LOCALIZATION IN ALGEBRAIC L-THEORY

by Pierre VOGEL

Let f: A → B be a morphism of rings with involution. If B is a localization of A in the classical sense, Karoubi [1], Pardon [3], Ranicki [5] and Smith [0] have given exact sequences between the L-groups of A , the Lgroups of B and relative groups which are defined in term of linking forms over torsion modules.

My purpose is to show that the localization exact sequence holds in a more general situation.

From f one can define a ring Λ endowed with a morphism $A \rightarrow \Lambda$ satisfying the following conditions:

- i) for any matrix α with entries in A such that $\alpha \otimes \beta$ is invertible, α & Λ is invertible too;
- ii) A is universal with respect to the property i).

We have a canonical homomorphism $\varepsilon: \Lambda \to \partial$. We will say that f is weakly locally epic if ε is epic and local if ε is an isomorphism. In this paper I will prove that the relative group $L_n(A + A)$ depends only on the category $\, oldsymbol{arepsilon}_{3} \,$ of finitely presented modules $\, oldsymbol{\mathtt{M}} \,$ with cohomology dimension 1 and satisfying $M \otimes B = Tor_1(M, B) = 0$ if f is weakly locally epic and A doesn't contain any finitely generated submodule I which is B-perfect (i.e. IoB = 0).

As a corollary we prove a Mayer-Vietoris exact sequence in L-theory for square of rings with involution:

if $A \rightarrow B$ and C + D are local, A (resp. C) doesn't contain any finitely B-perfect (resp. D-perfect) submodule and the tensorization by C is an equivalence between the categories $\, \mathfrak{C}_{_{
m R}} \,$ dans $\, \mathfrak{C}_{_{
m R}} \,$.

For more simplicity I will consider the groups L_n^h only, but we have the same results with the groups L_n^α , α being any subgroup of \tilde{K}_0 or \tilde{K}_1 stable under involution; we must just change a little the category $\boldsymbol{\ell}_R$.

§ 1 . QUADRATIC AND LINKING FORMS OVER COMPLEXES

Throughout this paper I will suppose that $f: A \to B$ is weakly locally epic and A doesn't contain any finitely generated B-perfect submodule.

Denote by \mathcal{C}_B the class of "torsion modules", i.e. the class of A-modules M having a resolution $0 + C_1 \overset{d}{+} C_0 + M + 0$ by finitely generated free A-modules such that $d \otimes B$ is an isomorphism.

Let M be a torsion module and $0 + C_1 + C_0 + M + 0$ be a resolution of M by finitely generated free A-modules. Since M is a finitely generated B-perfect module, Hom(M,A) is zero and we have an exact sequence:

$$0 + \text{Hom}(C_0, A) + \text{Hom}(C_1, A) + \text{Ext}^1(M, A) + 0$$
.

Then $\operatorname{Ext}^1(M,A)$ is a torsion module.

Denote by \hat{M} the module $\operatorname{Ext}^1(M,A)$. The correspondance $M \mapsto \hat{M}$ is a contravariant functor from ℓ_R to itself and \hat{M} is canonically isomorphic to M.

If M is a torsion module a bilinear form over M is a map $M \to \hat{M}$. The set B(M) of bilinear forms over M is endowed with an involution in the following way: if $\psi: M \to \hat{M}$ is a bilinear form, $t\psi$ is the composite map: $M \simeq \hat{M} \xrightarrow{\hat{\Psi}} \hat{M}$.

Let us consider now bilinearforms over complexes:

By definition a free (resp. torsion) complex will be a Z-graded complex:

$$\longrightarrow c_{n+1} \xrightarrow{d} c_n \xrightarrow{d} c_{n-1} \longrightarrow \dots$$

where Φ C; is a finitely generated free (resp. torsion) A-module. And a complex is a free or a torsion complex.

If C_* is a complex the dual complex \hat{C}_* is the complex :

$$- \hat{c}_{n+1} \cdot \frac{(-1)^{n+1} \hat{d}}{\hat{c}_n} \hat{c}_n \cdot \frac{(-1)^n \hat{d}}{\hat{c}_{n-1}} \hat{c}_{n-1}$$

where ^ is the fonctor Hom(,A) if C_* is free and Ext^1(,A) if C_* is torsion, and \hat{C}_n is of degree -n .

A bilinear form over C_* is a linear map $C_* + \hat{C}_*$. The set $B_*(C_*) = B^{-*}(C_*) = \text{Hom}(C_*, \hat{C}_*)$ of bilinear forms over C_* is a graded differential **Z**-module endowed with an involution t by :

$$\begin{aligned}
\vartheta^{\circ} & \varphi(u) = \vartheta^{\circ} \varphi + \vartheta^{\circ} u \\
d(\varphi(u)) &= (d\varphi)u + (-1)^{\vartheta^{\circ} \varphi} \varphi(du) \\
(t \psi)u &= (-1)^{\vartheta^{\circ} u} \vartheta^{\circ} \varphi(u) \varphi(u)
\end{aligned}$$

for any $u \in C_*$ and $\phi \in B_*(C_*)$.

If $\varepsilon = \pm 1$, $B_*(C_*)^\varepsilon$ denote the complex $B_*(C_*)$ with the new involution $\psi \mapsto \varepsilon t \psi$, if C_* is free, and $\psi \mapsto -\varepsilon t \psi$ if C_* is torsion.

Definition 1.1

Let C_* be a free (resp. torsion) complex. A quadratic (resp. linking) n-form over C_* is an element of the group :

$$\vartheta^{n}(C_{*}) = H_{-n}(\mathbf{Z}/2, B_{*}(C_{*})^{\epsilon})$$
 $\epsilon = (-1)^{n}$.

If we take the standard resolution $\,W_{\!_{\Re}}\,$ of the ${\bf Z}[\,{\bf Z}/2\,]$ -module $\,{\bf Z}$:

$$\mathbb{Z}[\mathbb{Z}/2] \stackrel{1-t}{\longleftarrow} \mathbb{Z}[\mathbb{Z}/2] \stackrel{1+t}{\longleftarrow} \mathbb{Z}[\mathbb{Z}/2] \stackrel{1}{\longleftarrow} \dots$$

any quadratic (resp. linking) n-form over C_{*} is represented by :

$$e_0 \otimes \varphi_0 + e_1 \otimes \varphi_1 + \dots \qquad \varphi_i \in B^{n+i}(C_*)$$

and we have :

Definition 1.2

Let $\Sigma_* \to C_*$ be an epimorphism of free (resp. torsion) complexes. A quadratic (resp. linking) n-form over $\Sigma_* \to C_*$ is an element of the group :

$$Q^{n}(\Sigma_{*} + C_{*}) = H_{-n}(\mathbf{Z}/2, B_{*}(\Sigma_{*})^{-\epsilon}/B_{*}(C_{*})^{-\epsilon}) \qquad \epsilon = (-1)^{n} .$$

Notations 1.3

Let C_* be a free (resp. torsion) complex and q be a quadratic (resp. linking) n-form over C_* . The image of q by the composite map:

$$\mathbf{Q}^{\mathsf{n}}(\mathbf{C}_{*}) \xrightarrow{\mathsf{transfert}} \mathbf{H}_{-\mathsf{n}}(\mathbf{1},\mathbf{B}_{*}(\mathbf{C}_{*})^{\epsilon}) \xrightarrow{\sim} \mathbf{H}_{-\mathsf{n}}(\mathbf{B}_{*}(\mathbf{C}_{*}))$$

give a chain map from C_* to \hat{C}_* of degree -n . This chain map, well defined up to homotopy, will be denoted by \hat{q} .

Let $\Sigma_* \to C_*$ be an epimorphisme of free (resp. torsion) complexes and q be a quadratic (resp. linking) n-form over $\Sigma_* \to C_*$. If K_* is the kernel of $\Sigma_* \to C_*$, we get a chain map from K_* to Σ_* , well defined up to homotopy, as the image of q by the composite map:

$$Q^{n}(\Sigma_{*} + C_{*}) \xrightarrow{transfert} H_{-n}(1,B_{*}(\Sigma_{*})/B_{*}(C_{*})) \longrightarrow H_{-n}(Hom_{*}(K_{*},\widehat{\Sigma}_{*})) .$$

This chain map will be denoted by \tilde{q} .

Definition 1.4

Let C_* (resp. $\Sigma_* \to C_*$) be a complex (resp. an epimorphism of complexes) and q be a quadratic or linking n-form over C_* (resp. $\Sigma_* + C_*$). The form q is said non singular if \tilde{q} is a homology equivalence. If C_* is free (resp. Σ_* and C_* are free), q is said B-non singular if \tilde{q} is a B-homology equivalence.

Definition 1.5

Let $\mathscr C$ be the word free (resp. free, resp. B-acyclic free, resp. torsion) and $\mathscr F$ the words non singular quadratic (resp. B-non singular quadratic, resp. non singular quadratic, resp. non singular linking).

Let C_* be a $\mbox{\ensuremath{\mbox{$^\circ$}}}$ complex and $\mbox{\ensuremath{\mbox{$q$}}}$ be a $\mbox{\ensuremath{\mbox{$^\circ$}}}$ n-form over C_* . The object (C_*,q) is called cobordant to zero if there exists an exact sequence of $\mbox{\ensuremath{\mbox{$^\circ$}}}$ complexes $0+K_*+\Sigma_*+C_*+0$ such that $\mbox{\ensuremath{\mbox{$q$}}}$ is the boundary of a $\mbox{\ensuremath{\mbox{$^\circ$}}}$ n-1-form over Σ_*+C_* .

Theorem 1.6 [7]

The group $L_n^h(A)$ (resp. $L_n^h(A)$) is isomorphic to the group of free complexes together with non singular (resp. 8-non singular) quadratic n-forms modulo the following relation: (C_*,q) is cobordant to (C'_*,q') if $(C_* \oplus C'_*,q-q')$ is cobordant to zero.

Definition 1.7

The cobordism group of B-acyclic free (resp. torsion) complexes together with non singular quadratic (resp. linking) n-forms will be denoted by $L_n'(B,A)$ (resp. $L_n''(B,A)$).

Theorem 1.8

The group $L'_n(B,A)$ is isomorphic to $L^h_{n+1}(A+\Lambda)$.

Proof

Since $L_n^h(\Lambda)$ is isomorphic to $\Gamma_n^h(A+\Lambda)$ or $\Gamma_n^h(A+B)$ [7], it suffices to prove that $L_n'(B,A)$ is isomorphic to the group $\Gamma_{n+1}^h(++)$ and that is proved by Ranicki [5] and Smith [6] by using a dual point of view (a quadratic form over C_* in my sense is a quadratic form over C^* in the sense of Ranicki [4], [5]).

The main result of this paper is the following:

Theorem 1.9

The group $L''_n(B,A)$ is isomorphic to $L^h_{n+2}(A+A)$.

§ 2 . RELATIONS BETWEEN FREE COMPLEXES AND TORSION COMPLEXES

The first informations about B-acyclic free complexes and torsion complexes are the following:

Lemma 2.1

Let ...+ $0 + C_p \stackrel{d}{=} C_{p+1} + 0$... be a B-acyclic free complex of length two. Then d is monic and Coker d is a torsion module.

Proof

Since $d \otimes B$ is bijective, the complex -+ $0 + \hat{C}_p + \hat{C}_{p+1} + 0 + \dots$ is Bacyclic and Coker \hat{d} is B-perfect. But A doesn't contain any finitely generated B-perfect submodule. Then the map $\operatorname{Hom}(\hat{C}_{p+1},A) \xrightarrow{\hat{d}} \operatorname{Hom}(\hat{C}_p,A)$ is monic and d is monic and Coker d is a torsion module.

Lemma 2.2

Let C_* be a B-acyclic free complex and $f:C_* \to K_*$ a morphism from C_* to a torsion complex K_* . Then there is a commutative diagram :

$$C_* \xrightarrow{f} K_*$$

such that T_* is a torsion complex and g is a homology equivalence.

Proof

Step 1

Suppose C_* is the complex ... $0 + C_p + C_{p+1} + 0 + \dots$. By setting : $T_i = 0 \qquad \text{for} \quad i \neq p, p+1$ $T_p = C_p \bigoplus_{C_{p+1}} K_{p+1} \quad \text{and} \quad T_{p+1} = K_{p+1}$

we get a complex between C_* and K_* , and by lemma 2.1, T_* is a torsion complex, and $C_* \to T_*$ is a homology equivalence. Then the lemma is proved if C_* is of length two.

Step 2

Suppose we have an exact sequence of B-acyclic free complexes:

$$0 + C_{44} + C'_{44} + C''_{44} + 0$$

and suppose that C_* and C'_* satisfy the lemma. If $C''_* + K_*$ is a morphism to a torsion complex, the composite map $C'_* + K_*$ factorizes through a torsion complex T'_* and the map $C'_* + T'_*$ is a homology equivalence. Up to homology equivalence we may suppose that $T'_* + K_*$ is epic. The map $C_* + (\text{Ker }\alpha)_*$ factorizes through a torsion complex T_* by a homology equivalence $C_* + T_*$. Then it is not difficult to prove that the map $C''_* + K_*$ factorizes by a homology equivalence through the maping cone of $T_* + T'_*$:

The class of B-acyclic free complexes satisfying the lemma is stable under homotopy equivalence, suspension and quotient. Then it is stable under extension and

contain all the complexes of length two. By [7] any B-acyclic complex is in this class and the lemma is proved.

Conversely we have :

Lemma 2.3

Let T_* be a torsion complex. Then there exists a homology equivalence from a B-acyclic free complex to T_* .

Proof

Lemma 2.4

Let ϵ = ± 1 and 0 + K_* $\stackrel{\alpha}{=}$ C_* + T_* + 0 be an exact sequence of complexes such that K_* is acyclic free, C_* is free and T_* is torsion. Then we have a canonical long exact sequence :

$$\dots \to \mathsf{H}_{\mathsf{i}+1}(\mathsf{Z}/2,\mathsf{B}_{*}(\mathsf{T}_{*})^{-\epsilon}) \to \mathsf{H}_{\mathsf{i}}(\mathsf{Z}/2,\mathsf{B}_{*}(\mathsf{C}_{*})^{\epsilon}) \to \mathsf{H}_{\mathsf{i}+2}(\mathsf{Z}/2,\hat{\mathsf{T}}_{*}\hat{\mathsf{e}}\hat{\mathsf{T}}_{*}) \to \mathsf{H}_{\mathsf{i}}(\mathsf{Z}/2,\mathsf{B}_{*}(\mathsf{T}_{*})^{-\epsilon}) \to \mathsf{H}_{\mathsf{i}+2}(\mathsf{Z}/2,\mathsf{B}_{*}(\mathsf{T}_{*})^{-\epsilon}) \to \mathsf{H}_{\mathsf{i}+2}(\mathsf{Z}/2,\mathsf{B}_{\mathsf{i}+2}(\mathsf{A}/2,\mathsf{B}_{\mathsf{i}+2}(\mathsf{Z}/2,\mathsf{B}/2,\mathsf{B$$

where $\tilde{T}_* \circ \tilde{T}_*$ is endowed with the involution a \circ b \rightarrow $-\epsilon(-1)^{\vartheta^o a \vartheta^o b}$ b \circ a .

Proof

The above exact sequence induces the following:

$$0 + \hat{T}_{*} + \hat{K}_{*} + \hat{C}_{*} + 0$$

and we get a complex of complexes :

$$0 + \hat{k}_{*} \otimes \hat{k}_{*} + \hat{c}_{*} \otimes \hat{k}_{*} \oplus \hat{k}_{*} \otimes \hat{c}_{*} + \hat{c}_{*} \otimes \hat{c}_{*} + 0$$

by setting:
$$\lambda(u \otimes v) = u \otimes \widehat{\alpha}(v) + \widehat{\alpha}(u) \otimes v$$
$$\mu(u \otimes b + a \otimes v) = \widehat{\alpha}(u) \otimes b - a \otimes \widehat{\alpha}(v)$$

for any $a,b \in \hat{K}_*$ and $u,v \in \hat{C}_*$.

 λ and μ are compatible with the differentials, and by setting :

$$t(u \otimes v) = \varepsilon(-1)^{\partial^{o}u\partial^{o}v} v \otimes u$$

$$t(u \otimes b + a \otimes v) = \varepsilon(-1)^{\partial^{o}a\partial^{o}v} v \otimes a + \varepsilon(-1)^{\partial^{o}u\partial^{o}b} b \otimes u$$

$$t(a \otimes b) = -\varepsilon(-1)^{\partial^{o}a\partial^{o}b} b \otimes a$$

for any a,b $\in \hat{K}_*$ and u,v $\in \hat{C}_*$, the morphisms λ and μ are equivariant for this involution.

Now we get three exact sequences of differential $\mathbb{Z}[\mathbb{Z}/2]$ -modules :

$$0 + \hat{T}_{*} \otimes \hat{T}_{*} + \hat{K}_{*} \otimes \hat{K}_{*} + \operatorname{Im} \mu + 0$$

$$0 + \operatorname{Im} \mu + \hat{C}_{*} \otimes \hat{K}_{*} \oplus \hat{K}_{*} \otimes \hat{C}_{*} + \operatorname{Ker} \mu + 0$$

$$0 + B_{*}(T_{*})^{-\epsilon} + \operatorname{Ker} \mu + B_{*}(C_{*})^{\epsilon} + 0 .$$

The involution on $\hat{T}_* \circ \hat{T}_*$ is defined by :

$$t(a \cdot b) = -\epsilon(-1)^{\partial^o a \partial^o b} b \cdot a$$
 $\forall a,b \in \hat{T}_*$

The third exact sequence comes from the isomorphism :

$$\widehat{C}_{*} \otimes \widehat{C}_{*} = \operatorname{Hom}(C_{*}, \widehat{C}_{*}) = B_{*}(C_{*})$$

$$\operatorname{Ker} \ \mu/\operatorname{Im} \ \mu \simeq \operatorname{Tor}_{1}(\widehat{T}_{*}, \widehat{T}_{*}) \simeq \operatorname{Hom}(T_{*}, \widehat{T}_{*}) \simeq B_{*}(T_{*})$$

On the other hand K_* is contractible and $K_* \circ K_*$ and $C_* \circ K_* \oplus K_* \circ C_*$ are acyclic. That implies the isomorphisms:

$$\mathsf{H}_{\mathsf{i}+2}(\mathbf{Z}/2,\hat{\mathsf{T}}_{*}\mathbf{\bullet}\hat{\mathsf{T}}_{*}) \overset{\sim}{\to} \mathsf{H}_{\mathsf{i}+1}(\mathbf{Z}\!/2,\mathsf{Im}\;\; \mathsf{u}) \overset{\sim}{\to} \mathsf{H}_{\mathsf{i}}(\mathbf{Z}\!/2,\mathsf{Ker}\;\; \mathsf{u})$$

and by taking the homology exact sequence of the third above exact sequence, we prove the lemma.

Lemma 2.5

Let $C_* \xrightarrow{f} T_*$ be a homology equivalence from a free complex to a torsion complex. Then a linking n-1-form q over T_* induces a well defined quadratic n-form $f^*(q)$ on C_* . Furthermore q is non singular if and only if $f^*(q)$ is non singular.

Proof

Up to homotopy equivalence we may suppose that f is surjective with free kernel K_* . By 2.4 we get a map $Q^{n-1}(T_*) \xrightarrow{f^*} Q^n(C_*)$ and $f^*(q)$ is well defined.

Moreover f^* is induced by a boundary and the transfert commutes with the boundary. Then the cycle $f^*(q)$ is the boundary of \tilde{q} in the exact sequence $0 + B_*(T_*)^{-\varepsilon} + \text{Ker } \mu + B_*(C_*)^{\varepsilon} + 0$ (see the proof of 2.4).

More precisely $\widetilde{f^*(q)}$ is the boundary of the composite map $C_* + T_* \stackrel{\widetilde{q}}{=} \widehat{T}_*$ in the exact sequence $0 + \widehat{C}_* + \widehat{K}_* + \widehat{T}_* + 0$. But \widehat{K}_* is acyclic. Hence \widetilde{q} is a homology equivalence if and only if $f^*(q)$ is a homotopy equivalence.

§ 3 . THE ISOMORPHISM $L''_{n-1}(B,A) \stackrel{\sim}{\rightarrow} L'_{n}(B,A)$

Let T_* be a torsion complex and q a non singular linking n-1-form over T_* . By 2.3 there exists a homology equivalence f from a B-acyclic free complex C_* to T_* , and by 2.5 we get an element $F(T_*,q)$ in $L'_n(B,A)$ represented by $(C_*,f^*(q))$. If $f':C'_*\to T_*$ is an other choice there is a homotopy equivalence $g:C'_*\to C_*$ and $f\circ g$ is homotopic to f'. Then $g^*(f^*(q))$ is equal to $f'^*(q)$ and $(C_*,f^*(q))$ is cobordant to $(C'_*,f'^*(q))$. Hence $F(T_*,q)$ depends only on (T_*,q) .

Lemma 3.1

The correspondence F induces a morphism from $L''_{n-1}(B,A)$ to $L'_n(B,A)$.

Proof

Clearly F is additive. Then the only thing to do is to prove that $F(T_*,q)$ vanishes if (T_*,q) is cobordant to zero.

Suppose we have an exact sequence of torsion complexes :

$$0 \rightarrow R_{4} \rightarrow S_{4} \rightarrow T_{4} \rightarrow 0$$

and a non singular linking n-2-form u over S_* + T_* with boundary q .

By 2.3 there exist B-acyclic free complexes $~{\rm K_{*}}$, ${\rm \Sigma_{*}}$, ${\rm C_{*}}$ and a commutative diagram :

$$0 + K_{*} + \Sigma_{*} + C_{*} + 0$$

$$+ + f + f + f$$

$$0 + R_{*} + S_{*} + T_{*} + 0$$

such that the lines are exact and the vertical maps are homology equivalences.

With a relative version of 2.5 we get a commutative diagram :

Then $f^*(u)$ is a quadratic n-1-form over $\Sigma_* + C_*$ with boundary $f^*(q)$. Since u is non-singular, $f^*(u)$ is non-singular too and $(C_*, f^*(q))$ is cobordant to zero.

Lemma 3.2

Let $f:C_* \to T_*$ be a homology equivalence from a free complex to a torsion complex. Let $\hat{T}_* \circ \hat{T}_*$ be the graded differential module endowed with the involution $t(a \circ b) = -\epsilon (-1)^{\vartheta^0 a \vartheta^0 b} b \circ a \quad (\epsilon = \pm 1)$ for any $a,b \in \hat{T}_*$. Then for any element $u \in H_*(\mathbb{Z}/2,\hat{T}_* \circ \hat{T}_*)$ there exist a torsion complex T_*' and a homology equivalence $\alpha: T_*' \to T_*$ such that f lifts through α and $\alpha^*(u)$ vanishes.

Proof

Any element in $H_*(\mathbf{Z}/2,\hat{\Gamma}_* \circ \hat{\mathbf{T}}_*)$ is represented by $i,\stackrel{\Sigma}{p},q\stackrel{e}{i} \circ \stackrel{\omega}{p} q$, $u_p \in \hat{T}_p \circ \hat{T}_q$. Then it suffices to prove that for any $v \in \hat{T}_p \circ \hat{T}_q$ there exists a surjective homology equivalence $\alpha: T'_* \to T_*$ such that f lifts through α and v goes to zero in $\hat{T}'_p \circ \hat{T}_q$.

By the canonical isomorphism $\hat{T}_p \circ \hat{T}_q \cong \operatorname{Ext}^1(T_p, \hat{T}_q)$ an element $v \in \hat{T}_p \circ \hat{T}_q$ gives an extension $0 \to \hat{T}_q \to T_p \to T_p \to 0$ and v goes to zero in $\hat{T}_p' \circ \hat{T}_q$.

By setting:

$$T'_{i} = \begin{cases} T_{i} & i \neq p, p+1 \\ T'_{i} \times T_{p+1} & i = p+1 \end{cases}$$

we get a torsion complex T_*^{ι} and a homology equivalence $\alpha: T_*' \to T_*$ such that ν vanishes in $\hat{T}_p' \bullet \hat{T}_q$. Moreover f is a homology equivalence and C_* is free, then f lifts through α and the lemma is proved.

Theorem 3.3

The morphism $F: L''_{n-1}(B,A) \to L'_n(B,A)$ is an isomorphism.

Proof

Surjectivity of F

Let w' \in L'_n(B,A) represented by a B-acyclic free complex C_* together with a non singular quadratic n-form q over C_* . By 2.2 there exists a homology equivalence f from C_* to a torsion complex T_* .

Consider the exact sequence (3.4):

$$\mathcal{Q}^{n-1}(\mathsf{T}_*) \xrightarrow{f^*} \mathcal{Q}^n(\mathsf{C}_*) \xrightarrow{\eth} \mathsf{H}_{-n+2}(\mathbb{Z}/2,\widehat{\mathsf{T}}_* \bullet \widehat{\mathsf{T}}_*)$$

By 3.2 there exist a torsion complex T'_* and a homology equivalence $\alpha: T'_* \to T_*$ such that f lifts by f' through T'_* and $\mathfrak{d}q$ vanishes in $H_{-n+2}(\mathbb{Z}/2,\widehat{T}'_*\mathfrak{e}\widehat{T}'_*)$. Then there exists $q' \in \mathbb{Q}^{n-1}(T'_*)$ such that $q = f'^*(q')$. By 2.5 q' is non singular and (T'_*,q') gives an element in $L''_{n-1}(B,A)$ which is going to w' by F.

Injectivity of F

Let T_* be a torsion complex and q be a non-singular linking n-1-formover T_* such that $F(T_*,q)$ vanishes. Take a homology equivalence f from a B-acyclic free complex C_* to T_* . Since $(C_*,f^*(q))$ is cobordant to zero there exists an exact sequence of B-acyclic free complexes:

$$0 \rightarrow K_{xx} \rightarrow \Sigma_{xx} \rightarrow C_{xx} \rightarrow 0$$

By 2.2 we can construct a commutative diagram :

such that the lines are exact and the vertical maps are homology equivalences.

Consider the commutative diagram :

All the lines and the columns of this diagram are exact.

Since $f^*(q)$ is the boundary of u, the image of q in $Q^{n-1}(S_*)$ comes from $H_{-n+3}(\mathbb{Z}/2,\hat{S}_*\otimes\hat{S}_*)$. By 3.2 we may as well suppose that q restricts to zero on S_* and is the boundary of an element $v'\in Q^{n-2}(S_*+T_*)$. The obstruction to lift $f^*(v')-u$ in $Q^{n-2}(S_*+T_*)$ is in $H_{-n+3}(\mathbb{Z}/2,\hat{S}_*\otimes\hat{S}_*)$. By 3.2 we may as well suppose that this obstruction vanishes and there exists an element $v\in Q^{n-2}(S_*+T_*)$ such that $\exists v=q$ and $f^*v=u$.

Since u is non singular, v is non singular and (T_{\ast},q) is cobordant to zero.

Corollary 3.4

The group $L_{n-1}''(B,A)$ is isomorphic to $L_{n+1}^h(A \to \Lambda)$.

Corollary 3.5

The group $L_{n+1}^h(A \to \Lambda)$ depends only on the category \mathcal{C}_B of torsion modules.

Theorem 3.6

Let

A → B
+ +

be a square of rings with involution such that A + B and C + D are local and A (resp. C) doesn't contain any finitely generated B-perfect (resp. D-perfect) submodule (that holds for example if A + B and C + D are monic). Suppose we have the following conditions:

- i) for any torsion module $M \in \mathcal{C}_B$ the map $M + M \in \mathbb{C}$ is an isomorphism and $\operatorname{Tor}_1^A(M,\mathbb{C}) = 0$
- ii) any torsion module N $\operatorname{\mathcal{C}}_{\operatorname{D}}$, considered as A-module, is in $\operatorname{\mathcal{C}}_{\operatorname{B}}$.

Then we have an long exact sequence :

...
$$\stackrel{\partial}{\rightarrow} L_n^h(A) \rightarrow L_n^h(B) \oplus L_n^h(C) \rightarrow L_n^h(D) \stackrel{\partial}{\rightarrow} L_{n-1}^h(A) \rightarrow ...$$

Proof

The conditions i) and ii) imply that ℓ_B and ℓ_D are equivalent. Then the map $L_n^h(A+B) + L_n^h(C+D)$ is an isomorphism and the Mayer-Vietoris exact sequence holds.

Remark 3.7

Actually it is possible to give an interpretation of the group $L_n^h(A + \Lambda)$ in term of linking form over torsion modules as in [1], [3], [5], [6] for example. That will appear in a further paper.

BIBLIOGRAPHY

- [1] M. KAROUBI. Localisation des formes quadratiques I. Ann. Scient. E.N.S. (1974) pp 359-404.
- [2] W. PARDON. The exact sequence of a localization of Witt groups. Springer Lecture Notes in Math. 551 (1976) pp 336-379.
- [3] W. PARDON. Local surgery and the exact sequence of a localization for Wall groups. A.M.S. Memoirs 196 (1977).

- [4] A. RANICKI . Algebraic L-theory I Foundations . Proc. London Math. Soc. 27 (1973) pp 101-125 .
- [5] A. RANICKI . The algebraic theory of surgery . Preprint .
- [6] J. SMITH. Complements of codimension two submanifolds III Cobordism theory. Preprint.
- [7] P. VOGEL . On the homology surgery obstruction group . Preprint .
- [8] C.T.C. WALL . Surgery on compact manifolds . Academic Press . New York and London (1970) .

Université de Nantes Institut de Mathématiques et d'Informatique 2, Chemin de la Houssinière 44072 NANTES Cedex (France)