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ON THE OBSTRUCTION GROUP IN HOMOLOGY SURGERY
by PiERre VOGEL

o. Introduction

The theory of homology surgery has been introduced by Cappell and Shaneson [1].
This theory plays an important role in the theory of knots and codimension 2 embeddings.

Let (X, 9X) be a pair of finite complexes and f be a normal map from the normal
bundle of a (Top, PL or Diff)-manifold V to a (Top, PL or Diff)-bundle over X and
let M be a Z[r,X]-module. The problem of homology surgery is to determine the
obstruction to the existence of a normal cobordism, constant over X, from f to an
M-homology equivalence. Clearly we must suppose that f induces an M-homology
equivalence from 8V to dX and that the cap-product by £,[V] is an isomorphism from
H (X, oX; M) to H,_,(X; M"), w being the first Stiefel-Whitney class of the bundle
over X.

If M=A is a quotient ring with involution of Z[r;X] = Z=, Cappell and
Shaneson have solved the problem and have constructed an obstruction group TI',(Zrx — A)
defined in terms of algebraic L-theory.

In many cases, this group was known to be the L,-group of some ring A. For
example, if there exists a classical localization S™'Zrn of Zrn, where S is the multipli-
cative subset 1 4 ker(Zwm — A), Smith [7] has proved that T,(Zx — A) is the
group L, (S7'Zrn). An other example is given by Hausmann [3] who proves that
I, (Zr — Z[r/N]) is the group L,(Z[=/N]) if N is a locally perfect normal subgroup of =.

My purpose is to show that the homology surgery is possible in a more general
situation and that the obstruction group is always the L, -group of a ring with invo-
lution A endowed with a subgroup of K,(A).

For example, suppose that Zx —A is a morphism of rings with involution (the
involution of Zr is induced by w). Then we have a diagram of rings with involution

A
/N
Ir — A
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166 PIERRE VOGEL

well defined by the following properties:

i) For any matrix » with entries in Zr, if « ® A is invertible then u ® A is inver-
tible too;

ii) A is universal with respect to the property i).

Theorem. — Suppose the morphism A —A is onto. Then any normal map f over a
n-dimensional A-Poincaré complex X which is an A-homology equivalence over 0X determines an
element o(f) e Lt(A), and, if n> 5, f is normally cobordant to an A-homology equivalence
if and only if o(f) vanishes.

Corollary. — If A is a quotient ring with involution of Zw, the group TMZw —A) is
isomorphic to LI(A).

Theorem. — Let Dy, be the dihedral group of order 2n (n odd) and D,,—>Z|[2 be the
non zero homomorphism. Then we have the following isomorphism:

I,(ZD,,~Z) = I,(Z[Z[2] » Z) ~ Li(A),
where A is the pull back of rings:

A—Z

Z,[Z|2] — Z,
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1. Statement of the main results

(x.x) Let A be a ring with involution aa. If M is a left A-module, it can
be given a right A-module structure, by setting

ma=am, VaecA, VmeM.
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ON THE OBSTRUCTION GROUP IN HOMOLOGY SURGERY 167

Conversely any right A-module is a left A-module. From now on an A-module will
mean a left or right A-module.

Denote by € (A) the category of Z-graded complexes

.~»GC,,,~C,-C,_;—...

such that each C, is a finitely generated free A-module with fixed (unordered) basis
and D C, is finitely generated. Theses complexes will be called finite A-complexes.

We say that a sequence of finite A-complexes 0 >C—C' - (0" -0 is s-exact
if, for any n, the complex o->C,—C,—>C. -0 is acyclic with torsion o in K,(A);
see [4] and [9].

Definition (x.2). — A class # CE(A) is exact if # contains any acyclic finite
A-complex with torsion o, and if, for any s-exact sequence in %(A)

0>C—>C —=C"—>o,

one has the following property:

If two of the complexes C, C', C" lie in #, then the third lies in #” too.

Let C be a finite A-complex. Denote by C, the dual module Hom(C_,, A)
endowed with the dual basis, and choose on C the differential so that the evaluation
from C ® C to A is a cocycle. So we get a new finite A~complex C.

Definition (x.3). — An exact class # C€(A) is called symmetric if, for any Ce#,
C lies in .

Definition (1.4). — Let #~ be an exact class in €(A). A morphism f in %(A)
is a # -equivalence if the mapping cone of f is in #".

Let f be a map from a finite CW-complex X to a finite connected CW-complex Y,
with fundamental group =, and let #” be an exact class in ¥(Zr) containing any acyclic
finite Zn-complex with torsion in the image of =« — KI(ZT:). Then f is a # -equivalence
if the chain map C, (X, Zn) - C,(Y, Zx) is a # -equivalence.

Example (x.5). — Let A—B be a ring homomorphism and B be a subgroup
of KI(B). Let #° be the class of finite A-complexes C such that G ®, B is acyclic with
torsion in . Then#  is exact and the # -equivalences are the B-homology equivalences
with torsion in {.

If, in addition, A — B is a morphism of rings with involution and f is stable under
the involution, #” is symmetric.

Example (x1.6). — Let M be an A-module. Then the class # of finite
A-complexes C such that H,(G, M) (resp. H*(GC, M)) vanishes, is an exact class and
the # -equivalences are the M-homology (resp. M-cohomology) equivalences.
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168 PIERRE VOGEL

Notation (1.7). — Let #° be an exact class in €(A). We denote by X the set
of matrices # such that the direct sum of the complex ...—>o0—>A? LA150>...
and its suspension is in #".

In example (1.5), 2 is the set of matrices # with entries in A such that «®B is
invertible.

Proposition (x.8). — Let W be an exact class in €(A). Then there exists a ring homo-
morphism A — A unique up to isomorphism, which is universal with respect to the following
property: For any matrix ueZ, u® A is invertible.

If W is symmetric, A — A is a morphism of rings with involution.

Actually, the ring A is an inversive localization of A in the sense of Cohn [2].

Definition (x1.9). — Let « be the subgroup of K,(A) generated by the torsion of
all complexes C® A, such that Ce#” and CG®A is acyclic. The pair (A, «) will be
called the # -localization of A.

Let f be a normal map from the normal bundle of a compact n-dimensional (Top,
PL or Diff)-manifold V to a (Top, PL or Diff)-bundle £ over a pair (X, X) of finite
complexes. Suppose X is connected. The first Stiefel-Whitney class of £ induces an
involution on the ring A = Z[rn,X].

Let #” be an exact symmetric class in €(A) containing any acyclic complex with
torsion in the image of m; X — K,(A).

Suppose we have the following properties:

i) (X, 0X) is a #"-Poincaré complex; i.e. the cap-product by f,[V] is a #"-equi-
valence from C*(X; A) to C,(X, dX; A).
ii) The restricted map f:9V — 90X is a #-equivalence.

Theorem (x.10). — Let (A, o) be the W-localization of A. Suppose that any complex
in W is A-acyclic. Then, the normal map f determines a well-defined element o( f) € L%(A).

And, if n> 5, fis normally cobordant, rel the boundary, to a W -equivalence if and only if o( f)
vanishes.

Theorem (x.xx). — With the same hypothesis as above, if n>6, and X is a product
M x 1, M being a (Top, PL or Diff)-manifold, any element of L3(A) s the obstruction o( f)
of a normal map f restricting to an isomorphism over M X o UM X L.

Remark (x.12). — The condition of A-acyclicity of complexes in #” is a very
crucial point because, in the situation of (1.10), 6( f) can be defined only if this condition
is satisfied, or, more precisely, if the Poincaré duality on (X, ¢X) is a A-homology
equivalence and f restricts to a A-homology equivalence on the boundaries.

On the other hand, this condition is not always satisfied. For example, if #~
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ON THE OBSTRUCTION GROUP IN HOMOLOGY SURGERY 169

is the class of finite Z[¢, #~']-complex with finite homology, the ring A is Z[¢, t~'] and
there exist many complexes in %~ which are not acyclic.

If the condition of A-acyclicity of complexes in #” is not satisfied, denote by #”
the class of A-acyclic complexes in #". Then theorems (1.10) and (1.11) hold for
the class #”'. Now, the last problem is to compare the surgery problems corresponding
to classes #° and #”'. But this question seems to be very difficult.

Let A—B be a ring homomorphism. Let A be the inversive localization of A
in the sense of Cohn [2] obtained by formal inversion of the matrices # with entries
in A such that #®B is invertible. The ring homomorphism A —A will be called
the localization of A — B.

Theorem (x.13). — Let A — B be a ring homomorphism and B be a subgroup of K,(B).
Denote by W~ the class of finite A-complexes which are B-acyclic with torsion in B, and by (A, )
the W -localization of A.

Then A — A is the localization of A —B and o is the inverse image of B under the
canonical morphism <: A — B.

Moreover, if ¢ is onto, any complex in W s A-acyclic.

Remark (x.14). — The ring A and the group Lj(A) are difficult to compute, but
we have some interesting results.

Let SCA be the set of elements in A invertible in B. Then, if there exists a
classical localization S™*A, A is the ring S™*A. This holds, for example, if A is commu-
tative or if A — B is the ring homomorphism Zr — Zz’ induced by a group homo-
morphism = — =’ with finitely generated nilpotent kernel onto a finite extension of
a polycyclic group [7].

An other example is the following (see theorem (9.7)): Let @ -G be a group-
epimorphism with locally perfect kernel. Then the localization of Zrx — ZG is Zr — ZG
itself.

Anyway, the theorems (1.10), (1.11), (1.13) imply that the obstruction groups
I',(A —B) of Cappell and Shaneson [1] are always the L, -groups of A (endowed with
a subgroup of K;(A)), at least when the theory of Cappell and Shaneson holds, i.e. when
A - B is locally epic. This was already proved in some particular cases by Cappell
and Shaneson [1], Smith [7], Hausmann [3] and the author [8].

Nevertheless the condition of surjectivity of A —B holds in many other cases.

Proposition (x.15). — Let A —B be a ring homomorphism and A — A be the loca-
lization of A —B. Let ByCB,CB,C... be subrings of B defined by:
i) By is the image of A —B;
ii) For any n>o, B, , is generated by B, and the inverses of the units of B contained
i B,.
169
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170 PIERRE VOGEL

Then, the image of A —B contains all the rings B,. Therefore, if B is the union of the
rings B,, the morphism A — B is onto and the theorems (1.10), (1.11), (1.13) hold.
In fact, the image of A — B can be strictly greater than the union of the rings B,,.

Example (x.16). — Let F be the free group with p generators, p>1, and let A
be the group ring Z[F]. Let % be the class of finite A-complexes C such that H,(C)
is finitely generated over Z and let (A, «) be the # -localization of A. Then the
localization of A—A is A—A and the morphism A — A is the identity. One
can prove that any square matrix with entries in A which is invertible in A, is invertible
in A; hence B,=A for all n, but A— A is not surjective!

Remark (x.17). — Let A —B be a ring homomorphism and f be a subgroup
of KI(B). Denote by #” the class of finite A-complexes which are B-acyclic with torsion
in B and by (A, «) the #"-localization of A.

If the morphism A — B is not onto, the condition of A-acyclicity of complexes
in # is not always satisfied.

For example, this condition holds if A —B is the ring homomorphism Z — R,
but it does not hold if A is the ring Z[¢, #~'] and B is the product of the localizations
of A with respect to the non zero principal prime ideals.

2. A first homology surgery obstruction group

In a first step, we will construct a surgery obstruction group I',(A, #") which looks
like the group T',(A — B) constructed by Ranicki [5], but from a dual point of view.

Throughout sections 2 and 3 we assume that A is a ring with involution and that
#  is an exact symetric class in €(A) (see (1.2) and (1.3)).

If G and Q' are finite A-complexes, we denote by Hom(GC, C') the set of
A-homomorphisms from C to C’; Hom(G, C’) can be given a graded differential
Z-module structure by setting:

*f(x) =0+ °x, for any feHom(G, C'), xeC

d(f() = (d)(#) + (—1)"'f(dx), for any feHom(C, @), xC.
Moreover, by setting

Fu) = (—1)*"uof, for any feHom(G,C"), e,

we get a morphism f—f from Hom(C, C') to Hom(C’, €) which respects the degrees
and the differentials.

Notation (2.1). — If G is a finite A-complex, we denote by B(C) the graded
differential Z-module Hom(C, C). The composite map:

Hom(C, €) - Hom(G, €) 3 Hom(G, €)
is an involution on B(C) and B(C) is a graded differential Z[Z/2]-module.
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ON THE OBSTRUCTION GROUP IN HOMOLOGY SURGERY 171

Definition (2.2). — Let G be a finite A-complex. We use Q ,(C) to denote the
group H,(Z/2, B(C)). By a quadratic n-form over G, we mean an element of Q (C)
and by a quadratic n-complex we mean a pair (G, ¢), ¢€Q,(C).

Let C—C’ be an epimorphism of degree o between two finite A-complexes.
We use Q,(C— C’) to denote the group H,(Z/2, B(C)/B(C')). By a quadratic n-form
over C— C’, we mean an element of Q ,(C — C') and by a quadratic n-pair, we mean
a pair (C~C',¢q), ¢€Q,(C~C).

Definition (2.3). — Let (C, ¢g) be a quadratic #-complex. We will say that ¢

or (G, q) is # -non singular if the image of ¢ by the composite map
transfer
H,(Z/2, B(C)) —— H,(1, B(G)) =~ H,(B(C))

is represented by a # -equivalence from C to C.

Let (C—C', q) be a quadratic n-pair. Let K be the kernel of C—C'. We
will say that ¢ or (C— C/, ¢) is # -non singular if the image of ¢ by the composite map

transfer

H,(Z/2, B(C)/B(C")) — H,(B(C)/B(C")) - H,(Hom(K, C))

is represented by a # -equivalence from K to C.

Remark (2.4). — If G is zero except in dimension — p, a quadratic 2p-form over C
is exactly a (— 1)?-quadratic from over C_, in the sense of Wall [11].

Remark (2.5). — If #” is the class of acyclic complexes with zero torsion, a #-non
singular quadratic n-form ¢ over a finite A-complex C is an n-dimensional quadratic
Poincaré structure on C, in the sense of Ranicki [5], at least if G is (— 1)-connected.

Definition (2.6). — We will denote by I', (A, #7) the set of #-non singular quadratic
n-complexes subject to the following cobordism relation: (G, ¢) is cobordant to (C’, ¢')
if there exists a #-non singular quadratic (z 4+ 1)-pair (X - C® C’,u) such that
ou=q®—g¢'.

Let W be the standard free resolution of the Z[Z/2]-module Z:

Z[Z/)2]e, <— Z[Z[2]e, <= Z[Z[2]ey <— . ..
Then Q,(C) is the n-th homology group of W ®,,B(C).
Lemma (2.7). — Two #-non singular quadratic n-complexes (C, q) and (C, q') are
cobordant if and only if there exist two s-exact sequences
0o>K -25C »o
0>K >3350 >0
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172 PIERRE VOGEL

and an element €, ® §y 46, @ §y 4 ... in W ®,,B(Z) such that:
i) If q and q' are the homology classes of ¢ and ¢', we have

d(Ze;® §;) = o*(9) — «"(9");
i) Go + Oo induces a W-equivalence from K to K'.
Proof. — Suppose that ¢ and ¢’ are represented by ¢eW ®,,B(C) and
o e W®,,B(C’). If (G, ¢) and (C’, ¢') are cobordant, there exists a s-exact sequence
0> 5225 0o >0
together with an element X¢;® ;€ W ®B(X) such that:

(1) d(Ze;®¢) = o«*(9) — «"(9"); R
(i1) $o + ¢ induces a #-equivalence from X’ to X.

Let K (respectively K') be the kernel of « (respectively «’). We have a homotopy
commutative diagram

o — 2% — K — 0 — o
(I) la 1!) lc
0o—>%2 >R —C —o _
where the lines are homotopy s-exact and a and b are induced by ¢, + Jp and ¢ is
induced by the transfer of ¢’.
Since a and ¢ are #-equivalences, b is a #~-equivalence too and the first part of

the lemma is proved.
Conversely, suppose we have two s-exact sequences

o—>K —3-5%5C —o

o —K — 35 ¢ — o
and an element Xe¢; ® {, satisfying the conditions (i) and (ii) of the lemma. Up to
simple homotopy type, we may suppose that « @ «’ is onto with kernel X' € ¥(A). Then

we have the homotopy commutative diagram (I) where 4 and ¢ are #-equivalences and
Yo + o induces a #-equivalence from =’ to £. Hence (C, ¢) and (C, ¢') are cobordant. m

Lemma (2.8). — Let (C, q) be a W-non singular quadratic n-complex and f:C' — G
be a W-equivalence. Then (C', £*(q)) is a W=-non singular quadratic n-complex cobordant to (G, q).

Proof. — We may suppose that f is epic with kernel K e #(A). Then we have
the s-exact sequences

o—K—-0-L5C—o
0 —>0 — 0O L 0 — o
and the result is an easy consequence of lemma (2.7). m
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ON THE OBSTRUCTION GROUP IN HOMOLOGY SURGERY 173

3. Algebraic surgery

In order to kill the homology of a # -non singular quadratic n-complex, in low
dimension, we need the following:

Lemma (3.1). — Let 0 —1 5a —6+J — 0 be an s-exact sequence of finite A-complexes.
Let g be a W-non singular quadratic n-form over C such that o«*q=o0. Then, q is represented
by a cycle Ze; @ f; .

Moreover if q is represented by such a cycle, (C, q) is cobordant to a W-non singular quadratic
n-complex (C', ¢') where G’ is the mapping cone of af, (the grading of C' is chosen so that the
map G’ —J has degree o).

Proof. — Consider the following exact sequences of graded differential Z[Z/2]-
modules: o
o—B—-B(C)—-B()—~o

Hom(C, J) ® Hom(J, ) > B — o.

If a*q is zero, ¢ is represented by a cycle in W ®,, B, and there exist morphisms f;" and f;"’
in Hom(J, G) such that ¢ is represented by

6@ (B +Bf")-
Now we have . '
dei 1 ®F'B) =& ®f B+ (— 1) g®BL” + (— 1) ey (®dfB.
Then there exist morphisms f; e Hom(J, ) such that g is represented by Z¢®f;B.
Since Z¢;®f;f is a cycle, we have
Vixo, (—1)fiB+fipiB+(—0)FBh=0,
whence d(@f,) =0, &f;=o0, for any i>o.
Let G’ be the mapping cone of &f,. We have a split exact sequence

a o '
0——>I<__‘>C'—B—>J———>o
>

such that

P’ =—n—1, B =0, dr=2af,f, ro =1
and 0->S"1T>C—>J—>o0
is s-exact.

Let T be the pull-back of C and C’ over J:
x> C
s
(LN, |
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174 PIERRE VOGEL

Let r be a retraction of « and let u be the element ¢,®¥77'y' € W®,,B(Z).
We have
du = e ®Ydir'y + €, ®Y foBy + € ®Y(Fa —1) £, B’y

and it is easy to see that y*(Z¢;®f8) —du has the form " (Ze,®9]), ¢ eB(C').

On the other hand, ¥7r'y’ 4+ ¥'7'ry induces the identity from the kernel of ¥’
to the dual of the kernel of y. Then X¢;® ¢; represents a #=non singular quadratic
n-form ¢’ over C' and, by (2.7), (C, ¢) and (C’, ¢') are cobordant. m

Corollary (3.2). — Any W-non singular quadratic n-complex is cobordant to a W-non

singular quadratic n-complex (G, q) such that C is ([%n]— 1)-connected.

Proof. — Just apply lemma (3.1), I being the ([:ﬁ]—x)-skeleton of the
complex. m :

Lemma (3.3). — Let 0o > 1 XcC —B>J — 0 be an s-exact sequence of finite A-complexes
and v :J — K be an epimorphism of degree o which respects the differentials. Let q be a W=-non
singular quadratic n-form over G — K such that o*q=o0. Then q is represented by Ze,® f.

Moreover, if C' is the mapping cone of &f, (the grading being chosen as in lemma (3.1)),
there exists a W-non singular quadratic n-form q' over G — K such that dq and ¢ coincide

in Q,_,(K).

Proof. — We have the following exact sequences of graded differential Z[Z/2]-
modules:

0 - B - B(C)/B(K) 3 B(I) - o
Hom(C, J) ®Hom(J, C) -~ B — o.

Then, as in lemma (3.1), we show that ¢ is represented by an element Z¢;®f;8 and
we have
d@&fy) =0, &f;=o0, for any i>o.

Consider, as above, the diagram: o — 1 (—fz a5 J — o and let s be a section of B,
r
We have

ds=ad, &eHom(],]I).
It is not difficult to see that the element
u= e0®§’§r' -+ Zei®ﬁ'3‘ﬂ.ﬁ'

represents a quadratic n-form ¢’ over G’ — K and that d¢ and 94" coincide in Q,,_,(K).
Moreover, the transfer # of u is:

T=B'8 + (— 1) 17 3p’ + B'SSB + B fosB
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ON THE OBSTRUCTION GROUP IN HOMOLOGY SURGERY 175

and we have
T/ =f'S and &7=35p".
Denote by C, J, C’ the kernels of the morphisms C - K, J—-K and ¢’ - K.
We have the following commutative diagram:
o — 1 5 T -5 j —> 0

3 )

[P
—
N
—

~ ~

" A D
0-——>ji>0'——>1——>0,

and we obtain a s-exact sequence between the mapping cone of 3, 7 and 5. Now the
boundary of; this s-exact sequence is homotopic to the morphism (— 1)"+1( f,8 + B o)
from C to G, which is a #-equivalence. Then the mapping cone of #: C' — C’ is
in # and ¢’ is #-non singular. m

Corollary (3.4). — Let (G, q) be a W-non singular quadratic n-complex cobordant to zero.
Then there exists a W-non singular quadratic (n + 1)-pair (Z — G, u) such that q is the boundary

] —1 ) -connected.

—n—1I

of u and the kernel of £ — C 1is ([

Proof. — If (C, ¢) is cobordant to zero, there exists a #-non singular quadratic
(n + 1)-pair (X' — C, u’) such that ¢ is the boundary of «’. Then apply lemma (3.3),

I being the ([nT—l]— I)-skeleton of the kernel of &' - C. m

Now, if we want to kill the homology of a #=non singular quadratic #-form beyond
the middle dimension, we must suppose that #” satisfies some other properties. Actually,
it is useful to consider the new class #” of all A-acyclic finite A-complexes.

Splitting lemma (3.5). — Let C be a complex in W' and let n be an integer. Then, there
exist two finite A-complexes L. and L' concentrated in dimension n and a W' -equivalence from L
to the complex

Le(...>C,,,»C —»o0—~...).
This lemma will be proved in § 7.
Lemma (3.6). — Any #'-non singular quadratic n-complex is cobordant to a W '-non

singular quadratic n-complex (C, q) where C vanishes except in dimension [:_n] (and [——_n] +1
if nis odd). 2 2

Proof. — Let (C, g) be a#”'-non singular quadratic n-complex. By corollary (3.2),

we may as well suppose that C; vanishes for i< [_—Q_n]
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176 PIERRE VOGEL

Suppose n= —2p. Since (C,¢) is # " -non singular, we have the following
complex in #™:

oo >G> C>C—>Cp y—> ...

and, by splitting lemma (3.5), there exist two complexes L and L’ concentrated in
dimension p and a #"'-equivalence
f: L>CoL.

Up to stabilization, we may suppose that L, is even dimensional. Let ¢’ € Q,(L’)
be a standard hyperbolic structure on L.

Then (C, ¢) is cobordant to (C® L', ¢ ® ¢’) and by lemma (2.8), (G, ¢) is cobordant
to (L, f*(¢®¢)).

Suppose n = —2p—1. Since (G, ¢) is #"-non singular, we have the following
complex in #":

.—>GC L, >CeC,->C 1>,

and, by the splitting lemma (3.5), there exist two complexes L. and L’ concentrated
in dimension p 4 1 and a #”'-equivalence

L>L®(..>GC,.3>C, ,—~0...).

We deduce a #’-equivalence

fi(..»0->L,,—>CO®L,,;>0...)>C

and (G, ¢) is cobordant to (... +>0—-L,, ;,>C,®L, ., —~o0...,f). m

Lemma (3.7). — Let (G, q) be a W'-non singular quadratic (— 2p)-complex such that
C; vanishes for i+ p. Then (G, q) is cobordant to zero if and only if there exists a W' -non
singular quadratic (— 2p + 1)-pair (X — C, u) such that g is the boundary of u and 3, vanishes
Jor ik p, p—1.

Proof. — Suppose (C, ¢) is cobordant to zero. By corollary (3.4), there exists
a #"'-non singular quadratic (— 2p + 1)-pair (X’ — G, #’) such that ¢ is the boundary
of ' and Z vanishes for i <p—1. Let K’ be the kernel of X — C.

Since #’ is #”-non singular, we have the following complex in #™":

K K -K 08 S8 ..
and, by the splitting lemma (3.5), there exist two complexes L, L' € ¥(A) concentrated
in dimension p and a #"-equivalence
(...»0o-L,»K 0L -0~...)>K"
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Let K be the complex ...0—L,—~K, ,®L —o0o-... Since the #"-equi-
valence K —-K’ is (p — 1)-connected, the boundary C —K’ lifts through K and we
get a commutative diagram

o —»K —¥ — C — o

Lol

o — K — ¥ —0C— o

where the lines are s-exact.

Then (2 — G, f*u") is the desired quadratic pair. m

Lemma (3.8). — Let (C,q) be a W'-non singular quadratic (—2p— 1)-form such
that G, vanishes for i+ p, p+1. Then (G, q) is cobordant to zero if and only if there exists
a W'-non singular quadratic (— 2p)-pair (X — G, u) such that q is the boundary of u and T;—C;
s a simple isomorphism for i+ p.

Proof. — Suppose (C, ¢) is cobordant to zero. By corollary (3.4), there exists
a #"'-non singular quadratic (— 2p)-pair (£’ — G, #') such that ¢ is the boundary of «’
and X vanishes for <p.

Let K’ be the kernel of ' —C. We have a complex in #”

4 ’ AI A’
X > K Ky

and, by the splitting lemma (3.5), there exist two complexes L and L’ e ¥(A) concen-
trated in dimension p and a #"-equivalence

f: L>YoL.

Up to stabilization, we may suppose that L, is even dimensional. Let veQ _,,(L’)
be a standard hyperbolic structure on L,.

Let X be an acyclic finite A-complex with torsion zero concentrated in dimen-
sion p—1, p, p+1 and X —>C be an epimorphism with kernel in €(A) such that
X,+1—~>C,, 1 is an isomorphism. Let (£ —GC,«”’) be the quadratic (— 2p)-pair
defined by X"=L&X, «" ="' ®v)®o.

It is easy to see that #'’ is #"-non singular and that ou'’=g¢. Moreover the
kernel K" of X' —C is concentrated in dimension p —1 and p.

Now, by lemma (3.3), we can kill the p — 1 skeleton of K" by surgery and we
get a # "-non singular (— 2p)-pair (X — G, «) such that 9« = ¢ and the kernel of Z -G
vanishes except in dimension p. m

Now, with the above lemmas, it is possible to give an interpretation of T,(A, #™)
in term of special forms in the sense of Wall [10] and Cappell and Shaneson [1].
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Definition (3.9). — Let y=+1 and I,={a—na,aeA}. A W "-special n-form
is a triple (H, A, u) where H is a finitely generated free A-module, A a Z-bilinear map
from H®, H to A and p a map from H to A/I,, and satisfying the following conditions:

Q, A(ax, yb) = aN(x, )b, Vx,yeH, Va,beA

Q. M%) =wA(2,%), VxyeH

Qs w(*) + () =Mx0), VxyeH

Q. w(x +9) = p) + () + M%) modI,, VxyeH

Qs u(xa) =ap(x)a, VxeH, VacA

Qs the morphism X induced by A is a A-isomorphism (ie. A®A is an
isomorphism).

Definition (3.10). — Let (H, A, n) be a #7'-special n-form. A #'-subkernel of
(H, 2, p) is a free A-module K endowed with a morphism f:K —H satisfying the
following conditions:

S, SfA=o0, frfu=o0
S, the following complex lies in #”7: o - K LHISR o

(3.1x) Let n=(—1)? and let (H, A, n) be a #”-special n-form. Since H is
free, there exists a map ¢,: H—>H such that

A%, ) = ¢o(%) (9) + 120(V) (%), VxyeH
1(x) = @o(x)(x) mod I, VxeH.

And, if ¢, and ¢, are such two maps, ¢, — ¢, has the form ¢ — 9.

Choose a basis for H and denote by H, the finite A-complex defined by
H i=—p
o, t + "‘P

Then ¢, ® ¢, represents a # '-non singular quadratic 2p-form ¢ over H, and the
cobordism class of (H,, g) is a well defined element «(H, A, p) €y, (A, #7).

(3.12) Let 4 =(—1)? and let f: K >B®B be a #”-subkernel of a standard
n-kernel B®B (B is a finitely generated free A-module). The map f is induced by
maps d:K —>B and ¢,: K-—>B. Since the quadratic form is trivial over K, there
exists a map ¢,:K—>K such that $,od=¢, —(—1)?3;. Choose basis for K
and B. Let C be the — p-dimensional complex

a
.. >0>K—>B—>o0o—...
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Let ¢o|B=0. We get two bilinear forms ¢, and ¢, on G, and we have
doo = 91— 1.

Then, ¢,®¢y—e¢;®@¢, is a cycle in W®,,B(C) inducing a quadratic (2 + 1)-form ¢
over C.

It is easy to see that ¢ is #""-non singular. We denote by o(f)eT,,, (A, #7)
the cobordism class of (G, ¢). This element depends a priori on the choice of .

On the other hand, the tensorization by A induces a map from I, (A, #”) to
T, (A, #7) where #7 is the class of finite acyclic A-complexes. But the group I',(A, #7)
is isomorphic to L!(A). Then we get a morphism ¢ from T,(A, #") to L*(A) and cw( f)
is the class of f® A in L!(A). We deduce that ew(f) does not depend on the choice

of ¢;. But it will be proved in § 8 that ¢ is an isomorphism. Therefore w(f) is well
defined.

Proposition (3.13). — Any element of Ty (A, W) has the form o(H, \, p) for some
W'-special (— 1)P-form (H, A, u) and any element of Ty, (A, W) has the form o(f) for
some W'-subkernel f:K —~B@®B of a standard (— 1)P-kernel B®B.

Proof. — In the even dimensional case, this is a trivial consequence of lemma (3.6).

In the odd dimensional case, we know by lemma (3.6) that any element of
Typ 1 1(A,#7') is the cobordism class of a #”'-non singular 2p + 1-complexes (G, ¢) where
C; vanishes for ¢+ —p, —p—1. It is not difficult to see that ¢ is represented by
o ® 9y + ¢, ® ¢;, where the morphism ¢, is trivial over C_,_,. Then the cobordism
class of (G, ¢) is w(f) where f is the map d®¢,: C_, — G_p_1®é_p_1. |

Proposition (3.14). — Let (H, N\, u) be a W'-special (— 1)P-form. Then o(H, A, u)
ts zero if and only if the direct sum of (HL, \, w) and a standard kernel has a W' -subkernel.

Proof. — Suppose that (H, x, p) has a #”-subkernel f:K —>H. Consider the
quadratic 2p-complex (H,, ¢) constructed in (3.11). Choose a basis for K and denote
by K,e%(A) the complex defined by

Ki= K’ z:=—p
o, 1 —p.

Let K,—~H.3H, be a factorization of f such that g is a simple homotopy
equivalence and K,—H, is a monomorphism with free cokernel. After doing an
algebraic surgery along K, —H,, we show that (H_, g*¢) is cobordant to (H., ¢"")
where H,’ has the simple homotopy type of

.»0>K->H->K—>0—...
The complex H;' is thus A-acyclic and (H,, ¢) is cobordant to zero.
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Now suppose that the direct sum of (H, A, ) and a standard kernel H’ has a
#'-subkernel. We have

o(H, )\ p) = o(H, A, 1) + o(H') = 0.
Conversely suppose that w(H, A, u) vanishes. By lemma (3.7), there exists a #”-non
singular quadratic (2p + 1)-pair (= 5 H,, u) such that ¢ is the boundary of « and I,
vanishes for i+ —p, —p—1.
The form u can be represented by ¢, ® ¢, +¢,®{;, ¢, vanishing on Z_,_,.
Let K be the kernel of %_,—H.
Since # is #”'-non singular, the following complex is A-acyclic:

Sotd 5

a® (- 1y a
AN ®2_, ,— K —o,

z

0o—X_, —p—1

and since A:H—>H is a A-isomorphism, we deduce that
2a®d®(—1)Py: I_,>HOZ_,_,05_,_,

is a #”'-subkernel of the direct sum of (H, A, p) and the standard kernel £_, | ® 2_,,_1.

Proposition (3.15). — Let f: K — B®B be a W '-subkernel of the standard (— 1)P-kernel
B®B. Then w(f) is zero if and only if there exist a kernel C®C endowed with its standard
subkernel g: G — C®C and an isometry h of BOB®C®QC leaving eack element of B® C

Sfixed, such that the composite map

Kocr " pegecel —Bod

is a A-isomorphism.

Proof. — Consider the “if** part first. If g is the standard subkernel of CG® G,
the complex associated to g (see (3.12)) is acyclic and then w(g) vanishes.
The complex associated to f@g is

0>K®C—->B®C—-o0—...

If we perform a surgery along B, we get a new complex
...>KoC->BoC—>o0—...

and «(f) is equal to o(f’), f' being the new #"'-subkernel
Koc®BeceBeq).

It is easy to show that, for any isometry £ of B®C@®B®C leaving each element
of B®(C fixed (heUU,(A) with the notations of [10]), the two #'-subkernels f’ and
hof' represent the same quadratic (2p 4 1)-form over the same complex.

It suffices now to perform a surgery along B@® C to get a A-acyclic complex and

o(f) is zero.
Conversely, suppose o( f) is zero. Let (G,, ¢) be the quadratic complex associated
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to f (see (3.12)). By lemma (3.8), there exists a #”-non singular quadratic (2p + 2)-
pair (Z, — G,, u) such that ¢ is the boundary of # and X, - C; is a simple isomorphism
for 1 —p—1.

The map X, - C, has the form

o — K L K

l v |a

o — X 23 5 B 5o

where K —%> 3 is the complex Z,.
If u is represented by Z¢;® §;, , is a homomorphism from X to £ satisfying
"T”Od"}‘EMPo:O With"r:%_(_l)p@o
and the following complex is A-acyclic:
2od o

0o—K-4%32I%K 5o

By the splitting lemma (3.5), there exist two finitely generated free A-modules C
and I and a homomorphism y:C - Z®I such that (y®d’)®A is an isomorphism.
After adding a kernel to Z,, we may suppose that I is zero and vy is a homomorphism
from C to X.

Then the morphism &oJoy:C — X is a A-isomorphism, and the morphism
Joy®B:C@®B >3 is also a A-isomorphism. That implies that the composite map
from C®K to C®B

Fo0@B)o(y®d) =—(—1)"F0Foy®(—1)"Fofop,®Boy®d
is a A-isomorphism.
Let % be the homomorphism from BoBe®CaC to itself defined by
h=1®(—1)"FoB®(—1)"" ' Boy®(—1)""FoJor.

It is easy to check that % is an isometry leaving each element of B®C fixed and
that the composite map

Koc "®?geBoced — BoC

is a A-isomorphism. m

4. Geometric surgery

Throughout this section, we will suppose that A is the group ring Zn with an
involution induced by a morphism w:w— 41, and that #  is an exact symmetric
class in ¥(A) containing any acyclic complex with torsion in the image of ©— K, (A).

We denote by (A, «) the #~localization of A (1.9) and by #”’ the class of A-acyclic
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complexes in %(A). The class #” is exact and symmetric and the #-localization
of Ais (A, KI(A) ). The fact that any element in KI(A) is the torsion of a complex C® A,
Cew”, will be proved in § 7.

Let f be a degree one normal map from the normal bundle of a compact n-dimen-
sional (Top, PL or Diff)-manifold V to a (Top, PL or Diff)-bundle £ over a connected
#-Poincaré complex with fundamental group =, such that the first Stiefel-Whitney
class of £ is w. We assume that f induces a #-equivalence on the boundaries.

Suppose that any complex in #" is A-acyclic. Then f induces a A-homology
equivalence with torsion in « between the boundaries. Then we can use Wall’s tech-
nique [10] in order to define o(f)eLy(A) and o(f) depends only on the normal
cobordism class (relative the boundary) of f, and vanishes if f is normally cobordant
to a #-equivalence.

(4-1) Proof of theorem (1.10) in the case W =W"

Suppose n=2p or 2p+12>75 and o(f)=o0. After performing surgeries, we
may suppose that the normal map f:V — X is p-connected.

Denote by C, the complex £~ 'C,(X, V;Z=n). If g is a homotopy inverse of the
cap product C*(V; Zr) — C,(V, dV; Zr), the composite map :

C, - C,(V; Zx) - C,(V, 8V; Zx) > C*(V; Zx) - C,
is a #"'-equivalence.

a) The even dimensional case
If n=2p, we have a complex in #"

oo >G> G >C>Cpp > ...

and by the splitting lemma (3.5), there exist two complexes L. and L’ concentrated in
dimension p and a #"'-equivalence L — C,®L’.

After performing trivial surgeries, we may suppose that L’ is zero. Then the
intersection and self-intersection forms on H, (X, V; Zx) induce forms A and g on L,
and (L, A, u) is a #7'-special (—1)™form. Clearly, w(L,, 7, ) is sent to o(f) by
the canonical map: ¢: I, (Zr,#”) — L(A).

But ¢ is an isomorphism. This will be proved in § 8.

Then o(L,, A, ) is zero and by proposition (3.14), the direct sum of (L,, A, ) and
a (— 1)%-kernel has a #"'-subkernel. We can realize the direct sum by trivial surgeries.
So we may as well suppose that (L,, A, u) has a #7-subkernel K — L,. Now it suffices
to perform surgeries along a basis of K, via the map K — L, - C,—~H, (X, V; Zr),
to get a #'-equivalence.

b) The odd dimensional case
If n=2p+ 1, we have a complex in ¥’

>G> C L »C0C,>C >G> ..
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and by the splitting lemma (3.5), there exist two complexes L and L’ concentrated
in dimension p + 1 and a #"'-equivalence

L>(..-GCG,;—>GCG, ;—>0—>...)0L"

So we get a #”-equivalence (... ->o0—L,, ;> C®L ,,>0—~>...)>C,

Denote by K 5B the map L,,,—~C,®L,,;, and consider the composite
map B — G, -, (X, V). The basis of B induces maps from S? to V' homotopic to
zero in X. These maps are covered by fibered maps and we get immersions «;: S? -V,
which we can suppose to be disjoint embeddings. Let U be a regular neighborhood of the
images of these embeddings, connectified with 1-handles. The group H,,,(pt, 9U; Zr)
endowed with intersection and self-intersection forms is the standard (— 1)”-kernel B® B.

The morphisms K - B and K — G, , induce a morphism from K to the relative
homology group

U — pt oU —— pt
o (A EES
V — X V—-U — X

and we get, upon composing with the boundary, a morphism % from K to
H,,,(9U - pt; Zx) = H, ,,(pt, 9U; Zn) = B®B.

It is not difficult to see that the image under % of the basis of K can be represented by
spheres immersed in dU with zero intersections and self-intersections. To prove that kisa
W#-subkernel, it suffices to show that the complex ... >0 ~>K >B®B>K >0 ...
lies in #"'; and this follows from the #"'-equivalences

(...—->0—>K—->B—>...)—>C*—>C‘.,—>(...—>0——>]§—>K—>o—>...).

Then we get a #”-subkernel £ and an invariant (k) € T,(Zw,#”). By cons-
truction, w(k) is sent to o(f) by the isomorphism e: T, (Zn,#") — Li(A). Hence
(k) is zero. By proposition (3. 15), there exist a standard (— 1)?-kernel C® C endowed
with its standard subkernel g: C - C®C and an automorphism ¢ on B oBoCcal
leaving each element of B®C fixed, such that the composite map

Koc "®?peBocelt — Bl
is a A-isomorphism.

If we add trivial disjoint embeddings §;, from S? to V, corresponding to the basis
of C, the new #"-subkernel is £ ®g. If we perform surgeries along the spheres «;,
the #-subkernel 2@ g is replaced by To(k®g), where T exchanges the factors B
and B. The new embedded spheres are the duals &; of ; and B;-

Now we can choose a regular homotopy depending on ¢ (see [10]) to get new
disjoint embeddings «; and B; and the #"-subkernel Togo(k®g).
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If we perform surgeries along the spheres «; and B;, we get the #"-subkernel
T ogo(h®g) where T’ exchanges the factors G and C.

So we obtain a new normal map f’:V’— X normally cobordant to f and a
#"'-equivalence

(... >0>KoC->BoC »0—...)>Z1C,(X, V'; Zr).

Therefore f' is a #"'-equivalence. m

(4.2) Proof of theorem (1.11) in the case W =W"
a) The even dimensional case
Suppose n=2p>6 and let oceL!(A). Since the morphism
e: [,(Zr,#") - L}(A)

is an isomorphism, o is represented by a #"-special (— 1)P-form (H, A, ) (3.13).
Then we construct a normal map f: W > M X1 exactly as in ([10], p. 53). This
normal map is an isomorphism over M XoUJM xXI and a #"-equivalence over
M X 1 because A is #"'-non singular. By construction, ¢ is the surgery invariant of f.

b) The odd dimensional case

Suppose n=2p+1>7 and let seL!(A). We can represent ¢ by a trivial
(—1)”kernel B®B endowed with a #”-subkernel g:K —~B®B ((3.14)). After
adding p-handles to M X1 corresponding to the basis of B, we get a normal map

Jo: Wo—>MXx [0, 2] which restricts to an isomorphism over M X o UM X [0, -;]
The inverse image M’ of M %~ is the connected sum of M and copies of S X S? and
the group T, +1(M X %, M’) is the kernel B®B. Then we can perform surgeries along

the image under g of the basis of K and we get a normal map
fit Wy —>Mx [é, I].

These two normal maps induce a normal map f: W - M XI. Itis easy to see
that f restricts to an isomorphism over M XoUdM xXI and a #”-equivalence over
M x 1. Moreover o is the surgery obstruction o(f). m

Actually this proof is almost identical with [r0], p. 66.

Lemma (4.3). — Let <€ K (A). Then there exist two matrices u and v with entries
in A such that u® A and v ® A are invertible and v =<(u®A) —<t(v®A).
This lemma will be proved in § 7.

Lemma (4.4). — Let M be a connected compact (Top, PL: or Diff)-manifold, dim M > 5.
Let ¢ be an epimorphism from 70, M to w and < be an element of KI(A). Then, there exists a normal
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map f:V —> MXI restricting to an isomorphism over M X0 U M X1 and such that f is
a A-homology equivalence with torsion -.

Proof. — By lemma (4.3), there exist two matrices

u: Zn? >Zrn? and ov: Zn" > Zx°
such that ¥® A and v ® A are invertible and
T=1u®A)—t(v®A).

After adding ¢ 1-handles to M x I, we get a normal map f;:V;—> M XI which is
trivial on the handles. Now we add p 2-handles on V, along # and we get a normal
map fy:Vy—> M X1 restricting to an isomorphism over M XouUdM X I and such
that: =(fy) = t(u®A) e K (A).

Let M’ be the manifold f; *(M X 1). After adding s trivial 2-handles and r 3-handles
along v, we construct a normal map f; : V; > M’ X I which restricts to an isomorphism
over M'XouUdM’' X1, and f; is a A-homology equivalence with torsion —71(z® A).

Then after gluing f, and f; together, we get a normal map f:V — M X I which
has the desired property. m

(4-5) Proof of theorem (1.10) in the gemeral case
Consider the Ranicki-Rothenberg exact sequence
L} 1 (A) > H(Z/2, Ry(A) 2) > Li(A) > LA(A).

Suppose that o(f) vanishes in L¥(A). Then the surgery invariant of f is zero
in L*(A) and fis normally cobordant (relative the boundary) to a normal map f;:V, - X

which is a #”’-equivalence. Moreover f; is | — |-connected.
q 1 2

Let teK,(A) be the torsion of f;. Since o(f) is zero, there exists an element
ueL! (A) such that du is represented by . But f; is 2-connected and =,V; = .
Then, by theorem (1.11) (proved in the case #'=#", M =V,), there exists a normal
map g, :W; =V, X1 restricting to an isomorphism over V; XouUdV,; X I and such
that o(g) =«. This normal map induces a normal cobordism (relative the boundary)
from f, to a normal map f,: V, > X which is a #”-equivalence. Moreover the torsion
of f; is zero in H"(Z/2, K,(A) /«).

Then, there exists 1’ e I'Zl(A) such that: <(f;) =+ 4+ (—1)"7' (mod «).

By lemma (4.4), there exists a normal map g,: W, — V, X1 restricting to an
isomorphism over Vy, X 0U 9V, X I such that g, is a #”-equivalence with torsion — .
This normal map induces a normal cobordism from f; to f3: V> X and f; is a
W '-equivalence with torsion in «C K (A). Thus, theorem (1.10) is a trivial conse-
quence of the following lemma (proved in § 7):

Lemma (4.6). — Any finite A-complex which is A-acyclic with torsion in o lies in W .
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(4.7) Proof of theorem (1.11) in the general case

Consider again the Ranicki-Rothenberg exact sequence
H(Z[2, Ry(A) [) > Li(A) > Li(A) > H*~}(Z/2, Ky(A) [a).

Let ¢ be an element of LY(A) and ¢’ be the image of 5 in L}(A). By theorem (1.11)
(proved in the case # = #"') there exists a normal map f;:W; - M X1 restricting
to an isomorphism over M XoU &M X I and such that the surgery obstruction of f;
is ¢’ in LX(A). Let V, be the inverse image of M X 1. Since ¢’ is sent to zero in
H*~Y(Z/2, K,(A) /) the torsion of f;:V; > M is congruent to t—(— 1)"% (mod «)
for some ~te Izl(A).

Then, by lemma (4.4), we can glue together f; and anormal map f;: W; -> M x 1
in order to construct a new normal map f,: Wy, > M X I such that

(i) fi and f, have the same invariant in L*(A);

(ii) f, restricts over M X 1 to a #"'-equivalence with torsion in .

By construction, o(fy)—oc is the image of an element of H"(Z/2, KI(A) o)
represented by '€ K;(A). By lemma (4.4), there exists a normal map

So i Wy fii(Mx1) xI

restricting to an isomorphism over f; (M Xx1)XouUdfy; '(MXx1)XI and such that
Jo is a #"'-equivalence with torsion —1’. Then, after gluing f, and f, together, we
get a normal map f: W — M X1 with surgery obstruction . m

5. Localization in the category of graded differential modules

Consider now the general case: A is a ring and #” is an exact class in ¥(A). The
#~-localization of A is (A, «).

Definition (5.1). — A complex Ce# will be called #=splittable if there exist,
for any n, an n-dimensional complex G'e#” and an (n—1)-connected morphism
from C’ to C.

The class of # -splittable complexes of #~ will be called #™.
Lemma (5.2). — The class W™ is exact.

Proof. — The class #7 is clearly stable under simple homotopy equivalence and
under any suspension.

Now let 0 >C—C" - C" -0 be a s-exact sequence of finite A-complexes.
Suppose that G and C’ are # -splittable.
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Let = be an integer. There exists a diagram

0o —>C —>0 —0C — o

[

G (o
such that C (respectively C’) is an (n— 1)-dimensional (respectively n-dimensional)
complex in #" and the morphism C —>C (respectively C' —C’) is (n — 2)-connected
(respectively (n— 1)-connected). The obstructions to factoring the morphism C — C’
through C’ are in the groups H?(C, H,(C’, C’)) which are all trivial. So we get a
morphism C —C’. It is easy to see that the mapping cone C” of C—C’ is an
n-dimensional complex in #" and the induced morphism from C” to G is (n— 1)-
connected.

Then C" is # -splittable and, since #"* is stable under simple homotopy equivalence

and suspension, it is easy to prove that #™° is exact. m

Lemma (5.3). — ™ =W".

Proof. — The proof is by induction on the length of the complex. Clearly any
complex in #7° of length two is # *-splittable. Suppose any complex in #”° of length < p
is W *-splittable, and let Ce#™ be a # -splittable complex of length p. The complex C
is n-dimensional and (n —p)-connected. Since G is ¥ -splittable, there exist an
(n—p + 2)-dimensional complex C'e¥#” and an (n—p + 1)-connected morphism
C’ —-C.

The length of C’ is 2 and C’ lies in #™*. Then the mapping cone of C’'—C
is a complex in #°* of length p — 1. By induction the mapping cone of C’'—C lies
in#* and Ce#™. u

We will work out a theory of localization in the category of graded differential
modules. Unfortunately, the category %(A) is too small to do that and we must

consider the category 2 (A) of graded differential free A-modules bounded from below.

Notations (5.4). — Denote by #}, the exact class of finite A-complexes G such
that C®XZC lies in #” and by #7 the class (#5)°. We use # to denote the class of

complexes G e #(A) such that any morphism from a finite A-complex to C factorizes
through a complex in #7.
A morphism f in €(A) is a # -equivalence if the mapping cone of f lies in #".

Definition (5.5). — A complex C e‘E(A) will be called local if any morphism
from a complex (' e# to C is null homotopic.

A morphism f: G— Q' is a localization of C if fis a # -equivalence and C is local.
Clearly, if G has a localization, this localization is unique up to homotopy.
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Proposition (5.6). — Any complex in €(A) has a localization.

Proof. — Let C eé(A). Suppose C is (n — 1)-connected. Let &7 be the set of
morphisms K —C such that K is a (n — 2)-connected complex in #7’. Let ®(C) be
the mapping cone of the morphism @K—>C.

Clearly ®(C) is (n— 1)-connected and we can carry on this process:
C - o(C) - ¢*(C) - ®*(C) — ...

Denote by E(C) the limit of this system.

The complex ®?+!(C)/®?(C) is a direct sum of complexes in #;. Then, by
induction, it is easy to show that ®?(C)/C lies in #". But, by construction, E(C) is
(n— 1)-connected and E(C)e#(A). Moreover E(C)/C lies in #” and C—E(C) is
a W -equivalence.

Now, let € be the class of complexes C’e 2 (A) such that any morphism from C’
to E(C) is null homotopic. The class € is stable under homotopy equivalence and
extension. The last problem is to prove that € contains V.

Let Ke#,'. Since any complexe in #7 is #-splittable ((5.3)), there exists a
homotopy s-exact sequence 0 - K’ — K — K’ — 0 such that K’ is a n — 1-dimensional
complex in # and K" an (z — 2)-connected complex in #7’. Clearly K'e%. Let f
be a morphism from K’ to E(C). Since K" is finitely generated, the image of f is
contained in some ®*(C) and f is homotopic to zero in ®**+!(C). Hence K" €% and
Ke®% too. Then % contains the class #.

If Ke? (A), denote by #*(K) the group [E~K, E(C)] of homotopy classes of
morphisms from 'K to E(C). The group ##(K) vanishes for any Ke#{ and
any i€Z, and we must prove that #°(K) is zero for any K W .

If Ke#", K has the homotopy type of the limit of a directed system K;, K;e#7’,
and we have a spectral sequence with the following E, term:

Ef? = lim?o#1(K).

The E, term is trivial and the spectral sequence converges to #*(K). Then
#°(K) vanishes and C — E(C) is a localization of C. m

The localization plays an important role in view of the following propositions:

Proposition (5.%). — Let G and C' be two complexes in €(A), with dim C=mn. Let
(o (e E(C") be a localization of C'. Then, for any morphism f: G —E(C'), there exist an
n-dimensional complex C e €(A) and a homotopy commutative diagram

C —
¢ -Ls EW@)
such that C —C is a W -equivalence.
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Proposition (5.8). — Let C and C' be two complexes in €(A) with dim C =n., Let

c S E(C') be a localization of G'. Let f: G — C’ be a map such that o f is null homotopic.
Then, there exists a W y-equivalence C —C. such that Ceb(A) is n-dimensional and the

composite map C — C Lo s null homotopic.

Proof of (5.%7). — Suppose ¢ is monic with free cokernel. We have an exact sequence
0>C >EC)>K >0, Ke¥.

Let us construct the homotopy commutative diagram

in the following way: Since C is finitely generated, the map C — K’ factorizes through
a complex Le#y and by (5.3), there exist an (z 4 1)-dimensional complex K e #7,
and an n-connected map K —L. Then there is no obstruction to factorize the map
C —>L through K.

Let C be the homotopy kernel of C —K. It is easy to check that C is n-dimen-
sional and that the map C —E(C') factorizes through C'. m

Proof of (5.8). — Suppose ¢ is epic with kernel K'e#". Since the composite
map C Lol E(C’) is null homotopic, fis homotopic to a map f': G —K’. Then
S’ factorizes through a complex Le#{. By (5.3), there exist an (n -+ 1)-dimensional
complex K e #7} and an n-connected map K —L. As before the map G —L retracts
in K and the homotopy kernel of C —K has the desired properties. m

6. The ring A

In this section, we will compute the homology groups of the localization of a
complex C €%(A) in terms of the ring A defined in (1.8).

Let M be a (right) A-module. This module will be said local if any ¢ X p matrix
in ¥ induces an isomorphism Hom(A% M) — Hom(A?, M).

Lemma (6.1). — A module M is local if and only if H"(C, M) vanishes for any neZ
and any CeW'.
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Progf. — Suppose that H"(C, M) vanishes for any neZ and any C eW. Ifu
is a matrix in X, denote by C the 1-dimensional complex

u
> 0—>AP 5> AT 0—>...

Then C®XC lies in # (see (1.7)) and C is a complex of #C# . Hence
H*(C, M) vanishes and M is local.

Conversely, suppose M is local and denote by % the class of complexes C e %(A)
such that H*(G, M) =o.

If G is a complex of length two in #, C lies in % by definition.

If Cis a complex in #7f of length p> 2, there exists a homotopy s-exact sequence

0>C—->C—-C">o0

such that G’ and G’ are complexes in #7 of length < p.

By induction, C is in ¥ and € contains the class #7’.

If Ge#, C is the limit of a directed system C; e#y and we have a spectral
sequence with E, term Ef?=1lim"H?(C;, M). The E, term is zero and the spectral
sequence converges to H*(C, M). Hence H*(C, M) vanishes and the lemma is proved.

Corollary (6.2). — A complex C e €(A) is local if and only if H,(Q) is local for any
nelZ.

Proof. — If K is a complex, denote by #%(K) the group of homotopy classes of
maps 'K —C. We have a spectral sequence with E, term
Ef*=H"(K, H_,(C))
and this spectral sequence usually converges to J£*(K).

Suppose C is local and let K e #7 be a complex of length 2 defined by a matrix
ueX. Then the above spectral sequence collapses to exact sequences

0 - HY(K, H_,(Q)) - #"+(K) - H"}(K,H_,_,(C)) >0 (r=dimK).

Then all the groups H*(K, H;(C)) vanish and H;(C) is local for any ieZ.

Conversely suppose H,(C) is local. Then for any K e %", the E, term of the
above spectral sequence vanishes and the spectral sequence converges to #*(K). Hence
this last group vanishes and C is local. m

Lemma (6.3). — Localization respects exact sequences.

Progof. — Let 0 >C—C’—C"" —o0 be a short exact sequence in 7 (A). Take
localizations C—E(C) and C' - E(C’) of C and C'. We get a commutative diagram

o—>C —C — 0 — o

|

E(C) — E(Q)
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Let E(C") be the mapping cone of E(C) —E(C’). We have a homotopy commu-
tative diagram

o — G c c” o

]

o — E(C) — E(C') — E(C") —> o

Clearly E(C") is local and the map C"’ —E(C"”) is a W -equivalence. Then
C”" —>E(C"”) is a localization of G” and the result follows.

Lemma (6.4). — Localization respects direct sums.

Proof. — Let C;e%(A) be a class of complexes. Suppose that C; is (n— 1)-
connected for any 7, and take localizations C;— E(GC,).

Clearly the mapping cone of @ G, —~ @E(G,) lies in #~ and, by (6.2), the
sum @ E(C) is local. Then the map P C; > P E(C) is a localization of &0 C;. m

Now if C is a complex in %(A), denote by ®@,(C) the group H,(E(C)) where
C - E(Q) is a localization of C.

If M is a (right) A-module, we will also denote by ®,(M) the group ®,(C) where
C is a free resolution of M. The ®,’s are functors and we have a natural transfor-
mation 7: M — ®y(M).

Clearly, if M is local, a resolution of M is local ((6.2)). So % is bijective and
®;(M) vanishes for z4o.

Lemma (6.5). — Let M be an A-module. Then, there is a natural homomorphism
g1 M®, ®y(A) - Oy (M),
such that the following diagram commutes:
M®A — M

M®, ®y(A) —> @,(M)

Progf. — Let me M. Denote by ¢: A —-M the homomorphism at> ma. By
setting €'(m, x) = ®y()(x), for any xe ®y(A), we get a map &' : M X Qy(A) - ®,(M).
Clearly, ¢'(m, x) is Z-linear on x and, since @, respects direct sums, it is easy to see that
¢'(m, x) is Z-linear on m. W
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Lemma (6.6). — The module ®y(A) is a ring and <’ induces a homomorphism
e: M®, ®y(A) - ®y(M).
Proof. — Let me M and x,ye ®(A). Denote by ¢:A—> M the map a ma
and by ¢:A — ®y(A) the map a — xa.

We have a commutative diagram

A—2 .M

o,(4) 24 o) 24 oM

and the following formulas:
() 0 V(&) (1) = (@) (€'(%, ) = e’ (m, n~"e'(x, )

Do [P (9) 0 $1(9) = €'('(m, %), 9)
whence 7)5'(”1, 7)—15'(",}’)) = sl(sl(m: x)a.y)‘

Then the map 7 '’ from @y(A)®,; Dy(A) to DPy(A) induces a ring structure
on ®,(A) and v is a ring homomorphism from A to ®,(A). Moreover ¢’ induces a
homomorphism ¢: M®, ®y(A) - ®,(M). m

Lemma (6.7). — The ring homomorphism A — ®y(A) s isomorphic to the homomor-
phism A — A.

Progof. — Let A — B be a ring homomorphism. The A-module B is local if and
only if any ¢ X p matrix z€ X induces an isomorphism «*: Hom(A?% B) — Hom(A?, B).
But the matrix of u* is the transpose of « ® B. Then, B is local if and only if, for any
ue X, u®B is invertible.

Hence, for any matrix ue X, u® ®y(A) is invertible and we will prove that @y(A)
is universal with respect to this property.

Let A — B be a ring homomorphism such that z ® B is invertible for any u e X.
Let us choose free resolutions A, and B, of A and B and a localization A, - E(A))
of A,. Since B is local, there exists an extension E(A,) — B, unique up to homotopy.
Then there exists a unique extension @y (A) -B of A — B.
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Consider the following diagram:
A —s @y A)

Lo

B = @,(B)

All the morphisms of this diagram are ring homomorphisms and B = ®y(B) is
an isomorphism. Then the extension @®,(A) -B 1is a ring homomorphism. So
A — ®((A) satisfies the universal property of A and A — ®((A) isisomorphicto A — A.

Lemma (6.8). — For any module M, the morphism € : M ® A — ®y(M) is an isomorphism.

Proof. — By lemma (6.4), the functor @, respects direct sums and ¢ is an iso-
morphism if M is free. Moreover, by lemma (6.5), @, is right exact and ¢ is an iso-
morphism for any M. m

Corollary (6.9). — If M is local, the canonical map M — M ® A is an isomorphism.
Lemma (6.10). — If M is local, Tor,(M, A) is trivial.

Proof. — Choose a free module L and an exact sequence

o>N—->L->M-—o.
By lemma (6.4), we have an exact sequence
D, (M) = @y(N) = @y(L) - ®y(M) — o.

If M is local, ®,(M) is zero and ®,(N) — ®y(L) is monic. But this map is isomorphic
to the map N®A - L®A and its kernel is Tor,(M, A). m

Corollary (6.1x). — Let Ge % (A) be an (n— 1)-connected local complex. Then the
canonical map H,(C) - H,(C®A) is an isomorphism for i1 <n and an epimorphism for
i=n-41.

Proof. — We have a spectral sequence with E? term E? = Tor,(H,(C), A) which
converges to H,(C®A). Since G is local, H,(C) is local and, by (6.9) and (6.10),
we have

qu = TorO(Hq(C)3 A) = Hq(c)a
Efq = Tor,(H,(C), A) =o.
The result follows.
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Theorem (6.12). — Let C and C' be two finite A-complexes and suppose that C' ® A
@5 (n— 1)-connected. Then we have the following properties:

(i) If H(C, A) vanishes for i>n-+1 and f is a morphism from COA to C' ® A,
there exist a W-equivalence <:C — C with dim C = dim C and a morphism g:C — Q'
such that g® A is homotopic to fo(s® A).

(ii) If HY(C, A) vanishes for i>n and f is a morphism from C to C’' such that f® A
is null homotopic, there exists a Wi-equivalence ¢: C — C, with dim C=dim C such that
Sfoe s null homotopic.

Progf. — Let C’ — E(C’) be a localization of G’ and consider the following
diagram:

¢ —— O®A

'
E(C)) —> E(C)®A

If fis a morphism from C®A to CG'®A, f is defined by an A-homomorphism
f:C>C®A.

The obstructions to lift the composite map f": CG— C' ® A > E(C") ® A through
E(C’) lie in the groups H?(C, H,(E(C')®A, E(C’))). Let H, be the module
H,(E(C")® A, E(C")). Since E(C’) is local, H, is a A-module and is trivial for
p<n+1, by (6.11). But H(C, A) vanishes for i>n+ 1 and the localization E(C)
of C is (—n—2)-connected. Then we have, for p>n+ 1,

H?(C,H,) =H_,(C, H,) =H_,(E(C), H,) = 0.
Then f” lifts through E(C’) and, by (5.7), there exist a complex Ce %(A) with

dim C =dim G, a #-equivalence ¢: C — C and a morphism g: C— C’ such that
the following diagram is homotopy commutative:

c ‘s ¢

1]

¢ L5 E(@)®A

On the other hand, any complex in #7 of length two is A-acyclic and, by induction,
any complex in %7’ is A-acyclic. This implies that any complex in %~ is A-acyclic
and C®A—-E(C)®A is a homotopy equivalence.
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Then the following diagram commutes up to homotopy:

c s«

1

c - oea

and part (i) of the theorem is proved.

Suppose now f is a morphism from C to G’ with dimC=n. If f®A is null
homotopic, the composite map C— C’' - E(C')®A is null homotopic and, by
obstruction, the map C — E(C’) is null homotopic. Then we may apply (5.8) and
the theorem is proved.

7. The structure of ¥~

Lemma (7.1). — The class W is the class W' of A-acyclic complexes in €(A).

Proof. — If C is a complex in #/, of length two, it is A-acyclic by definition of A.
Then, by induction, any complex in #7 is A-acyclic.

Conversely, let CGe €(A) be a A-acyclic complex and G — E(C) be a localization
of C. Since C is A-acyclic, E(C) is A-acyclic too. Suppose E(C) is not acyclic and
let H, be the first non trivial homology group of E(C). The module H, is local and

H,~H,®A~H/(EC)®A) =o.

Hence E(C) is acyclic and Ce# . Since C is finite, the identity C — C factorizes
through a complex Ke#{ and we get a split exact sequence

0->0C —-K—->C—o.

This implies that C® G’ has the simple homotopy type of K and C® C’ lies in #7’.
On the other hand, K has the simple homotopy type of the mapping cone of

the zero map C’' - 2C and C' — ZC is a#-equivalence. Then C® ZC lies in #7;.

Now we will prove that C is in # by induction on the length of C.

If the length of C is two, C@®XC is contained in #; and CO®ZC®ZC® X2C
lies in #. But Z(CO®ZCO®ZC®X2C) is the mapping cone of the zero map
ZCO®ZCdX2C — XC which is a #-equivalence. Then C@®XC lies in #° and C
lies in #,. Since the length of C is two, C lies in #7 .

If the length of C is p>2, G is n-dimensional and (n— p)-connected. Since
C @ 2C is #-splittable, there exist an (n —p 4 2)-dimensional complex Ke#; and
an (n—p + 1)-connected morphism f®g from K to G® ZC.

The morphism f®o is clearly (z—p + 1)-connected. Let M be the mapping
cone of f. The complex M ® ZM is the mapping cone of f® Zf and lies in #;’. But
the length of M is p — 1. By induction, M lies in #7 and C lies in # too. m
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(77.2) Proof of the splitting lemma (3.5)

Let G be a complex in #” and let n be an integer. Since #”' = #, C is
#'-splittable and there exist an z-dimensional complex C’ € #” and an (n — 1)-connected
morphism C’ — C.

Up to simple homotopy type, we may suppose that the map C; — C; is bijective

for :<n—1 andis epic with free kernel L, for ¢ =n—1. Then we have the following
complex in #™:

... >G, . ,—>GC, ,0C >C,@L, »>0—.
Now by setting
L=(..»0->C,»>0—...)
L'=(..>0->L,>0—>...),
we get a #'-equivalence

L-Le&(..»C,.;»>C,»0—~>...). &
Lemma (7.3). — For any complex CeW”', the complex C®ZC lies in #'.
Proof. — If G is A-acyclic, C lies in #FC#, and then C®ZCe¥# . m

(7-4) We use K(#") to denote the class of complexes Ce#™ fulfilling the fol-
lowing relation:

C~C <« CoZCe¥.
By (7.3), this relation is an equivalence relation and K(#") is a well defined set.
Moreover the direct sum of complexes induces an abelian group structure on K(#").

If G is a A-acyclic complex in %(A), the class of C in K(#") will be denoted
by 6(C).

Lemma (7.5). — Let 0> C—C' —C" —>o0 be an s-exact sequence of A-acyclic
complexes in €(A). Then 6(C’) =6(C) 4 6(C").

Progf. — We have an s-exact sequence
0>CeXC~>CoXCaxXC" >0C"®2C" -0

and, by lemma (7.3), G ®@ZC®XZC" is in #". That proves the lemma.
Now if fis a A-homology equivalence between two finite A-complexes, we will
define 6( f) as the class of the mapping cone of f in K(#").

Lemma (57.6). — Let f:C—>GC and g:C' — Q" be two A-homology equivalences
between finite A-complexes. Then 0(gof)=0(f) + 0(g).
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Proof. — We have a short s-exact sequence between the mapping cones of f, g,
gof®1y. Then the result follows from (7.5).

(7.7) Let f: A» > A? be an isomorphism. Denote also by A the o-dimensional
complex ... >0—->A—->0—... Then fis a morphism from A?® A to A’®A, and,
by (6.12), there exist a #'-equivalence ¢:C —>A? and a map g:C —A? such that
fo(e®A) is homotopic to g®A.

Since f is an isomorphism, g is a #"'-equivalence.

Then we define 6(f) as 6(g) —0(c). By (6.12), it is easy to show that 6(f)
does not depend on the choices.

Lemma (7.8). — Let f: A’ >A? and g: A?— A" be two isomorphisms. Then we
have

b(gof)=0(S)+6(2).

Proof. — By theorem (6. 12), there exists a homotopy commutative diagram in €(A)

Il

C (o4
€ h le' ¥
Y
Ar Al Ar

such that the morphisms are A-homology equivalences and 2 ® A and 4’ ® A are homo-
topic to fo(e®A) and go(¢'®A). Then we have

0(gof) =0(k o) —0(coE) =0(k) + () — 6(c) — O(E)
whence 0(gof)=0(k)—0(c) +06(h) —06(c") =0(f) +6(g). m

Theorem (7.9). — The torsion homomorphism < : K(#") — K.i(A) /o is an isomorphism.

Proof. — If x€ KI(A) o is represented by an isomorphism f: A? - A% we have
e(8(f)) = (/) mod « = x =¢(8(f))

and e is surjective.

Now let 6 be an element of Ker ¢, represented by a complex Ce#”. Since
¢(6) vanishes, 1(C ®A) isin « and t(G® A) is the torsion of a complex C'® A where
C’ is a A-acyclic complex in #". Then 0 is represented by G®ZC’ and the torsion
of (C®XC')®A vanishes. Since #” is splittable, we can “split” C@®ZC’ into
complexes C;e#” of length 2. And we have

0=30(C;) and Zt(C,®A)=o.
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On the other hand, the suspension X2 does not change the invariants 6 and -.
So we may as well suppose that the complexes C; are 1 or 2-dimensional.
Then there exist two 1-dimensional complexes in #”’

X=(...—>0—>A”—,>Aq-+o—>...)
Y=(..50>A"5A7 50-...)
such that 0 =6(X)—0(Y) and 1(X®A)=1(Y®A).

But the image of 7(X®A)=1(f®A) under the boundary IN{I(A) 2 Ko(Z) is
¢—p [9]. Then, after stabilization on X and Y, we may suppose
p=¢" and g=¢.
Let ¢ e GL,(A) be the map for (f®A)o(g®A)~". Since (f®A) —1(g®A)
is zero, the class of ¢ in K,(A) is in the image of K,(Z) - K,(A). Then, after a per-

mutation on the basis of A? (in X) and after stabilization on X and Y, we may suppose
that ¢ lies in the commutator subgroup of GL,(A):

o =1[e; 4.

And we have
6 =06(X)—06(Y)=06(f)—0(g) =0(f®A) —b(g®A)=6(e)
whence 0 = Z(6(p:) -+ 0(%) —O(9:) — O(¢5)) = o.

This completes the proof.

Corollary (7.10). — The class of A-acyclic complexes in W is the class of A-acyclic
complexes G such that the torsion of C®A is in «.

Now we prove lemmas (4.3) and (4.6).

Lemma (4.6) is actually the corollary (7.10).

Let e &, (A). By theorem (7.g), there exists a complex Ce#” such that t
is the torsion of C®A. Since C is splittable ((7.1)), we can split G into A-acyclic
complexes C; of length two and we have v =27(C,;® A). If G;is (n, 4 1)-dimensional
and the differential of C; is #;, we have:

T=23(—1)"%1(4;® A)

and lemma (4.3) follows.

8. The isomorphism theorem

Suppose now that A is a ring with involution and %" is an exact symmetric class
in €(A). The # -localization of A is (A, «) and A — A is a morphism of rings with
involution.
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The class of A-acyclic complexes in €(A) is denoted by #” and the class of acyclic
complexes in €(A) is denoted by #7,.
We have a canonical map

e: LA, #7) — T,(A, #)) ~ L(A).

In this section, we will prove that ¢ is an isomorphism.

Lemma (8.x). — Let G (respectively ) be a p-dimensional and (p — 2)-connected complex
in G (A) (respectively €(A)) and f: 32— CG®A be a map. Then there exist a p-dimensional
complex X' € €(A), a homotopy equivalence e:3'® A -3 and a map g:3" —C such that
Sfoe is homotopic to g® A.

Proof. — Let us consider the modules %, %,_, as p-dimensional complexes C,® A,
C,_1®A. The differential d on X is a map from G,®A to G,_,;®A. Then, by
theorem (6.12), there exist a p-dimensional complex Ce%(A), a #”-equivalence
€:C—~C, and a morphism g: C —C,_, such that g® A is homotopic to do (® A).

Let M be the mapping cone of g. The #”-equivalence & induces a homotopy
equivalence ¢ : M®A -3, Moreover M is p-dimensional and C®A is (p—2)-
connected. Then by (6.12), there exist a p-dimensional complex Z'e%(A), a
#'-equivalence ¢’ :X" —>M and a morphism g:X' -G such that foe'o (¢ ®A)
is homotopic to g® A. The result follows.

Lemma (8.2). — Let C be a finite A-complex such that H'(C, A) vanishes for i>p
and let ¢ € B(C®A) be a bilinear form such that

Pe<—2p+1, dp=o.

Then there exist a complex C' € €(A) with dim C' =dim C, a #'-equivalence <:C' —C
and a bilincar form o' € B(C') such that do’ =0 and <'(9) —¢'®A is a boundary.

Proof. — By theorem (6.12), there exist a complex C' € ¥(A) with dim G’ =dim C,
a #W'-equivalence ¢:C’—>C and a morphism g:C’ —C such that go(e®A) is
homotopic to A®g. Then ¢ =¢gg is the desired form. m

Lemma (8.3). — Let G be a finite A-complex such that H'(C, A) vanishes for i>p
and let @ € B(Q) be a bilinear form such that

P9 —2p, dop=o.
Then, if ¢® A is a boundary, there exist a complex C' € €(A) with dim G’ =dim G and
a W' -equivalence €: Q' —C such that € (¢) is a boundary.

Proof. — If ¢® A is a boundary, ¢ ® A is null homotopic and, by (6.12), there
exist a complex CG'e%(A) with dim C' =dim C and a #”-equivalence ¢: G’ —C
such that @oe is null homotopic. Then ¢ (¢) =to@oc is a boundary. m
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Theorem (8.4). — The morphism e : T, (A,#") — LE(A) is an isomorphism.

Proof. — Suppose n=—2p or n=—2p+1, and let oeLl(A).

By lemma (3.6), o is represented by a #/,-non singular quadratic z-complex (G, ¢)
where C is concentrated in dimension p (and p— 1 if n is odd).

By lemma (8. 1), there exist a p-dimensional complex C’ € %¥(A) and a homotopy
equivalence from C'® A to G. Then o is represented by (CG’'®A, ¢’). Since C’' is
p-dimensional, ¢’ is the class of ¢,® ¢, + ¢, ® ¢, and we have

doy+ ¢ — =0, dp,=o.

By lemma (8.2), we may suppose that ¢, has the form ¢, ® A, ¢, eB(C’') and
dy, is zero. Then ($;—$;) ® A is a boundary and, by lemma (8. 3), we may suppose
that ¢, — {, is a boundary d&.

Now, 9o+ E®A is a cycle and, by (8.2), we may suppose that

Po+EOA=¢ ®A+dy
where ¢’ is a cycle in B(C’') and 7 eB(C'®A). Then, we have

6®Po+ 6@ =(6,® (9" —E&) +6,®Yy) ®A + d(e,® 7).
Moreover ¢,® (¢’ —&) + ¢, ® ¢, is a cycle and represents a #'-non singular quadratic
n-form over G’. Then the morphism ¢ is surjective.

Now let o' €TI,(A,#”) be an element in Kere. By lemma (3.6), ¢’ is repre-
sented by a #"'-non singular quadratic z-complex (G, ¢g) where G is a complex in %(A)
concentrated in dimension p (and p—1 if 7 is odd).

Since e¢’ is zero, (C®A, ¢®A) is cobordant to zero and, by lemmas (3.7) and
(3.8), there exists a #,-non singular quadratic (z 4 1)-pair (£ - G® A, 4) such that
¢ is the boundary of # and X; vanishes for i%p, p—1.

By lemma (8.1), we may suppose that the morphism X —C® A is the morphism
gOA:Z'®A > CQ®A, where X' is a p-dimensional complex in €(A). The quadratic
form u is represented by

bo® Yo+ 6,09 + 604, ¢ eB(X),
and we have
do+ 1 — by = 89 g ® A
—dy +dy+ Yy =Zp1g®A
dyy =0
where ¢,® ¢, + ¢; ® ¢, represents g.
By lemma (8.2), we may suppose that

=0, @A +dE;, dy=o0
and, after adding to ¢,® §, + ¢, ® §; + ¢, ® §, the boundary of ¢, ®E;, we have
b=U0A, dj=o.
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Then (39,8 — $5— $3) ® A is a boundary and, by lemma (8.3), we may suppose that
o8 = Y5+ U + dny.

Since ¢; + 7, ® A is a cycle, we may suppose, by lemma (8.2), that
b+ m®A = ®A+dE, dj=o,

and, after adding to ¢,® §y + ¢, @ ; + ¢, @, the boundary of —e, ®E,, we may
suppose that

b+ m®A={¢®A, dyj=o.
Then, we have
dy + (% — m— 5 + ) © A = Fo, g ® A.

Let ¢ be the form go,g — ¢; + 1, + ¥;—%;,. The bilinear form ¢ is a cycle of
degree n and ¢ ® A is a boundary. Moreover, by Poincaré duality, H'(Z’, A) vanishes
for > —n—p. Then lemma (8.3) holds and we may suppose that

&pog— 41+ + @1_"'\11 = d,.
So ¢o—1Me®A is a cycle and, by (8.2), we may suppose that
bo—m®@A={{®A+dE_;, diy=o,

and, after adding to ¢,®{¢,+¢,® ¢, +¢®¢, the boundary of ¢,®E_,, we may
suppose that

Yo— M ®A =y ®A.
Now it is easy to check that
6o® Yo+ €1 ® Py +e3® Py =[6,® (Mo + $o) + 1@ (— My + 41) + 2@ ¢p] A
and dleg® (o + o) + €1 ® (— My + §1) + 2@ ds] = g°(e ® o + €, ® ¢y).

Then ¢,® (o + Yg) + 6, ® (— My + ¢7) + €, ® §, represents a #'-non singular quadratic
(n + 1)-form v over ' — G with boundary ¢. So ¢’ is zero and ¢ is injective. m

9. Some results about A and L,(A)

Throughout this section, we assume that A — B is a ring homomorphism and
B is a subgroup of K,(B).

The class of finite A-complexes C such that C®B is acyclic with torsion in
is denoted by #™®, and the #™®-localization of A is denoted by (A, «).

Proposition (9.1). — Let u be a matrix with entries in A. Then, if u® B is invertible,
u is invertible too.

Proof. — Let u be a matrix with entries in A. If we denote by A the o-dimensional
complex ... >0—->A—>o0—..., uis a morphism A’®A — A’® A and, by theo-
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rem (6.12), there exist a o-dimensional complex Ce #(A), a (#®)i-equivalence
e:C — A? and a morphism g: C — A? such that g® A is homotopic to #o(e® A).

Let K be the homotopy kernel of e. Since K is # f-splittable, there exist a
(— 1)-dimensional complex K'e#;® and a (— 2)-connected morphism f:K’—> K.
The composite map K’ K - C is (—2)-connected. Denote by C’ its mapping
cone. The complex C’ lies in #;f and has the simple homotopy type of a complex C’*
such that C;’ vanishes for ¢40, —1. Moreover ¢ and g factorize through G’ and
we get two morphisms ¢ : G — AP and g':C"” — A? such that g¢’® A is homotopic
to uo(s'®A).

But #®B is invertible, then g’ ® B is a homotopy equivalence and the mapping
cone of g’ is B-acyclic and lies in # . Since the length of this mapping cone is 2, g’ is

a (#®)s-equivalence. Then, by (7.1), g’ is a A-homology equivalence, and z is an
isomorphism. m

(9.2) Proof of theorem (1.13)

If u is a matrix with entries in A, denote by M(x) the 1-dimensional complex
ci. > 0> AP 5 A 50>
The set X is the set of matrices z such that (M(x) ®ZM(x))®B is acyclic with
torsion in B. But M(z)® 2M(x) is B-acyclic if and only if M(x) is B-acyclic. Moreover
if M(u) is B-acyclic, we have
T[M(x) ® B® ZM(z)® B] = o.

Then X is the set of matrices # such that ¥® B is invertible and A — A is the loca-
lization of A — B.

Now let © be an element of K,(A). By lemma (4.3), there exists a finite
A-complex C such that C® A is acyclic with torsion =. Then, by lemma (7.10), 7 lies
in « if and only if C lies in #"®. But the torsion of C®B is the image of = by the
morphism e: A —B. Hence « is the inverse image of B under .

Now suppose ¢ is onto, and let Ce#™®, The complex C® B is acyclic and the
identity is a homotopy: 1 =dok + kod.

But C® A - C®B is onto and we can lift 2 in a map 2’ from CG® A to itself.
The morphism dok’ 4 %' od is invertible after tensorization by B. Then, by (g.1),
dok’ + k' od is an isomorphism and C®A is acyclic. m

(9.3) Proof of Proposition (1.15)
Let B,CB,CB,C... be subrings of B defined by:

(1) B, is the image of A — B;
(ii) for any n>o0, B,,,is generated by B, and the inverses of the units of B contained
in B,.
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Denote by B’ the image of A — B. The subring B’ contains A and, by (g9.1),
any unit of B contained in B’ is a unit of B’. Then B’ contains all the rings B,. m
As a corollary of (9.1), we have:

Lemma (9.4). — If A —B is onto, K,(A) - K,(B) is onto.

From now on, we will suppose that A — B is a morphism of rings with involution
and that B is stable under the involution. Then#® is symetric and A has an involution.
We suppose also that A — B is onto.

Theorem (9.5). — If n is even, the morphism LZ(A) — L8(B) is epic. If n is odd,
this morphism is monic.

Proof. — By lemma (9.4), the relative group L¥#(A — B) does not depend on f.
Then it suffices to prove the theorem in the case f = Kl(B).
Let n=2p. An element ueL} (B) is represented by a hermitian (— 1)-

~

form (H, A, ) such that the induced map A:H —H is an isomorphism. Since H is
free over Band A — B is epic, there exists a hermitian (— 1)?~form (H’, X', ") such that

H' is free over A,
H®B=H, N®B=} p®B=yp.
Then, by lemma (g.1), ' induces an isomorphism from H’ to A’ and (H', X', ) repre-
sents an element ve L} (A) such that ¢,(0) =u.
Let now n=2p + 1. An element veL} , ,(A) is represented by an isometry
between two standard kernel K and K’. If » is sent to zero in L}, ,(B), K=K’ and

g®B is an element of RU*B) (with the notations of [10]).
Consider the following diagram:

1 —s UU(A) —> TUYA) —> GL(A) —> 1

1 —s UUB) —> TU*B) —> GL(B) —> 1

By lemma (9.1), a and ¢ are surjective. Then b is epic and the morphism
RU"(A) -~ RU*B) is epic too. Hence v can be represented by an isometry f such
that f® B is the identity map.

Let H®H be the standard kernel K. The isometry f is defined by

flx,9) = (x4 a(x) + b(),» +c(x) +d(y)), VxeH, yeH

and a®B, ®B, c®B, d®B vanish. By (9.1), 1 4 a is invertible and, after compo-
sing f with an element of GL(A), we may as well suppose that a is zero.
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Since f is an isometry, it is easy to see that the map g defined by
8(%, 9) = (%, 9 — (%))
is an isometry leaving each element of H fixed and g lies in RU*(A). We have
gof(%,9) = (2 + b(9), 9 + d(y) —cob())).
But 1 +d—cod is invertible and there is an isometry ke RU*(A) such that
hogof(x,y) = (% + a'(x) + b'(1), ).
It is easy to see that a’ is zero and hogof lies in RUMA). Therefore V is zero. m

Theorem (9.6). — The relative group LY, (A — B) is the group of equivalence classes
of pairs (H, K) where H is a hermitian (— 1)P-form over A and K a subkernel of H® B, subject
to the following relation:

(H, K) is equivalent to (H', K') if there exist two A-kernels H and Hy with subkernels S,
and Sy and an isometry ¢ : HOH, >~ H @ Hy such that

¢(K®S,®B) =K' ®S,®B.

Proof. — By Wall ([10], p. 72), L&, , (A — B) is generated by such pairs. More-
over (H, K) and (H', K’) represent the same element in L}, (A — B) if there exist
two kernels H, and H; with subkernels S, and S, and an isometry

p:HoH,® —H - H,

such that any automorphism ¢ taking S;®B to @(K®S,®B®K’) lies in RU*(B).
But the map RU*(A) - RU*B) is epic (see the proof of (9.5)). Hence we can lift ¢
to an automorphism ¢ on Hg.

Let S; be the subkernel ¢(S;). We have an isometry

¢e:HOoH,06—H oH - H ®H]

taking KO®S,®B®K'®K’ to K'®S;®B.

On the other hand, the diagonal K is a subkernel of —H’® H’ and there exists
an automorphism in RU*(B) taking K®B to K'®K’. By lifting this automorphism
in RU*(A) we get an automorphism f and f(K) is a subkernel of —H’'@®H’ such

that f(K)® B=K'®K’. Let H, be the kernel H,® —H'®H’ with subkernel
So =Se®f(K). Then ¢ is an isometry taking K®S,®B to K'®S;®B. m

Now, consider the following question: Under what conditions is the map ¢: A - B
an isomorphism? To study this problem, it is convenient to use the following definitions:

An A-module M is called B-perfect if M® B is zero; it is called locally B-perfect
if any element in M is contained in a finitely generated B-perfect submodule.

Theorem (9.7). — Suppose the kernel of A — B 1is locally B-perfect and B is the loca-
lization of Im(A — B) with respect to a multiplicative subset of the center. Then the morphism
e: A — B is an isomorphism.
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Proof. — Let ae Ker(A — B) and suppose that a is contained in a finitely generated
B-perfect submodule I. Let us choose a free resolution of I

ChArSTIso.

Since I is B-perfect, f® B is epic and has a section s. But A —B is epic and we
can lift s to a morphism g: A" > C®A. By (9.1), f®Aog is an isomorphism and
S® A isepic. Hence Iis A-perfect and the composite map I —- A — A is zero. Then
A —-B and A —> A have the same kernel K.

Now it is easy to see that the maps A/K +B and A/K — A have the same
universal property and £: A - B is an isomorphism. m

This theorem is in fact a generalization of a theorem of Hausmann [3] proved
also in [6] and [8], theorem (1.4).

Finally, we will give an example of computation.

Let D,, be the dihedral group of order 2z (n odd) and let ZD,, - Z be the
evaluation map. The group D,, is not perfect and not nilpotent, then we cannot use
the techniques of Hausmann or Smith in order to compute the group I',(ZD,, - Z).

Theorem (9.8). — We have the isomorphisms
I,(ZD,, - Z) % T(Z[Z/2] - Z) > LX(A)
where A is the pull back of rings

A—— Z

|

z(z) [Z/2] — z(z)

Proof. — The group D,, is generated by ¢ and © with the following relations:

'=1, =1, at=1tl1.

Let ZD,, - A be the localization of ZD,, ~Z and let x and y be the images
of t and 7 in A. We have

I—n

. (141 +14+t+...+"H(a—1)(1—t)=0.

I —

But n(x+¢)+1+t—|—...+t"‘1 is sent to 1 in Z and

2

I—n

. (14 4+14+x+...+2"1

is invertible. This implies that
(1 —)(1 —x) —o.
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On the other hand, ZD,, > A is a morphism of rings with involution. So we

have:
(=)(1—x)=(0—2")(1—y)=0=(1—x)(1—))=o0.

And x and » commute. Then:

m=x"YY=x=>x=1

Hence ¢ is sent to 1 in A and A is the localization of Z[Z/2] -Z. But Z[Z/2] is
commutative and A is the localization S™'Z[Z/2] where S is the set of elements

a+breZ[Z|2] with a + b=1. Thenitis easy to see that A is the subring of Z,[Z/2]
defined by

A={a-+br,a,beZy and a+beZl}.
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