
SIGNATURE OF A BRANCHED COVERING 

O. Ya. Viro 

This paper is written as differential-topological. Apparently, the formula proved is also 
true for piecewise-linear and topological branched coverings with locally flat branching mani- 
folds, although the differential-topological proof given here does not admit automatic trans- 
fer to these categories. 

The main result is formulated and proved in Sec. 2. In Sec. i we recount auxiliary mate- 
rial. In Paragraph i.i we reproduce definitions and some results relating to the theory of 
branched coverings. (In this theory there is no commonly accepted system of definitions, and 
hence some precision about terminology is necessary.) In Paragraph 1.2 we describe the famil- 
iar (cf., e.g., [I]) construction of self-intersections of a smooth submanifold which occurs 
in the following formulations. In Paragraph 1.3 we recount Hirzebruch's formula. 

i. Preliminary Information 

!.I. Smooth Branched Coverings. Let m and n be natural numbers greater than one. By 
model m-sheeted branched coverings of dimension n we mean the maps 

(X, Z) ~ (X, zm): R n-2 N C ---+ R n-2 x C, 

(X, z) ~-  (x, ''~ . .+ • C - : .  x C. Z ): R~*-2 Rn-2.,~ 

Le t  X and  Y be  ( s m o o t h )  m a n i f o l d s .  A s u r j e c t i v e  map P: Y ~ X i s  c a l l e d  a ( smoo th )  
b r a n c h e d  c o v e r i n g  i f  e a c h  p o i n t  o f  t h e  m a n i f o l d  X h a s  a n e i g h b o r h o o d  U such  t h a t  i t s  p r e i m a g e  

P-*(U)  c a n  be  r e p r e s e n t e d  a s  a u n i o n  UaV~ o f  m u t u a l l y  d i s j o i n t  o p e n  s e t s  Va, f o r  e a c h  of  

wh ich  t h e  map Va § U d e f i n e d  by  t h e  map P i s  e i t h e r  a d i f f e o m o r p h i s m  o r  i s  d i f f e o m o r p h i c  w i t h  
one  of  t h e  m o d e l  b r a n c h e d  c o v e r i n g s .  The m a n i f o l d  X i s  c a l l e d  t h e  b a s e  of  t h e  b r a n c h e d  c o v e r -  
i n g  P :  Y § X, and  Y i s  a b r a n c h e d  c o v e r i n g  o f  t h e  m a n i f o l d  X. By t h e  r a m i f i c a t i o n  i n d e x  of  
t h e  b r a n c h e d  c o v e r i n g  P: Y § X a t  t h e  p o i n t  y ~ Y  i s  m e a n t  t h e  a b s o l u t e  v a l u e  of  t h e  l o c a l  d e -  
g r e e  of  t h e  map P a t  t h e  p o i n t  y .  

The s e t  o f  p o i n t s  o f  t he  m a n i f o l d  Y a t  w h i c h  t he  r a m i f i c a t i o n  i n d e x  of  t h e  smooth  b r a n c h e d  
covering P: Y ~ X is equal to the number m, greater than one, is a (smooth) proper submanifold 
of codimension 2 of the manifold Y, transverse to 3Y. It is denoted by Bm, P. The manifolds 

B~,p,  B3, p . . . .  are mutually disjoint and their union ~ = 2 B m ,  P is called the branching manifold 

of the branched covering P: Y -+ X and is denoted by Bp. 

If the base of the branched covering P: Y-+X is oriented, then there exists a unique 
orientation of the branched covering such that with respect to these orientations the local 
degree of the map P is positive at any point of the manifold Y. Such orientations of the 
manifolds X and Y are said to be compatible. 

A diffeomorphism T: Y-+Y is called an automorphism of the branched covering P: Y-+X, 
if P o T ~ P . The automorphisms of a branched covering P form a group which is denoted by 
Aut(P). If the map of the space of orbits Y/Aut(P) onto X, induced by the map P, is a homeo- 
morphism, then the branched covering P is called regular. A regular branched covering is 
called cyclic, if its group of automorphisms is a cyclic group. 

Let B be a manifold, w: N-~B and ~: ~f--~B be (smooth) bundles with fiber D 2. The map 
~: N-+~I is called an m-sheeted branched morphism of the bundle w into the bundle ~, if each 
point of the manifold B has a neighborhood U such that there exist trivializations t: U • D ~ + 
w-~(U) and t: U • D; ~ ~-*(U) of the restrictions of the bundles w and u to U, such that 

t -~a~(u ,  v) = (u ,v ' " )  

for (u,v)~ U • D 2 (C U X C). It is clear that v is an m-sheeted branched covering, whose 
branching manifold is the zero section of the bundle w. 
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If m = 2, then this branched covering (as well as any two-sheeted branched covering in 
general) is cyclic. 

I.I.A (cf. [2, Theorem B]). Let ~: N-+M be an m-sheeted branched morphism of the D =- 
bundle w: N--+B into the D2-bundle p: 3I--~B. If m > 2, theffthe cyclicity of ~ as a branched 
covering is equivalent with the orientability of either of the bundles ~ and v. 

If p: B-+B is the two-sheeted covering defined by the class w1(~), and ;: ~-~D and 
~: ~}I-+B are the bundles induced by the map p and the bundles v and ~, then there exists an 
m-sheeted branched morphism ~: N--~7~ of the bundle ~ into ~, covering the morphism ~, and 
which is a cyclic m-sheeted branched covering. 

The following routine theorem shows that in a neighborhood of the branch manifold any 
branched covering can be constructed as a branched morphism. 

I.I.B. Let P: Y-+X be a branched covering. Then for each r > 1 there exist D~-bundles 
~r: Nr-~Br, v and ~tr: ~Ir-+Br, p , an imbedding it: N~-+Y and an immersion it: Mr-+X, extend- 
ing the inclusion B,.,p~ Y and the immersion P [i~r3,: B~.p-+X , and an r-sheeted branched mor- 

phism ~r: Nr-+Mr, such that ~r~=2ir(Nr) is a tubular neighborhood of the submanifold Bp and 

for each r the diagram 

i r 

N~ --+ Y 

M~---* X 

i s  c o m m u t a t i v e .  

1 . 2 .  S e l f - I n t e r s e c t i o n s  of  S u b m a n i f o l d s .  L e t  L be  a c l o s e d  s u b m a n i f o l d  of  t h e  m a n i f o l d  
M. We c o n s t r u c t  a s e q u e n c e  Lo~L~2DL~LD. . .  of  s u b m a n i f o l d s  o f  t h e  m a n i f o l d  M. We s e t  Lo = 
M, L~ = L, and  i f  L r i s  a l r e a d y  c o n s t r u c t e d ,  t h e n  by  m a k i n g  a s m a l !  i s o t o p y  o f  t h e  i n c l u s i o n  
Lr C A I , we get an imbedding i~:Lr--~3] , transverse to L, and we set Lr+ ~ = L ~ ir(Lr) �9 

If L and M are oriented, then all L r also get the natural orientation (as transverse in- 
tersections of oriented submanifolds of an oriented manifold). 

It turns out that if r is even, this orientation of the submanifold L r is independent of 
the orientation of the submanifold L. Moreover, even if L is nonorientable, the submanifold 
L r with even r is orientable and has a natural orientation which depends only on the orienta- 
tion of the manifold M, and which is constructed as follows. 

We shall denote the normal bundle of the submanifold A of the manifold X by vxA. Obvious- 

ly the bundle VML r splits into a direct sum: 

k~ l  

In view of the smallness of the isotopy which connects the inclusion L~_~ G M with g~_1, one 
can assume that it is fixed on L k and hence induces an isomorphism 

(,%_L,.._~) IL~ ~ ~I~._~L,,.. 

Thus, there are canonical isomorphisms between the summands of (i). Hence if the fiber of one 
summand is oriented, there arises an orientation of the fiber of each summand, which if r is 
even, is independent of the initial orientation. Thus, if r is even, the bundle VML r has a 
natural orientation. Together with the orientation of the manifold M this gives an orienta- 
tion of the manifold L r. 

The manifolds L r depend on the arbitrariness in the construction of the imbeddings i r. 
However, for another choice of imbeddings, we get, as is easily seen, cobordant submanifolds, 
and in the cases when they have natural orientations, they are oriented cobordant to the pre- 
vious submanifolds. In these cases the cobordism class of the submanifold L r (which is an 
element of the group ~L-2r ) is denoted by L r. 

1.3. Hirzebruch's Formula. The signature of an oriented closed 4k-dimensional manifold 
(i.e., the signature of its intersection index H,~A.(M;Q)",~ I]~t,.(M; Q)-~Q ) will be denoted 
by sign M. If L is a closed submanifold of codimension 2 of the oriented closed 4k-dimensional 

manifold M, and a is a function which can be represented by the power series ~r=~) ert r , then 

by sign a(L) we denote the sum 
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2k 

~','=0 a,.,, s i ga  L'-'". 

1.3.A (Hirzebruch's Theorem [3, Sec. 5]). Let X, Y be closed 4k-dimensiona! manifolds, 

P: Y-+X be a cyclic m-sheeted branched covering with Bp = __Bm,P' and let X and Y be oriented 
compatibly. Then 

Eq. 
tion: 

(1 -l-//t,)"~--.~(l - - B p )  ' ' '  I ,n 2 -  I . r' 
s i g n X =  s ign  (1 i - /~ , )  .... ( l - - l t ,  L,)m B e  = 7 s i g n  Y ~- T s J g n  B~ l-  . . .  (2) 

(2) can be rewritten in the following form, which is more convenient for genera!iza- 

II : - , , ~B ,A( I - I~ t . ) " ' - -  (1-.,.l~vl(I ! /3t,)"~ 
s ign  Y - -  m s ign X -- s ign  

(l ? ~1"~- (I - 1~p) ''~ 
(3) 

We denote the function 

(1 i ,,.~) (t - -  .r) ''~ - -  (1 --  ,~.~) (1 + ;,.)" 
(1 4 - z ) " - - ( t  --x) ~ 

by ~qm" Then (3) becomes 

sign Y :-- m s i g ,  X -- s ign  rl,, (B,,). (4) 

2. Generalization of Hirzebruch's Formula 

2.1. Basic Theorem. Let X, Y be closed 4k-dimensional manifolds, P: }z_~ X be an m- 
sheeted branched covering, and let X and Y be compatibly oriented. Then 

m 
s ign Y - : -  m. s ign X - -  ~,,. ~. mgn lIr (B,. t,). ( 5 )  

P r o o f .  L e t  N,,,M~, Vr: Nr-+Br.P,  pr: Jll~"+ B~. t,, i , .: N, ."~ Y ,  ]~: M,.--+ X and  ~r:  Nr -," M~ b e  
t h e  m a n i f o l d s  a n d  m a p p i n g s  w h i c h  e x i s t  b y  v i r t u e  o f  1 . 1 . B .  We i n t r o d u c e  a R i e m a n n i a n  m e t r i c  

r r '~  N �9 I n  Y \ i n t  N we t a k e  t h e  R i e m a n n i a n  m e t r i c  i n d u c e d  b y  P f r o m  X a n d  in X. We set N= ~,=2 
we extend it to all of Y. In Mr we take the Riemannian metric induced by Jr from X. 

We denote by ~ the differential form induced in the canonical way by the Riemannian met- 
ric, which realizes the Hirzebruch class L~. (p, .... , p~). By Hirzebruch's theorem [4, Theorem 
8.22], 

s i g n Y  = i ~  ~ ( 6 )  

a n d  

s ign  X = ~x f[" (7) 

By the naturality of the form ~ with respect to local isometries, 

w h e r e  ~p: X - - ~  Z i s  t h e  f u n c t i o n  d e f i n e d  b y  

q~ 0:) =-: carr (p-l  0:) \ N). 
F o r  t h e  s ame  r e a s o n ,  

(s) 

(9) 

where ~r: X-+Z is the function defined by 

(D (x) = ca rd  (]~I (x)). 

Obviously, 

(p (x) = m ~ , .  , ,  r, D (x) 

for x~X, and hence 
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From this equation and from (7), (8), and (9), we get 

I 7It 

Y\N ~ = m s ' ~ n A :  ...... ~ r( <Z:. (i0) 
;'=-'2 x~f 1 

,,=~ Z and using (6) and (i0), we get Representing the integral r ,5s as the sum , r , \ x ~ - V ~  ! N r  , 

Y = (" < <<- .k  �9 

By I.I.A, the branched morphism ~,.: Nr ~ Mr of the bundle v,,: N r - ~  Br,~ into the bundle 

~h: Mr--~ Br, e is two-sheeted covered by the branched morphism ~r:~r-~ Jl, , which is the cyclic 

r-sheeted branched covering. In ~?rand ~fi, we take the induced Riemannian metrics from N r and 

M r �9 

As follows from the theory of cobordisms of free actions constructed by Conner and Floyd 
[5], there exist a natural number c, compact oriented manifolds F r and Gr, and an r-sheeted 
cyclic (unbranched) covering Qr: Gr-~ Fr , such that the restriction to aGr-~ OF r of the latter 
is diffeomorphic with the c-fold disconnected sum of the restriction to (--0/~J--~ (--07~j of 
the branched covering ~,: 7~ r -+ 7~f r. We extend the Riemannian metric from the boundary 3F r = 

c (--0~|TJ to the manifold F r so that together with the existing Riemannian metric on ~]7 r , it 

gives a Riemannian metric on the closed manifold Fr ~ cdl r. We let the Riemannian metric in 

F r induce a Riemannian metric in G r by means of Qr" 

By Hirzebruch's formula applied to the r-sheeted cyclic branched covering 

Q,. UcT,.: G,. U,,a, c~7,.--~ l"rU,,s..cJ-i~, 

sigll ((7,. ~,lc, c,]~,.) = r sign (F r UoFTc,ff J --sign crl r (Br, ~,.). 

On the other hand, by Hirzebruch's theorem [4, Theorem 8.22], 

, " J N r  "JG r 

(12) 

(13) 

~'=~ sign (F~ U,w,. e=/7~) = It,. 
M r 

Finally, by the naturality of the form ff with respect to local isometries, 

!Or =rS, 
From this and from (12)-(14), we get 

(14) 

o r  

rI~, :~ + 2elNr:~=rlrr:~ + 2refM :~--esignIL(Br,~ ~) 

(15) 

The manifold 

Eq. 

Then 

(B.,~r) ~ obviously covers (B,.a,.)~ = (B,.,t,)~ two-sheetedly for any s. Consequently, 

sign H,.(Br.~r) ~ 2signll , . (B, . ,p) .  (16) 

(5) i s  o b t a i n e d  by compar ing  ( 1 1 ) ,  ( ! 5 ) ,  and ( 1 6 ) .  

2.2. Four-Dimensional Case. Under the hypotheses of Theorem 2.1, let dim X = dim Y = 4. 

sign l l , .  ( B r  1") - -~ r2 - -  1 ,.~ - -  1 
, - - - ; f -  e ( B , .  , )  --= :Jr e (P[B,., p), 
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where e denotes the normal Euler number of a submanifold and immersion. 

Thus, by Theorem 2.1, 

--~L m r 2 --- I 
sigll Y ---~ m. sig. X -- ,._~ 3 e(P,,, p) 

Em r 2 __ | 
---= m s i g n  X - -  ,.=.2 3,. e ( P  I t~,. p).  

17) 

18) 

2.3. Remark. Theorem 2.1 was formulated by me as a conjecture at the academic topology 
seminar of Leningrad University, after which A. Yu. Nenashev and N. Yu. Netsvetaev, who were 
participants in this seminar, proved special cases of it: A. Yu. Nenashev found a proof for 
the case Bp = B~.p , and N. Yu. Netsvetaev for the case dim X = 4. Their proofs were modifi- 
cations of the elementary proofs of the corresponding special cases of Hirzebruch's formula 
due to JNnich and Ossa [6] and Gordon [7]. I take this opportunity to thank N. Yu. Netsvetaev 
and A. Yu. Nenashev for helpful discussions. 
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ANALYTIC EXTENSION OF LOCALLY DEFINED RIEMANNIAN 

MANIFOLDS 

V. A. Popov 

We say that we are given a germ of a Riemannian real analytic manifold, if at the point 
O~R ~ there are defined germs of real analytic functions gij' I < i < j < n, such that the 

quadratic form gijXiX j is positive-definite. On some open set U CW ~ , these germs define 

analytic functions, which define on U the structure of a Riemannian real analytic manifold. 

We call this manifold the carrier of the germ. 

By a manifold we shall always mean a connected manifold without boundary. 

Definition I. The Riemannian real analytic manifold ~ is called an analytic extension 
of the Riemannian real analyticmanifold ~/ , if there exists an analytic isometric embedding 

h d~-+~ r whose image is an open subset of ~. 

By the extension of a germ, we mean an extension of some carrier of it. 

The Riemannia~ real analytic manifold Jg is called nonextendable if it does not admit 

nontrivial extension. 

By a maximal extension of a germ, we mean its analytic extension to a nonextendable mani- 

fold. 

Definition 2. A local isometry of the Riemannian real analytic manifold d~ into the Rie- 
mannian real analytic manifold.S" is an isometry 9: W~ V between the open subsets W C~ and 

V C~ . 
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