» C by the formula

<7<C> (fa ® 2i) ®(f2 <g) zj) = Z l22 ((1 — ζ)q (Vl ® y2) + (1 — ζ) q (ua ® vj) ^

(cf. [5], §25, or [9]).

// ζ is a primitive mth root of 1, then the form q. ζ. is isomorphic to the restric-

tion to ( D m ~ l ® C)t_ ζ ο/ </>e Hermitian form ( ? + 1 ) H C (see §3.6) constructed from

the symmetric Ζ -form of q.

Proof. Define the embedding v: 0 ® C -• 0 m ~ ! ® C by the formula

(ζ -

We shall show that Im ν = ( 0 m ~ ! ® C) f _ ζ . In fact, let

T h e n

(T - ζ) c = 2 η/ &-ι - ξ,η-ΐ - ζξ/) ν - in Um-, r ζΙΛ υ - 0.
ί-2

Consequently (fm_ χ + ^ t ) v =0, and (ξ._ t - ^ m _ t - ζξ^ν = 0 for i = 2, · · · , m - 1.

From these equations we obtain

*> —

We set w = \/τή{ζ- 1)~ 1/ξη_ϊ(ν). By virtue of (9) we have

i = , ! ς — ι i l

Now we shall show that î  is an isometry. In fact, by virtue of (8), (2), (6) and

(7),
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)
/—ι / - ι m

m-2
- 2 ( r - ^

- 2 * «"-'-
/-I

—

= *A ((1 — 0 <7 fa ® »t) + 0 — 0 9 fa ® Οχ)) - </«> (fa ® 2X) ® (o2® 2,)).

4.8. Levine-Tristram signature. The signatures of the Hermitian forms of a

Seifert pairing (in the case of knots of arbitrary dimension and one-dimensional links)

have been considered by Tristram [9] and Levine [5, 6 ] . (In Tristram's article [9] the

signature of the form e(exp(p - l)ni/p) i s denoted by οXq), and in Levine's article

[5] if A is the matrix of q, then the signature of the form q^. i s denoted by

By virtue of the main theorem and the resu l t of the preced ing s u b s e c t i o n the s i g n a -

tures of the Hermitian forms of a Seifert pairing corresponding to roots of unity c a n be

obta ined a s invariants of c y c l i c branched c o v e r s . More p r e c i s e l y , if in the c o n d i t i o n s

of the main theorem k is odd and ζ is a primitive »nth root of 1, then the signature of

the Hermitian form of the Seifert pairing of (Μ, Ν) corresponding to ζ is equal to the

signature of the restriction to KeriT^- ζ) of the Hermitian form constructed from the

form of (Njl χ Μ, Α), Τ).

§5. Proof of the main theorem

5.1. Choice of the submanifold A. As was proved in § 4 . 1 , the c lass of Z-forms

cobordant to the form of the canonical cover (A/m(/ χ Μ, Α), Τ) does not depend on A.

Therefore it is sufficient to prove the main theorem for any particular Λ. We shall

suppose that A has been obtained by rounding the corners of the "submanifold with

corners" [H , 1] χ L U \lA\ χ Ν. More precisely, let c: 1 χ L -» Ν be an embedding

with c ( l , x) = χ for χ € L, and let /: / -» / be a smooth function with fit) = lA for

t < %, /(I) = 1, and f'{t) > 0 for / > Vi. Define the function h: Ν -» / by the formula
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/(/), if X=C(t,y)^c(I XL),

i
j , if x^N\c(I xL).

Set A = l(f, x) el χ N\t> h(x)\.

*5.2. Auxiliary objects. We sha l l denote by S the se t

{(t, x)

1251

Figure 1

(see Figure 1); it is clear that 5 is a submanifold of dimension 2£ + 1 with corners on

the boundary along {1 | χ L. We introduce the abbreviations

U=IxM\S, X=-.IxM, O=P^(U),

Μ (I st ΛΑ Δ\ Δ P~l Ι Λ\

Since the linking coefficient of the c l a s s χ € Η j (Xv4) with the fundamental c l a s s

[A] of A is equal to the intersect ion index of χ with the c l a s s in H2k j(X, A \J dX)

real izable by S, the linking coefficients of the c l a s s e s in the image of the inclusion

homomorphism Η^U) -» //j(X\A) with the c l a s s [A] are equal to zero. Therefore the

restr ict ion U -» U of the canonical covering Ρm'. X -» X is trivial, i . e . U c o n s i s t s of

m components e a c h of which i s mapped diffeomorphically onto U by Ρm. L e t UQ be

one of the components of U; we set U. = T'(UQ) for / * 1, · · · , m — 1.

We shal l denote by π the natural projection of X = / χ Μ onto Μ. We fix an

arbitrary Riemannian metric on X. Let Cv · · · , C be compact, connected, oriented,

(k + l)-dimensional proper submanifolds of [0, ι/ζ\ χ Μ satisfying the following condit ions :

1) dCv . . . , dCgC A.

2) The submanifolds TK<9CJ), ·«> , n{dC ) real ize some bas i s dv · · · , d of the

space Hk(N) = Ker {Hk(N; Q) - Ηk(M; Q)).

3) C j , · · · , C are orthogonal to the boundary of [0, J ^ j x i l .

For i = 1, · · · , g and / = 0, · · · , m — 2 we denote by C. . the "submanifold with

c o r n e r s "
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P~m (Ci) Π (t/yw U A U I//);

we orient C\ . so that the restr ict ion C\ . Π ^ +i U A)-* Ci of the projection Pm

has degree + 1 . We denote by e(. the element of ί/^+ 1(Χ; Q) whose representat ive

is Ci y; let fe be the s u b s p a c e of H^ + 1 (X; Q) generated by the vectors e. . (i =

1» · · · » g; /' = 0, · · · , m - 2).

It is c lear that 7 > . „ = e. . for / < m - 2 and T™~le. Q = - 2™~0

2e. .. Thus

δ is T^-invariant.

5.3. Reduction to lemmas. The main theorem obviously follows from the following

two lemmas.

Lemma 1. The nondegenerate part of the Zm-form (Η^ + 1 (Χ; Q), 2 , T^) and its restric·

tion to G> are canonically isomorphic.

Lemma 2. The restriction of (WA + 1(X; Q), Q, T#) to & is isomorphic to the Z ^ -

form of the pairing Θ: W (̂/V) ® W^(N) -» Q (symmetric if k is odd and skew-symmetric

if k is even).

5.4. Proof of Lemma 1. Let R be a regular neighborhood of Ν in M. We set

Μ = Pm1 ({0} X M), N = Pt ({0} χ ΛΤ),

The natural deformation retraction V -» / χ Ν -> A induces a deformation retraction

V -* A. It is c lear that the composition of the inclusion iOi χ Ν -» V and the retraction

V -* A is a diffeomorphism. This composition induces a mapping Ν -» A whose restr ic-

tion to Ν. is a l s o a diffeomorphism. Therefore the inclusion homomorphism v^:

HAW; Q)'^HAV; Q) is sur ject ive.

Consider the segment of the homology addition sequence of the triad (X; U, V):

Hto Φ\ Q) -> Hto (Y; Q) e Hto Φ; Q ) X

" ^ ff*M (X; Q) - ^ //ft (W; Q) 4 - //, (K; Q) 3 //, (t/; Q).

Since v^ i s sur ject ive, it follows that Im φ coincides with the image of the inclusion

homomorphism κ # : Hk j(l7; Q) -» H f e + 1 (X; Q). The natural deformation retraction

U -» ! θ ! χ Μ induces a deformation retraction U -» M, and therefore Im κ # i s contained

in the image of the inclusion homomorphism W fc+1WX; Q) -> W^+ 1(X; Q) coinciding with

the radical of Q. Thus Im φ is contained in the radical of Q, and hence the non-

degenerate parts of (Wfe + 1 (X; Q), Q, Τ # ) and its restr ict ion t o any T^-invariant direct

completion of Im φ are isomorphic.

We sha l l show that & is a direct completion of Im φ = Ker χ. For this it i s

sufficient to prove that the c l a s s e s ye . . with ι = 1, · · · , g and ; = 0, · · · , m - 2

form a b a s i s of the space Im χ = Ker φ.
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Let R' be a tubular neighborhood of A in W, and let F{ be C\ f] dR' oriented

like the boundary of C ; \ l n t /?'. Set F{ . = P ' ^ F ^ f] ^ · It i s c l e a r that F . . j |J

(- F f . ) rea l izes the c l a s s χ ε ; .. On the other hand, Fi . rea l izes the image of d.

under the composition of the natural isomorphism Ηk(N; Q) -» Ηk(N.; Q) and the

inclusion homomorphism Ηk(N.; Q) -» Hk(W; Q). T h e natural deformation retractions

W -» jO( χ Ν and {7 -»{0| χ Μ induce deformation retract ions W -» Ν and U -* M. There-

fore in the diagram

formed by inclusion homomorphisms, the vertical arrows are isomorphisms. Thus the

c l a s s e s d. . €. HAW; Q) real izable by the submanifolds F . . form a bas i s of Ker&>+.

Since the composition of the inclusion Ν. •* V and the deformation retraction V -» A

is a diffeomorphism and Ν. i s a deformation retract of W., the inclusion homomorphism

{y.\Hx(W,; Q)):Hk(Wj; Q) -* Hh(V; Q)

is an isomorphism. Furthermore, it is clear that v*di . = ν^ά{ . for any i,jl and ; 2 .

Consequently the c l a s s e s y e ; . = J^ . . - d. . form a bas i s for the space

Ker ν* Π Ker ω. = Ker ψ.

5.5. Proof of Lemma 2. As was shown in the previous subsect ion, the c l a s s χβ. .

form a bas i s for Im χ. From this it follows that the c l a s s e s e. . are linearly independ-

ent . Furthermore,

l=o

if j-^tn — 2,

if / = / 7 i — 1 .

Therefore it is sufficient for the proof of Lemma 2 to prove that

0,

— εθ (dit 0 dij,

if

if

if

if

IA — h\

h — h

h = A

A = /».

> ! ·
-r 1,

+ 1,

F i r s t we construct smooth manifolds realizing e. .. Let β be the se t of unit

vectors of the normal bundle of A f] \Vi\ χ Μ in X directed to the inside of \}A, 1] χ Μ,

and let γ be the unit vector field on A f*| ί%| χ Μ tangent to \lA\ χ Μ and normal to A

determined by the orientations of A and M. We denote by β • the preimage of dC.

under the natural projection β -* A f) \lA\ χ Μ . We extend the fields γ f] β j , · · · ,y f|
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β to normal fields y 1 5 · · · , y on C j , · · · , C such that the sets γ^ U /3p · · · , γ

U β are smooth submanifolds of the tangent bundle τΧ and such that γι, · · · , y

are transversal to each other and to the zero section.

Since Uf ,̂- * s compact, the lengths of the vectors in Ufy,- do not exceed some

number r. Let ρ > 0 be a real number such that there exist geodesic tubular neighbor-

hoods of the submanifolds C j , • · · , C and A f] {%] χ Λ1 in X of radius p. For : =

1, · · · , g and / € [— 1, l ] we denote by C' the image of the submanif old ty i of the

tangent bundle τΧ under the mapping χ -»exp (px/r), and for i = 1, · · · , g and / e

(0, l ] we denote by D'. the image of rj8; under the same mapping. The sets Cj- and

D\ are smooth submanifolds of X. We orient C'. such that the natural diffeomorphism

C -* C. has degree + 1 if t > 0 and degree -1 in the opposite case.

Set C\ j = P ' H C ' ) Π U;·; we denote by Dfy the component of P ~ H D O inter-

secting C'. ., and for t > 0 we set

£ί./ = ci./« U οί/ U Q'·

Orient Ef . to correspond to the orientation of Cj. .+1. Obviously Ej. . is p/-isotopic
to the submanifold with corners C. .. Thus E'. . realizes e. ..

*#7 I»7 *·/
Now we shall concern ourselves with calculating 2(e,· y ge,· .· ). For this we

\A \ 1 ί Ζ ί
s h a l l f i n d t h e i n t e r s e c t i o n i n d e x o f Ef' • · E 2 . O b v i o u s l y

o t . Π A1,./, C Ρ'.1 (D\ Π DJ.) C P^1 (exp (£ β Π f β)) = 0·

Consequently

— 2- L

Moreover, Cj. . C (/.. Therefore, if |/j - ;2 | > 1, then

Furthermore, if ty t2 € I- 1, l ] and ij 5̂  t2, then the intersection of C, . · C,· ,

C, ! · C, 2 is equal to linking coefficient of dd1 and 5Cf
 2 in \lA\ χ Μ. We shall de-

note this linking coefficient by £(dC,· , <5Q ).

Now let ;'j = j 2 = 7. We have

i_ i_ i_ i_ i

£?,/, · Eli. = C?. · Ci, + < V ·· C7,1 = X(dC2

lt, dC}) +



BRANCHED COVERINGS OF MANIFOLDS 1255

Obvious isotopies take dcf \J dc\2 to <?C, |J dC$ and dCJ* U dc~^ to

(-dc'f) U (-<?C,-2). Thus

1_
{—dCil,—dCi,) =

But by definition of the Seifert pairing we have

and

hence, if j l = / 2 , then
i_ '

£?,./. · Ε},,,-, = «(4, ® d,J + ( - ΐ)*+1

Analogous arguments show that if /j = /2 + 1, then

and if j 2 = /j + 1, then
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