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a ring. A class O of A-modiules ds called vxact iF it satisfies

- limit

Fi - C is stable under dire
EZ2 - for every short exact sequence of A-modules:
0—=>M—=>M-—> M -0

I . ad . E) -
£ two of these modules are in {, so is the third.

[

Definition 1-2: Let A be a ring. Let Co he the intersection of all exact classes of

A-modules containing the module A itself. The modules of Co wiil be called weakly

A ring A is regular if every A-module is weakly regular.

:s: Because of the conditicn El, an exact class is stable under dirsct summand.

Therefore an exact class ceontains A if and only if

Thus the regularity condition for ring is Morita invariant and cen be defined for every
n category.
GRLL M)
This noticn of regularity semes to be in conflict with the classical of

regularity used for noetherian or coherent rings. But that is not the case. Actually if

3 ring is ccherent, it is regular in the zlassical sense if and only if it is regular in

thiz sense {corollary 1-10).
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Counterexample: Let C be the class of Z ,,-modules M such that the sequence:

2

oM M-S M

2

is exact. The class C is exact and contains Z ,,. Hence it contains ail weakly regular
mmodules. But Z/z which is not in C, is not weakly regular.

In the same way, if G is a group with torsion, we can see that ZIGl is not
regular. To do that, consider a non trivial finite subgroup F of G and the class of ail
Z1Gl-modules M such that the Tate cohomology ﬁ*(F,M} vanishes, This class

contains all weakly regular modules but not Z.

The class of weakly regular modules is the smallest class of A-modules
containig A and satisfying conditions El and E2. In this situation, the condition EZ

may be simplify a little:

Proposition 1-3: The class of weakly regular A-modules is the smallest class C of
A-modules containing free modules and satisfying conditions El and:

E'2 - for every short exact sequence of A-modules:

0 ->M-—->M—->M —>0

if M and M' are in C, so is M".
Proof: For every ordinal «, we can construct a class CO( by induction in the following
way:

Co is the class of free modules.

if o is a limit ordinal, a module M lies in Ca if and only if it is a direct limit
of modules lying in BU CB .

<o

if o = B+1 , a module M lies in Coc if and only if it is the Cokernel of a
monomorphism f : M' = M" where M’ and M" are in CB'

The only thing to do is to prove that the union C of classes CO( is exactly the

class of weakly regular modules.




Lemma 1-4: For every ordinal « the kernel of an epimorphism from a free module to a
mmodule in Coc belongs to C.
Proof: This lemma is obviously true if « = 0. Suppose, by induction, that the lemma is
true for every f<a. Let f: F —> M be an epimorphism from a free module F to a
module M in Ca‘ If « = 8 +1, we have an exact sequence:

0 >M->M—->M=—-0
and M' and M" belong to CB‘ It is possible to complete this sequence to a diagram:

00— M-—>M—M—0

I |

00— F— F'— F— 0
where the lines are exact, the vertical arrows are surjective and F' and F" are free. By
induction, Ker f' and Ker f" are in C. Hence the Kernel of f which is the Cokernel of
Kerf — Ker f" belongs to C also.

If o is a limit ordinal, M is the direct limit of a system of modules M;, i ¢ I
where 1 is a filtering small category and for every i ¢I, M, belongs to some CB’ B<ua.
Denote by M, this system of modules. For every icl, let F;, be the following system:

- for every jel, Fij is the free A-module generated by the set of maps in I
from i to j. For every map j—>k in I, the induced mad from Fij to F, is given by the
composition.

Clearly, Hom(F,,, M_) is isomorphic to M; and the limit of F;, is isomorphic
to A. Let J be the set of couples (i, u) where i is in I and u is a map from F;, to
M,. Let F, be the direct sum of F;, for all couples (i, u) in J. We have an obvious
map ¢, from F_ to M_. For every icl, ¢;: F; = M; is surjective with kernel K| in C.
Moreover ¢ induces an epimorphism ¢ from F' = liip;F* to M = h_n;M* and the kernel
of ¢ is the limit of the K|'s. By induction, K; belongs to C for every i. Hence K
velongs to C.

On the other hand it is easy to see by induction that, for every y, for every

module N in Cy, No F belongs to C. Hence Kerf @ F', isomorphic to KeF by Shanuel's



lernma. belongs to C. Since C satisfies the property El, it is stable by direct summand

and Kerf lies in C.

Lemma 1-5: C is stable under extension.

Procf: Let 0 - M' — M" = M — 0 be an exact sequence such that M' and M are in
C. Let £+ F = M be an epimorphism from a free module F to M and N be the
pull-back of F and M" over M. The module N is isomorphic to M'e F. Thus it belongs

to C and M", cokernel of a monomorphism from Kerf to N, lies in C too.

Lemma 1-6: C is stabie under kerne! of epimorphism.
Proof: Let 0 = M' — M" — M — 0 be an exact sequence such that M" and M are in
" C. Let f: E — M" be an epimorphism from a free module F to M" and K be the kernel
of F = M. We have an exact sequence:
0—>K—=>MeF—> M"— 0

By lemma 1-4, K lies in C. By lemma 1-5, M'e@F lies in C too. Since C satisfies F1, M’
belongs to C.

We have seen that C satisfies the condition E2. This class is exact and it is

exactly the class of weakly regular modules.

Let C = ( C, ) be a A-chain complex, i. e. a graded differential projective
A-module bounded from below. The complex C is finite if g’aCn is finitely generated,
quasi-coherent if each C, is finitely generated.

The main result of this section is the following:

Theorem 1-7: Let C be a quasi-coherent chain complex and M be a module. Then, if
M is weakly regular, every chain map from C to M factors through a finite chain

complex.




Proof: In this theorem, M is consider as a graded differential module with trivial
differential concentrated in degree 0.

Let C be the class of A-modules M such that, for every gquasi-coherent chain
complex C every chain map from C to M factors through a finite chain complex.

Let F be a free A-module and f be a chain map from a quasi-coherent chain
complex C to F. This map is given by the map f, from C; to F. Hence f factors
through a finitely generated free module F' contained in F. Since F' is a finite chain
complex, F belongs to C.

Let M be a direct limit of modules M; in the class C. Let f be a chain map
from a quasi-coherent chain complex C to M. Since the map is defined by a map from
the finitely presented module Coker(d:C,— C_) to M, f factors through some M; and
the chain map C —> M; factors through a finite chain complex. Therefore M belongs
to C.

let 0 > M' — M" —> M — 0 be an exact sequence of A-modules. Suppose
that M’ and M" are in C. Let f be a chain map from a quasi-coherent chain complex C
to M. Let C' be the mapping cone of the identity from the desuspention s-IC to
itself. The complex C' is contractible and quasi-coherent and maps surjectively onto
C. Since C' is contractible, there is no obstruction to lift the chain map C' = C —> M

through M" and we get the following diagram:

0— M — M'— M—0

T

0— ¥°'C —C — C—0
Since M' is in C and £-'C is quasi-coherent, the chain map =~ 'C — M’ factors
through a finite chain complex K'. Let C" be the push-out of C' and K' over Z7IC.
The complex C" is quasi-coherent and M" lies in C. Hence the chain map C" — M"
factors through a finite chain complex K". Let CK' be the cone of K'. Since CK' is

acyclic the chain map K' = CK' extends to C". Let L be the direct sum K"e CK'. The



constructions above give a factorisation of C" — M" through L and the map from K'
to L is injective with projective cokernel K. The chain complexes K, L and K are

finite and the chain map from C to M factors through K.

g— M — M — M —90

[ I

0— K':—%/L — K—0
NelT

0— ¥°IC — C > C > 0

Then C contains all free modules and satisfies conditions El and E'2. By

proposition 1-3, C contains all weakly regular modules and the theorem is proven.

Corollary 1-8: Let A be a regular ring. Let C be a quasi-coherent chain complex and
C' be a chain complex with only finitely many non trivial homology groups. Then
every chain map from C to C' factors up to homotopy through a finite chain complex.
Proof: The proof is by induction on the number of non zero homology group of C'. If
C’ has non homology, C' is contractible and every chain map from C to C' factors, up
to homotopy, through a trivial chain complex. Let C' be a chain complex with n non
Zero homology groups and f be a chain map from C to C'. We can kill the last non
trivial homology group of C' by adding algebraic cells and we get new chain
complexes C') and C' and a short exact sequence:
0>C—->C,=>C —>0

such that C'| has only one non trivial homology group and C'j only n-1.

By induction the composite map c - C — C, factors, up to homotopy,
through a finite chain complex K;. Let E be the cone of C. The difference of the
maps C = C' — C, and C = K, = C, is homotopic to 0 and factors through E.
Therefore the composite map C — C' — C') factors through the chain complex Ky =
K,eE and K'j is quasi-coherent and has the homotopy type of a finite chain complex.

Moreover the map C — K is injective with projective cokernel C,.




The chain complex C, is quasi-coherent and we have a chain map g from C, to
C',. But C'| has only one non trivial homology group M. Thus C'| is a projective
resolution of M. For every quasi-coherent chain complex L, the homotopy classes of
chain maps from L to C', is isomorphic to the homotopy classes of chain maps from
L to M. By theorem 1-7, the map g factors, up to homotopy, through a finite chain
complex K,. As above, we can construct a quasi-coherent chain complex K', of the
homotopy type of a finite chain complex and a factorization of g through K'|. Let K

be the homotopy kernel of the chain map K'; — K| (i. e. the desuspension of its

mapping cone). By construction the map f factors through K' and K' has the

homotopy type of a finite chain complex K and f factors, up to homotopy, through K.

0>C —>Cy,=>C =0

1T 1

K = K, = K|

P =1

0—>C—> K, = C >0

Corollary 1-9: Let A be a regular ring. Then a quasi-coherent chain complex is
homotopy equivalent to a finite chain complex if and only if it has finitely many non
trivial homology groups.

Proof: Let C be a quasi-coherent chain complex with finitely many non trivial
homology groups. By corollary 1-8, the identity from C to C factors through a
complex K of the homotopy type of a finite chain complex. Hence C is, up to
homotopy, a direct summand of K and C has the homotopy type of a finite chain

complex.

Corollary 1-10: Let A be a ring. Then A is regular coherent in the sense of
Waldhausen [1 if and only if it is regular and coherent.
Proof: A ring A is regular coherent in the sense of [1 if every finitely presented

A-module has a projective resolution:



0—9Cn—>...—>Cl->C0—>M—90
where all C/'s are finitely generated projective.
The only if part is clear. Suppose now that A is regular and coherent.
Let M be a finitely presented A-module. Since A is coherent, M has a
projective resolution C which is a quasi-coherent chain complex with only one non
trivial homology group. By corollary 1-9, C has the homotopy type of a finite chain

complex. Hence M has a finite projective resolution and A is regular coherent.

§2 Reduction of Nil objects

Throughout this section A is a ring and S is a A-bimodule flat from the left.
We denote by J’A the class of finitely generated projective right A-modules, and by
Mil(A, S) the additive category of pairs {P,«) where P is in J)A and o is a linear map
from P to PKS which is nilpotent is the following sense:

for some integer n the map «™ from P to PeS®™ is zero.

If we consider the class QA of right A-modules having a finite projective
resolution, we can define in the same way a other category Nil'{A,S) containing
Mil(A, S). If A is regular coherent, QA form an abelian category and by the resolution
theorem [1 the two categories Mil(A,S) and Nil'(A, S) have the same K-theory. In
this case Waldhausen [1 compute this K-theory. He needs for that two ingredients:
the dévissage theorem [1 and the fact that for every N in Ril'(A,S), there is a
filtration in Nil'(A, S):

0=N, CN C ... ¢N =N
where Ni/Ni_l is an object in Mil'(A,S) on the from (P,0).
There is no good hope to generalize this facts if A is not coherent. If we want

to obtain some information when A is only regular, we first have to change the

category Nil.




Notations 2-1: A chain complex C is positive if its -1-skeleton is trivial. A chain map
f between two chain complexes is a cofibration if it is injective and its cckernel is
projective. CA is the class of all chain complexes having the homotopy type of a
finite chain complex. Mil (A, S) is the category of pairs (C,a) where C is in CA and
« is a chain map from C to CeS (tensor product over A) which is nilpotent is the
following sense:

for some integer n the map «™ from C to CeS®? is null-homotopic.

The objects of N (A,S) are called ﬁi]potent complexes. A nilpotent complex
N = (C,a) is elementary if o is null-homotopic. A nilpotent complex N is reducible if
there exist a filtration of N by nilpotent complexes:

0=N,CN,C .. ¢N_=N

Y p

stch that, for all i, Ni+1/N_

i
there exists a nilpotent complex N' and a morphism from a reducible nilpotent

is an elementary nilpotent complex. It's stably reducible if
complex to Ne N' inducing a surjective homology isomorphism.
The main result of this section is the following:

Theorem 2-2: Suppose A is regular. Then every nilpotent complex N in Ril (A, S) is

stably reducible.
The proof of this theorem is quite long and will be done in several lemmas.

Lemma 2-3: Let (M, ) be an object in Nil(A, S). Then there exists a filtration of M by

sub-modules:

0=1,Ccl Cl,

M

cl =M
p
such that, for every i, C‘(Iiu) is included in [;®S.

Proof: Let I, be the kernel of the map o' from M to MeS®' Since « is nilpotent,
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these modules give a finite filtration of M. Since § is flat from the left, I, , is

exactly cx_l(Ii@S).

Notation: Let p be an integer. Let ?p be the category of triples (M,I,,«) where
(M, ) is an object in Nil(A,S) and I, = (Io’lx’ ,Ip) is a filtration of M by
sub-modules:
0=I,cl cl, cC.. CIp:M
such that, for every i, o (I;,,) is included in I;®S.
An object (M,I,,«) in ?p is called of finite type if all modules I; and M/I iare
finitely generated projective.

If E=(M,I,,a) is an object in F . the underlying module M will be denoted

by E.
Lemma 2-4: Let E be an object in ‘.Tp. Then there exists an object E' ¢ Srp of finite
type and a morphism from E' to E inducing an epimorphism from E’ to E.
Proof: Let E = (M, ], «) be an object in ?p' It is possible, by decreasing induction, to
construct finitely generated projective modules M;, i = p, ... , 0, maps B; from M; , to
M;® S and maps f; from M; to [ such that:
- fp is an isomorphism and M, = 0.
- for every i < p, the following diagram commutes:
M;e S e——l— M.,
Jfﬁ“ lfin
oS e~ I,
For every i, denote by J; the module M e ... & M; and by 8 = @8, the map from
Jp to Jp® S. We get an object E' = (Jp, Jy, B) in ?p and a morphism from E' to E

which is surjective from Jp to M.
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Let E be an object in ?p' Then there exist a infinite sequence:

Lemma 2-5:
d, 4 b dbEso

Cbp 4 dg
such that:
i) By, E, , ... are objects of finite type in ‘;Tp.
ii) dod = 0 {in the category Tp )

iii) the induced sequence

d d d d d
"_>E-n_>‘“—>15-1_>go_)13——)0

is exact.
Proof: By induction the kernel of the last constructed morphism d is an object in ¥,

and the next E; can be defined by lemma 2-4.

Lemma 2-6: Let E = (M,I_,a) be an object in pr. Then there exists a commutative

diagram:
O=C0CC1 eee € Cp=C

[ s £

0=1, € I, .. C Iy=M

and a chain map B from C to Ce&S, such that
positive quasi-coherent chain complexes and the inclusions

- Cyy s Cp are
are cofibrations.

- £, fp
- B(C;,,) € C;®S and the following diagram commutes:

are chain maps and fp is a homology equivalence

8
Ci®s e Gy,

j,fl@ 1 J,f1+l
o
LeS e— I,

Proof: Let .. > E, —> . > FE > E — E—>0
be a sequence in the category ?—p given by the lemma 2-5. The object E; is a triple

- 1, = L, = 0 is a quasi-coherent chain complex C;.

(M;, I, o) and ... = L, = ...



The map I, = I; is a chain map f; from C; to [ and «, is a chain map f from

C= Cp to Cp®S.

Lemma 2-7: Let (M, o) be an object in Ril(A,S), considered as a particular nilpotent
complex N;. Then there exist nilpotent complexes N and N' and morphisms N —-> N
and N' = N, such that:

i) N' is reducible

ii) the composite map N —> N, induces a surjective isomorphism in homology
Proof: Because of lemmas 2-3 and 2-6, there exists a filtration I, of M, a nilpotent

chain complex (C, ) and a diagram:

0 = CO C C1 . C Cp = C
f 11" f
0=1, C I, v © Iy=M

satisfying conditions of lemma 2-6.
Suppose, by induction, that we have construct the following data:
- finite positive complexes K, C ... T K;

- chain maps ¥ j=1, .., 1 from Kj to K}-_I®S

- a commutative diagram:

0=C, ¢ C c G
Bk ok
0=K, ¢ K c K
bk b
0=1, ¢ L c 1

where g and h are chain maps, such that hog = f, and:

foreveryj=1, ...,1i,K

it C Kj is a cofibration of finite chain complexes

maps y; are compatible

1

for every j = 1, ... i, the following diagram commutes:
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C, .®S <—6-— C.,

j-1 j

K. 6§ 3 K

j-1® j
o

Ij__1 &S «—— IJ

This construction is done if i = 0. To extend it, we'll procede as follows:

Let L be the push-out of K, and C,;,, over C;. There is a unique way to extend
g from C; to L, h from L to [, and y; to y': L = K;®S. Moreover L is
quasi-coherent and positive and Kj Cc L is a cofibration.

Since A is regular, the chain map h: L — I, factors through a finite chain
complex K (theorem 1-7). By killing the -1-skeleton of K, we may as well suppose
that K is positive.

Denote by L, the modules of L and by d the differential. Since K;®S is finite
dimensional, y' is trivial on L; for i > n = dim K;, hence ¥’ factors through the
following graded differential A-module X:

X={(..=>0—>0—>dL,, —> L, ...)

1

Let L' be the n-skeleton of X and Y be the quotient X/L,. By theorem 1-7, the
composite map L — X — Y factors through a finite chain complex K'. Up to killing
the n-skeleton of K', we may as well suppose that K' vanishes in dimension < n.
Therefore the chain map L = X factors through the pull-back K" of X and K' over Y.

The complex K" is finite and the composite chain map K; — K" is a cofibration.

Ci® S

e
N

.0
s

N

. i@S

(—.—-—

=0

—~ RN —0
d

|

T e

|

A 4
7
4
O e 4 e A T e—— O

N
7'\1
R

-
[y
¥

-
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Let C be the direct sum Ke K'". We have composite maps: K, = K, — C,

C—>K—=>1J, and C—> K, = K;® S and the following diagram:

K — 1

NN

cC — Ki®S

|

I > 1, »> [;®8

i 1+1

which is commutative except in the small square. Moreover C is a positive finite
complex and K; = C is a cofibration. Let u be the difference of the two maps from
C to L,e S given by this square and Z be the kernel of u. Let Z; be the 0-skeleton of
Z. Z, is only a module and Z/Zois a finite complex. Let E be an acyclic finite
complex and X be a surjective map from E to Z/ZO. Since E is acyclic, » factors
through Z by a chain map u from E to Z. Let S be the kernel of the composite map:
LeE = Z —> Z/ZO. The complex ¥ is quasi-coherent and the chain map from ¥ to Z,
factors through a finite positive complex H. Hence the composite map: L — LeE —>

Z factors through the push-out H' of H and LeE over ¥, which is finite and positive.

0——2Z,——Z——2s —0

Let E' be a positive finite acyclic chain complex and v be a cofibration from K; to E'.
Since E' is acyclic v extends to a chain map v' from L to E'. Set K; , = HeE" The
direct sum of v/ and the map L —> H' is a chain map from L to K; 6 inducing a
cofibration from K; to K;,,. The desired map g from C; , to K; , is the composite:

.. — L — K,

i i, the map h from K, , to I, , is the composite: K;,, = H' — Z —

C — [;,, and the map v; , is the composite: K; , = H = Z — C— K;eS
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Bi-l—l
C; ¢ C,,— (88
K - K &.l_) <
i & i1 I\‘i ®S
h h h

The next step of the induction is now finish and, at the end of this
construction, we get two nilpotent complexes N = (Cp, Bp) and N = (Kp, Yp) and
morphisms from N to N' and from N' to N,. The composite N —> N —> N, induces a

surjective isomorphism on homology and N' is obviously reducible.

Lemma 2-8: Let N = (C, o) be a nilpotent complex such that C is a chain complex of
length 1. Then N is stably reducible.

Proof: If the length of C is 1, C is only a finitely generated projective A-module M,
and (M,«) is an object in Mil(A,S). By lemma 2-7, there exist two nilpotent chain
complexes N' = (C', «') and N" = (C", "} and morphisms N' = N" — N such that the
composite morphism N — N induces a surjective homology isomorphism and N" is
reducible. Since C' —> C is a surjective homotopy equivalence, its kernel E is
contractible and C' is isomorphic to CeE. The composite C — C' — C" gives a
section of C" = C and C" is isomorphic to the direct sum of C and the kernel K of

C" — C. Up to isomorphism, we may as well suppose that C' is equal to CeE and
0

0 u
and the chain map C" — C is the first projection. Since the maps C' —> C" and

that C" is equal to Ce K. The chain map C' — C" is given by the matrix:

C" — C respect the nilpotent maps, «' and o" are given by matrices:

o O

xu

v

-

and we have:
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Consider the complex £ = CoKeE. We have a chain map vy from % to 2 ®S

given by the matrix: x 0 0
X” B 0
-x' 0 y
. . 1 00
and a chain map ¢ from T to CeK given by the matrix: 01
u

We have an exact sequence of nilpotent complexes:
0— (E, y)—=> (Z,y)—=> (C", a") >0
and (X, y) is a reducible nilpotent complex. The map ¢ is a morphism from (X, y)

to Ne (K, B), inducing a surjective homology equivalence from ¥ to Ce K.

Lemma 2-9: An extension of two stably reducible nilpotent complexes is stably
reducible.
Proof: Consider a short exact sequence in Rl (A, S):

0>N—->N—=>N —=90
where N and N" are stably reducible. There exist nilpotent complexes Ny, Ny, N, N{
and surjective morphisms: N, —> NeN, and N — N'"e Ny inducing isomorphisms on
homology such that N, and Ny are reducible. Let L be the pull back of N'e N, o Nj
and Nj over N"e Ng. Set: (C,a) =NeN, , (C, o'} =L, (E B) = Ker(N,— NeN,) .

Since E is acyclic the underlying complex of N, is CekE, and the nilpotent

a 0
morphism from CeE to (CeE)}®S is given by the matrix [
XYy
Since E is acyclic, there is no obstruction to extend the map x: C = E@S to a
a O
map x: C' — Ee&S. Therefore the complex C'oE and the matrix } define a
y

nilpotent complex L'. Since N; and N} are reducible and the sequence
0——>N1~—>L'—-—>N;'-—>0
is exact, L' is reducible and the composite map ' - L - Ne NjeNj induces a

surjective homology equivalence.
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0 —> NeN, — N'eNje N, — N'e Nj — 0

1 I
0 — NeN, — L
00— N — L
Lemma 2-10: Let f be a morphism from a stably reducible nilpotent complex to a
nilpotent complex N inducing a surjective homology isomorphism. Then N is stably
reducible.

Proof: Obvious.

Proof of theorem 2-2: Let N = (C, o) be a nilpotent complex. Let n be the smallest

length of complexes C' homotopically equivalent to C. If C is not acyclic, let p be
the degree of the first non trivial homology group of C and q the smallest integer
such that o9 is trivial on Hp(C). The pair (n, q) will be denoted by INI.

Let N = (C, «) be a nilpotent complex. If C is acyclic, N is obviously reducible.
If not, set IN|I = (n, q). Let Hp(C) be the first non trivial homology group of C.
Since Hp(C) is finitely generated, the image of ag" is a finitely generated
sub-module of Hp(C)® $®9 'contained in (Keroc*)éz:S@q—l, and there exists a finitely
generated submodule [ of Ker«, such that the image of a™' is contained in Ie s®a-t,
Let P be a finitely generated projective A-module and f be an epimorphism from P
onto I. The module P may be considered as a chain complex C' concentrated in
dimension p. Let ¢: C' = C be any chain map inducing f in homology, and {: E = C
be a surjective chain map from an acyclic chain complex E onto C. Since E is acyclic,
there is no obstruction to construct a chain map o' from C'oF to (C'eE)eS such
that: aolpe() = (p@dloa’ and «'(C'oE) is included in E®S. Let E; be an' acyclic

chain map and u a cofibration from C'eE to E,. Since E  is acyclic there exists a

chain map B from E; to E @S such that: Bou = uoa'. The chain maps ¢o¢ and u



induce a morphism from the reducible nilpotent complex (C'eE, «') to Ne(E,, 8)
and this map has a cokernel N'. If the underlying complex of N' is acyclic, n is equal
to 1. If the underlying complex of N' is not acyclic, set IN'l = (n', q'). If n>1, n' is
less than n or n' is equal to n and q' is equal to g-1. By induction on (n, g}, N' is
stably reducible. By lemma 2-9, Ne (E, B) is stably reducible, and by lemma 2-10, N
is stably reducible too.

Suppose now that n is equal to 1. The module Hp(C) is projective and may be
considered as a chain complex C' concentrated in dimension p. By lemma 2-8, the pair
(C', «,) is stably reducible. Let ¢: C' —> C be a chain map inducing the identity on
homology and, as above, §: E = C be a chain map from an acyclic chain complex E
onto C. Since E is acyclic, there is no obstruction to construct a chain map «' from
C'oF to (CeF)eS such that: {(pedloa’ = xelped) and «'(E) is included in E®S.
The nilpotent complex (C'®E, «') is an extension of two stably reducible complexes.

By lemma 2-9, it is stably reducible, and, by lemma 2-10, N is stably reducible too.

§3 Algebraic K-theory and localization of complexes

In section 1 and 2, the chain complexes we have consider, were bounded from
below. This complexes form a category which is good for many reasonsexcept for one
point: a direct sum of complexes like that is not necessary in this category. On the
other hand the category of all graded differentiel projective modules is bad in one
sense: acyclicity is not necessary equivalent to contractibility. For all these reasons

we'll consider another category of graded differentiel modules:

Notation: Let A be a ring. We denote by EA the category of all graded differential
projective (right-) A-module C satisfying the following condition:
- for every graded differential projective acyclic A-module E, every chain map

from C to E is null-homotopic.
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From now on, we'll work every time with these categories. Thus, for
simplicity , the objects of EA will be just called A-complexes.
A chain map between two A-complexes is a cofibration if it is injective with

degreewise projective cokernel.

Remark: This category has direct sum and is exact in the following sense:
If0—> C—> C = C" — 0 is a short exact sequence of graded differential
projective A-modules, if two of C, C', C" is in EA’ so is the third.

Moreover, in this category homology equivalence implies homotopy equivalence.

Definitions: Let I be a small category and J be a subcategory of 1. A diagram of rings
D = (A,. Su) over (I, ]J) is a covariant functor from I to the category R3B of rings
and bimodules, in the following sense: & associates to every icl a ring D(i) = A, and
to every morphism u: i—>j in I, an ijAi—bimodule Sy Moreover for every u: i—>j and
every v: j=>k, a morphism S S, — S, . is given and all these morphisms are
compatible. If u= i—>j is in J, we have: A; = Aj and S, is the standard bimodule AizAj'

Let O be a diagram of rings. A O-complex (C,, «,) is a collection of
complexes C; and chain maps o, such that:

- for every icl, C; is a A;-complex.

- for every morphism u: i—>j in I, «, is a chain map from C; to Cj® Sy

|

for every morphim u= i—>j in J, o, is a cofibration from C; to Ci® S, = Cj

for every composable morphisms u and v in I, ayoa, = oy

If (C,, «,) and (C, x} ) are two D-complexes, a chain map from {C,, «,) to

>’ *

{C;

', o) is a collection f, of chain maps f;: C; = (i, compatible with chain maps

o, and o), . A chain map f, is a homology equivalence if, for every iel, f; is a

homology equivalence . The chain map f, is a cofibration if f; is a cofibration for

every icl and o, induces a cofibration from Cocker(f;) to Coker(fj) for every u : i—>j

u

in J. A O-complex (C,, «,) is acyclic if C, is acyclic for every iel. A sequence of

% ?
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D-complexes:

L= (C,, a,) > (C, al) = (C), al) = .
is exact if the corresponding sequence: >G> G G
is exact for every icl.

The category of OD-complexes will be denoted by (—:"D

Notice that all natural constructior! on the category of chain complexes like:
mapping-cone, mapping-cylinder, mapping-telescope, suspension , desuspension,
may be generalized in the category 6@

A class A of D-complexes is called exact if it contains all acyclic
D-complexes and satisfies the following property:

- for every short exact sequence 0—> K—-»K—>K"—0
if two of K, K', K" are in A, so is the third.

Let A4 be an exact class of D-complexes. A chain map f between two

D-complexes is an A-equivalence if its mapping-cone is in A. If A is the class of all

acyclic D-complexes, an A-equivalence is nothing else but a homology equivalence.

Lemma 3-1: A class #A of D-complexes is exact if and only if it contains all acyclic
D-complexes and is stable under quotient by cofibration.
Proof: The only if part is clear. Let

0 =>X—>Y—>Z—>0
be an exact sequence in ESD Suppose that Z is in A. Let f: E = Y be an
epimorphism from an acyclic D-complex E onto Y. We have the following exact
sequence:

0—>3YZ—>XeE—>Y—>0
where £7Z is the suspension of Z. The D-complex T£Z is the quotient of the
mapping cylinder of the identity of Z. which is acyclic, by Z, and belongs to A If X
isin A, Y is in & and A is stable under extension. If Y is in A, XeFE is in &, and X

cokernel of the map E — XeoE is in A too. Therefore & is exact.
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Consider two exact classes &4 ¢ B of D-complexes. The cofibrations in B
and the A-equivalences define a structure of a category of cofibrations and weak
equivalences in the sense of Waldhausen [1 and the K-theory spectrum of this
category of cofibrations and weak equivalences is defined. This spectrum will be
denoted by K(B, &), or simply K(B) if &4 is the class of all acyclic D-complexes,
Actually the category of #A-equivalences in B satisfies the saturation axiom and the
extension axiom. Moreover the mapping-cylinder construction gives rise to a cylinder
functor and the category of #A-equivalences satisfies the cylinder axiom.

In the definition of the spectrum K(3B, &) there is a set-theoretical problem.
The category B is not necessary small. We'll say that an exact class A of
D-complexes is not too big if there is a set of dD-complexes Xy in A such that

for every D-complex Y in & there is a homology equivalence from some X; to Y.

Lemma 3-2: Let A4 be a not too big exact class of D-complexes. Let {Xi} be a set of
objects in A. Then there is a set .;40 c A, containing all X;, and satisfying the
following:

~ for every X ¢ A, there is a homology equivalence from an object Ye.ﬁ:’lo to X

- for every short exact sequence in A:

0> X—>Y—>Z—->0

if two of X, Y, Z are in .;40, the third one is isomorphic to some object in .;40.

- the cylinder functor is defined in .40.
Proof: Let B be a subset in A such that for every X e A there is a homology
equivalence from an object Y in B to X. For each cofibration (resp. epimorphism) X
— Y, XeB, YcB, take a representative of its kernel {resp. cokernel). By adding
these representatives to B, we get a bigger subset B c A For every X, Y ¢ A, the
isomorphism class of extensions of X by Y is a set. By taking representatives of
these extensions, we get another set B" containing B. If we add also all

mapping-cylinder of maps between objects in B we get a third set 31.



If we apply this construction to -‘B,, we get a bigger set 'Bz* etc. ... Let .;40 be

the union of 8 C 'B1 C 32 c ... . This set satisfies obviously the desired conditions.

Proposition 3-3: Let 4 ¢ B be two exact classes of D-complexes. Suppose that Bis
not too big. Let Bo be a subset of B satisfying the conditions of 3-1. Then the
K-theory spectrum K{ 'Bo’ A) of (30, cofibrations, A-equivalences) is well-defined
{ without set-theoretical problem). Moreover, if 3;) is another subset of B satisfying
the conditions of 3-2 and containing 30, the map Ki 30, A) — K 3;), A) is a
homotopy equivalence.

Proof: The simplicial set S. Bo of filtered objects in Bo is well defined, and the
notion of A-equivalence extends to every map between two objects in S, Bo'
Therefore {S. Bo, A-equivalences) is a simplicial category, and the space K{ Bo" A) is
well defined. To prove that the map K(Bo, A) — K(3’0, A) is a homotopy
equivalence, we just have to apply the approximation theorem [ to the inclusion
functor from Bo to 3;,.

In this situation the homotopy type of K(B, A) is well defined, it doesn't

depend on the choice of to subset 30.

Remark: Another possibility to solve the set-theoretical problem is the following: It
is possible to take a universe W' containing the universe U where we are, and such
that B is a set in W'. Then K(3B, A) is a spectrum in the universe Uu. 1f B is not too
big, the above proposition said that K(3, A) has the homotopy type of a spectrum in
the universe U.

So we have two possibility to work with these spectra K{-, -). We left the

choice to the reader.

Example: Let I = ] be the trivial category with one object and one morphism. A diagram

of rings (I, A,, S«) is just a ring A. The class CA of all A-e-complexes having the
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homotopy type of a finite A-chain complex is an exact class.

Proposition 3-4: The spectrum K(CA) is the connective spectrum associated to the
K-theory spectrum K(A).

Proof: We have homology functors H, from CA to the category of A—modules. Let E
be the full subcategory of all finitely generated projective A-modules. Following
Waldhausen's terminology the category C" of all (H,, &)-spherical object of
dimension n is the category of all complexes having the homotopy type of one
finitely generated projective module concentrated in dimension n. In this situation,

the suspension from C" to cn+l

is an equivalence of categories. Thus Waldhausen's
theorem relating the K-theory of a given category of cofibrations and weak
equivalences and the category of spherical objects, implies that the inclusion functor
from C° to CA induces a homotopy equivalence from K(C% to K(CA).

Consider the following sub-categories of (°: C+ {resp. C_) is the class of
acyclic complexes concentrated in non negative (resp. non positive ) degree. Since all
map in C+ or in C_ are weak equivalences; the identities in K(C+) and in K(C_ ) are
homotopic to constant maps, and these spaces are contractible.

Let C=(...—=> Cp,, > C;, > .. ) be a complex in C°. There is a canonical
filtration C' ¢ C" ¢ C such that C' is in C+, C"/C. is concentrated in dimension O,
C/en is in C . In zero degree C' is the image of C, = C,, C" is the kernel of C;, —
C_,. By the additivity theorem K{C®) has the homotopy type of K( C+) x K(J’A) =« K(C )
and the inclusion ‘?A - CA induces a homotopy equivalence in K-theory.

Since K(J’A) is the connective spectrum of the classical K-theory spectrum

K(A), we get the result.

Proposition 3-5: Let A ¢ B ¢ C be three exact classes of D-complexes. Suppose that

C is not too big. Then the inclusion maps induce a homotopy fibration of spectra:



K(B, 4) - K(C, A) = K(C, B)

Proof: This proposition is a direct consequence of the fibration theorem of [1.

Proposition 3-6: Let A ¢ B be two exact classes of -complexes. Suppose that B is
not too big. Suppose also that, for every X in B, there is a Y in B such that XeY is
in A. Then the spectrum K{(3, A) is an Eilenberg-McLane spectrum K(?, 0).
Proof: Consider the following relation on B

VX, YeB X=Yeo XoXY ¢ A

where TY is the suspension of Y defined by the cylinder functor.

Let X be an object in 8. By asumption, there exists Y ¢ B such that XeY is in
A . Since A is exact, the suspension ZXeZXY is in A But IXelXY is the
mapping-cone of the zero map from Y to XX. Then this map is an #A-equivalence and
the map 1e0 from XeY to XeXIX is an A-equivalence too. Let Z be the
mapping-cone of this last map. We have an exact sequence:

0> XXX —=>7Z—> XXeXY —>0

The objects Z and ZXeZXY are in A, so is XeIX, and the relation = is
reflexive. Suppose now that X=Y are two objects in B. Then the zero map from Y to
X is a A-equivalence. Since the composite of zero maps from Y to X and from X to
Y is an A-equivalence, the zero map from X to Y is an A-equivalence and: Y=X. The
same kind of argument show that = is transitive and thus an equivalence relation.

The direct sum operation on B induces an abelian group structure on G = B/E.
Let Y be the quotient map from B to G. The class A is exactly the class of objects
X in B such that (X) vanishes.

We may consider G as a category of cofibrations and weak equivalences in the
following way:

- Obj{G) =G

- for every u, v in G there is exactly one morphism from u to v and this

morphism is a cofibration
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- the weak equivalences are the identities.
The K-theory space of this category G is the space QlwS. Gl = OBG ~ G and
the associated spectrum is the Eilenberg-Mclane spectrum K(G, 0).

The approximation theorem of Waldhausen [1 implies the result.

This approximation theorem is very important, but it will be usefull to

reformulate it in the following words:

Approximation lemma3-7: Let O and & be two diagrams of rings, and 4 ¢ B be

exact classes of D-complexes . Let B' be a class of D'-complexes containing an
exact class A'. Let F be a functor from B to B'. Suppose F satisfies the following
properties:

i} F is exact i. e. it sends exact sequences to exact sequences.

ii) for every X in B, F(X) is in A if and only if X is in A

iii) if there is a A'-equivalence from a O'-complex X in B' to a D'-complex Y, Y
is in B

iv) F is surjective in the following sense: for every X in B and Y in B, and
every map f from F(X) to Y, there exists X' in B, a map u from X to X', an
A'-equivalence g from F(X') to Y such that f is the composite:

Fox) F1 gy £s v
Then B' is an exact class and F induces a homotopy equivalence of spectra:
F,: K(B, 4) = K(J, A)

Proof: Llet 0 > X > Y —>Z —> 0 be an exact sequence of '-complexes such
that X and Y are in B'. By condition iii) applied to the map F(0) — X, there exists a
D-complex X, and a A'-equivalence from F(X,) to X. Apply again this condition to

the map F(X;} — X — Y. We construct a map X, = Y, and a commutative

diagram:



0 > )f > ‘f—-——) Z — 0
F(X,)—F(Y,)

If M is the mapping-cone of u, we get a A'-homology equivalence from F(M)
to Z. and Z is in B'. Then it is easy to see that B is exact. Moreover all conditions
for the approximation theorem [1 are satisfied and F induces a homotopy equivalence

of spectra from K{(B, #A) to K{ B, A).

Definitions: Let A be an exact class of D-complexes. This class is complete if it is
stable under direct sum. The smallest complete exact class A containing & is called
the completion of #&.

The class A has the finiteness property if, for every map f from an object X in
A to a direct sum of objects Y; in A, there exists a homology equivalence g from an
object X' in A to X such that the composite gof factors through a finite sum of the
Y's.

Let 4 ¢ B be two classes of D-complexes. We say that A is closed in B if:

VX, YcB: XoYed= XA

Definition: Let 4 be an exact class in 5@ A D-complex X is called A-local if every

morphism from a O-complex YeAd to X factors through an acyclic D-complex.

Proposition 3-8: Suppose A is not too big and satisfies the finiteness property. Let X
be a D-complex. Then there exists a A —equivalence from X to a A -local D-complex.
Proof: Let X be a D-complex. We'll construct, by induction a sequence:

X=2Z,=2>Z >7Z,> ..
where all maps Z; —> Z; , are cofibrations and A -equivalences, and where the limit Z
of this sequence is A-local. Since A is not too big, there exists a set of

D-complexes {XX})EA in &, such that, for every D-complex Y in A, there is a




homology equivalence from some X, to Y. Suppose Zj is constructed for jsn. Let T,
be the set of all (A, u) where X is in A and u is a map from X, to Z,, and U, be
the direct sum of all Xy, for all (X, u) in T,,- We have an obvious map from U, to
Z,. Let E,| be the cone of U,, and Z,,, be the push-out of E, and Z,, over U,.

X5
n

Un'—_—)En
l

n n+1

)
T

N e— I

Since all the X,'s are in A, U, is in A, and the map Z,~> Z,., is a
.Z—equivalence. Let Z be the limit of this sequence, and Y — Z be any map from a

D-complex Y in A to Z. We have the following diagram:

0— 8z, ©z, —Z—0
[ 1
0—> K > E— Y — 0

where o is the difference of the identity and the stabilisation Z,, —> Z, ,, and E is
acyclic. Because of the finiteness property, there is a homology equivalence K' = K
such that the left arrow sends K' to % Z,.- Up to adding to K and E some acyclic
D-complex, we may as well suppose that K' = K is a cofibration. Since « sends B

0

Z. to F8'Z. the middle vertical arrow sends E/ ., to @ Z... Because of the finiteness
n o K piz I

property, there exists a homology equivalence from a LO-complex V to E/K, such that

this arrow sends V to a finite sum. Let E' be the pull-back of E and V over 'E/K,. By

construction we have, for some integer q the following diagrams:

0—%'z, > dz, —2—0 Z,— Z
B I [
0 —> K—— E'— Y'— 0 Y — Y

and the map Y' — Y is a homology equivalence. Since Y is in A, there exists, for
some X¢A a homology equivalence from X, to Y'. Let u be the map X3 — Y — Zq.
the pair (X, u) is an element of the index set Tq and the map X5 — Zq-n factors, by
construction through an acyclic D-complex F. Therefore the map Y — Z factors

through the push-out G of Y and F over X,, which is acyclic, and Z is A-local.
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Lyyy— 2
Nl
/S

Xy — Y

On the other hand, there is an exact sequence:

037

co
— e 1,/
0 0

n/x x i 0

Hence Z/X is in 4 and the map X — Z is an ..Z—equivalence.

Proposition 3-9: Every A-local D-complex is A local.
Proof: Let C be the class of all D-complexes Y such that, for every L in LA, every
map from Y to L factors through an acyclic O-complex. This class C contains A . Let
Y; be D-complexes in C. Let f: @ Y; = L be a map, where L is a #A-local. All maps Y;
—> L factor through acyclic D-complexes E; and f factors through eE;. Thus C is
stable under direct sum.

Let 0 > X—>Y—>Z—>0
be an exact sequence of D-complexes, where X and Y are in C, and f be a map from
7 to a A-local O-complex L. Since Y is in C, the composite Y — Z — L factors
through an acyclic O-complex E. And E may be chosen so that E — L is surjective
with kernel L'. Since £4 is exact, the map from X to L’ factors through an acyclic
D-complex F. Let E' be the sum of E and an acyclic O-complex containing F by a
cofibration. We have the following diagram:

0— L —E—L—0

I 7 1

00— F— E—G—0

P11

00— X—>D>Y—Z—0
where G is the cokernel of the cofibration F — E' and then is acyclic.
Hence the class C is exact and stable under direct sum. It contains .;{ and the

lemma is proven.
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Proposition 3-10: Let A& be an exact class in 5@ Then the class £4 of all A-local
D-complexes is exact.

Proof: The class L4 contains all acyclic D-complexes. Then the only thing to do is
to prove that £4 is stable under cokernel of cofibration. Let

0> X—=>Y—=>Z—>0

be an exact sequence in 6@, where X and Y are #-local. Let U be an object in A and
f: U —> Z be any map. Let E be an acyclic -complex going surjectively onto the
pull-back of Y and U over Z. We have the following diagram:

0—mX—>=>Y—>Z—0

P11

0—V—E—U—0
Where V is the kernel of E — U. Since E is acyclic, V is in A and the map V = X
factors through an acyclic object F in Ez) Since Y is in 4, the map from the
push-out of F and E over V to Y, factors through an acyclic D-complex G. Up to
adding to G an acyclic -complex containing F by a cofibration, we may as well
suppose that the map F — G is a cofibration with cokernel H. Therefore the map
U — Z factors through the acyclic D-complex H.

0—mX—=>Y—>>2Z—0

I 1T 1

0—F-—>G—H—0

I 1 1

0—>V—E—>U—20

Theorem 3-11: Let & ¢ B be two exact classes of D-complexes. Suppose that B is
not too big and satisfies the finiteness property and that A is closed in B.

Let £ be the class of all A-local complexes L such that there exists a
D-complex X in B and an .Z—equivalence from X to L . Then £ is exact and there is

a homotopy equivalence of spectra from K{ B, 4A) to K(L).
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The rest of this section will be devoted to the proof of this theorem.

Lemma 3-12: Every map from a &-complex X in B to a D-complex Y in A factors
through a O-complex in A.

Proof: Let C be the class of all D-complexes Y in —Ig such that, for every X in B,
every map from X to Y factors through a O-complex in A. Let Y; be a family of
D-complexes in C. Let X be a D-complex in B and f be a map from X to @Y. By
the finiteness property, there exists a D-complex X' and a homology equivalence g
from X' to X such that fog factors through a finite sum Y of the Y;'s. Since the
class C is clearly stable under finite sum, the map from X' to Y' factors through a
D-complex Z in A, and the map from X to e Y; factors through the push-out U of X
and Z over X', which is in A.

X —Z—Y

b

X— U— oY,

So the class C is stable under direct sum.

et 0 > X—>Y—=>Z—>0
be an exact sequence of D-complexes, where X and Y are in C. Let U be a
D-complex in B and f: U —> Z be a map. Let E be an acyclic O-complex and g be a
surjective map from E to the pull-back of Y and U over Z. Since X is in C, the map
from the kernel K of E = U to X factors ‘through a O-complex X, in A. Since Y is
in C, the map from the push-out of X, and E over K factors {via a cofibration)
through a D-complex Y, in A. Hence the map from U to Z factors through the
cokernel Z, of X, => Y, which is in A.

0—m X— Y— Z— 0

P11

0— X,— Y, —Z —0
P11
0— K— E— U—0
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Therefore the class C is exact and contains A

Lemma 3-13: Let B’ be the class of all D-complexes X such that there exists a
complex U in B and a E—equivalence from U to X. Then B' is exact and the
inclusion B ¢ B’ induces a homotopy equivalence of spectra from K(B, &) to K(3',
).
Proof: We just have to check the conditions of the approximation lemma 3-7 for the
inclusion functor F: B ¢ B'. If X is a D-complex in B such that F(X) is in JZ, the
identity X —> X factors through a D-complex in A4, and there exists a O-complex X'
in B such that Xe X' is in &. Since & is closed in B X is in 4.

Let X be a D-complex in B and f be a map from X to a D-complex Y in B.
There exists a -complex Z in B and a .Z—equivalence Z > Y. Let Z — E be a
cofibration from Z to an acyclic O-complex E and U be the cokernel of the
cofibration Z = Yo E. The D-complex U is in A and the map X = Y — U factors
through a D-complex V in #A. Let X' be the pull-back of V and YeE over U. The
D-complex X' is in B and the map X' = Y is a A -equivalence.

Z

X— X'— YeE

N

V—— Uu

Then the approximation lemma holds and the lemma is proven.

Lemma 3-14: Let € be the category of exact sequences:

0> X—=>Y—>Z—->0
where X is in _Z, and Z is in £. € is a category with cofibrations and weak
equivalences, where the weak equivalences are the maps inducing a homology
equivalence on the quotient term. Then the functor sending each such exact sequence

to its middle term, induces a homotopy equivalence:



K(E) ~ KB, A)
Proof: Let F be the functor sending each exact sequence in € to its middle term.
Once again we want to apply the approximation theorem for F. Let S be an exact
s eqiience in E:
0=>X—->Y—>Z—>0

IfYisin A, Zis in £ and in A. By lemma 3-9, Z is A -local and the identity
of Z factors through an acyclic D-complex. Hence Z is acyclic. We may apply that
for the mapping-cone of any map f in €, and we deduce that F(f) is in A if and only
if f is a weak equivalence in €.

Let Y as above, and f: Y = Y be any map in B'. Let Z' be the push-out of Z
and Y, over Y. Since B is not too big and satisfies the finiteness property, so it is
for A, and by proposition 3-8, there exists an A -equivalence from Z' to a A -local
complex Z'. By adding to the map Y, —> Z'a surjective map E — Z' where E is
acyclic, we get a surjective map from Y'.= Y oF to Z’, and a new sequence S' in E:

0> X ->Y—>272—>0

Moreover we have a map ¢ from S to §', and f is the map F(tp) composed with
a homology equivalence. Thus the approximation theorem holds and the lemma is

proven.

Lemma 3-15: The class £ is exact and the functor sending each exact sequence in E
to the quotient term, induces a homotopy equivalence from K(&E) to K(L).

Proof: The class L is the intersection B N £4 and then is exact. By the additivity
theorem {1, K(&) is homotopy equivalent to the product K(.z, A)xK(L), and then to

K(L).




§ 4 Applications to algebraic K-theory of rings and Nil-groups.

Let A, B, B' be three rings and A € B and A C B' be pure inclusions, i. e. there

exists decompositions of B and B' as A-bimodules:
B=Awo S B=Ae S
where S and S' are flat from the left.

We can define the amalgamated free product R of B and B' over A. The
standard example is A = Z[H], B = Z[G]», B' = Z[G']l, where H is a subgroup of G and
G'. In this case, R is the group ring Z[GI*;IG'].

If S and S' are free from the left, we have a fundamental result of

Waldhausen:

Theorem 4-1: [1 In this situation, the algebraic K-theory spectrum of R decomposes
into two spectra: K(R) ~ K'(R) x K"(R)
The first piece fit in a homotopy cartesian square of spectra:

K(A) — K(B)

L]

K(B') — K'(R)
and the loop spectrum QK"(R) of the second piece has the homotopy type of a
spectrum IZ&Ril(A; S, S') depending only on A, S, S
Remark: In this theorem all spectra are not connective in general. The perturbating
Nil term represents the deffect of a Mayer-Vietoris exact sequence in algebraic
K-theory. Under some conditions it vanishes [1.
We'll give a sketch of proof of this theorem, using the machinery of the last

section.

Let I be the following category:

*
v
*

u

'

u

L X et ]

—
-
v
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it has 4 objects, 4 identities, 5 other maps: u, u', v, v, vou=vou' . Let J be the subcategory
of 1 given by the identities.
We have the following diagram of rings over (I, J):

A— B

2. | |

B'—R
where the bimodule corresponding to every morphism in I is the ring corresponding
to its target. If X is a D-complex, the corresponding chain complexes over A, B, B,
R will be denoted by Xx, Xg. Xg Xg-
Let B be the class cod all D-complexes

XA — Xpg

1

Xg— XR
where X, Xg, Xg', X have the homotopy type of finite chain complexes over A,
B, B, R, and such that this diagram becomes homotopy cartesian, after tensoring by
R, over A; B, B'. Let A be the class of all D-complexes X in B such Xg is acyclic.
Both classes A and B are exact. It is easy to see that for every D-complex X in B,
there is a homology equivalence from a D-complex X' to X, where X' involves only
finite chain complexes over A, B, B', R. Therefore the class B is not too big and

satisfies the finiteness property.

Lemma 4-2: The functor X => (X,, Xg, Xg') induces a homotopy equivalence of

spectra: K(B) = K({ CA} x K(CB) x K{ CBV)

Proof: Let & be the category of such diagrams in B:
X—=>Y—>1Z

where maps are cofibrations and the following helds:
Xp and Xgr are acyclic

(Y/ ) and (Y/ylg are acyclic
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(Z/y)g and (Z/y)y are acyclic
€ is a category with cofibrations and weak equivalences {(homology
equivalences). It is easy to see that the conditions above determine completely the
homology type of X and Y in term of Z:
XA ~YpA~0 Xg ~ Yg ~ Zg
Xg ~ 0 Yg' ~ Zp Xgp ~ ZgeR  Yp ~ Zge®R
More precisely the functor from &€ to B: (X — Y —> Z) ~> Z satisfies the
conditions of the approximation theorem [l and induces a homotopy equivalence from
K(&) to K(B). By the additivity theorem (1, the functor (X = Y — Z ) — (Z/Y’ X,
Y/X) induces a homotopy equivalence from K(&) to K( BO)xK( 3,) x K{( BZ), where 30
{ resp. Bv 32) is the class of the &D-complexes U in B satisfying:
Ug ~Ug ~ 0 (resp. Uy ~Upg ~ 0, Uy ~ Ug ~ 0)
Moreover the functor X = X4 from Bo to CA (resp. X —> Xpg from 31 to CB’
X — Xg' from 32 to CB') satisfies all conditions of the approximation lemma 3-7
and induces a homotopy equivalence from K(Bo) to K(CA) (resp. from K(BI) to
K(CB), from K(:Bz) to K(CB-)). On the other hand, for every (X = Y — Z ) in &, we
have natural homotopy equivalences:
Zp = (Z/yY)p Xg— Zg Zg <= Yg — (Y/y )y
Therefore the functor: (X = Y — Z ) —> (Z,, Zg, Zg') induces a homotopy

equivalence from K(&) to K( CA) x K{ CB) x K(CBv) and the lemma follows.

Lemma 4-3: Let C be the class of all A-local D-complexes X such that there exists
a .uz—equivalence from a D-complex in B to X. Let Ci{ be the class of all
A-complexes in CR with Euler characteristic‘ in the image of K, (B) e K (B') —
K, (R).

Then the class C is exact and the functor X — Xp indtces a homotopy

equivalence from K(C) to K(CI'().
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Proof: Let X be a A-local D-complex. Let C (resp. C') be an acyclic B-e-complex
( resp. B'-e-complex) and f (resp. f') be a surjective chain maps from C (resp. C')

‘onto Xp. The D-complex X has the homology type of the following D-complex:

e L

XBvGB C'— XR

If we add to X, an acyclic A-e-complex which is going onto the pull-back of X'g
and X'g over X'p, we get a new D-complex X" such that the four maps in the
diagram X" are surjective. Moreover we have a homology equivalence from X to X",

and X" is A-local. Let Y and Y' be the following &DO-complexes in A:

A— B T A—0
y- || v- |
0— 0 B'— 0

Since X" is #A-local, every map from every suspension of Y or Y' to X" factors
through an acyclic D-complex, and that implies that the kernels of X"y — X'g and
X'y = X'p are acyclic. Therefore X, —> Xg and Xpz—> Xp induce bijections in
homology.

Let H be the homology of X and H' be the homology of Xp. Since the chain
map from X, to Xg and Xpg' are homology isomorphism, H has structures of B- and
B'-module and these two structures agree over A. Thus H is a R-module, and we have
a long exact sequence:

> HeR % HeRe HeR —> H' — HeR — ...
A B B' A

The morphism « is the tensor product over R by the map: RgR - R%R ] R%'R.
The A-bimodule R has the following description:

R=AoSoe SoSe8S e SeSe SeS'sSe S9588 & ...

Let R (resp. R_) be the sum of all bimodule begining with S (resp. §'). We have:

R-=Ae R, e R =Bel(Ae R )=Be(AeR)
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and the following sequence is exact:
| 0 —> ReR > ReRo ReR >R —> 0
A B B’
Since all this bimodules are flat from the left, o is injective and its cokernel is
isomorphic to H. Hence: H = H' and all the maps of the diagram X induce bijections
in homology.

Conversely, it is not difficult to check that every {D-complex X such that all
maps of the diagram X induce bijections in homology, is A -local.

Consider the functor F from C to CR‘ X = Xg. Let C' be the class of all
R-e-complexes Y such that there exists a -complex X in C and a homology
equivalence from Xp to Y. The conditions of the approximation lemma 3-7 are easy
to check. Therefore the class C' is exact and F induces a homotopy equivalence from
K(C) to K(C). If Y is a O-complex in C’', there exist‘s a OD-complex X in B such that
YR is homotopy equivalent to Y. Thus C' is contained in the class Cl'{' On the other
hand, if P and P’ are finitely generated projective modules over B and B’, consider as
complexes concentrated in degree 0, the following complex is in 3.

0—P

|

PP— M = PegRe P@R
B B’
and M is in C'. Therefore C' is the class Cg.

By the approximation lemma 3-7, the map K(C) — K(Cé) is a homotopy equivalence.

Lemma 4-4: There is a fibration of spectra:
K(A) — K(CA)xK(CB)xK(CBv) — K(CR)
where the first map is given by:
X = (Xp, Xg, Xg')
and the second one by -a+B+B', where «, B, B' are the functors from CA’ CB’ CB' to
CI'{ given by - @ R.

Proof: We have a fibration of spectra:



K(A) = K(8) = K((C)
By the lemma 4-2, the composite K(A) = K(B) > K(CA} x K(CB) x K(CB') is given by
the functor X > (X, Xg, Xp' ). We have a commutative diagram:
K(B, 4) —> KB, &) <~ KL)
\ K(lR) /
and the map K(B) — K((C) —> K(CR) is homotopic to the map given by the functor
X = Xp.

On the other hand, for every X in B, we have a homotopy equivalence from the
mapping cone of Xp®R —> XgeR o Xge®R to Xp. Hence the map from K(3B) to
K(CR) given by X ~ Xp is homotopic to fg + fyg - fa. Where fa (resp. fg, fg) is
given by: X > X, (resp. Xg, Xpg'). Therefore the map K(B) — K{() is homotopic to

B+ B - a.

In order to describe A4 in term of nil-objects, we have to work with another
diagram of rings. Consider the following categories I' and J': I' has two objects: 0 and
1, two arrows: 0 — 1 and 1 — 0 and all possible composite of these:

—_—
0  _ 1
and J' has only the identities of L.

A diagram of rings &' over I' is given by two rings A, and A,, one
A, x A,-bimodule S, and one A, x A,-bimodule ,S;. A O'-complex is determined by a
A, -e-complex C;, a A, -e-complex C,, a chain map «, from Cj to C1®AlSO’ a chain

1
map «, from C, to Cy®,5,
0

The exact class mil(CAo, CAI; oSy Sy} is the class of all &-complexes N =

(C,. €, g, o, ) such that C, and C, have the homotopy type of finite complexes and

N is nilpotent in the following sense: (aloao)n is null-homotopic for some n. If Aj is

equal to A, this class will be denoted only by %il(cA P 0Sys 1507
A,
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The forgetfull functor u: (Cj, C,, o, ocl) = (C,, C,) has a section:
(C,, C,) = (C,, C,, 0, 0)
Therefore u induces a split morphism on K-spectra and K(&Ril(CAO, CAl; 05y 1SN
decomposes into three pieces:
K(TICp , Cas oSpr 1So)) > K(Cp ) x K(Cp ) x iZmuCAo, Ca oS> 15)
Likewise:
K(QUUCy; ,S,» ;So)) =~ K(Ca) x K(Cp) x KMil(Cps S0 4S,)

17170 071”170

Lemma 4-5: The functor F from Wil(CA; S, §') to the class A, given by:
14—-(11
C,eC, — C,®B
(C,, C, gy, @) = loton l
C,eB— 0
induces a homotopy equivalence from K(%iI(CA; S, §')) to K(A).
Proof: Let X be a D-complex in &. By definition of A, the chain map
XAXR - XBER ] Xng'R is a homotopy equivalence and may be written as follows:
CSS'SS’ CS'SS' CSS§' cs' C cs CS'S CSS'S CS'SS'S
7 N ¢ N SN YN N IN SN SN 7 N
KS'SS' K'S§ KS' K K K'S KS'S K'SS'S
where C = Xj, K = Xg, K' = Xg, and the tensor products are omitted. The map goes
from the direct sum of the top terms to the sum of the bottom terms and is a
homotopy equivalence. Let U (resp. U' ) be the sum of all terms appearing to the
right hand side (resp. left hand side) of C and V (resp. V') be the sum of all terms
in the bottom line appearing to the right hand side (resp. left hand side) of C. Then
we get maps U — V, U' = V', C = V, C = V inducing a homotopy equivalence from
U'sCol to VeV. Let C, and C; be the mapping-cone of U= V and U — V. We
get a homotopy equivalence from C to C,e C; and C; and C, have the homotopy type
of finite complexes. We may use ncw the arguments of [1{p146-147) and we prove

that the map C —> Xpg induces a homotopy equivalence from C @B to Xy and a

homotopy equivalence from C, to Xg. Up to homotopy the maps X, —> Xg and Xp
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—> Xpg have the following form:

lea;: CioC —> C,eC,8S and x,el: CieC, = CleC S
for some maps o, and «,. Furthermore the condition that Xp®R —> XgeR @ XgeR
jnduces an isomorphism in homology is exacly equivalent to the fact that a oc, is
nilpotent in homology and therefore to the fact that some power of o o0y is
null-homotopic.

So we have prove that every X in A has the homology type of some
D -complex F(N) for N in mil(CA; S, S'). Since this construction is functorial enough
the approximation lemma 3-7 applies and F induces a homotopy equivalence in

K-theory.

f the theorem

4-6: End of proof of
We have now a fibration of spectra:
KRil(Cy; S, S) x K(Ca) x K(Cy) = K(Cy) x K(Cp) x K(Cg) = K(CR)
Moreover, if ¢ and @' are the maps from K(CA) to K(CB) and K(CB') induced by the

inclusions A € B and A ¢ B', the map ¢ is given by the matrix:

0 1 1
0 ¢ O
0 0 o

Therefore the fibration above contains a subfibrati‘on:
KRil(Cq; S, 8 x KICy) = K(Cp) x K(Cg) —> KiCR)

where &' is given by the matrix: [ 0 -¢ ]
0 o

If we replace in this fibration, A, B, B', §, S, R by their suspensions ZnA, ZnB,

s0B' otc ... we get other fibrations. But the family of spaces QOOK(CZHA) gives rise

to the non connective Quillen's spectrum K(A) [1. Therefore the family of spaces

QOOIEERN(CZHA; $0g v7¢') gives rise to a non connective spectrum ﬁ%ﬂ(A; 5, 89




- 41 -

and we have a fibration of spectra:
KQRil(A; S, §') x K(A) = K(B) x K(B') = K(R)
Moreover the inclusion of the fiber is null-homotopic on the Wil part and the theorem

follows.

§ 5 Properties of the Nil functor

In [1, Waldhausen defined other Ril spectra. In particular he defines a
spectrum KRil(A; S) where A is a ring and S is a A-bimodule. In our language this
spectrum may be define in the following way:

Let 1" be the category with one object 0, where the arrows are the powers of
one map 0 — 0 and J" be the subcategory (0, Idg) of I". A diagram of rings " over
(I", J") is a ring A and an A-bimodule S. A D"-complex is an A-e-complex C
endowed with a map « from C to CeS. The class ‘Jtil(CA; S) is the class of all
D"-complexes (C, x) where C has the homotopy type of a finite complex, and o is
nilpotent (i. e. for some n, o™ is null-homotopic).

As before there is a split forgetfull functor (C, a) = C inducing a split
fibration K(Mil(Ca; § )) = K(Cn) with fiber KRil(Cp; S):

K(Ri(Ch; $ 1) 2> K(Cp) x KRil(Cp; S)

Proposition 5-1: Let A be a ring and S be a A-bimodule flat from the left. Then the
collection of spaces a%® ﬁmil(CZnA; 18 gives rise to a non connective spectrum

KNl A; S).

Theorem 5-2: Let Aj and A, be two rings, and S, (resp. ;S;) be a Aj x A, -bimodule
{resp. Aleo—bimodule) flat from the left. Then the functor F: (C,, C;; a,, «,) =

(C,, a,00,) induces a homotopy equivalence of spectra:

O’

. 051, 150) - Kglil(Ao;

KNil(A,, A 0512150).

1



Proofs: Let A be the subclass of Eﬁil(Ao, A S., .S.) defined by:

071’170

(C,, Cps oy, a,) e A o C, is acyclic
and £ be the class of all #A-local '-complexes. Let L = (C,, C;; o,, «,) be a
D' -complex in L. Up to homotopy, we may as well suppose that «, is surjective. The
class A contains the particular LO'-complex N, = (0, Ay 0, 0), and every map from Nj
to L factors through an acyclic '-complex. Therefore the kernel of o, is‘ acyclic and
«. induces a bijection in homology. Conversely it is easy to see that a '-complex N

1

= (C,, Cj; oy, o) is A-local if and only if «, induces a bijection in homology.

0’

Let .Z be the completion of A, and £ be the class of all A-local D'-complexes
N such that there exists a .Z—equivalence from a @'—Comblex in gti.l(CAo, CA-1; 0S5y
,S,) to N. If N= (C,, C; oy, o) is in L, a, induces a bijection in homology and C,
has the homotopy type of a finite complex. Conversely let N = (C,» Cy; ay, o) be
any £'-complex such that o, induces a bijection in homology and C; is in CAD. Since

C, has the homotopy type of a finite complex, there exists a A, -e-complex C'| in CA
1

'

and maps o C; —=> C\8 S, and f: C, = C, such that o, is the composite foa',.

Then we get a O'-complex N' = (Co, Cys o'y, oclof) and a ..Z—equivalence from N to N.
Therefore N is in £ and £ is exactly the class of D'-complexes (Co, C,i oo ocl) such
that C, is finite up to homotopy and «, induces a bijection in homology.

By the approximation lemma 3-7, the functor {(C,, C; o4, a,) — (Cy; oyoxy)

induces a homotopy equivalence from K(L) to K(‘Jtil(CA P 65,2,5,) and the functor
0

(C,, € o, ) = C, induces a homotopy equivalence from K{A) to K(CA). Then we

07

get a fibration of spectra (theorem 3-11):

1
1

K(Cp ) — KD’til(CA, CA; 05y 15,7 K‘Jiil(CA; oS XISO)
1 0 ‘M 0
and a homotopy equivalence:

KSRil(CAa CAJ N K&Jtil(CAo; Os,glso)
1

This homotopy equivalence holds for all SUSpensions of Ay, Al 5 S

Therefore for every ring A and every A-bimodule S, flat from the left, the family of

spaces Qmﬁgﬁl(C}:nA‘; y18) gives rise to a non connective spectrum ﬁvm(A; S) and
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we have a homotopy equivalence of spectra:

KRil(A, A3 oS, ,So) = KRI(A; 8,9,5,).
1

Corollary 5-3: Let Aj and A be two rings and S, be a A, xA, -bimodule and ;S be a
A, x A -bimodule. Suppose that S, and ,S; are flat from the left. Then the two

spectra K il Ay 081;\9180) and K Nil( A 1SOKOSI) are homotopy equivalent.
1 0

Remark: In [1, Waldhausen consider two other kind of Ril-spectra corresponding to
the case of HNN-extension (or Laurent extension) and tensor algebra. These
Nil-spectra may be defined in term of chain complexes instead of modules, and
Waldhausen's theorems may be prove in this language in the same spirit as above.
The proofs are shorter and these theorems remain true if all considered bimodules
are only flat from the left and non necessary free. In particular if S is an
A-bimodule, flat from the left, there is a homopoty equivalence from K(ALX1) to the
product of K(A ) and a delooping of Izgtil(A; S).

Because of theorem 5-2, the Mil spectrum corresponding to two rings and two
bimodules reduces to a spectrum Iw(mil(A; S). In the Laurent case we have another
kind of reduction: In this case, we have two rings A , A, (possibly equal) and four
bimodules iSj over Ai"Aj’ for i,j=0,1. The category we have to consider is the class
of triples (C,, C; %) where for every i, j = 0, 1, C; is a Ai—complex on the
homotopy type of a finite complex, and i%; is a chain map from Cj to Cii.isj'
Moreover maps , o, are nilpotent in the following sense: there exists n such ti‘xat

.:.'s is null-homotopic. But such a data is nothing else but a

every composite of n j

A-complex C in CA endowed with a nilpotent map « from C to C® S, where:

A,:[\()XJAl S=®isj

ij ij

C=C0®C1 o =Ziocj

and for every i, j, k = 0, 1, the left A;-action on jSk is the given one if i = j and the
trivial one otherwise, and the right Aj-action is the given one if i = k and the trivial

S S S} is

one otherwise. Therefore the Nil-spectrum Kfﬁil(Ao, A oS oo 0 1Sg

07 1



WARNING(A.Ranicki, 2009) The proof of Theorem 5-4 is incomplete. The statement is now known as the Vogel

Conjecture.

homotopy equivalent to the spectrum KRil(A; S).
See the papers by Bihler in footnote (*) below for partial results on the Conjecture.
Theorem 5-4: Let A be a regular ring and S be a A-bimodule flat from the left. Then

the K-theory spectrum Izmil(A; S) is contractible.

Remark: This theorem was already proven by Waldhausen when A is regular coherent.
Unfortulately the coherence condition is very strong and very difficult to check in
general.

Proof: Consider the category ¥, where Ob(X) = N and Mor(X) is generated by i;: n—>n+1
and j,;: n+1=> n {n>0) and the only relations are:

oi for all n=0

ins1°lnet = neln
Let &' be the subcategory of ¥ generated by i,, nz0.
We have a particular diagram of rings: Z)o = (A,, S8,) over (£, %) where:
A=A Sin = A Sjn =S for all nz0
A z)o—complex is a triple (C_, X, oc*) where, for all nz0:
- C,is a A-e-complex
- dpt € ™ Cpyy s 2 cofibration
-y Cpn C,®Sisa chain map
= U1 Aner = An°%n
Let B be the class of all Z)o—complexes (Cyr Mps x, ) where C; is acyclic, C
is in CA for all n, A, is a homotopy equivalence for n big enough. Let A be the class
of all @o-complexes (Cy,s Xyr @) in B such that C,, is acyclic for n big enough.
Every object in B has the homology type of a Z’o—-complex (C,. *,,» «,) where all
C,'s are finite complexes and the system C, — C, —> ... is stationnary. Therefore the
class B is not too big and satisfies the finiteness property.

For all n, denote by 'Bn the class of @0~~complexes (C,r Xy» o, ) in B such

that %; is a homotopy equivalence for izn, and by A, the class BN A

(*) Frank Bihler, Vogel's notion of regularity for non-coherent rings, arXiv:math/0612569

Frank Bihler, Vanishing of the KNil groups: localization methods, arXiv:math/0702320

«
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There is a functor T from 8 to CA’ and a functor TNil from B to the class

iﬂil(CA; S): for every z)omcomplexes X = (Cy, X, x,) in B, T(X) is the limit of the

A P X
system C, Sy C, L ... . Since the maps o, are compatible with maps ), they

induce a map T(«,) from T(X) to T(X)eS§ and TRi(X) is the nilpotent complex
(T(X), T{a,)).

A bo—complex (C,» Ay @, ) is reduced if all maps oy are surjective.

Lemma 5-5: For every X in B there exists a reduced @o—complex X' and a homoclogy
equivalence from X' to X.

Proof: Let X = (C,, X, «,) be a @o—complex. Suppose we have construct complexes
Cys o € cofibrations y;: Cy —> C,,, surjective homology equivalences f;: C} = C;,

surjective maps B;: C),, —> C;® S such that:

£,

iv10l = Ao £y fioBy = oy0 fiyy for all ixn

and:  Bj, ol = ki By for all i<n-1

Let K be the pull-back of C\ &S and C,,,, over C, &5 {(defined by f,, and o).
The map from the graded differential module K to C,,, induces a surjective bijection
in homology. The map from C| to K induced by u,_ 0B, and X,of, factors
through a complex C\,, in such a way that C}; — Cj , is a cofibration u, and C\_,

—> K induces a bijection in homology. The map f,, is the composite: C,, —> K —>

Cns: and B, is the composite: C,,, — K — CeS. The D,-complex X' is so

constructed by induction.

Lemma 5-6: There is a fibration of spectra:
K(A) = K(B) — K(Nil(Cyp; S))
where the map K(B) — K(fﬁil(CA; S)} is ind.uéed by the functor TORil.
Proof: Let L be the class of A-local @0~—c0111plexes X such that there exists a

0,

0~complex X, in 8B and a A -equivalence from X, to X. We have a homotopy equivalence
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of spectra:

K(B, 4) ~ K(L)
For every X in &, T(X) is acyclic. Therefore T(X) is acyclic for every X in .Z, and T(X)
has the homotopy type of a finite complex for every X in L.

Let X = (C_, X, ®, ) be a reduced Z)O—complex in £. Let n>0 be an integer and
K be the complex A concentrated in some degree. Consider the following @0—complex
X, = (K, Uy B*):

Y i<n, K;=0 K,=K Yi>n, K;=CK (the cone of K)
for every i, y; is the standard inclusion, and B; is trivial.

Let ¢ the standard generator of K and {e, L} the standard basis of CK. We
have: ds = 0 and dl = e. Therefore a map f from X, to X is characterized by two
elements ue C,and ve Cp satisfying the following conditions:

du=0 Aplu) = dv dpy(u) =0 an(v) =0

Since X is A-local, the map f factors through an acyclic @o~complex Y =
(E,, Vyr Yq) If M(-) denotes the mapping-cone functor, we have a commutatice
diagram:

M(B, ) — My, ,) — Moy, )
j}"n* 1Vn# J}‘n*
M(8,) — M(y,) — M(x,,)

Since S is flat from the left and complexes E; are acyclic, the mapping-cone of

v.., is acyclic. By construction, the pair (e, C) define a cycle in the mapping-cone of

n
Hpwe and this element is null-homologous in the mapping-cone of X, .. Since z; are
surjective maps, the mapping-cone of A, has the homology type of the suspension
of the mapping-cone of Ker{a, ,J — Ker{oa ). Therefore the pair (u, v) is
null-homologous in this mapping-cone. But the only restriction on the pair {(u, v) is

the fact that it is a cycle in this mapping-cone. Hence the map Ker{oa, ,} — Ker(w,)

induces a bijection in homology.
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Since S is flat from the left, the map Ker(«xg“l) - Ker(ocg) induces also a
bijection in homology for every integer n> p>0 and, for every X = (C,, X, o,) in C,
and every n> p>0, the following diagram is homology cartesian:

Xn

Cp g Cn+p

laP ) lap

c,88° 2 C &SP
i. e. vertical maps induce bijection in homology between the mapping-cones of the

horizontal maps. If we pass to the limit, we get a homology cartesian square:

Cp——~——->T(X)

(*) lap lap
C,» 5P — T(X)eSP

Consider the functor TRil from £ to ‘.Ril(CA; S). Let C be the class of all X in
%iI(CA; S) such that there exists a éDo—vcomplex Y in £ and a homology equivalence from
TRIY) to X.

In the approximation lemma 3-7 the only non trivial condition to check is the
last one. Let X = (C_, A, «,) be a Z)O—‘complex in £, and f be a map from TRil(X)
to a nilpotent complex Y = (K, B) in C.

It is possible to construct A-e-complexes K, K, K, ... and surjective maps
ny Ky, = K;@$ inducing bijections in homology, such that K, is the complex K
itself. There is no obstruction to lift B through K, by a map B8;,: K = K,. By
induction we can construct maps B,: K, = K., , compatible with the projections

KnJrl - Kn®S.

3

T
A 12 4

K, K,8 S8
Lo A A

. 2

K, K,e$ LN
///g; l"°//@2 "o //@2 o ///éz

K—> KeS§ — KeS§2 — Ke§ —

B P B B



Up to adding big acyclic complexes to complexes K;, we may suppose that all
maps B8, are cofibrations.

Let K,'p be the homotopy kernel (i. e. the desuspension of the mapping-cone)
of the map Bp_lqu_zo .... oB,. We have obvious cofibrations )\'p from K'p to K,'p_H and
B'p from K'p_H to K'p®S. It is clear that Cj is acyclic and that maps B’ and X' are
compatible. So we get a SDO—complex DY = (K}, A}, B, ) and a homology equivalence
from TRi(DY) to Y. Moreover, for every p the following square is homology
cartesian:

Kp—-—-————-> K

fr I

K eSP — Keas?

A similar construction may be done for X. It is possible to construct

A-e-complexes Cij’ surjective maps €y Cij+1 S CijaoS inducing bijections in
homology, cofibrations )‘ij’ Cij -> Ci-uj’ maps oj; from Ci,+1j to Cij+l’ maps fjj from
Ci.j to Ki such that C;, = Cis Ao = X for every iz 0, and:

Lijhisrj = Mijea%ij imj e = AEi Eije1%ijer = %ijinej

Finjrij = fy Fijra®ij = Bifissj fieii = Tifijn
for every i j 2 O.

If all ij-, all Efyoys all )‘i'—lj" all Xy all fi'j' are defined, for all i'<i and,

if i'=1, for all j'<j, one constructs next data as follows:

Let E be the pull-back Kj and Cij-1® S over va_‘® S. We can construct a complex Cij
Cij and a surjective map Cij — F inducing a bijection in homology. So we get composite
maps j;_;: Cij - E — Cij—1® S and fij: Cij - E— Kj. The preceding data define maps from

C. i and C,

i 11 to E, and there is no obstruction to lift these maps into maps “Ai_”-:

C. .= ci] and O(i C

i1 - Gy If Cj is chosen to be big enough, Aj,j can be

j-17 “ierj-t

construted to be a cofibration.

C -

Let Cfp be the homotopy kernel of the map %op-1°%po2® =+ °%p1o’ Cpo

C_... The maps >‘ij and o, induce cofibrations kp from Cp to Cp+1

op ij and maps oc'p from




Cb to C‘p@S and we get a éoo—complex DX = (C,, X, o) and a canonical

epimorphism from DX to X, and a map f,, from DX to DY. Moreover maps o,
induce an epimorphism from I\er(Cp —> Cp) to Ker(C p1 Cp_‘)®S.
Let Ep be the kernel of the map C'p - Cp. The complex Ep is acyclic and we

may identify C'p with the sum Cpe Ep' In this situation, the maps Xp and oc'p are

represented by matrices:

apO

o o=
p
p *p Yp Yp

A section S of the map C'p - Cp is the sum of the inclusion in the first

factor and a map Yp from C.p to Ep. Moreover theses maps commutes with the Xp's

Ty

'S if and only if:

and the «
Vp = 0, Uy + XpYp = Ypu )‘p and Vp + YpYpa = Yp¥p
Since the maps )‘p are cofibrations and the maps ap are epimorphism with
acyclic kerngzl, there is no obstruction to construct inductively the maps Yp with the
desired conditions. Therefore with have a cofibration s from. X to DX and the
following diagram commutes:
TRILDY)
Tmil(f**y lm
TRINX) — Y
Since Y is in C, there exists a @o—complex X, in £ and a homology equivalence
e from TRiI(X ) to Y. As above there exists a map u from X, to DY such that e is
the map TRil{u) composed with the homology equivalence TRil(DY) — Y. Since
squares (*) are homology cartesian for both complexes X; and DY, the map u is a
homology equivalence and DY is in L.
The last condition of the approximation lemma 3-7 is now Vérified and this

temma holds. Therefore C is exact and K(B, A) has the homotopy type of the

spectrum K(C). More precisely we have a fibration of spectra:
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K(4) = K(8) - K(C)
and the map on the right hand side is induced by the functor TRl
Consider a O"-complex X = (C, o) in the class ERil(CA; S}. Since C has the
homotopy type of a finite complex, there exists a homology equivalence from a
DO"-complex X, = (Cg, a,) to X, where C, is finite. Then X, is a nilpotent complex
in the sense of §2 and, by theorem 2-2, there exists a mnilpotent complex Xj and a
homology equivalence from a reducible nilpotent complex Y to X, e X;. But the

)

reducible nilpotent complex Y is extension of nilpotent complexes Y; = {C;, oy
where o is null-homotopic. Then all Y,'s are in the class C, and Y is in C too.

Therefore Xo X is in the class C and the lemma is a direct consequence of lemma

3-6.

Lemma 5-7: There is a fibration of spectra:
K(A4) = K(B) = K(Cyp)

and the map on the right hand side is given by the functor T.

This lemma will be proven later.
Because of this lemma the forgetfull functor induces a split fibration
KMil(Cp; S) = K(Cy)

with K(G, 0) fiber. Therefore the spectrum ﬁmmCA; S) is an Eilenberg-MacLane
spectrum and the spectrum iz%il(A; S$) has trivial homotopy groups in positive
degree.

On the other hand for every ring R, there exist short exact sequences:

0 — K(R) = K(Ritle K(RIt™1) = Kj(Rlt, £ 1) = K (R) = 0

1f we apply that for both rings A and A[S], we get corresponding exact sequences
for Nil-terms. Therefore for every p there exists a surjection

(R AIZPY; SIZPI) = 7 KRil(A; $))
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But if A is regular, Al ZP1 is regular for every p (see the apendix). Hence Iz(.ﬁil(A; S

has trivial homotopy groups and the theorem is proven.

Proof of lemma 5-7: Since the spectrum K(B. A4 ) is the limit of spectra K( 3n* An),
n—> o0, it is enough to prove that T induces a homotopy equivalence from K{ 311’ ““411)

to K.(CA), for every n>0. If n=1, A, is the class of all acyclic @0~complexes. It is

1
easy to chek the conditions of the approximation lemma 3-7 for the functor T from

B1 to CA and T induces a homotopy equivalence from K(Bl, Al) to K(CA). Thus it is

enough to prove that the inclusion functor induces a homotopy equivalence from

K( Bn’ ..étn) to K(Bnﬂ, Anﬂ) for every n>0. But that is equivalent to prove that the
inclusion functor induces a homotopy equivalence from K(Anﬂ, 'An) to K( 'Bn+1’ Bn)
for every n>0 and that will be a consequence of:
Lemma 5-8: The functor:

(Cys Ry 2y} Cn+1/cn
induces a homotopy equivalence from K( 3n“, ‘Bn) to K(CA) and from K(Anﬂ, An)

Proof: Let 511 be the class of all @o—complexes (C,, Ay o, ) in 311 such that C; is
acyclic for all i<n. Let IBn be the class of all Bn—locai @0~complexes.

Let X = (C,, X, x,) be a reduced @0-complex in IBn‘ Let m<n. Consider the

*

following wo—complex Xy = (Cyy Xy o ):

o, =0 G = 0 if i<m C; = A and )} is the identity if i>m

A morphism from X to X is just a cycle in the kernel of o,,. Then it is easy
to see that Kero; are acyclic for every i<n. Therefore if X is no more reduced but
only 3n~-‘local, x; induce bijections in homology for isn. Conversely a SDO¢complex’

{Cpr hyr 2y} is in ‘an if and only if and only if x; induce bijections in homolegy for

)

isn.



Therefore the class £ of all Bn—local Z)o-«complexes X such that there exists
a 3ll—equivalence from a complex in Bnn to X is the class énﬂ , and we have a

fibration of spectra:
K( 311) — K{ Bnﬂ) -> K(@nﬂ)

Since & is included in 'BH-H’ this fibration split. Moreover, by the approximation

n+1

lemma 3-7, the functor (C,, X, o, ) +> C, , induces a homotopy equivalence:

n+i

But there is a natural homotopy equivalence for every (C,, X, %, ) in 6,1“:

Chn> C Therefore the homotopy equivalence from K(@nﬂ) to K(CA) may be

/ .
n+ Cn

defined by (Cyr Ay o, ) > Cn+1/C , and the the first part of the lemma is proven.
n
On the other hand, for every (G, , J, . 9, } in .,élnﬂ . we have a natural short

exact sequence:

O-écll—%cnd-l_)c =0

n+1/Cn

and Cp,,, is acyclic., Hence the map above from K(Anﬂ, An) to K(CA) is the

opposite of the map given by the functor:

(C,, 2y» 2y) > Cy






