LOCALIZATION QF SPACES WITH RESPECT TO A CLASS OF MAPS

Pierre VOGLL

§1. - INTRODUCTION

Let § be the catcgoxy of pointed CW-complexes. If h  is a gencralized
homology theory, denote by W the class of maps X » Y inducing an isomor-
phism h#()() > h)s(Y) . Bousfield has show (?) that there exists a ¥/~locali-
zation {functor, i.e..a functor . E from the category £ to itself endowed
with a morphism n : 1 » E satisfying Lne {'ollowmr1 properties :

i) for any Xe &, ny @ X+ EX beé% in ¥

i) for any Xe B andanymap Y- Z in ¥ , the map [Z,EX] » [Y,EX]

i
1s bijective.

My papose is to show that this result holds in the morc general following
situation : B is the catcgory of CW-complexes over a given topological space
B.amd W is any ciass of maps in € satisfyine scme axiomatic conditions.
For example these conditions are satisfied in the following cases :.

1) W is the class of maps X+ Y + B inducing an isom ‘ug‘usm

\Oad anepimarphism For m=mit,

n, (X) * h,(Y) forany » < nY¥Ywhere n is a given integerg« and h, a

given twisted homology theory equalizing any homotopic maps
i1) W is the class of maps X = Y + B such that X = Y is n-ronnected.
In this last example the ¥W-localized of X+ B is X' » B where X' is
the n-1 Postinov stage of X along the fiber of X+ B (i.e. the homotopy
fiber of X'+ B is the n-1 Postinov stage of the homotopy fiber of X-3B}.
Now consider the folluwing classes of maps in &
i) B is « point and @ is the class of .maps X+ Y inducing an iso-
moIphism h vy 5 W X) , where NYois a given peneralized cohomology theory.

11} W is the class of mips X =+ Y » B inducing an iscmorphism

/

/
/
;
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hﬁ(Y) > h)E Xy f()—l—;n;*?h, vhere n is a given integer < @ and h’E is
a given twisted cchomology theory cqinlizing any homotopic mups.

iii) W is the class of maps X + Y » B inducing a weak homotopy cquiva--
lence S (Y ~B) 3 (X + B) , where J(Z + B) is the space of maps from
Z+B to E->B, E-B being a given Serre fibration.

In all that cases the class ¥ satisfics the axiomatic conditions except
one, and one can define for any infinite cardinal number ¢ a subclass Z'V'C
of W satis{ying the following conditions :

i) Wl c ‘2{/"_, if cgc b ,

i1) any map X+ Y+ B in ¥ belongs im W’C if X and Y are CW-
complexes of cardinal less than c .

iii) for any c there exists a 2'./" localization functor.

A big part of this paper is devoted to the study of W/~lccalization where
B is path-comnected with fundamental group m and # is the class of maps
f ¢ € such that the relative 22[1.'] -chain complex” C,(f) beiongs in a given
class ¥4 of graded differential frce ZL[m]-modules. For example the class
of maps in & inducing an iscrorphism in howologzy {or cohomology) with' given
twisted coafficients. .

In this casc, I prove the follewing fact : if X+ B is a W-losal B-space
(i.e. X = B has the homotopy types of 1ts localization), thc relative homoto-
py groups (B,X) are local in a certain scnee and the converse is true if
11,,‘—’,‘ atlbf;cc somc splitting conditions.

The paper is organized as follows. §2 contains some definitions ard the
statement of the main theorem ; in §3 \kkgive many examples of lccalization
functors ; §4 is devoted to the localization "1th lcspcct to a ciass ?J;L of
graded differential free Z[s J-—nxodules and some theorems in this sccticn are
proved in §5 and §€ and §8 ; the last section (§9) contains the procf of the
main thecrem : i.e. the construction of the localization functor. The section

7 is the proof of a technical proposition of §2.



§2. - SOME DEFINITIONS AND STATEMENT OF 'IHE MAIN RESULT
First T will give some notations about the category of (CW-complexes over a

space B .

2.1, - Let B be a topological space. The category of CW-spaces over B will
be denoted by B-CW . An object of B-CW is amp f : X- B where X is a
space having the homotopy type of a CW-compliex, and will be called a B-spacc.
A morphism of B-CW from f : X+B to g:Y->B is a map \p : X+ Y such
that : £ =g o v , and will be called a B-map. )

The product of a B-space by the interval 1 1is well defined and this per-
mits to define B-homotopy, B-fibration, B-cofibration, B-homotopy equivalence |
ctc ... . We can also define homotopy, fibration, cofibration, homotopy-equi-
valence ..., by using the canonical functor : B-CW" + CW . For example two
B-maps are called homotopic if therc are homotopic in the category of CW-com-
plexes.

If X+ B and Y+ B are two B-spaces, the B-homotopy. classes of B-maps
fron X >~B to Y -3 will be denoted by [X+B, Y-+ B| or by, [X,\:]B .

DEFINITION 2.2. - Let ¥ be a class of B-maps. A B-space X + B is called
W-local if , for any B~maps Y+ Z + B in WU, the inducing map

[Z,X]B - [Y,X]B is an isomorphism.

DEFINITION 2.3. - Let W be a class of B-maps. A ¥'-localization functor is
a functor E from B-CW to itself endowed with a morphism n : 1 > E satis-
fying the following properties }

i) for any B-space X+ B the B-map n from X->B to EX » B)
belongs in W~ '

ii) for any B-space X+ B, E(X -+ B) is W-local

Now I will give a list of conditions for IF which are sufficient to have

a W-localization functor.

DEFINITIONS 2.4. - Let W be a class of B-maps. The class W is called
a localizing class if it satisfics the following coritions :

L1 : W is closed under finite tonpos:itions I e

L2 : for any B-map X i Y-+ B in ¥, the map X > M(f) > B belones in

W™ ML) denotes the mapping cylinder of £ )



L3 : any B-map which is a homotopy cquivalence (not only a B-homotopy
N ) iy | aic.
equivalence) betomgs in W

L4 : if Xi > Yi + B is a set ot B-maps in ¥, the disjoint union
Ly, >4y in U '
+X; 7 {Y; > B belongs in i
L5 : if X- Y- B is a cofibration in ¥ and X~ Z-+ B a B-map, the

B-map Z = zg Y+ B belongs in &
L6 : if X+ Y-+ B is a cofibration in ¥ the B-map :
XX ITUDYX3I — Yx I—>B belongs in # .

Let W be a class of B-maps. The class W is said not too big if theve
exists a cardinal number ¢ with the following property :
L7 : for any B-map X~ Y~ B in # and any commutative diagram :

aD <~ D

oo

X — Y — B

where D 1is a disk and 3D its boundary, there exists a factorization :

ab — D
Voo
X' - Y'

o
X — Y — B

such that X' and Y' ‘are CW-complexes with at most ¢ cells, and the
tes

B-map X' > Y' -+ B belemgs in Wf .

THEOREM 2.5. - let W be a not too big localizing class. Then there exists

a W-localization functor.

Now suppose W in only a localization class.

NOTATION 2.6. - Let MW~ be a localizing class of B-maps and ¢ a infinite
cardinal number. Denote by 'W‘é the class of B-maps in W : X~+>Y~>B,
X and Y being Ci-complexes of cardinal < c .
The smallest localizing class of B-maps containing ’R}é will be denoted
. W
by ¥ - .



PROTOSITION 2.7. - The class ¥*_ is the class of B-maps in  %: X~+Y~+B

such that any worphism (in the cetegory of B-maps) from a B-map K- LB,

with card K+ cord L < ¢, to X+ Y~ B factors through a B-map in 'll}(': .

This proposition will be proved in §7.

The classes ?/J"C are not too big localizing classes and by 2.5 there exist
W C-localization functors. These functors can be used as approximation of a
virtual W-localization functor. Actually we have a more prccise theorem
(prox'ed in §9) :

THEOREM 2.8. - Let W be a lbca]_i:i_ng class of B-maps. Then there exists a

family of functors E c indexed by the cardinal numbers aind satisfying the
following properties : '

i) © for any B-space X+ B and any c , EC(X =+ B) is a B-space con-
taining X =+ D

i) for any
EC,(X + D)

iii) for any X+ B and any c, E.(X+B) is W -local
iv) for any X+ B and any c the B-inclusion from Y+ B to

E.(X > B) belongs in W, .

~
M

:<c¢' and any X+ B, EC(X +B) 1is contained in

——n




§3. - FXAMPLES OF LOCALIZING CLASSES AND LOCALIZATION FUNCTORS
It is difficult to construct not too big localizing classes of B-maps.

Then I will {irst give examples of localizing classes.

EXAMPLE 3.1, - Let h. (yesp. h7) be a generalized twisted homology (resp.
cohon:o}_ogy) theory cqualizing eny two homotopic B-maps. Then the class of

B-maps inducing isomorphisms on h_  (resp. h ) 1s a localizing class.
*

o ® . . ;
EXAMPLE 3.2, - Let h* (resp. h) be a generalized twisted homology (resp.
cohon;ology) theory equalizing any two homotopic B-maps and n an integer.

. , . . .. . »
Then the class of B-maps inducing is isomorphisms on the h,lé (resp. h7) for

—

all * g n 1s a localizing class.

,'é:nr( am epimorphiym (ras)- w ‘».onbn-or,',us!ha Fer x-‘nr'\
EXAMPLE 3.3. - Let q be an integer. Then the class of B-maps X =+ Y + B

such that X » Y is q-connected is a localizing class.

EXAMPLE 3.4. - Let E > B be a Serye flblatlon, and denote by J (X + B)
the space of cress sections of X » B through E . Then tke class of B-rops
X > Y > B inducing a weak homotopy equivalence ¥(Y +B) 3 PX > B) is a
Jocalizing class. |

These examples are very easy to check and we can construct a lot of other
examples by using the follcwing proposition.

PRODOSITION 5.5, - Let ?(k be a family of localizing classes of B-maps. Then

the intersection of the cl'asces 'l!"i is a localizing class.

THEOREM 3.6. - Let h, be a generalized twisted homology theory egalizing

any two homotopic B-maps and n be an integer ¢ « . Then the class W- of

B-maps X+ Y » B such that h (Y,X) is zero _fo_r * < n 1is a not too big

localizing class and there cxists a W—localization functor.

Proof : Clearly ¥ is a localizing class.
Now let ¢ be a cardinal number greater than thé cardinal of h . (pt)
for any B-map pt > B .
It is casy to sce that the cardinal of h, (X) 1is less than ¢ for every

B-mﬁp X+ B, X being a CW-complex of cardinal less than ¢ .



Supposc weé have a commutative diagram :

K — L

Lo

X — Y —» B

the B-map X » Y » B inducing on isomorphism on h, and K being a subcom-
Plex of the finite complex L . T will construct by induction a commutative
diagram :

K=K, — K — K ... — \p — «vo — X
N ! |
L=Lo — Ly - Ly .v.—> L —...— Y — B
wherg Kp is a subcomplex of Kp+1 and Lp a subcomplex of L and Kp

a subcomplex of L and card I‘p are less than ¢ and the map :
h, (LK) > h, \qu, o)
Suppose we have construct the Ky and the L, for any ig p . Since ths

is zero for = g n .

rap h,.(Lp,Kp) +h_(Y,X) 1is zecro for mgn , we con attach a finite number of
. 4 3%
cells in X_ and Lp in order to kill any element in h (L , ® &N .

P’ p A
Then we can attach less than ¢ cells in Kp and Lv) and we have construct
X

Kp-ﬂ and Lp +1 With the desired property.
Now we have the comutative diagram
K — UK — X
l ol p p > I
—r Kﬁ .Lf) — Y — B

and \I{ K > is a subcomplex of \IJ) L and the cardinal of U L_ is less than
¢ and the B-map \IJ) K +‘5 L -+ B beclongs in W,

p
That proves that #' is not too big.

THEORIM 3.7. - Let q be an integer. Then the class W of B-maps X > Y~ B

such that X+ Y is g-connected is a not too big localizing class. Morecover

the W-localization of X = B is the q-lﬂ— Postnikov stage along the fiber
of X»>B.

Proof : The proof is exactly the samc as the proof of 3.9 cxcept one must

“replace h, by w, . Then W is not too big.



Now if X - B is a B-spuce, let X' > B be the q~1th

Postnikov stage
along the fiber of X > B . It is casy to see that the Bﬁmp X+ X'"-+1B
belongs in ¥ and X' > B is W-=local.

That proves the theoren.
Hence Postnikov decomposition can be considered as particular casc of loca-
lization 1n my scnse. With the same idea the plus construction and the Dror

acyclic functor are localization functors with respect to a certain class # .

THEOREM 3.8. - Let X be a connected CW-complex and N a perfect normal

subgroup of m(X) . Denote by G the group w,(X)/N .

-

Then the class W of K(G,1)-maps Y = Z » K(G,1) inducing isomorphisms

H,(Y,Z[G]) 3 H,(Z,Z{G]) is a not too big localizing class and the localiza-

tion of X - K(G,1) with respect to W is the K(G,1)-space X" - K(G,1) ,

+ . - .
X being the plus construction of X with respect to N .

The prooi is trivial,

THEOREM 3.9, ~ Let X be a comnected CH-complex. Jenoie by A(X) the acyclic

Dror functor of X and A(X) - X the canonical map (°) .

Then the class W~ of X-maps Y + Z » X inducing isomorphisms

H,(Y,Z) ~ Hﬁ(Z,Z) is a not too big localizing class and A(X) ~ X 1is the

localization of pt + X with respect to W

The proof is trivial too.



§4. - LOCALIZATION WITH RESPECT TO A CLASS OF GRADED DITFERENTIAL FREE MODULES

4.1. - It A is a ring denote by E’E(A) the category of graded differential
free left A-modules with non negative degree.

In all this section I suppose that B 1is path-comnectcd with fundamental
gronp 7w , and 1 will study the W -localization when ¢ is a class of B-maps
defined by a class: W of objects in ¥ (Z[x]) by the following way :

a B-maps X+ Y + B belongs in ¥/ if the relative chain complex C_(Y,X)
belongs in %7, . ‘

The class W will be denoted by W-(¥#).

For example is M is a Z[n]-module the class of B-maps X+ Y + B indu-
cing an isoworphism H_(X,M)  H (Y,M) is such a class.

DEFINITION 4.2. - Let ¥ be a class of conplexes of & _(A) . The class
W, will be called a localizing class if it satisfies the following proper-
ties : : '

i) i[}; is stable under homotopy equivalence

ii) if C, and C} belong in #f, and 0+ C - C'+>Cl + 0 is exact
in 6’* (A) then (' belongs in ?/)‘;

1i1) gf, 1s stable wnder direct sum

iv) g, 1s stable under suspension.

PROPOSITION 4.3. - Let %, be a localizing class in &, (Z[n]).
Then ¥ (3#,) is a localizing class of B-maps.

~ Moreover the class W (W,) is not toc big if there exists 2 'cardinal pum-

ber c¢ with the following property :

V) for any C, e ?//;e , any cycle of C - 'is contained in a subcomplex
of C, in 5 of cardinal less than c .

The first part of this proposition is trivial and the second will be proved

in section §8.
Now suppose that 1}, is a localizing class in & (2[v]).

NOTATION 4.4, ~ I G- w 1is a group homomorphism, the class of complexes
C, € §,(2[6]) such that zZ[w] ‘?Cm e W, will be denoted by W, ©) .



NOTATION 4.5. -~ If G- w is a group homomorphism and n an integer, we
dencte by W (G} the class of linear mops C' » C between two free 2[G]-mo-
dules such that the nLh suspension of the comlex C+ C' « 0 < ... -belongs .

in 2.’);(6) .
NOTATION 4.6. - If G -~ 1 is a group homomorphism and n an integer, we
denote by Wn (G) the class of G equivariant homomorphisms F' » F  between

two free G-groups such that the abelicnized H1 (F') » Hy (F) belongs in Wn(G).

LEMMA 4.7. - One has the following properties :

i) W, (6 (resp. Wn(G)) is stable wnder composition and direct sum
(resp. free product) and contains the isomorphisms between free Z[G]--modules
(resp. free G-grouns) ~

i) Wn(G) is contained in Wn+1 (9]
Wn(G) is contained in Wn 1 Q) .

REMARK 4.8. - Sometimes the classes \‘v'n (G) are all the same, for example if
T,U'n ~is the class of complexes C*E such that H*(C #,M) vanishes for 2 given
Z[7]-module M .

DEFINITION 4.9. - let € be a category and 1 be a class of morphisms in
£ . An object X €6 is called ¥f-semilocal (resp. ¥ -local) if, for any
morphism Y = Z in ¥ the induced map Hom (Z,X) + Hom (Y,X) is injective
(resp. bijective).

Now let X + B be a Serrc fibration. In a first case I suppose that X + B
is T~-connected (1r1 (B,X) = 0) and I denote by G the. fundamental group of X.

THEORIM 4.10. - If the B-space X > B is wW-(¥/)-local, m,(B,X) is a G-
group W.] (G)-1ocal and Wz(G)—semi]ocal, and w (B,X) isa Z(G] -module
W _4(G)-local and W (G)-semiloczl for'all n > 3.

I don't know in general if the converse of this theorem is true. But it's

the case if the class )}, satisfies a splitting condition :
»

DEFINITION 4.11. - A complex C, in U+, is called n-splittable if there

exist a n-dimensional couplex C) in %+, and a n-1 connected map from C



to C, .
The conplex €,  is called splittuble if it is n—spiittablc for any n .
The class W is called n-splittaeble (resp. splittable) il any complex
in W, is n-splittable (resp. splittable).

Now suppose again that X + B is a T1-connected Serre fibration and denote
by G the fundumental group of X .

THEOREM 4.12. - Svppose that %W, is splittable and, for any subgroup T of
m , every complex C e 21/;(1‘) satisfying : Ho(C»s) = 2 (with trivial
P-action) is 1- and 2-spittable. Then X + B is W'(Y#*)—locnl if and only
if m,(8,X) is 1‘_71 (G)-local and WZ(G)—semilocal and nn(B,X) is Wn_1(G)—
local and \\’n(G)-somilocal forany n > 3.

REMARK 4.13. - If W*. is not splittable one can consider the class wi of
all splittablc complexes of X*_ . It is not difficult to sce that ?0’: is a
localizing splittable class inducing the same W (G) and Wn(G) as 1

*

X i ow the general case. The Serre fibration X -» is not necoessa-
Consider now the g al case. The § fibrat X=+DB t necessa
ry 1-ccnnectedd. Denote by T (B,X) the set of comnected components of the
fiber of X » B endowed with the canonical w-action.

NOTATICON 4.14. - Denote by & the class of w-sets E such that for any
K(w,D-map Y » Z » K(w,1) satisfying the following properties :

i) Y + K(w,1) 1s a covering space and the m-sect 1r1(K(1r,1),Y) is iso-
moiphic to E

i1) Y is a subcomplex of the CW-complex Z and Z/Y 1is 2-dimensional

iii) the relative chain complex C,(Z,Y) 1is a splittable complex in ¥/ .

there exists also a K(m,1)-map Z -+ Y » K(n,1) extending the iden-

tity map Y - Y -+ K(m,1).

REMARK 4.15. - It is not difficult to see that the class of n-dimensional
splittable complexes in wx depends only on wo(n),...,l\ln_1(1r) .

Then the class depends only on m  and on Wo(‘ﬂ’) and \\'1 (m) and will
be denoted by ¥ (WO (m), Wy (w) . ’

THEOREM 4.76. - Let X > B be a Serrc fibration. Then, if X -+ B is




W(w)-1ocal, m(B,X) helongs in X (W (), W;(r)) and for any point x
of X, m,(8,X,x) 1is a wy(X,x)-group W,(my(X,x))-Tocal and W,(m;(X,x))-
semilocal, and w (B,X,x) is, forany n>» 3, a 2[m (X,x)] -module

Woq (m(,x))-1ccal and W (w, (X,x))-scmilocal.

THUOREM 4.17. - Let. X » B be a Serre fibration. Suppose that the class

satisfies the following conditions :

1) for cvery subgproup G of 7 , every complex C, ¢ W*(G) satisfying :
HO(Czs) = 2 (with trivial G-action) is 1- and 2-splittable

ii) for gvenf suberoup G of m containing the isotrepy subgroup of a

- point in | 1r1(B,X) , the class Z&L*(G) is 2-splittable
1ii) for every isotopy subgroup G of a point in nj(B,X) , the class

W-(G) is splittable. |
Then X - B is W (W )-local if and only jf w,(B,X) belongs in

& W,(m), ¥;(m) and, for any xe X, m,(B,X,x) is a w;(X,x)-group

ny3, m (B.X,x) isa Z[m (X,x)]-module W (wy (X,x))-1ocal and

n-1
Wn (1r1 (X,x))-somiiocal.

The theorems 4.10, 4.12, 4.16, 4.17 will be proved in section §5 and §6.

The splitting condition is difficult to check in general. But we have the
following resultis :

PROPOSITION 4.18. ~ If A is a P.I.D., any Jocalizing class in &, (A) is

 splitrable.

PROPOSITION 4.19. - Let A+ B be a ring homomorphism such that every finite

set in B is contained ina s Im (A~ B) where s 'is a unit of B . Then,

if W4 is a n-splittable localizing class in & (B), ihe class ¢, in
€, dofined by :

c e W

t

«=> B®C_E ?(/f°E
A

i1s a n-splittable localizing class.

Proof of 4.18 : Let C, be a complex in a localizing class 24 in



€, . Since A is a P.I.D. the imge of C - C

n-1 1S @ free A-module

and we lvive a decemposition

C.=C'ecC
* *

*

where Cl is n-dimensional und C' is zero in dimension < n .
Lenote by % C, @ direct sum of a countable many copies of C_ . We have
N
an exact scquence :

0+EC*+EC*->C; >0
N~ N '
and C! bcloigs in W .

This proves thas< W, 1is n-splittable.

Proof of 4.19 : It is easy to sce that W, is a localizing class. Now I
will prove that W, is n-splittable.

Let C, be a complex in W, . Because &’}* is n-splittable there exist
a n-dimensional complex Ca:e 3 'w* and 2 n-1-commected map £ : C; > B_O‘K C’iE .

It is not difficult to find a n-dimensional complex C! and a homotopy
equivalence g : C,»C, such that f.o g : C!+>B (}S{» C, 1is an isomorphism
in dimension < np - 1 and an epimorphism with free kernel K i dimension
n-1.
Let T be a free A-module of the same dimension as K, and T " be the

th suspensicn of the complex T 1 r«<0....

n~-1
Let h : C!»>B®T_ be a map inducing an isomorphism from K to B®T .
w A ES
Then the map :
fog®h:CH -+ BZO (C,®r))

*

is an isomorphism in dimension < n .

Now let Co’ .. s,C

0 be a sequence of free A-modules such that :

C.=C. ®T. i<n
i i i

B@En =C;{ .
A

The map (,;]‘ + B Cji\) (Cn ) I‘n)" induces a map P : B % Cn + B 32\) ((‘.n @ I‘n) .
1f (Z—Si) is a froe besis of C, and (ej) is a free basis of C @T_,
p 1is defined by :



c.) =%Lp >
Y (1 @ci) ; ﬁjjébej

where 611. belongs in B and the sum y is allways finite.

By hypothesis therc exist wnits s.” in B and elements a.. in A

1

such that for any i, j

C,
C

Pi3 @05 5@y 0

Denote by € the isomoiphism from B (‘E C—n to itself defined by :

S R
t:(]@ei)~si @ei.

Then the map o ¢ is induced by a map ¢ : —C_n >C @rT

Tho differentials of C @®T_ and the composite map

S c,or, g Cio1 @ T 1 deflne a n-dimensional complex structure on
. ® L.n . B
This c,omplcx C, 1is canonically mapped in C, ®T,

to show that :

1) B CKC; is iscmorphic 'to C, then f*‘i € w,;
'ii) €, is n-dimepsional

jii) themap C +C ®T_~+C, "is n-1 connected.
w E3 » 3
That prcves the proposition.

It is not difficult



§5. - PROOF OF THE TiEORIMS 4.10 AND 4,16
Clearly the theorem 4.10 is a particular case of the theorem 4.106.

Now I will prove the theorem 4.16 by a scquence of five lemmas.

LESI 5.1, - Let X =» B be a Serre fibration, n an integer >3, X a
—— —— —— —— = ettt i —
point of X and C+ C' a map in Wn(ﬂ1 (X,x)) . Then, if X+ B is

W'(Zl}%)—]ocal, the nap Hom (C, n]](B,X,x)) -+ Hom (C', 'rrn(B,X,x)) is injective.

Proof : Let @ be a map from C to wn(B,X,x) such that the composite
mip C' > C ~» nn(B,X,x) is zero. _

By attaching n-cells on X >~ B we can obtain a B-space Y+ B and a
B-map X - Y » B such that -nn(Y,X;x) is the module C and the map
nn(Y,X,x) > nn(B,X,x) is the map P . _

Since the composite map C' > C ~» nn(B,X,x) is zero, we can find a commu-.
tative disgram of ZE‘H’-] (X,x}]-modules :

"rn+1 (BaY’X) > “n(Y,X’X) > “n(B’X;X)

" | <

' — C

\?|

and we can attach n+l-cells on Y -+ B in order to obtain a B-space X' - B
and a B-map Y - X' »+ B such that L (X',Y,x) 1is the module C' ‘and the
1 ®B,Y,x) 1is themwap ' .

By construction the B-map X » X' >~ B belongs in W (%) because the

. . . PO th .
chain complex C_(X',X) 1is the n~ suspension of the complex

map 1rn+](X' Y, X) »om

Z(n) ® C<+ Zu Q@ C'«0....
T (X,x) m X, x)

Since X+ B is W (¥, )-local the map X' > B is homotopic rel X - B

to amiyp X' > X- B, and this implies that the map ¢ in zero.

LEMMA 5.2, - Let X > B be a Seyre fibration, n an integer >3, x a
point of X and C«C' amp in W _,(r(X,x)) . Then, if X>B is

W-(w,)-1ocal, the wap Hom (C, m (B,X,x)) - Hom (C', = (B,X,x)) is surjec-
tive.




Proof : Let ¢ ' be a mp from C'  to T (B,X,x) .

Attach n-I-cclls on X = B by trivial attaching maps :

Sn—1 Bn-1

50 we can obtain a B-space Y+~ B and a B-map X -+ Y + B such that
1rn(B,Y,x) is isomorphic to 1rn(13,X,x) % C . The isomorphism is given by the
boundary ﬂ]l(B,Y,X) > 1rn_1(Y,X,.\') = C and the standard retraction :
1rn(B,Y,X) > ‘n‘n(B,X,X) .

Let p : O +"'1rn(B,Y,x) be the map given by the map ' :C' > 'rrn(B,X,x)
and the map C' = C .

By the map vy we can attach n-cells on Y ~ B in order to obtain a B-space
X'+B and a D-map Y » X' - B such that nII(X‘,Y,x) in the module C!
and the map T (X',Y,x) » T (B,Y,x) is themap v .

Clearly the B-mip X + X' - B belongs in Ut (Tlf‘%) and the obstiuction to
retract X' > B, rel X-B in X > E 1s the cohoiiology class of ' in
Hn(X',X 5 1rnf_B,X,:<)) . But X-»> B is '1’,"“(10'*)-10&11, then this obstruction
vanishes and ' is a boumdary, This proves that the map

Hom (C,T}’n(B,X,X)) - Hom (C',‘I‘.’n(B,X,X)) is surjective.

>

LEMMA 5.5. - Let X > B bc a Serre fibration, x a point of X and F « I’
amap in W(w (X,x)) . Then, if X~ B is W (¥ )-local, the map
Hom (F,nZ(B,X,x)) -+ Hom (F‘,nZ(B,X,x)) is injective.

Procf : Denote by awm a the inap m,(B,X,x) » 7 (X,x) . We have the follo-
wing properties : i -

i) g@) =ga g—1 for any ae m,(B,X,x) and ge m(X,X)

ii) ab a ! = a(b) for any a, be m,(B,X,X) . |

Now let Yo and P, be two maps from F to nz(B,X,x) giving the same
map : F' - nZ(B,X,x) .

If we choice a basis (x).) of F, S8 is given by :

W lxg) = u; & T, (B,X,X)

and P, is given by :



P(x) = u; v e m(BX,x) .

I want to prove that vy is equal to 1,
Now choice a basis ()'J-) of TF' . The worphism F' > F maps yj in a
word w. ¢ T .
The word mj is given by a finite ordered product :
€a
ws = 2 ga(xia) g€ "X, e =% 1.
By using the properties 1) and ii), it is not difficult to show the follo-
wing formula :
. Ea
= n
910 =1 805 ) Fp ooy)
1
where g& is given by :
| € (14 )/2
— -1 = o
‘= (I gL P.gl).g .

Now let ¢y : F -~ '.rz(B,X,x) and A : F' - F be the naps defined by :

V] (xi) =V

’ c
Ay) =ng(x )%
) =T g ( 10.)

Since Y o and \, are ecqualized by the mp F'>F , ¥ © X 1is the

trivial howomovphisin. Moreover gy and 2y give the same clement in w and
A and the given map F' + F induce the same map from

: ! ->
2] . &a,x) Hy (F") 2[n] . &p’x) Hi(F) .
Then A belongs in Wz(v] x,x)) . | |
Now let Y - B be the B-space obtained by attaching the 2-cells to X » B
by the attaching maps vy - This cells define a canonical w4 (X,x)-equivariant
map £ from F to T (Y,X,x) and we have a commutative diagram of T X,x)-
groups

v.s(B,Y,x) — nz(\’,X,x) — -rrz(B,X,x)
A q
{ v //\l’

)\ /

T —% s F




Since ¥ ¢ X is the trivial homomorphism and F' is free we can find a

commutative diagram :

wS(B,Y,x) — vz(Y,X,x) —r "ZFB’X’X)

‘I f[ !

pro—A ., F
Now let X' -+ B be the B-space obtained by attaching the 3-cells to Y + B
by the attaching maps w'(xj) .
It is easy to sce that X + X'+ B is a B-map in Wf(¥%-) , then the map
X' > B 1ctracts, rel X-+B, toamap X'+ X -+ B . That proves that the
attaching maps v, are trivial and, Conseqhehtly, that Vo = Yy -

LIMMA 5.4. - Let X+ B be a Serre fibration, x a'point in X and F » F'
a map in W1(w1(X,x)) . Then, if X+ B is 77(u}*)410cal, the map
Hom (F,ﬁz(B_X,x)) - Hom (F',WZ(B,X,X)) is sUrjective.

- Proof : Let W' be amap from F' to nz(B,X,x) .

By attaching trivial 1-cells oi X > B we obtain a B-space Y+ B and a
B-maps X -+ Y -+ B endowed with a bijection from s basis (xi) of F to the
set of 1-cells of Y/X .

Let 1, be the free group generated by the 1-cells of Y/X . The group
ﬂ1(Y,X) is equal to n1(X,x) * L , Let T be the kemel Qf the retraction
nz(B,Y,x) > 7, (B,X,x) ; m,(B,Y.x) is the semi direct product T % ﬁz(B,X,X)
and T 1is mapped isomorphicly by the boundary wz(B,Y,x) + n1(Y,x) to the
subgroup Ker (n1(X,x) * L 10, w1(X,x)) c ﬂ1(Y,X) .

It is easy to see that the group Ker (n1(X,x) * L > n1(X,x)) in the free

7, (X,x)-group generated by the basis of L and then T is isomorphic to F .
Thus wZ(B,Y,x) is isomorphic to the semi direct product F x HZ(B,X,X)
and the action in given by the map nz(B,X,x) + w1(X,x) and the standard
n1(X,x)-nction on F.
Now let ¢ : ' » nz(B,Y,x) =T xm,(B,X,x) be the homomorphism defined
by :

— , 1 -1

wvhere (y.) is a basis of F' and A 1is the given map F' > F .
J .



Ry attaching 2-cells on Y » B with the attaching maps ‘p(yj) we obtain
a B-space X' > B and a B-map Yo X' > B,

By construction, the chain complex C;e (X',X) 1is isomorphic to :

0 « "[ﬂ] ® U, (F) « Z[‘n] o] Hi(F') « 0« ...
"](X’X) ! 1T1 (X’X) 1

and then X -+ X' + B belongs in W}(z,ym) .

Since X -+ B is Z(}(zlj*)—local X' > B retracts rel X+ B to X-B.
This retraction maps the 1-cells of Y - X in the fiber of X + B and defi-
nes elements ug i w,(B,X,x) . ‘

Denote by \ : I 5 ¢ (8,X,x) the homomorphism mapping x; in wu; .

The retraction induces a map from wz(B,Y,x) to m, (B,X,x) and thz compo-
site map F' ~» TTZ(B,Y,X) + TI'Z(B,X,X) is trivial.

By construction this last homomorphism maps Y; in L((ij) TANGY j)f] and.
thus ' is cqual to Yo A .

LBME 5.5, - Let X > B be a Serre fibration. Then, if X+ B is U (1)

Proof : Let Y > 2~ K(r,1) be a K(n,1)-map, the K(m,1)~space Y + K(r,1)
being a covering space, and suppose that L8 (K(w,1),Y) is isomorphic to
' nj(B,X) and that C"E(Z,Y) is a splittable Z-dimensional complex in ”//;t .
The isomorphism between 1:1(B,,\') and M (K(w,1),Y) induces a commutative

diogram :

X — Y

} |

B — K(w,1)

and we will suppose that B »+ K(w,1) 1is a Serre fibration.
This square is 2-comnected (i.e. for any point x - X the map
ni(B,X,x) > wi(]((ﬂ,l),\’,x) is injective for 1 =1 and surjective for

i ¢ 2), thon we can attach 0, 1 and 2-cells to X in order to obtain a

.Y

N

B-space X' -+ B and a B-map X + X' - B and a commutative diagram
—_ 7

X
N\

. X' v /
N K(w,D"




such that Z 1is isomosphic to X' \}{ Y .
Since X+ B is W(W,))-local and X - X' > B belongs in #(¥) ,
X' > B 7retracts, el X~-+B to X~ B, and thus 2 - K(m,1) retracts,
rel Y -~ K(r,1) to Y = K(v,1) . '
Then w;(B,X) Delengs in 2 (WO(TT), \\’11r) and the lemma is proved, so are
theorems 4.10 and 4.10,
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§6. ~ PROOF OF THUORIMS 4.12 AND 4,17

Let X - B Dbc a Serre {ibration and suppose we have the following proper-
tics |

1) for every subgroup G of w , cvery complex C . € ilf)!E (G) satiéfying
IIO(CR) = Z (with trivial G-action) is 1- and 2-splittablc

i1)  for every subgroup G of 7w containing the isotopy subgroup of a
point in n](]’,,)() , the class wm(G) is 2-snlittable

1ii) for cvery isotopy subgroup G of a point in nl(B,X) , the class
?U* (G) is splittable

iv)  wy(B,X) belongs in <5 W, (), Wy @m)

V) for every x e X, m,(B,X,X) is W’i (1 (X,x))-1local and Wz(n] (X,x))-
semilocal

vi) forevery xe X and every n3 3, rrn(B,X,x) is h’n_1 (1r1 Xx,x))-
local and h’n(nl(X,x))-semi—local.

I want to show that X~ B is 0 (¥ )-local.

LEMA 6.1, - Bvery B-map X+ Y+ B in W(4) , vhere Y is the wnion of

X and n- and n+l-cells (n > 3) , has a B-retraction.

Proof : Let (Xi) (resp. (Yi)) be the connected components of X (resp.
Y) and choice a point X5 in each Xi . We have

Cﬁ (Y)X) = ? C*E (Yl ,Xi)

and all the complexes C*(Yi’xi) belong in W .

The obstructions to have a B-retraction for the B-map Xi +Y;, +B belong
. D , v
in the groups I¥f (Yi,)(i ; Tl'p(B,Xi)) = Hp(Yi,}\i,Trp(ﬁ,k,xi)) .

- The complex C, (Yi’xi’Z“T(xi)) is the complex

«0«c ¢
n

n+1+0+"

and the map d belongs in Wn(n}(x,xi)) .
Then, by using the property vi), the obstruction groups P (Yi,Xi,ﬂp(B,Xi))
vanish and cach B-map X]. - Yi + B has a B-retraction.

That proves the lemma.

LI2N 6.2, - Dvery B-mop X > Y = B 'in Vf(ll)‘*) s ‘_ILC_IE Y '_ii'thé'union_ of X

and 2- and 3-cells, has a B-retracticn.




Proof : Define 1ho spaces X and Y, and the points X, a8 above, and

denote by Xi Uu wion of \ and the 2-cells of Y

For cach 1 we have the follox'mg exact sequence of T X, x; ) -groups :
ms (X)) > mp(,%) » i B,)

Let I' (resp. F') be the free m (X,x. ) groups gencrated by the 2-cells
(resp. 3- (,ells) of Y - )\i . We have czmnom.cal maps

P mO3X) > ws K

Since Fi is free there exists a homomorphism f; ¢ I?'i > Fi such that the
following diagram in commutative :

nS(B,Xi) > nz(Xi,Xi) > T, (B’Xi)

F! .
1 1

It is easy to see that the B-map - )(i + Y, = B belongs in w-(wt,) , and
then the mop £ Fi > Fi belongs in sz(v,] (X,xi)) . One deduces that the map
F;+w,(B,X;) is trivial and the B-map X; > X! > B has a B-retraction.

I\ow the only obstruction to have a B~ letlactlon of )\ > Y, > B Dbelongs in
H (\ \ 5T \B,‘(,‘\l)) . By using the property vi) this group vanlshes and
)(i -> Yi + B has a B-retraction, and the lemma is proved.

LEMMA 6.3, - Every B-map X-+Y B in UYUL) , where Y 3is the union of

— ——— ——————

X and 1-'and 2-cells, has a B-retraction.

Proof : Let K be the Eilenberg-McLane space of type K(r,1) and £:B -+ K
the standard map. let K+ K be the covering space dcfine by the m-set T (B,X).

We have a commutative diagram :
o

\,
/

4——‘7<2

N
Y
A

—_———

e <

-

wvhere Z is the push-out Y ;(J K . _ .
Clearly Z is thc union of K ‘and 1- and 2-cells, C»(Z,l'z) is a splittable



complex in Y5, and 1r1(}\’,i) belongs in -X(Wo(n) Wi (m) . Then the B-map.
K~+~2-+X has a K—::e'tmc.ti.gn. This implies that “‘O(K). > "o(z) is bijective
and for every xe¢ K, 'rr1(l(,x) and n1(2,x) have the saine image in n.'(i(,x).
One deduces that Tro(.\’) -> nO(Y) is bijective and, for every xe X, Tr1'()(,x) '
and 1r1(Y,x) have the same image in T (B,x) = 7 . :

Thus, if X' denotes the wnion of X and the 1-cells of Y - X, the B-map
X > X' > B has a B-retraction.

Define the spaces Xi’ Xi, Y; and the points . X; as abqve, and choice
B-retractions fi of Xi -> )\i -+ B, Let Fi (resp. Fi) be the free 1 (Xi)—
group generated by the 1-cells (resp. 2-cells) of Yi - Xi . The obstruction to
extend fi to a B-retraction Yi > Xi -~ B 1s a map T Fi > “Z(B’Xi) .

Since Xi > B has the homotopy type of the union of Xi »~ B with trivial
1-cells 'rrz(B,Xi) is isomorphic to the semi direct product Fi x Trz(B,Xi)

(sec the proof of lesma 5.4) and the B-retraction fi, induces the second pro-
jection on the m,., Moreover the attaching maps of the 2-cells induce a map :

g B} > F »my(,X,) . If H! is the basis of F!

i 85 is given by :

VxeBl g0 = (00, y; ()

. ol } : - W v
and hi : I‘i -+ }'i belongs on l\]\'ﬂ’](_)\i)) .

By the propcrty v) there exists a map L7l Fi > 1 (B,Xi) such that :
’ N - -1
Vxe®! Pi oo h () = ;07

Now change the B-retraction fi by the map ¢ - This new B-retraction
induces in the T, the morphism Fi b ﬂZ(B,Xi) > -rrz(B,Xi) mapping (u,v)
to Lpi(u)v . Thus the new composite map Fji > Fi x nz(B,Xi) -+ -rrz(B,Xi) is
zero and the new B-retraction extends to Yi + B .

That proves the lemma.

LEMMA 6.4. - Every B-map X +~Y » B in W@(Wf)) , where Y 'is the ‘disjoint
union of X and a 2-complex, has a B-retraction.

Proof : Let K the complex Y - X . The problem is to construct a B-map
from K-+ B to X - B, or, cquivalently, to construct for each connected
component XK' of K , a B-map from K'=>B to X->D.

Now let K' be a commected component of K , and G the fondamental group

of K' . The complex C,(K' ; 2G) is a two dimensional complex in ?&,:(G)



such that HO(C»(K',ZG)) = Z (with trivial G-action). Then by the condition
1) C (K, 1[(‘_‘) is splittable in W, (6) . and C*_(K',Zn) is a two dimensio-
nal xphttablc complex in ?f’

Let }\(n 1) be the covering space of K(w,1) defined by ™ (8,X) .
have 2 commutative diagram :

SN
X — K(“’1)

o |

B‘/_» K(r,1)

Thus, by using the condition : m(B,X) € LM, (m), W;(m) , the K(w,1)-
map K(w,7) Li K' > K &,1) bhas a K(w,1)-retraction, and there is.a .K(y,1)-map :
K' > K@, 1) ~ K(m,1) .

let B De the pull-back B x K’G’T) The K(w,1)-map
o TN K(r, 1) :

K' + K(w,1) » K(w,1) and the map K' -+ B induce a B-map K' » B+oD.

Now it suffices to construct a B-map from K' - B to X-B.

Choice a base point a e XK' and a point x € X over the imagé of a in
B . Denote by G the group m (K',a) and by 7 the group i (ﬁ,x) ;W ds
the isotopy subgroup of a point in my(B,X) . .

Let n1 be the l-skeleton of K' . Since the fibers of X » B are coimec-
ted, the 'ﬁ—map X+Xv Ki » B has a B—zetractxon Xv Ki +X+B.Llt F be
the kernel Ker (nz(B, X v K}, x) »m,(B,X,x)) . By the boundary
nz(ﬁ X v Ki, x) -+ Tr]' (X vKi, x) , F maps isomorpl‘icaly on the kernel
Ker (n1 X v Vi, x) - n](X 1)) , and F is a free T (X,x)- g10up (see the proof
of lemma 5.4). Morcover -rrz(B, Xv K1, x) 1is the semi-direct product
Fxm, (B Xx) .

Let F' be the free n](X X) - group ncnerated by the 2-cclls of K' . The
attaching maps define a morphism g : F' + F » T (B,X,x) .

This map is defined on the standard basis of F' by :

g(x) = (h(x), ¢(x))

where h : F' - F 1s a n]()\ \) equivariant map and ¢ : F' » “Z(B X,x) is
the obstruction to O\tend the B-retraction X v Ki >X>B to XvK »B.

N let Y : F ~» "Z(B X,x) be a T (X,x)-cquivariant mp. We can chdm,e the
B-retraction X v K » X » B in order to have a new wmorphism

F x nZ(ﬁ,X,x) - n-Z(B,,\,_\) mapping (u,v) to g (u)v . Then the new obstruction



map from F' to TFZ(B,X,_\') is given on the basis of F' by :

g'(x) = v(h(x yp(x) .

Now let ' be the map : F' > Ty (L,X,x) equal to \p-1 on the basis of
F' . ‘then, in order to prove the lemma, it suffices to find a map
P F~> 1r2(]§,X,x) such that :

Y' =P oh.

SUELEM:IA 1. - There exists a 2-dimensional complex in ¢/ (%) :

- })'
2[%] « 2[5 ® H (F) < g% ® H,(F') <0 ...
[¥] - 23] x| (%] o (5,x)

where h'  is the morphism induced by h .

Proof : Denote by (.\'i) (resp. (yj)) the 1-cells (resp. Zz-cells) of X' .
The group Lp (K:,x) 1is the free group L generated by the X3 's, and ' an
free m,(X,x)-group generated by the yj 's. N '

Llet a,: m(X,x) » L+ 7;(X,x) De the map defired by the B-retraction.:
Xv K{ -+ X+ B . Then F 1is the free T (X,x)~group generated by the
Xi“x-(‘\g ) 's.

It is not difficult to see that the map g is defined by :
gy = (oo (031 ;)
J J*7) 1

where pj if the rclation in L defined by the cell yj and Zj is the ele-
ment in  w, (B,X,x) induced by yj .

Let k be the map from L to the group F = Ker (1\'1 (X,x) # L + Ty (X,x))
defined by : ‘ '

k(u) = uaﬁ(uq) .
The mip h 1is also defined by :
hyv.) = k(p.) .
1(v5) ()
Now, consider the following complex :

2[ S rdki ®  H{(D) L 2] %) ® H.,(F')
- ' L (X,x) ) 171()(,3()



o . -1 < <3 - S
where 3 maps Xia*(xi ) to Xy - 1 (xi is the imige of x. by the mp
L - 1) and h' is induced by h .

Tt is not dificult to sec that h' is induced by the Fox derivative (*)
9 : CZ(K', Zﬁ(}(',x)) > C1(Ki, Zn1 (K1' ,X)) and, thus, the above complex is
isomoxphic to :

2t e C Ky, Z[w (K},%)])
Tr1 (K-i,X)

and belongs in i[}»(_ﬂ) .

_S_LH%LR“-.»L\L'\ 2. - There exist two {ree 1r1(X,x)—m'ouEs F1 and F,; and a map
h : I! ss}_-‘-i —>FxF] such that :

i) h rcstricts to h over T
ii) h G~W1(TT](X,X)) .

Proof : Denote by : Cj 2 C'1 A C, the complex ;

217 L 2y e Hm L o2E e n @)
Ty (X,x) Ty (X,x)

S

The group # 1is an isotopy subgroup of a point cf w](B,X) . Then, by -using
the property 1ii), CO < C1 « G, is splittableé and there cxist a map
de 1\’0 (3f) and a 0—connec_:ted map A from C(') ~— C.i to CO “ C1 < C2 . One
can suppose that the map C(') > G, is surjective with free kernel Eo , and the

relative complex of A 1is homotopy equivalent to the following complex :

— h! .
One can see that H' restricts to h' over C2 and h' belongs on W] ().
.Ngw let F, (resp. Fj) be the free m, (X,x)—group generated by a basis_

of CO (resp. Ci) . Since Ty (X,x) - T 1is surjective the map FaEP]—»C]&JCO

is surjoective and we can 1ift h' in a T (X,x)-equivariant map

h' : ' = Iy > Fx Iy extending h .

Furthermore, h' belongs in W] ('.r1()(,x)) , because h' belongs in W.l ™ ,

and the sublemma is proved.

Now we can prove the lemma,

The map. ¢' : F' - 1r2(.—l;,)(,x) extends to a map ¢ : F' % Fi - nz(i'%,)(,x) ,

'
1



which factors through F » F1 because h' belongs in W] (TT1'(X,X)) , and
—,rZ(B,X_.X) is T\-‘1 (Tr](X,x))—locnl. This factorization give 2 factorization of

' through F and the lemma is proved.

LEMMA 6.5, - Let X-> Y > B be a B-map in ¥ (2(/‘*) . Then there exists a cow-
mutative diagram :

such that X+ Y  ~ B belongs in ZZ}(L&‘;,) and Y, is the disjoint union of X
and a  2-complex and Y - Y 'is O-connccted.

Proof : Let K be a connedted component of Y not intersecting X . Denote
by 7' the group m1(K) and by G the image of @' in m = (B) . Clearly
the Z[G]-complex C, (K, 2[G]) belongs in MA (G) and, by i), is 2-splittable.
Morcover the map n' -~ G 1is epic, and then the ;omplex C, (X, Z[‘rr'] )- is a
Z-splittable complex of #} (7') . .

Let C, be a Z-dimensional complex of l(}"*(G) and { a l1-connected :nap
from C. to the complex C, = C (K, 2[x']) .

One can suppose that f 1is an isomorphism in dimension 0 and an epimor-
phism with free kernel T in dimension 1, and one can construct a map f'
from C, o C, 2 (0«T L '+~ 0+« ...) inducing an isomorphism in dimen-
sion 0 and 1 .

Add 1- and 2-cells to K , and we get a complex K' and 2 homotopy equiva-
lence K' + K, such that C,(K', Zn') is isomorphic to C,® (0«T«T+«0 ...) .

Now let K" be the union of the 1-skeleton of K' and 2-cells correspon-
ding to a basis c¢f C}) , mapping in K' by a map induced by f' . The complex
K" is 2-dimensional and C_(K' ; Z{n]) belongs in %: . -

Then, the space Yo is thc disjoint union of X and all the XK' defined
as above, and corresponding to the various connected components of Y .

One has a commutative diagram :

)
Y
7 ON
> Y

X > B

Yo is the union of X - and a Z-complex, X —+ Yo -+ B bélongs in 'll}(lb‘;)'

and Yo + Y 1s O-connected.



LBMA 6.6. - Let X =Y~ B be a B-map in N (/)

Then there exists a comutative diagraom :

» XY being 0-connected.

Y,
7y
X— Y — 3B
such that :
i) X+ ¥y + B belongs in W)
ii) Y, is the unjon of X and 1-cells and 2-cells.

iii) Y; -~ Y is T-comected.

Proof : Let K be a connected component c¢f Y and 'K the inverse image
of K by themap X+ Y, and K- XK' - K a factorization of X + K where

K' is the wnion of X and non-zero dimensional cells and K' » K is a homo-
topy equix‘aie'nce.

Let «' be the group my(K'). and G the image of #' in = . Cléarly G
contains the isotopy subgroup of a point in my(B,X) , and C)E(K',T(' ; z[G])
is a 2-splittable complex of W‘*(G). Actually C*(K‘,T\" s 2[m]) is a 2-split-
table complex of [} (v') because #' -+ G is epic.

Denote by C_ the complex C*(K',K ; Z[n']) . Since C, venishes and C,
is 2-splittable, there exists a map C; - C]' in 1\"1 (') and a commutative
diagram :

O+C] <—C2+C3+ cee

I

GG

such that the map Cj » Cy 1is epic with free kerncl. _

Then one can wodify the number of 1- and 2-celis of K' 1in order to have
an isomorphism Ci~¢C -

Let K, be the inion of K and the 1-cells of X' .

The map m,(K',K;) + H,(X' K, Z[w']) is epic. Then if (ea) is a basis
of C, , one can choice for any a an element u, in 7y (K',K3) such that
e, and u, have the same image in HZ(K',K],'.?[W']) = CZ/CS . Let K, be the
union of }(1 and the 2-cells attached by the elcuients Bnac- m (Kl) . The
u, 's induce a map K, > K' , and one can show that K -» Ky >+ B belongs in
'l.!.f"(ZIj;) and K2 + K is 1-connected.

Denote by Yy the union of all K, and onc has a diagrem :



X-»‘,’]—>Y—>B
~—_ A

satisfying the condition 1) ii, 1ii) of the lcmma.

LEtMA 6.7, - Jet X>Y > B be a B-mp in W (#)) , XY being 1-connected.

Then there exists a commtative diagram :

r )
\” —>)2+Y3+...+Y

p

X + Y-+ B

such that :

—

1) Yh > Yn+1

i1) Y is the union of Y
v

+ B belongs in W+ (W,) forany n3 1
and n-cells _:gg n+l-cells

A5 1n¢ union n-1

111) '. is the unicn of the Y, 's

iv) Y' > Y 1is a homotopy cqm.valcnce.

Proof : Svmpose we have constiuct the following diagram :

Y] P e > Yrl

l N\

X — Y > B

where Y > Y. 1+1

> B belongs in ¥ (#:) , Y. is the union of Y;_ 4 and
i~ and 1+1 -cells, and Yn -+ Y 1is n-connected. '

1

I will construct Y in the case Y comnected.

n+1
Since Yn -~ Y 1s n-connected, one can find a factorization Y, > Y'>Y of

Y, > Y such that Y' -+ Y is a homotopy equivalence and Y' is the union of

Yn and cells of dimension > n . The complex C, = C»E(Y',Yn N Z[ﬂff]) is zero

in dimension € n , and Z[n] (Y) belongs in WA, .
Since 1r](X) and up ) have the same image in = , the image G of
m;(Y) > w is the isotropy subgroup of a point in w,(B,X) and z[g) “152\,)

is splittable in }2.(G) . Since T,y (Y) - G 1is epic, C_ 1is a splittable

G

*

complex in 7,(}*(“1\’) and there exist a map Cf ., - Cl

A in Wn+1 (1r1Y) and a

commitative diagram :

+~ 0« C

n+1 < Cnw"Z “
+ 3
C'

n+1 n+2



such that !
such that Cn+1 - Cn+l

Ther there exists a diagram :

is epic with free kemel 7

0..*‘0'(-C]]+1@r+cn+2®r+cn+3+--c

ta 4

H all
Cre1 = Clan

Let Y" be the union of Yn , and the n+i-cells of Y' and n+l-cells cor-
responding to a basis of TI' . The space Y" maps to Y' by a map trivial on

the extra n+l-cells. The map

A BRYL]] LA B U L = @
"n+20 .1 +Hn+2(\ ,Y' Z/(Tr1Y)) Cn+2/Cn+3 r
is epic, and one.<an attach n+2-cells in order to get a space Yn +1 and a map
Yn+1 +Y' such that Cm(Ynﬂ’Yn ; 7(771Y)) is isomorphic to C, and
Yn el Y' i n+l-connected.
If Y is not comnected, one can do the same thing for all connected compo-
nents of Y, and in all the cases, one can construct the Yn by inducing with

the desired properties.

LEMMA 6.8. - For any B-map Y » Z -+ B in ¥ (#) the map
(Z+B,X+>B] > [Y>B,X-B] is epic:

~ Proof : If suffices to prove the lemma in the case Y » Z is a cofibration.
Let Y>X~+B be aB-map and X' be the space XL{ Z . One has the fol-
lowing diagram :

Y > 2
¥ ¥

X+ X!

cand X+ X' > B belongs in W (W) .
By 6.5 there exists a space Xo . disjoint wmion of X and a 2-complex ani

a commutative diagram :

XO
7 N

X - X' —> B

such that X -~ X - B belongs in W) and X > X' is 0-connected.
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By 6.4 the B-mp X -+ XO + B has a B-retraction 'XO +X->DB. Lt X" be
e push-out of X and the mapping cylinder of XO' + X' over Xo . One has

a B-homotopy commutative diagram :

X — X'
70N
X X>X"> B
and X - X" is O-connected and X -+ X"+ B belongs in ¥ (#/)) .
By 6.6 there exist a space e union of X and 1- and 2-cells and a com-

mutative diagram :

X
VA
X— X — B
such that X » X; ~ B belongs in W-(%4) and Xy > X" is 1-connected.
By 6.3 the B-map X -~ Xy » B- has a B-retraction Xy > X+ B . Let X" be
the push-out X K M(X.‘ + X'") . One has a B-homotopy comnrutative diagram :
1

X1 —_ X"
/\1\ 'l‘
X—>X=>X">B

and X > X® is l-connected and X - X™ -+ B bclongs in ¥ () -

By 6.7 therc exist spaces Xn », N >»2 and a commutative diagram :
X, » X, > + X
2 3 LR N 2
7 \
X — X" »+ B

such that X+ X, +~ B , and the X, > X,y > B belong in W) , X, is
the union of X and 2- and 3-cells, X, is the union of X, , and n- and
n+l-cells, X is the union of the Xn 's and X =+ X" 1is a homotopy equivalen-
ce.

By usirg 6.1 and (.2 one can construct, by inducticn B-maps o, from
X,>B to X>B such that o,
traction X > X > DB of X~ X-+>B .

Since X + B is a Serre fibration the R-maps X - X" » B has a B-retrac-

extends @, 4 . These B-maps induce a B-re-

tion, and X+ X" > B and X - X' > B have a B-retraction too.

Thus the B-map Y » X > B extends to Z + B and the lemma is proved.



LM 6.9. - X =B is % (#5)-local.

Proof : Let Y+ 2B beaB-mpin WW), Y~>1Z being a cofibracion.
By the last lemma, the map [Z2-+ B, X+ B] » [Y+>B , X B] is epic. In
the same way the map :

[(ZxI-+B,X+>B »>[YxTuzZxd~>B,X-H

is epic. :
That jmplies the injectivity of [2-B ,X-+B - [y+B,X~+ B and
X-+B is W‘(}!}'*)—local.

That piroves the lemma and theorems 4.12 and 4.17.



§7. - PROOIF OF THE PROPOSITION 2.7

Denote by 7.’7/‘-(: the class of B-maps in %% : X »Y » B such. that any mor-
phism from a B-map K - L - B, with card K +card L <c, to XY 4B
factors through a B-map in #F! .

It is easy to sce that z_[)-—c satisfics the conditions LZ’ Ls, Ly of 2.4.

LEMMA 7.1, - The class 7F. is closed wnder finite compositions.

Proof : Consider the following commutative diagram :

) QU §
¥
Y¥Y>Y->2 B

vhere K and L age CW-complexes, of cardiral <c , and X + Y » B 'and
Y >2Z +B belong i uf o
Since Y +Z + B belonqs L) 'Z(/‘ the morphism from K+ L - B to
Y > Z + B factors through a B-map K' » L' > B in ‘I#(': . The morphism from
K+K'" B to X»Y-3B factors through a B-map K » K| - B 1in il/"
The B-mops }’.O > (' + B and ]\' . 1\(') }\J, L' » B belong in }{/! and the
morphism from K »>L -8 to X » Z + B factors through the B-map in {f é
}\ > }\' U L'->B
K'
K —» L
Y
l \K' — L'
K . l \
N
K' — K'V L
(o] o K’
v v v

X+Y ——>Z—>B

' ko
This implics that X+ Z > B belongs & /! .

LEMMA 7.2, -'If X~ Y > B 1is a cofibration in. z_{}—c ‘and X+ 2B isa

: L T
B-map, the B-map Z + Z UV Y ~ B belongs -_J:_a_° wc .
X

Proof : Let K+ L -+ B be a B-map, K béing a subcompléx of L and
card I being less than ¢ , and o a morphism from K-+ L > B to

Z+272uUY ~+ B . The morphism a factors through a B~map K'-+ K"'U L' + B,
X ' K’



where K' -+ L' -+ B is a cofibration and X' - X'+ B 1is a B-map and X', L’

K" are of cardinal less than ¢ , and the morphism from K' -+ K! L]é, L'+ B
to 722 l){ Y - B. is induced by morphisms from K' > K"+ B to X+ Z + R
and from K' > L' +B to X>Y~+B.

Since X - Y » B belongs in 17)_(: the morphism from K' » L' 5+ B to

X~+Y > DB factors through a B-map KC') > LC‘) +B in W'

e the map XK' » Kc'y

being a cofibration.

Then the morphism from the diagram :

K' > L

o\

to the diagram :

factors through the diagram :

Denote by Ki > L] -+ B the B-mzp K" Llé' Ky~ K'Y L~ B . This B-map
belongs in ‘ZI}(': and tne morphism from K- L - B to0 Z > ZL))( Y - B factors

through Ki - Li + B . That proves the lemma.

LEMA 7.3, - If X»>Y->B ‘'is a cofibration in w ‘the B-map :

XxIu Yx3l->YxI=DB gelongsg wLC.

Proof : Suppose that X 1is a subcomplex of the CW-complex Y .

Let X+L~>B be aB-map, K and L being CW-complex of cardinal less
than ¢, and o a morphism from K-+ L+ B to X*IUYXBI -+Y>"I+B.

Denote by L' the smallest subcomplex of Y containing the image of
L+>YxI~=Y andby K' the complex L'NN X .



Since X -+ Y -+ B belongs in 'u?c , the morphism from XK' - L' -+ B to
X ->Y -+ B factors through a B-map K' -+ L" > B in Ué . Then the morphism
a factors throvgh K" - L" + B and the lemma is proved.

Thus Wc is a localizing class and contains 'Zl)c

LEMMA 7.4, - Let vy be a cardinol number 3 ¢ . Then any morphism from a B-map

e O3 . ~1 ¥ o . - 3 e o .
K- LB satisfying : card K + card L < y , to a B-map in We factors

through a B-map K' » L'+ B in W. vhere K' ‘is a subcomplex of L’ ‘and

L' a CW-complcx of cardinal < vy .

Proof : This lemma will be proved by induction on y .

Let y be a cardinal number > ¢ and suppose that the lemma is provéd for
any y' <y . '

If y 1is not a successor it is easy to prove the lemma for this Y .

Now suppose that y is equal to y, + 1 (y, » ¢} and let. K> LB be
a B-map where card X + card L ¢ Y, and X->Y->B aB-map in W. and o a
morphism from K-+ 1L +B to X+ Y- B ; 1 will suppose that K 1is a subcom-
plex of L . 'A

Choice subcerplexes Li of L indexed by a well ordered set I such that :

i<jiLl.C ; = . : . .
153">Li-,41‘j and L ti)_L1 and card L. <y,

Denote by K, the complex Li nK.

Suppose we have construct for any 1 < io a B-map X. > Y, » B with the
following properties :

1% j =>Xi 1s a subcomplex of XJ.

1<) =>Yi is a subcomplex of .Yj

~card Yi- < Yo
and X; > Y. > B belongs to W _ . |

Suppose furthermore we have a factorization of the morphism a restricted
to K, ~L; > B through X, » Y. ~ B, and all that factorizations are conpa-
tible.

If i, isequal to i, + 1, the moyphism from :

K]. U X. - I_.i U Y. »B
‘0 K. 14 o} Li
o 1

to X~ Y- B factors through a B-map Xj - Yj B is W such that Xig



- JuU -

is a subcomplex of \’j_ol and card Yio is less than Yo s because the lemm ‘is
truc for vy, . We can suppose that 'the maps  Niq > Xy and Yj  » Yjq are
inclusions of complexes and we have construct Xio + Yio + B with all the
desired properties. :

FE S - s 4 . = U (s o= M,

If iy ismot cqual to iy + 1, let Xi, i<i X; and Yjg " i%i, Y1 .
The only thing to prove is that the B—map \1 > Yi, > B belongs o L

Let Mi be the mapping cylinder of Xl + Y; . The B-maps  Xj, +M; L)g Xi +B
belong fa Y- c then, by using the next lemma, the B-map Xj, > “10 + B
belongs fo W, too. '

Let K' be the union of the Xi and L' the union of the Yi . The B-map
XK' » L'> B belongs o W_, card K' + card L' is less than y , and the

morphism o factors through K' > L'+ B .

LRML 7.5, - Let W- be a localizing class and Y - B a B-space and Y, sub-

spaces of Y containing a subspace X of Y . Suppose we have the following

propertics :

i) for each i the inclusion Y-¢+ Y 1s a cofibration

if) Y 1is the union of the Y, '<. with the limite topology

3i1) forany i and j Yi v Yj ' is contained in a Yy
iv)  the B-map X ~» Yi + B belongs i’g g
Then the B-map X > Y > B belongs fo #* .

- PRCOF OF PROPOSITION 2.7. - By the lemma 7.4, for any B-map X > Y »+ B in
Tzzj——c the identity worphism from X + Y > B to itself factors through a B-map
X'+>Y'>B in W .

We have two comrutative diagrams :

X ——Y X — Y
. \
at B4 :’;B o'y 8 B

x'

X' —--.h Y' > Y'
and we have aa' =1, g8' =1.
Let M be the telescope of the system
. t l‘ ala
X! _q_a_.> Xt _a_a...,y. X == ..

o | g
and N the telescope of : Y' PE, vy B8,

By using the lemma 7.5 the B-n: pP M->N-+B Be].ongs in wc and X»>Y->1D



RS I B

belongs in wc and X>Y-+B beclongs in W“C too. The proposition is pro-
ved.

PROOF OF THE LEMMA 7.5, -

1) first case

I supposc in this case one has a sequence Yo cY,cY,C ... of subspaces
of Y.

Let Z be the subspace of Y x [0,») defined by :

z=\U Y x [n, n+ 1],
nN=0

It is easy to see that the maps :
Z+Yx [0,0) Y

are homotopy equivalences.
By hypothesis the R-map X - Y +B belongs in W- fcr any n . Then by
using the conditions L4 and L5 one proves that the B-map :

X x [0,») » X x.[O,co) v U Y, x {n} » B
B n=1
belongs in W .
let K-+ L+ B be this last B-map.
Let U +V - B be the following B-map :

X x[n, n+T] UYnx{n}UYnx'{n’fl}-rYnx[n, n+1] +B.

By L6 this B-map belongs in . : 4
But Z -+ B is the push-out of L -+ B and J}_{Vﬂ -~ B over lr{ U, +B. Then
by L4 and LS thc E-map :

Xx [0,0) +2Z>B

belongs in W',

Morecover X - X x [O,w) and Z-=Y are homotopy equivalénces, then by using
the conditions L1 and L3 the B-map X + Y + B belongs in ¥ .

ii) gencral case
Denote by J the set of all i 's. The sct 7 is a filtrant ordered set.

Let T be the classifying space of ] ; 7T is a simplified complex and a



simplex of T 1is a sequence (io < i1 < .0 < iu) in J.
Let Y x T Dbe the topological limite of the Y x K, K finite complex of
T and Z be the subspace of Y x T defined by :

z = U Yo % (i < .ee < i)
1 <..<1 0
(o] n

The space 2 1is filtred by the subspacés Z,

z = U v, x(io<...<iijXxT:

p<n

Let Sn be the set of n-simplices of T . By using n times the condition
L6 one can see that for any ¢ € S and any 1 € J , the B-map :

Xxgu\’ixag—z\'ixg-»B

belongs in - Ut .
Then for any =n , the B-map :

ik Xx(io<...<'1n)UYi xa(io<,_:<i\+

1 <...<] o
o< <Ip ,

> 1L Yix(io<...<in)-¥B
1<<i 7o
belongs in W too.
Hence by using the condition LS one proves that the B-map

én—] ~ Zn ~ B
bélongs ta W .

This implies that for any n the B-map
X%xT=>1Z2 -B

belongs fo - .

But the first case of the lemma is provéd. Then the B-map X x T+ 7>B
belongs {0 W' . |

On the other hand one can see that T is contractible and the map Z =Y,
is a homotopy équivnlence. Thus the B-maps X+ XxT-+DB and Z~+Y » B belong
in W and the Brmap X+ Y > B bé]ongs fo W too.-



§3. - PROOF OF TUE PROPOSITION 4.3

§.1. - Let W be a localizing class in &, (Z[r]) and % be the class of
B-maps defined by : )

a B-map X - Y- B belongs fn W if and only if the relative 72[1;] ~-chain
complex “C_(Y,X) belongs 1o W, . It's easy to see that, if W, is a loca-
lizing L].a_,s, W is a locali izing class too. Now suppose that ¢ is a cardinal
nuber greater of the cardinal of 7 such that the condition v) of 4.3 is satis-
fied. I will prove that W¥* 'is not too big.

First I prove the following lcuma

LEMMA 8.2. - Let C_ be a complex in ¥ _(Z[x]) and Cl , ieI bea‘set of
subcomplexes of Cx satisfying the following condltlonq

i) for cach i, jel, C + C1 is cont:uned ina C}f
ii) Gy is the wnion of the cﬂ 's
iii) C, belongs to wut

Then C, belongs fo wr, .

Proof : The proof of this lemma is essentialy the same as the proof of 7.5.

if T is isomorphic to N one has an exact sequence

0-0cis@ctac »0.
i x i “ Ed

Then. C, has the homotopy type of an extension of the suspénsion of & C:
by © Ci and C_ belongs ko 7,/} . This proves the lemma in this case. or
morelgencraly. if I 1is countable.
" In the gencral case let T, be ‘the chain comp-léx of the catégr\.ry I . The
basis of T, 1is the set of all sequences ij< ... <iy in T and the boun-
Jary is the standard map. '

Let C, be the subcomple\ of C,®T, gcrnmted by the elements
ue (io < e < ln) , ue C . It is not difficult to see that the map
C; -+ €, 1s an homotopy equnalencc. ’

Oh the other hand, let Tz«’n be the n-skeleton of T, and C’k‘n be the com-

plex C, N C){_QDT”m . One has the following exact sequence :

- : 1
o-c™lac®s @ 00

1 <..<3)
(2) n



. o . o n ) .
By induction, that proves that all the C;° belong i (2 By applying
the lemma, proved in this case, to the complex C) filtered by the C;n , One

prove that C! and consequently C. belong o 'U); .

LEMMA 8.3, - Any mop {from a complex in w-*(ﬂ[_n:]) of ‘cardinal less than ¢ to
a complex in 9 factorizes through a complex in W, of cardinal lcss than

Cc .

cardinal less than ¢ and C_ belongs fo Wﬁ . Choice a gruaded basis

B = {e. ie I} of C, anda good order on I such that for every i€ I,

Proof : Let f : C, » C, be a map, and suppose that C, is-a complex of

1 b
the module generated by the ej , J <1 is a differential module denoted by
c: . .
Let I< I, suppose defined for any j < i a complex CY in M  of

cardinal less than c¢ and a basis 531 of CB' and a commutative diagram :

. £
Cj g Cx_

Cl.l

J

Suppose also, for any J< kg 1, C3' is contzined in C’k' and @j in
ﬁ@k and the following in comutative :

c! . 1 cn /51,
J J
wR
If 1 isequal to j+ 1 ,¢ will construct CY and EBi by the following

way

Consider the following diagram :

0>C!+>Cl »C~0
PR

C'j' -> C”e

where C 1is a complex isomorphic to Zmw . .
Let F Dbe the fiber of the map C'j' + C, (i.e the sequence T~ C'j' + C,

has the homotopy type of a short exact sequence). The conditions 1ii) and iv)



imply that the suspension of F belongs in 7')"_, . Let 3 be the boundary
C -~ LJ‘ . Because this boundary is homotepic to zero in €. and by using the
condition v), there exist a complex C in 'lU')E of cardinal less than ¢ and

a homwotopy commutative diagram :

):_]C'+F+C‘j'+c

* .

Let C;‘ be the homotopy cofiber of E_] C Czj’ . We have the following nomo-

topy commutative diagram :

e
C3' -+ C'i' »+ C

au
-

The complex C7 belongs in W, . Let Ci be a complex of cardinal less
o L B
than c¢ having the humotopy type of C‘i’ endowed with a basis % i ‘and such
that there cexist a commmutative diagram :

C3 +C!1

3M
bR
C!'>CY — O
J 1
the map C'j' ~ CY being an inclusion mapping Qa.j in &, .

If i is not of the from j + 1 , define C'i-' as the union of the vC'j' s
j<i and %; as the wnion of the @j , j<1i.By the lemm 8.2, CY
belongs in W, and the cardinal of Cy 1is less than c .

Hence one can construct the C'.l' 's by induction and consequently onc get
a factorization of f through a complex C" in ¥, of cardinal less than

C L]

S.4. - PROOF OF THE PROPOSITION

Consider the following diagiam :

K-> L

I

Y

| |
X+Y->B

wvhere X is a subcomplex of the finite complex L and X->Y-B Bclongs o #.



We can supposc that Y is a (W-complex and X is a subcomplex of Y .
Let ZD be a subcomplex of Y containing X ond the image of L and such
that 2 /X is finite. |

By using the lemma 1, there exists a factorization :
C*(ZO,X) > C;‘_O +~ C_(Y,X)

where Cg is a complex in ¥, of cardinal less tan c .

Then one can construct a subcomplex Z, of Y containing Zj ~such that
the cardinal of ZI/X is less than c¢ and C;G m:-alps in C)_é(Zq,X) K By induc-
tion one construct also a sequence Zo ¢ iyc Z2 ¢ ... of subcomplex of Y
and a diagram :

Cu(Z,:X) > Cly + Cu(Zy,X) + Coy + 0, (25,0 + Cly » ...

such that the cardinal of Zn/X is less than ¢ and C)'w1 telongs to ’I/J;, .

The limite 1im Cj"l belongs 1o ZU;F because one has the exact sequence :

bt :
| I U I '
0@ C;Kn >@Cm_‘ 1im CL > 0.
n n

Let Z be the union of the Zn 's. The chain complex C_(Z2,X) 1is isomor-
phic to 1im Cl ~ and thus X - Z 3B belongs fo ¥ aud the cardinal of
Z/X 1s less than c .

Chopge a subconplex Y'of Y of cardinal less than ¢ such that Z is the

union of X and Y' and denote by X' the complex X aY' . One has the com-
mutative diagram :

K > L

+ +

X' - Y

¥ ¥

X »>Y > B
Ehan

and X' and Y' are of cardinal less tabn ¢ and X' » Y' > B belongs to
U-. This proves “the proposition.



§6. - CONSTRUCTION OF THE #'-LOCALIZATION FUSCTOR

8.1. - Let W be a not too big localizing class and ¢ be a cardinal number
such that the condition L7 is satisfied. I will construct a "good" set S con-
tained in W~ and o system of functor @u with some nice propertics witi
respect to S . The functor E will be the limite of the $, 's. By induction
I prove that the canonical inclusion map from a B-space X+ B to E(X -» B)
belongs in UF . The last thing to do is to show that E(X > B) is W-1ocal.
In fact T prove that E(X -+ B) is S-local in gencral and if the condition L7
is satisfied E(X - B) is %-local.

9.2. - THE SET S

Take a set Z of cardinal ¢ and iet £ be the simpli;ial complex gene-
rated by Eo (the simplices of § are the non trivial finite subsets of ZO).

Denote by S the set of B-maps k -+ L > B in W such that L 1is a sub-
complex of T and K 1is a subcomplex of L . It is not difficult to sec the
following pfoperties :

i) every B-map X > Y-+ B in W such that X and Y are CW-complexes
of cardinal < ¢ has the B-homotopy type of a B-map in S .

.. . n+]
ii) for any integer n > 0 and any map I

+ . . . -
™ x oo IV I, B 1s isomorphic to a B-map in S .

-+ B, the B-map

9.3. - THE FUNCIOR ¢
For any B-space X » B denote by a X - B) the set of all commutative

diagrams :

K-> 1L
v+ ¢

X+ B

such that K-+ L - B belongs in S.
For most convenicnce, the diagrams of (X + B) will be indexed by the cha-

Tacter o

K =L
|0& a
Ax-m =11 |

— B
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Denote by Y - Z -+ B the following B-map :

1LK0;+JLLO.+B .
a a



The maps Kc: + X induce amap Y » X and we have a commtative diagram :

Now let o(X + B) be the B-space XU Z->B and A be thc canonical inclu-
sion X - X\; Z-+B. Clearly ¢ is a %unctor from the categery of B-qpa\eq
to itself and )X 1is a morphism from 1 to ¢ .

LEMMA 9.4, - For any B-space X -+ B "we have the following properties :

i) ‘the B-map ) from X+ B to &(X -+ B) belengs in w-

ii) foramy K-L~+B in S any B‘map K-+ X+ B ‘entends to L+ B in
(X ~+B) .

Proof : Tiue property ii) is trivial. The property i) is an easy conscquence
of the conditions L4 and LS satisfied by W~ .

9.5. - THE TUNCTCRS ®,

Let X+ B be a B-space. For any ordinal number u onc defines a B-space
¢, (X~ B) by the following conditions :

i) if u<v, ¢, (X » B) is contained in ¢ (X + B)

11) @O(X+B)=X+B

1i1) L (X B) .= ¢(<b (X + B))

iv) d>V(X+B) =1lim ¢ _.(X -+ B)

3, urlt
us\v

If u 1is less than v the inclusion <bu(X + B) ~» d)v(}( + B) will be deno-
ted by )‘uv . It is easy to see that the ¢, 's are functors from the category
of B-sapces to itself and }‘uv is a morphism from ¢, to ¢,

LEMMA 9.6. - For any B-space X -+ B ‘and any ordinal muiber u 'Q)_é B-map )‘ou
from X~+B to ¢ (X~+B) belongs fo Ur.

" Proof : If u 1is an ordinal number, denote by \] + B the B-space <!>u()( -+ B).
If u 1is less than v, Xu is contained in X, and the inclusion map
)&‘ > Xv is a cofibration. '

I will prove that X - )&‘ + B belongs in W by induction on u .
Now let u be an ordinal number and suppose that the B-mup X -» Xv +B



belongs in W~ for any v < u

If u=v+1, X& X, * B bclongs in B and X, X,»B too by 9.4.
Then by using L1, X< X, » B belongs in %-.

If u isnot v+ 1, Xu is the union of the X", 's for v <u . Then
XG& Xu + B belongs in  7* as conscquence of the lemma 7.5 and the lenma 9.6
is proved.

9.7. - THE FUNCTOR E

Let w be the first ordinal number of cardinal c¢ , and let’ E be the functor
and the morphism o
¢w & n 1 Aow

LEMMA 9.8, - Yor any B-spice X -+ B , the B-space E(X » B) 1is S-local.

Proof : Let K> L ->B be aB-mapin S and f be a B-map from K> B to
E{X -» B) = %(x -+ B) . By construction the image of £ is contained in a
<1>U(X +B) , u<w and by the lemma 9.4 f ecxtends to L -+ B in 41 (X + B).

Then the msp [L -~ B, E(X -+ B)] -~ [K+ B, E(X-B)] is surjective.

Now Jet f o and f1 be two B-maps from L -~ B to LE(X - B) , B-homotopic
on K->DB. )

Dencte by XK' > L'+ B the Bomap Kx I UL x 3] + L x I » B . This B-map
is isomorphic to a E-map in S. On the other hand the two B-maps fo and_ f]
-and a B-homdtopy between the restrictions on K-> B of { ° and f1 give a
B-map g from K' - B to E(X - B) . The image of this B-map is coniained in
a ¢U(X -~ R) and g extends to L X I-+B in D e (X B) . Thus £ and

f1 are B-homotopic and the map :

[L+B, EX~>B)] »[K>B, EX- B)]

is injective.

That proves the lemma.

LIMMA 6.9, - Tor any B-space X + B the map E(X » B) 'is a Serre fibration.

" Proof : Consider a commtative diagram :



"~

n

" x 0 - Y
7 ¢
In+] —— B

where Y -+ B is the B-space E(X + B) .
The B-mup 1"%x 0+>Y->B factorizes through a ¢ (X>B) u<w and then
_ . n+1 y s .
extends to 1 + B in <I>u+]()& + B).

This proves that Y -+ B is a Scrre fibration.

Now I will usc the condition L7 satisfied by W to prové that LE(X -+ b)
is W-local for any B-space X + B , and consequently to show that (E,n) is
a W-locaiization functor.

LEMMA 9.10. - For any B-space X + B and any B-maps Y »~Z +B in W, the

map
(z+B, EX>B)] »[y-»B , E(X - B)]

is surjective.

Proof : By using the condition L2 one can suppose that the map Y + Z is
cofibration.

Now take a B-map fromY + B to E(X > B) . If Xw + B 1is the B-space
E(X -~ B) one have the following diagram :

and by using the condition L5 the B-map Xw > XwL\'} Z + B belongs in ¥ .
Let X' » B be the B-space E(Xm\\; Z -+ B) . One have the following cormmu-
tative diagram :

Y - Z

¥ ¥

Xtu_* X'
W

B

Then in order to prove the lemma, it suffices to show that the B-map

-~

<2



ra

r 1 ") : . iy > aye -~

)\m + X' > B is a B-homotopy equivalence. But Xw - B and X' > B arc Serre
fibrations, Hence it suffices to show that the map X - X' 1is a weak homotopy
cquivalence.

Thus consider a disk D and its boundary S and a commutative diagram :

e wn
Tl =

+

By using the condition L7 and the definition of S one can find a factoriza-
tion :

<+ “« W
gX =
+
o4+

such that K-+ L » B belongs in S . But Xw + B is S-local, thén there exists
a B-map f:L -~ Xw - B extcnding the B-map K » Im - B . Moveover X' + B is
S-iocal and f is B-homotopic rel K- B to the B-map L > X' > B .

This provés that the map of pairs from S+ D to Xm + X' 1is homotopic o
a map 1in Xw and the relative homotopy groups of Xm + X' vanish. Thus the
map Xw -+ X' 1is a weak homotopy equivalence and the lemma is proved.

LEMA 9.11. - For any X + B the B-space E(X - B) is ¥ -local.

" Proof : Let Y-+ 2+ B be a B-map in W~ and consider the map
[z+B, EX+B)] ~[Y~B, EX=~B)] .

By the last lemma one know that this map is surjéctivé.

Now I will prové the injectivity in ihe sufficient case where Y -~ 2 is a
cofibration.

Let fo and f1 be two B-maps from Z -+ B to E(X -+ B) B-homotopic on
Y - B . This two B-maps and the B-homotopy give a B-map from Y x I LV Z x 3l
to BE(X ~ B) . By using the condition L6 and the last lemma this B-map extends

to Zx 1=+ 3 and the two B-maps fo and {, are B-homotopic.

.73
That proves thc lemma and conscquently the theorcem 2.5.



9.12. - The functor E dcfined as above depends only on the choice of the set
S , thus of the sot Y‘o . Take as scet '230 the set of all ordinal numbers less
than the first ordinal number of cardinal c . This set defines a sct L5 and-
a functor E denoted by L. from the category of B-spaces to itself, and an

inclusicn morphism 1+ E. . It is casy to check that for any c £ c' one has
an inclusion morphism E. -+ EC, and E. is a i’/i::-localiz:ltion functor.

That proves the theorem 1.8.





