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Abstract. The visible symmetric L-groups enjoy roughly the same formal properties as the 
symmetric L-groups of Mishchenko and Ranicki. For a fixed fundamental group n, there is 
a long exact sequence involving the quadratic L-groups of a, the visible symmetric L-groups of 
n, and some homology of a. This makes visible symmetric L-theory computable for 
fundamental groups whose ordinary (quadratic) L-theory is computable. 
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0. Introduction 

The visible symmetric L-groups are a refinement of the symmetric L-groups of 
Mishchenko [I21 and Ranicki [15]. They are much easier to compute, although they 
hardly differ from the symmetric L-groups in their formal properties. Cappell and 
Shaneson [3] use the visible symmetric L-groups in studying 4-dimensional 
s-cobordisms; see also Kwasik and Schultz [S]. The visible symmetric L-groups are 
related to the Ronnie Lee L-groups of Milgram [ I l l .  

The reader is assumed to be familiar with the main results and definitions of Ranicki 
[I 53. Let R be a commutative ring (with unit), let n be a discrete group, and equip the 
group ring R [n] with the w-twisted involution for some homomorphism w: n -* E,. 
An n-dimensional symmetric algebraic Poincare complex (SAPC) over R[n] is a 
finite dimensional chain complex C of finitely generated free left R [n]-modules, 
together with a nondegenerate n-cycle 

4 E H ~ m z [ z , ~  (W7 C' OR,,, C) 

where W is the standard resolution of E over Z [H,] . Now fix a right free resolution 
P of R over R [n] . An n-dimensional visible symmetric algebraic Poincare complex 
(VSAPC) is a chain complex C as above, together with an n-cycle 
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whose image in 

R OR[,] HomZcZ,l(W, C O R  C) r Homzr,,,(W, C' OR[,] C) 

under the chain map induced by the augmentation P -+ R is nondegenerate. (Here 
R [In] acts on C O R  C by the w-twisted diagonal action, g(x @ y) = (- l)w(g'gx 8 gy 
for g E n.) The bordism group of n-dimensional SAPC's is denoted by Ln (R [z]), that 
of n-dimensional VSAPC's is written VLn (R [In]). The augmentation P + R converts 
VSAPC's to SAPC's and so induces a homomorphism VL" (R [n] + Ln (R [n]) The 
following lemma should clarify the definition. 

Lemma. Let E be any chain complex of left free R [nl-modules. Then the chain map 

P @R,,J E + R OR[,] E 

induced by the augmentation P -+ R is a chain equivalence over R, provided E is bounded 
,from below. 

Proof. Induct over the skeletons of E. 

The hypothesis of the lemma is usually not satisfied if 

E = HomZE2,(W, C O R  C), 

with C as above; but it is satisfied if 

E = WOzrz21(C O R  C), 

since C is finite dimensional. Therefore 

which shows that the symmetrization map 

of Ranicki [15] has a factorization through P OR[,1 HomZczl,(W, C O R  C). In other 
words, the notion of a quadratic algebraic PoincarC complex (QAPC) is finer than 
the notion of a VSAPC, which in turn is finer than the notion of a SAPC; so we 
have homomorphisms 

For another application of the lemma, let Y be a simplicia1 set whose geometric 
realization is a connected finite PoincarC space of formal dimension n; write P for 
the universal cover, and n for the group of covering translations (n = n, (Y)). Let 
C be the cellular chain complex of P with R-coefficients. Let R[n] act on C by 
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g[y] = (- l)W(g)Cgy], where y denotes a nondegenerate simplex in Pand [y] is the 
corresponding generator C. Eilenberg-Zilber theory gives us a chain map 

(see Ranicki [I 51) which, by naturality, commutes with the R [nl-actions on source 
and target. Tensoring with P and using the lemma, we obtain 

Choose an n-cycle in R @Rt,l C representing the fundamental class of Y; its image 
4 in P QRtnl H o ~ , ~ , ~ , ( W ,  C OR C) is such that (C, 4) is an n-dimensional VSAPC. 
Its bordism class in VLn(R [n]) is the visible symmetric signature of the PoincarC 
space Y. It refines Ranicki's symmetric signature in Ln(R[n]). 

Working with an abstract group n again, one can define relative bordism groups 
v2"(R [n]) to fit into a long exact sequence 

with n E Z. (Compare with the groups 2" in [15].) Decorations p, h or s can be 
attached to L, and VL", but the relative groups ~ 2 "  are the same in all three cases. 

0.1. Theorem. There are isomorphisms 

where n acts on the group L ~ ( R )  = v L j ( ~ )  by gx = (- l)W(g)x for g E n andx E L~(R).  
( I f  R = Z, then 2j(R) is isomorphic to Z,, Z,, 0, Z, i f j  0, 1, 2, 3 mod 4). 

Note: Most of the chain complexes used in this paper are graded over the integers and 
finite dimensional, but not necessarily trivial in negative dimensions. For this reason 
L ~ ( R )  is periodic in j with period 4; and it can therefore very well be nonzero for 
negative j. Consequently V ~ ( R  [n]) can very well be infinitely generated, even if 
R = Z and n is finite. The following remark may be of use to the "working 
mathematician". If a class in v ~ " ( R  [n]) has a representative involving only chain 
complexes which are zero in dimensions < 0, then the class belongs to the subgroup 

(An element of V ~ ( R  [n]) is a bordism class of certain algebraic Poincarit pairs, 
and an algebraic PoincarC pair involves two chain complexes.) 

The definition of the groups VLn(R [n]) uses special properties of R [n] which an 
arbitrary ring with involution may not have. The point is that R[z] is a cocom- 
mutative Hopf algebra, projective as a module over R, graded over Z,, and the 
involution on R[n] is the intrinsic Hopf algebra involution. (The Hopf algebra 
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diagonal R [n] -+ R [n] x R [n] comes from the diagonal map 71 -+ n x 71; the grading 
over Z, assigns grade w (g) to g E n c R [n] .) 

An earlier version of the paper was written in 1985 during a one year visit to 
Edinburgh University, which was supported by the Science and Engineering Re- 
search Council of Great Britain. I should also like to thank the Sonderforschungs- 
bereich 170 at the Mathematics Institute of Gottingen University for its hospitality. 

In the earlier version, Theorem 0.1 above was presented as a corollary to the main 
theorem of Weiss [23]. Later, Andrew Ranicki found a more elementary proof of 0.1 
which fits very well into the general theory of assembly in algebraic surgery. This is 
the proof given here. 

1. Constructing L -theory spectra 

Let A be an additive category. Write B(A) for the category of chain complexes 

graded over the integers, such that each C, belongs to A, the differentials d are 
morphisms in A, and Cr = 0 for all but finitely many r E Z. We shall identify A with 
the full subcategory of B(A) consisting of the chain complexes concentrated in 
dimension 0. 

A contravariant additive functor 

has a canonical extension 

defined as follows. Given an object C in B(A) let T(C) be the chain complex with 

and differentials 

(The direct sums in this formula had better be well-defined, and not just up to unique 
isomorphism, as they are by virtue of their universal property. Finite direct sums are 
well-defined in the additive category of abelian groups; they are also well-defined if 
we replace A by the larger but equivalent category of representable contravariant 
abelian group valued functors on A: apply the direct sum operations to the values of 
the functors.) 
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1.1. Definition (Ranicki 1171). A chain duality on A is a contravariant additive functor 
T: A -+ [B(A) together with a natural transformation e from T2: A -+ B(A) to 1 : 
A -+ B(A) such that for each object M in A 

i) e,,,. T(e,) = 1 :  T(M) 4 T3(M) -+ T(M), 

ii) e,: T2  (M) - M is a chain homotopy equivalence. 

Assume from now on that A is equipped with a chain duality (T, e). Given objects 
C, D in B (A) define 

a chain complex of abelian groups. Often we just write it C @ D. There is a canonical 
isomorphism 

z : C @ D  --+ D O C  

obtained by composing 

T: Hom,(T(C), D) --t Hom,(T(D), T2  (C)) 

with the chain map 

Hom,(T(D), T2 (C)) -+ Hom,(T(D), C) 

induced by e,: T2(C) 4 C. Note that T~ is the identity. 

1.2. Example. If A is the category of f.g. free left modules M over a ring with 
involution A let 

T(M) = Hom, (M, A) 

Use the involution on A to make T(M) into a left module over A .  There is a canonical 
identification e: T2 (M) g M. The pair (T, e) is a chain duality. 

In constructing L-theory spectra from A, we shall find it useful to generate other 
additive categories with chain duality. 

Let X be a finite category (finite in the sense that the total number of morphisms 
is finite, which implies that the class of objects is also finite). Let {m,lx E Ob(X)) 
be a family of objects in A, indexed by the objects of X. Define a covariant functor 
F: X -+ A by 

F(Y) = @ mx 
g : x - y  

where the direct sum ranges over all morphisms in X with target y. 

1.3. Definition. Such a functor F, or any isomorphic functor, will be called 
induced. 
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(This is a variation on a theme of Luck [9]. For example, if X is the category of free 
left modules over a ring R, then an induced functor F as above would be called a free 
R[X]-module by Luck, and the finiteness condition could be dropped.) 

Let X be a finite A-set (alias incomplete simplicia1 set, cf. Rourke and Sanderson 
[19]). This determines a category, also denoted by X, whose objects are the simplices 
of X. A morphism from an m-simplex x to an n-simplex y in Xis a monotone map 

f:{O,l, ..., m} -+ {0,1, ..., n) 

such that f * (y) = x. 

1.4. Notation. We let A* (X) be the category of induced (covariant) functors from X 
to A, with arbitrary natural transformations as morphisms. We let A,(X) be the 
category of induced functors from XoP to A, with arbitrary natural transformations 
as morphisms. 

1.5. Proposition ( = 4.13 in Ranicki [17]). The additive categories A* (X) and A, (X) 
inherit chain dualities from A. 

Proof. We introduce some notation first. Let A be the category whose objects are the 
sets [n] = {0,1, . . . , n), for n 2 0, and whose morphisms are the monotone injections. 
A contravariant functor C from A to I3 (A) determines a double chain complex which 
in bidegree (m, n) equals C[m],, with horizontal differentials given by 

where 6': [m - 13 -+ [m] omits the element i, and with vertical differentials 

Certain finiteness conditions being understood, this can be worked into a single chain 
complex by the method of Cartan-Eilenberg 141, p. 60; call the result j, C. 

A covariant functor C from A to 1B (A) determines a double chain complex which in 
bidegree (-m, n) equals C [m],, with horizontal differentials 

and vertical differentials 

Finiteness conditions being understood, this can be worked into a single chain 
complex, written I* C. 
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More generally, a contravariant or covariant functor C from X to B ( A )  can be 
regarded as a contravariant or covariant functor from A to B ( A ) :  let 

In this case it is convenient to write f ,  C for l, C and j X  C for j* C. Finiteness 
conditions are superfluous because X is finite. Note that A can be any additive 
category. 

Given an object M in A * ( X )  we let 

T ( M )  (x)  = [;T. MIx for x  e x, 

where ( T  M ) ,  is the contravariant functor 

on X. (The direct sum runs over all the morphisms from y to x in X). Then T ( M )  is 
a covariant functor, and belongs to B (A* (X) ) .  Given an object M in A, ( X )  we let 

T ( M )  (x )  = S ' ( T .  MIx for x  e x, 

where ( T  M)" is the covariant functor 

on X. Then T ( M )  is an object of B (A, (X) ) .  

For M and N in A* ( X )  there are natural identifications of chain complexes 

H o m ( T ( M ) ,  N )  r Hom (T (M( - ) ) ,  N(- ) )  r M ( - )  O N(- )  S' S' 
where M(- )  @ N(-)  denotes the functor x  -+ M ( x )  O N(x).  Since the right- 
hand side is symmetric in M and N,  so is the left-hand side; i.e. there is a natural 
identification 

z: Hom ( T ( M ) ,  N )  % Hom(T ( N ) ,  M )  . 

For M and N in A, ( X )  there are natural identifications 

H o m ( T ( M ) ,  N )  r Hom(T(M(-) ) ,  N(-)) s M(- )  O N(-) 

giving again 
S* 

z : Hom ( T  ( M ) ,  N )  5 Hom ( T ( N ) ,  M )  . 
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We extend these symmetry isomorphisms to natural isomorphisms 

with C and D both in B(A* (X)) or both in U3 (A, (X)). Taking C = M and D = T(M) 
gives 

z : Hom (T  (M), T(M)) -% Hom (TZ (M), M) 

and we let 

General nonsense proves that e has property i) in 1.1 (this is another way of saying 
that the symmetry z has order two). Property ii) in 1.1 is harder to establish. One can 
assume that M is induced by a collection {m, I x E X} where only one of the m, is 
nonzero, and then proceed by brute force. Use 1.6 iii) below. 

1.6. Remark. It is useful to know a little more about induced functors F: X + A 
as in 1.3. 

i) Suppose that v: F -+ G is a natural transformation between induced functors 
from X to A such that 

admits a section s,: G(x) -, F(x) for all objects x in X (so that v,s, = id). Then 
v admits a section s: G -+ F (so that us = id). The proof is easy. 

ii) Write A" for the category of induced (covariant) functors from X to A, 
with natural transformations as morphisms. Let D be an object in B(AX) such that 
D(x) is a contractible object (in E3 (A)) for all objects x in X. Then D is contractible. 
(Proof: Construct a contraction using i)). 

iii) Let f :  D -+ E be a morphism in U3(Ax) such that f,: D(x) -, E(x) is 
a homotopy equivalence for all objects x in X. Then f is a homotopy equivalence. 
(This follows in the usual manner from ii)). 

1.7. Remark. It can be shown that a map f :  X -+ Y between A-sets induces functors 

f* :  A*(Y) + A*(X), 

f* :  A*(X> + A*(Y)7 

which are compatible with the respective chain dualities. See Ranicki [17], 4.20 for 
details. See also Ranicki and Weiss [I81 for examples. We shall not use these induced 
functors f *, f, here, except for injections f in which case they are obvious: f * is given 
by composition with f, and f, is given by extending induced functors XoP -+ A 
trivially to YOP. 
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If Y is an infinite A-set define A* (Y) as the inverse limit of the A* (X) where X ranges 
over the finite A-subsets of Y, and define A,(Y) as the direct limit of the A,(X). 

We return to our original project, doing L-theory in B(A). At the most basic level, 
this looks as follows. A pairing of dimension n between objects C and D in 5(A)  is an 
n-cycle in C Q D. It is nondegenerate if the corresponding chain map Cn T(C) -+ D is 
a homotopy equivalence. (By the way, the sign conventions which I use in defining, 
say, Hom and @ of chain complexes are those of Cartan-Eilenberg [4] and Dold 
[5]). An n-dimensional symmetric structure on C is a Z2-equivariant chain map 

4 : c n w - +  C Q C ,  

where W is the standard free resolution of the trivial module Z over the ring Z [Z,]. 
(See Ranicki [I 51. Remember that Z2 acts on C 63 C via 7.) If 4 sends the generator 
of Ho ( W) r Z to a nondegenerate class in Hn (C @ C) r H ,  ((C-" C) Q C), then we 
speak of a nondegenerate symmetric structure. A pair (C, 4), where 4 is an 
n-dimensional nondegenerate symmetric structure on C, is called an n-dimensional 
symmetric Poincark object (in B(A)). An n-dimensional quadratic structure on Cis  
an n-cycle 

Such a quadratic structure determines a symmetric structure 

as follows: Think of y as a chain map of degree n (over the ring Z [Z,]) from the dual 
chain complex W-* of Wto C O C. Compose with the chain map from W to W-* 
which sends the generator in Ho(W) z Z to the generator in Ho(W-*) z Z. This 
gives (1 + T)y.  Call y nondegenerate if (1 + T) y is nondegenerate. A pair (C, y), 
where C is in IB (A) and y is an n-dimensional nondegenerate quadratic structure on 
C, is called an n-dimensional quadratic Poincark object (in 5(A)). 

We also want to talk about bordisms between quadratic or symmetric Poincare 
objects in 5(A). These bordisms are best considered as quadratic or symmetric 
Poincark objects in B(A*(A1)). To abbreviate, we write An for A*(An), and let di: 
An -+ An-I be the functor induced by the inclusion 6': An- '  -t An. 

1.8. Definition. Two n-dimensional quadratic Poincare objects (C, y)  and (C: y') 
in CB(A) z B(AO) are said to be bordant if there exists an n-dimensional qua- 
dratic Poincare object (D, 8)  in 5(A1) such that d, (D, 6) = (C, y )  and 
do(D, 6) = (C', y'). 

It is not hard to show that "bordant" is an equivalence relation. Direct sum makes 
the set of equivalence classes into an abelian group, where the inverse of [(C, y)] is 
given by [(C, - y)]. We denote it by Ln(B(A)). The bordism group Ln(IB(A)) of 
n-dimensional symmetric Poincare objects in B(A) is defined similarly. 
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There is a slightly diferent way of describing the bordism relation. Let All2 c A1 be 
the full subcategory consisting of those objects whose image under do: A' -+ A0 is 
zero. The chain duality on A' restricts to one on A'''. We can say that two 
n-dimensional quadratic Poincari: objects (C, y)  and (C', y') in 5 (A) are bordant if 
there exists an n-dimensional quadratic Poincare object (D, 8) in 5(A'I2) such that 

There is an analogous definition in the symmetric case. 

1.9. Terminology. It is suggestive to use the expression "(n + 1)-dimensional Poincari: 
pair in IB(A)" synonymously with "n-dimensional Poincari: object in B(A1i2)". Note 
the dimension shift. 

Following the method of Buoncristiano, Rourke and Sanderson [2], we now show 
that the bordism groups just defined can be regarded as the homotopy groups of 
a suitable spectrum. We write * for the A-set with exactly one simplex in every 
dimension. A pointed A-set Y is a A-set Y together with a A-map from * to Y. The 
suspension of a pointed A-set Y is the pointed A-set C Y having one nontrivial 
(k + 1)-simplex Cx for every nontrivial k-simplex x in Y, with 

Cdi-,x if O < i s k + l  
diCx = 

base point otherwise. 

For q E Z, let li. ( 5  (A), q) be the A-set whose k-simplices are the (-q)-dimensional 
symmetric Poincari. objects in 5(Ak). 

1.10. Proposition. These A-sets have the Kan extension property. 

Proof. (See Rourke and Sanderson [I91 for the definition of the "Kan extension 
property".) Following [19], we write Lk, i  for the i-th horn of Ak, the union of all 
faces dj A k  for j + i.) The following observation is crucial: If C is an object of B (Ak), 
then the direct limit 

lim C(s) + 
s = Lk,, 

exists in 5 (A). This is because we assume that C, is induced for all r (see 1.3). We will 
say that C is i-shallow if the chain maps 

lim C(s) --+ C(Ak) --+ 
s c  ik.< 

and 
C(dj Ak) + C(Ak) 

are homotopy equivalences. Given a A-map 
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let us first search for an object C in B (Ak) having the prescribed faces dj C for j =+ i. 
Now 

lim C(s) 
4 

s c  Lk,, 

is prescribed, and it is not hard to define the missing values C(Ak) and C(di Ak) so that 
C belongs to B (Ak) and is i-shallow. Now observe that the given quadratic structures 
on dj C, for j $: i, extend to an essentially unique quadratic structure on C, because 

is a homotopy equivalence. Then observe that this quadratic structure on C is non- 
degenerate. Therefore IL . (B (A), q) has the Kan property. The proof for IL' (B (A), q) is 
similar. 

If we regard the k-simplex A k  and the (k + 1)-simplex Ak+ '  as A-sets for the moment, 
then there is a unique nontrivial A-map 

where A: is the disjoint union of A k  and a base 0-simplex. We use it to define a functor 
a from Ak to Ak+': for F i n  Ak, the object OF in Ak+' is given by 

(OF) ( 4  = 
F(9) if p(s) = z q  
0 if p(s) is at the base point 

Note that a (-9)-dimensional quadratic structure on C in B(Ak) is the same as a 
(- q - 1)-dimensional quadratic structur on oC in B (Ak+'). Summarizing, o gives 
rise to an injective A-map 

(Its image consists of all simplices in lL . (B (A), q + 1) having 0-th face and 0-th vertex 
at the base point.) Letting q vary we see that the IL.(B(A), q), or the geometric 
realizations, form a spectrum IL. (B (A)). This is the quadratic L-theory spectrum of 
B(A). Similarly, we obtain K(B(A)), the symmetric L-theory spectrum of B(A). 

It is an obvious consequence of 1.10 that nn (11. (B (A), q)) and nn (lL' (B (A, q)) can be 
identified with the groups Ln-, (B (A)) and LnP4(B (A)), respectively. It follows that 

~n (L. ( 5  (A))) = Ln (B (A)), 
zn (L' (B (A))) r Ln (B (A)). 

1.11. Notation. In later sections we shall use the abbreviations 
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for objects D in B(A). (The symbol @denotes a complete resolution of Z over Z [Z,], 
as in Ranicki [15]). 

2. The fibration theorem 

By dropping the nondegeneracy condition in the definition of an n-dimensional 
symmetric or quadratic Poincart object in B(A), one obtains the notion of an 
n-dimensional symmetric or quadratic object in B(A). A result of Ranicki [15], 
suitably reformulated in the language of additive categories, states that the 
classification up to homotopy equivalence of n-dimensional symmetric or quadratic 
Poincart pairs in E3 (A) is the same as the classification up to homotopy equivalence 
of n-dimensional symmetric or quadratic objects in B(A). This is a useful ingredient 
in proving a fibration theorem which goes back to the generalization due to Vogel 
[21] of the L-theory localization exact sequence of Ranicki [16]. To simplify, let us 
concentrate on the symmetric case, the quadratic case being similar. 

Two n-dimensional symmetric objects (C, 4) and (C', 4') in B(A) are considered 
homotopy equivalent if there exists a chain map f :  C -+ C' which is a homotopy 
equivalence and satisfies 

If one of the two objects is Poincart, then so is the other. 

For an object D in [B(A1"), write 

bC to mean C(d,A1), 
wC to mean C(A1), 
qC to mean C(A1)/C(d, A'). 

These are objects in A; think of b as boundary, w as whole, q as quotient. (The 
quotient alias cokernel exists since D is induced in all dimensions.) For D and E in 
E3(A1'') there is a natural chain map 

defined as follows: recall from the proof of 1.5 that 

s mapping cone of (bD Q bE -+ wD Q W E )  

which projects to qD Q qE. Taking D = E, we see that an (n - 1)-dimensional 
symmetric structure 4 on D projects to an n-dimensional symmetric structure 9 4  
on qD. 
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2.1. Proposition. The rule 

yields a bijection between the set of homotopy equivalence classes of (n - 1)-dimensional 
symmetric Poincar6 objects in B(A1") and the set of homotopy equivalence classes of 
n-dimensional symmetric objects in 53 (A). 

Proof. See Ranicki [I 53 for the case where A is the additive category of example 1.2. 
See also section 4 of Weiss [23] if a more categorical but less explicit proof is required. 
These proofs carry over to the general case. 

2.2. Remark. The proposition implies that the boundary bD can be recovered from 
(qC, q+), up to homotopy equivalence. Indeed 9 4  determines an n-dimensional 
pairing q4, of qC with itself, which is adjoint to a chain map 

whose mapping cone is homotopy equivalent to the suspension of bD. See Ranicki 
[IS], Weiss [23]. 

Let E c B(A) be a full subcategory with the following properties: 

(i) All contractible objects belong to E. 
(ii) If C -+ D -t Eis a short exact sequence in 53 (A), and if two of the three objects C, 

D, E belong to E, then so does the third. (The sequence is short exact if it is split 
short exact in every dimension.) 

(iii) For any object E in E the dual TE belongs to E. 

Following Vogel [21], we call E an exact symmetric subcategory of B(A). 

Assuming that iE is exact symmetric, we can construct the quadratic L-theory 
spectrum IL.(E) and the symmetric L-theory spectrum IL'(E). In detail, this looks as 
follows. For any k > 0, let Ek c B(Ak) be the full subcategory consisting of those 
objects C such that C(s) belongs to E for each face s c Ak. Let IL.(E, q) be the A-set 
whose k-simplices are the (- 9)-dimensional quadratic Poincare objects in Ek. Let 
L.(E) be the spectrum made up of the L.(E, q) for q E Z. Define IL' (E) similarly, 
replacing quadratic structures by symmetric structures. 

We seek a non-relative description of the cofibres of the inclusion maps 

IL.(E) + IL.(B(A)) 
and 

v (E) 4 IL. (53 (A)). 
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The idea is to modify the notion of nondegeneracy. We call a pairing of degree n 
between objects C and D in B(Ak) "nondegenerate mod Ek" if the mapping cone of 
the chain map 

which it determines belongs to Ek. An n-dimensional quadratic or symmetric 
structure on C will be called Poincare (mod Ek), or simply Poincark (mod E), if the 
underlying pairing is nondegenerate mod Ek. Let L. @(A), E, q) be the A-set whose 
k-simplices are the (- 4)-dimensional quadratic Poincare (mod E) objects in B (Ak). 
Let ll. (B (A), E) be the spectrum made up of the ll . (B (A), E, q) for q E Z, and call it 
the quadratic L-spectrum of @(A), [E). Define similarly IL'(B(A), E), replacing 
quadratic structures by symmetric ones. Note: if E consists of all the contractible 
objects in B (A), we recover L. ( 5  (A)) and 1L' (B (A)). 

2.3. Theorem. The composite inclusion maps 

LL.(E) -+ ll.(B(A)) 4 LL.(B(A), E) 
and 

1L' (E) -+ 1L' (B (A)) 4 1L' (B (A), E) 

are nullhomotopic, by a preferred nullhomotopy. The resulting maps of spectra 

ll.(B(A))/ll.(E) --+ I.(B(A), 
and 

II' (B (A))/ 1L' --. 1L' (B ( 4 ,  

are homotopy equivalences. 

Proof. Again we concentrate on the symmetric case, the quadratic case being similar. 
Let IK c B(A1l2) be the exact symmetric (full) subcategory consisting of all objects C 
such that dl C belongs to E c B(A) (and remember that do C = 0 by the definition 
of B(A112)). If (C, y) is an n-dimensional symmetric Poincark object in IK, then 
(qC, qy) is an (n + 1)-dimensional symmetric Poincare (mod E) object in B(A). 
(This remains correct with IK and B(A) replaced by IKk and B(Ak), respectively, 
where k > 0. Note that B  A LA"^)^) E 5 ((Ak)li2).) In other words, the collapsing 
procedure of 2.1 gives a map 

Using 2.1, and using 2.2 to note that (C, y) in 2.1 has boundary d, C in E if and only if 
(qC, qy) is Poincark mod E, we see that this map is an isomorphism on homotopy 
groups. (In fact, 2.1 proves surjectivity, and 2.1 applied with A' instead of A proves 
injectivity.) Furthermore, the inclusion 
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factors through the injection 

(The injection comes from the fact that any (n + 1)-dimensional symmetric Poincare 
object in B(A) can be regarded as an n-dimensional symmetric Poincare pair in 
IK with zero boundary.) So it only remains to prove, firstly, that the composite map 

is nullhomotopic, and secondly, that the resulting map from the cofibre IL'(B (A))/ 
IL'([E) to CIL'(IK) is a homotopy equivalence. Now the map from K(E) to CIL'(IK) 
factors through ClL'(E1/2), which is contractible for obvious reasons. This gives 
a preferred nullhomotopy. The proof is completed by comparing the homotopy 
groups of L'(B (A))/ U(E) with those of CIL'(IK). 

3. Excision 

By investigating the properties of the functor 

from finite A-sets and injective A-maps to spectra, we shall be able to determine the 
homotopy type of IL.(B(A,(X))) for all X. We concentrate on the quadratic case 
(for a change), the symmetric case being similar. Write Xk for the k-skeleton of X, 
and X[k] for the set of k-simplices. 

3.1. Lemma. The cojibre of the inclusion map 

IL. (B (A* (Xk-'))) ---r IL. (B (A* (Xk))) 

is homotopy equivalent to 

Proof. Evaluation on the k-simplices gives a functor 

A*(xk) A; (M(x))xE~[kl. 
x s X [ k ]  

This is compatible with the chain dualities, up to a dimension shift, and therefore 
induces a map 

for all q, and even a map 

evk: IL. (B (A, (Xk)), E, q) -+ L. (B ( n A), q - k)  
xsX[kl  
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for all q, where E consists of all the objects C in B(A,(Xk)) such that C(x) is 
contractible for all x E X[k]. Note that the inclusion of E3(A,(Xk-I)) in E induces 
a homotopy equivalence of quadratic L-theory spectra: check on homotopy groups, 
using 1.10. The source and target of ev, are Kan A-sets, and a painful inspection 
which we omit reveals that ev, is a Kan fibration. (The proof of 1.10 can serve as 
a model). The fibre of ev, over * is lL.(B (A, (Xk-I)), B (A, (Xk-I)), q), which is 
contractible by 2.3. (Here, the base point * is to be interpreted as a A-subset having 
exactly one simplex in each dimension). It follows from Corollary 7.6 of Rourke and 
Sanderson [19] that ev, is a componentwise homotopy equivalence for every q. 
Letting q vary, we see that ev, gives a homotopy equaivalence of spectra 

Now apply 2.3 and note that the inclusions of the factors A into the product 

induce a homotopy equivalence 

(Check on homotopy groups, using 1.10). 

3.2. Corollary. The functor 

is homotopy invariant. That is, i f f :  X + Y is an injective A-map betweenJinite A-sets 
which is a homotopy equivalence (after realization), then 

f*: k.(B(A*(X))) + k.(B(A*(Y))) 

is a homotopy equivalence of spectra. 

Proof. The natural filtration of IL. (B (A, (X))) leads to a spectral sequence converging 
to 

n* (k. @(A* (X)))). 

According to 3.1, its El-term is 

(where cl denotes cellular chain complexes, and Lq (B (A)) = nq (lL . (B (A))). It is not 
hard to see that the differential in E:,, agrees with the differential in the chain complex 
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so that 

q,,, 2 H p  (X; Lq(5  (A))). 

But if the E2-term is already homotopy invariant, then so is the Em-term. 

3.3. Corollary. The functor 

X + lL (B (A* (X))) 

is excisive. That is, if X' and X" are finite A-subsets of the finite A-set X, with 
X' u X" = X, then the square 

L.(E3(A*(X1n Xf'))) -+ !L.(B(A*(X'))) 

is a homotopy pushout square. 

Proof. For a finite A-set Y, let GT,(Y) = lL.(5(A,(Yk))). The functor 

sends the square of A-sets under consideration to a homotopy pushout square, for all 
k 2 0, by 3.1. By induction on k, the same is then true for the functor Gk itself. For 
k = dim(X), this is what we need. 

3.4. Remark. A functor G from finite A-sets and injective A-maps to spectra having 
the homotopy invariance and excision properties in 3.2 and 3.3 is a homology theory. 
That is, 

where I XI + is the geometric realization of X, with an extra base point. 

Proof. The first step is to reduce to the case where I XI is a simplicial complex (which 
means that simplices in X are determined by their vertex sets). If that is not the case, 
choose a diagram of finite A-maps 

where both arrows are injections and homotopy equivalences, and I Z I is a simplicia1 
complex. Then 

G(X) 2. G(Y) 2. G(Z) 
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since G is homotopy invariant. Assuming now that I XI is a simplicia1 complex, we 
define three covariant functors from X to spectra, given by 

F t ( y ) = ~ ( d l ~ I ) ,  F;(y)=G(coneon dly1), F$(y)=G(point) 

for simplices y E X. The inclusion of dly1 into its cone and the inclusion of the apex 
into the cone induce homotopy equivalences 

therefore 

hocolim Ft 2: hocolim F: 2: hocolim Ff  2: 1 X' I + A G (point) 

where X' is the barycentric subdivision of X. (See Bousfield and Kan [I] for 
homotopy direct limits, especially p. 327.) The maps F:(y) -+ G (X) induced by the 
characteristic maps c,: dlyl + X determine a map 

v, : hocolim Ft -+ G (X) 

We regard this as a natural transformation between homotopy invariant and excisive 
functors in the variable X; the left-hand side is homotopy invariant and excisive 
because it is homotopy equivalent to I X 1 + A G (point).  further,^, is a homotopy 
equivalence if X is a point. Arguments going back to Eilenberg-Steenrod [6] show 
that v, is a homotopy equivalence for all finite X. 

3.5. Remark. In the same way one can prove that 

where t' is the cofibre of the symmetrization map from L. to ii'. These homotopy 
equivalences are also valid for infinite X, by a direct limit argument. 

4. Assembly and related topics 

Fix a discrete group n, and a commutative ring R. From now on we write A for the 
additive category of f.g. free R-modules, and A [n] for the additive category of f.g. 
free left R En]-modules (where R [n] is the group ring). We equip R with the identity 
involution, and R[n] with the usual involution 

For C in B(A [n]) we let 

where P is the free resolution from the introduction. Remember that VQ, 2 Q,. 
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Let now 2 be a A-set on which n acts freely, with quotient A-set X= 2/71. Write 
p : 2 -+ X for the projection. If M is an object in A, ( X )  define an object cr ( M )  in A [ X I  
by the formula 

a ( M )  = colim M . p .  

Here we are talking about the direct limit of the composite functor 

zop 5 XoP % A ?i {category of all R-modules) , 

in the sense of MacLane [ l o ] .  The action of n on 2 leaves M . p  invariant and so 
induces an action of x on a ( M ) .  This makes a ( M )  into a f.g. free left R [nl-module. 
(To verify this, assume that M is given by 

where f denotes morphisms in XOP and {m,l x E X )  is a family of objects in A .  Then 

by inspection, and this is free over R [n]. )  

4.1. Definition. The functor a:  A , (X )  + A[x] is called the assembly functor. 

Clearly the next thing we need is a natural chain map 

o: D O,*(,,E -+ a (D)  O,,a(E),  

defined for objects D and E in [B(A,(X)),  which maps nondegenerate homology 
classes to nondegenerate homology classes and respects the symmetries z. The 
following construction gives that and more. 

4.2. Construction. There is a chain map 

Q: D @A*(,y) E ~ l ( f ) ~  B~,, ,  ("(Dl OR  a ( E ) ) ,  

defined whenever D and E are objects in A,(X) ,  and natural in D and E. 

and map this to 
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using the canonical transformations from D . p ( - )  and E . p ( - )  to the constant 
functors on 8 with value cr(D) and a(E), respectively. 

Now the natural chain map 

m :  D E + a(D) @An a(E) 

promised earlier can be obtained from Q by applying the chain map 

augmentation: cl (f) -+ Z . 

In more detail, let 

augmentation @ id @ id 

follow upon Q. This gives a chain map from D @,,(,, E to 

Claims regarding nondegenerate homology classes can be verified by using suitable 
test objects. This is left to the reader. Together, cr and o give rise to maps of spectra 

which must be seen in the light of section 3. These are the assembly maps of Ranicki 
[17], the algebraic versions of the geometric assembly maps of Quinn [13], [14]. 

Let now E be the full subcategory of 5(A, (X)) consisting of those objects D such that 
cr(D) is contractible. It is clear from the foregoing discussion that IE is an exact 
symmetric subcategory, and that the assembly maps above factor in the following 
way: 

(B (A* (XI)) + k. (5 (A* (XI), E) -+ L. (B (A Cj-CI)) 9 

LS(5(A* (XI)) -+ L.(B(A* (XI), + LS(B(A Kj-Cl)). 

(Just observe that a pairing in B(A,(X)) which is nondegenerate mod IE will still 
give rise to a nondegenerate pairing in 5 (A [XI) under assembly.) The following three 
propositions constitute Ranicki's argument proving Theorem 0.1. 

4.3. Proposition. I f  f is contractible, then 

n, (L' (B (A, (X)), E)) VLn (R [n]) for n E Z . 

4.4. Proposition. ~ f f  is contractible, then the map 

u. (B (A, (x)), [E) -+ k. (5 (A c~I)) 

given by assembly is a homotopy equivalence. 
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4.5. Proposition. The symmetrization map 

!l. ( E )  4 L. ( E )  

is a homotopy equivalence (without any conditions on X ) .  

The proof of 0.1, modulo 4.3, 4.4 and 4.5, is as follows. Inspect the commutative 
diagram of spectra 

where the vertical arrows are symmetrization maps. By 3.1, the rows are "cofi- 
brations up to homotopy". By 4.5, the symmetrization map e is a homotopy 
equivalence. It follows that 

But by the results of section 3 we have 

nn(f> E .n(lXl+ A f ' (R))  

where t ' ( R )  is the cofibre of the symmetrization map 

L.(R) 4 L ( R ) ,  

with homotopy groups L i ( ~ ) .  Up to homotopy equivalence the spectrum t ' ( R )  is 
a wedge of Eilenberg-MacLane spectra (Taylor and Williams [20]), so that 

If 2 is contractible, the we may write 

and we also have 

n, (g) E ~ 2 "  ( R  En]) 

by 4.3 and 4.4. Now 0.1 follows. 

The proofs of 4.3 and 4.4 require two lemmas and some notation. 

4.6. Lemma. Suppose that 2 is contractible. Let B be an object in tB(A, (X)) ,  and let 
E be an object in B ( A  [n]) .  Any morphism 
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in B ( A [ n ] )  can be written in the form e . a(g ) ,  where g :  B  -+ D is a morphism in 
B  ( A ,  ( X ) )  and e :  a  ( D )  -+ E is a homotopy equivalence in B  ( A  [n] ) .  

This is Corollary 0.2 in Ranicki and Weiss [18].  It looks different in the language of 
triangulated categories. 

4.7. Lemma. Let C  be any contravariant functor from X  to B ( A )  such that C ( x )  = 0 
for all butJinitely many simplices x .  (We do not assume that C belongs to B  (A, ( X ) ) ,  
see 1.4.) Then there exist an object B  in B ( A , ( X ) )  and a natural chain map 
A :  B  -+ C  such that A,: B ( x )  -, C ( x )  is a homotopy equivalence for all x .  

This is also proved in [18].  An explicit formula for B  is as follows: 

B ( x )  = hocolim C  . h, 
where 

h,: XOP 1 X ---+ XOP 

is the forgetful functor, and XoP 1 x is the category whose objects are morphisms 
in XoP with target x .  The definition of the homotopy direct limit (= hocolim) is 
summarized in [18] ,  but it is of course due to Bousfield and Kan [ I ] .  

4.8. Notation. If D and E are arbitrary contravariant functors from X  to the category 
of chain complexes of R-modules, we write D E to mean 

If Fis  a free f.g. left R [nl-module, let P ( F )  be the contravariant functor from X  to the 
category of free R-modules given by 

P ( F )  ( x )  = {n-maps from p-' ( x )  to F )  

wherep-' ( x )  is the set of simplices of Xlying over the simplex x  in X. (Any element in 
p P ' ( x )  determines an isomorphism P ( F )  ( x )  z F.) 

In a very informal sense, the functors a  (= assembly) and P are adjoint. That is, if M 
is an object in A, ( X )  and F  is an object in A [ n ] ,  then morphisms 

a ( M )  -4 F 

in A [ n ]  correspond to natural R-homomorphisms 

M --+ P ( F ) .  

Proof of 4.3. First it has to be explained why an n-dimensional symmetric structure 
q5 on an object D in B  (A, (X)) should give rise to an n-dimensional visible symmetric 
structure on ct(D). 
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Composing 4 with d of 4.2, we obtain an n-cycle 

which, on inspection, turns out to belong to the chain subcomplex 

(Remember that D is zero off a finite A-subset of X. Therefore, informally speaking, 
so are 4 and d . $, which proves the claim.) Now cl (X)' is a right free resolution of 
Z over Z[X], and therefore d . 4 is a visible symmetric structure. If 4 is non- 
degenerate, so is w . 4, and therefore so is d . 4. This describes the homomorphisms 
in 4.3. 

As for surjectivity, suppose that we are given an object E in B(A[z]) with an 
n-dimensional visible symmetric structure y. We can assume that y comes in the form 
of a chain map 

cf. 4.8, but it should only involve finitely many simplices of X (just like 03 . $ above). 
Choose a graded R [XI-basis for E. This implies a graded R-basis for each P(E) (x), 
where x can be any simplex in X. A subfunctor C c P (E) will be called straight if each 
C(x) has a graded R-basis contained in the given graded R-basis of P (E) (x). It will be 
said to carry y, if the chain map y factors through the inclusion 

Among all straight subfunctors C c b(E) which carry y there is a smallest one. It is 
such that C(x) is f.g. free over R for all x, and C(x) = 0 for all but finitely many x E X. 
To this C we now apply 4.7. We get 

with B in B(A,(X)), and A,: B(x) -. C(x) a homotopy equivalence for all x. The 
composition 

is adjoint to some 

to which we can apply 4.6. We get f = e  . a (g) ,  where g: B -+ D is a morphism in 
[%(A, (X)) and e :  a (D) -+ E is a homotopy equivalence in B (A [n]). Since Ccarries y, 
we can write 

y : c n w +  C O C .  

Since B 0 B maps to C C by a homotopy equivalence, we can write y as a 
composition 
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subjecting y to a chain homotopy if necessary. The composite chain map 

y"  = (g 0 g) . y ' :  C" W -+ D 0 D = D @,*,,, D 

is an n-dimensional symmetric structure on D. It is not hard to verify that assembly 
transforms (D, y") into something homotopy equivalent to (E, v). That is, the 
homotopy equivalence 

sends the visible symmetric structure d . y"  to y .  If y is nondegenerate, then d . y" 
must be nondegenerate mod E. This proves surjectivity in 4.3. Injectivity is proved by 
a relative version of the same argument, as is customary in such cases. This is left to 
the reader. 

Proof of 4.4. This is practically contained in the proof of 4.3, as follows. Use the same 
arguments to prove that 

where VL, (R [n]) denotes the visible quadratic L-group. But 

a fact which we have verified in the introduction. So the map in 4.4 induces 
isomorphisms on homotopy groups. 

We come to the proof of 4.5. It will be sufficient to prove the following. 

4.9. Lemma. For any object D in E c B (A, (X)), the symmetrization homomorphisms 

are isomorphisms, for all n E Z. 

Proof. The long exact sequence connecting Q,, Q* and Q* shows that it is enough to 
prove that 

Q* (D) = 0 if D belongs to E .  

In the proof of 4.3, we constructed (implicitly) homomorphisms 

for any D in B(A, (X)) and n E Z; the same formula defines homomorphisms 

We shall show that z is an isomorphism for all D in B (A, (X)) and n E Z. This does 
imply that &*(D) = 0 if D belongs to E, because then cr(D) is contractible. 
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Note first that the functors 

are homology theories on [B (A, (X)). That is, they are chain homotopy invariant, and 
a short exact sequence 

in B (A, (X)) induces exact sequences 

(By definition, the sequence (!) is short exact if it is split exact in each dimension.) 
The proof can be adapted from Theorem 1.1 of Weiss [23]. Note that (!) can be 
expanded into a Puppe sequence 

in which any three term piece is short exact up to homotopy equivalence; therefore (!) 
gives rise to long exact sequences 

In checking that 

is an isomorphism, we can therefore use the five lemma to induct over the skeletons 
of D. This leaves the case where D is concentrated in one dimension, without loss 
of generality dimension zero. Then D belongs to A, (X) c B (A, (X)) and is a direct 
sum of objects r, in A, (X), where y can be any simplex in X and T, is induced by the 
collection {m, 1 x E X) with m, = 0 for x + y and m, = R. We may therefore assume 
that D = r, for some y. 

Now we calculate. If the characteristic map c,: dly1 -+ X of y is injective, then 

which is equivariantly homotopy equivalent to R, so that 

& " ( ~ , ) ~ A - " ( z , ; R )  for al ln.  

If c, is not injective, then we can nevertheless inject cl(dlyI) @ R equivariantly in 
r, @,;,, T, in such a way that Z, acts freely on the quotient R-module chain complex. 
Applying 

~ o m , ~ r , , ( R  -1 



490 M. Weiss 

turns this injection into a homotopy equivalence, and passing to homology we still 
obtain 

~ " ( r , )  g f iPn(Z2;  R) for all n .  

In calculating VQ*(U(T,)) we use a spectral sequence. Given any object C in 
lB(A[n]), there is a spectral sequence with E2-term 

(where C ?  is the underlying R-module chain complex) and converging to VQ* (c). 
Namely, VQ* (C) is the homology of the chain complex 

pi OHCnl (HomhCil,,(@, C ?  O R  C?)) 

which has a filtration coming from the skeleton filtration of the free resolution P. The 
filtration leads to a spectral sequence as usual. With 

C =  cr(T,) 2 Z[p-'(y)] O R 
@(,I X S P  

we get 

Q y c ? )  E ~ [ p - l ( ~ ) ]  0 A - ~ ( Z , ;  R) 

because Q* preserves direct sums, and then 

It follows that the spectral sequence collapses and 

Inspection shows that this abstract isomorphism agrees with the map z (or its 
inverse), which is therefore an isomorphism. 

5. The twisted case 

In proving theorem 0.1 in the general case (where w: n -+ Z, may be nontrivial) we 
shall again work with a A-set which is a K(n, 1) and equip it with a double covering 
classified by w: n --+ Z,. 

For our purposes, the best way to codify double coverings is the following. We shall 
work in the category with objects (X, w), where Xi s  a A-set and 

w: X + Z2 

is a covariant functor. (As usual, X is viewed as a category; Z, is also viewed as 
a category, with one object and two morphisms.) A morphism from (X, w) to (X', w') 
consists of a A-map f :  X -+ X' and a natural transformation from w to w' . f. To an 
object (X, w) we associate a double covering of Xwith total A-set Xw: an n-simplex in 
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X" is the same as a morphism (An,  v )  -, ( X ,  w) where v :  An -+ Z2 is the trivial functor. 
Every double covering of X arises from a suitable w, up to isomorphism. (Proof: 
Given a double covering of X ,  choose for any simplex x  E X a simplex I in the double 
cover which covers x; for a morphism u :  x -+ y in X,  let w(u)  = 0 if u  lifts to a 
morphism from I to y", and w(u)  = 1 otherwise.) 

Given ( X ,  w)  and a covariant or contravariant functor 

we obtain a new covariant or contravariant functor 

C x  w : X  4 B ( A )  

by 
( C  x  w) ( x )  = C ( x )  for x E X ,  

( C  x  w) ( f )  = (- l ) w ( f )  . C (  f )  for a morphism f  in X .  

Given ( X ,  w) and a chain duality ( T ,  e )  on A, we obtain a chain duality on A, ( X )  as 
follows. For an object M in A , ( X )  define T ( M )  by 

X 

T ( M ) ( x )  = 1 ( T . M l x x  W .  

(See the proof of 1.5). Then T is a contravariant functor from A, ( X )  to A, ( X ) ,  and 
inspection reveals that 

H o m ( T ( C ) ,  D )  ( C ( - )  @ D(-))  x  w Sx 
for C and D in B ( A , ( X ) ) .  This implies a symmetry isomorphism 

z : Hom ( T  ( C ) ,  D )  z Hom ( T  (D), C )  

With C = M and D = T ( M )  we obtain 

z : Hom(T ( M ) ,  T ( M ) )  r Hom ( T 2  (M), M )  

and we let 

This completes the construction of a chain duality on A, ( X ) ;  for trivial w we have 
already seen it in section 1. 

Using this chain duality we form L-theory spectra 

where the w indirectly specifies the chain duality on A, ( X ) .  These spectra behave 
naturally in ( X ,  w), at least with respect to injective morphisms 

( X ,  w) 4 (XI, w ' ) .  
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As functors in (X, w) they have a homotopy invariance and an excision property. 
General nonsense as in 3.4, 3.5 proves that 

where the generator of Z, acts on 11.(A) by changing the signs of all quadratic 
structures in sight. (More conceptually, identify 11. (A) with 11. (A, (A0), v), where 
v: A O  -t Z2 is the only possible functor, and note that the object (A0, v) has 
automorphism group isomorphic to Z2 in our category with objects (X, w).) It is 
permitted to substitute 1L' or t' for 11. in this homotopy equivalence. 

Assume now that A is the category of f.g. free R-modules, where R is a commutative 
ring. The methods of section 4 also show that 

VP (R [n]) E nn (p (A, (x), w)) 

provided X is a K(n, 1) and the involution on R[n] is the twisted involution 
corresponding to the homomorphism n -+ Z, which classifies the double covering X" 
-+ X. Since 

we can complete the proof of 0.1 in the general case by proving that the sign change 
involution on t' (A) = t' (R) respects the splitting of p (R) into Eilenberg-MacLane 
spectra. One way to prove this is to use products in L-theory. I shall be content with 
a sketch proof. 

i) E'(R) is a module spectrum over the ring spectrum li'(Z). (Here we are mostly 
interested in the action map 

but not in its associativity properties. Still, to make sense of this, we have to think 
of the target of p as a bispectrum made up of incomplete bisimplicial sets. This 
can be built using chain complexes modelled on ~ t a n d a r ~ b i s i m ~ l i c e s  A m  x An, 
rather than the standard simplices An.  The details are omitted.) 

ii) The action map 

respects the Z2-actions provided Z, acts on the right-hand side by sign change, 
and on the left-hand side via sign change on iL' (Z), leaving the other smash factor 
E'(R) alone. 

iii) The spectrum So,  or a homotopy equivalent spectrum also denoted by So, can be 
equipped with a Z2-action such that the unit map 
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respects Z2-actions, with Z2 acting on ll'(Z) by sign change. (Think of So as 
the bordism spectrum of smooth compact manifolds in Rw = u Rn with framed 
normal bundle. The involution is given by the change of sign in the first vector in 
each frame. See Buoncristiano, Rourke and Sanderson [2].) 

Now the composite map 

is a homotopy equivalence, and respects Z,-actions. On the right-hand side, the 
action is by sign change, and on the left-hand side it only involves the smash factor 
So. A splitting of IL'(R) into Eilenberg-MacLane spectra implies a splitting of 
So A t ' ( R )  into Eilenberg-MacLane spectra, and the involution on So A t ' ( R )  will 
respect it as it only involves the factor So. 

6. Surgery obstructions 

It is customary to say that a homotopy class z E z k ( M ) ,  where Mn is a compact 
manifold, can be killed by surgery if there exists a (co-)bordism (Vn+' ;  M", N n )  such 
that the mapping cone of z :  Sk -+ M is homotopy equivalent to V,  relative to M. 
Similar terminology can be used in the context of Poincart chain complexes. For 
example, let (C,  4)  be an n-dimensional symmetric Poincari. object in B ( A ) ,  where 
A is the category of f.g. free left modules over the ring with involution R [n].  We say 
that z  E Hk(C)  can be killed by surgery if there exists an n-dimensional symmetric 
Poincari. object (D,  8)  in B (A* (A1) )  such that dl (D, 8 )  = (C,  4)  and such that the 
mapping cone of 

is homotopy equivalent to D(A1) ,  relative to C. 

In the algebraic case there is a satisfactory obstruction theory. Let 

be the Poincark dual of z  E Hk(C; R  [ n ] )  z Hk(C) .  Think of z* as a homotopy class 
of chain maps from C to Cn-k R  [ T C ]  . The image of [c$] E Qn ( C )  under z* is a class in 
Qn(Cn-k R  [n]) .  This class in Qn(CnPk R [n] )  is the obstruction to killing z by surgery. 
Consult Ranicki [I51 for proofs. Had we worked with quadratic structures through- 
out, we would have found an obstruction in Qn(Cn-k R[n] ) ;  with visible symmetric 
structures, an obstruction in V Q n ( C n - k R [ ~ ] ) .  It is therefore important to know 
Qn (CP R [n]) ,  Qn ( Z p  R [ T C ] )  and VQn (CP R [n] )  for all n and p. For the calculation 
of Qn(CP R [ n ] )  and Qn(CPR[n] )  see [15], or just calculate. In calculating 
vQ*(CPR[n] )  we use the diagram with long exact columns 



where the horizontal arrows are induced by the inclusion of the trivial group 1 in n, 
and the resulting homomorphism of rings with involution 

R  ---t R [ n ] .  

6.1. Proposition 

vQn(CPR [ X I )  g Q n ( Z p R )  O ( Q n ( Z p R  C Z I ) /  Q,<cpR>> 

Proof. Recall that VQ, = Qn for all n. From the proof of 4.9 we know that the 
arrows h in the diagram are all isomorphisms: both Q"(CPR)  = V Q ~ ( C P R )  and 
V Q " ( C P R [ ~ ] )  were identified with l ?p -n (~2;  R )  at the very end of section 4. 
Furthermore 

where the superscript (p) indicates that Z2 acts by the usual involution multiplied by 
(- 1)P. It follows that the arrows f are all split injections. 

7. An example 

Using Theorem 0.1, we shall calculate 

VL* (Z [GI) 
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where Z [Z,] has the untwisted involution. Note that KO (Z [Z,]) and Wh (Z,) vanish, 
so decorations can be omitted. The calculation is particularly difficult in dimensions 
0 - (mod 4), and we start with this case. 

7.1. Observation. The map 

(i,, f ) :  VLO (Z [Z,]) + VLO (R [Z,]) x v L O  (Z [z,]) 

is injective, where i, is induced by the inclusion of rings, and f is the forgetful map. 

Proof. Use the exactness of 

f 
Lo (Z CZ21) - VLO (Z V 2 l )  -- vLO (Z [Z,I> 

and the injectivity of 

Lo (Z P21)  + Lo (R CZ21) = VLO (R CZ211, 

noting that vL* (R [Z,]) = 0 by 0.1. 

To describe the image of (i,, f )  in 7.1, we use the isomorphism 

VLO (R [Z,]) 4 LO (R) x L O  (R) r Z x Z 

whose first component is induced by the augmentation homomorphism, and whose 
second component is the transfer (corresponding to the inclusion of IR in R [Z,]). We 
also use the isomorphism 

of 0.1. The groups L-j(Z) are described in 0.1. 

7.2. Proposition. The image of (i,, f )  in 7.1 consists of all the elements 

(s,, s,, a,, a,, a,, . . .) E VLO(IR[Z,]) X vLO(Z [Z2]) z Z X Z x @ Hj(Z2; L-j(Z)) 
j20  

satisfying the relations 

s, 2s1 (mod 8) 

a, = s, (mod 8) 

a ,  = 0. 

Proof. Given x E VLO (Z [Z,]), we write (s,, (x), s, (x), a, (x), a ,  (x), a, (x), . . .) for 
the image of x under (i,, f) .  Applying the homomorphism Z [Z,] -+ Z we see that 
ao(x) r s, (x) (mod 8). Commutativity of 
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forget 
V L O  (Z  [Z,])  - vLO ( Z  [z,]) 

transfer I I transfer 

forget 
V L O  ( Z )  -----4 vLO ( Z )  

shows that 2ao(x)  = s,(x) (mod 8), because the transfer on the right sends (a,, a,, 
a,, . . .) to 2a0. This establisks the first two relations in 7.2. Looking at the image 
of L,(Z[Z,])  in V L O ( Z I Z , ] ) ,  we see that there are no further restrictions on 
($1 ( X I ,  S 2  ( X I ,  a0 ( x ) )  . 

Therefore it is sufficient to prove that the boundary homomorphism 

is zero on the direct summand Hj(Z,; L-'(z)) ( j  2 0 )  if and only if j  + 1. (See Wall 
[22] for the computation of L ,  (22 [Z,]).) This is the difficult part. We can use the 
commutative diagramm 

boundary 
710 ( (BZ2)  + A t' ( Z ) )  -----------+ 71 ( (BZ,)  + A li. ( Z ) )  

assembly I I assembly 

v ~ " Z [ ~ , I )  - L-l(ZCZ,I) 

where the upper horizontal arrow is induced by the boundary 

This 6 is a map between module spectra over the oriented bordism ring spectrum 
MSO, and localized at 2 over the ordinary homology spectrum HZ,. Therefore 
source and target of 6 split into Eilenberg-MacLane spectra after localization at 2, 
and 6 itself decomposes into cohomology operations of degree 0 and 1. So ist is 
sufficient to prove the following: 

7.3. Proposition. The assembly homomorphism 

is zero on H j - ,  (Z,; L - j ( Z ) )  i f  and only i f j  =+ 2. 
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Hambleton, Milgram, Taylor and Williams [7] denote the (partial) assembly homo- 
morphism 

by K ,  if q r 2(mod 4), and by 9, if q = O(mod 4). They prove that K ,  is zero except 
possibly when p = 0, 1, 2, 4, 8, . . . , and that IC, is nonzero. (This is Thm. 2.1, Thm. 
1.16, Prop. 6.3 and remarks following Thm. A. in [7]). Since the relevant values of 
p in 7.3 are odd, this proves 7.3 and completes the proof of 7.2. 

7.4. Observation. The sequence 

forget o -+ V L ~ ( Z  [z,]) - V L ~ Z  [z,]) 2 ~ ~ ( 2 )  + o 

is exact (where e is induced by the augmentation homomorphism). Therefore 

V L ~ Z  [z,]) r H,(z,; L~ - j ( ~ ) ) .  
j > O  

Proof. Use the long exact sequence just before 0.1, and the fact that the homo- 
morphisms 

boundary induction 
L3 (2) ' L,(Z) ' L,(Z[Z,I) 

are isomorphisms. 

7.5. Observation. The forgetful maps 

V L ~ Z  [z,]) + v e i ( z  [z,]) 

are isomorphisms for i = 1 and i = 2. 

Proof. Use the long exact sequence again, and the fact that 

L,(Z[Z,])=O. 

From the first relation in 7.2, we obtain the following: 

7.6. Observation. For an oriented PoincarC space X of formal dimension 4k, with an 
oriented double covering p: Y + X ,  we have 

signature (Y) = 2 . signature (X) (mod 8) 

As is well known, the signature defect 2 . signature(X) - signature(Y) E Z is the 
signature of the Browder-Livesay form (a, b) + (a v Tb, [Y]) on H2k(Y), which is 
even and so has signature E 0 (mod 8). 
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