DELOOPING CLASSIFYING SPACES IN ALGEBRAIC K-THEORY

J. B. WAGONER*

(Received 17 September 1971)

FOR ANY associative ring with identity A let $BGL(A)^+$ denote the "classifying space" for algebraic K-theory given in [15] where a definition for the higher K-theory functors K_i , $i \ge 1$, is proposed by Quillen as $K_i(A) = \pi_i(BGL(A)^+)$. This K_1 and K_2 agree with the K_1 of Bass [2] and the K_2 of Milnor [14] and the theory has other very pleasant properties [15]. Now Anderson [1] and Segal [17] have shown how to associate a generalized cohomology theory $K^i(X; \mathscr{C})$ to any category \mathscr{C} with a "commutative" and "associative" internal operation $\mathscr{C} \times \mathscr{C} \to \mathscr{C}$. If one takes the category \mathscr{P} of finitely generated projective modules over A with morphisms the isomorphisms and internal operation the direct sum, then $K_i(A) = K^{-i}(pt; \mathscr{P})$ for $i \ge 0$. See [18]. Our purpose here is to show that

$$K_0(A) \times BGL(A)^+ \cong \Omega(BGL(\mu A)^+)$$

where μA is the ring of "bounded operators modulo compact operators". This gives a more specific construction of the Ω -spectrum for algebraic K-theory. In §4 we show how to define relative K-groups $K_i(f)$ for a ring homomorphism $f: R \to S$ so that there is a long exact sequence

$$\dots \to K_i(R) \to K_i(S) \to K_i(f) \to K_{i-1}(R) \to K_{i-1}(S) \to \dots$$

This amounts to identifying, at least theoretically, the fiber of the map $BGL(R)^+ \rightarrow BGL(S)^+$.

The first six sections of this paper are concerned with algebraic K-theory; the last, which relies only on §1, §2, and (3.1), briefly speculates on Fredholm map germs in homotopy theory. We work with the B^+ construction of [15] which in our applications to algebraic K-theory is just the integral completion functor of [3].

Recall the definition of μA from [7]: Let ℓA denote the ring of *locally finite* matrices over A; that is, those infinite matrices (m_{ij}) with entries in A such that each row and each column has at most finitely many non-zero entries $(1 \le i, j < \infty)$. Let $mA \subset \ell A$ be the ideal of *finite* matrices; that is, those matrices with at most finitely many non-zero entries. Define $\mu A = \ell A/mA$. From an algebraic viewpoint the "cone" CA and "suspension" SA of [11] could be used in place of ℓA and μA in this paper. Recall that $CA \subset \ell A$ is the subring generated by the "permuting" matrices; that is, by those matrices of the form $P \cdot D$ where P is an infinite permutation matrix and D is an infinite diagonal matrix with entries coming from a finite subset of A. The suspension is defined as SA = CA/mA.

^{*} Research supported in part by NSF grant GP 22723.

In this paper Z will always denote the integers.

Many of the results in this paper have been obtained concurrently and independently by S. Gersten [8] who works with the cone and suspension.

I wish to thank F. T. Farrell for collaboration on the earlier work [7] which is the source of much in the present paper.

§1. GENERAL PROPERTIES OF B^+

First recall the definition of $K_i(R)$ given by Quillen in [15]: All spaces will have the homotopy type of a *CW*-complex and will have a base point. All maps and homotopies will preserve the base point. Now let X be a space and let $G \subset \pi_1 X$ be a perfect subgroup. There is a space X^+ and a map $i: X \to X^+$ such that:

(a) $\pi_1 X^+ \cong \pi_1(X)$ /normal closure of G;

(b) For any $\pi_1(X^+)$ -module A the map $i: X \to X^+$ induces an isomorphism $H_*(X; A) \to H_*(X^+; A)$.

One way to construct such a space X^+ is the following: Let Y be the covering space of X corresponding to the subgroup G. Attach 2-cells and 3-cells to Y to get a space Y^+ such that $\pi_1(Y^+) = 0$ and $Y \to Y^+$ induces an isomorphism $H_*(Y; Z) \to H_*(Y^+; Z)$. Then take X^+ to be the pushout of the diagram

Any map $i: X \to X^+$ satisfying (a) and (b) also satisfies the following universal property:

(c) Let $f: X \to Y$ be a map such that $f_{\#}(G) = 0$ where $f_{\#}$ is the induced map on π_1 . Then there is a map $f^+: X^+ \to Y$, unique up to homotopy, which gives a homotopy commutative diagram

In particular if $f: X \to Y$ is a map such that $f_{\#}(G) \subset H$ where G and H are perfect subgroups of $\pi_1(X)$ and $\pi_1(Y)$ respectively and $i: X \to X^+$ and $j: Y \to Y^+$ satisfy (a) and (b) then there is a map $f^+: X^+ \to Y^+$, unique up to homotopy, that gives a homotopy commutative diagram

Thus any two realizations of X^+ are homotopy equivalent in a natural way. Another useful property of the "+" construction is

(d) if Y and X are as in (1.0) and $G \subset \pi_1 X$ is normal then Y^+ is homotopy equivalent to the universal cover of X^+ .

The following well-known lemma (cf. Lemma 6.2 of [5]) will be useful.

LEMMA 1.1. Let $f: X \to Y$ be a map between weakly simple spaces (i.e. spaces whose fundamental groups act trivially on the homology of the universal cover). Suppose $f_*: H_*(X; Z) \to H_*(Y; Z)$ and $f_*: \pi_1 X \to \pi_1 Y$ are isomorphisms. Then f is a homotopy equivalence. Note that any connected H-space is weakly simple because it is simple. For a very nice generalization of this Whitehead type theorem see [6].

In this paper a ring R will always be assumed to satisfy the condition

(*) for any finite set $r_1, \ldots, r_n \in R$ there is an idempotent $\rho \in R$ with $\rho \cdot r_i = r_i \cdot \rho = r_i$. Any ring with identity satisfies (*). If R satisfies (*) so do mR, ℓR , and μR . In particular, if R has an identity, then mR satisfies (*) although it is not a ring with identity.

The general linear group GL(n, R) can be defined as in [19] as follows: for any two $n \times n$ -matrices P and Q over R let $P \circ Q = P + Q + P \cdot Q$. Then GL(n, R) consists of those $n \times n$ -matrices P for which there is a Q with $P \circ Q = Q \circ P = 0$. The group operation is $P \circ Q$. Let E(n, R) be the subgroup generated by the $\delta_{ij}(r)$, which has r in the (i, j)th spot and zeroes elsewhere $(i \neq j)$. For $n \ge 3$, E(n, R) is perfect since $[\delta_{ij}(\lambda), \delta_{jk}(\mu)] = \delta_{ik}(\lambda \cdot \mu)$. Let $GL(R) = \lim GL(n, R)$ and $E(R) = \lim E(n, R)$. Then as usual (i.e. when R has an identity) E(R) = [GL(R), GL(R)]. When R is a ring with unit the correspondence $P \to I + P$ defines an isomorphism between the GL(n, R) as defined above and the usual group of $n \times n$ invertible matrices.

Now consider GL(R) as a discrete topological group and form the classifying space BGL(R) as in [18]. Form $BGL(R)^+$ using the perfect subgroup E(R) and for $i \ge 1$ define as in [15]

$$K_i(R) = \pi_i(BGL(R)^+).$$

The (homotopy theoretic) universal cover is of $BGL(R)^+$ is $BE(R)^+$. Also, $BGL(R)^+$ is an *H*-space and is therefore simple. See (1.2) below.

In this paper the "+" construction will be applied more generally to the classifying space of a discrete topological group G which has an internal "direct sum"; that is, a homomorphism $\oplus: G \times G \to G$. Such a group will be called a *direct sum* group. GL(R) is a direct sum group as follows: Partition the positive integers N into two disjoint infinite subsets $N = N_0 \cup N_1$ and choose bijections $\alpha: N \to N_0$ and $\beta: N \to N_1$. If $A = (a_{ij})$ and $B = (b_{ij})$ are in GL(R) let

$$A \oplus B = (a_{\alpha(i),(j)}) \cdot (b_{\beta(i),\beta(j)}).$$

Now let G be any direct sum group such that [G, G] is perfect and satisfies

(†) for $g_1, \ldots, g_n \in [G, G]$ and $g \in G$ there is an $h \in [G, G]$ with $gg_i g^{-1} = hh_i h^{-1}$ for $1 \leq i \leq n$.

Let e be the identity element of G. Suppose further that

(**) for any finite set $g_1, \ldots, g_n \in G$ there are elements c and d in G with $c(g_i \oplus e)c^{-1} = d(e \oplus g_i)d^{-1} = g_i$.

Form BG^+ with respect to the subgroup [G, G], which we will do throughout the rest of the paper.

The group GL(R) satisfies (†) and (**). For example, to see that (†) holds let $g_1, \ldots, g_n \in [GL(R), GL(R)]$ and let $g \in GL(R)$. Choose an integer k such that $g, g_1, \ldots, g_n \in GL(k, R)$. Then to get (†) we can choose

$$h = \begin{pmatrix} g & 0 \\ 0 & g^{-1} \end{pmatrix} \in E(2k, R).$$

Let G be a direct sum group satisfying (\dagger) and (**) above and form BG^+ with respect to the subgroup [G, G] which we have assumed to be perfect. Throughout the rest of the paper BG^+ will be constructed in this way.

PROPOSITION 1.2. BG^+ is an H-space. For example, $BGL(R)^+$ is an H-space.

LEMMA 1.3. Let $f: G \to G$ be an automorphism of the discrete group G such that for any set $g_1, \ldots, g_k \in G$ there is an element $h \in G$ such that $f(g_i) = hg_i h^{-1}$ for $1 \leq i \leq k$. Then $f_*: H_*(BG) \to H_*(BG)$ is the identity.

Proof. Let $x \in H_n(BG)$ be represented by the chain $\sum n_i(g_1^i, \ldots, g_n^i)$. Then f(x) is represented by

$$\sum_{i=1}^{m} n_i(f(g_1^i), \dots, f(g_n^i)) = \sum n_i(h \cdot g_1^i \cdot h^{-1}, \dots, h \cdot g_n^i \cdot h^{-1})$$

where the h is chosen with respect to the finite set g_j^i . Since conjugation induces the identity on $H_*(BG)$ we have f(x) = x.

Proof of 1.2. Let E = [G, G]. First note that BG^+ is a weakly simple space: By (1.3), $G \mod[G, G]$ acts trivially on the homology of BE, a regular covering space of BG. The isomorphism $H_*(BE) \rightarrow H_*(BE^+)$ is compatible with the action of the covering translations and hence $G \mod[G, G] = \pi_1 BG^+$ acts trivially on BE^+ , the universal cover of BG^+ . Similarly $B(G \times G)^+$ is a weakly simple space. Now let $\rho^+ : B(G \times G)^+ \rightarrow BG^+ \times BG^+$ denote the map induced from the homeomorphism $\rho: B(G \times G) \rightarrow BG \times BG$ by the universal property (c). Since ρ induces an isomorphism on homology so does ρ^+ and this makes ρ^+ a homotopy equivalence in view of (1.1). Let δ be a homotopy inverse to ρ^+ and consider the map *m* induced by δ followed by \oplus :

$$m: BG^+ \times BG^+ \xrightarrow{\delta} B(G \times G)^+ \xrightarrow{\oplus} BG^+.$$

For m to be an H-space multiplication on BG^+ it must be homotopic to the identity (keeping

the basepoint $p \in BG^+$ fixed) when restricted to the right and left factors of $BG^+ \times BG^+$. This may not be the case; however, if we set r(x) = m(x, p) and $\ell(x) = m(p, x)$ for $x \in BG^+$, then the argument below shows that r and ℓ are at least homotopy equivalences. Choose homotopy inverses s and k for r and ℓ respectively. Then $m \circ (s \times r)$ is an H-space multiplication on BG^+ . To see why, say, $r: BG^+ \to BG^+$ is a homotopy equivalence note that it is the map induced by the group homomorphism $\phi(g) = g \oplus e$. Property (**) and Lemma 1.3 show that $\phi(x) = x$ for any $x \in H_n(BG^+)$. Hence r is a homotopy equivalence. Similarly, ℓ is a homotopy equivalence.

Any homomorphism $\sigma: G_0 \to G_1$ of direct sum groups which preserves the direct sum operations induces an *H*-map $\sigma^+: BG_0^+ \to BG_1^+$. For any ring homomorphism $f: R \to S$ let $Bf^+: BGL(R)^+ \to BGL(S)^+$ denote the induced map.

LEMMA 1.4. There is a natural homotopy equivalence

$$BGL(R)^+ \longrightarrow BGL(mR)^+$$

Proof. There is a natural isomorphism $GL(R) \cong GL(mR)$ because $mR \cong m(mR)$. Thus there is actually a homeomorphism $BGL(R)^+ \xrightarrow{\simeq} BGL(mR)^+$.

§2. FLABBY GROUPS ARE ACYCLIC

One of the main applications of this section is to show in (2.5) that $H_n(BGL(\ell R)^+) = 0$ whenever n > 0 and hence that $BGL(\ell R)^+$ is contractible.

Let G be a discrete topological direct sum group satisfying (**). Following [11] we shall call G flabby provided there is a homomorphism $\tau: G \to G$ such that for any finite set $g_1, \ldots, g_n \in G$ there is a $c \in G$ such that

 $(^{***}) \quad c \cdot (g_i \oplus \tau(g_i)) \cdot c^{-1} = \tau(g_i).$

Examples below show that τ can be viewed as an infinite sum.

PROPOSITION 2.1. If G is flabby, then $H_n(BG; Z) = 0$ for n > 0.

COROLLARY 2.2. If G is flabby, BG^+ is contractible.

To prove (2.1) it suffices to show that the homology vanishes with coefficients in a field. Note the $\oplus: G \times G \to G$ induces a ring structure on $H_*(BG)$ where the multiplication, denoted by \oplus , is given by

$$H_{*}(BG) \otimes H_{*}(BG) \xrightarrow{\simeq} H_{*}(B(G \times G)) \xrightarrow{\oplus} H_{*}(BG).$$

The generator $1 \in H_0(BG)$ determined by the map of the standard 0-simplex to the base point is a unit for the multiplication. This is because for any $z \in H_n(BG)$ the correspondences $z \to z \oplus 1$ and $z \to 1 \oplus z$ are induced by the group homomorphisms $g \to g \oplus e$ and $g \to e \oplus g$. These latter induce the identity on homology by (1.3). Now let $\Delta_*: H_*(BG) \to H_*(BG) \otimes$ $H_*(BG)$ be the algebraic diagonal map induced by the diagonal $\Delta: G \to G \times G$ and let $\tau_*: H_*(BG) \to H_*(BG)$ be the homomorphism induced by $\tau: G \to G$. Let $z \in H_n(BG)$. Then

$$\tau_*(z) = \bigoplus \circ (id \times \tau_*) \circ \Delta_*(z).$$

For let z be represented by the chain $\sum k_i(g_1^i, \ldots, g_n^i)$. The left hand side of the equation is represented by $\sum k_i(\tau(g_1^i), \ldots, \tau(g_n^i))$ and the right hand side is represented by $\sum k_i(g_1^i \oplus \tau(g_1^i), \ldots, g_n^i \oplus \tau(g_n^i))$. By (***) these chains are conjugate and therefore homologous.

Now to show that $H_n(BG) = 0$ when n > 0 proceed by induction and suppose that $H_i(BG) = 0$ for 0 < i < n. Let $z \in H_n(BG)$. Then $\Delta_n(z) = z \otimes 1 + 1 \otimes z + \sum u_i \otimes v_i$ where $0 < \deg u_i < n$ and $0 < \deg v_i < n$. By the inductive assumption we know that $u_i = v_i = 0$. Hence

$$\tau_*(z) = \bigoplus \circ (id \times \tau_*) \circ \Delta_*(z)$$
$$= z \bigoplus 1 + 1 \bigoplus \tau_*(z)$$
$$= z + \tau_*(z).$$

This shows that z = 0 and completes the proof of (2.1).

A similar argument was used by J. Mather in [13] to show that the group of homeomorphisms of \mathbb{R}^n with compact support (considered as a discrete group) has vanishing homology in positive dimensions.

Examples of direct sum groups and flabby groups

(2.3) For any ring R satisfying (*), GL(R) is a direct sum group as in §1.

(2.4) Recall from [7] that an associative ring with identity R is a sum-ring provided there are elements α_0 , α_1 , β_0 , $\beta_1 \in R$ such that

$$\alpha_0 \beta_0 = \alpha_1 \beta_1 = 1$$

$$\beta_0 \alpha_0 + \beta_1 \alpha_1 = 1.$$

Define the ring homomorphism $\oplus : R \times R \to R$ by

$$r \oplus s = \beta_0 r \alpha_0 + \beta_1 s \alpha_1$$

for $r, s \in R$.

Strictly speaking a sum-ring is a ring with a particular choice of α_i and β_i . Let R and R' be sum rings with respect to $\{\alpha_i, \beta_i\}$ and $\{\alpha'_i, \beta'_i\}$ respectively. A morphism $f: R \to R'$ is an identity preserving ring homomorphism f such that $f(\alpha_i) = \alpha'_i$ and $f(\beta_i) = \beta'_i$. Suppose R is a sum-ring with respect to α_i and β_i and $f: R \to R'$ is an identity preserving ring homomorphism. Then R' is a sum-ring with respect to $\alpha'_i = f(\alpha_i)$ and $\beta'_i = f(\beta_i)$ and f becomes a morphism.

If R is a sum-ring, then GL(R) is a direct sum group where

$$A \oplus B = (a_{ij} \oplus b_{ij})$$

when $A = (a_{ij})$ and $B = (b_{ij})$. We must see why the condition (**) is satisfied and in this case it sufficies to show that for A and $B \in GL(n, R)$ there is an invertible matrix $Q \in GL(3n, R)$ such that

$$Q^{-1} \cdot \begin{pmatrix} A \oplus B & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot Q = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & 1 \end{pmatrix} \in GL(3n, R).$$

For $x = \alpha_i$ or β_i let $D_n(x)$ denote the $n \times n$ diagonal matrix with x along the diagonal. The right Q is then

$$Q = \begin{pmatrix} D_n(\beta_0) & D_n(\beta_1) & 0\\ 0 & 0 & D_n(\alpha_0)\\ 0 & 0 & D_n(\alpha_1) \end{pmatrix}$$

with

$$Q^{-1} = \begin{pmatrix} D_n(\alpha_0) & 0 & 0 \\ D_n(\alpha_1) & 0 & 0 \\ 0 & D_n(\beta_0) & D_n(\beta_1) \end{pmatrix}.$$

Any sum-ring R will be called an *infinite sum ring* provided there is an identity preserving ring homomorphism $\infty: R \to R$ such that $r \oplus r^{\infty} = r^{\infty}$ for any $r \in R$. A morphism $f: R \to R'$ will be required to satisfy the condition $f(r^{\infty}) = f(r)^{\infty}$. If R is an infinite sum ring, then GL(R) is a flabby group where $\tau: GL(R) \to GL(R)$ is given by $\tau(A) = (a_{ij}^{\infty})$ for $A = (a_{ij})$.

COROLLARY 2.5. If Λ is an infinite sum ring, $BGL(\Lambda)^+$ is contractible.

The ring ℓR is an infinite sum ring. To see this it will be convenient to identify ℓR with the ring $\ell_R(E)$ of locally finite R-linear transformations of the free right R-module E with countable basis $\{e_j^k\}$ where $1 \leq j, k < \infty$. Recall that $h: E \to E$ is locally finite provided that each e_i^k appears with a non-zero coefficient in $h(e_j^k)$ for at most finitely many e_j^k 's. Now partition the basis $\{e_j^k\}$ into two disjoint infinite subsets $\{e_j^k\} = A_0 \cup A_1$. Let $\beta_i: \{e_j^k\} \to A_i$, i = 0 or 1, be any two bijections. Let $\beta_i \in \ell_R(E)$ denote the corresponding locally finite matrix. Define $\alpha_i \in \ell_R(E)$ for i = 0 or 1 by

$$\alpha_i(e_j^k) = \begin{cases} \beta_i^{-1}(e_j^k), \text{ if } e_j^k \in A_i \\ 0, \text{ otherwise.} \end{cases}$$

This gives a sum structure on $\ell_R(E)$ and hence on ℓR . There are many sum structures on $\ell_R(E)$ but the following is easy to use: choose β_0 to be any bijection of $\{e_j^k\}$, $1 \le j < \infty$, onto $\{e_1^k\}$ and define β_1 by $\beta_1(e_j^k) = e_{j+1}^k$. Let α_0 and α_1 be as above. To make $\ell_R(E)$ into an infinite sum-ring recall that $E = \bigoplus E_j$ where E_j is the free submodule of E spanned by $\{e_j^k\}$, $1 \le k < \infty$. Let $r \in \ell_R(E)$ and $e_j^k \in E$. Define

$$r^{\infty}(e_j^k) = \beta_1^{j-1} \beta_0 r \alpha_0 \alpha_1^{j-1}(e_j^k)$$

Then r^{∞} is just the infinite direct sum of copies of $\beta_0 r\alpha_0$ laid out on the E_j 's. We have $r \oplus r^{\infty} = r^{\infty}$ because

$$r^{\infty}(e_{j}^{k}) = \beta_{1}^{j-1}\beta_{0} r\alpha_{0} \alpha_{1}^{j-1}(e_{j}^{k})$$

$$= \begin{cases} \beta_{0} r\alpha_{0}(e_{1}^{k}) = r^{\infty}(e_{1}^{k}) \text{ for } j = 1\\ \text{and } \beta_{1} r^{\infty}\alpha_{1}(e_{j}^{k}) = \beta_{1} r^{\infty}(e_{j-1}) = \beta_{1}(\beta_{1}^{j-1}\beta_{0} r\alpha_{0} \alpha_{1}^{j-1}(e_{j-1}^{k}))\\ = \beta_{1}^{j}\beta_{0} r\alpha_{0} \alpha_{1}^{j}(e_{j}^{k}) = r^{\infty}(e_{j}^{k}) \text{ for } j > 1. \end{cases}$$
(2.7)

The ring μR is a sum-ring because it is the homomorphic image of ℓR ; however, μR is not in general an infinite sum ring.

The two categories of sum-rings and of infinite sum rings are closed under the operations:

- (i) fiber product of two morphisms;
- (ii) forming the ring R[M] where R is a ring and M is an associative monoid with identity; and
- (iii) taking " ℓ " or " μ " of a ring.

For example (ii) implies that $K_0(\Lambda) = 0$ for any infinite sum ring Λ because

 $K_0(\Lambda) \subset K_1(\Lambda[t, t^{-1}]) = 0 \text{ (cf. §6)}.$

§3. DELOOPING $BGL(R)^+$

Start with an exact sequence

$$1 \rightarrow H \rightarrow G \rightarrow K \rightarrow 1$$

in the category of direct sum groups satisfying (†) and (**) of §1.

LEMMA 3.1. Assume (i) that [H, H], [G, G], and K are perfect and (ii) given $g \in G$ and $h_1, \ldots, h_n \in H$ there is an $h \in H$ such that $g \cdot h_j \cdot g^{-1} = h \cdot h_j \cdot h^{-1}$ for $1 \leq j \leq n$. Then

$$BH^+ \to BG^+ \to BK^-$$

is a (homotopy theoretic) fibration, where the "+" is taken with respect to the commutator subgroup in each case.

Proof. Standard classifying space theory gives a homotopy theoretic fibration $BH \rightarrow BG \rightarrow BK$ and (ii) above implies that $\pi_1(BK) = K$ operates trivially on the $H_*(BH)$ by the following argument. Choose $k \in K$ and lift it to $g \in G$. Then k acts on $H_*(BH)$ by the automorphism induced by conjugation by g, which is the identity by (1.3). Consider the diagram

where the bottom sequence is π^+ made into a fibration. BG^+ and BK^+ are H-spaces by (1.2) and BK^+ is simply connected since K is perfect. Hence F is a connected H-space. Now the "+" construction says that β and γ are isomorphisms on homology. The Comparison Theorem for spectral sequences [12, p. 355] implies that α is an isomorphism on homology. Hence the induced map $BH^+ \to F$ is an isomorphism on homology between simple spaces, which makes it a homotopy equivalence by (1.1).

Let R be a ring with identity.

PROPOSITION 3.2. There is a natural homotopy equivalence

$$K_0(R) \times BGL(R)^+ \cong \Omega BGL(\mu R)^+.$$

Naturality means that for a ring homomorphism $f: R \to S$ there is a homotopy commutative diagram

Proof of 3.2. This is essentially an application of (3.1) to the exact sequence

$$1 \rightarrow GL(mR) \rightarrow E(\ell R) \rightarrow E(\mu R) \rightarrow 1$$

coming from the sequence $0 \to mR \to \ell R \to \mu R \to 0$. However, to get naturality it is necessary to be more precise than (3.1). Here is the idea of the proof. The exact sequence $0 \to mR \to \ell R \to \mu R \to 0$ of rings gives an exact sequence

$$1 \to GL(mR) \to GL(\ell R) \to GL(\mu R).$$

But $E(\ell R) = GL(\ell R)$ by (2.5) so there is an exact sequence

$$1 \to GL(mR) \to E(\ell R) \to E(\mu R) \to 1.$$
(3.3)

Now applying (3.1) we get a fibration

$$BGL(mR)^+ \to BE(\ell R)^+ \to BE(\mu R)^-$$

and hence a homotopy equivalence

$$BGL(mR)^{+} \cong \Omega BE(\mu R)^{+}$$
(3.4)

because $BE(\ell R)^+$ is contractible. Now $BE(\mu R)^+$ is the universal cover of $BGL(\mu R)^+$ so

$$BGL(mR)^+ \cong (\Omega BGL(\mu R)^+)_0$$
,

where the subscript "0" denotes the component of loops contractible to a point. Finally, we know that $K_1(\mu R)$ is naturally isomorphic to $K_0(R)$ (cf. proof of (5.1) below, [7], or [11]) so that

$$K_0(R) \times BGL(R)^+ \cong \Omega BGL(\mu R)^+.$$
(3.5)

Now two things remain to be verified:

- (a) The condition (ii) of (3.1) is satisfied.
- (b) The equivalence can be constructed so it is natural.

First we show why (ii) holds in the special case when n = 1 and $g = e_{pq}(\lambda) = I + \delta_{pq}(\lambda)$. The extension to the general case is easy. Considered as an element of E(mR), h_1 is of the form $I + (b_{ij})$ where $b_{ij} \in mR$ and at most finitely many of the b_{ij} are non-zero. Write $\lambda = \alpha + \beta$ where $\beta \cdot b_{ij} = b_{ij} \cdot \beta = 0$ and $\alpha \in mR$. Then

$$e_{pq}(\lambda) \cdot h_1 \cdot e_{pq}(-\lambda) = e_{pq}(\alpha) \cdot h_1 \cdot e_{pq}(-\alpha).$$

357

To construct (3.4) naturally consider a fixed realization of $BGL(mZ)^+$, $BE(\ell Z)^+$, and $BE(\mu Z)^+$ so that there is a strictly commutative diagram

where the vertical maps are inclusions. Let ε denote the trivial group. The image of BGL(mZ)in $BE(\mu Z)$ is the contractible subcomplex $B\varepsilon$. Choose a homotopy, with support in $B\varepsilon$, of $\pi \circ i$ to the constant map and, using (b) of §1, extend this to a homotopy d_t of $\pi^+ \circ i^+$ to the constant map. Now let R be any ring with identity. The ring homomorphism $Z \to R$ induces group homomorphisms $GL(mZ) \to GL(mR)$, $E(\ell Z) \to E(\ell R)$, and $E(\mu Z) \to E(\mu R)$ together with maps of classifying spaces $\alpha: BGL(mZ) \to BGL(mR)$, $\beta: BE(\ell Z) \to BE(\ell R)$, and $\gamma: BE(\mu Z) \to BE(\mu R)$. Note that the normal closure of the image of E(mZ) in GL(mR)is E(mR). Similarly, the normal closures of the images of $E(\ell Z)$ and $E(\mu Z)$ in $E(\ell R)$ and $E(\mu R)$ are respectively just $E(\ell R)$ and $E(\mu R)$. Thus we have the following push-out diagram formulae:

$$BGL(mR)^{+} = BGL(mR) \cup_{\alpha} BGL(mZ)^{+}$$

$$BE(\ell R)^{+} = BE(\ell R) \cup_{\beta} BE(\ell Z)^{+}$$

$$BE(\mu R)^{+} = BE(\mu R) \cup_{\gamma} BE(\mu Z)^{+}.$$

(3.6)

Let d(R) denote the composite map

$$BGL(mR)^+ \xrightarrow[i^+]{} BE(\ell R)^+ \xrightarrow[\pi^+]{} BE(\mu R)^+.$$

Using the homotopy constructed above we get a homotopy $d(R)_t$ of d(R) to the constant map which is natural; that is, for any ring homomorphism preserving the identity $f: R \to S$ we have

$$d(S)_t \circ Bf^+ = B\mu f^+ \circ d(R)_t. \tag{3.7}$$

Recall that any map $\pi: X \to Y$ is equivalent to a fibration as follows: let $E_{\pi} =$ set of pairs (x, λ) where $x \in X$ and λ is a path in Y with $\pi(x) = \lambda(0)$. Then $E_{\pi} \to Y$ given by $(x, \lambda) \to \lambda(1)$ is a fibration with fiber F_{π} . For any map $\alpha: L \to X$ provided with a homotopy of $\pi \circ \alpha$: $L \to Y$ to the constant map to the base point there is a map $L \to F_{\pi}$ giving a commutative diagram

Applying this to π^+ : $BE(\ell R)^+ \to BE(\mu R)^+$ produces a commutative diagram

with the columns being homotopy equivalences by (3.1). For any ring homomorphism $R \rightarrow S$ preserving the identity there is a strictly commutative diagram

$$BGL(mR)^{+} \longrightarrow BE(\ell R)^{+} \longrightarrow BE(\mu R)^{+}$$

$$\downarrow^{Bf^{+}} \qquad \qquad \downarrow^{B\ell f^{+}} \qquad \qquad \downarrow^{B\mu f^{+}}$$

$$BGL(mS)^{+} \longrightarrow BE(\ell S)^{+} \longrightarrow BE(\mu S)^{+}.$$

The formula (3.7) implies there is a map between the diagrams of type (3.8) for R and for S producing a homotopy commutative three dimension diagram. The left side of the diagram says that $f_* \times Bf^+$ is homotopic to $\Omega B\mu f^+$. This completes the proof of (3.2).

Essentially the above argument shows there is a natural equivalence of sequences

Now (3.2) allows us to define for any associative ring with identity R an Ω -spectrum $X(R) = \{X_i(R)\}$ such that for $0 \le i < \infty$

 $X_{-i}(R) = \Omega^{i}[K_{0}(R) \times BGL(R)^{+}]$

and

$$X_i(R) = K_0(\mu^i R) \times BGL(\mu^i R)^+.$$

Here $\mu^0 R = R$ and $\mu^i R = \mu(\mu^{i-1}R)$ for i > 0. For all $-\infty < i < \infty$ we set

$$K_{i}(R) = \pi_{i}(X(R)).$$

COROLLARY 3.9. $K_i(\mu R) = K_{i-1}(R)$ for $-\infty < i < \infty$.

§4. RELATIVE K-THEORY GROUPS

Let $f: R \to S$ be any identity preserving homomorphism. Define the ring γf as in [7] by the pull-back diagram

Define $\mu^i f: \mu^i R \to \mu^i S$ inductively as $\mu^0 f = f$ and $\mu^i f = \mu(\mu^{i-1} f)$ for i > 0.

Let $X(f) = \{X_i(f)\}$ be defined as

$$X_{-i}(f) = \Omega^{i}[K_{0}(\gamma f) \times BGL(\gamma f)^{+}]$$

and

$$X_i(f) = K_0(\gamma(\mu^i f)) \times BGL(\gamma(\mu^i f))^+$$

whenever $i \ge 0$.

In this section we show that X(f) is a spectrum and, setting

$$K_i(f) = \pi_i(X(f))$$

for $i \in Z$, that there is a long exact sequence

$$\dots \to K_i(R) \to K_i(S) \to K_i(f) \to K_{i-1}(R) \to K_{i-1}(S) \to \dots$$
(4.1)

Consider the commutative diagram of rings

where

- (a) the horizontal rows are exact;
- (b) $BGL(X)^+$ and $BGL(Y)^+$ are contractible;
- (c) the square (1) is a pull back;

(d) given $\beta_1, \ldots, \beta_n \in B \subset C$ and $x \in X$ there is a decomposition $x = \mu + \lambda$ such that $\mu \in A$ and $\beta_j \cdot i(\lambda) = i(\lambda) \cdot \beta_j = 0$.

For example, the following is a type (4.2) diagram:

360

PROPOSITION 4.4. Applying the functor $\pi_i(BGL(?)^+)$, for $i \ge 0$, to the diagram (4.3) gives an exact sequence

$$\circ \xrightarrow{\alpha_{\bullet}} \circ \xrightarrow{\beta_{\bullet}} \circ \xrightarrow{\gamma_{\bullet}} \circ \xrightarrow{\delta_{\bullet}} \circ.$$

Proof of 4.4. For simplicity of notation let R^+ denote $BGL(R)^+$ for any ring R. Now for each ring in (4.3) we can construct the B^+ so that there is a commutative diagram

This is done by considering the diagram (4.3) obtained from the identity map $id: Z \rightarrow Z$. We get

Applying B^+ gives a commutative diagram and to get (4.5) we set

$$BGL(mR)^{+} = BGL(mR) \cup BGL(mZ)^{+},$$

$$BGL(mS)^{+} = BGL(mS) \cup BGL(mZ)^{+},$$

etc., as in (3.6).

Now let $\pi: U \to V$ denote the map $\mu R^+ \to \mu S^+$ made into a fibration. There is a commutative diagram

J. B. WAGONER

where W is the pullback of ρ and π . Each horizontal row is a fibration. The argument which gives the homotopy exact sequence of a fibration shows that for $i \ge 0$ there is an exact sequence

$$\pi_i(\Omega U) \to \pi_i(\Omega V) \to \pi_i(W) \to \pi_i(U) \to \pi_i(V).$$
(4.7)

The method of \$3 yields a map from (4.5) to (4.6):

Each square is homotopy commutative; δ_4 and δ_5 are homotopy equivalences by construction; δ_1 and δ_2 are isomorphisms on π_i for $i \ge 1$ by §3. We shall show that

$$\delta_3: \gamma f^+ \to W_0$$
 is a homotopy equivalence (4.8)

by showing that δ_3 induces an isomorphism on π_i for $i \ge 1$. This implies that the sequence in (4.4) is exact because it is isomorphic to the exact sequence (4.7) for $i \ge 1$. Note that (4.8) says $BGL(\lambda f)^+$ has the homotopy type of the base point component in the fiber of the map $BGL(\mu R)^+ \to BGL(\mu S)^+$.

Step 1. Isomorphism on π_1 .

For any diagram (4.2) type diagram there is an exact sequence

$$K_1(A) \to K_1(B) \to K_1(C) \to K_1(D) \to K_1(E).$$

$$(4.9)$$

To see this apply GL to each ring in (4.2) to get the diagram

where the horizontal rows are exact except at the right hand end. Since $K_1(X) = K_1(Y) = 0$ we have replaced GL(X) and GL(Y) by E(X) and E(Y).

Exactness at $K_1(D)$. This follows easily because GL(C) is the pull back of j and δ and $E(Y) \rightarrow E(E)$ is onto.

Exactness at $K_1(C)$. Let $[M] \in K_1(C)$ be represented by $M \in GL(C)$ with [M] = 0 in $K_1(D)$. There is an $N \in E(X)$ such that $\gamma(i(N)) = \gamma(M)$. Hence $[M] = [M \cdot i(N)^{-1}]$ pulls back to something in $K_1(B)$.

Exactness at $K_1(B)$. Let $[M] \in K_1(B)$ be represented by $M \in GL(B)$. Suppose $\beta(M) = \prod e_{i_k j_k}(y_k, d_k)$. Lift each d_k to some $x_k \in X$. Then $\prod e_{i_k j_k}(x_k)$ pulls back to some $N \in GL(A)$ because $\prod e_{i_k j_k}(d_k) = 1$. We shall show that it is possible to choose the x_k so that $\beta(M) \cdot \beta(\alpha(N))^{-1} = \prod e_{i_k j_k}(b_k, 0)$ for $b_k \in B$. Since β is a monomorphism this implies that $M = \alpha(N) \mod E(B)$.

Here is how to pick the x_k : note that for any choice of x_k

$$\beta(M) \cdot \beta(\alpha(N)^{-1}) = \prod_{k=1}^{n} e_{i_k j_k}(y_k, d_k) \cdot \prod_{k=n}^{1} e_{i_k j_k}(-z_k, -d_k)$$

where $i(x_k) = (z_k, d_k)$.

Now make an arbitrary choice of x_n which lifts d_n . Then

$$e_{i_n j_n}(y_n, d_n) \cdot e_{i_n j_n}(-z_n, -d_n) = e_{i_n j_n}(y_n - z_n, 0)$$

and $y_n - z_n \in B$. Use (d) to lift d_{n-1} to x_{n-1} so that $(y_n - z_n) \cdot z_{n-1} = 0$. Then

$$e_{i_{n-1}j_{n-1}}(y_{n-1}, d_{n-1}) \cdot e_{i_{n}j_{n}}(y_{n} - z_{n}, 0) \cdot e_{i_{n-1}j_{n-1}}(-z_{n-1}, -d_{n-1})$$

= $e_{i_{n-1}j_{n-1}}(y_{n-1} - z_{n-1}, 0) \cdot e_{i_{n}j_{n}}(y_{n} - z_{n}, 0).$

From this last step it is clear how to inductively choose the x_k as desired.

The sequences (4.7) and (4.9) plus the five-lemma imply that δ_3 induces an isomorphism on π_1 .

Step 2. Isomorphism on π_i for $i \ge 2$. Consider the diagram

where $E(\ell S) \times E(\mu R)$ is the pull back of j and δ . Note that $E(\gamma f) \subset E(\ell S) \times E(\mu R)$ is the commutator subgroup.

Now let $\pi': U' \to Y'$ be the fibration obtained from $\pi: U \to V$ by taking the universal cover of U and of V. Applying B^+ "carefully" (e.g. as in §3) to (4.10) gives a homotopy commutative diagram

where Δ_1 and Δ_3 are homotopy equivalences and Q is a covering space of W. By (3.1)

 $BGL(mS)^+ \rightarrow B[E(\ell S) \ \widetilde{\times} \ E(\mu R)]^+ \rightarrow BE(\mu R)^+$

is a homotopy fibration; hence Δ_2 is a homotopy equivalence.

This gives a homotopy commutative diagram

where all the arrows (except possibly δ_3) are isomorphisms on π_i for $i \ge 2$. This completes the proof of (4.4).

PROPOSITION 4.11. X(f) is a spectrum.

Proof. Consider the two diagrams of exact sequences

and

Let $M \to N$ be the map $BGL(\mu^2 R)^+ \to BGL(\mu^2 S)^+$ made into a fibration. Define H by the pull back diagram

Then the argument proving (4.8) can be mimicked to show there are homotopy equivalences

$$BGL(\mu(\gamma f))^{+} \xrightarrow{\simeq} H_{0} \xleftarrow{\simeq} BGL(\gamma)\mu f))^{+}.$$
(4.12)

Now for i < 0 it is clear that $X_i(f) \cong \Omega X_{i+1}(f)$. For $0 \le i$ we have

$$\begin{split} X_i(f) &= K_0(\gamma(\mu^i f)) \times BGL(\gamma(\mu^i f))^+ \\ &\cong \Omega[BGL(\mu\gamma(u^i f))^+] \\ &\cong \Omega[BGL(\gamma(\mu^{i+1} f))^+]. \\ &\cong \Omega[K_0(\gamma(u^{i+1} f)) \times BGL(\gamma(\mu^{i+1} f))^+] \\ &= \Omega X_{i+1}(f). \end{split}$$

Now putting (3.2), (4.4), and (4.11) together gives the long exact sequence (4.1).

Whenever $f: R \rightarrow S$ is a surjection it has been known for some time that there is an exact sequence

$$K_2(R) \to K_2(S) \to K_1(f) \to K_1(R) \to K_1(S)$$

where $K_1(f)$ is the relative group defined by Bass. See [14]. In [7] it was shown that for any surjection $f: R \to S$ there is a natural isomorphism of sequences

The idea for defining θ is this: Let $z \in K_2(\gamma f)$ be represented by the word $\prod x_{i_x j_x}(a_x, b_x) \in St(\gamma f)$ where $a_x \in \ell S$ and $b_x \in \mu R$. Choose a lifting $b_x' \in \ell R$ of b_x with $f(b_x') = a_x$. Then $M_z = \prod e_{i_x j_x}(b_x) \in GL(\ell R)$ actually lies in the sub-group GL(mR) and M_z goes to the identity in GL(mS). This means that M_z determines an element of $K_1(f)$. The correspondence $z \to M_z$ defines θ .

§5. EQUIVALENCE OF lA AND μA WITH CA AND SA

The rings ℓA , μA , and γf arose from the smooth and piecewise linear topology of noncompact manifolds [7]. For algebraic purposes it is sometimes more convenient to use the rings CA and SA which came from more algebraic beginnings [11]. In this section it is shown that the two approaches give rise to the same K-theory. The isomorphism in (5.1) is a special case of the uniqueness theorem in [11] where it is also shown that $K_{-i}(A) = K_1(S^{i+1}A)$ is naturally isomorphic to the negative K-theory groups $L^i K_0(A)$ of [2].

For any ring homomorphism $f: A \rightarrow B$ preserving the identity, define Rf by the pull back diagram

For i > 0 let $S^{i}A = S(S^{i-1}A)$ and $S^{i}f = S(S^{i-1}f)$.

PROPOSITION 5.1. For any $i \ge 0$ the natural maps $S^i A \to \mu^i A$ and $R(S^i f) \to \gamma(\mu^i f)$ induce an isomorphism of K-theory sequences (cf. 4.9)

Proof. It suffices to show that for all $i \ge 0$

$$K_1(S^iA) \to K_1(\mu^iA) \tag{5.2}$$

is an isomorphism. The five-lemma then shows the relative groups are isomorphic. Now for i = 0 (5.2) is certainly an isomorphism. Assume it is an isomorphism for i < k. Then using the excision theorem of [2] we get a diagram

$$K_{1}(S^{k-1}(SA))$$

$$\downarrow^{\alpha}$$

$$K_{1}(\mu^{k-1}(CA)) \longrightarrow K_{1}(\mu^{k-1}(SA)) \longrightarrow K_{0}(\mu^{k-1}(mA)) \longrightarrow K_{0}(\mu^{k-1}(CA))$$

$$\downarrow^{\beta} \qquad \qquad \downarrow^{id} \qquad \qquad \downarrow$$

$$K_{1}(\mu^{k-1}(\ell A)) \longrightarrow K_{1}(\mu^{k-1}(\mu A)) \longrightarrow K_{0}(\mu^{k-1}(mA)) \longrightarrow K_{0}(\mu^{k-1}(\ell A))$$

where α is an isomorphism by induction. The first and last groups in each of the horizontal rows vanish. Hence $\beta \circ \alpha$ is an isomorphism as required.

PROPOSITION 5.3. The inclusion $S^i A \rightarrow \mu^i A$ induces a natural homotopy equivalence

$$\theta: BGL(S^iA)^+ \longrightarrow BGL(\mu^iA)^+.$$

Proof. By induction on *i*. The assertion for i = 0 is clear. Assume it is true for i < k and consider the following map between fibrations

By induction α is a homotopy equivalence. So is β because it is a map between contractible spaces. The comparison theorem implies γ is a homotopy equivalence. Hence θ is an isomorphism on π_i for $i \ge 2$; it is also an isomorphism on π_1 by (5.2). Hence it is a homotopy equivalence.

§6. $K_i(R[t, t^{-1}])$

It is interesting to calculate $K_i(A[t, t^{-1}])$ for $-\infty < i < \infty$. This has been done at least theoretically in [2] for $-\infty < i \le 1$ where it is shown that

$$K_i(A[t, t^{-1}]) = K_i(A) \oplus K_{i-1}(A) \oplus \operatorname{Nil}_{i-1}^+(A) \oplus \operatorname{Nil}_{i-1}^-(A)$$

where $\operatorname{Nil}_{i-1}^+(A) = \operatorname{coker} (K_i(A) \to K_i(A[t^{\pm 1}]))$. One hopes a similar decomposition holds for all *i*. For $2 \leq i < \infty$ it is known that (cf. [8], or [20] and [10] for i = 2)

$$K_i(A[t, t^{-1}]) = K_i(A) \oplus K_{i-1}(A) \oplus (?).$$

Is $(?) = \operatorname{Nil}_{i-1}^{-}(A) \oplus \operatorname{Nil}_{i-1}^{+}(A)$? When $i \leq 0$ and A is regular $\operatorname{Nil}_{i}^{\pm}(A) = 0$ [2, Chap XII]. Is this true for $1 \leq i$? It has been shown in [9] that $\operatorname{Nil}_{i}^{\pm}$ (finite field) = 0 for $-\infty < i < \infty$.

The group $K_i(A)$ clearly sits in $K_i(A[t, t^{-1}])$ as a direct summand because A is a retract of $A[t, t^{-1}]$. The map $K_i(A[t, t^{-1}]) \rightarrow K_{i-1}(A)$ comes from the map of spectra $X(A[t, t^{-1}]) \rightarrow X(SA)$ induced by the ring homomorphism $\phi: A[t, t^{-1}] \rightarrow SA$ where

$$\phi(\sum a_i t^i) = \begin{pmatrix} a_0 & a_{-1} & a_{-2} \\ a_1 & a_0 & a_{-1} \\ a_2 & a_1 & a_0 \\ \vdots & \ddots \end{pmatrix}$$

Now let $\rho_i(A): S^i A \to S^i A[t]$ denote the standard inclusion. Define a candidate for the "nil" spectrum $N^+ A$ as

$$N^+_{-i}A = \Omega^i[K_0(R\rho_0(A)) \times GBL(R\rho_0(A))^+]$$

and

$$N_i^+ A = K_0(R\rho_i(A)) \times BGL(R\rho_i(A))^+$$

whenever $i \ge 0$. N^-A is similarly defined using the inclusions $S^iA \to S^iA[t^{-1}]$ and is canonically isomorphic to N^+A . The results below are stated for N^+A only; they are obviously true of N^-A as well.

PROPOSITION 6.1. $N^+A = \{N_i^+A\}_{i \in \mathbb{Z}}$ is a spectrum.

Proof. Note that SA[t] = S(A[t]) and hence

$$\rho_i(A) = \rho_{i-1}(SA) = S\rho_{i-1}(A).$$

For $i \ge 1$ it is clear that $N_{-1}^+ A \equiv \Omega N_{-i+1}^+ A$. For $i \ge 0$

$$N_i^+ A = K_0(R\rho_i(A)) \times BGL(R\rho^i(A))^+$$

= $\Omega BGL(S(R\rho_i(A)))^+$
= $\Omega BGL(R(S\rho_i(A)))^+$
= $\Omega BGL(R\rho_i(SA))^+ = \Omega N_i^+(SA)$
= $\Omega BGL(R\rho_{i+1}(A))^+$
= $\Omega N_{i+1}A$.

This shows N^+A is a spectrum.

COROLLARY 6.2. $\operatorname{Nil}_{i-1}^+(A) = \pi_i(N^+A)$ and $\operatorname{Nil}_i^+(SA) = \operatorname{Nil}_{i-1}^+(A)$. D. Quillen has recently shown $\operatorname{Nil}_i^+(A) = 0$ for A left regular and $l \leq i$.

§7. FREDHOLM PERMUTATIONS

Let Σ_{∞} be the infinite symmetric group. It is a theorem of Barratt-Kahn-Priddy [4] and Quillen (see also [17]) that $Z \times B\Sigma_{\infty}^{+} \cong \Omega^{\infty}S^{\infty}$ where the "+" is taken with respect to the infinite alternating group $A_{\infty} \subset \Sigma_{\infty}$. In this somewhat speculative section we suggest a way to construct $\Omega^{\infty-1}S^{\infty} = \lim_{n \to \infty} \Omega^{n-1}S^n$ using the classifying space of the group of Fredholm permutations. Presumably the program could also be extended to $\Omega^{\infty-p}S^{\infty} = \lim_{n \to \infty} \Omega^{n-p}S^n$ when p > 1.

Let S be any countable discrete set. By a *permutation* of S we mean a bijection $f: S \to S$ such that f(s) = s for all but finitely many elements $s \in S$. By an *infinite permutation* we mean any bijection $f: S \to S$. Now let f and g be any two maps from S to itself. We say that f and g detetermine the same germ (at infinity), denoted by $f \sim g$, iff f and g agree except on a finite subset of S. A map $f: S \to S$ is called *Fredholm* iff there is a map $g: S \to S$ such that $f \circ g \sim id$ and $g \circ f \sim id$. Note that Fredholm maps are proper. Composition of germs of Fredholm maps is defined by taking the germ of the composition of representives.

Now let $E = \{e_i^k\}$ where $1 \le i, k < \infty$. Identify Σ_{∞} with the group of all permutations of *E*. Let P_n be the group of infinite permutations α of *E* such that $\alpha(e_i^k) = e_i^k$ whenever i > n. Let $P_{\infty} = \bigcup_n P_n$. Let F_n be the group of germs $\bar{\alpha}$ of Fredholm maps of *E* to itself with representatives $\alpha: E \to E$ satisfying $\alpha(e_i^k) = e_i^k$ whenever i > n. Let $F_{\infty} = \bigcup_n F_n$. There is an exact sequence

$$1 \longrightarrow \Sigma_{\infty} \longrightarrow P_{\infty} \longrightarrow F_{\infty}.$$
 (7.1)

There is also an exact sequence

$$P_{\infty} \xrightarrow{\rho} F_{\infty} \xrightarrow{Ind} Z \xrightarrow{} 1 \tag{7.2}$$

where the index homomorphism Ind: $F_{\infty} \to Z$ is defined as follows: let $[f] \in F_{\infty}$ be represented by $f: E \to E$. Write $E = U \cup V$ such that U is finite, $f: V \to E$ is injective, and $U \cap V = \emptyset$; then

Ind
$$f = \operatorname{card} U - \operatorname{card} (E - f(V))$$

PROPOSITION 7.3. BP_{π}^+ is contractible and there is a homotopy theoretic fibration

$$Z \times B\Sigma_{\infty}^+ \to BP_{\infty}^+ \to BF_{\infty}^+$$
.

Thus

$$Z \times B\Sigma_{\infty}^{+} \cong \Omega BF_{\infty}^{+}.$$

From (7.3) one might conjecture that $BF_{\infty}^{+} \cong \Omega^{\infty - 1}S^{\infty}$.

Added in proof. This conjecture has recently been verified by S. Priddy.

Remark. $P_{\infty} = [P_{\infty}, P_{\infty}]$ because BP_{∞}^+ is contractible. Hence exactness of (7.2) shows that $\rho(P_{\infty}) = [F_{\infty}, F_{\infty}]$.

Proof of (7.3). This is an easy corollary of (3.1) once we show that (7.1) is a sequence of direct sum groups and that P_{∞} is flabby. Consider the following description of Σ_{∞} , P_{∞} , and F_{∞} . Let $S = \{e_i^{pq}\}$ where $1 \le i, p, q < \infty$. Then Σ_{∞} is just the permutations of S. P_{∞} consists of those infinite permutations α of S such that there is an n for which $\alpha(e_i^{pq}) = e_i^{pq}$ whenever i > n. Similarly for F_{∞} . Now proceed as in §2: Let $\beta_0 \in \ell_Z(S)$ be given by any bijection of S onto $S_0 = \{e_i^{p1}\}$ where $1 \le i, p < \infty$ such that for each fixed value i, β_0 takes $\{e_i^{pq}\}(1 \le p, q < \infty)$ onto $\{e_i^{p1}\}(1 \le p < \infty)$. Let α_0 be defined by (2.6). Let $\beta_1: S \to S_1 =$ $\{e_i^{pq}\}$ where $1 < q < \infty$ be given by $\beta_1(e_i^{pq}) = e_i^{p,q+1}$. Define α_1 as in (2.6). Then for A and Bin Σ_{∞} , P_{∞} , or F_{∞} define

$$A \oplus B = \beta_0 A \alpha_0 + \beta_1 B \alpha_1.$$

For $A \in P_{\infty}$ define $\tau(A) \in P_{\infty}$ by

$$\epsilon(A)(e_i^{pq}) = \beta_1^{q-1} \beta_0 \, A \alpha_0 \, \alpha_1^{q-1}(e_i^{pq}).$$

It is not hard to see that conditions (†) and (**) of §1 and (***) of §2 are satisfied. Now apply (3.1) to the sequence

$$1 \to \Sigma_{\infty} \to P_{\infty} \to [F_{\infty}, F_{\infty}] \to 1$$

to get a fibration

$$B\Sigma_{\infty}^{+} \to BP_{\infty}^{+} \to B[F_{\infty}, F_{\infty}]^{+}$$

Since $\pi_1(BF_{\infty}^+) = F_{\infty} \mod[F_{\infty}, F_{\infty}] = Z$, there is a fibration

$$Z \times B\Sigma_{\infty}^+ \to BP_{\infty}^+ \to BF_{\infty}^+$$

as asserted.

Perhaps methods of this section could be extended to give a new construction of $Q(S^{i}X) =$ base point component in $\lim \Omega^{n}S^{n+i}X$ for any space X.

REFERENCES

- 1. D. W. ANDERSON: Simplicial K-theory and generalized homology theories I, II (to appear).
- 2. H. BASS: Algebraic K-Theory. Benjamin.
- 3. A. BOUSFIELD and D. KAN: Homotopy with respect to a ring. Am. Math. Soc. Summer Institute on Algebraic Topology (1970).

J. B. WAGONER

- 4. S. PRIDDY: On $\Omega^{*}S^{*}$ and the infinite symmetric group. Am. Math. Soc. Summer Institute on Algebraic Topology (to appear).
- 5. W. BROWDER: Higher torsion in H-spaces, Trans. Am. math. Soc. 107 (1963), 153-176.
- 6. E. DROR: A generalization of the Whitehead theorem, to appear in Springer Lecture Notes series.
- 7. F. T. FARRELL and J. B. WAGONER: Infinite matrices in algebraic K-theory and topology (to appear).
- 8. S. GERSTEN: On the spectrum of algebraic K-theory, to appear in Bull. Am. math. Soc.
- 9. S. GERSTEN: K-theory of polynomial extensions (to appear).
- 10. M. KAROUBI: La periodicité de Bott en K-theory general. Notes from I.R.M.A., rue ReneDes cartes, Strasbourg.
- 11. M. KAROUBI and O. VILLAMAYOR: K-theorie algebrique et K-theorie topologique. Notes from Institut de Recherche Mathematique Avancee, Strasbourg,
- 12. S. MACLANE: Homology. Academic Press, New York (1963).
- 13. J. MATHER: The vanishing of the homology of certain groups of homeomorphisms (to appear).
- 14. J. MILNOR: Notes on Algebraic K-Theory. M.I.T.
- 15. D. QUILLEN: Cohomology of Groups, Proceedings of the International Congress of Mathematicians (1970).
- 16. D. QUILLEN: On the group completion of a simplicial monoid (to appear).

- G. SEGAL: Homotopy everything H-spaces (to appear).
 G. SEGAL: Classifying spaces and spectral sequences, Pub. Math. I.H.E.S. No. 34 (1968).
 R. G. SWAN: Non-abelian homological algebra and K-theory, Applications of Categorical Algebra, Proc. of Symposia in Pure Math., Vol. XVII. Am. math. Soc. (1970).
- 20. J. WAGONER: On K₂ of the laurent polynomial ring, Am. J. Math. XCIII (1970), 123-138.

University of California at Berkeley

370