
ON SIMPLY-CONNECTED 4-MANIFOLDS

C. T. C. WALL

This paper concerns (but does not succeed in performing) the diffeo-
morphism classification of closed, oriented, differential, simply-connected
4-manifolds. It arises out of the observation (due to Pontrjagin and
Milnor [2]) that if two such manifolds Mx and M2 have isomorphic quad-
ratic forms of intersection numbers on #2(Jft-), then there is a map
/ : M1-^-Mi which is a homotopy equivalence and induces the tangent
bundle of Mx from that of M2 (see below). The same result is also known
to follow from /i-cobordism of Mx to M2 [4]. This suggests

THEOREM 2. Two simply-connected closed 4-manifolds with isomorphic
quadratic forms are h-cobordant.

This is our main result. We then use techniques of Smale [6]; although
the " Ti-cobordisrn theorem ", that ^-cobordant manifolds are diffeomorphic,
cannot yet be proved in dimension 4, we obtain

THEOREM 3. / / Mx, M2 are h-cobordant simply-connected 4-manifolds,
then for some Jc, M^kiS2xS2)2;M2#k{S2xS2).

Here k denotes k copies, and # connected sum. We obtain a number
of corollaries; for example, the Grothendieck group of oriented simply-
connected 4-manifolds is the free abelian group on P and Q, the complex
protective plane with two orientations.

The proof that if the quadratic forms of M1 and M2 are isomorphic,
they have the same homotopy type is due to Milnor—essentially, we have
CW-complexes with one cell in dimensions 0 and 4, and several in dimen-
sion 2. The homotopy type is determined by the homotopy class of the
attaching map of #3 to a bouquet of 2-spheres, and this likewise is deter-
mined by the integers which are the coefficients of the quadratic form.
Now the induced tangent bundle over a 2-cycle x is determined by an
integer (in fact x. x) modulo 2; and given an $04-bundle over the
2-skeleton, it is determined over the whole of M by an element of
7r4($O4)c^Z ©Z; essentially by the Euler class and the Pontrjagin class.
But the former is determined by the rank of H2{M); the latter is three
times the signature.

1. Manifolds with zero signature.

By a result of Thorn [7], an oriented 4-manifold with zero Pontrjagin
class (or signature) bounds. We need a slight refinement of this.
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LEMMA 1. Suppose o-(Jf4) = 0 and F2(ilf4) = 0. Then M* bounds
an orientable manifold F5 with W2(F

5) = 0.

Proof. According to Thorn, (loc. cit.) the spinor cobordism group in

dimension 4, Q4 (Spin), is given by the stable groups irN+4 ( if (Spin ^ V

By a result of Adams [1], such groups are the end of a spectral sequence
which starts with

Ext** (z2,#*(ilf (Spin*) ;Z2)) .

For, by Milnor [3], these groups have no odd torsion. A straightforward
calculation of the Ext groups in low dimensions now shows that £24 (Spin)
maj)s monomorphically into Q4, which is equivalent to the stated result.

THEOREM 1. Let M* be simply-connected, and a(Mi) = 0. Then if4

bounds a manifold W5 of the homotopy type of a bouquet of 2-spheres.

Proof. We know that M* bounds an orientable manifold F5, which
we can take as a spinor manifold if if4 is. Then (Milnor [5], Theorem 3)
we can perform a series of spherical modifications to make F5 simply-
connected, and not destroy the condition: W2{Mi) = 0 implies W2(F

6) = 0.
Then the homology exact sequence of the pair (F, M) has the form

0-*#3(F)->#3(F, M)->H2{M)->H2{V)->H2{V, Jf)-*0,

and our task is to kill the group HZ(V, M). First suppose it infinite;
we choose an element x of infinite order, and an element y of H2(V) map-
ping onto x. If the value of W2 on y is nonzero, by the condition above
W2{M4) ^ 0, and we choose z in H2(M) with the value of W2 on z nonzero,
and add the image of z to y. Hence we can suppose that W2 is zero on y.

We now represent y by an imbedding of S2 in F, and since W2{y) = 0,
the image has trivial normal bundle. Make a spherical modification of
F by first deleting a tubular neighbourhood S2 x D3 to obtain a manifold JT,
and replacing it by Z>3 X S2 to" obtain a new manifold V, still with boundary
M. Using Lemma 5 of [5], we see that we can still suppose TF2(F') = 0
in the case when W2{M) = 0. To calculate the homology of V modulo M,
we consider the sequence

(8) H3(V,M)M!3(V,X)lH2(X,M)->H2(V,M)->0

where, oi course, the second term is infinite cyclic. Now since a represents
intersection with y, and y has infinite order, the cokernel of a is finite, and
so H2(X, M) is a finite extension of ^ 2 (F , M). Now consider the sequence
(#') with V in place of F ; then the image of j8 maps to the element x in
//2(F, M), so has infinite order. Thus the rank of #2(F ' , M) is one less
than that of H2(X, M), i.e. of H2(V, M); by induction we may reduce
this rank to zero.
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We may now suppose H2(V, M) finite and nonzero. We shall also
assume H2(V) infinite. Indeed, since the homomorphisms

H^V,M)-^H2{M) and H2(M)->H2(V)

correspond by Lefschetz duality and the universal coefficient theorem,
they have the same rank; since they form an exact sequence, this rank
is half that of H2(M). We temporarily impose the restriction that the
rank of H2{M) be at least 4, and so that of H2(V) at least 2.

There exists an element y in H2(V) satisfying (i) W2{y) = 0, (ii) the
image ofy in H2{V, M) is nonzero and (iii) y is a primitive element of H2{V).
By (iii) we mean that the image of y in H2

m(V) (the torsion-free homology
group) is indivisible and so generates a direct summand. To prove the
existence ofy, first suppose W2(M) = 0. Then W2{V) = 0, and condition
(i) is void. If each primitive y in H2(V) has zero image in H2(V, M), the
map of H2(V) to H2(V, M) is zero since H2(V), being infinite, is generated
by primitive elements. But this contradicts the fact that H2(V) maps
onto H2(V, M), and the assumption that the latter is nonzero.

If now W2(V) ^ 0 , the subgroup of H2(V) generated by primitive ele-
ments on which W2 vanishes has index 2. For now the rank of H2(V) is
at least 2, and we can choose a basis {asj for the torsion free part wit.li
W2{x.t) = 0 for i > 1 (and also ^2(^1) = 0> unless W2 vanishes on the tor-
sion subgroup), which makes the remark obvious. But now if every y
in this subgroup has zero image in H2(V, M), this subgroup is exactly the
kernel, hence the image of H2(M). This contradicts the assumption that
W2 is not identically zero on this image. So the existence of y satisfying
(i)-(iii) is established.

Perform a spherical modification (as above) starting with y. In the
sequence (S), since y is indivisible, a is onto, and it follows that

H2(X,M)~H2(V,M).

Now the sequence (#') shows that in H2{V, M) we have killed the image
of y, and so decreased the order of the group. Hence by induction we
may reduce the group to zero. We then obtain a simply-connected
manifold W whose only nonzero homology group is H2(W), which is free
[being isomorphic to H*(W, Jf)^Hom (HS(W, M), Z ) ] . Thus W has
the homotopy type of a bouquet of 2-spheres.

In the case when the rank of H2(M) is zero, i f is a homotopy 4-sphere,
and a proof of the theorem may be found in [9], The proof when the
rank is 2 we defer till the next theorem.

LEMMA 2. Let dW5 = Jf4, where W and M are l-connected. a.nd W

has the homotopy type of a bouquet of k 2-spheres. Then (i) W admits a
Iwndlebody He3tf'(5, fc, 2) as deformation retract, (ii) The closure C of
W—H gives an h-cobordism of M to BH.



144 C. T. C. WALL

Proof. For the definition of handlebodies see [6]. To construct H
we first imbed a disc D5 in the interior of W, and then imbed discs D?
with interiors avoiding JD5 and boundaries lying on it, such that their
homology classes represent generators of H2(W). We take the D? dis-
joint (in these dimensions, the imbedding is easy). A smooth neighbour-
hood of D5\J Ui^D? now gives the required handlebody H. For
W, H are simply-connected, and by construction, the inclusion of / / in W
is a homology equivalence.

For (ii) observe that since W is simply-connected, and the codimension
of a disc D? is 3, C is also simply-connected. Now

so dH is a deformation retract of C, and

Ht(C, M)^#s-*(C, dH) = 0,

so M also is. This completes the proof of the lemma.

2. The main theorem.

We are now ready to prove

THEOREM 2. Two simply-connected closed ^-manifolds with isomorphic
quadratic forms are h-cobordant.

Proof. Lei the manifolds be Mx and M2. Form the connected sum
N = Mx#{—M2). Since the signatures of Mx and M2 are equal, that
of N is zero. First assume the rank of 7/2(Jf j) not equal to 1, so that the
part of Theorem 1 already proved does apply to N; by Theorem 1 and
Lemma 2, N is ^-cobordant to a handlebody boundary dV.

Now we know a good deal about handlebody boundaries. Indeed, a
handlebody V m3/f{&, k, 2) is determined by k and whether TF^J7) is zero
or not (see e.g. [10]); and all such handlebodies are sums of ones in J^(5,1,2),
which are 3-disc bundles over $2, and there are only two of these. Hence
a handlebody boundary is a connected sum of 2-sphere bundles over S2.
We now refer to [11 ]. There are two such bundles, the product S = S2xS2

and a bundle T. The result we need from [11] is the Corollary to Theorem
2, in the form:

Let M be a connected sum of copies of S and T. Then any automorpli
of H2(M) can be represented by a diffeomorphism.

The term automorpli refers to the quadratic form defined on H2(M)
by intersection numbers.

Write K for the subgroup of Hz{dV)^H2(N)^H2(M1) ®H2{M2) given
by the set of pairs (x, y) with ax = y, where a is the given isomorphism of
the quadratic forms on H2(M^), H2(M2). Clearly, K is a free abelian
group, in fact a direct summand of H2{dV), with rank equal to that of
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H^Mj), and so half that of H2(dV). Moreover, the subgroup K is isotropic
for if (x, y), (x', y')eK, their intersection number is

xx'—yy' = xx' — < = 0,

[recall (a) that we reversed the orientation of M2, (b) that a is an iso-
morphism]. This suggests that we can find a handlebody W, with
dW=dV, and K the kernel of the inclusion II2{dV)->H2(W).

In fact let L be the kernel of H2(dV)-*H2(V); then L satisfies the
same conditions as K. We assert that for some automorph T of
II = II2(dV), T{L) = K. This is quite a simple result, and we briefly
sketch the proof. The stated conditions easily imply that L (or K) is
its own annihilator in / / . So L is the kernel of the map induced by the
quadratic form

II - Horn (//, Z)-»Hom {L, Z)

and if L' is a complement to L, we may identify L' with the dual of L.
We choose dual bases {ej in L, {e/} in L', then ê e., = 0, e^e/ = 8̂ -. Then
we must try varying the choice, by adding to each e/ a linear combination
of the Gj; when bhe quadratic form is even, we can make e /e / = 0, also;
when it is odd, with a little more trouble, we obtain e/ e/ = 0 except
ex' e/ = 1. Since the same considerations are valid for K, we may now
use the chosen bases to define an isomorphism which carries L to K.

V

By the result quoted above, there is a difTeomorphism of BV which
induces this isomorphism. So without loss of generality we can assume
K = L, the kernel of H2(dV)-^H2(V). We now take the ^-cobordism of
Mx# (—if2) *° ^F, and "fill in" dV by attaching F. Likewise, we can
regard the connected sum as defined as the union

{Mx-D*) KJ {S* X /) v {M2-J94)

and fiJl in S3 X / by attaching Z>4 X / . (See figure.) We have now con-
structed a manifold R whose boundary components are Mx and M2; we
JOUR. 163 Z,
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claim, that R is an ^-cobordisrn. First, it is clear from construction that
R is simply-connected.

Now we calculate what has happened to the second homology group.
We have already observed that

and this is clearly unaffected by filling in D4 X / . If we attach V, the
kernel of H2(dV)->H2(V) is L = K, the set of pairs {x,y), xeH2{M1),
yeH2(M2), with <zx = y. Since K is disjoint from H2(M^), H2(M2), we
see that the induced maps II2(M1)->H2(R) and H2(M2)^H2(R) are
isomorphisms, and indeed that the composite induces the isomorphism
- a of H2{MX) on H2{M2).

Hence Hk(R, M^ = 0 for k ^ 2 and i — 1, 2, and so also

so that all the relative homology groups vanish, and R is indeed an
^,-cobordism.

We now return to the unsettled case of Theorem 1. If the rank of
II2{M) is equal to 2, and o(M) = 0, then the quadratic form of M has one
of two types and these are the quadratic forms of 8 and T. By the
result above M is ^-cobordant to S or T, and then filling in the 2-sphere
bundle S{T) by the 3-disc bundle, we obtain the required manifold with
boundary M. Having shown this, observe that the proof of Theorem 2
is now valid in the case (previously exceptional) when the rank of H2{Mj)
is unity. Thus both theorems are established in full generality.

3. h-cobordism.

As we have already observed, Smale's proof of his ^-cobordisni
theorem [6] breaks down for dimension 4. However, if we examine it,
we find that a non-trivial result is nevertheless obtained.

THEOREM 3. / / Mlt M2 are h-cobordant simply-connected ^-manifolds,
then for some k, M^kiS^xS2) ~ M2#k(S2xS*).

Proof. Let R be the 5-manifold providing the A-cobordism. We
take a nice function on R (with minimum, —£, on M1} and maximum, 5£,
on M2)\ this yields a handle decomposition. Since the manifolds are
connected, we can dispense with 0-handles (viz., those which correspond
to critical points of index 0). Now (5.1) of [6] is valid in our case, and the
argument given by Smale on pp. 404-5 also applies, and enables us to dis-
pense with 1-handles. Dually, we can get rid of 5- and 4-handles. So
there remain only handles of dimensions 2 and 3 (we remind the reader
that the reason why Smale's arguments fail in our case is a lack of informa-
tion on isotopies of imbeddings of 2-spheres in simply-connected 4-mani-
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folds—a lack which no arguments in [11] or this paper have availed to
circumvent).

Now denote by N the manifold at level 2\. To pass from Mx to N
we have crossed a number, say k, of 2-handles. Hence N is derived from
Mx by k spherical modifications of type (1, 2)—in each we delete the interior
of an imbedded S1 x D3, and replace by a copy of D2 X #2. But Mx is
simply-connected, and hence the circle S1 x 0 homotopic (and so diffeo-
topic) to zero. It follows, as in [11] ,that making a spherical modifica-
tion is equivalent to taking the connected sum with a 2-sphere bundle
over S2, 8 or T. Hence N is obtained from Mx by taking the connected
sum with k copies oi 8 or T. Similarly, it is so obtained from Mz, and by
homology theory, we see that the same integer k is obtained.

To conclude our argument it remains only to observe that when the
quadratic form of Mx (hence also M2) is odd, we have, by Theorem 1,
Corollary 1 of [11], MX#T ~ MX#S, (and similarly for M2), so that in
this case all the summands T may be replaced by 8. If, on the other hand,
the quadratic forms are even, i.e. W2{M1) = 0, then since R admits
Mx as deformation retract, it follows that W%(R) = 0; and since N has
trivial normal bundle in R that W2{N) = 0, so the quadratic form on N
is also even. Thus in this case no summands T can occur.

We remark that our result is a pure existence theorem; we have
obtained, even in principle, no bound whatever on the integer k. The
natural conjecture to make is, of course, that the ^-cobordism theorem
still holds, and we can take k = 0. If this is so, then two simply-connected
4-manifolds with the same quadratic form are diffeomorphic.

4. Deductions.

We take the following oriented simply-connected 4-manifolds as basic:
the complex projective plane with the usual orientation, P, or the other
orientation, Q; 8= 8*xS2, and the other bundle T. By [11] Lemma 1,
T ^ P#Q.

(4.1) / / Mx, M2 have isomorphic quadratic forms, then for some k,
Mx#kS s M2#k8.

This follows at once from Theorems 2 and 3.

(4.2) / / Mx, M2 have quadratic forms of the same genus, then for some k,
Mx#k8 £ M2*k8.

For (see e.g. [2] or [8]), two indefinite forms of the same genus are
isomorphic, and we can apply (4.1) to Mx#8 and M2#$. Indeed, the
converse of (4.2) is also true—this is essentially a statement about quad-
ratic forms (same references).

(4.3) There exists N with MX#N ~ M2#N if and only if the H^M^
have the same rank and signature.
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The existence of N clearly implies the second condition; conversely,
if that is satisfied, then MX#T and iW2# T have quadratic forms of the
same genus (even isomorphic) and we apply (4.2) or (4.1).

(4.4) The Orothendieck group of simply-connected ^-manifolds is free
abelian of rank 2, the classes of P and Q may be taken as generators.

Taking rank r and signature a clearly defines a homomorphism of the
Grothendieck group into 2Z. By (4.3) this is a mononiorphism. Now
r = a (mod 2) but P and Q have (r, a) equal to (1, 1) and (1, —1) so the
image is defined by r = a (mod 2), and is generated by the images of
P and Q.

A corresponding argument is valid if the quadratic form is restricted
to be even (i.e. T 2̂

 = ^)- Let K be such a manifold with signature 16
(see [2]).

(4.5) The Orothendieck group of simply-connected spinor 4:-manifolds
is free abelian of rank 2; the classes of S and K may be taken as generators.

Recall that even quadratic forms have the same genus if and only if
they have the same rank and signature. Then using (4.2) instead of
(4.3) we see that (r, a) again defines a monomorphism. But now r is
even and, by a result of Rohlin, a is divisible by 16. Since S has
(r, a) = (2, 0), the result follows.

These results are of course much weaker than (4.1), and a fortiori, than
Theorem 2; nevertheless, they seem worth stating. We also have a sort
of imbedding theorem.

(4.6) For any M there exist N, k with M#N ? kT. If W2{M) = 0,
we can also have M#N ^ kS.

We merely apply (4.1) to M#(—M)#T [or to J/#(—M)] and use
results quoted above.

Finally we use (4.1) to settle a problem raised in [11],

(4.7) For any integer b we can find n such that each primitive character-
istic element of H2(nT) of square 16i is represented by an imbedded 2-sphere
with simply-connected complement, provided — b ^

Using the methods of Lemma 6 of [11], we see that it is sufficient to
express nT as A#kP#lQ, where the quadratic form of A is even, and
k—1= I6i. For i negative (for i positive we can deduce the same by
reversing orientation) say i = —j, we take A =jK, where K is the mani-
fold of (4.5), and apply (4.1) to jK#X6jQ to deduce that for some m,
we have mT £ jK#(\6j-{-k)Q#kP. A similar decomposition is now
valid for n > m, so we choose n large enough to accommodate each of the
cases mentioned.
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