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DELOOPING CLASSIFYING SPACES IN ALGEBRAIC K-THEORY

- J. B. WAGONER*
(Received 17 September 1971)

FOR ANY associative ring with identity 4 let BGL(A)* denote the “classifying space” for
algebraic K-theory given in [15] where a definition for the higher K-theory functors K,
i > 1, is proposed by Quillen as K,(4) = n,(BGL(4A)*). This K, and K, agree with the K
of Bass [2] and the K, of Milnor [14] and the theory has other very pleasant properties [13].
Now Anderson [1] and Segal {17] have shown how to associate a generalized cohomology
theory K'(X; %) to any category ¥ with a “commutative” and “associative” internal
operation € x 4 — €. If one takes the category # of finitely generated projective modules
over A with morphisms the isomorphisms and internal operation the direct sum, then
K(A) = K™ ¥(pt; ) for i = 0. See [18]. Our purpose here is to show that

Ko(4) x BGL(A)* = Q(BGL(uA)")

where uA is the ring of * bounded operators modulo compact operators”. This givesa more
specific construction of the Q-spectrum for algebraic K-theory. In §4 we show how to define

relative K-groups K;(f) for a ring homomorphism /: R — S so that there is a long exact
sequence

.= K(R) = K(S) » Ki(f) > Ki-1(R) > K ((S) = . ..
This amounts to identifying, at least theoretically, the fiber of the map BGL(R)™ — BGL(S)*.

The first six sections of this paper are concerned with algebraic K-theory; the last, which
relies only on §1, §2, and (3.1), briefly speculates on Fredholm map germs in homotopy
theory. We work with the B* construction of [15] which in our applications to algebraic
K-theory is just the integral completion functor of [3].

Recall the definition of uA from [7]: Let /A denote the ring of locally finite matrices
over A; that is, those infinite matrices (m;;) with entries in A4 such that each row and each
column has at most finitely many non-zero entries (1 < i, j < o). Let mA4 < /A4 be the ideal
of finite matrices; that is, those matrices with at most finitely many non-zero entries. Define
uA = £A/mA. From an algebraic viewpoint the “cone” CA4 and “suspension” SA4 of [11]
could be used in place of £4 and uA in this paper. Recall that CA « £A4 is the subring gener-
ated by the “ permuting’’ matrices; that is, by those matrices of the form P- D where P is an
infinite permutation matrix and D is an infinite diagonal matrix with entries coming from a
finite subset of A. The suspension is defined as S4A = CA/mA.
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In this paper Z will always denote the integers.

Many of the results in this paper have been obtained concurrently and independently
by S. Gersten [8] who works with the cone and suspension.

I wish to thank F. T. Farrell for collaboration on the earlier work [7] which is the
source of much in the present paper.

§1. GENERAL PROPERTIES OF B*

First recall the definition of K,(R) given by Quillen in [15]: All spaces will have the
homotopy type of a C W-complex and will have a base point. All maps and homotopies will
preserve the base point. Now let X be a space and let G = =, X be a perfect subgroup. There
is a space X* and a map i: X — X ¥ such that:

(@) m, X+ =~ n,(X)/normal closure of G;
(b) For any =n,(X*)-module A the map i: X — X* induces an isomorphism H.(X; A) —
H, (X*; A).
One way to construct such a space X is the following: Let ¥ be the covering space of
X corresponding to the subgroup G. Attach 2-cells and 3-cells to Y to get a space Y™ such
that 7, (Y*)=0and Y- Y" induces an isomorphism H,(Y; Z)— H(Y™"; Z). Then take
X* to be the pushout of the diagram

(1.0)

Any map i: X — X ¥ satisfying (a) and (b) also satisfies the following universal property:

(c) Let f: X — Y be a map such that f,(G) = 0 where f is the induced map on =, . Then
there is a map f*: X* — Y, unique up to homotopy, which gives a homotopy com-
mutative diagram

In particular if /7 X — Y'is a map such that f,(G) < H where G and H are perfect sub-
groups of n,(X) and n,(Y) respectively and i: X —» X* and j: Y- Y™ satisfy (a) and
(b) then there is a map f*: X* — Y™, unique up to homotopy, that gives a homotopy
commutative diagram
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X———f—>Y

|

X+—-—-+—’ Y+.

Thus any two realizations of X* are homotopy equivalent in a patural way. Another
useful property of the “+” construction is

(d) if Yand X are asin (1.0) and G < n, X'is normal then Y * is homotopy equivalent to the
universal cover of X*.

The following well-known lemma (cf. Lemma 6.2 of [5]) will be useful.

Lemva 1.1, Let f: X — Y be a map between weakly simple spaces (i.e. spaces whose
Sfundamental groups act trivially on the homology of the universal cover). Suppose f: H (X;
Zy-HJ(Y;Z)and f,:n, X - 7, Y are isomorphisms. Then f is a homotopy equitalence.
Note that any connected H-space is weakly simple because it is simple. For a very nice
generalization of this Whitehead type theorem see [6].

In this paper a ring R will always be assumed to satisfy the condition
(*) for any finite set r;, ..., r, € R there is an idempotent pe R with p-r; =r;"p =r;.
Any ring with identity satisfies (*). If R satisfies (*) so do mR, /R, and pR. In particular, if
R has an identity, then mR satisfies (*) although it is not a ring with identity.

The general linear group GL(n, R) can be defined as in [19] as follows: for any two
n X n-matrices P and Q over Rlet Po Q =P + Q + P- Q. Then GL(n, R) consists of those
n x n-matrices P for which there is a Q with Po Q = 0 » P =0. The group operation is
Po Q. Let E(n, R) be the subgroup generated by the J,,(r), which has r in the (i, j)th spot
and zeroes elsewhere (i #j). For n = 3, E(n, R) is perfect since [6;;,(4), 0,,(10] = (% - ).
Let GL(R) = lim GL(n, R) and E(R) = lim E(n, R). Then as usual (i.e. when R has an
identity) E(R) = [GL(R), GL(R)]. When R is a ring with unit the correspondence P — [ + P
defines an isomorphism between the GL(n, R) as defined above and the usual group of
n X n invertible matrices.

Now consider GL(R) as a discrete topological group and form the classifying space
BGL(R) as in [18]. Form BGL(R)™ using the perfect subgroup E(R) and for i > | define as
in [15}]

Ki(R) = n(BGL(R)").
The (homotopy theoretic) universal cover is of BGL(R)* is BE(R)". Also, BGL(R)" is an
H-space and is therefore simple. See (1.2) below.

In this paper the “+” construction will be applied more generally to the classifying
space of a discrete topological group G which has an internal ““direct sum™; that is, a
homomorphism @: G x G — G. Such a group will be called a direct sum group. GL(R) is a
direct sum group as follows: Partition the positive integers & into two disjoint infinite sub-
sets N =No U N, and choose bijections «: N— N, and f: N—>N,. If A =(a;;)) and
B = (b;;) are in GL(R) let

A® B = (au,3) - Gy p0i)-
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Now let & be any direct sum group such that [G, G] is perfect and satisfies

(f) for gy,...,9,€[C, G] and ge G there is an h<[G, G] with gg,9 * = hh,h™" for
Ig<i<gn
Let e be the identity element of G. Suppose further that

(**) for any finite set g,. ..., g, € G there are elements ¢ and d in G with ¢(g; ® e)c™ ' =
de®g)d ™ =g;.
Form BG™ with respect to the subgroup [G, G], which we will do throughout the rest of the
paper.
The group GL(R) satisfies (T) and (**). For example, 10 see that (¥) holds let g, ...,

g, € [GL(R), GL(R)] and let g € GL(R). Choose an integer k such that g, g,,....¢g,€ GL(k,
R). Then to get (1) we can choose

h— (g 2_1) e EQ2k, R).

Let G be a direct sum group satisfying (1) and (**) above and form BG™ with respect
to the subgroup [G, G] which we have assumed to be perfect. Throughout the rest of the
paper BG* will be constructed in this way.

ProposiTION 1.2. BG™ is an H-space.
For example, BGL(R)* is an H-space.

LemMma 1.3, Let /2 G — G be an automorphism of the discrete group G such that for any
set gy, ..., g, €G there is an element he G such that f(g;) = hg;h™" for | <i< k. Then
S Ho(BG) —» H(BG) is the identity.

Proof. Let xe H(BG) be represented by the chain Za,(gi....,¢}). Then f(x) is
represented by

Zl n(f (g0, fg)=Lnlh-gy b7 g kT

where the # is chosen with respect to the finite set g’. Since conjugation induces the identity
on H,(BG) we have f(x) = x.

Proof of 1.2. Let E =[G, G). First note that BG™ is a weakly simple space: By (1.3),
G mod[G, G] acts trivially on the homology of BE, a regular covering space of BG. The
isomorphism H(BE) — H,(BE™) is compatible with the action of the covering translations
and hence G mod[G, G] =n,BG* acts trivially on BE*, the universal cover of BG™.
Similarly B(G x G)* isa weakly simple space. Nowletp*: B(G x G)* — BG*™ x BG™ denote
the map induced from the homeomorphism p: B(G x G)— BG x BG by the universal
property (c). Since p induces an isomorphism on homology so does p* and this makes p~*
a homotopy equivalence in view of (1.1). Let 5 be a homotopy inverse to p* and consider
the map m induced by ¢ followed by @

m: BG+ x BG* —6—> B(G X G)+ —eP BG™.

For m to be an H-space multiplication on BG™ it must be homotopic to the identity (keeping
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the basepoint p € BG™ fixed) when restricted to the right and left factors of BGT x BG™.
This may not be the case; however, if we set r(x) = m(x, p) and £(x) = m(p, x) for x € BG*,
then the argument below shows that r and £ are at least homotopy equivalences. Choose
homotopy inverses s and & for r and £ respectively. Then # = (s x r) is an H-space multipli-
cation on BG*. To see why, say, r: BG* —» BG" is a homotopy equivalence note that it is
the map induced by the group homomorphism ¢(g) = g @ e. Property (**) and Lemma 1.3
show that ¢(x) = x for any x € H,(BG™). Hence r is a homotopy equivalence. Similarly, ¢
is a homotopy equivalence.

Any homomorphism ¢: G, — G, of direct sum groups which preserves the direct sum
operations induces an H-map ¢™: BG,”™ — BG,". For any ring homomorphism f/: R —> S
let Bf *: BGL(R)* — BGL(S)* denote the induced map.

Lemma 1.4, There is a natural homotopy equivalence

BGL(R)* ——— BGL(mR)".

Proof. There is a natural isomorphism GL(R) = GL(mR) because mR = m(mR).
Thus there is actually a homeomorphism BGL(R)" ——— BGL(mR)".

§2. FLABBY GROUPS ARE ACYCLIC

One of the main applications of this section is to show in (2.5) that H ,(BGL(/R)*) =0
whenever n > 0 and hence that BGL(/R)* is contractible.

Let G be a discrete topological direct sum group satisfying (**). Following [11] we shall
call G flabby provided there is a homomorphism t: G — G such that for any finite set
g1, - > 9, € G there is a ¢ € G such that
***) ¢ (9:@1(9)) ¢ =1(g)).

Examples below show that 7 can be viewed as an infinite sum.

ProposiTION 2.1.  If G is flabby, then H (BG; Z) =0 for n> 0.

COROLLARY 2.2. If G is flabby, BG™ is contractible.

To prove (2.1) it suffices to show that the homology vanishes with coefficients in a field.

Note the ®: G x G— G induces a ring structure on H,(BG) where the multiplication,
denoted by @, is given by

H(BG) ® H,(BG) —— Hy(B(G x G)) ——— H,(BG).

The generator 1 € Hyo(BG) determined by the map of the standard O-simplex to the base
point is a unit for the multiplication. This is because for any z € H,(BG) the correspondences
z—z® land z » 1 @ z are induced by the group homomorphismsg —+g@eandg—-e @ g.
These latter induce the identity on homology by (1.3). Now let A,: H,(BG) - H.(BG) ®
H.(BG) be the algebraic diagonal map induced by the diagonal A: G— G x G and let
T4: Ho(BG) - H (BG) be the homomorphism induced by 7: G — G. Let z € H,(BG). Then

Tx(2) = @ o (id X 74) o Ay(2).
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For let = be represented by the chain ) kg%, ..., ¢.). The left hand side of the equation
isrepresented by Y ki (t(g}), ..., 1(¢))) and the right hand side is represented by ) k,(g} @
(gL, -+ ., ga' ® 1(gh). By (***) these chains are conjugate and therefore homologous.

Now to show that H,(BG) =0 when n > 0 proceed by induction and suppose that
H,(BG)=0for 0 <i<n. Let ze H,(BG). Then A(z) =z® 1+ 1®z+ ) u, ®r; where
0 < deg u; < nand 0 < deg v; < n. By the inductive assumption we know that u; =v; = 0.
Hence

Tx(2) = @ o (id X 74) ° Ay(2)
=z 1+ 1@ 14(2)
=z + T4(2).
This shows that z =0 and completes the proof of (2.1).

A similar argument was used by J. Mather in [13] to show that the group of homeo-
morphisms of R" with compact support (considered as a discrete group) has vanishing
homology in positive dimensions.

Examples of direct sum groups and flabby groups
(2.3) For any ring R satisfying (*), GL(R) is a direct sum group as in §l.
(2.4) Recall from [7] that an associative ring with identity R is a sum-ring provided there
are elements o, «;, Bo, B; € R such that
dofo =018 =1
Boto + Brag = 1.
Define the ring homomorphism @: R x R — R by

re@s = Byrag + Bysty
forr,seR.

Strictly speaking a sum-ring is a ring with a particular choice of ; and ;. Let R and R be
sum rings with respect to {x;, §;} and {«;/, B,'} respectively. A morphism f: R—> R’ is an
identity preserving ring homomorphism f'such that f(«;) = «;" and f(8,) = B,". Suppose R is
a sum-ring with respect to «; and 8; and f: R — R’ is an identity preserving ring homomor-
phism. Then R’ is a sum-ring with respect to ;" = f(«;) and B, = f(§;) and f becomes a
morphism.

If R is a sum-ring, then GL(R) is a direct sum group where
A®B=(a;®by)

when 4 = (a;;) and B = (b;;). We must see why the condition (**) is satisfied and in this case
it sufficies to show that for 4 and B € GL(n, R) there is an invertible matrix Q € GL(3n, R)
such that
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A®B 0 0 400
ot o 1 0}-0={(0 B 0)eGL(3nR).
0 0 1 0 0 1

For x = a; or §; let D,(x) denote the n x n diagonal matrix with x along the diagonal. The

right Q is then
(Dn(ﬁo) Dn(ﬁl) 0 >
g={ O 0 Dylxo)

0 0 D, (xy)

with

Di(ao) O 0
0t = (Dnoxo 0 0 )
0 Dn(ﬁo) Dn(Bl)

Any sum-ring R will be called an infinite sum ring provided there is an identity preserv-
ing ring homomorphism c0:R — R such that r@r® =r* for any re R. A morphism
f: R — R’ will be required to satisfy the condition f(r*) = f(r)*. If R is an infinite sum ring,
then GL(R) is a flabby group where 7: GL(R) — GL(R) is given by 1(4) = (af}) for 4 = (a;;).

COROLLARY 2.5. If A is an infinite sum ring, BGL(A)™ is contractible.

The ring /R is an infinite sum ring. To see this it will be convenient to identify /R with
the ring /z(E) of locally finite R-linear transformations of the free right R-module E with
countable basis {¢§} where 1 < j, k < . Recall that 4: E — E is locally finite provided that
each e appears with a non-zero coefficient in h(e’}) for at most finitely many e'j’s. Now
partition the basis {¢*} into two disjoint infinite subsets {¢f} = 4, U A . Let §;: {}} - 4,
i=0 or 1, be any two bijections. Let B, € £z(E) denote the corresponding locally finite
matrix. Define «; € £z(E) for i =0 or 1 by
Br(e), if ehe 4,

0, otherwise.

C‘i(e’;) = {

This gives a sum structure on £z(E) and hence on /R. There are many sum structures on
¢x(E) but the following is easy to use: choose 3, to be any bijection of {¢¥}, 1 <j < co, onto
{e*} and define B, by B,(¢%) = €}.,. Let oy and a; be as above. To make £(£) into an in-
finite sum-ring recall that E = @ E; where E; is the free submodule of E spanned by
{€}, 1 <k < 0. Let r e £x(E) and €% € E. Define

"m(e’;) = ﬁ{_lﬁomoa{—l(el;)-

Then r® is just the infinite direct sum of copies of f,ra, laid out on the E;’s. We have
ré®r® = r*® because

ro(ed) = BT Borag o (eh)
Bo rag(ed) = re(et) for j = 1

= {and Bir®uy(ef) = fir=(e;-1) = Bi(B1™ Bo oo ™! (€5 1)) @.7)

= Bi Boragaf(es) = r=(et) for j> 1.
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The ring pR is a sum-ring because it is the homomorphic image of /R; however, uR
is not in general an infinite sum ring.

The two categories of sum-rings and of infinite sum rings are closed under the opera-

tions:

(i) fiber product of two morphisms;

(it) forming the ring R[M] where R is a ring and M is an associative monoid with identity;
and

(iit) taking “¢”" or “u” of a ring.

For example (ii) implies that K;(A) =0 for any infinite sum ring A because
Ko(A) < K, (Aft, t71]) = 0 (cf. §6).

§3. DELOOPING BGL(R)*

Start with an exact sequence
1o Ho>G—-»K-1

in the category of direct sum groups satisfying (1) and (**) of §1.

Lemma 3.1, Assume (i) that [H, H}, [G, G}, and K are perfect and (ii) given g€ G and
hy,...,h,eH thereisan he H such that g - h; g~  =h - h;- h™* for 1 <j < n. Then

BH* - BG* — BK*

is a (homotopy theoretic) fibration, where the -+ is taken with respect to the commutator
subgroup in each case.

Proof. Standard classifying space theory gives a homotopy theoretic fibration
BH — BG — BK and (ii) above implies that n,(BK) = K operates trivially on the H, (BH)
by the following argument. Choose k € K and lift it to g € G. Then & acts on H,(BH) by the
automorphism induced by conjugation by g, which is the identity by (1.3). Consider the
diagram

BH —  BG —— BK

F —— BG+ ‘—;T—) BK+

where the bottom sequence is n* made into a fibration. BG* and BK™ are H-spaces by (1.2)
and BK™ is simply connected since K is perfect. Hence Fis a connected H-space. Now the
“.4" construction says that 8 and y are isomorphisms on homology. The Comparison
Theorem for spectral sequences [12, p. 355] implies that « is an isomorphism on homology.
Hence the induced map BH™' — F is an isomorphism on homology between simple spaces,
which makes it a homotopy equivalence by (1.1).

Let R be a ring with identity.
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PROPOSITION 3.2.  There is a natural homotopy equivalerce
Ky(R) x BGL(R)* = QBGL(uR)".

Naturality means that for a ring homomorphism /: R — S there is a homotopy commutative
diagram

Ko(R) x BGL(R)* = QBGL(uR)*
faxBf* QBuf -

Ko(S) x BGL(S)* = QBGL{(uS)™.
Proof of 3.2. This is essentially an application of (3.1) to the exact sequence
1 - GL(mR) —» E(/R) —» E(uR) — 1
coming from the sequence 0 —mR — /R — uR — 0. However, to get naturality it is neces-

sary to be more precise than (3.1). Here is the idea of the proof. The exact sequence
0 —»mR —> /R — uR — 0 of rings gives an exact sequence

| - GL(mR) - GL(/R) = GL(uR).
But E(/R) = GL(£R) by (2.5) so there is an exact sequence
1 - GL(mR)— E({R) —» E(uR) — 1. (3.3)
Now applying (3.1) we get a fibration
BGL(mR)* — BE(/R)* — BE(uR)*
and hence a homotopy equivalence
BGL(mR)™ = QBE(uR)* 3.4)
because BE(/R)" is contractible. Now BE(uR)* is the universal cover of BGL(uR)" so
BGL(mR)* =~ (QBGL(uR)*),,

where the subscript “0” denotes the component of loops contractible to a point. Finally,
we know that K, (¢R) is naturally isomorphic to Ky(R) (cf. proof of (5.1) below, [7], or [11])
so that

K,(R) x BGL(R)* = QBGL(uR)". (3.5
Now two things remain to be verified:
(a) The condition (ii) of (3.1) is satisfied.
(b) The equivalence can be constructed so it is natural.

First we show why (ii) holds in the special case when 7 = 1l and g = €,,(4) = I + J,,(%).
The extension to the general case is easy. Considered as an element of E(mR), A, is of the
form 7 + (b;;) where b;; e mR and at most finitely many of the b;; are non-zero. Write
A=oa+ f where 8- b;;=b;;- f=0and xemR. Then

€pq(A) - hy me () = e, (2) * hy ey, (—2).
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To construct (3.4) naturally consider a fixed realization of BGL(mZ)*, BE(¢/Z)*, and
BE(uZ)™ so that there is a strictly commutative diagram

BGL(mZ) —— BE(/Z) —— BE(u2)

I T

where the vertical maps are inclusions. Let & denote the trivial group. The image of BGL(mZ)
in BE(uZ) is the contractible subcomplex Be. Choose a homotopy, with support in Be, of
7 o i to the constant map and, using (b) of §1, extend this to a homotopy d, of z¥ » i ¥ to
the constant map. Now let R be any ring with identity. The ring homomorphism Z — R
induces group homomorphisms GL(mZ)— GL(mR), E(¢/Z) - E(/R), and E(pZ) - E(uR)
together with maps of classifying spaces «: BGL(mZ) —» BGL(mR), f: BE({Z) — BE(/R),
and y: BE(uZ) - BE(uR). Note that the normal closure of the image of E(mZ) in GL(mR)
is E(mR). Similarly, the normal closures of the images of E(/Z) and E(uZ) in E(/R) and
E(uR) are respectively just E(/R) and E(uR). Thus we have the following push-out diagram
formulae:

BGL(mR)* = BGL(mR) U, BGL(mZ)*
BE(/R)* = BE(R) u, BE(¢Z)* (3.6)
BE(uR)* = BE(uR) v, BE(uZ)".

Let d(R) denote the composite map

BGL(mR)* —— BE(/R)* —— BE(uR)".

Using the homotopy constructed above we get a homotopy d(R), of d(R) to the constant
map which is natural; that is, for any ring homomorphism preserving the identity /: R —» S
we have

d(S)° Bf " = Buf * o d(R),. 3.7

Recall that any map n: X — Y is equivalent to a fibration as follows: let E, = set of pairs
(x, ) where x € X and 7 is a path in Y with n(x) = A(0). Then E, — Y given by (x, £) — /(1)
is a fibration with fiber F,. For any map «:L — X provided with a homotopy of o a:
L — Y to the constant map to the base point there is a map L — F, giving a commutative
diagram

L X » ¥
Fn-_’En:

Applying this to n*: BE(/R)* — BE(uR)" produces a commutative diagram



DELOOPING CLASSIFYING SPACES IN ALGEBRAIC K-THEORY 359

BGL{mR)™ BE(/R)*
F,. E.. BE(uR)* (3.8)

| |

QBE(uR)*————— PBE(uR)*

with the columns being homotopy equivalences by (3.1). For any ring homomorphism
R — S preserving the identity there is a strictly commutative diagram

BGL(mR)* ——— BE(/R)* —— BE(uR)*

BGL(mS)* — BE(¢S)* ——— BE(uS)*.

The formula (3.7) implies there is a map between the diagrams of type (3.8) for R and for
S producing a homotopy commutative three dimension diagram. The left side of the dia-
gram says that £, x Bf ™ is homotopic to QBpuf ™. This completes the proof of (3.2).

Essentially the above argument shows there is a natural equivalence of sequences

BGLmR)* —— BGL({R)* —— BGL(uR)"

|

[QBGL(uR)* ]y ~——> PBGL(uR)* —— BGL(uR)*.

Now (3.2) allows us to define for any associative ring with identity R an Q-spectrum
X(R) = {X(R)} such that for 0 < i< 0

X_{R) = Q[Ko(R) x BGL(R)*]
and
X(R) = Ko(u'R) x BGL(W'R)*.

Here ;°R =R and g'R = u(¢'"*R) for i > 0. For all —o0 < i < o0 we set
Ki(R) = my(X(R)).
CoRrOLLARY 3.9. K;(uR) = K;_,(R) for — c0 < i < co.

§4. RELATIVE K-THEORY GROUPS

Let f: R — S be any identity preserving homomorphism. Define the ring yfas in [7] by
the pull-back diagram

yf — uR

£S ——— 8.
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Define u'f: 'R — ¢S inductively as u°f = fand u'f = u(x’~'f) for i > 0.

Let X(f) = {X.(f)} be defined as
X_i{f) = QKo(3f) x BGL(3)"]

and
X(f) = Ko(y(if)) x BGLG(p'f )"

whenever i = 0.

In this section we show that X(f) is a spectrum and, setting
K(f) =nX()

for i € Z, that there is a long exact sequence

o KR) = K(S) = K(f) > KL ((R)=> K;_((S)— ...

Consider the commutative diagram of rings

0 . A s X D3 0
0—B ' C s D —s 0
B b
0 B . Y v E— 0

where
(a) the horizontal rows are exact;

(b) BGL(X)* and BGL(Y)* are contractible;
(c) the square (1) is a pull back;

(d) given B, ..
pedand B (1) =,(4) - B;=0.
For example, the following is a type (4.2) diagram:

0 » MR ——— /R ——— uR ' 0
0 mS eyf——-;——»;IR——»O

0 » MS —— £S uS . 0.

.1

4.2)

., B,€ Bc C and x € X there is a decomposition x = y + 4 such that

(4.3)



DELOOPING CLASSIFYING SPACES IN ALGEBRAIC K-THEORY 361

PROPOSITION 4.4.  Applying the functor n(BGL(?)™), for i >0, to the diagram (4.3)
gives an exact sequence

> o} > o bl
o Be Ve de

Proof of 4.4. For simplicity of notation let R* denote BGL(R)™ for any ring R. Now
for each ring in (4.3) we can construct the B* so that there is a commutative diagram

mR* —— ¢R* — uR*

]

mSt —— yf* — uR” 4.5)

L

mS* ——— /ST —— uS”.

This is done by considering the diagram (4.3) obtained from the identity map id: Z — Z.
We get

mZ » (7 uz
mZ » (2 » uZ
mZ » L2 » uz.

Applying BT gives a commutative diagram and to get (4.5) we set
BGL{mR)* = BGL(mR) u BGL(mZ)",
BGL(mS)* = BGL(mS) U BGL(mZ)™,
etc., as in (3.6).

Now let n: U — V denote the map uR* — pS* made into a fibration. There is a com-
mutative diagram

QU » PU » U
Qv > W U




362 1. B. WAGONER

where W is the pullback of p and =. Each horizontal row is a fibration. The argument which
gives the homotopy exact sequence of a fibration shows that for /> 0 there is an exact
sequence

1(QU) = 7{QV) = m(W) = 7,(U) = 7(V). @.7)

The method of §3 yields a map from (4.5) to (4.6):

mR~” /RT +

NN TN

QU PU

mS*— - /ST > 1SN s

AN U

Qv PV — 17

Each square is homotopy commutative; &, and §5 are homotopy equivalences by construc-
tion; §; and §, are isomorphisms on 7; for i = 1 by §3. We shall show that

8y:y9f " — W, is a homotopy equivalence (4.8)

by showing that §; induces an isomorphism on =; for i > 1. This implies that the sequence
in (4.4) is exact because it is isomorphic to the exact sequence (4.7) for i > 1. Note that (4.8)
says BGL(Af)" has the homotopy type of the base point component in the fiber of the map
BGL(uR)* — BGL(uS)™.

Step 1. Isomorphism on 7.
For any diagram (4.2) type diagram there is an exact sequence

Ki(4) = K\(B) - K,(C) = K((D) - K,(E). (4.9)
To see this apply GL to each ring in (4.2) to get the diagram
1 ——— GL(4) —— E(X) —— GL(D)

s .

| —— GL(B) —— E(Y) —— GL(E)
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where the horizontal rows are exact except at the right hand end. Since K,(X) = K,(Y) =0
we have replaced GL{X) and GL(Y) by E(X) and E(Y).

Exactness at K|(D). This follows easily because GL(C) is the pull back of jand ¢ and
E(Y)— E(E) is onto.

Exactness at K,(C). Let [M]e K,(C) be represented by M € GL(C) with [M] =0 in
K,(D). There is an N € E(X) such that y(i(N)) = y(M). Hence [M]=[M - i(N)"'] pulls
back to something in K,(B).

Exactness at K(B). Let [M]= K,(B) be represented by M e GL(B). Suppose (M) =
[T €isl¥x> do). Lift each dj to some x; € X. Then [] e;,;,(x) pulls back to some N € GL(4)
because H e, i(d) = 1. We shall show that it is possible to choose the x, so that f(M) -
Bx(N)) "' =TT e;,;.(by, O) for b, € B. Since § is a monomorphism this implies that M = a(N)
mod E(B).

Here is how to pick the x,: note that for any choice of x,

BOD - B@)™) = T e d) « T eun=200 —)

where i(x}) = (z,, d,).
Now make an arbitrary choice of x, which lifts 4,. Then
8s (Vas @) €5 gl =25 —d) = f'i,‘_,-,,(}‘n =z, 0)
and y, — z, € B. Use (d) to lift d,_, to x,_, so that (y, — z,) - z.—; = 0. Then
€ ijniVno1sday) € (V=20 e g, (—2Zoy, —dpy)
= 3:.,-,;',,_1(}'"-1 = Zzipy D) ei'.,j,\(yn - z,,0).
From this last step it is clear how to inductively choose the x, as desired.

The sequences (4.7) and (4.9) plus the five-lemma imply that J5 induces an isomorphism
on .

Step 2. Isomorphism on =, for i > 2.
Consider the diagram

| ——» GL(mS) — E(£S) % E(uR) ——s E(uR) —— 1

| s

| ——s GL(nS) ——s E(£S) E(uS) — 1

where E(£S) x E(uR) is the pull back of j and 8. Note that E(3f) = E(¢S) X E(uR) is the
commutator subgroup.
Now let n": U’ — Y" be the fibration obtained from n: U — ¥ by taking the universal

cover of U and of V. Applying B* “carefully” (e.g. as in §3) to (4.10) gives a homotopy
commutative diagram
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BGL(mS)” B[E(/S) % E(uR)]"—————BE(WR™
- N N N
Qv > 0 . U
l |
BGL(mS)*|——————— BE(¢S)* > BE(uS)*
+ | !
Qy’ — py —

where A, and A; are homotopy equivalences and Q is a covering space of W.
By (3.1)

BGL(mS)* — B[E(¢S) X E(uR)]" —» BE(uR)"*
is a homotopy fibration; hence A, is a homotopy equivalence.
This gives a homotopy commutative diagram

B[E(#S) X EuR)]" — ¢

BE(y)* l l

T~

where all the arrows (except possibly J3) are isomorphisms on 7; for i > 2. This completes
the proof of (4.4).

BGL(f)* —W

a3

ProrosITION 4.11.  X(f) is a spectrum.

Proof. Consider the two diagrams of exact sequences

0 ——— p(mR) ——— u(/R) —— w’R —— 0

I T

0 —b u(lms) —_— #Ff) > /fl[ » 0
0 ——— u(mS) u(£S) — 2§ ——— 0

and
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0 —— m(uR) —— £(uR) » W'R 0
0 m(uS) y(f) » iR 0
0 m(uS) £(uS) ——— 12§ 0.

Let M — N be the map BGL(¢*R)* — BGL(1*S)* made into a fibration. Define H by the
pull back diagram

H — M
PN — N,

Then the argument proving (4.8) can be mimicked to show there are homotopy equivalences
BGL(u(y )" » Hy «—— BGL(Nu ™. (4.12)
Now for i < 0 it is clear that X,(f) = QX (f). For 0 < i we have
Xi(f) = Ko(y(wf)) x BGLG(uf)”
= Q[BGL(wy(uf )]
= Q[BGLy(u' ' N7}
= Q[Ko(y(u ")) x BGLG( ™ fN™)
= QX ()
Now putting (3.2), (4.4), and (4.11) together gives the long exact sequence {4.1).

=

Whenever f: R — S is a surjection it has been known for some time that there is an
exact sequence

K5(R) = K5(S) = Ki(f) = K (R) = K(S)

where K,(f) is the relative group defined by Bass. See [14]. In [7] it was shown that for any
surjection f: R — § there is a natural isomorphism of sequences

T(R) — T(S) — K[(W’) T(R) T(S}
K, (R) K(S) Ki(f) = Ki(R) —— K\(S).

Theidea for defining fis this: Let z € K,(yf) be represented by the word [ | x;,; (a,, b,) € St(zf)
where a, e /S and b, € uR. Choose a lifting 5, € /R of b, with f(b,) = a,. Then M. =
1] e..;.(6,) € GL(¢R) actually lies in the sub-group GL(mR) and M, goes to the identity in
GL(mS). This means that M. determines an element of K, (f). The correspondence z — M.
defines 6.
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§5. EQUIVALENCE OF /4 AND pd WITH C4 AND SA

The rings /4, ud, and yf arose from the smooth and piecewise linear topology of non-
compact manifolds [7]. For algebraic purposes it is sometimes more convenient to use the
rings CA and SA4 which came from more algebraic beginnings [11]. In this section it is shown
that the two approaches give rise to the same K-theory. The isomorphism in (3.1) is a special
case of the uniqueness theorem in [11] where it is also shown that K_,(4) = K;(S'"'4) is
naturally isomorphic to the negative K-theory groups L'Ky(4) of [2].

For any ring homomorphism f: 4 — B preserving the identity, define Rf by the pull
back diagram

Rf —— SA

|

CB —— SB.

For i >0 let $'4 = S(S"'4) and S = S(S'"Yf).
PROPOSITION 5.1. For any i =0 the natural maps S'A— u'A and R(S'f)— y(u'f)
induce an isomorphism of K-theory sequences (cf. 4.9)

K(S'4) —— K(S'B) —— Ki(R(ST)) —— K(S"'4) —— Ki(S'"'B)

L]

K (@A) —— K ('B) —— K (1)) —— K (') —— K (u'*'B).
Proof. 1t suffices to show that forall i >0
K\(S'4) - K (1'4) (5.2)

is an isomorphism. The five-lemma then shows the relative groups are isomorphic. Now for
i =0 (5.2) is certainly an isomorphism. Assume it is an isomorphism for / < k. Then using
the excision theorem of [2] we get a diagram

K (S*71(S4))
K (i THCA) —— K (1 71(SA) —— Ko(1* 71 (md)) ——— Ko(u*~1(CA))
8 id
K (1 A)) — K (17 (ud)) —— Ko(p* T (mA)) ——— Ko(1* 7' (2 4))

where « is an isomorphism by induction. The first and last groups in each of the horizontal
rows vanish. Hence f§ o « is an isomorphism as required.

PrOPOSITION 3.3. The inclusion S'A ~» u'Ad induces a natural homotopy equivalence

A: BGL(S'd)* ——— BGL(1A)*.



DELOOPING CLASSIFYING SPACES IN ALGEBRAIC K-THEORY 367

Proof. By induction on i. The assertion for { = 0 is clear. Assume it is true for i < k
and consider the following map between fibrations

BGL(S*"'4)* —— BE(C(S*"d))* — BE(S*4)"
a B Y

BGL(4*~'4)* —» BE(/(4*~14))* ——— BE(i*4)".

By induction « is a homotopy equivalence. So is § because it is & map between contractible
spaces. The comparison theorem implies y is a homotopy equivalence. Hence 8 is an iso-
morphism on 7, for 7 > 2; it is also an isomorphism on =, by (5.2). Hence it is a homotopy
equivalence.

§6. Kiu(Rlt,t~'D
It is interesting to calculate K,(A[t, t7']) for —c0 < ¢ < co0. This has been done at least
theoretically in [2] for —co < i< | where it is shown that
Ki(Alt, t71]) = Ki(4) @ K- (4) @ NilZ (4) @ NilZ (4)
where Nil%,(4) = coker (K;(4) — K(4[t*'])). One hopes a similar decomposition holds
foralli. For 2 < i < oo it is known that (cf. {8], or [20] and [10] for i = 2)
Ki(Alt, t7']) = K(A) @ K;_1(4) D ().
Is (?) = Nil;_(4) ® Nil;~,(4)? When i € 0 and A is regular Nil,;*(4) =0 [2, Chap XII].
Is this true for 1 < i? It has been shown in [9] that Nil,* (finite field) = 0 for —co < i < co.

The group K(A4) clearly sits in K;(A[t, t™'] as a direct summand because A is a
retract of A[t, t7!]. The map K;(A[t,t™']) = K,_,(4) comes from the map of spectra
X(A[t,t7']) — X(SA) induced by the ring homomorphism ¢: A[t, t7!] - SA where

ay a_, a_,
¢ athy=la, a, a_;...

a, a 2]

Now let p;,(4): S'4 — S'A4[t] denote the standard inclusion. Define a candidate for the
“nil” spectrum N*4 as

NI4=Q[Ky(Rpo(A)) x GBL(Rpo(A))*]
and
Ni" A = Ko(Rp{(4)) x BGL(Rp(4))*
whenever i 2 0. N~ A is similarly defined using the inclusions S'4 — S'4{¢t ] and is canoni-
cally isomorphic to N*A. The results below are stated for N* 4 only; they are obviously
true of N~ A4 as well.

PROPOSITION 6.1. N*A = {N; A},., is a spectrum.
Proof. Note that SA[t] = S(A[t]) and hence

piA) = pi-(S4) = Sp;_(4).
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Foriz litisclear that N7, 4 =QNZ, 4. Fori=0
N A = Ko(Rp(A)) x BGL(Rp'(4))*
= QBGL(S(Rp(A))”
= QBGL(R(Sp ()"
= QBGL(Rp(SA)* = QN,*(S4)
= QBGL(Rp;+1(4)*
=QON,;, 4.
This shows N* A is a spectrum.
CoROLLARY 6.2. Nil;Z (4) = n;(N*TA) and Nil,*(S4) = Nil;~ (4).
D. Quillen has recently shown Nil;'(4) = 0 for A left regular and | < i.

§7. FREDHOLM PERMUTATIONS

Let £ be the infinite symmetric group. It is a theorem of Barratt—-Kahn-Priddy [4]
and Quillen (see also {17]) that Z x BE} = Q*S® where the “+” is taken with respect
to the infinite alternating group A, < X, . In this somewhat speculative section we suggest

a way to construct Q*7!5§® = lim Q""!S" using the classifying space of the group of
Fredholm permutations. Presumably the program could also be extended to Q* ~7S® = lim

Q"~?S" when p > .

Let S be any countable discrete set. By a permutation of S we mean a bijection f: S —» S
such that f(s) = s for all but finitely many elements s € S. By an infinite permutation we mean
any bijection f: S — S. Now let fand g be any two maps from S to itself. We say that fand
g detetermine the same germ (at infinity), denoted by f~ g, iff f and g agree except on a
finite subset of S. A map f: S — S is called Fredhoim iff there is a map g: S — S such that
fog~idand gof~ id Note that Fredholm maps are proper. Composition of germs of
Fredholm maps is defined by taking the germ of the composition of representives.

Now let E = {¢*} where 1 € i, k < 0. ldentify X, with the group of all permutations
of E. Let P, be the group-of infinite permutations a of E such that «(ef) = €% whenever
i>n LetP, = u,P,. Let F, be the group of germs & of Fredholm maps of E to itself with
representatives «: E — E satisfying a(e¥) = ef whenever i > n. Let F, = U,F,. There is an
exact sequence

1 3, » P, F,. (7.1)

There is also an exact sequence

P, F, z 1 (1.2)
r

Ind

where the index homomorphism Ind: F_ — Z is defined as follows: let [f]e F, be
represented by f: E— E. Write E = U u V such that U is finite, /2 V' — E is injective, and
Un V=0, then
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Ind f=card U — card (E — f(V)).
PROPOSITION 7.3. BPJ is contractible and there is a homotopy theoretic fibration
Z x B£ - BP; —» BF.
Thus
Z x B} ~ QBF}.
From (7.3) one might conjecture that BF} =~ Q®~!5®,
Added in proof. This conjecture has recently been verified by S. Priddy.

Remark. P, =[P.,P,] because BP} is contractible. Hence exactness of (7.2)
shows that p(P,) = [F, fu |-

Proof of (71.3). This is an easy corollary of (3.1) once we show that (7.1) is a sequence
of direct sum groups and that P is flabby. Consider the following description of X, P,
and F,. Let S = {e?} where 1 < i, p,q < oo. Then X is just the permutations of S. P
consists of those infinite permutations « of S such that there is an # for which «(ef?) = e??
whenever { > n. Similarly for £, . Now proceed as in §2: Let ff;, € £,(S) be given by any bi-
jection of S onto S, = {e?'} where 1 </, p < co such that for each fixed value i, 8, takes
{ePU(1 €< p, g < ) onto {e?'}(1 < p < ). Let a, be defined by (2.6). Let §,: S— S, =
{e?7} where | < g < oo be given by 8,(ef?) = e?*!, Define «, as in (2.6). Then for 4 and B
in%_,P.,or F, define

A®B=f,Axy + BBz, .
For A€ P, define t(4) e P, by
(A)(e?) = 17" B Axg i ™! (e]9).
It is not hard to see that conditions (1) and (**) of §1 and (***) of §2 are satisfied. Now apply
(3.1) to the sequence
|2, P, [F,, Fy]l—1
to get a fibration
BS} — BP! - B[F,, F,]".
Since n,(BF)) = F, mod[F,,, F,] = Z, there is a fibration
Z x BL} - BP! — BF;

as asserted.

Perhaps methods of this section could be extended to give a new construction of
Q(S'X) = base point component in lim Q"S"* X for any space X.
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