
Topology Vol. 11.~~. 349-330. P-qmnon F'rcsr, 1972.Printcd in Great Britain 

DELOOPING CLASSIFYING SPACES IN ALGEBRAIC K-THEORY 

J. B. WAGONER* 

(Receizxxi 17 September 1971) 

FOR ANY associative ring with identity A let BGL(A)+ denote the “classifying space” for 

algebraic K-theory given in [I51 where a definition for the higher K-theory functors Ki, 

i >, 1, is proposed by Quillen as K,(A) = n,(BGL(A)+). This K, and KZ agree with the K, 

of Bass [2] and the K2 of Milnor [ 141 and the theory has other very pleasant properties [ 151. 

Now Anderson [l] and Segal [17] have shown how to associate a generalized cohomology 

theory K’(X; q) to any category %? with a “commutative” and “associative” internal 

operation ?? x %’ -+ e. If one takes the category 9’ of finitely generated projective modules 

over A with morphisms the isomorphisms and internal operation the direct sum, then 

K,(A) = K-‘(pt; 9’) for i 2 0. See [18]. Our purpose here is to show that 

K,(A) x BGL(rl)+ E n(BGL(@)+) 

where PA is the ring of .* bounded operators modulo compact operators”. This givesa more 

specific construction of the R-spectrum for algebraic K-theory. In $4 we show how to define 

relative K-groups K,Cf) for a ring homomorphism f‘: R ---f S so that there is a long exact 

sequence 

. . . + K,(R) + K,(S) -+ Ki(f) + K,_,(R) -+ IT,_.~(S) -+ 

This amounts to identifying, at least theoretically, the fiber ofthe map BGL(R)+ -+ BGL(S)+. 

The first six sections of this paper are concerned with algebraic K-theory; the last, which 

relies only on $1, $2, and (3.1), briefly speculates on Fredholm map germs in homotopy 

theory. We work with the Bf construction of [15] which in our applications to algebraic 

K-theory is just the integral completion functor of [3]. 

Recall the definition of ,uA from [7]: Let /A denote the ring of locallyfinite matrices 

over A; that is, those infinite matrices (mij) with entries in A such that each row and each 

column has at most finitely many non-zero entries (1 < i, j < co). Let mA c LA be the ideal 

ofjinite matrices; that is, those matrices with at most finitely many non-zero entries. Define 

,uLA = /A/nzrl. From an algebraic viewpoint the “cone” CA and “suspension” .SA of [l l] 

could be used in place of /A and ptA in this paper. Recall that CA c /A is the subring gener- 

ated by the “permuting” matrices; that is, by those matrices of the form P. D where P is an 

infinite permutation matrix and D is an infinite diagonal matrix with entries coming from a 

finite subset of A. The suspension is defined as SA = CAhA. 
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In this paper 2 will always denote the integers. 

iMany of the results in this paper have been obtained concurrently and independently 

by S. Gersten [8] who works with the cone and suspension. 

I wish to thank F. T. Farrell for collaboration on the earlier work [7] which is the 

source of much in the present paper. 

PI. GEMZRAL PROPERTIES OF B+ 

First recall the definition of K,(R) given by Quillen in [15]: All spaces will have the 

homotopy type of a C W-complex and will ha;c a base point. All maps and homotopies will 

preserve the base point. Now let X be a space and let G c rciX be a perfect subgroup. There 

isaspaceX+andamapi:X+X+suchthat: 

(a) nix’ %’ n,(X)/normal closure of G; 

(b) For any n,(X+)-module A the map i: X+ X ’ induces an isomorphism H,(X; A) -+ 

H*(Xf ; ‘4). 

One way to construct such a space X+ is the following: Let Y be the covering space of 

X corresponding to the subgroup G. Attach 2-cells and 3-cells to Y to get a space Y’ such 

that n,(Y+) = 0 and Y+ Y + induces an isomorphism H,( Y; 2) -+ H,(Y+ ; Z). Then take 

Xf to be the pushout of the diagram 

(1.0) 

Any map i: X-t X+ satisfying (a) and (b) also satisfies the following universal property: 

(c) Let f: X-+ Y be a map such that f,(G) = 0 where f# is the induced map on rci. Then 

there is a map f’ : Xf -+ Y, unique up to homotopy, which gives a homotopy com- 

mutative diagram 

In particular iff: X-t Y is a map such thatf,(G) c H where G and H are perfect sub- 

groups of nl(X) and n,(Y) respectively and i: X-+ X+ and j: Y-, Yf satisfy (a) and 

(b) then there is a mapf’: Xf + Yf, unique up to homotopy, that gives a homotopy 

commutative diagram 
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X-LY 

4 I j 
x+- + Y . 

If 

Thus any two realizations of X+ are homoiopy equivalent in a natural way. Another 

useful property of the “+” construction is 
(d) if Y and X are as in (1 .O) and G c Eli X is normal then Y i is homotopy equivalent to the 

universal cover of X+. 

The following well-known lemma (cf. Lemma 6.2 of [S]) will be useful 

LEMMA 1.1. Let f: X- Y be a map between weakly simple spaces (i.e. spaces whose 

fundamental groups act tritiially on the homology of the universal cocer). Suppose f* : H,(X; 

Z) -+ H,( Y; Z) andf, : rr,X --+ 71~ Y are isomorphisms. Then f is a homotopy eqrlicalence. 

Note that any connected H-space is weakly simple because it is simple. For a very nice 

generalization of this Whitehead type theorem see [6]. 

In this paper a ring R will always be assumed to satisfy the condition 

(*) for any finite set rl , . . . , r, E R there is an idempotent p E R with p.ri = ri’p = ri. 

Any ring with identity satisfies (*). If R satisfies (*) so do mR, lR, and ,uR. In particular, if 

R has an identity, then mR satisfies (*) although it is not a ring with identity. 

The general linear group GL(n, R) can be defined as in [I91 as follows: for any two 

n x n-matrices P and Q over R let P 0 Q = P + Q + P . Q. Then GL(n, R) consists of those 

IZ x n-matrices P for which there is a Q with P 0 Q = Q 0 P = 0. The group operation is 

P 0 Q. Let E(n, R) be the subgroup generated by the Sij(r), which has r in the (i,j)th spot 

and zeroes elsewhere (i #j). For n 2 3, E(n, R) is perfect since [aij(E.), c?~&)] = Jik(i.. p). 

Let GL(R) = lim GL(n, R) and E(R) = lim E(n, R). Then as usual (i.e. when R has an 

identity) E(R) = [GL(R), GL(R)]. When R is a ring with unit the correspondence P -+ I + P 

defines an isomorphism between the GL(n, R) as defined above and the usual group of 

n x n invertible matrices. 

Now consider GL(R) as a discrete topological group and form the classifying space 

BGL(R) as in 1181. Form BGL(R)+ using the perfect subgroup E(R) and for i 2 1 define as 

in [15] 

K,(R) = ni(BGL(R)+). 

The (homotopy theoretic) universal cover is of BGL(R)+ is BE(R)‘. Also, BGL(R)’ is an 

H-space and is therefore simple. See (1.2) below. 

In this paper the “+” construction will be applied more generally to the classifying 

space of a discrete topological group G which has an internal “ direct sum “; that is, a 

homomorphism 0 : G x G + G. Such a group will be called a direct sum group. GL(R) is a 

direct sum group as follows : Partition the positive integers N into two disjoint infinite sub- 

sets N = IV, u N, and choose bijections r: N + N, and /3: N+N,. If A=(aij) and 
B = (bij) are in GL(R) let 

A @ 13 = (a,(q.cjJ . (bp(i,.p(,$. 
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Now let G be any direct sum group such that [G, G] is perfect and satisfies 

(+) for gl, . , g,, E [G, G] and g E G there is an h E [G, G] with ggig-r = hhih-’ for 

1 <i<n. 

Let e be the identity element of G. Suppose further that 

(**) for any finite set g, , , g,, E G there are elements c and d in G with C(gi @ e)c-’ = 

d((e @ gi)d -r = gi 

Form BG+ with respect to the subgroup [G, G], which we will do throughout the rest of the 

paper. 

The group GL(R) satisfies (7) and (**). For example, to see that (i) holds let gl, . , 

y, E [GL(R), GL(R)] and let g E GL(R). Choose an integer k such that g. g, , . g, E GL(k, 

R). Then to get (t) we can choose 

h=g O 
i j 0 F1, 

E E(2k, R). 

Let G be a direct sum group satisfying (7) and (**) above and form 6Gi with respect 

to the subgroup [G, G] which we have assumed to be perfect. Throughout the rest of the 

paper BGf will be constructed in this way. 

PROPOSITION 1.2. BGi is an H-space. 

For example, BGL(R)+ is an H-space. 

LEMMA 1.3. Let f: G + G be an automorphism of the discrete group G such thutfor any 

set gl, . . . . gL E G there is a/l element h E G such that f(gi) = hg,h-’ for 1 < i ,< k. Then 

f*: H,(BG) --f H,(BG) is the identity. 

Proof. Let x E H,(BG) be represented by the chain ZnJg’;, , gl). Then f(x) is 

represented by 

i&, ni(f(g{), ,f(gi)) = 1 n;(h ’ gf ’ h-l, , h . gi . h-‘) 

where the h is chosen with respect to the finite set g$. Since conjugation induces the identity 

on H,(BG) we haveJ(x) = x. 

Proof of 1.2. Let E = [G, G]. First note that f?G* is a vveakly simple space: By (1.3), 

G mod[G, G] acts trivially on the homology of BE. a regular covering space of BG. The 

isomorphism H,(BE) + H,(BE+) is compatible with the action of the covering translations 

and hence G mod[G, G] = n,BG+ acts trivially on BE’, the universal cover of BG+. 

Similarly B(G x G)+ is a weakly simple space. Now letp’ : B(G x G)+ -+ BG’ x BG+ denote 

the map induced from the homeomorphism p: B(G x G) -+ BG x BG by the universal 

property (c). Since p induces an isomorphism on homology so does p+ and this makes p+ 

a homotopy equivalence in view of (1.1). Let S be a homotopy inverse to p+ and consider 

the map m induced by d followed by @ : 

m: BGf x BG+ 7 B(G x G)+ - BG’. 
9 

Form to be an H-space multiplication on BGf it must be homotopic to the identity (keeping 
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the basepoint p E BGi fixed) when restricted to the right and left factors of BG’ x BG+. 

This may not be the case; however, if we set r(x) = m(x, p) and [(x) = m(p, X) for x E BG’, 

then the argument below shows that r and ! are at least homotopy equivaiences. Choose 

homotopy inverses s and k for r and L respectively. Then m = (S x r) is an H-space multipli- 

cation on BGC. To see why, say, r: BGf -+ BGi is a homotopy equivalence note that it is 

the map induced by the group homomorphism 4(g) = g @ e. Property (**) and Lemma 1.3 

show that &.Y) = .Y for any x E H,(BG+). Hence r is a homotopy equivalence. Similarly, L 

is a homotopy equivalence. 

Any homomorphism cr: G, -+ G, of direct sum groups which preserves the direct sum 

operations induces an H-map ci : BG,’ --+ BGr’. For any ring homomorphism f: R -+ S 

let Bf f : BGL(R)+ + BGL(S)' denote the induced map. 

LEMMA 1.4. There is a naturaI homotopy equicalerlce 

BGL(R)+ 1. BGL(mR) T. 
_ 

Proof. There is a natural isomorphism GL(R) z GL(mR) because mR E m(mR). 

Thus there is actually a homeomorphism BGL(R)+ 7 BGL(mR)+. _ 

$2. FLABBY GROUPS ARE ACYCLIC 

One of the main applications of this section is to show in (2.5) that H,(BGL(!R)+) = 0 

whenever n > 0 and hence that BGL(/R)’ is contractible. 

Let G be a discrete topological direct sum group satisfying (**). Following [i l] we shall 

call G flabby provided there is a homomorphism z: G -+ G such that for any finite set 

$71, “‘> g,, E G there is a c E G such that 

(***) C .(gi@T(LJi))' C-l = T(gi). 

Examples below show that r can be viewed as an infinite sum. 

PROPOSITION 2.1. If G isflabby, then H,(BG; 2) = 0 for n> 0. 

COROLLARY 2.2. I__ G isflabby, BGf is contractible. 

To prove (2.1) it suffices to show that the homology vanishes with coefficients in a field. 

Note the 0: G x G + G induces a ring structure on H,(BG) where the multiplication, 

denoted by 0, is given by 

H,(BG) 0 H,(BG) 7 H,(B(G x G)) T H,(BG). 

The generator 1 E H,(BG) determined by the map of the standard O-simplex to the base 

point is a unit for the multiplication. This is because for any z E H,(BG) the correspondences 

z -+ z @ 1 and z + 10 z are induced by the group homomorphisms g -+ g 0 e and g -+ e 0 y. 

These latter induce the identity on homology by (1.3). Now let A,: H,(BG) -+ H,(BG) @ 

H,(BG) be the algebraic diagonal map induced by the diagonal A: G --+ G x G and let 

T*: H,(BG) -+ H,(BG) be the homomorphism induced by T: G -+ G. Let z E H,(BG). Then 

T*(Z)= @ 0 (id X T*) 0 A&) 
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For let z be represented by the chain x ki(g\, . , g:). The left hand side of the equation 

is represented by c k,(r(g’,), . . . , r(gb)) and the right hand side is represented by 2 ki(g’, @ 

Ml), . . . , gni @ r(g2). By (***) these chains are conjugate and therefore homologous. 

Now to show that H,(BG) = 0 when n > 0 proceed by induction and suppose that 

H,(BG) = 0 for 0 < i < n. Let z E H,(BG). Then A,(z) = z @ 1 + 1 @z + 2 lli @ ci where 

0 < deg ui < n and 0 < deg Vi < n. By the inductive assumption we know that 11~ = Ci = 0. 

Hence 

t*(z) = @ 0 (id x r*) 0 A&) 

= z 0 1 + 1 @ r*(z) 

= z + T*(Z). 

This shows that z = 0 and completes the proof of (2.1). 

A similar argument was used by J. Mather in [13] to show that the group of homeo- 

morphisms of R” with compact support (considered as a discrete group) has vanishing 

homology in positive dimensions. 

Examples of direct sum groups and flabby groups 

(2.3) For any ring R satisfying (*), GL(R) is a direct sum group as in $1. 

(2.4) Recall from [7] that an associative ring with identity R is a sum-ring provided there 

are elements aO, aI, PO, /I1 E R such that 

a080 = ai& = 1 

PO a0 + PIal = 1. 

Define the ring homomorphism 0: R x R --t R by 

for r, s E R. 

Strictly speaking a sum-ring is a ring with a particular choice of ai and pi. Let R and R’ be 

sum rings with respect to {ai, /Ii} and {sli’, pi’} respectively. A morphism f: R + R’ is an 

identity preserving ring homomorphismfsuch thatf(cci) = ai’ andf(Bi) = pi’. Suppose R is 

a sum-ring with respect to cli and pi andf: R + R’ is an identity preserving ring homomor- 

phism. Then R’ is a sum-ring with respect to ai’ =f(ai) and pi’ =f(ji) and f becomes a 

morphism. 

If R is a sum-ring, then GL(R) is a direct sum group where 

A 8 B = (a, 8 bij) 

when A = (aij) and B = (bij). We must see why the condition (**) is satisfied and in this case 

it sufficies to show that for A and B E GL(n, R) there is an invertible matrix Q E GL(3n, R) 

such that 
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For s = ri or pi let D,(s) denote the n x n diagonal matrix with x along the diagonal. The 

right Q is then 

Q= 0 0 

i 

WM WPI) 0 
D,(4 

0 0 D,(zJ 

with 

i 

D,(Q) 0 0 
Q-' = D&q) 0 0 

0 4(Po) D,(PA 

Any sum-ring R will be called an infinite sum ring provided there is an identity preserv- 

ing ring homomorphism m:R + R such that r @ r* = rs for any r E R. A morphism 

f: R -+ R’ will be required to satisfy the conditionf(r”) =f(r)“. If R is an infinite sum ring, 

then GL(R) is a flabby group where t: GL(R) -+ GL(R) is given by r(A) = (a;) for A = (aij). 

COROLLARY 2.5. If A is an injinite sum ring, SGL(II)~ is contractible. 

The ring CR is an infinite sum ring. To see this it will be convenient to identify dR with 

the ring C,(E) of locally finite R-linear transformations of the free right R-module E with 

countable basis {e;} where 1 <j, X: < 00. Recall that h: E + E is locally finite provided that 

each ef appears with a non-zero coefficient in h(e$) for at most finitely many er’s. Now 

partition the basis {e:> into two disjoint infinite subsets {e:> = A, u II,. Let pi: {e$> --+ A,, 

i = 0 or 1, be any two bijections. Let /3, E e,(E) denote the corresponding locally finite 

matrix. Define cli E e,(E) for i = 0 or 1 by 

cr,(ef) = 
P;‘(er), if e; E Ai 
0, otherwise. 

This gives a sum structure on l,(E) and hence on LR. There are many sum structures on 

e,(E) but the following is easy to use: choose PO to be any bijection of {e;}, 1 <j < co, onto 

{et} and define PI by p,(e:) = e:,,. L e c(~ and CX~ be as above. To make fR(E) into an in- t 

finite sum-ring recall that E = @ Ej where Ej is the free submodule of E spanned by 

{ey}, 1 < k < 00. Let r E l,(E) and e; E E. Define 

P(e;) = ~~-‘~,r~,u{-‘(e~. 

Then rm is just the infinite direct sum of copies of Porq, laid out on the Ej’S. We have 

r @ r* = rm because 

rm(G) = /J’,-‘j?, rcc,cc<-‘(4) 

i 

PO rq(e:) = P(e:) for j = 1 
= and /31rmcc,(<) = fllrm(ej_l) = ~l(~(-‘~orr,cr~-l(~_,)) (2.7) 

= /Ii PO rxO crj(ef) = F(er) for i > 1. 



3% J. B. WAGONER 

The ring PR is a sum-ring ‘because it is the homomorphic image of LR; however, pR 

is not in genera1 an infinite sum ring. 

The two categories of sum-rings and of infinite sum rings are closed under the opera- 

tions : 

(i) fiber product of two morphisms; 

(ii) forming the ring R[M] where R is a ring and M is an associative monoid with identity; 

and 

(iii) taking “e” or “p” of a ring. 

For example (ii> implies that K,(A) = 0 for any infinite sum ring 

K,(A) c K, (A[t, t-r]) = 0 (cf. $6). 

93. RELOOPING BGL(R)+ 

Start with an exact sequence 

l-+H+G-+K+l 

in the category of direct sum groups satisfying (f) and (**) of $1. 

A because 

LEMMA 3.1. Asmme (i> rhnt [H, H], [C, G], and K are perfect cd (ii) gicen g E G and 

hi, . ..) h,~HthereisanhEHsuclzthatg.hj.g-’=h.~~j.~h-1for1~j~tt.Tlren 

BH+ + BG+ -+ BK+ 

is a (h~~uropy theoretic) ~br~tiun, where the “+ ” is taken with respect to the co~?~~z~t~for 

st{bgrQzlp in each case. 

Proof. Standard classifying space theory gives a homotopy theoretic fibration 

BH -+ BG -+ BK and (ii) above implies that nr(BK) = K operates trivially on the H,(BH) 

by the following argument. Choose k E Kand lift it tog E G. Then k acts on H,(BH) by the 

automorphism induced by conjugation by g, which is the identity by (1.3). Consider the 

diagram 

BH-BG 
x 

- BK 

F - BG c - Bli * 
IX+ 

where the bottom sequence is n”’ made into a fibration. BG’ and BK’ are H-spaces by (1.2) 

and BK’ is simply connected since K is perfect. Hence F is a connected H-space. Now the 

“+” construction says that p and y are isomorphisms on homology. The Comparison 

Theorem for spectral sequences [ 12, p. 3551 implies that a is an isomorphism on homology. 

Hence the induced map BHf -+ F is an isomorphism on homology between simple spaces, 

which makes it a homotopy equivalence by (1.1). 

Let R be a ring with identity. 
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~OPOSITION 3.2. There is a natural homotopy equiralence 

K,(R) x BGL(R)’ z RBGL(pR)+. 

Naturality means that for a ring homomorphismf: R -+ S there is a homotopy commutative 

diagram 

K,(R) x BGL(R)+ r RBGL(pR)+ 

f.xBf - 

! 1 

f2BpJ - 

K,(S) x BGL(S)+ z RBGL(pS)+. 

Proof of 3.2. This is essentially an application of (3.1) to the exact sequence 

1 -+ GL(mR) -+ E(LR) + E(pR) --t 1 

coming from the sequence 0 -+ mR --f t!‘R + pR -+ 0. However, to get naturality it is neces- 

sary to be more precise than (3.1). Here is the idea of the proof. The exact sequence 

0 + mR + c!R + pR -+ 0 of rings gives an exact sequence 

1 -+ GL(mR) -+ GL(LR) + GL(pR). 

But E(!R) = GL(GR) by (2.5) so there is an exact sequence 

1 -+ GL(mR) -+ E(!R) + E(.uR) -+ 1. (3.3) 

Now applying (3.1) we get a fibration 

BGL(mR)’ -+ BE(GR)+ + BE(pR)+ 

and hence a homotopy equivalence 

BGL(mR)+ g RBE(uR)’ (3.4) 

because BE(/R)+ is contractible. Now BE(pR)’ is the universal cover of BGL(,uR)+ so 

BGL(mR)* g (RBGL(,uR)+), , 

where the subscript “0” denotes the component of loops contractible to a point. Finally, 

we know that K,(pR) is naturally isomorphic to K,,(R) (cf. proof of (5.1) below, [7], or [l 11) 

so that 

K,,(R) x BGL(R)+ r RBGL(/tR)+. (3.5) 

Now two things remain to be verified: 

(a) The condition (ii) of (3.1) is satisfied. 

(b) The equivalence can be constructed so it is natural 

First we show why (ii) holds in the special case when iz = 1 and g = e,,(L) = I + 6,,(A). 

The extension to the general case is easy. Considered as an element of E(mR), h, is of the 

form I + (bij) where bij E mR and at most finitely many of the 6,, are non-zero. Write 

A= c1+ p where j? * bij = bij . /.I = 0 and r E mR. Then 

e,,(A) . h, . ePq( - I.) = ePq(z) 1 h, . ePq( - a). 
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To construct (3.3) naturally consider a lixed realization of BGL(mZ)+, BE(I and 

BE(/IZ)~ so that there is a strictly commutative diagram 

BGL(mZ) 7 BE(LZ) 7 BEbZ) 

I 
BGL(mZ)’ - 

i+ 
BE(CZ)f y-y B&pZ)+ 

where the vertical maps are inclusions. Let E denote the trivial group. The image of BGL(mZ) 

in BE(pZ) is the contractible subcomplex BE. Choose a homotopy, with support in BE, of 

7-c 0 i to the constant map and, using (b) of $1, extend this to a homotopy d, of xi+ 3 i ’ to 

the constant map. Now let R be any ring with identity. The ring homomorphism Z --+ R 

induces group homomorphisms GL(mZ) -+ GL(mR), E(eZ) -+ E(LR), and E(pZ) --+ E(pR) 

together with maps of classifying spaces CI: BGLjmZ) -+ BGL(mR), /?: BE(GZ) -+ BE(tR), 

and y: BE(pZ) -+ BE(@). Note that the normal closure of the image of E(mZ) in GL(mR) 

is E(mR). Similarly, the normal closures of the images of E(tZ) and E(,uZ) in E(tR) and 

E(pR) are respectively just E(LR) and E(pR). Thus we have the following push-out diagram 

formulae: 

BGL(mR)+ = BGL(mR) u, BGL(mZ) + 

BE(GR) + = BE(GR) up BE(!Z)+ 

BEbR) + = BE(pR) u., BE&Z)‘. 

Let d(R) denote the composite map 

(3.6) 

BGL(mR)+ 7 BE(GR)+ .+I BE(pR) + 

Using the homotopy constructed above we get a homotopy d(R), of d(R) to the constant 

map which is natural; that is, for any ring homomorphism preserving the identityf: R -+ S 

we have 

d(S), 0 Bj-+ = Bpj- + 0 d(R), (3.7) 

Recall that any map n: X+ Y is equivalent to a fibration as follows: let E, = set of pairs 

(x, I.) where x E X and 1. is a path in Y with X(X) = i.(O). Then E, -+ Y given by (x, L) + i.(l) 

is a fibration with fiber F,. For any map CL: L --f X provided with a homotopy of TC 0 rl: 

L + Y to the constant map to the base point there is a map L --+ F, giving a commutative 

diagram 

F, - E, 

Applying this to ni : BE(GR)+ + BE(pR)+ produces a commutative diagram 
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BGL(mR)- 

I 
F x+ 

, ‘II““-----, 

T 

:i,;,)+/ BE(/lR)+ (3.8) 

R BE(pR) + . 

with the columns being homotopy equivalences by (3.1). For any ring homomorphism 

R + S preserving the identity there is a strictly commutative diagram 

BGL(mR) + - BE(LR)+ - BE(/tR)+ 

I 
B/+ 

I 

B/f + 

I 

BPf+ 

BGL(mS) + - BE(GS)+ - BE(@) + 

The formula (3.7) implies there is a map between the diagrams of type (3.8) for R and for 

S producing a homotopy commutative three dimension diagram. The left side of the dia- 

gram says thatf, x Bf’ is homotopic to QBpf+. This completes the proof of (3.2). 

Essentially the above argument shows there is a natural equivalence of sequences 

BGL(mR)+ - B&X) + - BGL(pR)+ 

I I ! 
[QBGLW) + lo ------+ PBGL(pR) + - BGL(,uR)+. 

Now (3.2) allows us to define for any associative ring with identity R an R-spectrum 

X(R) = {X,(R)} such that for 0 d i < co 

x_i(R) = R’[Ko(R) x BGL(R)+] 

and 
X,(R) = K&R) x BGL($R)+. 

Here ,u’ R = R and pi R = ,u(p’-‘R) for i > 0. For all - co < i < co we set 

K,(R) = z,(X(R)). 

COROLLARY 3.9. Ki(pR) = Ki_1(R)for - 00 < i < CO. 

$4. RELATJ3’E K-THEORY GROUPS 

Letf: R + S be any identity preserving homomorphism. Define the ring yf as in [7] by 

the pull-back diagram 

Yf- PR 
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Define py: p’17 + pi5 inductively as p"f =fand pif= ,ni(~‘-‘j) for i > 0. 

Let X(f) = {X,(f)} be defined as 

X_ i(f) = fi’[XoPif> x BG’(Y~)+I 

and 

Xi(f) = J&(Y(P~)) x BGL(y(/l’f))’ 

whenever i 2 0. 

In this section we show that X(f) is a spectrum and, setting 

for i E Z, that there is a long exact sequence 

+ Ki(R) + Ki(S) + Ki(f) + Ki-l(R) + K,_,(S) 4.. . 

Consider the commutative diagram of rings 

O-A- X-D-0 

O-B-C-D-O 

(4.1) 

(4.2) 

O-B- Y-E-O 

where 

(a) the horizontal rows are exact; 

(b) BGL(X)+ and BGL(Y)+ are contractible; 

(c) the square @ is a pull back; 

(d) given pi, . . . , ,8, E B c C and x E X there is a decomposition x = 11 + i. such that 

p E A and bj . i(1.) = i(j.) . ai = 0. 

For example, the following is a type (4.2) diagram: 

o_‘;“_i”_IR_o 

o-~t-f-~-o 

0 - ms - es - jls - 0. 

(4.3) 
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PROPOSITION 4.4. Appiying the functor ~~(BG~(?)+), for i 3 0, to rhe ~~ugr~ (4.3) 

gises an exact sequence 

3-3-o-s-3. 

a. 8. Y. 6. 

Proof of 4.3. For simplicity of notation let Rf denote BGL(R)+ for any ring R. Now 

for each ring in (4.3) we can construct the B+ so that there is a commutative diagram 

rni -li+ -pi+ 

rn:+ - y~+-~l~+ (4.5) 

m;+ - es f - ps+. 

This is done by considering the diagram (4.3) obtained from the identity map id: Z + Z. 

We get 

mZ - LZ - fiZ 

mZ - LZ - /lz. 

Applying BC gives a commutative diagram and to get (4.5) we set 

BGL(mR)+ = ~G~(rn~) u BGL(mZ)+! 

BGL(mS)f = BGL(mS) v BGL(mZ)+, 

etc., as in (3.6). 

Now let n: U-+ V denote the map pR+ + pS+ made into a fibration. There is a com- 

mutative diagram 

RU------+PU- U 

! I I= 
nv-----+w------+u 

I= I 1~ 
QV-PY- v 

P 
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where Wis the pullback of p and z. Each horizontal row is a fibration. The argument which 

gives the homotopy exact sequence of a fibration shows that for i 2 0 there is an exact 

sequence 

ni(nu) -+ ;ri(QV) 47li(W) + Xi(U) 3 Xi(V). (4.7) 

The method of $3 yields a map from (4.5) to (4.6): 

Each square is homotopy commutative; 6, and 6 j are homotopy equivalences by construc- 

tion; 6, and 6, are isomorphisms on pi for i > 1 by 93. We shall show that 

6,: yf + -+ W, is a homotopy equivalence (4.8) 

by showing that LSJ induces an isomorphism on zi for i > 1. This implies that the sequence 

in (4.4) is exact because it is isomorphic to the exact sequence (4.7) for i > 1. Note that (4.8) 

says BGL(Jfif has the homotopy type of the base point component in the fiber of the map 

BGL(,uR) + + BGL(pS) + . 

Step 1. Isomorphism on n, . 

For any diagram (4.2) type diagram there is an exact sequence 

To see this apply GL to each ring in (4.2) to get the diagram 

1 - G&4) - E(X) - GUD) 

(4.9) 

I 1 

1 - GL(B) - 
B 

GL(C) - GL(D) 

= 

i I jr i 
6 

1 - GL(B) - E(Y) - GL(E) 
i 
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where the horizontal rows are exact except at the right hand end. Since K,(X) = KI( Y) = 0 

we have replaced GL(X) and GL(Y) by E(X) and E(Y). 

E.ractness U? K,(D). This follows easily because GL(C) is the pull back of j and 6 and 

E(Y) + E(E) is onto. 

Exactness at K,(C). Let 

K,(D). There is an LVE E(X) 

back to something in K,(B). 

[JI] E K,(C) be represented by 1cI E GL(C) with [M] = 0 in 

such that ;I(i(N)) = y(M). Hence [M] = [M * i(N)-‘] pulls 

E.yactness at K,(B). Let [&I] E K,(B) be represented by M E GL(B). Suppose /3(&f) = 

JJ ewJyk, 4). Lift each CI, to some x, E X. Then n er,&~~J pulls back to some NE GL(A) 

because n e,,,(dJ = 1. We shall show that it is possible to choose the X~ so that b(M) * 

fW&Jl)(~; = n eikjk(h 1 0) for kk E B. S ince p is a monomorphism this implies that &I = a(N) 

Here is how to pick the .‘c~: note that for any choice of _Q 

where i(x& = (r, , dJ. 

Now make an arbitrary choice of 5, which lifts d,, . Then 

ei,j,(Yn 3 4) ’ einjn(-Zn ) -4 = ei,j,(Yn - zn 1 0) 

and y, - z, E B. Use (d) to lift dn_l to x.-r so that (yn - 2.) * z,-r = 0. Then 

ei,-lj,-, (~*,-1) 4-t) * ei,j,bn - ~“9 0) 1 ei,,_,j,_,t-z,-, 9 -4-A 

= ei,-,j,-l(Yn-l - zn-r 3 0) - ei,j,(Y, -Z,, 0). 

From this last step it is clear how to inductively choose the xk as desired. 

The sequences (4.7) and (4.9) plus the five-lemma imply that 6, induces an isomorphism 

on rcl. 

Step 2. Isomorphism on 7ii for i > 2. 

Consider the diagram 

1 - GL(mS) - E(B) z E@R) - E(@) - 1 

I I 6 
! 1 1 

1 - GL(n6) - E(B) y 
j E(!JS) - 1 

where E(GS) 2 E(@) is the pull back of j and 6. Note that E($) c E(LS) ; E(J.&) is the 

commutator subgroup. 

Now let R’: U’ + Y’ be the fibration obtained from IC: U+ Y by taking the universal 

cover of U and of V. Applying B’ ” 
commutative diagram 

carefully” (e.g. as in $3) to (4.10) gives a homotopy 
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where A, and A3 are homotopy equivalences and Q is a covering space of W. 

BY (3.1) 

BGL(mS) + + B[E(CS) j; &R)]+ --* BE(@) + 

is a homotopy fibration; hence AZ is a homotopy equivalence. 

This gives a homotopy commutative diagram 

B[E(B) 2 E(pR)]* - Q 

BEW) + I 
CW 

63 

where all the arrows (except possibly 6,) are isomorphisms on 7ri for i 3 2. This completes 
the proof of (4.4). 

PROPOSITION 4.11. Xcf) is a spectrum. 

Proof. Consider the two diagrams of exact sequences 

0 - p(mR) - &‘R) - $R - 0 

I I I= 
0 - p(mS) - Avf) - $R - 0 

-1 I I 
0 - p(mS) - .aS) - U’S - 0 

and 
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0 - m(pR) - @RI - p2R - 0 

o- -if) - _c__* 0 

I I 1 
0 - m(pS) - @S) - {‘% - 0. 

Let A4 -+ N be the map BGL(p2R)’ -+ BGL(p2S)+ made into a fibration. Define H by the 

pull back diagram 
H - IL1 

I I . 
PN- N. 

Then the argument proving (4.8) can be mimicked to show there are homotopy equivalences 

B’=(P(Y~))+ 7 H, 7 BG.VY)P~)) +. (4.12) 

Now for i < 0 it is clear that X,(/J z CU’i+i(f). For 0 < i we have 

Xi(f) = ~~~(~~)) x ~G~~(~~~))~ 

E Q[BGr;(&lj‘)>+] 

z !J[BGL;(y(pi+‘f))+]. 

Now putting (3.2), (4.4), and (4.11) together gives the long exact sequence (4.1). 

Whenever f: R --, S is a surjection it has been known for some time that there is an 

exact sequence 

where K,(f) is the relative group defined by Bass. See [14]. In [7] it was shown that for any 

surjection f: R -+ S there is a natural isomorphism of sequences 

KAR) - Kz(S) - K&9”) - J’&(R) - K,(S) 

i I i0 I i 
J%(R) - K?(S) - K,(f) - K,(R) - K,(S). 

The idea for defining 6 is this : Let z E K*(6) be represented by the word rl[ .x~,~~(u,, bJ E St(yf) 
where a, E LS and b, E $5 Choose a lifting b,’ E kR of b, with f(b,‘) = a,. Then iclz = 

n ei=j=(b,) E GL(GR) actualIy lies in the sub-group GL(mR) and M, goes to the identity in 

GL(mS). This means that Mz determines an element of K,(f). The correspondence z + M, 

defines 0. 
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$5. EQUIVALFZYCE OF IA .k\B p-d WITH CA AL\D S/i 

The rings Lrl, +1, and yf arose from the smooth and piecewise linear topology- of non- 

compact manifolds [7]. For algebraic purposes it is sometimes more convenient to use the 

rings CA and SA which came from more algebraic beginnings [ 1 I]. In this section it is shown 

that the two approaches give rise to the same K-theory. The isomorphism in (5.1) is a special 

case of the uniqueness theorem in [ll] where it is also shown that K-i(A) = Ki(Sii’A) is 

naturally isomorphic to the negative K-theory groups L’&(A) of [2]. 

For any ring homomorphism f: A -+ B preserving the identity, define Rf by the pull 

back diagram 

Rf - SA 

I I 
CB - SB. 

For I’ > 0 let S’A = S(S’-‘A) and S’f= S(S'-If). 

PROPOSITION 5.1. For any i > 0 the natural maps S’A +piA and R(Sy) -+ y(py) 

induce an isomorphism of K-theory sequences (cf. 4.9) 

K, (S’A) - K,(S’B) - K,(R($f)) - Kl(Si+‘A) - K,(S’+‘B) 

I I I I I &@‘A) - K, hi@ - K,MdfN - K,(p’+‘A) - K,($+‘B). 

Proof. It suffices to show that for all i 3 0 

K,(S’A) + K,(p’A) (5.2) 

is an isomorphism. The five-lemma then shows the relative groups are isomorphic. Now for 

i = 0 (5.2) is certainly an isomorphism. Assume it is an isomorphism for i < k. Then using 

the excision theorem of [2] we get a diagram 

Kl(Sk-‘(SA)) 

I 

I 3 

K, (P” -‘(CAN - K,(P~-‘WN - K,(pk-l(nzA)) - K,(pk-‘(CA)) 

i I 

B 

I 

id 

I 

&C/J"-'@'A>) ------+K,(P~-'(P~) - K,(,uk-‘@A)) - Ko(~k-l(~A)) 

where s( is an isomorphism by induction. The first and last groups in each of the horizontal 

rows vanish. Hence p 0 c1 is an isomorphism as required. 

PROPOSITlON 5.3. The inclusion S’A + piA induces a natural homotopy eyuicalence 

9: BGL(S’A)+ 7 BGL(p’A)+. 
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Proof. By induction on i. The assertion for i = 0 is clear. Assume it is true for i < k 

and consider the following map between fibrations 

BGL(Sk-‘A) + - BE(C(P’A)) + - BE( 

I 

2 

i 
B Y 

BGL(/L~-‘A) + - BE(G(/P-‘A))+ - B&A)? 

By induction x is a homotopy equivalence. So is j? because it is a map between contractible 

spaces. The comparison theorem implies y is a homotopy equivalence. Hence 0 is an iso- 

morphism on xi for i > 2; it is also an isomorphism on rr, by (5.2). Hence it is a homotopy 

equivalence. 

It is interesting to calculate Ki(A[t, t-i]) for -co < i < co. This has been done at least 

theoretically in [2] for - cc < i < 1 where it is shown that 

Ki(A[t, t-‘1) = K,(A) Q3 K,_,(A) @ Nil,‘_i(A) @Nil,,(A) 

where Nil,+_,(A) = coker (K,(A) + K,(A[t*‘])). One hopes a similar decomposition holds 

for all i. For 2 < i < co it is known that (cf. [S], or [20] and [lo] for i = 2) 

Ki(A[t, t-l]) = K,(A) 0 K,_,(A) 0 (?). 

Is (?) = Nil,,(A) @Nil&,(A)? When i < 0 and A is regular Nili’ = 0 [2, Chap XII]. 

IS this true for 1 < i? It has been shown in [9] that Nil,’ (finite field) = 0 for - cc < i < co. 

The group K,(A) clearly sits in K,(A[t, t-‘1 as a direct summand because A is a 

retract of A[t, t-l]. The map K,(A[t, t-l]) -+ Ki_I(A) comes from the map of spectra 

X(A[t, t-l]) -+ X(SA) induced by the ring homomorphism 4: A[t, t-‘1 + SA where 

U, a_, a-2 

~(CUit’)= Ul UO U-1 ... . 

i i 

U2 al Uo 

..I 

Now let p,(A): S’A --t S’A[t] denote the standard inclusion. Define a candidate for the 

“ nil ” spectrum N+A as 

and 
N+_ iA = n’[Ko(Rpo(A)) X GBL(Rpo(A))+] 

Ni+A = Ko(Rpi(A)) x BGL(Rp,(A))+ 

whenever i 2 0. N-A is similarly defined using the inclusions S’A -+ S’A[t-‘1 and is canoni- 

cally isomorphic to NfA. The results below are stated for N+A only; they are obviously 

true of N-A as well. 

PROPOSITION 6.1. N’A = {N’AjiE, is u spectrum. 

Proof. Note that SA[t] = S(A[t]) and hence 

Pi(A) = Pi-i(SA) = SPi-i(A) 
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For i > 1 it is clear that N?,A E RNIi_rrl. For i > 0 

V+A = K,(Rp,(A)) x BGL(Rp’(A))+ 

= RBGL(S(Rp,(A)))+ 

= RBGL(R(Sp&f)))+ 

= RBGL(Rpi(SA)) + = RNi+ (54) 

= RBGL(Rpi+,(A))+ 

= RNiclA. 

This shows N’il is a spectrum. 

COROLLARY 6.2. Nil:,(A) = rti(NtA) and Nili’ = Nil:,(A) 

D. Quillen has recently shown Nil+(A) = 0 for A left regular and 1 < i. 

$7. FREDHOLM PERMUTATIONS 

Let C, be the infinite symmetric group. It is a theorem of Barratt-Kahn-Priddy [4] 

and Quillen (see also [17]) that Z x BC: r R”S” where the ii +” is taken with respect 

to the infinite alternating group ri, c C, . In this somewhat speculative section we suggest 

a way to construct n=-’ S” = lim fY’-‘S” using the classifying space of the group of 
“-+li 

Fredholm permutations. Presumably the program could also be extended to RPmP.S” = lim 
n-n 

w-pS” when > 1. P 

Let S be any countable discrete set. By a permutation of S we mean a bijectionj‘: S + S 

such thatf(s) = s for all but finitely many elements s E S. By an infirzitepervzutation we mean 

any bijectionf: S + S. Now letfand g be any two maps from S to itself. We say thatfand 

g detetermine the same gemr (at infinity), denoted by f N g, iff 1’ and g agree except on a 

finite subset of S. A mapf: S -+ S is called Fredholnz iff there is a map g: S --f S such that 

f 0 g - id and g 0 f - id. Note that Fredholm maps are proper. Composition of germs of 

Fredholm maps is defined by taking the germ of the composition of representives. 

Now let E = {el} where 1 < i, k < co. Identify C, vvith the group of all permutations 

of E. Let P, be the group-of infinite permutations c( of E such that u(e!) = er whenever 

i > II. Let P, = u,P,. Let F,, be the group of germs Cr of Fredholm maps of E to itself with 

representatives r: E -+ E satisfying a(ef) = ef whenever i > n. Let F, = u,,F, There is an 

exact sequence 

1 - Xz - P, - F, . (7.1) d P 

There is also an exact sequence 

p, -F,-Z-1 
I”d (7.2) P 

where the index homomorphism Ind: F, -+ Z is defined as follows: let If] E Fm be 
represented byf: E -+ E. Write E = U u V’ such that U is finite, f: V-+ E is injective, and 
Un V=O; then 
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Indf= card U - card (E --f(V)). 

PROPOSITION 7.3. BP: is contractible and there is a hornotopy theoreticfibratiorl 

Z x BC;+BP;-tBF;. 

Thus 

Z x BE:, z QBF;. 

From (7.3) one might conjecture that BFL E W-‘S”. 

Added in proof. This conjecture has recently been verified by S. Priddy. 

Remark. P, = [P, , P,] because BP: is contractible. Hence exactness of (7.2) 

shows that p(P,) = [F, , Fm 1. 

Proof‘of(7.3). This is an easy corollary of (3.1) once we show that (7.1) is a sequence 

of direct sum groups and that P, is flabby. Consider the following description of C,, P,, 

and F, . Let S = (ef”) where 1 < i,p, q < CO. Then C, is just the permutations of S. P, 

consists of those infinite permutations z of S such that there is an n for which u(ef’) = efq 

whenever i > n. Similarly for Fm . Now proceed as in 5 $2: Let PO E L,(S) be given by any bi- 

jection of S onto S, = {ep’> where 1 < i, p < co such that for each fixed value i, /IO takes 

{efq}(l < p, q < CO) onto {ef’>(l < p < co). Let z0 be defined by (2.6). Let PI : S -+ S, = 

{ep”} where 1 < (I < co be given by /?,(efY) = e, p*q+l Define u1 as in (2.6). Then for A and B . 

in x=, P, , or F, define 

A@B=p,Aa,+p,Br,. 

For A E P, define T(A) E P, by 

r(A)(ef”) = &-‘pO Au,, $-‘(efq). 

It is not hard to see that conditions (t) and (**) of $1 and (***) of $2 are satisfied. Now apply 

(3.1) to the sequence 

to get a fibration 

BC; --) BP; -B[Fm, F,]+. 

Since TT~(BF~) = Fm mod[F, , Fm] = Z, there is a fibration 

Z x BC:,+BP,;+BF; 

as asserted. 

Perhaps methods of this section could be extended to give a new construction of 

Q(S’X) = base point component in lim Q”S”+‘X for any space X. 
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