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Introduction

The aim of this thesis is the formulation and proof of a noncommutative analogue
of a particular family index theorem, namely the one proven by Bunke and Koch in
[BK]]. Before precising the problem we sketch what is meant by “noncommutative
analogue”:

Family index theory describes Fredholm operators depending continuously on a pa-
rameter from some compact space. The index of a family of Fredholm operators
{F,}pep on a complex Hilbert space H is an element in K°(B). If {Ker F}, },cp and
{Coker F}, }ep are vector bundles on B, then it is just the difference of the classes
of these bundles.

One may reformulate this setting by replacing the space B by the C*-algebra C'(B) of
continuous functions on B and the Hilbert space H by the C'(B)-module C(B, H) of
continuous H-valued functions on B. The family of operators yields a C(B)-module
map on C'(B, H). The index, now a formal difference of projective C'(B)-modules,
is an element in the C*-algebraic K-theory Ky(C(B)) which is naturally isomorphic
to K°(B).

The theory of Fredholm operators on Hilbert C*-modules introduced by Miscenko
and Fomenko [MH] is a generalisation of this different view on family index theory to
arbitrary C*-algebras. Miscenko and Fomenko also elaborated the theory of Sobolev
C*-modules and elliptic operators over C'*-algebras on compact manifolds.

For the theory of operators on Hilbert C*-modules we refer the reader to the books
of Wegge-Olson [M], in particular for the theory of Fredholm operators, and of
Lance [Cd], in particular for the theory of unbounded operators.

In differential geometry a family index theorem usually calculates the Chern char-
acter of the index bundle in the de Rham cohomology of the base space that is
assumed to be a manifold.

A straightforward noncommutative analogue of differential forms on a manifold was

A

found by Karoubi [Ead] who defined a Z-graded differential algebra (£2,(A),d) as-
sociated to a unital Fréchet algebra A and the de Rham homology of A. He also
introduced connections on projective right A-modules and a Chern character associ-
ated to a connection. If A is a local Banach algebra [BI], the Chern character yields
a homomorphism

ch: Ko(A) — HE(A) .

Unfortunately the de Rham homology of a C*-algebra does not behave well, in par-

4



ticular the de Rham homology of a commutative C*-algebra is not the cohomology
of the corresponding compact space.

In the general context one way out — unsatisfying because it depends on choices — is
to introduce an additional structure on a C*-algebra A, namely a dense subalgebra
Ao of A such that Ky(As) is canonically isomorphic to Ky(.A). Then the Chern
character yields a map

ch: Ko(A) — H¥(AL) .

The choice of A, depends on the situation, in the family situation one would choose
Ao = C>(B).

In the present thesis we define and investigate noncommutative 7-forms associated
to a Dirac operator on the unit interval. The algebra enters in the definition of
boundary conditions that make the operator invertible. These n-forms occur in a
noncommutative index theorem on a noncompact manifold with boundary which we
prove. We give a preciser overview of our result:

Let {A;}iew, be a projective system of Banach algebras such that 4, = A is a
C*-algebra and such that there are dense embeddings A; < A for all 7 € INy and let
A be its projective limit. Some further technical conditions have to be imposed
to the system in order to make the theory work ([Cd], §2.1).

Let
t 0

We call a projection P € Moq(A) Lagrangian if PIyP = 0 and P(A%?) @ I,P(A*) =
A?L. To a pair (Py, P;) of Lagrangian projections onto transverse submodules with
Py, P € Myy(A) we associate the operator Dy, that is defined to be the operator
oL with

dom Dy = {f € ([0, 1], A%) | Pof(0) = f(0) and P1f(1) = f(1)} .

Furthermore we define a superconnection A; associated to D; and an n-form n(Ay)

associated to A;. It is an element in Q,(Ax)/[(Aso), 2 (Aso)]s, Where [, ]

denotes the supercommutator.

Let (Po, P1, P2) with Py, € Msy(Ax), k= 0,1,2, be a triple of Lagrangian projec-
tions on pairwise transverse submodules of A??. Let Dy, k = 0, 1,2 be the operator
associated to (Pkmod3, Pk+1mod3)- As in the family case it turns out that there are
superconnections Ay, k =0, 1,2, associated to Dy, k = 0,1, 2 such that the sum
n(Ar) +n(Ar) +n(Ap) is closed. Its homology class is the Chern character of the
index of a Dirac operator DT on a two dimensional spin manifold M with cylindric
ends isometric to [0,00) x [0,1]. The projections Py, Py, P2 enter in the definition

of boundary conditions for Dt making it a Fredholm operator between appropriate
Hilbert A-modules.

Furthermore it turns out that the index 7(Py, P, P2) € Ko(A) of Dt can be
calculated algebraically in terms of the projections Py, Py, Po. It is a gener-
alization of the Maslov index in the following sense: For A = C the spaces
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L = Pk(@Zd), k = 0,1,2, are Lagrangian subspaces of €* with respect to the
skew-hermitian form induced by I, and the standard scalar product on €?*?. The
dimension of 7(Py, Py, P2) is the Maslov index associated to the triple (L, Ly, Lo)

Our main result (th. E2TT) is:

Theorem. It holds

ch7(Po, P1,Pa) = —2[n(Ar) + n(Ar) +n(An)] € H(Ax) .

It is the analogue of [BKI, th. 1.1.

The proof follows the lines of the proof of Bunke and Koch based on heat kernel
methods. The main problems in our context are to prove the existence of the heat
semigroups associated to D; and to D = D™ @ D™, where D~ is the adjoint of DT,
to show that they have smooth integral kernels and to find the heat kernel estimates
needed in the proof.

We explain our methods for Dy:

On the Hilbert A-module L2([0,1],.42%) the semigroup e *P7 can be easily defined
by the functional calculus of regular operators [C&d]. The aim is to show that it is
a family of integral operators with integral kernels in C*°([0,1] x [0, 1], M24(Ax))
and to find estimates for the integral kernel, in particular for its behaviour at small
times.

For that we have to show that the semigroup e~tP7 restricts to a semigroup on the

Banach space L*(]0, 1], A%") for any i € IN. We can easily construct the heat kernel
if the boundary conditions are given by orthogonal submodules. It turns out that Dy
with general boundary conditions is unitarily equivalent to a bounded perturbation
of the operator with orthogonal boundary conditions.

Then using a perturbation lemma about holomorphic semigroups we can define the
semigroup e~*P7 on L2([0,1], .A2").

In order to get estimates for the norm of the semigroup we study the resolvent set
of the generator.

We prove that e~ Tisa family of integral operator by comparing it with an approx-

imation by a family of integral operators using Duhamel’s principle. It will follow
that the integral kernel of e=*7 is in C°°([0,1] x [0, 1], M2, (As)). The comparison
also allows to obtain estimates for the heat kernel.

Before the organisation of this thesis is described, I want to thank all people who
supported this work: in particular my supervisor Ulrich Bunke for discussions, Mar-
git Rosler for the introduction into the theory of semigroups, and my friends and
family for moral support.



Summary

The proof of the theorem is organised in the following way:

In the first chapter the manifold M is described and we explain in more detail the
family index theorem of Bunke and Koch [BKI.

Then the differential algebra €2, (As), the homology H%®(A.) and the Chern char-
acter are introduced and investigated. Furthermore Lagrangian projections and the
Maslov index are defined and studied.

In the second chapter we introduce the operator D = D@ D~ on M with boundary
conditions defined by a triple of Lagrangian projections (Py, Py, Ps).

Furthermore the operator D; is defined and its properties on the Hilbert A-module
L*([0,1],.A%") are studied.

Then we show that DT is Fredholm when acting between appropriate Hilbert C*-
modules and that its index equals 7(Py, P1, P2). We define a compact perturbation
D(p) of D with closed range.

The third chapter is devoted to heat semigroups and their integral kernel, in partic-
ular those associated to D; and D(p).

In chapter four we introduce superconnections in order to define the n-form. Now
finally the statement of the index theorem is well-defined. The remainder of the
chapter is devoted to its proof. We have to introduce another family of operators
e~ 407 where A(p), is a rescaled superconnection associated to D(p). As before we
show that it is a family of integral operators with smooth integral kernels and obtain
estimates for the integral kernels for small .

As usual the proof of the index theorem compares the limit of the supertrace of
e~ AW for t — 00, which is the Chern character of the index of DT, with the limit
for t — 0.

In chapter five many tools are presented: We introduce the function spaces we deal
with, as for example the L2 spaces, and study operators on them. In particular
we recall the properties of Fredholm operators and regular operators on Hilbert
C*-modules, study Hilbert-Schmidt operators and pseudodifferential operators and
develop the tools from holomorphic semigroup theory we need.

Notation and conventions: If not specified the vector spaces and algebras are
complex, manifolds are smooth.

We often deal with Z/2-graded spaces. Then the suffix [, |5 denotes the supercom-
mutator, tr, the supertrace. In a graded context the tensor products are graded.
For an ungraded space V, we denote by V' resp. V'~ the same space endowed with
a graduation: all elements are positive resp. negative.

Tensor products denoted by ® are completed. The way of completion is indicated
by a suffix in all but two cases: In the case of Hilbert C*-modules ® means the
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Hilbert C*-module tensor product, and if one of the spaces is nuclear, then ® means
®, or ®.. The algebraic tensor product is denoted by ©.

By a differentiable function on an open subset of [0,1]" we understand a function
that can be differentiably continued to an open subset of IR". This induces the
notion of a differentiable function on a manifold with corners, in our case M x M.

For a subset S C X in some set X we denote by 15 : X — {0,1} its characteristic
function. If X is a metric space, y € X and S C X then d(y, S) := ing d(x,y). For
re

S1, S C X we set d(S7,52) == inéf d(x,Ss)

rEDL
If E resp. F' is a vector bundle on a space X resp. Y and p;(z1,x2) = x;, i = 1,2
for (z1,29) € X x Y, then E X F denotes the vector bundle piE ® p5F on X x Y.

The value of the constant C' which we use in estimates may vary during a series of
estimates without an explicit remark.



Chapter 1

Preliminaries

1.1 The geometric situation

In this section we define the spin manifold M and a Clifford module E on it. The
Dirac operator associated to it will be the main object of our study. Another aim
of this section is to fix the notation.

For k € Z/6 let Zy, be a copy of IR x [0, 1]. With the metric and orientation induced
by the euclidian metric of IR? it is an oriented Riemannian manifold with boundary.
Let (2%, 2%) be the euclidian coordinates of Zj.

ForrE—%,bﬁ%andeZ/Glet
Ey(r,b) == {(z},25) € (Jr,00[x[0,1]) U (] — 1,7] x ([0,b[U]1 — b,1]))} C Z; .

We define
F(rb) = (| Fur0)/ ~
keZ/6
with (zf, %) ~ (=2 —2f7" 1 — 257" for (2F,2%) € (] — 1,—%[x[0,8]) and k € Z/6.
Then F'(r,b) inherites the structure of an oriented Riemannian manifold from the
sets Fy(r,b).

The open set F(—3, )\ F(—3, 1) is diffeomorphic to the open ring B;(0)°\ By /2(0) C

IR? via an oriented diffeomorphism ¢. We define the manifold with boundary
M = F(—3,3) Uy B1(0)° .

For r > —%, b < % we identify F(r,b) and Fy(r,b) with the corresponding subsets
in M. Note that with the coordinates above the sets F(r,b) are coordinate patches
of M.

Make M into an oriented Riemannian manifold by extending the orientation and
metric from F := F(0, 411> to the whole of M. This allows us to identify 7'M and
T*M. Endow T'M with the Levi-Civita connection.



The connected components of OM are labelled Oy M, k € Z /6, such that 0pM U
Fy.(r,b) C {25 =0} and O M U Fy(r,b) C {25 =1} for all k € Z/6.

For r > 0 and b < 1 we define an open covering U(r, b) = {Us }res of M as follows:
Let J be the disjoint union of Z/6 with an one-element set {&}. For k € Z/6 let
Uy, == Fi(r,b) and let Uy, := M \ F(r +1,b/2).

For r > 0let M, := M \ F(r,0).

We can embed M diffeomorphically into IR?, even with a diffeomorphism that is an
isometry outside M, for some r > 0. The image of the embedding is illustrated by
the following picture:

F5<7", b)
OsM
Fo(r,b) Ao M
F4(T7 b)
oM
82M 83M
F2<T7 b)

Choose a spin structure on M and fix d € IN. Let S be the spinor bundle endowed
with a hermitian metric such that it is a selfadjoint Clifford module and with a
Clifford connection. Let F be the graded vector bundle ((C*)? @ (C7)?) ® S. The
hermitian metric on S and the standard hermitian product on €% induce a hermitian
metric < -,- > on E. Furthermore there are connections on E and its dual E*
induced by the Clifford connection on S.

Let ¢ : TM — EndFE be the Clifford multiplication. The Dirac operator associated
to the Clifford module £ is denoted by 0.

The oriented orthonormal frames ((—1)*da%, (—1)*dx%) of TM| Fi(0,1) Patch together
to an oriented orthonormal frame (e, es) of TM|p.
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The even endomorphism
I =c(er)c(ey) : EX|p — E¥|p
defines a skew-hermitian form on E*|p, namely

E|F®E|F_>®7 (.T,y) =< x7]y> :

The holonomy of TM |p is 47Z (measured with respect to any trivialisiation of 7'M
on the whole of M), thus there are nonvanishing parallel sections of S™|r and S™|.
We choose a parallel unit section s of ST|r and fix once and for all the trivialisation
of F|r defined for z € F by

Ef =((CH'eShHe(C)es,) = (CH e (),

(v @ s(z) ® (w@icler)s(x)) = (v,w) ,
and
E; =((CH)'eS))e(C)es)) — ()@ ),
(v®icler)s(x)) B (w s(x)) — (v,w) .

With respect to the trivialisation the endomorphism I on E* corresponds to I, and
I|g- corresponds to —Iy with

I = ( - ) € Myy(C) .

1.2 The commutative index problem

In this section we outline the index problem we want to transfer into a noncommu-
tative context. For more details we refer to [BKI.

Let € be endowed with the standard hermitian product < , > and the skew-
hermitian form induced by Iy and < , >.

Let B be a compact space and let (Lo, L1, Ls) be a triple of pairwise transverse
Lagrangian subbundles of the trivial bundle B x €*. For any i = 0,1,2 and b € B
the Lagrangian subspace L;(b) C C?* defines a parallel Lagrangian subbundle of
E*|p via the trivialisation fixed in the previous section.

Let DT (b) be the Dirac operator associated to E with

dom D*(b) :={s € C*(M,E") | s(x) € L;(b) for x € O;M U d; 3M, i =0,1,2} .

It turns out that for any b € B the kernel and cokernel of the closure of DT (b) are

finite dimensional and that the K-theory class of the index bundle of the family
{D*(b) }rep equals the K-theory class of the Maslov index bundle of (Lg, Ly, Ls)
whose definition is as follows:
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The triple (Lo, L1, Lo) induces a nondegenerate hermitian form s on Lg; namely let
V=101 + vy, w=wy+wy € Ly(b) with vy, w; € Ly(b),ve, ws € Ly(b), then

hy(v, w) =< vy, [pwy > .

The Maslov index bundle is the element [L{] —[Ly] € K°(B) where Ld and L, are
subbundles of Ly with Ly ® L, = Lo and such that h is positive on L and negative
on Lg.

If B is a manifold and the bundles are smooth, then by a generalization of the Atiyah-
Patodi index theorem the Chern character of the index bundle can be expressed in
terms of n-forms. We outline their definition:

Let 0 be the differentiation operator on C*°([0, 1], C*%).
For i # j and any b € B the operator D;(b) := 1,0 with domain

dom D;(b) := {s € C*([0,1],C*") | 5(0) € L;(b), s(1) € L;(b)}

is essentially selfadjoint and its closure has a bounded inverse on L?([0, 1], C*%).

There is a family of rescaled superconnections A! associated to oD; on C) ® C*
where C' is the Clifford algebra of the vector space C: it is the graded complex
unital algebra generated by the odd element o with o2 = 0.

Let Tr,(a + ob) := Tr(a) (we do not want to specify here the space on which the
trace Tr acts).

Then the n-form

1 o
n(Li, Lj) := m/ =2 Tr, Dye 4D’ dt € O (B)
0

is well-defined.

The index theorem says

ch(ind D) = =2[n(Lo, L1) + 1(L1, La) + (L2, Lo)] € Hip(B) .

Before we formulate a noncommutative version of this problem we present what will
play the role of the algebra Q*(B), the Chern character, the de Rham cohomology
H};,(B) and the Lagrangian subbundles. This is done in the next sections.

12



1.3 The algebra of differential forms

1.3.1 The universal graded differential algebra

Let B be an involutive locally m-convex Fréchet algebra with unit. In particular the
group of invertible elements GI(B) in B is open and the map GlI(B) — GI(B), a —
a~! is continuous [Ma].

In this section we recall the definition of the topological universal graded differential
algebra QB introduced by Karoubi [Kad] and collect its main properties. Most of
the definitions of this section are taken from [[Kai] or are an immediate generalisation
from the algebraic case described in [CQ].

We write ®, for the completed projective tensor product.

Let R
QB = B®, (2%(B/0))

and -
0.B:=[[uB.
k=0
Consider Q.8 as a Z-graded vector space with the following additional structures:

Product: There is a graded continuous product on Q.B: It is defined for elementary
tensors by

k
(bo®b1®. .. @bg) (D1 @bp2®. .. by) =Y (= 1)F I (@b ®. . .®bjbj 1 ®@bj12®. .. by) -

=0

It is continuous, since the multiplication map B ®, B — B is continuous by the
universal property of the projective tensor product. With the product €, (B) is a
locally m-convex Fréchet algebra.

Differential: There is a continuous differential d of degree one on the graded algebra
Q.B defined on elementary tensors by

dby®@b ®...Q0b0) =10byRb ®...R by .

It satisfies the graded Leipniz’s rule: For a € OB and 8 € B it holds
d(af) = (da)f + (=1)"a(d B) .
Furthermore it holds

bp @by ®...0b, =bydbydby...dby .

If B is a Banach algebra, then d is a map of norm one.

13



Involution: We extend the *-operation on B to a continuous involution on O.B by
setting
(b R0 ®...0b)" =(1Rb, @b_; ®...® bY)b;

or equivalently

(bodbydby...dby)* = (db;db_,...dbB)Y, .

For wq,wy € Q.B it holds
(wiwe)™ = wiwy

and for w € QkB
(dw)* = (=1)*d(w") .

With these structures (2,8 is an involutive graded differential Fréchet locally m-
convex algebra. It behaves functorially in B.

Ifwe Q*B, its part in degree n is denoted by w" .
Let -
QB =B/ [[ uB.

k=m+1
We identify ngb’ as a graded vector space with the subspace of forms up to degree

m in Q*B.

Now we come to the definitions of the homology and the Chern character of B:

The Fréchet space [Q*B, Q*B]s generated by the supercommutators in Q.B is pre-
served by d by Leipniz’s rule. It follows that (Q*B / [Q*B, Q*B]S, d) is a complex.

Definition 1.3.1. The de Rham homology of B is

H®(B) .= H,(0,B/[1.B,Q.8],,d) .

On the right hand side we take the topological homology, i.e. we quotient out the
closure of the range of d in order to obtain a Hausdorff space.

We extend d to the a map d : M, (Q.B) — M,(QL.B), A — d(A) by applying
d component by component. Note the difference between d A = doA and d(A).
Sometimes we write (d A) for d(A).

For A € M,(%(B)) it holds

dA=(dA4)+ (-1)"Ad .

14



Definition 1.3.2. Let P € M, (B) be a projection. Then

= (=DftrP(d(P)* € Q.B/[0.B,Q.B,

k=0
is the Chern character form of P.

Proposition 1.3.3. 1. If P : [0,1] — M,(B) is a differentiable path of projec-
tions, then

N |
WE

ch(P(1))—ch(P(0)) = (—1)*d(trP(1)(d P(1))*H—trP(0)(d P(0))%1)) .

i

1
In particular ch(P(1)) — ch(P(0)) is ezact.
2. The Chern character form is closed.

3. If B is a local Banach algebra [Bl], then the Chern character form induces a
homomorphism

ch : Ko(B) — H™(B), ch([P] - [Q]) := ch(P) — ch(Q) .
Proof. First note that for a projection P € M,(B) and for v € B" it holds
0=d((1 - P)Pv) = (1 - P)dPv— (dP)Pv

hence P(dP)P =0 and (1 — P)dP = (d P)P. From 0 = d((1 — P)P) it follows
(dP)P = (1— P)(d P), therefore

P(dP)* = (dP)*P .

1) Let P’ be the derivative of P. It holds
0=(1-P)P)=(1—-P)P—PP,

hence PP'P =0 and (1 — P)P' = P'P.

It holds
(trP(d(P))*) = trP'(d(P))** + trP((d(P))**)" .

The first term on the right hand side vanishes by
trP (d(P))** = trP' P(d(P))* + trPP'(d(P))*
= trP'P(d(P))**P + trPP'(d(P))*P

2 trPP'P(d(P))*
= 0.
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The second term vanishes for £ = 0 and for & > 0 it is exact by

2k—1

P(AP)R) = 3 (P PP (AP

= k;_tr(d PY*71P(d P) 4 k tr((d P)**2P(d P)(d P)
= ktr(dP)*"Y(dPY

(tr(d P)*")

d(trP(d P)**1Y

N= D=

2) It holds

dtrP(d P)* = tr(d P)**!
tr(1 — P)(d P)**™'(1 — P) + trP(d P)***'P
= 0.

3) follows from 1) and 2). O

1.3.2 Supercalculus

Let B be as before.

In this section all spaces and tensor products are Z/2-graded. If no graduation is
specified we assume the trivial graduation.

Let V. = Vt & V™ be a Z/Q—graded complex vector space with dimV*t =
m, dim V'~ = n and consider 2,8 as a Z /2-graded space wiht the even/odd-grading.

The space V ® QB is a free Z /2-graded right Q. B-module. It is furthermore a left
supermodule of the superalgebra End(V) ® Q,B. (Note that our setting differs from
the corresponding one defined in [BGM], since we consider right (,B-modules. This
sometimes causes different signs.)

The supertrace trg : End(V) — C extends to a supertrace
tr, : End(V) @ Q.8 — Q,.B/[Q.B,Q,8],
try(T’ @w) = try(Tw .

By dividing out the supercommutator we ensure that try([71,73]s) = 0 for 71,75 €
End(V) ® Q.B.

Note that the differential d acts on elements of V @ B resp. End(V) @ 0B by
dA®w) = (—1)**14A®dw

for A € V* resp. A € End*(V) and w € Q,B.
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Since trg(A®@w) =0 if A € End™ (V) it follows
trs d(T) = dtrsT

for T € End(V) @ Q,B.
Furthermore from Leipniz’s rule it follows for AQw € End*(V)®@B, v € VoQ,B:

d(A®@w)v) = d(A@w)v + (=1)%EA (A @ w)dw .

Let now M be a Riemannian manifold, possibly with boundary. In §6=23 we intro-
duce the notion of Hilbert-Schmidt operators. We use the notation of §6=22 and
6623 in the following.

A trace class operator on L*(M,V ® QSMB) is an operator T = Y "  A;B;
where A;, B; are Hilbert-Schmidt operators such that (z +— kg, (z,-) €
C(M, L*(M,EndV ® Qc,B)) and (y + ka,(-,y)) € C(M, L*(M,EndV @ Q<,B)),
and analogoulsy for B;, i =1,...,n.

In particular 7" is a Hilbert-Schmidt operator with continuous integral kernel k.
We define

Tr,T ::/ troky(z, ) € Qe B/ [Q<,B, QB .
M

It holds
|Trs A Bi| < [|Aill s || Bill s

and
Trs[Ai>Bi]s = 0 .
1.3.3 The algebra A, and its properties

Let (Aj, tj41; + Ajy1 = A;j)jen, be a projective system of involutive Banach alge-
bras with unit satisfying the following conditions ([Cd], §2.1):

e The algebra A := A is a C*-algebra.
e For any j € INy the map ¢41; : Aj41 — A; is injective.

e For any j € INy the map ¢; : Ay = l'&nfb — A, has dense range.

e For any j € INy the algebra A; is stable with respect to the holomorphic
functional calculus in A.

The projective limit A, is an involutive locally m-convex Fréchet algebra with unit.

The motivating example is A; = C7(M) for a closed smooth manifold M.

Proposition 1.3.4. The following properties hold for any j € INg and n € IN:
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1. The map tj : Axx — A; is injective.

2. The algebras M,(A) and M, (A;) are stable with respect to the holomorphic
functional calculus in M, (A).

3. The map o - Ko(Ax) = Ko(A) is an isomorphism.

Proof. 1) follows immediately.
2) follows from [Bd], prop. A.2.2.
3) follows from [Bd], th. A.2.1. O

1.3.4 Properties of (. A

The projective system (A;,¢j41;) e, induces two projective systems of involutive
graded differential Fréchet algebras.

One of them is given by the maps
Lit1,jx Q*.Aj+1 — Q*.A] .

Furthermore (ng.Aj)mﬁje]N is a projective system of involutive Banach graded dif-
ferential algebras. The limits coincide:

The inclusion ngAj — Q*Aj is left inverse to the projection Q*Aj — ngAj. The
induced maps between the projective limits are inverse to each other. It follows

lim 0, A; 2= im QA
J J,m
Furthermore the inclusions ¢;, : OAL — Q*Aj induce a map
Ly Q*.Aoo — 1'&1(2*./4]- )
J

It is an isomorphism by the following proposition:

Proposition 1.3.5. There are the following canonical isomorphisms of involutive
Fréchet locally m-convex graded differential algebras:

J
2. A 2 lm Qo A;
7,m

There is the following canonical isomorphism of graded Fréchet spaces:

3. AL/ [ As, QAL @QSmAj /[ Qem Ay, Qe Ajls
7m
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Proof. 1): It is enough to prove that the right hand side and the left hand side are
isomorphic as topological vector spaces. This follows from the fact that projective
limits and projective tensor products commute ([Kd] 41.6).

2) follows from the remarks preceeding the proposition.

The following lemma implies 3). [

The importance of this proposition for our purposes is the following: Since it is
easier to deal with Banach spaces than with Fréchet spaces we will prove our index

theorem in QSmAj / [QSmAj, QSmAj]s, making sure that the expressions in the index
theorem behave well when taking the projective limit. By the proposition this will

prove the index theorem in 2,4, / [Q*Aoo, Q*AOO]S.

Lemma 1.3.6. Let (A, tj+1,5)jen be a projective system of Banach spaces and let
(Bj, tj+1,4]B;)jen be a projective system such that B; is a closed subspace of A; for
all 7 € IN.

Let Ay = @Aj and By = @Bj and assume further that the image of A is

J J
dense in A; and the image of By is dense in Bj for any j € IN.

Then it holds canonically
As/Boo = @Aj/Bj )
J

Proof. For j € IN let ¢; : Ao — A, be the induced maps. We prove that the map

J

is an isomorphism:
It is well-defined since ¢j(Bs) C B, for all j € IN.

It is injective: Let a € Ay /Boo with tooa = 0, then for a € A, with [a] = a it holds
v;a € Bj for all j € IN, so a € By, thus a = 0.

It is surjective: For simplicity we assume that the norms of the maps ¢ ; are
smaller or equal to one. This can be obtained by rescaling the norms inductively.

Let a € @Aj/Bj and choose a; € A; such that [a;] € A;/B; is the image of a with
J
respect to the map
lim A;/B; — A;/B; .
J
By modifying the sequence inductively we can assume that it holds :

(*)  Jegrgai —al <57t

The modification is as follows: We define aj := a;. Assume a is defined. It holds
i1, @41 —a; € Bj;. Since the image of By is dense in B;, we may choose b; 11 € Bo
with

|tbj1 — (tjs1 541 — af)] < G771
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and define a’, | = a1 + tj110511.

For n > j let v,; : A, — A, be the injection. From (x) it follows that for any
j € IN the sequence (i, j(an))n>; is a Cauchy sequence in A;. Its image in A;/B; is
constant. Let a; € A; be its limit.

It holds ¢;4+1 jaj41 = a; and [a;] = [a;] € A;/B;. It follows that there is an element
a € A with v;a = a;. It holds o] = a. O

1.4 Lagrangian projections

Let A be as before.

In this section we define and study the analogue of Lagrangian subbundles and of
the Maslov index bundle.

Definition 1.4.1. Let n € IN.
Two selfadjoint projections Py, Py € M, (A) are called transverse if

Ran P, & Ran P, = A" .

We will often use the following criterium of transversality: Two selfadjoint pro-
jections Pj, P, are transverse if and only there exist a,b € GI(A) such that
aP,+bP, € M,(A) is invertible, and this is equivalent to the invertibility of a P, +bP;,
for any a,b € GI(A).

1.4.1 Definition and properties

Definition 1.4.2. For n € IN let A*" be the Hilbert A-module endowed with the
standard A-valued scalar product and let

=" %) e aea.
0 —2

A Lagrangian projection on A is a selfadjoint projection P € Mo, (A) with

Note that if A = C(B) for some compact space B, then the Lagrangian projections
are in one-to-one correspondence with the subbundles of B x C?" that are Lagrangian
with respect to the skew-hermitian form induced by Iy. The transversality of two
projections is equivalent to the transversality of the corresponding subbundles.

Note furthermore that any Lagrangian projection P on A4?" is a Lagrangian projec-
tion on M, (A)? as well, where we consider M, (A)? as a Hilbert M, (.A)-module.

Denote
11
1
pet(11).
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Lemma 1.4.3. 1. For any Lagrangian projection P of A?" there is a unitary

p € M,(A) such that
_i( Ly
P_2(p )

2. For any Lagrangian projection P on A*" the unitary

U:((l) ;)eMzn(A)

with p as in 1) fulfills Uly = IyU and UPU* = P .

Proof. 1) Since P is selfadjoint, there are a,b,c € M, (A) with a = a*,c = ¢* such

that P = < gi ﬁ ) From Py = Iy(1 — P) it follows

ia —ib \ [ i(l—a) —ib
ib* —ic ) ib* —i(l—¢) )’
thus a = ¢ = % From P? = P it follows furthermore that 2b is unitary.

2) is clear. O

Lemma 1.4.4. Let P € Moy, (As) be a Lagrangian projection of A** transverse to
P;. Let P € My, (C) be a complex Lagrangian projection. Then for any 0 < £1 < &9
there is a smooth path of unitaries U : [0, 9] — Ma,(As) such that

1. U(0)PU(0)* = P,

2. U equals 1 on a neighbourhood of ¢,,

3. U is constant on [0, 1],

4. U is diagonal with respect to the decomposition A*" = A™ @ A".
Note that 4) implies Uly = IyU.
Proof. 1t is enough to prove the assertion for P = P,.

Let p be as in the previous lemma applied to P.

Since P and P; are transverse, P — P; is invertible. It follows that p — 1 and p* — 1
are invertible, so logp and logp* are well-defined if we choose the complement of
[0,00) in C as a domain for the logarithm.

Let x : [0,1] — [0,1] be a smooth function with x|p.; = 0 and x(t) = 1 for
t € [#5%,e2]. Then the smooth path of unitaries

71 [0,82] = My (A), (1) = exp(2mix(t) + (1 — x(t)) log p*)
connects p* with 1. It holds y(t) € M, (Ax) for all ¢ € [0, 5] since M,,(A) is stable
under holomorphic function calculus in M,,(.A) by prop. 3.

Let
10
(1)

It satisfies the conditions. O
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1.4.2 The Maslov index

Let (Py, P, P,) be a triple of pairwise transverse Lagrangian projections on A%".
Then we can write any x € A?" uniquely as v = o1 + 75 with 2; € Ran B, i = 1, 2,
namely Ir = Pl(Pl — Pg)_ll’ and To = —PQ(Pl — PQ)_ll’.

The form
h:Ran Py x Ran Py — A, (z,y) —< xa, [oy1 >

is hermitian and its radical vanishes [MA&]. It can be represented by the matrix
A = _PO(Pl — P2)71P2[0P1(P1 — Pg)ilpo c Mgn(A) .

Since A is the composition of projections and invertibles, the range of A is closed,
thus the restriction of A to the range of F, is invertible. Hence the hermitian form
h is non-singular and defines an element in Ky(.A) [Bad].

Definition 1.4.5. The Maslov index T7(Py, P1, Py) of a triple of pairwise transverse
Lagrangian projections (Po, P, Py) is the class of the hermitian form h in Kq(A).

We can express the Maslov index in terms of A as follows:
T(Fo, P, P2) = [11zs03(A)] — [L1z<03(A)] € Ko(A) .

Note that an even permutation of the projections leaves the Maslov index unchanged
whereas an odd permutation turns it into its negative.

Proposition 1.4.6. For i = 0,1,2 let P; : [0,1] — Ms,(A) be continuous paths
of Lagrangian projections such that P,(t) — P;(t) is invertible for all i # j and all
te[0,1].

Then the Maslov index T(Py(t), P1(t), P2(t)) does not depend on t.

Proof. The selfadjoint element A(t) € My, (A) defined by (Py(t), Pi(t), Pa(t)) as
above depends continuously on ¢ for all ¢ € [0,1]. It follows that the projections
Liz>01(A(t)) and 1,<01(A(t)) also depend continuously on ¢, thus their K-theory
classes are constant. O

Let A = C(B) for some compact space B and let (Fy, P1, P,) be a triple of pair-
wise transverse Lagrangian projections in Ms, (C(B)). Let (Lo, L1, Ly) be the cor-
responding triple of Lagrangian subbundles of B x €*". Then the Maslov index
bundle [L§] — [Ly] defined in §T2A corresponds to 7(Py, P, P,) under the canonical
isomorphism K°(B) = Ky(C(B)).

Now we study in more detail the Maslov index of a pair (P, Py, P,) with Py = P;.
The general case can be reduced to that case by lemma [23.

The Cayley transform yields a bijective map from the space of selfadjoint elements
in My(A) to space of projections transverse to Ps, namely

1 at
aHP(a)::%(a_H “1”) )

a—1
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Lemma 1.4.7. Let ay,ay be selfadjoint elements of M, (A). Then P(ay) and P(as)
are transverse projections if and only if a; — ao is invertible.

Proof. Let U := % ( Lol ) . Then it holds

V21l -1

10, 1

2 i
UP(a;)U* = (aZ4+1)"" ( 4T ) .

Now P(a;) and P(as) are transverse if and only if
(a2 + 1)UP(a1)U* — (a3 + 1)U P(ay)U*
is invertible and this is the case if and only if a; — a9 is invertible. O

Lemma 1.4.8. Let (Ps, P, P,) be a triple of pairwise transverse projections and let
ar,as € My,(A) be such that P, = P(a;), i =1,2. Then it holds:

1. There are continuous paths Py, Py : [0,2] — My, (A) such that Ps, Pi(t), Py(t)
are pairwise transverse for all t € [0,2] and such that Py(2) = P(2p™ — 1) and
P5(2) = P(1 = 2p") with p* := 1{z=0p (a1 — a2).

2. It holds
T(Psu P, P2) = [1{x>0}(a1 - Clz)] - [1{x<0}(a1 - CLQ)] .

Proof. 1) For t € [0,1] define a1 (¢) := 3(t(a1 —a2) + (1 — t)a;) and as(t) := $(t(as —
a;) + (1 — t)ay). Then ai(t) — as(t) = a3 — ay is invertible, thus the projections
P(ay(t)) and P(az(t)) are transverse. Furthermore a;(0) = a1 and a1(1) = a3 — ag
whereas ay(0) = ay and as(1) = ag — ay.

Let p* := lpzs01(ar — ag). For t € [1,2] let ay(t) be a path of invertible selfadjoint
elements with a;(1) = a1 — as and a1(2) = p™ — (1 — p™) and let ay(t) = —ay(¢).
Then the paths P(aq(t)) and P(az(t)) satisfy the conditions.

2) By 1) and prop. @ it holds 7(Ps, Py, ) = 7(Ps, P(2pT — 1), P(1 — 2p™)).

Note that the Cayley transform of 2p* — 1 is i(2p™ — 1). By computing the matrix
A one sees that it holds 1{z~0y(A) = p™ and 1,01 (4) = (1 —p™). O
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Chapter 2

The Fredholm operator and its
index

2.1 The operator D on M

2.1.1 Definition of D

Now we come back to the geometric situation described in §I.

We tensorize the bundle E with the C*-algebra A in order to get an A-vector bundle
[MIH]. Furthermore for i, u € INy we consider the bundle E ® Q«,.A; of right Q< A;-
modules. Keep in mind that E can be trivialized on M via a global orthonormal
frame. Thus we do not need a theory of Banach space bundles in this context.

Parallel transport is defined on £ ® A resp. £ ® ngAi .

The hermitian metrics on £ extends to an A-valued scalar product < -,- > on EFeA
and to an Q<,.A;-valued non-degenerated product on £ ® (2<,A; (see §5=23 for this
notion).

By the trivialisation of E|p fixed in §0 we identify (E|r ® A, I), for x € F with
(A% Iy @ (—1y)) as a Hilbert A-module with a skew-hermitian structure, and (EF ®

Qcp Ay, for € F with (Qc,A0)* as a right O, A;-module with an Q< ,.A;-valued
non-degenerated product.

For a triple R = (P, Py, P») of Lagrangian projections of A?? we define the following
function spaces:

Let

Co(ME®QuAi) = {f € C'M.E® QA | (P& P)f(x) = f(z)
for x € 8¢MU8¢+3M, 1= 0, 1,2} .

Define for £ > 1 by induction
CE(M,E @ Qe A;) = {f € C¥(M,E® QA | f,0uf € CEHM, E® QO A}
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and
CF(M,E® QA = [ CH(M, E® Qg Ay) .
keIN

Let these spaces be endowed with the subspace topologies.

Further suffixes, like ¢ or 0 ..., have their usual meaning.

Furthermore we introduce Schwartz spaces on M:

Let r >0, 0<b< 1.

Let {¢x }xes be a partition of unity subordinate to the covering U(r,b). For k € Z/6
the embedding Fy(r,b) < Z; and the trivialisation of F|r induce a map

COO(M FE (24 Q<#.A ) — COO<Zk, (Q<# ) ) f — ¢kf

First for k € Z/6 we define the Schwartz space
S(Zi, Q2 Ai)*?) = S(R) @x C=([0, 1], (i) ™) -

Let now S(M, E ® Q<,.A;) as a vector space be the largest subspace of C®(M, E ®
Q<,A;) such that for all k € Z/6 the maps

S(M,E ® Q< A) = S(Zi, Qe A, [ duf

are well-defined, and let the topology on S(M, E ® Q- <, Ai) be the weakest topology
such that these maps and the embedding into C*(M, E ® quAi) are continuous.

Then S(M, E ® QSpAi) is a Fréchet space. It does not depend on the choice of r
and b.

Let Sp(M, E ® Q<,A;) be the space S(M, E ® Qe A) NOR (M, E @ Q< A;) with
the topology induced by S(M, E ® QSMA,).

Let L*(M,FE ® A) be the completion of C>°(M, E ® A) with respect to the norm
induced by the A-valued scalar product

< f,g >::/M < f(x),g9(x) > dx .

It is a Hilbert A-module. (For fixing notation a short summary about Hilbert A-
modules is given in §5T1.) By lemma any orthonormal basis of the Hilbert
space L?(M, E) is an orthonormal basis of L?(M, F ® A) and hence L*(M, E ® A)
is isomorphic to I2(A).

Now we are able to define the main object of our inquiry:

Let (Py, Py, P2) be a triple of pairwise transverse Lagrangian projections of A%? with
Pi € Moy(As), 1=0,1,2.

Let D : domD — L*(M,E ® A) be the closure of the Dirac operator dy; with
domain C%.(M, E ® A) for R = (Py, Py, P2) and let DT resp. D~ be the restriction
of D to the sections of E* resp. E~.

Note that D is a symmetric unbounded operator on L*(M, E ® A).
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2.1.2 Comparison with Dy

Fix a triple of pairwise transverse Lagrangian projections (P§ := Ps, P;,P5) with
P;,Ps € Myy(C). Define the operator Dy on L?*(M,E ® A) analogously to the
operator D for R = (P, P;, P;). By [BK] the operator D; restricts to a selfadjoint
operator on the Hilbert space L?(M, F). In this section we will see that the operator
D is unitarily equivalent to a bounded perturbation of D.

Let W € C>*(M,End"E ® A,,) be such that

o« WIW* =1,

W(x)(P; ® P)W(x)* = (P @ P;) for all z € ;M U d;13M with i =0, 1,2,

W is parallel on M \ F' and on a neighbourhood of 0M,

for all k € Z /6 the restriction of W on Fj(0, 1) depends only on the coordinate

k
l’2:

e W commutes with the Clifford multiplication.

The definition of W is motivated by the following result:

Proposition 2.1.1. 1. It holds WDW* = Dy + We(dW*) with c¢(dW*)|p =
c(e2)0e, W* and c(dW*)|an\p := 0. In particular We(dW*) € C*(M,End” E®
Aso).

2. The operator D 1is reqular and selfadjoint.

Proof. 1) For R = (P§,P;,Ps) and f € CH(M,E ® A) it holds (WDW*f)|anr =
(Dsf)|ar\r and

(WDW*f)lp = (Dsf)lr + Wic(e2)0e,, Ws(f1r)
= (Dof)lr +Wele) (0, W) (flr) -

2) The restriction of Dy to the Hilbert space L?*(M, E) is selfadjoint. Hence (1 +
D?) has a bounded inverse on L?*(M, E). It follows that the range of (1 + D?) on
L*(M,E®A) is dense. Thus D, is regular. By an analogous argument the operators
D, 47 have dense range. From lemma B4 it follows that Dy is selfadjoint.

By 1) the operator D is a bounded perturbation of D;. It follows that D is selfad-
joint. Prop. BT 13 implies that D is regular as well. O

The existence of a section W fulfilling the properties above is proved in the following
lemma and proposition:

Lemma 2.1.2. There is a parallel unitary section U € C°(M,EndET ® A.,) such
that UPyU* = Pg = P,
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Proof. By the isomorphism Bt @ A 2 (AT)?® ST (A7) @S~ any A € Moyg(A)
of the form ( g 2 > with a,b € My(A) defines a parallel section of EndE* ® A.
By lemma A3 there is a unitary U € Myy(Ay) of that form such that UP,U*
Ps =P,

o

Proposition 2.1.3. For any0 < b < 1 there is a section W € C*°(M,End" EQA)
satisfying the properties above and such that W is parallel on M\ F(r,b) for allr > 0.

Proof. By the previous lemma we may assume Py = P.
In the following we identify OM x [0, b] with {z € M | d(z,0M) < b}.

Since for ¢ = 1,2 the projection P; is transverse to P, by lemma [ there are
smooth paths W; : [0,b] — Ms4(As) of unitaries with [W;, Io] = 0 such that
W;(0)P; W (0) = P¢ and such that W is equal to the identity in a neighbourhood of
b and constant on [0, 2]. They induce maps W; = 1id xW; : (;M Ui, s M) x [0,b] —
My4(As). The map

UZ(I/T/Z D Wz) : OM x [O, b] — M4d(./400>

can be extended by the identity to a smooth section W € C*(M,End*E ® A.).
By construction W has the right properties. O]

2.2 The operator D; on [0, 1]

2.2.1 Definition and comparison with Dy,
Now we switch our attention to the unit interval.

Let O be the differentiation operator.

For a pair R = ([P, P) of transverse Lagrangian projections with P; €
MQd(Aoo)a j: Oa 17 let

CR([0, 1], (Qeudi)*) = {f € C°([0,1], (<)) | Pf(7) = f(5) for j=0,1} .

Furthermore for £ € IN we define inductively the function spaces

CR(0, 1], (Q<Ai)*)
= {f € C*([0,1], (QeuAi)®) | £, 100f € C}H([0,1], (QeAi)*)} .
Let R )
CJ?ZO([O? 1]7 (QSMAi>2d) = ﬂ OII;([O’ 1]’ (QSMAi)2d) :

The topology on these spaces is the induced topology.
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Given a pair (P, P;) of transverse Lagrangian projections on A% we write D; for
the closure of the operator [40 as an unbounded operator on the Hilbert A-module
L*(]0,1], A??) with domain C%([0, 1],.4%?).

If (Py, Py) = (Ps,1 — P;) then we sometimes write D;_ for Dj.

Proposition 2.2.1. Let Py, P, € Myy(Ax) be transverse Lagrangian projections of
A2 Then for any 0 < z; < x5 < 1 there is U € C*([0,1], Mag(As)) such that

1 UU =1,

2. Uly = 1yU,

3. U(0)PU(0)* = P,

4. U)RU(1)* =1— P,

5. U is constant on [0,x1] and on [x2, 1].

Proof. By lemma there is a unitary Uy € Myy(Ay) with Upgly = I)Uy and
UoPRyUS = Ps. Since Uy P Uj is transverse to Py, we can apply lemma @A to P = P,
and P = 1 — P, in order to get a smooth path of unitaries U; : [0,1] = My(A)
such that U(t) := U, (t)Uy has the right properties. O

Proposition 2.2.2. Let (Py, P) a pair of transverse Lagrangian projections of A%
with Py, Py € Maq(Aw) and let Dy be the associated operator.

1. Let U be as in the previous proposition with U(0)PU(0)* = Ps and
UL)PU)* = 1 — Ps. Then it holds UD;U* = D;, + Uly(0U*) and
Uly(0U*) € C>(]0, 1], M2q(Aw)).

2. The operator Dy is reqular and selfadjoint.
Proof. 1) For f € C%([0,1], A%) with R = (Ps,1 — P) it holds

UD,U*f = UILOU"f
Drf+ U0, U] f
Dr.f + UIL(0U*)f .

2) follows as in prop. EZT. O

2.2.2 Generalized eigenspace decomposition
In the next two propositions we define a decomposition of L?([0,1],.4%¢) in free

finitely generated .A-modules that are preserved by D;. For d = 1 these can be
understood as analogues of eigenspaces of Dj.
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Assume that the boundeary conditions of D; are given by a pair (P, P;) of transverse
Lagrangian projections of A%¢ with Py = P,.

By lemma 273 the general case can be reduced to that case.

1

The transversality of Py and P; implies that 1 — p is invertible. It follows that log p
is defined for log : C\ [0,00) — C .

Let p € My(A) be such that P, = % ( ; p )

Proposition 2.2.3. Assume d = 1.
Then for k € Z the right A-module spanned by the function

filw) = & (( : ) expl(—1 log p + mki)z] + ( ! > exp[(Llogp — mm)

15 preserved by Dy and it holds Dy fi = i fr with A\ := —%ilogp —7k.
The system { fx}rez is an orthonormal basis of the Hilbert A-module L*(]0, 1], A?).

Note that it holds A, fr = fi\e and () C] — 7k, —mw(k — 1)].

Proof. In the following we call a system {a}rez C A square-summable if it is in
*(A).
It holds < fx, fi >= 0.

In order to prove that these functions form a basis we first show that there is an
orthogonal projection onto the closure of their span. This implies that the span is
orthogonally complemented. The second step will be to see that the complement is
trivial. Then the claim follows from prop. BEI20.

The system ‘
{e () =026} iez o

with vy = ( (1] ) , Vo = ( (1] ) is an orthonormal basis of L?([0,1],.4%) by prop.

h | /(.

It holds

<fk7eli> =

S

1
/ exp((F3 logp™ F wki)x) exp(2milz) dx
0

(—1)k exp($% logp*) — 1
Filogp* + mi(2l F k) ’

|
Sl-

hence for any [ € Z and for £+ the system {< fk,eli > }brez 18 square-summable.
Then

Pe?: ::ka<fkael:t>7

kezZ
is well-defined.
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The linear extension of P to the algebraic span of the functions eli has norm one.
It follows that its closure is an orthogonal projection

P: L*([0,1], A%) — span{fy | k € Z} .

It remains to show that the kernel of the projection P is trivial.
Let g = ( gl > € L*([0,1], A%) with < fz,g >= 0 for all k € Z.
2

Hence for all k& € Z it holds

(%) /0 exp((—3 logp* — wki)x) g1 (x) + exp((3 log p* + mki)x)gs(x) dz =0 .

Since exp(—3(logp*) x)gi(x) is in L([0,1],.A), there is a unique square-summable
system {\;};ez in A such that

Z)\lezmlz _ exp(_%(logp*) z)g1() -

lez

Inserting this in (*) and evaluating the integral for k even leads to

1
Ak/2 = / exp((5 log p* + mki)x)go(x)de =0 .
0

It follows |
eXp(%(Ing*) g;>92(q;) = Z(_Al)ef%rzlx )

lezZ

Substituting again and evaluating (x) for k& = 2v 4+ 1 with v € Z, we obtain

1

0 = Z}\l(em’(Z(lfu)*l)x — i)y gy
0 ez
4
= - AN— i
lezz mi(2(l —v) —1)

Note that for any [ € Z the function

2

Z
a:2—C v mi(2(l —v) — 1)

is in [?(C). We claim that {a;};cz is an orthonormal basis of [?(C). Then it follows
that {a;}1ez is an orthonormal basis of 1?(.A) as well, thus \; = 0 for all [ € Z and
hence g1 = g = 0.

The Fourier transform of 5

U
o i r 1)
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is
h(l‘) = —ieiﬂm<1[071/2} (l’) — 1}1/271} (.Z’)) - L2(]1:{/Z) .
From a;(v) = ao(v — ) it follows that the Fourier transform of a; is h(z)e

It holds hh* = 1, hence {h(z)e 2"1*},cz is an orthonormal basis of L?(IR/Z). This
implies that {a;}cz is an orthonormal basis of [%(C). O

—2milx

For general d there is a decomposition of L?([0, 1].4%?) in A-modules of rank d:

Proposition 2.2.4. For k € Z let U, C L?*([0,1],.A%?) be the right A-module
spanned by the column vectors of

1 [ exp[(—35logp + ki)x] )
NG 1 S COO 07 1 7M X Aoo .
V2 ( exp[(%logp_ﬂkl)x] ([0,1], Magxq(Ax))
Each Uy, is a free right A-module of rank d and it holds

L2([0,1], A% = @Uk.

keZ

The sum s orthogonal.
For f € Uy it holds f € dom Dy and

with A\, = —%ilogp — 7k.

Proof. The projections Py, P, € Myy(A) are Lagrangian projections on My(A)? as
we remarked after def .

Let Dy be the closure of Iod on L*([0, 1], My(.A)?) with domain C§([0, 1], Maq(A))

with R = (Py, P). Then it holds D; = ®?D; with respect to the decomposition
L2([0, 1], Ma(A)?) = L*([0, 1], A*)*

induced by the decomposition of a matrix into its column vectors.

By the previous proposition L?([0, 1], M4(.A)?) as a Hilbert M, (A)-module has an
orthonormal basis {fx}rez such that

=
For £ € Z let P, be the orthogonal projection onto the span of f;
in L2([0,1], Mg(A)?). It is diagonal with respect to the decomposition
L2([0, 1], Ma(A)?) = L*([0, 1], A*4).
Hence it holds R
L2([0,1], A*") = @PL3([0, 1], A*) .
keZ

The assertion follows now since P, L?([0, 1],.A??) = U,. The module Uy, is free since
exp[(—1 log p + mki)z] is invertible in My(A) for all z € [0, 1]. O
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Corollary 2.2.5. Let A\ € C. The operator D; — X has a bounded inverse on
L%([0, 1], A%Y) if and only if exp(—2i)) & o(p).

Proof. By the previous proposition L%(]0,1],.4%¢) decomposes into the orthogonal

sum of submodules Uy, preserved by (D; — A), and (D — \)|y, = ( )E)k )E) ) —A
k

is invertible if and only if e7%* ¢ o(p). Furthermore for A\ with e=2* ¢ o(p) the
inverse of (D; — )|y, is uniformly bounded in k. Hence the closure of &, (D;—\)|u,
has a bounded inverse by cor. BT Z2. In particular @, D;|y, is selfadjoint. Since Dy
is a selfadjoint extension of @®;D|y,, it follows that Dy is the closure of @;Dy|y,.
Hence D; — A has a bounded inverse if exp(—2i\) € o(p). O

2.3 The operator D; on the cylinder

Let X =IR,IR/Z. Endow X x [0, 1] with the euclidean metric and a spin structure
and let (x1,x2) be the euclidian coordinates of X x [0, 1]. Let S = ST @& S~ be the
spinor bundle on X x [0, 1] endowed with a hermitian metric such that it is selfadjoint
as a Clifford module and with a Clifford connection. Then ((AT)4 @ (A7)?) ® S is
graded A-vector bundle on X x [0, 1] with an A-valued scalar product induced by
the hermitian metric on S and the standard .A-valued scalar product on A?. Let 0,
be the Dirac operator on the Clifford module ((A")%* @ (A7)*) @ S.

We choose a parallel unit section s of ST and identify ((A7)?® (A7)?) ® S with the
trivial bundle (X x [0,1]) x ((A")?¢ @ (A7)*?) by the isomorphisms
(A @S & (A7) ®8;) = (A7) @ (A7),
(v @ s(x)) ® (w@ic(dey)s(x)) — (v,w) ,
and
(A @) e (A7) ®8]) = (A7) e (A7),
(v ®ic(dry)s(x)) @ (w R s(x)) — (v, w)
for x € X x [0, 1].
Let I = ¢(dx1)c(dxs). It holds I = Iy & (—1j) and furthermore

0z = c(dxy)(0p, — 10s,) -

We associate an unbounded operator Dz on L*(X x [0, 1], A%) to a pair (P, P;) of
transverse Lagrangian projections of 42! with P, € My4(As), © =0,1: Let Dy be
the closure of 07 with domain

{feCx(X x[0,1], (A)*) | (P& P)f(x,i) = f(z,i) forallz € X, i =0,1} .

As defined in §6T3 we write H(Dy) for the Hilbert .A-module whose underlying
right A-module is dom D, and whose A-valued scalar product is < f,¢g >p,=<
fi9>+<Dzf,Dzg >.
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Proposition 2.3.1. 1. The operator Dy is selfadjoint on L*(X x [0, 1], A*) and
has a bounded inverse.

2. If X = R/Z, then the inclusioni : H(Dy) — L*(IR/Zx|0,1], A%) is compact.

Proof. The proof is as in the family case [BKI:

1) By lemma A3 we may assume P, = P;. Recall from prop. EZA that the
operator D; with boundary conditions (P, P;) induces a decomposition

L%([0, 1], (AT)2) @Uz

leZz

such that for [ € Z there is \; € My(A) with D;f = ( >(\)l /(\) ) f for feU.
I

Let U4 := U, and U, _ := ic(dz1)U; in L*([0, 1], A*). Then

P o, )L*(X)
leZ

is dense in L?(X x [0,1],.4%).

First consider the case X = IR:

For | € Z let 9,4 be the closure of (9,, £ \;) : U +S(R) — U, +L*(IR) and let 9, be
the closure of C(dwl)(@lez,i s) -

The operator Dy is an extension of J,.
We claim that 9, has a bounded inverse on L?(IR x [0, 1], A%).

The Fourier transform on L?(IR) induces an automorphism on U, 1 L*(IR). Conju-
gation by it transforms 0, 4 into multiplication by

i.%lzl:()(\)l ;\)l>

Since o(\;) C IR*, the operator 0, + has a bounded inverse and the norm of the
inverse tends to zero for | — 4oo. It follows by cor. B2 that the closure of
@®;+0,+ has a bounded inverse.

Hence the operator d, has a bounded inverse. In particular it is selfadjoint. Since
Dy is a symmetric extension of 0., it holds Dy = 0.. For X = IR the assertion
follows.

Now we study X = IR/Z. The spaces U; +L*(IR/Z) decompose further into the
direct sum

U+ L*(R/Z) = @Vkl +
keZ

with Vi 4 - 27”"““Ul +. Note that Vj; 1 is isomorphic to A% as a Hilbert A-module.
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Let 8kl,i € B(Vkl,i) be defined by

2mik £ A 0
st i= @t 00f = (TEN 0 )

and let 0. be the closure of C(dxl)(@k,lel,i akl,i) )
The operator Dy is an extension of 0,.

Since |(2mik + \;)~!| tends to zero for k,I — +oo, the closure of @y 10k + has a
bounded — even compact — inverse by cor. BI2Z2 and hence 0, has a compact inverse
as well.

Now 1) follows as above.

Furthermore it follows that for X = IR/Z the operator D,' € B(L*(R/Z x
[0,1],A%)) is compact. This implies 2) since i = D,'D; : H(Dz) — L*(R/Z x
[0, 1], .A%). O

2.4 The index of D"

For an open precompact subset U of M we define Hpy(U, E ® A) to be the closure
of Cx(U,E® A) in H(D) (see §613 for the definition of H(D)).

Note that H(D) is isomorphic to [*(A) as a Hilbert A-module, since L*(M, E ® A)
is isomorphic to [?(A) and since L?(M, E ® A) and H(D) are isomorphic by lemma
BTTA. Recall that the boundary conditions of D are given by (P, Py, P2).

Lemma 2.4.1. For any r > 0 the inclusion ¢ : Hpy(M,, E®@ A) = L*(M,E ® A)
18 compact.

Proof. Let V := {Vj}xer be an open covering of M, such that the index set L is a
finite subset of IN with 1 € L and satisfying the following conditions:

e Vi =M\F(r,1/6);
e for k > 1 there is an isometry Vj, 20, $[x [0, [. In particular Vj, is in the flat

region and has one boundary component.

First we prove that the maps iy : Hpo(Vi, E® A) — L*(Vi, E ® A) are compact for
all k € L.

The compactness of i; follows from the Sobolev embedding theorem ([MH], lemma
3.3).

For k # 1 let i € {0, 1,2} be such that 0V}, C (0; M U 0;13M) and set Py, := P;. Let
Dy, be the operator Dz on the bundle (IR/Z x [0, 1]) x A*® with boundary conditions
given by (P, 1 — Fy).

Since 4y factorizes through the map H(Dy) — L*(IR/Z x [0,1],.A*®) and since this
map is compact by prop. B2, the map i, is compact as well.
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Let {¢x }rer be a smooth partition of unity subordinate to the covering V such that
for all z € OM and k € L it holds 0.,¢r(z) = 0. Since multiplication with ¢y, is a

bounded map from Hpy(M,, E @ A) to Hpy(Vi,, E® A) and since i = Y iy, the
keL
inclusion ¢ is compact. O

Let H(D)* be the subspace of H(D) containing all even elements.

Proposition 2.4.2. The operator
Dt H(D)" = L*(M,E~ ® A)
s a Fredholm operator.

Proof. We apply prop. BIZ4: By constructing a parametrix for DT we show
that D" is Fredholm in the sense of Mis¢enko/Fomenko. Then it follows Dt €
B(H(D)*,L*(M,E- ® A)) from lemma BT, hence lemma ETR implies that D"
is Fredholm.

The construction of the parametrix is analogous to the construction in the family
case [BKI):

Choose a smooth partition of unity {@}res subordinate to the covering U(0, 1)
defined in §T and a system of smooth functions {~x}res on M such that for all
k € J it holds

o suppyx C U and vedr = Px,
e J.,71(7) =0 = 0.,dx(z) = 0 for all x € IM.

Define local parametrices Q) of D on U, as follows:

By ST the set Uy, is a subset of Z; for k € Z/6. Let Dy be the operator on
L2(Zy,, A%) associated to (Pgmods, Pk+1)moa3) as defined in §Z3. By prop. 223 it
is invertible, hence we can set

Qr = Dy : L*(Z,, A*) — H(Dg,) .

Since the symbol of D is elliptic and since Ug, is precompact, there is a parametrix
Qa : L*(Up, FE®A) — Hpo(Us, E®A) such that DQg —1 resp. QgD —1 is compact
on L*(Ug, E ® A) tesp. Hho(Us, E ® A) [MH]. Furthermore Qg can be chosen to
be an odd operator on L?(Uyg, E @ A).

We claim that
Q:=> WwQitr: L*(M,E® A) — H(D)
keJ
is a parametrix of D. Since @ is odd, it then follows that Q= : L*(M, E~ ® A) —
H(D)" is a parametrix of DT.

In the following calculations the operators Dy and the restriction of D to U, are
denoted by D as well. Let ~ denote equality up to compact operators.
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On L*(M,E ® A) it holds

DQ—1 = > [D,wQrdx+ > wDQuor — 1

keJ keJ

~ Z c(dy)Qrdr -

keJ

Since c(dvy,)Qry. is bounded from L?*(M, E ® A) to Hpy(M,, E® A) for any k € J
and 7 > 0 big enough, c¢(dy;)Qr¢r is a compact operator on L*(M, E ® A) for any
k € J by the previous lemma. Hence D@ — 1 is compact.

The proof that @) is a left parametrix of D is similar:
On H(D) it holds

QD—1 = Y QD é] + Y wQiDey — 1

keJ keJ

~ Z W Qre(dor,) -

keJ

Here c(d¢y) : H(D) — L*(Uy, E ® A) is a compact operator by the previous lemma
since supp c(d¢y) is precompact for all k € J. Since vQ : L*(Uy, E ® A) — H(D)
is bounded, the operator QD — 1 : H(D) — H(D) is compact. O

Lemma 2.4.3. Let Py, P, P> : [0,1] — Masq(.A) be continuous paths of Lagrangian
projections that are pairwise transverse at any t € [0,1], and let Dy be the closure of
Om on L*(M, E®A) with domain O,y (M, E®A) with R(t) = (Po(t), Pi(t), Pa(t)).
Let ind D;" be the index of the Fredholm operator D, : H(Dy)™ — L*(M,E ® A).
Then 1t holds

ind D =ind D} € Ky(A) .

Proof. There is a continuous path of unitaries [0, 1] — C*°(M,EndEt ® Ay), t +—
Wy, such that WD W; = D} + Wye(dWy). By prop. BII3 it holds D +
Wie(dW}) € B(H(D,)",L*(M,E~ @ A)). Hence the family D} + W;c(dW}) :
H(D,)" — L*(M,E~ ® A) is a continuous path of Fredholm operators. By prop.
BT it holds ind Wy D§ Wy = ind W1 Dy Wy, The assertion follows. O

Proposition 2.4.4. The index of D% : H(D)" — L>(M,E~ ® A) is
ind Dt = T(Po, 7)1,7)2) S Ko(A) .
Proof. The argument is analogous to the one in [BKI.

By lemma T2 we may assume Py = F.

Let a; := zgji € Ms4(A). Then in the notation of §IAA it holds P; = P(a;), j =
1,2.

Let p* = 1o (a1 — a2).
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From lemma IZ3 it follows 7(Py, P1, P2) = [p*] — [1 — p*] € Ko(A).

Furthermore by lemma AR there are continuous paths Pp, P : [0,2] — My4(A) of
Lagrangian projections with P;(0) = P;, j = 1,2, further with P;(2) = P(2p* — 1)
and P,(2) = P(1—2p™) and such that P, P;(t), P»(t) are pairwise transverse for all
t€10,2].

For t € [0,2] let D; be the Dirac operator on L*(M,FE ® A) whose boundary
conditions are given by the triple (Ps, Pi(t), P5(t)). The previous lemma implies
ind DJ = ind D5 .

We show that the index of Dy equals [p*] — [1 — pT]:
11 1 —i 1
LetQ0=%<1 1)€M2(®)’Q1:%(i 1>andQ2:%(_i 1)-

It holds Py(2) = (Q1 ®p") @ (Q2® (1—p™)) and P(2) = (Q:@p1) @ (Q1® (1 —p*))
with respect to the decomposition

EfoA=Sep Ao (S®(1-pH)A").

The Dirac operator dys respects the decomposition. By [BE] the Dirac operator
associated to the bundle (C* @ €~) ® S has index 1 if the boundary conditions are
given by the triple (Qo, @1, @2), and index —1 if the boundary conditions are given

by (Qo, @2, Q1). It follows

ind Dy = [p*] —[1—p*].

2.5 A perturbation with closed range

Choose an orthonormal basis {1; };e;v € L?(M, E) such that ¢; € C°(M, E~) and
supp®; € M\ OM for all i € IN. By lemma it is an orthonormal basis of
L*(M,E~ ® A) as well.

Since D7 is a Fredholm operator, there is a projective A-module P C L*(M, E-®.A)
and a closed A-module @ C Ran D% such that P ® Q = L*(M,E- ® A). By
prop. B33 there is N € IN such for Ly := span{¢; | i = 1,..., N} it holds
Ly + P =L*M,E-®.A). In particular it follows

Ly +Ran Dt = L*(M,E- ® A) .
Let M’ := M U % be the disjoint union of M and one isolated point. Let E'" be
the hermitian vector bundle E U (x x v ) on M’ where we endow VN with the

standard hermitian product, and let £’ be the hermitian bundle £~ U(xx {0}). Let
E' = E'"®E'~. Extend D by zero to a selfadjoint odd operator D on L*(M', E'®A).

As D is regular, D' is regular as well.
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Furthermore D’ : H(D') — L*(M', E' ® A) is a Fredholm operator and it holds
ind D" = ind D* + [A"] .

Let e, € LA(M',E'), k=1,...,.N, with ex(x) =0 forz € M, k=1,...,N, and

Define the finite integral operator K on L*(M', E' @ A) by

N

Kf 3:Z€k<¢kaf>+¢k<ek,f>-

k=1

Since K is an odd selfadjoint compact operator, D’ + pK is selfadjoint and odd and
for p € R it holds

ind(D'" 4+ pK*) =ind D' .
Furthermore D’ + pK is regular by prop BT 13.

By construction D't + pK ™ is surjective for p # 0. Hence by prop. EEI I3 and prop.
BT T3 its kernel is a projective submodule of H(D’)*, and the kernel of D'~ + pK~
is trivial.

Set D(p) := D' + pK.

Proposition 2.5.1. For p € R the operator D' + pK™* is a Fredholm operator.
For p # 0 it holds

ind D¥ = ind(D"* 4 pK*) — [AV] = [Ker D(p)] — [AV] .

From now on we write D, E, M for D', E', M' and we extend the operator Dy by
zero to our new manifold M. Furthermore we redefine the open covering U(r,b)
from §0 by adding the isolated point to the set Usg,.
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Chapter 3

Heat semigroups and kernels

3.1 Complex heat kernels

In this section we recall properties of the heat kernels associated to the Dirac oper-
ators on complex vector bundles.

3.1.1 The heat kernel of e 7%

Since Dy, is selfadjoint on L*([0, 1], €*%), the operator —D? generates a semigroup
e~tPL on L2([0,1], €27).

In this section we determine the corresponding family of integral kernels by using
the method of images (see [MH], 3.7) and study its properties.

The space L?(]0, 1], ©**) decomposes into an orthogonal sum
L2([0,1), P,C*) & L*([0,1], (1 = P,)C*)

and the semigroup e~*? 7 is diagonal with respect to this decomposition.

We define a right inverse
“: LA([0,1], €*Y) — L*(IR/AZ, C*%)
of the map
L*(IR/4Z, C*") — L*([0,1], €%, f— flo.

by requiring that the image of L2([0, 1], (1 — P,)C*?) resp. L?([0, 1], P,€*%) consists
of functions that are odd resp. even with respect to y = 0 and y = 2 and even resp.
odd with respect to y =1 and y = 3.

Since for R = (Ps,1 — Ps) it holds

C([0,1],€*) = Cpo([0, 1], P,C*) @ ([0, 1], (1 — P,)C*)
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with
Cre([0, 1], P,C*)

= {feC™([0,1], P,C*) | (i0)*f(1) =0, (i0)***'f(0) = 0 Vk € Ny}

and
C([0,1], (1 - P,)C*)

{f € C>=([0,1], (1 — P,)T*) | (i0)* f(0) = 0, (i0)** f(1) = 0 Vk € Ny} ,
the embedding ~ maps the space C% ([0, 1], €**) into C*(IR/4Z, C*%).
It intertwines the operators D? on C3([0,1], C**) and —9? on C*(IR/4Z, C*?).

It is well-known (see [dH], 3.7) that the heat kernel for the holomorphic semigroup
on L*(IR/4Z) generated by 0? is

(z— )2
H(t,x,y) = (4nt)” Z e
keZ

Hence for f € L*(]0, 1] (1 — P,)C*) and z € [0, 1] it holds
(e Phf)(x) = (€ [)(x)
- / Hit.o.) iy + [ Hta,)f2 = )iy

T / H(t, 2. y)(—f(y — 2))dy + / H(t,,y)(—F (4 — y))dy

Thus the action of e~*"%s on the space L2([0,1], (1 — P,)C%) is given by the scalar
integral kernel

Analogously we conclude that the action of e *P% restricted to L2([0,1], P,C*%) is
given by the integral kernel

This yields the integral kernel k; of e~ Di,.

In the following we write C'%(]0, 1], M24(C)) for the subspace of those functions in
C>([0,1], Myq(C)) whose column vectors are in C%([0, 1], C*).

Lemma 3.1.1. The map
(0,00) = C>([0, 1], CF ([0, 1], M2a(C))), t = (y = ksl y))

18 smooth.

For ¢,¢ € C>([0,1]) with supp¢ N suppty = (O the map t (y —
o(ke(-,y)¥(y)) can be continued by zero to a smooth map from [0,00) to
COO([Ov 1]7 CIO%O([Oa 1]7 M2d(®)))
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Proof. This follows from the corresponding well-known properties of H. m

Lemma 3.1.2. Let m,n € INy. Then there is C' > 0 such that for all z,y € [0, 1]
and all t > 0 1t holds

m+4n+1 70(17?4)2

1070y ke, y)| S C(A+7 2 ) (e a) .

Proof. This follows from the explicit formula of H above. When estimating the
derivatives we take into account that for any m € IN the function (z,y,t) —

—y)2m _(@=y)? .
(J”t+)2e’ % can be continuously extended by zero to t = 0. O]

3.1.2 The heat kernel of e 7%

The operator D, that was defined in §ZT2 acts on the Hilbert space L*(M, E) as a
selfadjoint operator.

tD?

In this section we investigate the integral kernel of e after having proved its

existence.
Let Z = [0,1] x IR.

Let Dz be the operator defined in §23 with boundary conditions given by a pair
(Py, P1) with Py, P, € Myy(C). Then Dy is selfadjoint on L?*(Z,C*?). We study
the semigroup e *P7 on L?(Z, €*%) as well, since later we will compare e~*”% on the
cylindric ends with e tP% for appropriate boundary conditions.

Since the proofs are standard, we only sketch them.
Note first that a solution w : IR — dom Dy of the initial-value problem

d

) = iDsu(t), w(0) = f

with f € C%.(M, E) is unique, and also a solution of the corresponding problem for
Dy, this follows from an energy estimate.

Lemma 3.1.3. For Dy on L*(M, E) it holds:
If f € C3.(M, E), then for any x € supp(eP= f) it follows d(x,supp f) < |¢].
An analogous result holds for Dy on L*(Z,C*?).

This property is called “finite propagation speed property”.

Proof. We use a cutting-and-pasting argument.

For j € Z/6let V; :={x € M | d(xz,0;M) < 3} and let W := M \ OM. These sets
cover M.

There is an oriented isometric embedding V; < IR? mapping Vi to {x2 > 0} and 0V}
to {x2 = 0}. The operator dy; on V; extends to a translation invariant differential
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operator 2 : C2(IR?, C*) — L*(IR?, €*?). Let D2 be its closure as an unbounded

c

operator on L?(IR?, C*%).
We apply the method of images in order to obtain an embedding

T CR(V;, E) = CF(R?, C*)

intertwining the operators D, and Dp2:
Let

C (V 7DSmodBEHL)
{f € CE(V;, P oasE™) | (21 f)(x) = 0, Vk € INg, Vo € O;M}

and

C(Vi, (1= Pjinoas) ET)
{f € C2(V;, (1= Pjucas) ET) | (02 f)(x) = 0, Vk € No, Vo € O;M} .

Then it holds
Clo%oc(‘/b EJr) = C'l (V 7Dsmod?y ) ® Cfo(‘/Ja (1 - ;mod?y)EJr) )
and

CIO{():(V;’ E_) = C(el)cl (V Psmod?) ) D 6(61)07?0(‘/}’ (]' - ;IIlOd3>E+) .

For f € CZOO(V Psmod?) ) resp. f € C;")O(V;? (1 o ;mod3)E+) we define f by first
extending f by zero to the half plane {z5 > 0} and then reflecting such that fis
even resp. odd with respect to {zy = 0}.

For f € C%.(V;, E7) we set f := ic(ey) (ic(er) f).

For Dpe the finite propagation speed property holds. Hence the assertion of the
lemma holds for all f € CF.(V;, E) with supp f C {z € M | d(z,9;M) < £} and
for [t] < =

For f € C(W, E) with supp f C {x € M | d(z,0M) > &} and for [t| < 75 the
assertion holds by the standard theory of hyperbolic equatlons on open subsets of
IR?.

Since any f € C°(M, E) can be written as f = fyy+ fo+. .. f5s with fyr € C(W, E)

and f; € Cx.(V;, E), the assertion holds for any f € C°(M, E) and for |t| <
and by the group property of ePs it follows for all ¢t € IR.

167

The proof for D is analogous. O

For k € INy let H*(C, D,) be the Hilbert space whose underlying vector space is
dom D* and whose scalar product is given by

SIS
M\?r

< fog>mi=< (1+D?2f (1+ D?2g

Define H*(C, D) analogously.
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Lemma 3.1.4. Let k € IN, k > 2.

1. There is an embedding H*(C, Dz) — C*=2(Z, C*?).
2. There is an embedding H*(C, Dy) — C*2(M, E).

Proof. We sketch the proof of 2), the proof of 1) is analogous.
Let D2 be as in the previous proof.

For fixed » > 0 the constants in the Garding inequality for the elliptic operator
(14 D;2)* on balls B,(x), = € IR?, can be chosen independent of x.

Since for j € Z/6 the embedding C52(V;, E) — C>(IR? €*?) that was defined in
the previous proof intertwines the Dirac operators Ds on Cf.(V;, E) and Dy2 on
C=(IR?, €*%), the Garding inequality for the operator (1+D?)* on balls By j5(x) C M
with x € OM holds with constants independent of x as well.

Since M is of bounded geometry we can also find global constants for the Garding
inequality for (1+ D?)* on balls B,(z) C M not intersecting the boundary and with
r small enough.

Then the assertion follows from the Sobolev embedding theorem on balls by standard
arguments. ]

Corollary 3.1.5. The operators e *Pz on L*(Z,C*) and e~'P5 on L*(M, E) are
integral operators with smooth integral kernels.

Proof. This follows from the previous two lemmata (see [Rd], lemma 5.6). O

Lemma 3.1.6. Let f : [0,00) x [0,00) — IR be a function and assume that for any
g,0 > 0 there is C' > 0 such that for all r > € it holds

(r—e/2)?

flr,t) < Ce Gt

Then for all £,0 > 0 there is C > 0 such that for all v > ¢ it holds
flr,t) < Ce @

TR 1 2
Proof. Choose 0 < a < 1 with ﬁa(/lz > 5 and let m > 2.

Then there is C' > 0 such that for all » > ¢ it holds

(r—e/m)?

f(r,t) < Ce GH@T |

It follows
(1—a)7‘2 T 2¢e (5/”7’L)2
flrt) < Ce @7 s (ot m) o~y
r2
< (e @+r |
In the last step we used the fact that 57y (—ar + 2) <0 forr>e. O
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Lemma 3.1.7. Let N be closed spin manifold resp. let N = M, Z. If N is closed
let Ex be a Clifford module on N and let Dy be the associated Dirac operator. If
N = M resp. N=Z, thenlet Ey = E resp. Ex = Z x C* and let Dy = D, resp.
Dy = Dy. Let k; be the integral kernel of e 0%

For any €,6 > 0 there is C' > 0 such that for allt >0, r > € and x € N it holds

'r2
/ |ke(z,y)|Pdy < Ce™ @t |
N\B: ()

Analogous estimates hold for the partial derivatives in x and y with respect to unit
vector fields on N.

Proof. Let k € 2IN with k > @.

Let S(z,¢) = {u € C*(B.(z), Ex) | (1 + D%) 2ul| <1}.

Then by the Sobolev embedding theorem resp. by lemma BT there is C' > 0 such
that for any = € N it holds

P2
/ k@ y)Pdy <C sup [l PhulZ e -
N\B;(z) ueS(z,e/2)

As in the proof of [CGT|, prop. 1.1, it follows:

(e 9]

d
/ |ke(z,y))Pdy < Ct'/2 / (1 4+ (- )2)R/26=5%/4| g
N\B;(z) ids
r—e/2
-1 d 2\k/2 —s'2/4 /
=C [(1+1 (@)) e |ds’ .
r—e/2
v
Thus there is [ € IN such that it holds
/ k(e y)[*dy < CL+7) / (1+ s")e™*"/ds’
N\B(z)
r—e/2
vt
rT—€ 2
< O(1+t e Gromw
_(r—e/2)?
< (e G+t

Then the assertion follows by applying the previous lemma to f(r,t) :=
SEB fN\BT(:c) Ky (, 3/)’261?/- O
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Lemma 3.1.8. Let k; be as in the previous lemma.

For any €,0 > 0 there is C' < 0o such that for all x,y € N with d(x,y) > ¢ and all
t > 0 it holds ,
)

d(z,
ke, )| < Ce o

Analogous estimates hold for the partial derivatives in x and y with respect to unit
vector fields on N.

Proof. Let S(y,e) and k € 2IN be as in the proof of the previous lemma. By the
Sobolev embedding theorem resp. lemma B4 there is C' > 0 such that it holds for
all > ¢ and all z,y € N with d(z,y) >

k12
ki(z,y)] <C sup (1+ D3)ze PNullRnp, o) -
u€S(y,e/4)

Analogously to the proof of the previous lemma it follows

r—5/2)2

(r—e/2)%
|ki(x,y)| < Ce™ @+or

Then the result follows from B8 with f(r,t) := sup |ke(x, ). O

z,yeN: d(z,y)=r

For the next lemma assume that U C M is an open set for which one or both of the
following properties hold:

1. U is precompact and U N OM = 0,

2. or there is k € Z /6 such that U C F(0, 1).

In the first case there is a compact manifold N and a hermitian Clifford module
Ex on N such that there is an isometric Clifford module isomorphism E|y — Ey,
whose base map is an isometry. We identify E|y with its image in E. Then Dy
coincides with Dy on U.

In the second case U is a subset of Z;, by §Ill. Let Dy, be the operator D  on Z, x 4
with boundary conditions given by (Prmods, P(k+1)mod3). Then Dy coincides with
Dy on U.

k

Lemma 3.1.9. Let U be as in 1) resp. 2). Let k; be the integral kernel of the heat
semigroup of Dy on M and let k; be the integral kernel of the heat semigroup of Dy
resp. Dy, .

For any T > 0 and €,0 > 0 there is C > 0 such that for all 0 <t < T, r > ¢ and
z,y € U with B,(x) CU and B,(y) C U it holds

,’,2
\ki(z,y) — ki(x,y)| < e @i .

Analogous estimates hold for the partial derivatives with respect to unit vector fields

on U.
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Proof. The notation is as in the proof of lemma BT4.
The estimate follows from
ki(zy) — ky(z,y)] = sup  sup | < g e P> — < g e PRy > |
PeS(z,e) YeS(y,e/2)

< Otz sup sup | < ¢, / _82/4t e'*Pr — PN )y > |
p€S(z,e) YES(y,e/2)

/ | k —32/4t|

r—e/2

IN

Here we used that it holds (e*Ps — P~ )oh = 0 for |s| < r —&/2 by the finite prop-
agation speed property (lemma BT33) and the uniqueness of solutions of hyperbolic
equations. ]

3.2 The heat semigroup on compact manifolds

Let B be a Banach algebra with unit.

Let N be a closed spin manifold of dimension n. Let Ey be a hermitian Clifford
module on N that is trivial as a vector bundle and let Dy be the associated Dirac
operator.

Let ky € C°(N x N, Ey K Ey) be the induced heat kernel.

According to cor. BZZA the heat kernel defines a family of bounded operators on
L*(N,Eyxy ® B). The operators are smoothing, thus they restrict to a family of
bounded operators on C™(N, Ey ® B) for any m € INg. In order to show that the
family extends to a holomorphic semigroup we have to study its behaviour for small
t.

We define — D3 as a closed operator on L*(N, Ex®B) by requiring that C*°(N, Ex®
B) is a core of —D3,.

For ¢ — 0 the heat kernel can be estimated as follows:
Lemma 3.2.1. Let € > 0 be smaller than the injectivity radius of N and let x :

[0,00) = [0,1] be a smooth monotonously decreasing function such that x(r) =1 for
r<e/2 and x(r) =0 forr >ec.

Let A be a differential operator of order m on C*°(N, Ey).
Then there is C' > 0 such that for all x,y € N and for allt > 0 it holds:

|Auke(,y)| < C + CL=mEmRemd@D 3 (2 ) N d(x,y)'ts .
i=0
Proof. This follows from [BGM]|, prop. 2.46, and its proof. O
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Proposition 3.2.2. Let A be a differential operator of order m on C*°(N, Ex ®
B). Then there is C' > 0 such that the action of the integral kernel A k:(x,y) on
L*(N,Ex ® B) is bounded by C(1 +t~™/2) for all t > 0.

Proof. Choose a finite open covering {U, },r of N of normal coordinate patches and
assume that for any x,y € U, the shortest geodesics connecting x and y is in U,,.

Then there are ¢q, ¢y > 0 such that for all v € I and all z,y € U, it holds
Cl|x - y|l/ < d(ilf,y) S 62|x - y'l/ )

where | - |, denotes the euclidian distance on U, defined by the coordinates.
Let {¢,},er be a partition of unity subordinate to the covering {U,},¢;.

Let € > 0 be smaller than the injectivity radius of N and so small, that for any
v € it holds {x € N | d(z,supp¢,) < €} C U,. Then for x as in the previous
lemma it follows

o ()x(d(z,y)) < ¢u(z)x(c1]|z — yl.) 1, (v) -

By the previous lemma there is C' > 0 such that for all x,y € N and ¢ > 0 it holds:

—(n4+m —c2|z—yl|? ) ipi
[Agks(z, )] < CHCE 2N g (@) (e A (o1 |a—g],) D chla—ylit? )10, (1)
=0

veJ

The v-th term of the outer sum is supported on U, x U, and is of the form ¢, (x) f(x—
y)1y, (y) in the coordinates of U, x U, with f € L'(IR") and there is C' > 0 such
that

Ifller < CE2(1 42772

for all ¢t > 0.
The assertion follows now from prop. 223 and cor. B2X3. O

Proposition 3.2.3. 1. The family of integral kernels ki(x,y) defines a bounded
strongly continuous semigroup on L*(N, Ex ® B) that may be extended to a
bounded holomorphic semigroup. Its generator is —D3;.

2. The family of integral kernels ki(x,y) defines a bounded strongly continuous
semigroup on C™(N, Ex ® B) for any m € INy.

Proof. 1) By the previous proposition the action of the integral kernel k;(x,y) on
L*(N, Exy ® B) is uniformly bounded for ¢ > 0. On L*(N, Ey) ® B it converges
strongly to the identity. Thus k;(x,y) induces a bounded strongly continuous semi-
group on L*(N, Ey ® B).

On C*(N, Exy ® B) the action of the generator coincides with the action of —D3; .
Since C*(N, Ex ® B) is invariant under the semigroup and dense in L*(N, Ey ® B),
it is a core for the generator. Hence the generator is —D3;.
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By the previous proposition there is C' > 0 such that on L*(N, Exy ® B) it holds for
all 0 <t < 1:
|D3e™ PN < Ot~ .

Since for t > 0 it holds Ran e *PX ¢ C®(N, Ex ® B) C dom D%, it follows, by prop.
BA3, that e *P~ extends to a holomorphic semigroup.

Since the integral kernel of D%e~*P ~ is exponentially decaying in the supremum-
snorm for ¢ — oo it follows that D?Ve_tDJZV is exponentially decaying as an operator
on L*(N, Exy @ B).

By prop. this shows that the holomorphic extension is bounded.

2) follows from the fact that ki(x,y) defines a strongly continuous bounded semi-
group on C™(N, Ey) by [BGM, th. 2.30, and that C™ (N, Ey®B) = C™(N, En) Q-
B. ]

3.3 The heat semigroup on [0, 1]

3.3.1 The semigroup

Let (P, P,) be a pair of transverse Lagrangian projections of A%? with Py, P, €
Ms4(As) and let Dy be the associated operator on L2([0, 1],.4%¢) defined in §ZZ21.

We now define an action of D; on L2([0,1], (Q<,A:)%Y): Let D;, as an un-
bounded operator on L2([0,1], (Q<,A;)%%), be the closure of I,d with domain
C ([0, 1], (Q<,u4i)*).

We determine the resolvent set of Dy:

Let U € Myy(A) be a unitary with Uly = I)U and URU* = P, and let p €

M;(Ax) be such that
" L p*
UPU* =1 ( ) ) .

The unitaries U and p exist by lemma [Z=3.
Proposition 3.3.1. Let A € C with exp(—2i\) ¢ o(p). Then it holds:

1. The operator Dy — X has a bounded inverse on L*([0,1], (<, A:)?).

2. The inverse (D; — A)™' maps C;%([Ovl]a(fzgufli)mi) isomorphically onto
CHY([0,1], (Q<,Ai)?D) for any 1 € INy.

3. The inverse (D; — N~ maps L*([0,1],(Q<pAi)?Y)  continuously to
C([0, 1], (Q<pAi)™).

Proof. The inverse of Dy — X is given by

(Dr =N f) () = / "1 f(y)dy + / 1N A(y) F(y)dy
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with

§ i p e—2iA(1-y)
Aly)=U m ( pe—Qi/\y o2\ U

It is easily seen that this map fulfills 1),2) and 3). O

We define D; as an unbounded operator on Ch([0, 1], (Q<,A:)%%), | € INy, by set-
ting dom Dy := Cﬁ;l([OA, 1], (Q<,.A))?%). By the previous proposition D; is a closed
operator on C%([0,1], (Q<,A;)%%).

As before Dy is also denoted by Dy, if R = (Ps,1 — Ps).

Now we show that —D? generates a holomorphic semigroup on L2([0, 1], (Q<,.A;)?%)

as well as on C%([0,1], (Q<,A:)?%). This will be done by first proving that -D3
generates a holomorphic semigroup and then applying prop. BEZ211.

Furthermore the knowledge of the resolvent set of —D? yields a norm estimate of
the semigroup e~*P7 for large t.

Lemma 3.3.2. Assume that R = (Ps,1 — Ps).

The operator —Di 1s the generator of a bounded holomorphic semigroup e Pl on

L2([0,1], (Q<pA)*D and on CL([0,1], (Q<As)??) for any 1 € Ny,

Proof. Let k, be the integral kernel of e "%« (see §800) and let S(¢) be the induced
integral operator.

By lemma BT2 and prop. BZ3 the family S(f) is uniformly bounded
on L*([0,1], (Q<,A;)*Y) for t > 0 and the family D7 S(¢) is bounded on
L2([0,1], (Q<,uA0)*) by C(1 4t H)e " for some C,w > 0 and all t > 0,

Since S(t) converges strongly to the identity on L2([0, 1], €*%) ® Q< ,.A; for t — 0, it
is a strongly continuous semigroup.

By prop. BE233 it extends to a bounded holomorphic semigroup.

The kernel H from §ET1 defines a bounded holomorphic semigroup on
CH(R/4Z, (Q<,A;)?*) as well by prop. BZ3. This implies that S(t) restricts to
a bounded holomorphic semigroup on C%([0, 1], (Q<,.4;)*?). In particular it follows
that O ([0, 1], (Q<,A;)%?) is a core of the generator of S(t) on L*([0, 1], (Q<,A;:)%).
Thus the generator is —D7 . O

Proposition 3.3.3. The operator —D? generates a holomorphic semigroup e~ tP1

on L2([0,1], (< As)?Y) as well as on CE([0,1], (Q<,.A)?3) for all k € Ny, and there
are C,w > 0 such that for all t > 0 it holds

||€—tD%|| < Cle—wt

on L2([0, 1], (<, 4)*) and on CK((0, 1], (Q<,Ai)*).
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Proof. The following arguments hold on L2([0,1], (Q<,A4;)%%) as well as on
CR([0,1], (2<,4:)*):

The operator Dy —U*D; U is bounded by prop. ZZZ2. Since U*D; U has a bounded
inverse by prop. BZ31 and —U *D%SU generates a bounded holomorphic semigroup
by the previous lemma, we can apply prop. EZI0: Tt follows that —D? generates a
holomorphic semigroup.

By prop. BX0 there is w > 0 such that the spectrum of D? on L2([0, 1], (Q<,.A:)%%)
as well as on Ch([0, 1], (Q<,.A:)?%) is in Jw, oo, hence by prop. there is C' > 0
with ||e~*PT|| < Ce ! . O

3.3.2 The integral kernel

Let Dy and let R = (Fy, P;) be as in the previous section.

By cutting and pasting we construct an approximation of the semigroup e~tDF:

Let Dy, be defined analogously to D; with boundary conditions given by (Fp, 1 —
Py), and let D;, be defined analogously to D; with boundary conditions given by
(1— P, P).

From lemma and §BI it follows that eitD%k, k = 0,1 is an integral operator
for t > 0. Let ef(x,y) be its integral kernel.

Let ¢ : [0,1] = [0,1] be a smooth function with supp ¢ C [0, 5[ and supp(1—¢o) C
]%, 1] and let ¢y := (1 — ¢). Furthermore choose smooth functions 7o, : [0, 1] —
[0, 1] with

b ’7k|SUPp¢k =1, k=01,
e suppy, Nsuppgr =0, k=0,1,

e supp7o C [0, g] and suppy; C [g, 1] -

Let

er(x,y) = v0(x)e} (z,y)do(y) + 1 (@)e; (2, y)d1(y)
and write F; for the corresponding integral operator. Set Fy := 1.
Then E, is strongly continuous on L2([0, 1], (Q<,.A4;)%%) and on C%([0, 1], (<, A:)?%)
at any ¢t > 0.
For f € C%([0,1], (Q<,A)?%) the function [0,00) — L2([0,1], (Q<, A1), t —
E;f is even differentiable. Hence by Duhamel’s principle (prop. BZ3) it holds in
L2([0,1], (Q<uAi)*) for f € CF([0,1], (Q<,Ai)):

t
(x) e Pif_FEf= —/ e-@—S)D?(di + D?E,f ds .

0 s

In the next proposition we apply this equation: We prove that e~ 07 is an integral
operator with smooth integral kernel for ¢ > 0 by showing that the right hand side

is an integral operator with smooth integral kernel.
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Before we fix some notation: In the following the norm on Ms4(A;) is denoted by
Rt

Furthermore C%(]0, 1],M2d(flguv4¢)) with & € INg resp. k = oo means subspace
of C*([0,1], M24(2<,.A;)) containing those functions whose column vectors are ele-
ments of C%([0, 1], (2<,.A4;)*). Then any bounded operator on C%([0, 1], (©<,.4;)*%)
acts as a bounded operator on C%([0, 1], M2q(Q2<,.A;)) in an obvious way.

tD

Proposition 3.3.4. For t > 0 the operator e *P1 is an integral operator. For its

integral kernel k; it holds:

1. The map
(0,00) = C*([0, 1], CF ([0, 1], M2a(Ax))), t = (y = Ki(-,y))
18 well-defined and smooth.
2. It holds ki(z,y) = ki(y, z)*.

3. For any m,n € Ng and any 6 > 0 there is C' > 0 such that it holds

. . _ dysuppp)?
07Oy ke(,y) = O Oyerlw y)| S CLY € @ Lo, (y)
k=0,1

for allt >0 and all z,y € [0,1].

Proof. Let f € C([0,1], (Q<,.4;)?%). From (%) it follows

—tD? ¢ _ ' —sD2 (.1 ok
e By Zlﬁf (0 + 07)el (- 5)x(v) £ (9) dyds

k=0,1
By lemma BT the map

te (y e (B0 +07)ek (L y)on(y))

can  be extended by zero to a smooth map from [0,00) to
C>([0,1], CF ([0, 1], Maa(A;)).

Since e *P7 acts as a uniformly bounded operator on C5°([0, 1], Mag(A;)) by lemma

BT it follows that the operator on the right hand side is an integral operator with
smooth integral kernel.

Hence also e *P7 is an integral operator with smooth integral kernel. Its integral

kernel satisfies 1) by the preceeding arguments.

tD?

The selfadjointness of e*”7 implies 2).
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Since d(supp ¢x,supp ;) > € for some € > 0, there is C' > 0 by lemma BT4 such
that for all z,y € [0,1] and ¢ > 0 it holds:

100007 (ky(z,y) — e, y))|

gczl/wwvmﬂmwwmuwamwm%mmw

k=0,1
_ d(y,supp 'vk)
< C Z/ T ds supp g (y)
k=0,1
7d(y,buppvk)
< O te T Tapya(y) -
k=0,1
This shows statement 3). O

Corollary 3.3.5. Let ky(x,y) be the integral kernel of e=*P1.

For any m,n € Ny and 6, > 0 we find C' > 0 such that for all x,y € [0,1] with
d(z,y) > ¢ and t > 0 it holds

_d(zy)? _ d(ysuppop)?
0,0y ki (,y)| < Ce e 4+ Ot Z P e Loupp o, (1)-

k=0,1
Proof. This follows from the previous proposition and lemma. BT O]

Corollary 3.3.6. Let ky(x,y) be the integral kernel of e=*P1,

Let w be as in prop. TZA. For any m,n € Ny there is C > 0 such that for any
t >0 and any z,y € [0, 1] it holds

m+n+1
2

D7k, )] < C(L 4+t

)e—wt .
Proof. There is C' > 0 such that for all z,y € [0,1] and all 0 < ¢ < 1 it holds
d(y,supp 7})?

07Oy k(. y) = O Open(w )l SCEY e o Luppe(y) -

k=0,1
hence by lemma B2

M

07O Ky (2, )| < C(1+ 1t ).
For all ¢t > 1 and y € [0, 1] it holds
Fa(y) = e Pk (L y)
The assertion follows now since (y — ki(-,y)) € C™([0, 1], C(]0, 1], M24(A;))) and

since by prop. B3 implies the action of e~ (=DP7 on C([0, 1], Mag(A;)) is bounded
by Ce™* for some C,w > 0 and any ¢t > 1. O
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The following facts will be needed when we define the n-form.

Lemma 3.3.7. Let k; be the integral kernel of e D1, .
Then for all x,y € [0,1] and t > 0 it holds

tr(Dfs)J:kt(w7y) =0.
Proof. Let S := 2P, — 1 € Gly(C). Tt holds S*> =1, ST+ IS =0, SP, = P, and
S(1—-P)=—-(1-Fy).
This implies SDIe_tD%s + Dle_tD%sS = 0. Therefore it holds
S(D1,)aki(z,y) + (Dr)oke(z,y)S =0,
hence

tr(Dr,)ake(x,y) = tr(=S5(D1,)oki(z,y)S) = —tr(Dr,)uke(2,y) -
It follows tr(Dy,).ki(x,y) = 0. O

Corollary 3.3.8. Let now (Drk;) be the integral kernel of Dle_tD%. It holds uni-
formly on [0,1]:

lim tr(Drk:)(x,z) =0 .

t—0

Proof. By the previous lemma it holds tr(Dy).e:(x,y) = 0 for all z,y € [0,1]. Then
the assertion follows from the estimate in prop. B=34. O]

3.4 The heat semigroup on the cylinder

Let Z =R x [0,1].

Let R = (P, P\) be a pair of pairwise transverse Lagrangian projections of A%? with
Py, Py € Myy(As) and let Dy be the associated operator on L?(Z, A%) defined in
§23.

In this section we define an action of Dz as an unbounded operator on
L*(Z, (<, A;)*) and study its properties. If not specified the notation is as in
623

First we define the following function spaces and operators:
Let

Co(Z, (A = {f € CZ, (Q<nA))™) |
(P, ® P)f(x,i) = f(x,i) forz € R, i =0,1},

and define for k£ € IN inductively

CR(Z, Qe A)') = {f € CM(Z, (2, A)™) | [.02f € CFHZ, (Qe i)'}
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Furthermore set

C}%o( (Q<u ﬂ Ck Q<u ) ) :
keN
Further suffixes, like ¢ or 0 ..., have their usual meaning.

These spaces are endowed with the subspace topologies.

For a Fréchet space V' we define the Schwarz spaces

S(2,V):=S8(R)® C=([0,1],V) .
Moreover let Sg(Z, (Q<,Ai)*) be S(Z, (Q<,Ai)™) N C3(Z, (QcpAi)*Y) as a vector
space with the topology induced by S(Z, (Q<,.A;)*).

Let Dy as an unbounded operator on L2(Z, (Q<,.A;)*) be the closure of d; with
domain Sg(Z, (<, A;)*?).

Note that at the moment it is not clear whether D% is closed on L2(Z, (Q<,.A;)*).
We define A as the closure of —92 — 92, with domain Sg(Z, (Q<,A;)*).

Let AR be the closure of —92 with domain Sg(Z L (Q< A,

Let D; be the closure of 19, as an unbounded operator on L*(Z, (Q<,.A;)*®) with
domain SR(Z, (QSMAi)4d).

Let D; be the operator on L2([0, 1], (Q<,..A;)?%) from §8ZT with boundary conditions
defined by (Py, P;). Let k! be the integral kernel of e~*" 7. It exists by lemma B34,

By prop. B3 the operator Dy has a bounded inverse on L*([0, 1], (Q<u )29).
Since the space L*(Z, (<, A; )*?) can be identified with L*(IR, L*([0, 1], (Q<u )4d))
by lemma B2, it follows that D; has a bounded inverse on L*(Z , (Q<,.A) ™). Hence
—D? is closed.

By an analogous argument it follows that —D% generates a bounded holomorphic
semigroup on L?(Z, (Q2<,A;)*) with integral kernel &/ (zq,y2) @ kf (22, y2) for t > 0,
where k! is the integral kernel of e~*¥ 7. It exists by lemma B34,

It holds A = Ak + D?. Hence we have a natural candidate for the integral kernel
of a semigroup generated by —A, namely

1 (z1-91)?
\/4_7rte_ 4t (ktl(xz,yz) @kf(l’m?h)) .

K (2,y) =

In the next proposition the corresponding family of integral operator is studied.
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In the following let w > 0 be such that it holds on L?(Z, (Q<,..A;)*%) for all t > 0:
e i) < et
The existence of such an w follows from prop. B=X3.

Proposition 3.4.1. 1. The integral kernel kZ(x,y) defines a holomorphic semi-
group on L*(Z, (Q<,A;)*) whose generator is —A.

2. For any m € Ny the kernel k7 (x,y) is the integral kernel of a holomorphic
semigroup on C'W(Z, (Q<, A1), It is denoted by e as well.

3. Let A be a differential operator of order m on C®(Z,(Q<,A)*). Then it
holds for the operator Ae™'® on L*(Z,(Q<,Ai)*?) as well as for Ae™™® :
C]TZ%L(Z, (QSNA,L'>4d) — Cn(Z’ (QSMAZ')4d) with n € No.’

There is C' > 0 such that

JAe™2] < C(1 + /)t
for allt > 0.

_(z-y)?

Proof. 1) By lemma B3 the kernel ﬁe 7 defines a uniformly bounded

family of operators on L2(Z, (Q<,.A;)*) for t > 0. For t — 0 it converges strongly
to the identity on L?(Z) ® (Q<uA;)*, thus it is a strongly continuous semigroup.
The space Sg(Z, (QSHAZ-)M) is invariant under the action of the semigroup and the
generator’s action on that space is given by 8%2. Hence the generator is —AR.

By checking the assumptions of prop. BEZ3 we show that the semigroup e *A®r

extends to a holomorphic one:

The operator (id,,)e *® equals the convolution with the function g(z;) :=

_C(d%)\/i?t (%) e~*1/4%  Since there is C' > 0 such that for 0 < t < 1 it holds

gl < Ct=1/2 it follows

(8, )e~ || < Ct=2
on L*(Z, (Q<,Ai)*), hence it holds for 0 < ¢ < 1:

1Ame 25| < (i, )e@PAm|2 < Ot

It follows that the semigroup e **® is holomorphic on L2(Z, (Q<,A;)*%).

Note that this estimate also holds on Cg(Z, (Q<,.A;)*) showing that e *A® is a
holomorphic semigroup on Cg(Z, (2<,.A4;)*?) as well.

. . _ _+tD2 . . .. .
Since the semigroups e *A® and e~*P7 commute with each other, their composition is

a holomorphic semigroup. The space Sg(Z, (Q<,..A;)*%) is invariant under the action
of the semigroup and the generator acts on it as 92 LT 022. Thus the generator is

—A.
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2) Using the fact that for f € Cp(Z, (Q<,Ai)™),n € N, it holds (i0,,)e "2 f =
e‘m(z’(?mj)f, j = 0,1, the assertion can be reduced to the case n = 0.

It follows from prop. that the action of the integral kernel k/(zs,y2) @
kl(za,y2) on Cr(Z,(Q<,A;)*) extends to a holomorphic semigroup, and in 1)

_(m—y)? . .
\/%e i defines a holomorphic semi-

we showed that the integral kernel

group on Cg(Z, (quAi)4d)- Hence the kernel kZ(z,y) defines a semigroup on
Cr(Z, (Q<,A;)*) that extends to a holomorphic one.

3) We can restrict to the case that A has constant coefficients and furthermore to
the case n = 0 by the argument in the proof of 2).

In the following the operator norms can be understood with respect to the action
on L*(Z, (<, A;)1?) as well as with respect to the action on Cr(Z, (Q<,.A;:)*).

We decompose the differential operator A in a sum of operators anp DR (i0,,)* with
api € Myg(Q<, Ai) and h + k < m. It holds

D} (i, ) e = Dhe tPi(id,, Fe~tAm
By cor. B2 there is C' > 0 such that for 0 < ¢ it holds:
||D?6—tD%|| < Ct—h/Qe—wt '

It follows B )
|Dpe~i|| < CtM2et

By the estimate in the proof of 1) it holds for 0 < t < 1:
1(0,,) e~ | < |1, Je~MAm|F < Ot
Now the assertion follows from the fact that e **® is uniformly bounded. O

Corollary 3.4.2. Let A € C with Re \? < w.
1. The operator Dy — X is invertible on Sg(Z, (<, Ai)*%).
2. The operator Dy — X is invertible on L*(Z, (Q<,A;)*).
3. It holds A = D%,

Proof. 1) For any seminorm || - || of Sg(Z, (Q<,A))*) there is C' > 0 such that it
holds [le=*Am f|| < C||f|| and ||e~*PT f|| < Ce=* for all f € Sr(Z, (Q<,Ai)*). Hence
e~*2 restricts to a bounded operator on Sg(Z, (€2<,A;)*?) and the integral

G(\) = / (Dy + A)e "A)gt
0

4d>‘

converges as a bounded operator on Sg(Z, (Q<,.A;) It inverts Dz — A on

Sr(Z, Q< Ai)™).

56



2) The operator G(\) extends to a bounded operator on L?(Z, (Q<,A;)*?) since
by the previous proposition there is ¢ > 0 such that for all £ > 0 it holds on
L2(Z, (<, Ai)*):

(D + \)e A || < O(1 4 173)e @ ReAt

From 1) it follows, that G(\) inverts Dz — A on L*(Z, (Q<,A;)*%) as well.

3) From 1) it follows that Sg(Z, (Q<,A;)*) is a core for the closure of D%, hence
the closure of D% equals A. From 2) it follows that the operator D% is closed. [

Proposition 3.4.3. Let A € C with Re A\ < w.

1. The operator (D% — A% maps L*(Z, (Q<,A)')  continuously  to
C(Z, Qe Ai)™).

2. Letn € N,n > 2. The operator (D% — \)™" maps L*(Z, (<, As)*) continu-
ously to C*"3(Z, (Q<, A;)*?).

Proof. 1) For Re A < w it holds on L2(Z, (Q<,.A;)*):
(D —AN)7' = / T gy
0

o
A2 P2
= / eMe Bre it
0

By prop. B the operator D' : L2([0, 1], (<, A)%Y) — C([0,1], (<, A)?) is
bounded.

Thus the family of operators
e™P1 = D' Dre™Pt : L2(Z, (0, A)™) = LA(R, C([0, 1], (Qpdi)™))

is bounded by C(1 4t~ 2)e™* for all ¢ > 0.

Furthermore the family
e A (IR, C([0,1], (Q<,di)*)) = C(IR, C([0, 1], (Q<pdi) ™))

(21-y1)?
is bounded by sup || -A=e~  # ||;2, hence by some Ct Y4 It follows
;cleIRHVA‘”t Iz,

that the integral converges in the bounded operators from L*(Z, (quAi)‘Ld) to
C(Z, Qe Ai)*).
2) We show that for any k € INg, k£ < 2n — 3, the map

D5 (0, )" H (DG = X" Sr(Z, (Q<pAi)™) = C(Z, (Qphi)™)
extends to a bounded operator L*(Z, (<, A))*) — C(Z, Q< Ai)*):
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On Sgr(Z, (Q<,A;)*) it holds
(i0s,)* = Ar = D} — D}
and )
i@xl = —’iC(ddfl)DZ + ZD[ .
Note that ¢(dz;) anticommutes with D;. By these facts and by 1) it is enough to
show that
(D}~ NDEDY=H(D3 )" = DDy (D 3

extends to a bounded operator on L2(Z, (Q<,.A;)*).

Since Dy and D; are invertible, prop. BZZ implies that there are bounded in-
volutions Iy, I, on L*(Z, (Q<,A; )4d) satisfying [I1, D;] = 0, [I3,Dz] = 0, further
D; = 11]D1| and Dy = I5|Dyz|. Thus we only need to consider the operator

’D[|k|D2|2n_3_k(D% . )\)—n+1

3k)

= (D170 =5 (0 - )"

On Sgr(Z, (QSNAZ-)M) the term in brackets can be re-written as

0 ~
| 1Dile i i Dy S ik
0

The integral converges as a bounded operator on L?*(Z, (qu.Ai)‘ld) since by cor.
B4 the integrand can be estimated for small ¢ by

t (E k ) 2n—3—k t _(2n73)
O _ 2n—2 2n—2 — O _ 2n—2
by () o
and since for large t it is exponentially decaying. O]
In the following | - | denotes the norm on My,(A4;).

Lemma 3.4.4. For any e > 0 and o, € lNg there are ¢,C' > 0 such that for all
z,y € Z with d(x,y) > and all t > 0 it holds

(z,)>
020k (2, )| < Cem ™

Proof. For m,n € INy there are C, ¢ > 0 such that it holds

(z2—yg)*

10,1, 0, kl($27y2>| < Ce e

z2 Y2

for |xg — yo| > €/2 and ¢t > 0. This follows from cor. B33 for ¢t < 1 and from cor.
B3@ for ¢ > 1. For |y — ys| < £/2 the left hand side it bounded by C(1 +¢ "2
by cor. BZX4@.
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Hence there are ¢y, co, C > 0 such that for d(z,y) > e and t > 0 it holds

o 1 7(11*1“11)2
7:0; (e () & K o)) |

1 _G@—wp? f _(eamw)?
S e 1431 (6 c1t 1IR\[0’5/2](|'I2 - y2|)
4t
_\a|+|5|+
+(1+t )j0.c/2)(|22 —y2|)>
_ d(zy)?
S Oe cot

]

In the next lemma we write Sg(Z, Myy(A;)) for the subspace of S(Z, Myq(A;))
containing those functions whose columns are in Sz(Z, A}). Then operators
on Sr(Z, A}?) act on Sg(Z, My(A;)) as well — column by column. The space
Cx(Z, Mya(A;)) is analogously defined.

Lemma 3.4.5. Let A € C with Re A < w. Let &,& € C®(Z) be functions with
disjoint support and assume that the support of & is compact.

Then for any n € IN the operator £ (D% — \)""&, is an integral operator with integral
kernel k such that (y — k(-,y)) € CX(Z,Sr(Z, Mya(A;i))) and (x — k(z,-)*) €
S(Z,C%(Z, Mya(Ay))).

In  particular & (D? — A& maps  L2(Z, (Q<, AN continuously  to
Sr(Z, (< Ai)™).

Proof. We prove the claim first for n = 1:
Let f € CR(Z, (Qepdi)™).
Then it holds in L*(Z, (Q<,A;)*9):

(D% — N6l = /m&€W%”%ﬁdt
- / / EkZ ()M Eay) [ (y) dyd

Let € > 0 be such that d(supp &, supp&s) > €.

By the previous lemma it follows that there are ¢, C' > 0 such that for all z,y € Z
and all £ > 0 it holds:

6@ (@ e < Clusny B)]& @) e =T ()]
+CL ey ()6 (@)~ " |ea(w)]

Analogous estimates hold for the partial derivatives. Hence we can interchange the
order of integration. It follows that & (D% — \)~'& is an integral operator with
integral kernel

k(z.y) / &1 (0)e M (2, y)Ealy) dt
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The other statements of the lemma also follows from the estimates.

For n > 1 choose a smooth compactly supported function ¢ : Z — [0, 1] such that
supp ¥ Nsupp & = () and supp(1 — ¢) Nsupp & = (. Then

&(D7 = N6 = &(Dy =N (Dz =\
+6(DZ = A) (1 =) (D7 —A) e

By induction the lemma can be applied to & (D% —\)"1 and (1—)(D%—\)"""1&,.
The statement of the lemma follows for & (D% — X\)™"& from this and the fact that
by cor. BA3 the operator (D% — \)™™ acts continuously on Sg(Z, Myq(A;)) for any
m € IN. [l

3.5 The heat semigroup on M

3.5.1 Definitions

Recall that we defined D(p)* as an unbounded operator on the Hilbert A-module
L*(M, E®.A) in 10 and §Z3. Now we define an action of it on L?*(M, E®Q<,A;):

Let D(p)? as an unbounded operator on L?*(M, E ® A;) be the restriction of D(p)?
to
dom D(p)? := {f € dom D(p)* N IX(M, E® Ay) | D(p)*f € I*(M, E % A)}

It is closed.

Let D(p)7,; be the closure of the unbounded operator on L*(M, E ® Q< A;) whose
domain is given by the right QS#Ai—submodule of L*(M,E ® ng‘b) generated
by dom D(p); and whose action is defined by D(p)?,;(fw) = (D(p); f)w for f €

dom D(p)?, w e QSyAi~

Note that the notation is misleading: It suggests that D(p)f” is the square of some
unbounded operator on L*(M, E ® quAi), but this is not clear for the moment.

In the following we suppress the indices.
Define D? as a closed operator on L*(M, E ® <, A;) in an analogous way.
We will often make use of cutting and pasting arguments. Here we fix the setting:
Let ki be the integral kernel of K. Let 0 < by < %1 be small enough and ry > 0
large enough such that

supp kg N ((F('ro, bo) X M) U (M x F(ro,bo))) =0,

where F'(rg,by) was defined in §II.
Let U(ro, by) be the open covering that was defined in §IT and in §23.

Choose a smooth partition of unity {¢}res subordinate to U(rg, by) and smooth
functions {7y }res on M such that for all k£ € J it holds
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e suppyx C Uy,

e supp(l — i) Nsupp ¢ = 0,

e the derivatives O, (¢x|r) and O, (7k|r) vanish in a neighbourhood of OM.

Let Exn be a hermitian Clifford module on a compact spin manifold N that is
trivial as a vector bundle and assume that there is an isometric Clifford module
isomorphism FE|y, — Ey, whose base map is an isometric embedding. Let Dy be
the associated Dirac operator. We identify Uy with its image in N and Ely, with
its image in Ey.

Since the support of kg is in Ug x Uy, the restriction of D(p) = D + pK to Uy
extends to an operator Dy + pK on the sections of Ey.

For k € Z/6 let Dy, be the operator Dy on L*(Z, (Q<,A;)*%) defined in §83 with
boundary conditions given by the pair (Prmods; P(k+1)mod3)-

3.5.2 The resolvents of D(p)?

This section has three different aims:

Applying a method of Lott ([Id], §6.1.) we investigate the resolvent set of D(p)* on
L2(M,E ® Q, Ay).

Furthermore we prove a kind of Sobolev embedding theorem — more precisely an
analogue of lemma BT for the operator D(p)? on L*(M, E ® Q<,A;).

Third we obtain more information about the kernel of D(p)? on L?*(M, E ® Q<,.A;):
There is a projection on it, and this projection is a Hilbert-Schmidt operator with
smooth integral kernel.

Let w > 0 be such that there is C' > 0 with ||e_tD%k | < Ce ¥ for all t > 0 and all
ke ZJ/6.

Let v € IN. For A € € with Re A < w we define a parametrix of (D? — \)":
For k € Z/6 let Q(X) = (D3, — A\)™". It is well-defined by cor. BZ2.

Let Qg(\) be a local parametrix of (D? — \)” on U defined by the symbol of
(D? — \).
The operator

QN =Y euQr(Mne

keJ

acts as a bounded operator on the spaces L*(M, E® qu.Ai) and Sgr(M,E® ng‘b)
by 8624 and by cor. BZA.
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Lemma 3.5.1. For any p € R and X\ € C with Re A < w the closure of Q(\)(D(p)*—
AN)” — 1 is an integral operator K with smooth integral kernel k € L*(M x M, (EX
E*)® A;).

It holds (x — k(z,-)*) € S(M,CR(M,E ® A;) @ E*) and (y — k(-,y)) €
CX(M,Sr(M,E® A;) ® E*).

In particular KK maps L*(M,E ® QSHAi) continuously to Sr(M, E ® QSMAi).

Proof. The difference (D(p)* — \)” — (D? — \)” is an integral operator with smooth
integral kernel whose support is contained in supp k.

Hence we need only investigate Q(\)(D? — \)” — 1.

For any k € J choose a function & € C2°(M) with values in [0, 1] and such that it
holds supp &, C Uy, Eklsuppar, = 1 and supp ¢ Nsupp &y, = 0. Furthermore assume
that O, (&k|r) vanishes in a neighbourhood of OM.

By induction on v we show that it holds
[7]47 (D2 - /\)l’} = ék[fYkJ (D2 - A)V] :
For v = 0 the claim is trivial and for general v it holds

[y, (D? = X)) (D* = X)"~!(c(dve) D + De(dyy))

+w, (D? = N)H(D? = N
= &(D* = N (cldw) D + De(dny)) + [, (D* = X)"H(D? = A)

In the following for simplicity the operators Dz and Dy are denoted by D as well.
Furthermore ~ means equality up to integral operators with smooth compactly
supported integral kernels.

Then on Sg(M, E ® Q<,.A;) it holds

Q)(D? — = > oQe(N) s ( Y Qu(N)(D? = Ay — 1
keJ ke
=3 a QN &y, (D* = N)"]
ke

For all k € J the operator ¢rQx(\)& is an integral operator whose integral kernel
has the properties stated in the lemma. This follows for k € Z/6 from lemma B3
and for £ = & from the properties of pseudodifferential operators. This shows the
assertion of the lemma. O]

Proposition 3.5.2. Let p € R. Let A € C with Re A < w such that D(p)*> — X has
a bounded inverse on the Hilbert A-module L*(M,E ® A).

Then D(p)* — X has a bounded inverse on L*(M, E ® Q< A;).
The inverse (D(p)>—\)~" acts as a bounded operator on the space Sp(M, E@Q<,A;).
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Note that in particular D(p)? — X has a bounded inverse on L?(M, E ® Q<,A;) for
all A < 0.

Proof. The operator Q()\) is bounded on L*(M,E ® Qc,A;) and satisfies
Q(\)(D(p)> — \) = 1 — K by the previous lemma. Here K is an integral opera-
tor with smooth integral kernel x € L*(M x M, (E X E*) ® A;) and it holds (z
k(x,)) € C(M,L* (M, E®A)QE*) and (y — k(-,y)) € C(M,L*(M, EQ A;)QE*).
We want to apply lemma B3, Since in general 1— K is not invertible on L?*(M, E®
A), we modify the parametrix:

Choose an integral kernel s € C*(M x M, (E X E*) ® A;) vanishing near (OM x
M) U (M x OM) such that in B(L*(M, E ® A)) it holds

1K = S(D(p)* = NI <

N

Since by assumption (D(p)? — \), hence also (D(p)? — )), has a bounded inverse on
L*(M,E ® A), this is possible.

From the estimate it follows that
Q) +S)(D(p)? =A) =1— (K= S(D(p)* = N))

has a bounded inverse on L*(M,E ® A).

Lemma 630 implies that 1 — K — S(D(p)2 — A) is invertible on L2(M, E ® Q< A;).

Thus
1

(1= (K=S(D(p)* =N)) (QN) +5)

is a bounded operator on L2(M, E®Q<,A;). On L2(M, E® A) it inverts D(p)? — A,
hence it is the inverse of D(p)? — X on L*(M, E ® Q<,A;) as well.

Since Q()) acts continuously on Sg(M, E ® Q<,.A;) and K maps L*(M, E® Q< ,A;)
continuously to Sg(M, E®Q<,,.A;) by the previous lemma, the operator (D(p)2—X)~"
acts continously on Sg(M, E ® Q<,A;) by
(D(p)* =N)~" = (1=K)D(p)* =N+ K(D(p)* =)~
= QW) +K(D(p)*—=N)".

Corollary 3.5.3. The space Sp(M, E @ Q< A;) is a core of D(p)?.

Proposition 3.5.4. Let p € R and let A € C with Re A < w be such that (D(p)*—N)
has a bounded inverse on L*(M,E @ Q<,A;).

Then for any v € IN, v > 2, the operator (D(p)? — )™ maps L*(M, E @ Q< ,.A;)
continuously to C% (M, E ® Q<,A;).
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Proof. Let Q(A\)(D(p)? — \)” =1 — K as before, thus
(D(p)* =A™ = Q) + K(D(p)* = N)™ .

By prop. BZ3 and §6-24 the operator Q(\) maps L*(M, E ® ngAi) continuously
to C% (M, E ® Q<,A;). Furthermore K is smoothing. O

Corollary 3.5.5. The kernel of D(p)* on L*(M,E ® Q<,A;) is a subspace of
Sn(M, E ® Oz Ay).

Proof. Let A € C be as in the previous proposition and assume furthermore \ # 0.

For f € Ker D(p)? it holds (D(p)?—)\)""f = (=\)7" f for any v € IN.By the previous
proposition it follows, that the elements of Ker D(p)? are smooth.

For k € Z/6 and f € Ker D(p)? it holds D% ¢.f € C%(Z, (Q<,Ai)*Y). From cor.
B2 it follows R
Ouf = D2 (D, dnf) € Sr(Zk, (Q<phi)™)

Hence f € Sg(M, E ® Q< A). O

Proposition 3.5.6. Let p # 0.

Let P be the projection onto the kernel of D(p) on L*(M,E ® A).

Then P is a finite Hilbert-Schmidt operator whose integral kernel is of the form
Sy fi(@)hy(y)* with f;,h; € N;(Ker D(p) N LA(M, E @ A;)) C Sr(M, E ® Ax).

Furthermore it holds Ker D(p)> = PL*(M,E & Q<,A;) and RanD(p)*> = (1 —
P)L*(M,E ® Q<,A;). Hence there is a decomposition

L*(M,E ® quAz') = Ker D(p)* ® Ran D(p)?

and
D(p>2 = Z)(p)Qh(erD(p)2 D l)(p)QyRanD(p)2 -

Proof. First consider the situation on L*(M, E ® A):

Since the range of D(p) is closed, there is an orthogonal projection P onto the
kernel of D(p) by prop. BETT4. Furthermore D(p) is selfadjoint on the Hilbert A-
module L?*(M, E ® A), hence it holds Ker D(p) = Ker D(p)? by prop. EI1. The
range of D(p)? is closed, thus zero is an isolated point in the spectrum of D(p)? on
L2(M,E® A).

From prop. BAA it follows that zero is an isolated point in the spectrum of D(p)?
on L*(M,E @ Q<,A;) as well.

Hence, for r small enough, the projection

P= [ (DN

211 |A|=r
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is well-defined and a bounded operator on L?*(M, E ® ngAi)- By prop. B33 it is
a Hilbert-Schmidt operator whose integral kernel is as asserted.

The remaining parts follow from the spectral theory for closed operators on Banach
spaces ([Od], th. 2.14). O

Corollary 3.5.7. Let Re A < w.

1. Let p# 0 and let P be the orthogonal projection onto the kernel of D(p)?.
If D(p)* + P — X has a bounded inverse on L*(M, E® A) then D(p)* + P — X
has a bounded inverse on L*(M, E ®Q<,A;) and the inverse acts as a bounded
operator on the space Sp(M, E ® Q<,A;) as well.

2. Let Py be the orthogonal projection onto Ker D?. If D*+ Py — X has a bounded
inverse on L*(M, EQA) then D>+ Py— X has a bounded inverse on L*(M, E®
Q< Ai) and the inverse acts as a bounded operator on the space Sp(M, E ®
Qe A;) as well.

In particular there is ¢ > 0 such that {Re X < ¢} is in the resolvent set of D(p)*+ P
resp. D? + B,.

Proof. From the previous proposition it follows that P(1—X)~"+(1—P)(D(p)*=)~"
inverts D(p)? + P — X on L*(M,E ® Q<,A;). Since P acts as a bounded operator
on the space Sp(M, F ® Q<,A;) by cor. Bad and (D(p)> — A\)~! is bounded on
Sr(M, E @ Q<,A;) by prop. BG32, the operator (D(p)? 4+ P — \)~! is bounded on
Sr(M,E ® Qc,A) as well,

2) follows analogously. O

3.5.3 An approximation of the semigroup

By cutting and pasting we construct an integral operator that for small ¢ behaves
similar to a semigroup generated by —D(p)*:

Recall the definitions of §85.

Let e(p)®(z,y) be the restriction of the integral kernel of e {PN+PK)* to 1y x Up,

and for k € Z/6 let e(p)F(z,y) be the restriction of the integral kernel of e V% to
U X Uy, and extend these functions by zero to M x M. Clearly for k € Z /6 it holds

e(p)f(z,y) = e(0) (. y).
Define the integral kernel

e(p)i(z,y) = > w(@)e(p)f(z, v)ou(y)

keJ
Denote the corresponding family of integral operators on L?(M, E ®Q§#Ai) by E(p):

resp. F;. By the results in §832 and §84 they are bounded and strongly continuous
and have the following properties:
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1. For t — 0 the family E(p); converges strongly to E(p)o := 1 on L*(M,E ®
Q<A

2. If f € C(M,E @ Qc,A;), then the family E(p)f € L*(M,E @ Qc,A;)
depends differentiably on ¢ for ¢ > 0.

3. For t > 0 it holds Ran E(p), C Sg(M, E @ Q<,A;).

4. Let A be a differential operator on C>° (M, E®Q<M.A ) of order m with bounded
coefficients. By prop. BZZ2 and prop. B the operator AE (p)¢ is bounded
on L*(M,E® Q<MA ) for t > 0. Moreover, for 7' > 0 there is C' > 0 such that
for all T'> ¢ > 0 it holds:

JAE(p)]l < O+ % .

5. For any m € INg and 7" > 0 there is C' > 0 such that it holds for all y €
Us, pe—1,1and 0 <t <T in CF (U, (E® E,) ® A;):

le(o) (-, y) = e(OFC y)lley < Clol -
An analogous estimate holds for the partial derivatives in y with respect to
unit vector fields on Us,.
The last statement follows by Volterra development (prop. BZ4): On N it holds

—tDN( )2 e—tD2

_ pz n n 1tn// uotD DN,K] +pK2) u1tD?, ) untDN dug . . dun’

(&

and the sum is an integral operator whose integral kernel is uniformly bounded in
0<t<Tandpe|-1,1].

2

3.5.4 The semigroup e ‘P

By cor. B3 the operator e~*P% on the Hilbert space L2(M, E) is an integral oper-
ator with smooth integral kernel k, for £ > 0. In this section we show that k; defines
a strongly continuous semigroup on L*(M,F ® quAi) and that this semigroup
extends to a holomorphic one.

For D, we define integral kernels ef(z,y) and

=Y w(@)ef (@, y)dn(y)

keJ

analogously to e(p)¥(z,y) and e(p)¢(z,y) in the previous section.

The corresponding family of operators is denoted by E;. We set Ey := 1. For the
properties of E; see the previous section.
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By Duhamel’s principle it holds for f € C25,(M, E):

t d
efthf — Ef :/ o—sD? (% + D?) E,_.f ds .
0

Proposition 3.5.8. The heat kernel k; defines a strongly continuous semigroup
on L*(M, F ® Q< A;) with generator —D? that extends to a bounded holomorphic
SemIgroup.

Let A be a differential operator of order m € Ny with bounded smooth coefficients.
Then for any t > 0 the operator Ae % is bounded on L*(M,E ® Q<,A;) and for
any T > 0 there 1s C' > 0 such that for 0 <t < T it holds

|Ae P3| < Ct % .

Proof. First we show that for T > 0 there is C' > 0 such that for 0 < ¢t < T the
difference A, ki(z,y) — Azei(x,y) is bounded by Ct in L*(M x M, EX E*).

For k € J let x, € C°(M) be a function with values in [0, 1], with compact support
in U, and equal to one on a neighbourhood of supp dv;.

From the equation above it follows
Axkt<xv y) - Amet(l‘7 y)
t
= =3 [ [ Ao Buscldn ek (r)ony) drds
0 JMm

keJ

This can be re-written as

_Z/O /M(l — x&(2) Agks(z,7)[(Onr)r, c(dy(r)]se¥_ (r,y)du(y) drds

keJ

_ Z/o /MXk(SL')Ax(ks(x,r) — 5 (2, ) [(On)r, cldy(r)]sel_ (. ) dr(y) drds

keJ

_Z/o /MXk(:E)Axel;(:E,T)[(aM)r,c(dvk(r))]sef_s(n Y)o(y) drds .

keJ

Using lemma BT and lemma BT we estimate the norms of the three terms in
FE,® Ey:
Since supp dyi Nsupp ¢ = O and supp dvy, N supp(l — xx) = 0, there is C' > 0 such
that for x,y € M and ¢t > 0 the norm of the first term is bounded by

_ d(=z,supp dyp)? _ d(y,supp )2

C Zt(l — xx(z))e o e G Lsupp oy (¥)
keJ

and such that for xz,y € M and ¢t > 0 the norms of the second and third term are
bounded by

_ d(y,supp d“/k)2

Ctxi (x)e @0t Loupp ¢y (y) .
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When estimating the third term we also used that the action of the integral kernel
e¥(z,r)xx(r) is uniformly bounded for k = & on C"(Uy, E @ E,) by prop. BEZ2 and

s

for k € Z/6 on Ck(Uy, E ® E,) by prop. BZ.

Analogous estimates holds for the derivatives in y with respect to unit vector fields
on M.

Hence A,ki(z,y) — Azei(x,y) is bounded by Ct in L*(M x M,E X E*) for 0 <
t < T and some C' > 0. By cor. B4 the corresponding family of operators on
L*(M,E ® Q<,A;) is bounded by Ct for 0 < t < T, hence A ki(x,y) defines a
family of bounded operators on L*(M, E ® Q< ,A;).

Write S(t) for the integral operator induced by the integral kernel k;(z,y).

m

By property 4) in §833 there is C' > 0 such that [|[AFE,|| < Ct~2 on L*(M,E ®
Q< ,A;) for 0 <t < T and some C' > 0, hence

(x)  AS@I < Ct % .

The fact that S(t) extends to a bounded holomorphic semigroup on L*(M, E ®
Q<,A;) is an almost immediate consequence of (x):

Since E; converges strongly to the identity on L?*(M,E ® quAi) for t — 0, the
operator S(t) also does. Furthermore the kernels k; obey the semigroup law, hence
S(t) is a strongly continuous semigroup on L*(M, F ® Q< A;).

Note that the range of S(t) — E; is a subset of Sp(M, E®Q<,.A;). Hence Sg(M, E®
Q<,A;) is invariant under the action of S(t). It follows that —D? is the generator

of S(t).

From prop. BZ3 and the estimate () applied to A = DZ it follows that the
semigroup S(t) = e~*P% extends to a holomorphic semigroup on L2(M, E ® Q< ,.A;).

It remains to show that the holomorphic semigroup is bounded:
Let Py be the projection onto the kernel of D2

By cor. B5 there is ¢ > 0 such that {Re\ < c} is in the resolvent set of D? + P,
on L*(M,E @ (2<,A;). Hence by prop. the holomorphic semigroup e~ *(P:+7)
is bounded. Thus

e tDs — e_t(D§+P°)(1 —P)+ Py

is bounded as well. O
Recall that in §851 we fixed the domain of D? as an unbounded operator on
L*(M,E ®Q<,A;), but not of D,. This is done now:

Let D, be the closure on L*(M,E ® quAi) of the Dirac operator 0y, with domain
Sr(M,E) © Q< A,

Corollary 3.5.9. Let Py be the projection onto the kernel of D?.
Let A € C with Re \? < 0.
Then the operators D+ Py and Ds— X have a bounded inverse on L*(M, E®Q§MA,~).
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Proof. By cor. BT there is ¢ > 0 such that {Re A < 2c} is in the resolvent set of
Dg + PO on LQ(M, E® QSMAi)'

By the previous proposition and prop. B2 it follows that there is C' > 0 such that
for all ¢ > 0 it holds on L*(M, E ® Q<,A;):

1(Dy + Py)e MR < C(1 4+ t72)e™ |

Thus -
G = / (D, + Py)e tP+R) g
0

is a bounded operator on L*(M, E®<,.A;). On the Hilbert space L?(M, E) it holds
G = (D, + Py)~'. From cor. B it follows that G acts as a bounded operator
on Sp(M, E). Hence G inverts D, + Py on Sg(M, E) ® Q<,A;, thus that G inverts
Dy + Py on L*(M, E ® Q< A;).

The proof of the fact that
/ Dy 4 )P
0

inverts (Ds — A) for Re A\? < 0 is analogous. O

From the corollary we conclude that D? as it was defined in the beginning of §851
is the square of D.

3.5.5 The semigroup e P’

This section is devoted to the proof that —D(p)? generates a bounded holomorphic
semigroup. We also study its smoothing properties.

But first we prove an analogon of cor. B2™:

Recall that in 651 we only specified the domain of D(p)?, not the one of D(p).
Let D(p) be defined on L*(M, F ® Q< ,A;) as the closure of the operator dy; + pK
with domain Sg(M, E ® Q<,A;).

Lemma 3.5.10. There is ¢, R > 0 such that for A € C with —\* € Y94, and
IA| > R the operator (D(p) — \) has a bounded inverse on L*(M, E ® Q<,.A;).

Proof. Let Py be the projection onto the kernel of D.

By prop. BA8 and cor. B2 we can apply prop. BZAR to Ds + Fy. This shows
that there is & > 0 such that D, + Py — X\ has a bounded inverse if —\? € Yrjats
and for ¢ < ¢ there is C' > 0 such that for A € C with —\? € Yix/24e it holds on
LA(M,E @ Q< A): .

I(Ds + Py = N7 < o
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Since D(p) — A is a bounded perturbation of W*(D,+ Fy)W — A, there is R > 0 such
that the Neumann series expressing (D(p) — \) ™! in terms of (W*(D,+ Py)W —\)~1
is well-defined for —A? € 3,4, and |A] > R. (You can find this argument in more
detail in the proof of prop. B410.) O]

Corollary 3.5.11. The operator D(p)?* is the square of D(p). In particular D(p)
commutes with all resolvents of D(p)?.

Proof. The assertions follow almost immediately from the fact that by the lemma
and by prop. B2 there is A € C with

(D(p)* = A) " = (D(p) + )" (D(p) = A) .

For p # 0 let P be the orthogonal projection onto the kernel of D(p)?.

Proposition 3.5.12. 1. Let p € R. The operator —D(p)?* generates a holomor-
phic semigroup e tPP? op L*(M,E ® qu-Az‘)' For any t > 0 the operator
e~tP(e)? depends analytically on p. For p # 0 the semigroup is bounded holo-
morphic.

2. For any T > 0 there is C > 0 such that for all p € [-1,1] and 0 < ¢t < T it
holds ||e™*P@’|| < C' .

3. For p # 0 there are C,w > 0 such that for all t > 0 it holds:
(1= P)e~PW’|| < Cemt

Proof. 1) Let Py be the orthogonal projection onto the kernel of D?. The family
e~!DstP0)* — o=tDY(] — Py) + P, is a holomorphic semigroup on L*(M, E @ Q<,A;)
by the previous section and D, + Py has a bounded inverse on L*(M, E ® QSMAi)
by cor. B25. Hence prop. BT implies that for any p € IR the operator

WD(p)W* = Ds+ Py + (We(dW?*) + pWKW™* — Fy)
generates a holomorphic semigroup, thus the operator —D(p)? is the generator of a
holomorphic semigroup as well.
It depends analytically on p by prop. B2,
Let now p # 0.

By cor. B there is ¢ > 0 such that {ReA < 2¢} is in the resolvent set of
D(p)? + P on L*(M, E ® Q<,A;), hence by lemma G232 there is C' > 0 such that
the holomorphic semigroup e #P®)*+P) ig hounded by Ce~ for all ¢ > 0, thus for
T > 0 there is C' > 0 such that for 7" < t it holds

|D(p)2e™ PO || = || D(p)2e PP < Cemet

~tD(1)* is hounded holomorphic.

Prop. implies that the semigroup e
The equality (1 — P)e *P()* = (1 — P)e " (P@*+P) implies 3).

2) follows from prop. B2 O
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—tD(

The following proposition shows that e P? is smoothing:

Proposition 3.5.13. 1. For anyn € Ny, any p € IR and any t > 0 the operator
e~ maps L*(M, E @ Q< A;) continuously to Cp(M, E @ Q< A;).

2. For anyn € 2N, n > 4, and any p # 0 the family e~tP0)? . Cl(M,E ®
Qe Ay) = CF3(M, E @ Q< A;) is uniformly bounded.

3. For any n € 2IN, n > 4, and any T > 0 the family e tP®)? Clh(M,E ®
Qe Ay) = CF3(M,E @ Q< A) is uniformly bounded in 0 < t < T and in
p€[-1,1].

Proof. 1) follows from
PO = (D(p)* +1)(D(p)* + 1)re P

since (D(p)?+1)"e*P®)” is bounded on L*(M, E®Q<,A;) for t > 0 by cor. EZd and
since (D(p)2+1)"" maps L*(M, F ® Q<,.A;) continuously to C5**(M, E @ Q<,.A;)
for n € IN, n > 2 by prop. BE24.

2) and 3) follow by prop. BA4 from

e PO = (D(p)? +1) e PO (D(p) 1)

3.5.6 The integral kernel

By comparison with E(p); we prove that the operator e~ (P is an integral operator
and study its integral kernel. In the following | - | denotes the fibrewise norm of
(EXE*) ® A;.

Proposition 3.5.14. For any p € R and any t > 0 the operator e tP@? s an
integral operator with smooth integral kernel. For its integral kernel k(p)i(x,y) it

holds:

1. The map (0,00) = C®(M x M, (EX E*) ® Ay), t+— k(p); is smooth.
2. For anyt >0 and x,y € M it holds k(p):(z,y) = k(p):(y, x)*.

3. For any T > 0 there are ¢,C > 0 such that it holds

_ d(y,supp dvy,)?
|E(p)e(x,y) — e(p)e(z,y)| < Ct <Z e Lappor (y) + Ipllu.,.(y)>

keJ

forall0<t<T, pe[-1,1] and x,y € M.
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4. Let p # 0. There are ¢c,C' > 0 such that it holds

d(y,Ug,)?

k(p)e(z,y) — e(p)(z,y)| < Cte™ =

forallt >0 and all x,y € M.

Statements analogous to 3) and 4) hold for the partial derivatives in x and y with
respect to unit vector fields on M.

Proof. In order to prove 1) it is enough to consider the operator e *P®)* — E(p),.

Let f € C%(M,E ® A;). Then by Duhamel’s principle it holds

e PO f — B(p).f
= X[ D) e () ) s
The map
(0,00) = C°(M,CRHL(M,E® Ay) @ E)
o (0 (4 D)elp) 1))
is smooth.

We can write

(& + DoY) welp)i( v)n(y)
= =D [Om, c(du)lse (05, y)dr(y)

—p([[0ar, K15 + pK*, 4] e(0)* (-, y) da(y)

~[0ar, c(dva)ls (e(p)F (- y) — e(OF (- y)) daly) -

We estimate the three terms on the right hand side:

From the estimates in lemma BT and B2 it follows that for any m € N there are
C, ¢ > O such that it holds in CF (M, E®A;)@E; forallk € J, 0 <7 < T, p € [-1,1]
and y € M:

d(y,supp tJl'vk)2

1[0a, c(dyi)]se (05, ) dW)llem < Ce™ ™o Lauppo (y) -

Since [[Oar, K]s + pK?, 4], is a finite Hilbert-Schmidt operator with smooth com-
pactly supported integral kernel, for any m € INg there is C' > 0 such that it holds
for0<7<T, pe[-1,1]andy € M in CR(M,E® A) ® Ey:

lp[[0ar, K]s + pK*, va) (0)* (- 0)0a () llog < Clollug (y) -
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Furthermore by §8573, property 5), there is C' > 0 such that for 0 <7 < T, p €
[—1,1] and y € M it holds in CR(M,E ® A;) ® E,:

11081, c(dva)ls (e()F () = e(O)F (- 9) Pa(y)lleg < CloNu(y) -

Analogous estimates hold for the derivatives in y and also in 7 since by the heat
equation the derivatives with respect to 7 can be expressed in terms of the derivatives
with respect to z.

From these estimates and from prop. B3 it follows that we can interchange the
order of integration, hence that e tP®)° — F (p); is an integral operator and that for
its integral kernel a statement analogous to 1) holds. This shows 1).

The property k(p)¢(z,y) = k(p)¢(y, z)* follows from the selfadjointness of e~*" (0)?,

Statement 2) and 3) follow from the estimates and from prop. BA13. For the proof
of 3) we also take the fact into account that fixed p # 0 the kernels e(p)® and e
and their derivatives are uniformly bounded in ¢ with ¢ > T O]

Corollary 3.5.15. For any v € Ny and T'" > 0 there is C' > 0 such that for
0<t<T itholds on L*(M, E ® Q<,A;):

ID(p) e P@ || < Ct %
Proof. By Duhamel’s principle it holds for f € C5.(M, E ® qu-Ai):

D(p)'e”"P@" f — D(p)"E(p).f
= =X [ [ O D D0 el nlo) s

keJ

There is C' > 0 such that this term is bounded in L2(M, E ® Q<,.A;) by some Ct
for0 <t <T.

By prop. BZ32 and prop. BZ there is C' > 0 such that on L*(M, F ® quv‘lz‘) it
holds
1D Ep)l < Cr ¥

The assertion follows. O
Corollary 3.5.16. For any p # 0 and m € IN the family of integral kernels k(p)

defines a strongly continuous semigroup on C(M, E®Q<,A;) bounded by C(1+4t)
for some C >0 and all t > 0.

It is denoted by e P g5 well.

Wl

Proof. By the estimates in the proposition the integral kernel k(p); — e(p); defines
an operator on C(M, E®<,.A;) bounded by Ct3/2 for any ¢ > 0 and some C' > 0.

For k € Z/6 the action of the integral kernel e(p)¥ on C%(Uy, E®Q<,.A;) is strongly
continuous and is uniformly bounded by prop. B2
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By cor. and prop. BZA the family e #P~y+rK)” ig a strongly continuous semi-
group on C™(N, Ex ® QgpAi)- It is bounded since its integral kernel is uniformly
bounded for ¢ > 1. Hence the action of e(p)* on C™(Usg, E @ Q<,.A;) is strongly
continuous and is uniformly bounded

Since furthermore the operator induced by e(p); converges strongly to the identity for
t — 0, the operator induced by k(p), also does. It satisfies the semigroup property,
hence it is a strongly continuous semigroup. O

Corollary 3.5.17. Let p # 0 and n € IN.

For any € > 0 we can find C,c > 0 such that for x,y € M with d(xz,y) > ¢ and
t > 0 it holds ,
(z,y)2 d(y,Ug,)
k(o) < Clem™H 4t o
An analogous statement holds for the derivatives in x and y with respect to unit
vector fields on M.

In the next corollary we use the notion of a Hilbert-Schmidt operator and the Hilbert-
Schmidt norm || - || gs that are defined in §6=23.

Corollary 3.5.18. Let p # 0.

For any r > 0 and v € Ny the operators 15, D(p)” e *P@* and D(p) e "1, are
Hilbert-Schmidt operators and it holds for any v € INy:

1. For any T > 0 there is C' > 0 such that for any r > 0 and t > T it holds:
1ar D(p)"e ™0 s < C(1+7)

and .
ID(p) e P 10 lus < C(L+7) .

2. For any € > 0 there is C' > 0 such that for any r,t > 0 it holds:
114, D(p) e PO (1 = 1y, )lws < C(1+ 1)t/

and
(1 = 1ar,. ) D(p) e PP 1y, s < C(1+7)t'/2

Proof. 1) Since by prop. BAI2 the semigroup e P (P is bounded, it follows from

prop. B2ZT2 that there is C' > 0 such that for all » > 0 and ¢ > T it holds:
11ar, D(p) e | ug < Cl[1ar, D(p)"e PO | s .

By the previous corollary there are C', ¢ > 0 such that for all » > 0 and =,y € M it
holds

[Lar, (2) D(p)5k(p)r(, )| < Clag, () (e 4 7wy
This yields the asserted estimate. The second estimate in 1) is proven analogously.

2) follows from the previous corollary and 1). ]
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Chapter 4

The superconnection and the
index theorem

The notion of a superconnection on a free finitely generated Z/2-graded module
which we define now generalizes the notion of a connection on a free module [[Kai|.

In the family case ([BGM|, ch. 9,10) superconnections usually act on infinite di-
mensional bundles. In analogy we will consider later superconnections acting on
modules with infinitely many generators. The following definition should be merely
seen as a motivation for the definitions of the superconnections to come.

Definition 4.0.19. Let B be a locally m-convex Fréchet algebra and let p,q € INg.
Let V := (CHY @ (C7)4. Consider V@ QB as a Z/2-graded space.

A superconnection on V ® B is an odd linear map
A VRQUB -V eOB

satisfying Leipniz’s rule:
Fora e V*® QkB and 3 € Q*B it holds

AlaB) = A(@)B + (=1)™=%ad g

where deg « is the degree of o with respect to the Z /2-graduation of V & QO.B.
The map A% is called the curvature of A.

As for a connection [Kat] it follows that the curvature is a right €, B-module map.
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4.1 The superconnection A! associated to D;

4.1.1 The family e~ (A7)

Let C be the Z/2-graded unital algebra generated by an odd element ¢ with o = 1.
As a vector space it is isomorphic to €@ C via the map Cy — CHC,a+bo — (a,b).
We endow C) with the scalar product induced by the standard hermitian scalar
product on C & C.

We identify L2([O, 1], 01 ® (QSMAi)2d> with Cl X L2([0, 1], (QSMAZ')%Z).

Let (P, P1) be a pair of transverse Lagrangian projections with P; € My(Ax), @ =
1,2 and let D; be the associated unbounded operator on L*([0, 1], (Q2<,.4;)*?) from
emm]

Following [BK]] we define a superconnection A; associated to the odd operator oDy
on the Z/2-graded A;-module L*([0,1], C; ® A?%):

Let U € C*(]0,1], M24(Aw)) be as in prop. =2 with U(0)PU(0)* = Ps and
U(1)PU(1)* =1 — Ps. The differential U*d U can be considered as a trivial super-
connection on L?([0, 1], C; @ A?).

Let
AI = U*dU+0D[
and for ¢ > 0 define
Al:=U*dU +'toD; .
Since A; is an odd map on C; @ C3([0, 1], (Q<,..A;)??) fulfilling Leipniz’s rule, we call
it a superconnection, and we call A! the corresponding rescaled superconnection.

The curvature of Ay is

A2 =U*d*U +U*dUoD; +0oD;U*dU + D7 = D} + o[D;, U*d U] .

[D;,U*dU] = =U*[d,UD;U*|U
= —U*([d,Dy,] + [d, Ul (0U")]))U
= -U"d(ULy(oU"))U = R
it holds A2 = D?4+0R with R € C*([0, 1], Ms4(€1. A )) vanishing near the boundary
and fulfilling R* = R.

The curvature of the rescaled superconnection A/ is
(AD? =tD? + VtoR .

We see that the curvature and the rescaled curvature are right QS uAi-module maps.

Since A?% is a bounded perturbation of D?, it defines a holomorphic semigroup e~tA7

on LQ([()? 1]’ Cl ® (QSM'Ai)Qd)'
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In the following we restrict to the case ¢t > 0:

By Volterra development it holds

o

— 2 _ 2 _ 2 _ 2
e~ tAT — E (—1)”15”/ e wPigRe~MDIgR e PT quy ... du,
n=0 "

(n+1)n

= Y o"(=1) 2 t"L()
n=0
with

_ 2 _ 2 _ 2
I,(t) ::/ e T Rem DI R e T duy . . du, .

The series is finite on L2([0, 1], C; ® (<, Ai)?).
It follows -
A0 = 3o (-1) T L ()
n=0

The operators I,,(t) obey the following recursive relation for n > 1:

1
I,(t) = / dug e_uotD?R/ e tDIR e untDT gy, duy,
0 (1—ugp)An—1
1
= / dug (1 — uo)”_le_“"tD%R/ e~ (-uwo)mtDip - o=(l-uo)untD} gy, du,
0 An—1
1
- / duo (1 — o)™ 'e PR, (1 — uo)t)
0

Note that the operators e~ (40)* and I,,(t) are selfadjoint on L([0, 1], 0y @ (<, A;)?%)
in the sense of §623.

4.1.2 The integral kernel of ¢~ (A1)’

Since ¢ *P7 is a bounded semigroup on C%([0, 1], (Q<,A;)%%) for any m € INy by
prop. B33, the family I,(t) : C2([0,1], A2 — C2([0,1], (Q,A4;)%) is uniformly
bounded in t > 0.

In the following we write | - | for the norm on Mag(Q<, A;) for any p,i € IN.

Proposition 4.1.1. For any n € Ny and t > 0 the operator 1,(t) is an integral
operator. Let p(x,y)" be its integral kernel.

Then it holds:

1. The map
(0,00) = C*([0, 1], CF ([0, 1]>M2d(QnAOO)))7 b= (y = pt<'>y)n) )

18 smooth.
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2. It holds py(x,y)"” = (pi(y, 2)™)*.

3. For every l,m,n € g there is C,w > 0 such that fort >0 and z,y € [0,1] it
holds

I+m+1
2

1050, pe(a,y)"| S C(L+E7 2 )e™" .

Proof. We prove the claim by induction on n. In degree n = 0 the assertions hold
by prop. B384 and cor. BZ3 4.

Let ki(z,y) be the integral kernel of e~

For f € Cg([0,1], (quAi)2d) it holds by induction and by the recursion formula
above:

2
tD3

/ / / = ) k(s ) R(F)p sy, )" (y) dydrds
0,1] J0,1]

Since for fixed s the integrand is uniformly bounded in r and y we can interchange
the integration over r and y.

For the proof of the existence of the integral kernel and of 1) it suffices to show that
the map

(5,8) = (y = [ ](1 — )"k (-, ) R(r)pa sy (r, )"~ dr)
0,1
is a smooth map from [0,1] x (0,00) to C([0,1], C%°[0, 1], Mag($2,.A4;))):
For s > % this follows from the fact that by induction the map

(s,t) = (y = Rpa—se(-,y)" ")

0, 1], M- (QnAZ))) Further-

is a smooth map from [1, 1] x (0, 00) to C*([0, 1], CF(
0,1], Mag(Qn.Ay)) for any I € IN,

more the family e**P7 is uniformly bounded on C%(|0,

by prop. B33 and depends smoothly on s, t.

For s < % the map is smooth since
(s,t) = (z — Rkg(z,-))

is a smooth map with values in C*°([0, 1], CF ([0, 1], M. 20(Q1A4;))) and since the action
of the family I,,_;((1—s)t) on C}F([0, 1], Mgd(Q <uAi))) depends smoothly on s, ¢ and
is uniformly bounded for any m € INj.

Assertion 2) holds since [,,(t) is selfadjoint in the sense of §523.
The preceeding arguments and the following facts imply the estimate in 3):

By induction there is C' > 0 such that the norm of (y > Rp(l_s)t(-,y)”_l) in
cm([o, 1],C’§([0,1],M2d(§2nu4i))) is bounded by C(1 4 ¢t~ "% )e™ for 0 < s <
3, t > 0. On the other hand by cor. B=38 the norm of (x — Rkg(z, )*) is bounded
in C4([0,1], O ([0, 1], Mag(Q1.A4,)) by C(1+ =5 )e ! for s > L ¢ > 0. 0
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The proof of the previous proposition did not use the fact that D?+ o R is the curva-

ture of a superconnection. Hence an analogous argument shows that the semigroup
2

e~ "PL+oR) i an integral operator whose integral kernel can be written as

(tln pop s n
> (=17 ot y)

n=0
with (y — pi(-,y)") € C=([0, 1], C ([0, 1], M2a(Q,A,)) for R = (P, 1 — P).

Lemma 4.1.2. For any [,m,n € INg and €,0 > 0 there is C > 0 such that for all
z,y € [0,1] with d(z,y) > ¢ and all t > 0 it holds

d(z,y)%
1040, p; (,y)"| < Ce™ GTor .

Proof. We prove the assertion by induction on n.
In degree n = 0 it holds by cor. BT2.
Let n =¢/4.

Let x : R — [0, 1] be a smooth function with x(x) = 0 for z > n and x(z) = 1 for
z < n/2.

Let k, be the integral kernel of =P 7
For [,m € INg it holds
Syt = [ (L k)R )l s
[0,1]
/ /[ (0= 8 YR (1= X )X, D) o) drds
0,1

+/0 /K)’l](l—S)n_laikst('%,T)R(T)(l—X(d(w,T)))(1—X(d(7’, o)) DE1_ ey y)" A drds

We begin by estimating the first term on the right hand side: By induction there is
C' > 0 such that for z,y € [0, 1] with d(z,y) > e and 0 < s < 1 and ¢ > 0 it holds
in CL([0,1], Mag(2,A4:)):

(d(z,y)—n)?

| RX(d(, )3y pf e 9)" ey, < Ce o

Furthermore the operator e *'P% is uniformly bounded on CL([0,1], Mag(Q0A:)),

_ (dz,y)=n)?
hence the first term is bounded by Ce (it

An analogous bound exists for the second term: By cor. BT and since the integral
kernel (y,r) — (851])‘2’178”(7’, y)"~1)* induces a uniformly bounded family of oper-

ators from C([0,1], Maa(Q<,A)) to Cr([0,1], Mag(Q<,A)) there is C > 0 such
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that for all z,y € [0,1] with d(z,y) > ¢ and 0 < s < 1 and ¢ > 0 it holds in
C}’?’L([Ov 1]7M2d(Q ))

(d(z,y)— 71)2

195k, )R)™ (1= x(d(-,2)) X(d(-, ) o < Ce™ @i

Furthermore by cor. it holds

d(z,r)” 'r)

0L kg (z, 7)R(r) (1 — x(d(z,7)))| < Ce” @t

and by induction

1 2
1— x(d(z,r)))omps, o, (r,y)" ! SC’J%
y P(1-s)t

for all z,y,r € [0,1], all 0 < s < 1 and ¢t > 0, thus the third term is bounded by
Ce %fﬁ?;t )

Hence there is C' > 0 such that for all z,y € [0,1] and all ¢ > 0 it holds

L am. s " ,(d(w)—&s/z)?
10,0, pi (z,y)"| < Ce™ W
The assertion follows now from lemma BE1TA.
O

We apply Duhamel’s principle in order to obtain an analogous result for the kernel
pe(z,y)™
Recall the definitions of ¢y, v, k= 0,1, in §83.

Let Uy € Myy(Aw), k= 0,1, be a unitary with Uly = I,U and U, P,U; = P; (for
its existence see lemma [CZA3).

Let

we (,y)" = Uppi (,9)" Uy .

Let W¥(t) be the integral operator with integral kernel wf(xz,y)".
We define the integral kernel

we(w,y)" = yo(x)w (z,y)"do(y) + 1 (x)w; (z,y)" 1 (y)

and denote by W, (t) the corresponding integral operator. Let W;(0) := 1 and
Wn(0) :== 0 for n > 1. Then W,(t), n € INy is a strongly continuous family
of operators on L([0,1], (Q<,.4;)*?) and for f € C([0,1], (Q<,4i)??) the family
W, (t)f € L*([0,1], (Q<,.A;)*?) depends even smoothly on ¢ for all ¢ € [0, c0).

Furthermore for ¢ > 0 the range of W, (t) is in O ([0, 1], (Q<,.A:)%9).
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Hence Duhamel’s principle yields for f € C%([0, 1], .A29):

(6—1514% _ Zo.n(_ n(n+1) nW ( ))f
n=0

! A2 d
— —S 2 n
= —/Oe (t+A E (t—s)"Wy(t—s)f ds

n=

= / o847 Z Vi, D3] SZU" n(n+1) (t — s)"WE(t — s)ppf ds

k=0,1

_ Z / VS S = )Ly (5) D (40 + D)W — )0 ds

§=0 k=0,1

It follows
(In(t) = Wa(1)) f = t‘”/o > St =8V i(s) Y (0 + O Wt — )i f ds .
§=0 k=0,1

Proposition 4.1.3. For any [,m,n € Ny and any 6 > 0 there is C' > 0 such that
it holds

ol om _ oo < or S i
| Y pe(z,y)" =%y wi(z,y)"| < Ct Z € Supp¢k(y)

k=0,1

for allt >0 and all x,y € [0,1] .
Proof. Tt holds in CL([0, 1], Maq(2,.4;)):
10, e (-, )" = O we (- y)" [l e,

Sy >l P o) 32 (40 + 005 (ut s )l

k=0,1

IN

/ ZHI" J Z (7,0 + 01,) 0" (wf o, y) on(y ))||%d8.

k=0,1

From the previous lemma it follows that for any 7 € INg and £ = 0,1 there is C' > 0
such that

d(y,supp 7j)?

130 + 079195 (wi () dr (W) lles, < Ce™ T Lp s, ()

for all y € [0,1], all t > 0 and 0 < s < t.

The assertion follows from the fact that /,_;(s) is a uniformly bounded family of
operators on CL([0, 1], Mag(2<,Ay)).

O
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Corollary 4.1.4. For any l,m,n € Ny and € > 0 there are ¢,C > 0 such that it
holds

d(z,)?

10,0y pe(,y)"| < Ce™ e
for all z,y € [0, 1] with d(x,y) > € and all t > 0.

Proof. Note that the assertion is equivalent to the assertion that for any [, m,n € INg
and € > 0 there are ¢, C > 0 such that it holds

_ 1
1050, pi(,y)"| < Cea

for all x,y € [0, 1] with d(z,y) > € and all ¢ > 0. The estimate follows for 0 < ¢ < 1
from the previous proposition and lemma BT since supp~y;, N supp ¢r = 0. For
t > 1 it holds by the estimate in prop. BT O

4.1.3 The n-form

In the following the integral kernel of D1, (t) is denoted by (Dyp:)(x,y)"

Lemma 4.1.5. For any n € Ny the integral

/tn21/ tr(Dypy)(x, z)"dxdt
0 [0,1]

is well-defined in Q*Am/[Q*Am, Q*Aoo]s.

Proof. The integral converges in QgpAi/[QgpAhQSMAi]s for all n,u,7 € INg: For
n = 0 and t — 0 the convergence follows from cor. BZ3R; for n > 0 and ¢ — 0 and
for n € INg and ¢t — oo the convergence follows from prop. EI. By prop. =33

the integral converges in Q*AOO/[Q*AOO, Q*AOO]S as well. O

Let tr,(a 4 ob) := tra for a,b € Mzd(Q*Ai) and let Tr, be the corresponding trace
on integral operators.

Definition 4.1.6. The n-form of the superconnection A; associated to Dy is

]. 1 I\2 A~ ~ ~
— -3 —(4])
n(Ag) : 2\/_/0 t 2Tr,Dre dt € QAo /[ Aso, QAs]s -

It holds

1 « ©
n(Ay) = —— —1“/ t”_2/ tr(Dypy) (z, 2)* dadt .
(A7) 2\/?;( ) i o (Drpe)(z, x)

Hence the n-form is well-defined by the previous lemma.
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4.2 The superconnection associated to Dy

Let (P, P1) be a pair of transverse Lagrangian projections with P; € Myy(As), i =
1,2 and let Dy be the asssociated operator on L*(Z, (Q<,.A;)*?) defined in §84.

In this section we define a superconnection associated to Dy .

Let U € C>(]0,1], Ma4(Aw)) be as in prop. =20 with U(0)P,U(0)* = Ps and
U1)PU(1)* =1 — P,. We consider U as a function on Z depending only on the
variable x5 and set

W:=UaU € C®(Z, My(As)) .
We ca~ll Ay = W*dW + Dy a superconnection associated to Dy and AtZ =
W*dW + v/tDy the corresponding rescaled superconnection.
Its curvature is
Ay = Dy +[W*dW, Dy,

= D%+ W*[d, We(day)0p, W W

= D% — c(dx)W*[d, WI,,W*|,W

= D2 — c(dz)W*d(W 10, W)W

= D7 +c(dv)(R® (-R))

with R = —U* d(UIL(dU*))U
Let R = c(dz,)(R® (—R)) € C®(Z, Mys(Q<,A)). Tt holds R* = —R.

The negative of the curvature generates a holomorphic semigroup e~

L3(Z, (Q<uAi)').

Let D; be the closed operator on L*([0, 1], (Q<MA )24) associated to (P, P,). Recall
from §B8A that for the operator D; it holds e tP% = e~ tPietAR,

2
tA7 on

By prop. B2 the operator
I,(t) == / e~ u0tD} pe=witDip - o=untDE gy du,

is an integral operator. Its integral kernel is denoted by pf(x,y)".

Since e *A® commutes with R and ¢(dz;) commutes with e~*PZ and with R@ (—R),
we obtain from Volterra development:

oo
A2 B 2 =~ 9 ~
ez — E (—1)"15”/ e 407 Re= D7 R e D% duy . . . du,

n=0 "

o0

_ _ N2 ~ _ N2 ~ _ 2
= g (—1)"t"e tA‘R/ e I Rem DI R e DT duy . . . du,
n=0 Ar

o

= D (1) te(dr)"e A (L,(8) © (—1)"Lu(t)) -

n=0

83



We define

1 (e1—yp)>
7Z n n — I n n, I n
x, = c(dx e at T2, @ (-1 T3, .
pt( y) ( 1) ot (Pt( 2 yz) ( ) Pt( 2 yz) )

It follows that the integral kernel of e 7 is
> (=0merpf (x,y)"
n=0

and the integral kernel of e~(4)” ig

oo

Y (=1)tEp] ()"

n=0
Note that for all multi-indices a, 3 € IN it holds
trsc‘??@fptz(m, y)"=0.
Furthermore it holds
(Dz)ap? (x,9)" = c(da1) (s, — 10,,)p] (,9)" .

Since tryc(dzy)0y, pZ (z,y)™ vanishes for z; = y; and trye(dz,)10,,p? (z,y)"™ vanishes
for all z,y € Z, it holds try(Dy).p? (z,y)" =0 if z = y.

Furthermore the integral kernel pZ (z,y)" satisfies the following Gaussian estimate:

Lemma 4.2.1. Let a, 8 € IN;. For any € > 0 there are ¢,C > 0 such that for all
x,y € Z with d(x,y) > ¢ and all t > 0 it holds

_ d(zy)?

1070, pi (x,y)"| < Ce™ e

Proof. The assertion follows from prop. B0 and cor. EEI4: The proof is analogous
to the proof of lemma BZ4. n

4.3 The superconnection A(p); associated to D(p)

4.3.1 The family e~ Al
Recall that in §851 we fixed 7¢, by > 0 such that
supp kg N ((F(TO, bo) Xx M) U (M x F(rg,bo))) =0.

. Let W € C*(M,End*E ® A.) be as in §ZT2 and assume that W is parallel on
M\ F(r,by) for any r > 0. By prop. this is possible. Then it holds [W, K| = 0.
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We define a superconnection associated to D(p) on the Z/2-graded A;-module
L*(M,E ® A;) by
A(p) :=W*dW + D(p) .

The corresponding rescaled superconnection is
A(p) == W*AW +VtD(p) .
The curvature of A(p) is
Alp)* = W W +[D(p), W* dW], + D(p)’

= D(p)? + W*[d, We(dW™)|, W

= D(p)*+R
by prop. I and the fact that [W, K]s = 0.
It holds R € C*°(M,EndE ® Q<1 A;) with R|yp s = 0 for all 7 > 0 and

Rlp = W'd, We(e2)0, W)W
= —c(e)) W d(WI0.,W* )W .

Furthermore for any k € Z /6 the restriction of R to Uj, is of the form c(e,) (R®(—R))
with R € C™(Uy, Maq(Q2<1.A;)) independent of the variable x5.

The rescaled curvature is
A(p)? = tD(p)? + VIR .

Both, A(p)? and A(p)?, are right Q<,,.A;-module homomorphisms.

Since A(p)? is a bounded perturbation of D(p)?, it generates a holomorphic semi-
group e 4®* on L2(M, E ® Q< A;).

In the following we only consider ¢ > 0.

The Volterra development of e~ t4(®)° ig

o0

P - Z(—l)”t“/ e uwotD(P* Re—utD(p)’ R o=untD(p)® dug . ..du,
O n

3
Il

I
NE

(—1)™" L, (p, t) .

i
o

It follows

o0

(O Z(—l)ntn/an(P, t) .

n=0

For n € IN there is the following recursive relation:
1
Lp.t) = / dug (1 — )™ e PP R, (p, (1= uo)t) -
0

For p # 0 the family ¢ — I,(p,t) is uniformly bounded on L*(M,E ® quAi>- By
cor. BOTA it acts as a strongly continuous family of operators on C37(M, E®Q<,A;)
and there are C, > 0 such that the action is bounded by C(1 + ¢)’.

Note that it holds I,,(p,t)* = (—=1)"L,(p, t).
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4.3.2 The integral kernel of e~ AW

In this section we prove that I,,(p, t) is an integral operator for ¢ > 0 by constructing
an approximation of the family I,,(p, t) by a family integral operators and comparing
it with I,,(p,t) by Duhamel’s principle.

Let {¢g tres and {7V }res as defined in §BH.

For k € Z /6 the function Wy, : Uy, — Mya(As) does not depend on the coordinate
x%. We extend it to a section Wy : Z, — Mya(As) which is independent of % as
well. Then the superconnection Az, = W;d W + Dy, coincides on U, with the
superconnection A(p).

For k € Z/6 and n € INy let w(p)¥(x,y)" be the restriction of pZ* (z, y)" to Uy x Uy.
Let furthermore w(p)®(z,)° be the restriction of the integral kernel of e *P¥()* to
Uy, x Uy, for t > 0 and set w(p)*(z,y)" = 0 for n > 0.

This is reasonable since A(p)? equals D(p)? on Uy,

We extend w(p)¥(x,y)" by zero to M x M and set

= w(z) Y)" ok (y) -

keJ

Write W, (p, t) for the corresponding integral operator. It is a bounded operator from
L*(M,E®A;) to L*(M, E®Q<,A;) as well as from C%(M, E® A;) to CH(M,E®
QoA

Set Wy(p,0) =1 and W,,(p,0) = 0 for n > 0.

Then for f € L*(M, E ®Q<,.A;) the family W, (p,t)f € L*(M, E ®Q<,.A;) depends
continuously on ¢ for all ¢ € [0,00), and for f € C%.(M, E ® A;) even smoothly.

By Duhamel’s principle it follows for f € Ch.(M, E ® A;):

(EftA(P)2 — i(_l)nthn(pa t))f
n=0
= [ A D W s ds
0 keJ n=0
_ / A S, D) S (1)t — )" WE(p,t — )1 f ds
0 keJ n=0

= S = / Z G ) (0,5) S e DLW (ot — 5)0xf ds

keJ

It follows

(In(p, )= Walp,t)) f =t /O DTt Tm(py8) Y[k D(p)L Wik (pyt—=5) i f ds .

keJ

In the following | - | denotes the fibrewise norm of (F X E*) @ Q< ,.A;.
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Proposition 4.3.1. The operator IL,(p,t) is an integral operator for t > 0. For its
integral kernel p(p)(x,y)™ it holds:

1. The map (0,00) = C®°(M x M,(EX E*) @ QuAs), t — plp)? is smooth.

2. It holds p(p)e(z,y)" = (=1)"(p(p)e(y, z)")".
3. For any T > 0 there are C,c > 0 such that it holds

d(y,supp dv;,)?
p(p)e(z, y)" — wp)e(z, y)"| < Ct (Z e Luppay (y) + plu;.(@/))

ked
forall0<t<T,pel[-1,1] and all z,y € M.

4. Let p# 0. Then there are C,c > 0 and j € IN such that it holds

" N dyUg)?
p(p)e(x,y)" — w(p)(z,y)"| < CtL +t)e” =
forallt >0 and all x,y € M.

Statements analogous to 3), 4) hold for the partial derivatives of p(p):(x,y)"
in x of y with respect to unit vector fields on M.

Proof. The proof is a generalization of the proof of prop. B T4.

In order to show the existence of the integral kernel and 1) we need only investigate
[n(pa t) o Wn(pa t)'
It holds for f € C.(M, E® A,;):

(Ln(pst) — Wil t))f
/ / Z = ) L (0 5) D [ves A0)Jsw(p)f_ (-, 9) " () [ (y) dyds .

keJ

Note that for k € Z/6 it holds [y, A(p)?] = [e(dyk), D]s.

For p € R and ¢t > 0 the family I, _,.(p,s) : C4(M,E ® Q<,A;) — C4(M,E ®
Q<ptn—mA;) is uniformly bounded in s < t.

The function

T (y = ) s A Lw(p)i (- y) " o (y))

keJ
is smooth from (0, 00) to CH{M, C%.(M, E @ QcpmitA;) @ E*) for any I, v € N,

If k € Z/6, then by lemma B2 there are ¢,C' > 0 such that for all y € M and
0 < 7 it holds

d(y,supp dwk)2

11, Alp)?swr G ) n()llow < Ce™ ™o Lappan (4) -
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Furthermore it holds w(p)®*(z,y)™ = 0 for m > 0. The kernel w(p)*(z,y)° is equal
to the kernel e(p)®(z,y) in the proof of prop. BGIA and was estimated there. It
follows that for 7,6 > 0 there is C' > 0 such that for y € M, p € [—1,1] and
0 <7 < T it holds

d(y,supp dvg,)?

Ivas A))sw(p)®(,9) ") fW)ller < Ce” ™ @ + |pl) Louppoa (¥) -

Analogous estimates hold for the derivatives in y and also in 7 by the heat equation.
The existence and 1) follow now by standard arguments.
Assertion 2) follows from I,,(p, t)* = (—=1)"L,(p, ).

In order to prove 3) we combine the estimates above with the fact that for any
T > 0 the operator I,,(p,t) : CL(M, E @ Q<,A;) — CL(M, E ®Q<,A;) is uniformly
bounded in p € [-1,1] and 0 < ¢t < T.

4) follows from the estimates by taking into account that for any p # 0 thereis C'> 0
and j € IN such that the norm of I,,(p, t) : CL(M, E®Q<,A;) = CL(M, E®Q<,A)
is bounded by C(1 + )7 for any ¢ > 0. O

Corollary 4.3.2. Let p # 0. For any € > 0 and m,n € INy there are ¢,C > 0 and
j € IN such that fort >0 and x,y € M with d(x,y) > € it holds

_d(x,y)2 d(yvu.,.)Q

ID(p)ap(p)(z,y)"| S CA+ 1Y (e o +e = o ).

Proof. This follows from lemma B2 O]

Corollary 4.3.3. Let k € Z/6.
1. For any T > 0 and m,n € Nq there are ¢,C > 0 such that for all xz,y € Uy,

for 0 <t <T and p € [—1,1] it holds

_d(yUg,)

1D(p)2p(p)e(x,y)" — (Dz,)pi*(x,y)"| < Ce™

2. For any p # 0 and n € Ny there is ¢,C > 0 and j € IN such that for all
x,y € Uy and t > 0 it holds

d(y,Ug,)

ID(p)"p(p)e(z, y)" — (Dz, )" pi* (2, y)"| < C(1 +t)e” e
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4.4 The index theorem and its proof

4.4.1 The supertrace

Let trg be the supertrace on the fibres of (£ ® E*) ® ng‘lz’ = EndF ® QgpAi and
Tr, the corresponding trace for trace class operators as defined in §I=372.

Let x : IR — [0, 1] be a smooth function with x(x) =1 for x < 0 and x(z) = 0 for
x>1. Let ¢ : M — [0,1], ¢,.(x) = x(d(M,,x)) for r > 0.

Definition 4.4.1. Let K be a bounded operator on L*(M,E ® quAz') such that
0K, is a trace class operator for all r > 0 . Then we define

Tr,K := lim Trs(gbqubr)
T—>00
if the limit exists.

On trace class operators this definition coincides with the supertrace Tr, defined in
63

Proposition 4.4.2. For p € IR and t > 0 the supertraces
Tr,eAP?

and
TrsD<p)€_A(p)t

exist in the sense of the previous definition.

Proof. We show the assertion for e=A®) the proof for D(p)e*A(p)g is analogous.

The operator ¢T6_A(p)3 ¢, is trace class for ¢ > 0 since
pre ARG, = (e APII2) (AP )

is an appropriate decomposition in Hilbert-Schmidt operators. Note that it follows
that the operators I,,(p, t) are also trace class for ¢ > 0.

We show that tryp(p),(z, z)" is in L'(M, Q< Ai/[Q<Ai Qe Ads):
By cor. there are ¢, C' > 0 such that

p(p)e(z, )" — pP*(z,2)"| < Ce Uz ta)®

for all x € U,
Since trypt (z,z)™ =0 by §E3, it holds

ltrop(p)e(z, 2)"| < Co—cl@Us)?

Now the assertion follows. O
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4.4.2 The limit of Tr,e 4" for t — oo

This section is devoted to the proof of

Theorem 4.4.3. Let p # 0.
Let Py be the projection onto the kernel of D(p). Then for T' > 0 there is C' > 0
such that for all t > T it holds
- 1 \
- 2 n * n —5
| Tre 40— "(—1) —Tr (W AW Ry)™| < Ot
n=0

and
ITr,D(p)e 4@ <

in Qe Ai) Qe Ai, Qe Al

Note that it holds (P,W dW*Ry)** = W(W*P,W)(dW*Py3W)?>"W*, hence by
lemma B3 it follows that (PyW d W*Py)®" is a trace class operator on L*(M, E ®
Q< A

The proof is subdivided in some lemmata. It relays on the tools developped in
)

Throughout the section p # 0 is fixed.

In the following | - | denotes the norm of Q<,A;/[Q<,A;i, Q< Aj]s tesp. the fibrewise
norm of (EXE*) ®Q<,A; (depending on the context), and ||-|| denotes the operator
norm on B(L*(M, E ® Q<,A;)).

Lemma 4.4.4. Let v = 0,1. For any T > 0 there are ¢,C" > 0 such that for all
t > T it holds:

ITr,D(p)’ e A% — Tr,,D(p) e 4P| < Cet.

Proof. We prove the case v = 0, the case v = 1 can be proved analogously.
By cor. for any n € INy there are ¢, C,r > 0 such that it holds

d(z, My)2

p(p)i(w, @) = pi*(z,2)"| < C(L4tYe o
for t > 0 and = € U, with k € Z/6.
Hence there are ¢, C' > 0 such that for all x € M and t > T it holds

d(z, My)?

[trep(p)i(x, 2)| < Cem e

and by that there are C, ¢ > 0 such that for all ¢ > r it holds
= |Try(1— ¢t)€—A(p)?‘

o0 _ (r/ —7‘)2 ’
C e e dr
t

Oefst

I Tr,e~ 40 — Ty g,eA0)|

IN

IN
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It holds

o0

Tr,peD(p) e M0 = "(—1)%/% Tr, ¢, D(p)" Ii(p, t)

k=0
and

TryéD(p) Ix(p, t) = / Tr, (¢:D(p) e PP Re DO R | o~ utDOl 6 duy . . . duy, .
Ak

Note that on the right hand side the supertrace is applied to trace Class operators.

Let P, := 1 — Py. The decomposition e %tP(®)?* = p, + Pe~wtP®)* induces a
decomposition of Tryp;D(p)"I1(p,t) in a sum of 2’”1 terms. Let P (¢) be the sum

of all those terms containing j factors of the form Pe~%tP()’
Hence
k41
v _— 2 14
WD ST

k=0
From PyRPy = Po[W*dW, D(p)]Py = 0 it follows P%(t) = 0 for j < &.
Note further that for k even it holds
Plg’k(t) = /Ak Tr, (¢tD( )Y PyRPye 1t *RPyRPe PO’ RP, ..
. PyRPe PO PR Py6y) dug . duy, .
Since D(p)Py = 0, it follows Py (t) = 0.
In two lemmata we study the liehaviour of the remaining cases for large ¢:

Lemma 4.4.5. Forv =0,1, fork € Ny and T' > 0 there are C,c > 0 such that for
all t > T it holds
’P@H)k(t)’ < Ce™

Proof. 1t holds

Phanl) = [ T(0D(o) B w70 Rpe P07 R

L RPe PO 8 dug . duy, |
Note that for any (ug, ...ux) € Ax we can find i € {0,1,...,k} such that u; > k%l
We begin by showing that for any 7" > 0 there are C,e > 0 such that for 1 > u; >

k+1’ for 1 > ug,...,u;—1 > 0 and for ¢t > T the family

$:D(p) Pre PO R e POPR | RPem TP

is a family of Hilbert-Schmidt operators with Hilbert-Schmidt norm bounded by

Cugy 2e~c!. If not specified the estimates in the following hold for 1 > u; > %H, for
1>wug,...,u;—y >0and fort >T.
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It holds

qStD(p)”Ple_“OtD(p)QRP e tPOPR | RPem D0
_ thD( ) P e uOtD RP —ultD R RP e 7 (p)2¢(t+6)
+¢:D(p)” Pye wtPO R pemu-1tP() R¢(t+6)P1€_7ltD(p)2(1 — Grv6)

¢ D(p)’ Pre PO’ R Pl i tPOPR(1 — ¢y 6 ) Pre 2 PO (1 = dippe)) -

Consider the first term on the right hand side: By cor. BEiIR there is C' > 0 such

that the family e_%tD(p)2¢(t+6) is family of Hilbert-Schmidt operators with norm
bounded by C't.

Furthermore by prop. BHTA and cor. BATH there are £,C > 0 such that the
operator norm of

6. D(p)" Pre PR P et POPR R Pem 1PN

is bounded by Cugge_“.

By prop. 212 it follows that the first term is a family of Hilbert-Schmidt operators
with Hilbert-Schmidt norm bounded by Cu, e~ for some C,e > 0.

In the second term the factor

u;

¢(t+6)P1€77itD(p)2(1 — t+6)) = (¢(t+6)€77w(ﬂ)2)PlefftD(py(1 — O(+6))
is a Hilbert-Schmidt operator bounded by some Ce ¢ with C,e > 0. Hence the
second term is bounded in the Hilbert-Schmidt norm by C'u, e for some C, e > 0.
The estimate of the third term requires more effort:

We prove by induction on j € IN that there is C' > 0 such that

0D (p)” Pre PP R P POIR L P PO (L — gyiy)

is a Hilbert-Schmidt operator with Hilbert-Schmidt norm bounded by Cu, %(1 +t)
fort > T and 0 < wg,...,u; <1

Then it follows that the third term is uniformly bounded by some Ce™* for some
C,e > 0 since Pie~2P0)” is exponentially decaying for ¢ — co by prop. BGI2.

For j = 0 the assertion follows from cor. B8 by
$:D(p)" Pre™ PP (1=6y116)) = ¢:D(p) e """ (1=¢(116)) — 31 D(p)” Po(1—yiv))

Now assume the assertion is true for j — 1. It holds

¢ PLD(p)" e PP RP1 RPe™ PO (1 — ¢4
= 4PD(p) e PO PRP, .. Prem PO PR G Pre” PO (1 — gy
+6.PLD(p) e PO P Prem PO P (1 — g ) RPreT PO (1 — gy
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Both terms on the right hand side are bounded in the Hilbert-Schmidt norm by
Cua”/Q(l +t) for some C' > 0 and all £ > 7" and 0 < ug, ..., u; < 1: the first term
since ¢(t+3)Ple_“JtD(p)2(1 — ¢(+6)) is bounded by C(1+1t) by cor. BTS, the second
term by induction.

Now we have finished the claim the proof began with.

An analogous proof shows that for any 7" > 0 there are C, e > 0 such that the family
Pie” 2P R P tPOIR L pemtPel g,

is a family of Hilbert-Schmidt operators with Hilbert-Schmidt norm bounded by
Ce~¢ for all u; > 0<ujp1,...,up <landt>T.

It follows that

L
k+1°

/ Try (4. PLD(p) e PO R Pem PO R R PP ¢, ) duy . . duy,
Ak

is bounded by Ce™¢! for some C,e > 0 and all ¢t > T.

This implies the assertion. [

Lemma 4.4.6. Let v = 0,1 and j,k € INy with g <j<k. ForanyT > 0 there is
C > 0 such that it holds fort > T':

P < Ct

Furthermore for k odd, for anyn € IN and T > 0 there is C' > 0 such that fort > T
it holds:
\P%k(t)] <Cct™.

Proof. For j <k the operator Py (t) is a sum of terms of the form
/ TI‘S(A(U(), Uy t)Po)(P()B(UH_l, o U, t)) dU,O e duk s
Ak
where A and B are continuous families of bounded operators on L?*(M, E ® QSMAi)

for ug # 0.
Since P, is a Hilbert-Schmidt operator by prop. B237 it holds by prop. BZZT2:

’ TI'S( (Uo, Uy t)Po) (PoB(Ui+1, .U, t)) dUO . duk|

< 1Pl s /A 1A, - . . i, ||| B(tisrs - - g, 8| dug . . . duy .
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Let w > 0 be such that there is C' > 0 with ||[P,e="P®)*|| < Ce~*! for all t > 0; then
it follows:

1 7j—1
|Pht)] < C Z / duyg (uot)’\/ze“’“ot/ exp(—Zwuit) duy . . . duy
0 (1—ug)Ak—1 _

A=0,1

(1—uo) ' '
= C Z/ dug (ugt)™?e “’“Ot/ e " vol(sA7?) vol((1 — ug — s)A*7) ds
0

A=0,1
- gzm/ / IS
= A:Zo,l(/om e an) ([ G )
< Ot

This shows the first statement.
For k odd it holds

P%k(t)

= / Tr, (6:D(p)” PyRPre 1P R ByR P tP@ | iR Pe™ P07 duy . . . duy
Ak
+ / Try (D(p)" Pie PO RBR P tP0) | R Pre™ PO R Pygy) dug . . . duy, .
Ak

From prop. B2 it follows that for any n € IN there is C' > 0 such that
(L= @) Pollas + [[Fo(1 = ¢¢)[[us < CLT"

The second estimate follow then from the cyclicity of the sypertrace since PyP, =
P1P0 == O D

From the results so far obtained it follows that the supertrace TryD(p)e 4?7 can
be estimated by Ct~! for ¢t > T. This shows the second estimate in the theorem.

Furthermore it follows from the previous lemmata that for ¢ > T there is C' > 0
such that it holds

| Trogpye A0t —Ztn n(zn) ()] < C17 :,
Define
Pn(t) = / PORP 6_u0tD RPDRple_ultD RPD
A2n

. PyRPe PO R Py duy . . . dus,
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Note that by P, (t) = PyP,(t)Fy this is a trace class operator.
It holds Py, (t) = Trsd,Pu(t).
From prop. B0 it follows that for any 5 € IN there is C' > 0 such that

Py — ¢:Pollgs < Ct 7,

hence |
[TrPo(t) — Pl (t)] < Ot

In the next lemma we show that for 7" > 0 there is C' > 0 such that
1

n_
n!

|t P (t) — (—1)" = (PoWdW*Py)*"|| < Ot !

in B(L>(M,FE ® quAi)) for t > T. The first estimate of the theorem follows then

since for any j > 0 there is C' > 0 such that
PO (1) (—1)”%Trs(P0WdW*PO)2”|
S OHI " TR (Pa(t) — (~1)" - Try (P Py
< O 4 | BulfslPale) = (1" (P Ry

Lemma 4.4.7. Let k,n € INg with n < k. Fort — oo the term

" / P,RPe~P®)* pRPRPe PO *RP, ... PyRPe PO R Py duy . .
Ak

converges in B(LA(M, E @ Q<,A;)) to

1

) (PoW AW By )™

(="

with O(t™1).
Proof. For i,j € {0,1} let ;d; := B,W dW*P;.
Note that by R = [W*d W, D(p)], it holds

PlRPQ = PlD(p>W*dWPO
PRP, = PW*dWD(p)P,

and thus , .
PyRPe PO RPy = odyD(p)?e P dy.

This term is uniformly bounded for ¢ — 0.

Hence the integral

t
/ 0d1D<p)2€_SD(p)21do ds
0
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converges and equals ody (e 7*P*)” — 1) 1d,.

For n € IN and k£ > n it holds

¢ / PyRPe PO’ R PR Pe PO RP, .. PByRPe PO’ R Py dug . . . duy,
Ak

_tn/ o1 D(p)*e” "W doodi D(p) e P 1dy . ody D(p)e PO dy duy . duy
Ak

For n € IN set
n—1
Dn:{Zui§1,0<uZ<1,Z:O, ,n—1}
=0
By integration on u,, ..., u; the previous term equals

n

We prove by induction that this term converges to 5=y ( dy1dp)™ with O(t™1).
For n =1 and k = 1 the term equals 1.

For n =1 and k& € IN the claim follows by induction on k: By partial integration it
holds

1
/ ods D(p) 2P o vol (1 — o) AF1) dug
0
1
= odle_tD(p)21d0+/ OdlD(P) ~uoiD(p dOVOl((l _UO)Ak 2) dug
0

since
Ouo vol((l —up) AP = —vol((1 — ug)A*?) .

tD(r)* | dy decays exponentially for ¢ — oco.

Furthermore odie™
Assume now that the claim holds for n — 1 and any £k > n — 1.

Then by partial integration on u,_; the term equals

n—2
a /An 0 Dlp )7 PO dy gy | =t e P vol (1 Zui—x)Ak_n)]o vdo dug ...

=0

|
—

n

+ tn_l / OdlD( )2 —uotD(p)* do .. .lee_unfltD(p)Qldo <8un_1 VOl((l— u,)Ak_”)> dUO ..

Il
=)

7

96

n—1
tn/ leD( )2 —uotD(p) d Odl ( )2 —un-1tD(p 1d0 VOI((]. ZUZ)Ak_n) duo...dun_l .
i=0

dun—l

. dun_l



Note that the first integral vanishes for © = u,,_.

We obtain
n—2
g1 / OdlD( )2 —ugtD(p OdlD( )2 —un—2tD(p)? 1dood11dg Vol((l ul-)Akfn) dug . ..du,_o
Dp1 1=0
n—1
_tn—l/ odiD(p )2 —ugtD(p)? 1do . . . odyetn1tPle 1d0 vol(( Zu’ Ak n— 1) dug . . . du,_q
Dp1 =0

There are C,w > 0 such that the last term is bounded by
1
Ct”l/ e vol(sA" M vol((1 — s)AF 1) ds |
0

hence by an estimate analogous to the one in the proof of the previous lemma
it follows that the last term vanishes with O(¢t') for t — oo. Thus it will not
contribute to the limit.

By induction the first term converges with O(¢™!) to
1 1
dy1dy)" =
(k—l—(n—l))!(o 11do) (k—n)!

From (W*dW)? = 0 it follows odi;dy = —od3. This shows the assertion of the
lemma.

(Odlldo)n

]

4.4.3 The limit of Trse_Ag fort — 0

Recall the definition of A/ from §Z3.

Theorem 4.4.8. It holds
lim Trse_A? =N

t—0

and
lim TrsDe_Af =0.
t—0

Proof. From prop. EZX it follows

o
. _A2 1\ n
11_{%Trse t = E_O( 1) 11_{% tz Tr,W,(0,¢) .

It holds

Tr, W, (0, 1) Z/M ) trow(0)F(z, 2)"¢p(z) da .

keJ
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For k € Z/6 it holds tryw(p)¥(x, )™ = 0 for all n € Ny and ¢ > 0 by §E2.
Furthermore w(0)®(z, )" vanishes for n > 0.

Recall that Uy contains the isolated point *. Since w(0)*(x,y)° is the integral
kernel of e7*P¥ it holds in C'(Uy,) by the local index theorem ([BGM], th.4.2) and
by ch(E/S) = ch((C*)?) — ch((C7)?) = 0:

lir% trow(0)*(z,2)° = N1, () .

Prop. B=3 also implies

. —A2 _ PIVAT n
15%TrsDe Z_;( 1) 11_{% t2 TryDW,(0,t) .

Since DWy(0,t) is odd, its supertrace vanishes. It holds TryDW,(0,t) = 0 by
§E32. 0

2 2

d d
4.4.4 —Trse_A(P)t and —TI"SB_A('O)t

dt dp
Lemma 4.4.9. 1. It holds
2
iTrse—A(p)? — _Tr, dA(P)} a2
dt dt

2. It holds

Proof. 1) First we calculate %e*A(’J)?:

Consider the holomorphic semigroup et (P ()*+2R) depending on the parameter z.

By the semigroup law it holds
d D2 Ly 2.,
@e t'(D(p)?+2R) _ —(D(p)2 + Z’R)e t'(D(p)?+2zR)

and by Duhamel’s formula (prop. 5b24)

tl
d __vD2+:R) _ _ / o~ (=) (D(p)*+2R) g o —s(D(p)*+7R) g g
0

dz
It follows
A oaep _ 1 uperR)
dt dt
d Y 2 4—1/2 _ d o 24,
_ %e t'(D(p)*+t R)‘(t,:t) _ %t 3/2@e t(D(p)%+ R)|(z:t*1/2)

_ —(D(p)2 +t—l/QR)e—t(D(p)Q-s-t*l/?R)
t
L / o~ (=) (D(? +7V2R) T3 ~s(D(p)*+1~1/2R) 4
0

1
= _t—lA(p)?e—A(P)f + %t_l/Q/ 6—(1—5)A(p)fRe—sA(p)fd8 )
0
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Now we prove that for any n € INy and #;, %5 > 0 there are r, ¢, C' > 0 such that
d n —cd(z,M;)?
| tr (o), )| < Cemodtmt
dt
for t; <t < ty. Then it follows:

d d
ETrSe* AW} = Ty %e*A(p)
By cor. BEZX3 and the fact that the pointwise supertrace of the integral kernel

(z‘ltZ")ze’(AtZk)2 vanishes for k € Z/6 there are r,¢,C > 0 such that the pomtw1se
supertrace of the integral kernel of A(p)2e=4(®)7 can be estimated by C'e=“®M)* for
1 <t <to.

The integral kernel of fol e~ (1=9)APF R340 ds is the sum of the terms

1

(—1) (1—s)m/2sm/? /M p(p)1—se(, ¥) " R(y)p(p)st(y, )" dyds

0
with m,n € IN.
It holds

n

p(p )(1 at(T,9)"R(y)p(p)st (y, )

p(p)a-sit(z, 9)"RY) (p(p)st(y, x)" — w(p)se(y, z)")
+(p(p)1—sye (@, y)™ — w(p) a—si(z, y)™ )RY)w(p) sy, z)"
Fw(p)a-si(z, y) " R(y)w(p)s(y, )"

(
(

By prop. B2 and the fact that the operator 1,,(p, (1 — s)t) is uniformly bounded
on Cr(M,E ® Q<MA) for 0 < (1 — s)t < ty there are C, ¢, > 0 such that it holds
forallze Mand 0 <s<1landt <t<ty:

| / P) - (@, )R ((p) st (y, )" — w(p) st (y, 2)")dy| < Cem @M

An analogous estimate holds for the second term.

Since it holds R|y, = 0 and since for k € Z/6 the section Ry, is of the form
c(e1)(R® (—R)), it follows by the results in §E2:

trsw(p) a—sy(z, y)"R(y)w(p)st(y, )" =0 .

Hence there are r, ¢, C' > 0 such that for x € M,, 0 < s <1 and t; <t <ty it holds
() Jtne [ po)aaela ) RIplp)aly,a)" dy] < O ettt
M

From the claim from the beginning of the proof follows.
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Now we show

1
Trs/ e~ =AW R 540 g5 = Ty Re AP
0

or equivalently

/ / 25 [ (o)l ) R0l ddsd

/ — sym/2gn/? / / () o (2 9) "R )P0y, )" dardyds

We can interchange the integration over s and x by the estimate (k).

Fix s and ¢t Consider once more the decomposition  of

() a—sye(z,y)"R(y)p(p)st(y, x)™ from above:

From cor. EZ332 it follows that for ¢ > 0 there are r,c¢,C > 0 such that for all
x,y € M it holds

|p(p>(178)t(l‘7 y)mR(y) (p(p)st(y, l‘)n — w(p)st(y, x)n) |
S 0(1[0,5]<d($€,y)) _|_efcd(:r,y)2 _i_e*Cd(x’MT)Q)e*Cd(y,Mr)z

The second term can be estimated in an analogous manner and the supertrace of
the third term vanishes as we saw.

Hence we can interchange dz and dy.

Finally 1) follows from

d
Try—e 40 = Tr(—t7TA(p)? + PR e Alp)i

dt
dA(p);
— T (0)?
dt

2) Since A(p)? =tD? +tp|D, K] +tp*’ K2+ v/tR, it follows from Duhamel’s formula
(prop. BZ4) and the chain rule:

1
A g _ _/ —(1-)A(p Qdf‘ii( P s A@? gy
0 P

dA(p)7

Note that the operator - is a finite integral operator whose integral kernel is

compactly supported.

By arguments similar to those in the proof of 1) we can prove

iTrse—A(p)? — Trsie—A(p)? = _Tr, dA(p )t o~ A)?

Since A(p); — VtD(p) = W*dW is nilpotent on L*(M, E @ Q<,.A;), the resolvent
sets of A(p); and v/tD(p) coincide. Hence by lemma B3I there is A € € such that
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A(p); £ X has a bounded inverse on L2(M, E ® Q<,A;). As in cor. BT it follows
that A(p), commutes with e~ A®),

It follows
dA(P)? —A(p)? dA(p): —A(p)?
Tt = (A, = e AR,
A dA
— [W*du/, d d(pp>t —A ] + \/_[ ( ) d(p )t —A(P) ]s

The first term of the last line is an integral operator with integral kernel W*d(k)W
if k is the integral kernel of W%lf)te_"‘(")gw*. Hence the supertrace of the first
term equals

Now consider the second term. Let P be the orthogonal projection onto the range
of K. It is a Hilbert-Schmidt operator. Since dA(p = V/tK it holds

dA(p):
dp

Try[D(p), e~ AP = Tr,[D(p) P, Ke 4¥)i], .

Since D(p)P and K e~ A7 are Hilbert-Schmidt operators, the supertrace vanishes
by def. =32 m

Let Dj,_ be the operator D; from §B=31 with boundary conditions given by the pair
(Prmod3, Pr+1mods)-

In §832 we defined A”* = Wi d Wy, + VtDy, such that AZF coincides with A(p),
on Uy,. There is Uy, € C*([0, 1], May(Ax)) such that Wi(x1, 22) = Ug(x2) ® Uk ().
Let A{k =U;dU; + \/Zale.

Lemma 4.4.10. It holds

d 2 Iy, 2
_Trse—A(P)t - _ Z Tfank —(A 2 _ - dTrsD( ) —A(p);
dt VAt keZ/6 2\/_

dA(p)7 _ [dA(P)t A

o a5 A(p)is it follows from the previous lemma

Proof. Since

d
aTrse*A(p)g = —Tr,]

dA(p):
dt

2
t

9 A(p)t]seiA(p) .

Furthermore it holds

_[dA(p)t
dt

7A(p)t]S€_A(p)t = _[A(p)h—



The supertrace of the first supercommutator in the last line equals

1 2
——dTr,D(p)e AP
Vi (p)

Now consider the second term:

Let x : IR — [0, 1] be a smooth function with x(z) =1 for x < 0 and x(z) = 0 for
x>1. Let ¢, : M — [0,1], ¢,(x) = x(d(M,,x)) for r > 0. It is smooth as well.

It holds
—%TrS[D@),D(p)e—A(P)?]
= ~ilm (Trs 6. D(p)2e 40\ /3. + Tr,\/$,D(p)e A(p)?D(p)\/ngT)

Since for v € INy the operators /¢, D(p)’ e A@i/2 and e=A®i/12D(p)"\/, are odd
Hilbert-Schmidt operators, it follows

—3Tr[D(p), D(p)e 7],
= -1 rllm (Trse_A(p)f/ngrD(p)%““”ﬁ/z — Trse_A(p)?/QD(p)gzﬁrD(p)e_A(p)?/Z)

= § lim Tr,e” AW 2e(dg, ) D(p)e= AP
= % lim Tryc (de)D(p)e AWk

For r > 0 we define the function x, : Z — R, x,(z) := x(x; —r). Cor. B33 implies

Z
%TlirgloTrsc(d¢r)D( )e~ AP = : hm Z Tree(dx,) Dz e 45?7
ez /o

Recall from §AA that the integral kernel of e~ (A7) i S (=1)"2p*(x,y)" with

1 _(1my)” )? n n n
P ()" ZC(dxl)”\/me S (pr (22, y2)" @ (—1)"pr (2, y2)") -

Z

Hence the integral kernel of c(dXT)DZke_(At ? is

> (N (o1 = 1)1, = 00, )07 ()"
n=0
An easy computation shows

Z
Tr,c (dXT)DZk —(4*)?

trs (dxy)" ((leptlk)(xzaxz)n@ (=)™ (D, p*) (22, 22)")ds
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Comparison with def. T3 and the subsequent remark yields
trsc(dxl)”((DIkpf’“)(xg, 22)"®(—1)" " (Dy, pi*) (s, zo)") = 2i"tr,0™ (D, pi* ) (29, 29)™ .

It follows:

2 — !
\/4_2 ”t”/ tr( D[kpt ) (22, 12)*"dxy
T
n=0

1 Al
= ——Tr,Dje A

Tlrsc(dx,«)DZke_(AtZk)2

~+

hence

4.4.5 The index theorem

Now we turn back to the notation used in prop. EZl.

Let A, be as in the previous section.

Theorem 4.4.11. It holds

ch(ind D¥) = =[ 3 n(Ap,)] € HiH(Ax) -

keZ/6

Here we understand ind D as a class in Ky(Aw) via the isomorphism Ky(A) =
Ko(As) induced by the injection A, — A.

Proof. Let p # 0.
In Ky(A) it holds by §23:

ind D* = [Ker D(p)?] — [AV] .

Let Py be the projection onto the kernel of D(p)?.
From prop. B3 and prop. B3 it follows in K¢(Aw):

ind D = [Rany, By — [AY] = [Ran,, WP,W*| — [AY] ,
hence in Hyg(Aw) it holds

ch(ind D) = ch([Ran,, WP,W*]) — N.
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By prop. B33 it holds in Hyr(Aw):

1
ch([Rans WRW?)) = Y (=1)"—Tey(WRW* dWRW*)™"

n=0
oo

1
— Z(—l)”mTrs(POW*dWPO)Q”.

n=0

Let p, 77 > 0. By theorem BEZZ3 and theorem EZ8 it holds in
Q*(AOO)/[Q*(AOO)a Q*<Aoo)]s:

= 1
Z(—l)”—TrS(POW* dWP)*™ - N = lim Trse_A(p)? — lim Trse_A?
— n! t—o00 t—0
o dt
P d "2
+/ —Tr,e 41y
o dpf

Td AQ
—Tree tdt .
+/0 dtre

The integrals converge by the results of §Z4 the estimate of theorem A3 and
theorem BEZR, and it holds in €, (Ax)/[Q(Ase), Qu(As)]s:

o0

1 N
ST (RWTAWR)™ — N = - Z/o

n=0 keZ/6

1 I
mTrstke_(Atk)zdt
s

>~ 1 2
—d ——Tr,D(p)e APt
/T N (p)

- d/p Trs—dA(pl>te_A(p')%dpl
0

D(0)e 4 dt

The assertion follows since by def. BT3 it holds

1 o0 I
n(Ar) = E/ t_l/QTrUDIke_(Atk)th .
0
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Chapter 5

Definitions and Technics

5.1 Hilbert ("*-modules

5.1.1 Bounded operators

Let A be a unital C*-algebra with norm | - |.

In order to fix notation we recall some facts about Hilbert A-modules:

Definition 5.1.1. A pre-Hilbert A-module is a right A-module H with an A-valued
scalar product < , >: H x H — A, i.e. it holds:

1. < , > is A-linear in the second variable,
2. <my >=<y,r >%,

3. <x,x>>0 forallze H,

4. if < x,x >=0, then x = 0.

If H is complete with respect to the norm ||v|| = | < v,v > |, then H is called a
Hilbert A-module.

The right A-module {(a,)nen | Y. ala, converges} endowed with the A-valued

n=1
scalar product
(o]
< (an)nG]Na (bn)nE]N >i= Z a:zbn
n=1

is denoted by [*(A). It can also be defined with index set Z.
Let M be a measure space and let < , > be the standard .A-valued scalar product

on A". Then the Hilbert A-module L?(M, A") is defined in the following way: By
< fgzp= [ < fa)ga) > ds
M

105



an A-valued scalar product is defined on the quotient of the space of simple functions
on M with values in A™ by those simple functions that vanish on the complement
of some set of measure zero. Hence the quotient is a pre-Hilbert A-module. The
corresponding Hilbert A-module is L?(M, A™).

Let H be a Hilbert A-module.

A submodule U C H is called complemented if U+ = {z € H | < z,u >=0Yu € U}
satisfies U @ U+ = H .

For example any projective submodule in H is complemented.

Let Hy, Hy be Hilbert A-modules. The elements of

B(Hl,H2> = {T :Hy — Ho | a7 - Hy — H; with
< Tv,w >p,=<v,T"w >y, Yv &€ Hy, weE Hy}

are called bounded operators from H; to Hy. They form a Banach space with respect
to the operator norm. With the composition as a product B(H;) := B(H;, Hy) is a
C*-algebra. Note that the existence of an adjoint must be required.

A continuous A-module map K : H; — H, is called compact, if it can be approxi-
mated in the operator norm topology by finite rank operators.

If K is compact, then K is adjointable, thus K € B(H;, H,).
A projection onto a projective submodule of H is compact.

If the range of T' € B(Hy, Hs) is complemented, we call its complement the cokernel
Coker T'. Clearly a necessary condition is that the range of T is closed. The following
proposition shows that it is sufficient:

Proposition 5.1.2. Suppose that T € B(H;, Hy) has closed range.
Then it holds

1. KerT is a complemented submodule of Hq,

2. RanT is a complemented submodule of Hs,

3. T* : Hy — Hy also has closed range.

Proof. [Ld], th. 3.2 O

5.1.2 Fredholm operators

Let Hy, Hy be Hilbert A-modules which are isomorphic to [*(.A).

There are two different notions of Fredholm operators from H; to Hs. In the theory
of Fredholm operators developped by Mis¢enko and Fomenko [MH| it is not required
that the operators are adjointable.
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Definition 5.1.3. A Fredholm operator in the sense of Miséenko/Fomenko is an
A-linear continuous map F : Hy — Hs, not necessarily with adjoint, such that there
are decompositions Hy = M, @& Ny and Hy = My & Ny with the following properties:

1. Ny, Ny are projective A-modules and My, My are closed A-modules.

2. The operator F is diagonal: F = Fy @ F with Fyy © My — My and Fy :
N1 — Ng.

3. The component Fy; : My — My is an isomorphism.
The index of F is defined as
ind F := [Nl] - [NQ] € K[)(A) .

Proposition 5.1.4. An A-linear continuous map F : Hy — Hy is Fredholm in the
sense of Miscenko/Fomenko if and only if there exists an A-linear continuous map
G : Hy — H; such that FG — 1 and GF — 1 are compact.

Proof. [MH]. O

From the proposition it follows that if F is Fredholm in the sense of
Miséenko/Fomenko then for any compact operator K the operator F'+ K is Fred-
holm in the sense of Mis¢enko/Fomenko. Furthermore it holds:

Proposition 5.1.5. If ' : H; — Hy is a Fredholm operator in the sense of
Miscenko/Fomenko and K : Hy — Hs is a compact operator, then it holds

ind /' =ind(F + K) .
Proof. [MH], lemma 2.3. O

In our context the following definition, discussed in [BVQ], is more appropriate:

Definition 5.1.6. An operator ' € B(Hy, Hs) is Fredholm if there is a compact
operator K : Hi — Hy such that Ran(F + K) is closed and such that Ker(F + K)
and Coker(F + K) are projective A-modules.

The index of F is
ind ' := [Ker(F + K)] — [Coker(F + K)] .

Proposition 5.1.7. An operator F' € B(Hy, Hy) is Fredholm if and only if there is
G € B(Hs, Hy) such that FG — 1 and GF — 1 are compact.

Proof. see [, th. 17.1.6. O

Fortunately for adjointable operators both notions are equivalent:
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Lemma 5.1.8. An operator F' € B(Hy, Hs) is Fredholm if and only if it is Fredholm
in the sense of Miséenko/Fomenko.

Proof. 1f F is Fredholm, let K € B(H;, Hy) be such that Ran(F + K) is closed and
Ker(F + K) and Coker(F + K) are projective A-modules. By prop. BT the kernel
of F'+ K is complemented. Define Ny := Ker(F + K), let M; be its orthogonal
complement, let Ny := Coker(F'+K) and M, := Ran(F'+ K'). These decompositions
show that F' + K is Fredholm in the sense of Mis¢enko/Fomenko.

Assume now that F' is Fredholm in the sense of Miscenko/Fomenko and let H; =
My & Ny, Hy = My & Ny be the corresponding decompositions. Let P be the
orthogonal projection onto N; and let Py, be the projection onto N; along M;.
Since V; is projective, P is compact, hence Py, = PPy, is compact and thus F' Py,
is compact as well. Then F' — F' Py, is an adjointable operator with closed range
M, with kernel N7 and cokernel N,. It follows that F' is Fredholm. O

Another important property of Fredholm operators is the following:

Proposition 5.1.9. If F' : [0,1] — B(H1, Hs) is a continuous path of Fredholm
operators, then the map [0,1] — Ky(A), t — ind F(t) is constant.

Proof. see [MQ|, prop. 17.3.4. O

5.1.3 Regular operators

In this section we study unbounded operators on Hilbert .A-modules.

Let H be a Hilbert A-module with A-valued scalar product < |, >. Let D :
dom D — H be a densily defined operator on H.

Lemma 5.1.10. If the adjoint D* of D is densily defined, then D 1is closable.

Proof. Let (f,)new be a sequence in dom D such that (f,, D f,) converges to (0, f)
in H® H for n — oco. Then for any g € dom D* we have

< f,g>= nh_{lc}o <Df,,g>= 7}1_)11010 < fn,Dg >=0.
Since dom D* is dense in H, it follows f = 0. ]
If D is closed, then
< f,g>p=<f,9g>+<Df Dg>

is an A-valued scalar product on dom D with respect to which dom D is a Hilbert
A-module. It is denoted by H (D).

Lemma 5.1.11. Assume that D is closed.
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1. Suppose that D has a densily defined adjoint D*. Then Ker D* = (Ran D)*.

2. Ker D is complemented in H(D) if and only if Ker D is complemented in H.
Proof. 1) Since for f € Ker D* and h € dom D it holds
< f,Dh>=<D*f,h >=0,

the A-module Ker D* is a submodule of (Ran D)*.

On the other hand the linear functional
domD — A, f—=<Df,g>

vanishes for g € (Ran D)*. Thus g € dom D* and D*g = 0.

2) Note first that for ¢ € Ker D and f € dom D the conditions < f,g >p= 0 and
< f,g >= 0 are equivalent.

If Ker D is complemented in H (D), then Ker D is complemented in H since it holds

H=THD) = (KerD)'#® & Ker D
= (Ker D) @KerD .

On the other hand if Ker D is complemented in H, we can decompose g € H(D) in
asum g = g, + g» with g € Ker D and g € (Ker D)*. Since Ker D C H(D), it
holds g, = g — g1 € H(D), hence g, € (Ker D)1#®), O

Recall that D is called regular if it is closed with densily defined adjoint D* and if
14 D*D has dense range, or equivalently if it is closed with densily defined adjoint
and if its graph is complemented in H x H.

If D is regular, then 1 4+ D*D has a bounded inverse.

In the following we denote the adjoint of an operator A € B(H(D),H) by AT €
B(H,H(D)) in order to distinguish it from the adjoint A* of A as an unbounded
operator on H.

Lemma 5.1.12. Assume that D is closed.

1. The operator D is regular if and only if the inclusion v : H(D) — H is in
B(H(D),H) and (14 D*D) is selfadjoint.

Then m' = (14 D*D)~' € B(H, H(D)) and (1+ D*D)~
1sometry.

N[

:H — H(D) is an

2. Assume that D is reqular and selfadjoint. Then D € B(H (D), H) and it holds
DT = D(14 D?)" .
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Proof. If D is regular, it holds for v € H(D) and w € H:

<w,w > = <v,wW>
= <u,(1+D*D)(1+D*D) 'w >
= <0,(1+D*D)'w >+ < Dv,D(1+ D*D) 'w >
= <v,(1+D'D)'w>p .

This shows 7 = (1 + D*D)~1.
Now the converse direction:

Let v € H. Then for any w € dom(1 + D*D) it holds:

<v,w >=<1Tv,w >p=< v, (1+ D*D)w > .

Since (1+ D*D) is selfadjoint, it follows t"v € dom(1+ D*D) and (1+D*D)."v = v.

This shows that (1 + D*D) is surjective and that .7 is a right inverse of (1+ D*D).
Since (1 + D*D) is bounded below, it is injective as well. It follows that (1 + D*D)
is invertible and (7 is its inverse.

The remaining parts are immediate.
m
Proposition 5.1.13. Let Dy be a reqular selfadjoint operator and assume D =

Dy +V with V € B(H).

1. Then D 1is closed.
2. The identity map induces a continuous isomorphism from H(Dy) to H(D).
3. It holds: D € B(H(Dy), H).

4. Suppose D 1is selfadjoint. Then D 1is regular.

Proof. 1) Because of dom D** = dom D{* = dom Dy = dom D it holds D = D**.
Thus D is closed.

Assertion 2) follows from the fact that there is C' > 0 such that for all f € H(D,)
it holds:

1A < AP+ IDofIP + 1l <V, Dof > ||+ < Dof, Vif > | + IV fI?
< CUSIF+1Dof %) + 20V I Do f|
<

CllfID, -

We applied Cauchy-Schwarz inequality.

3) By 2) the operator D : H(Dy) — H is continuous. By the previous lemma the
adjoint of D = Do+ Vv : H(Dy) — H is

DT = Dy(1+D2) '+ (1 + DY) 'V*: H — H(Dy) .
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4) By 3) the operator D + ¢ : H(Dy) — H is an adjointable bounded operator. By
[Cd], lemma 9.7, the range of D + i is closed. Thus it is complemented by prop.
BT From lemma BT it follows that the cokernel of D + ¢ agrees with the
kernel of D —i. By [[4d], lemma 9.7, the operator D — i is injective. It follows
Coker(D + i) = {0}. By [C4], lemma 9.8, this shows that D is regular. O

Proposition 5.1.14. Let D be a regular and selfadjoint operator on H with closed
range. Then it holds:

1. The cokernel of D exists and Ker D = Coker D. In particular Ker D is com-
plemented.

2. The A-module dom DNRan D is dense in Ran D and it holds dom D = Ker D®
(dom D N Ran D), thus D = 0@ D|ganp and D|ranp is invertible.

Proof. 1) By lemma BTT21it holds D € B(H (D), H). Since the range of D is closed,
it is complemented by prop BI2. Its complement is Coker D. Since D is selfadjoint,
it holds Ker D = Coker D by lemma BT

2) Let P : H — Ran D be the orthogonal projection. From (1 — P)(dom D) C
Ker D C dom D we conclude P(dom D) C dom D. The assertion follows because
P(dom D) is dense in P(H) = Ran D. O

We will need the following Z /2-version of the previous proposition:

If H=H"® H™ is Z/2-graded, then we call a closed operator D on H even resp.
odd if dom D decomposes in (dom D)* @ (dom D)~ and if the action of D is even
resp. odd.

Proposition 5.1.15. Let H be a Z/2-graded Hilbert A-module and let D be an odd
reqular selfadjoint operator on H.
Suppose D : (dom D)™ — H~ is surjective.

Then the range of D is closed. It holds Ker D™ = Ker D = Coker D = Coker D~
and this module is complemented.

Proof. Since D7 is surjective, D~ is injective and so Ker D™ = Ker D.
Let P, be the orthogonal projection onto H*. Since D is odd it holds DP, = P, D.

By lemma BT the operator DP, : H(D) — H is adjointable with adjoint
P.D(D*+1)"'. Tt follows that D~ (D* +1)~' : H~ — H(D)" is the adjoint of
DT : H(D)" — H~ since P*D|ypyx = D*.

Since D7 is surjective, Ker DT is complemented in H(D)" and the adjoint D~ (D?+
)™ : H- — H(D)" has a closed range. Since it holds D~ (D? + 1)~! = (D? +
1)"2D~(D? +1)"2 and since (D2 + 1)"2 : H* — H(D)* is an isomorphism by
lemma BETTA we conclude that Ran D~ must be closed, too. O

Proposition 5.1.16. Let D be a reqular selfadjoint operator on H.

111



1. For all X € C\ IR the operator D — X is invertible.

2. Assume that the range of D is closed and let P be the projection onto the kernel
of D. Then there is ¢ > 0 such that the spectrum of (D + P) is contained in
IR\| — ¢, ¢[ and the spectrum of D is contained in (IR\] — ¢, c[) U {0}.

Proof. This follows from the functional calculus for regular operators ([C4], th. 10.9)
and from the decomposition in prop. BT T4. O

The following criteria for selfadjointness and regularity will be useful:

Lemma 5.1.17. Let D be a symmetric reqular operator such that the ranges of D+
and of D — i are dense in H. Then D 1is selfadjoint.

Proof. By [Ld], lemma 9.7 the operators D + i and of D — i have closed range. It
follows that they have a bounded inverse on H. Then they are adjoint to each other,
thus D is selfadjoint. O]

Lemma 5.1.18. Assume that D is symmetric and has an inverse D~ € B(H).
Then D 1is reqular.

Proof. From D~' € B(H) it follows that the graph of D~! is complemented, hence
the graph of D is complemented as well. Since D is symmetric, the adjoint is densily
defined. Hence D is regular. O]

5.1.4 Decompositions of Hilbert C*-modules

Let H be a Hilbert A-module with A-valued scalar product < , >. Let J =
{1,...,m} C Nresp. J=IN. If J =N, then set m = oc.

Definition 5.1.19. A system { fi}res C H is called orthonormal if for all k,l € J
it holds
< Jfi, 1 >= 0 -

It is called an orthonormal basis of H if for all f € H there is (an)nes C A such
that f = > fuan,.
n=1

It holds a,, =< f,, f >, thus the coefficients are uniquely defined by the system.

Lemma 5.1.20. Let {fy}res be an orthonormal system in H whose span is dense in
H. Then it is an orthonormal basis of H and H is isomorphic as a Hilbert A-module
to A™ if m < oo and to I*(A) else.

Proof. Let P, be the orthogonal projection onto the span of the first n vectors of
the system { fx}res. On the algebraic span of { fx}res the projection P, converges
strongly to the identity for n — oo. Since ||P,|| = 1 for all n € IN, it follows that
P, converges strongly to the identity on H.

The isomorphism is given by f +— (< fu, f >)nes- O
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Lemma 5.1.21. Let {U;};ew be a family of pairwise orthogonal closed subspaces
of H such that ®;ewU; is dense in H. Let {T;}iew be a family of operators with
T; € B(U;) and assume that there is ¢ € IR such that for all i € IN it holds ||T;|| < c.

Then the closure T' of the operator @;eNT; is in B(H) and it holds ||T|| < c.

Proof. The spectral radius of an operator A € B(H) is denoted by r(A).

Write T'(n) for the restriction of 7" on @7 ,U;. Its norm is uniformly bounded in n
by
IT(n)|I* = r(T(n)"T(n)) = max r(T;Ti) = max |I;T;]| < c*

1<i<n
For v € domT there is n € IN such that v € @ ,U;. Then Tv = T'(n)v and thus

[Tvll = T (r)ol] < el -

It follows that ®;enT; is bounded. Since it is densily defined, its closure is a bounded
operator on H. The adjoint is given by the closure of ®;enT . O]

Corollary 5.1.22. Let {U,;}iew be a family of pairwise orthogonal closed subspaces
of H such that ®;ewU; is dense in H. Let {T;};e be a family of operators such
that T, * € B(U;) and assume that there is ¢ € IR such that for all i € IN it holds
IT; Y| < c. Then the closure T of the map ®;ewT; is invertible with inverse in
B(H).

Proof. The operator EBiE]NTZ-_1 is inverse to ®;enT;. It fulfills the conditions of the
previous lemma and hence its closure is a bounded operator on H. It is the inverse
of the closure of T'. O

5.2 Banach space valued functions

5.2.1 Function spaces and tensor products

Let V be a Fréchet space.

A space of V-valued functions can sometimes be described as an e- or w-tensor
product of V' with a complex function space. This property garanties that any
bounded operator on the complex function space extends to a bounded operator on
the corresponding space of V-valued functions.

In the following we list some important examples. The proofs can be found in [I1] or
they are an easy generalisation. If not specified the functions are assumed complex
valued.

e Let M be a compact topological space.
Then the inclusion C(M) ®V — C(M, V) extends to an isomorphism

O(M)®.V =C(M,V) .
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For two compact spaces M, N it holds

C(Mx N)=2C(M)®.C(N) .

Let U C IR" be open and precompact. For all m € INy there is a canonical
isomorphism

Co'(U) @V =Cg'(UV) .

Let M be a closed smooth manifold. For all m € INy there is a canonical
isomorphism

C™(M) ®. V = C™(M,V) .

Let U C IR" be open and precompact. Then C§°(U) is nuclear, in particular
there are canonical isomorphisms

CRU) @,V 2 CPU)®. V= CP(UV) |

Let M be a closed smooth manifold. Then C*°(M) is nuclear, in particular
there are canonical isomorphisms

CP(M) R, V=C®(M)®.V=2C*M,V).
For closed smooth manifolds M, N it holds

C=(M x N) = C®(M) @ C¥(N) .

The space of Schwartz functions S(IR) is nuclear, in particular it holds

S(R) ®, V= S(R)®. V = S(R,V) .

5.2.2 L’-spaces and integral operators

Let E be Banach space with norm |-|. Let EndE be the Banach algebra of bounded
operators on E. We denote the operator norm on EndE by |- | as well.

Definition 5.2.1. Let M be a measure space and p € IN.

The Banach space LP(M, E) is the completion of the quotient of the space of simple
E-valued functions on M by the subspace of functions vanishing outside a set of
measure zero with respect to the norm

i=( |f<x>|pdx)’1’ |

In order to avoid confusion we make the following convention: If £ = A" for a
C*-algebra A, then L?(M, E) denotes the Hilbert .A-module defined in §5T0 and
not the space just defined. In general they do not coincide.

114



Lemma 5.2.2. Let M, My be o-finite measure spaces. Then the map
LZ(Ml X MQaE) = LQ(M17L2<M27E))7 f = (33 = f(x7 ))
1S an isometry.

Proof. The lemma follows from Fubini. O]

Proposition 5.2.3. Let M be a measure space.

Let k: M x M — EndE be such that the integral kernel |k(x,y)| defines a bounded
operator |K| on L*(M). Then k defines a bounded operator on L*(M, E) with norm
less than or equal as ||| K|||.

Proof. For a simple function f : M — FE it holds | [,, k(z,y)f(y)dyllr2 <
Il far 1 ) ILf )l dyll e < (LA e O

Corollary 5.2.4. Let M be a measure space.

There is a continuous map

L*(M x M,EndE) — B(L*(M, E), L*(M, E))

k:»—><f'—>Kf::/

M

k() f)dy)

with || K| < [[k|.

Corollary 5.2.5. The convolution induces a continuous map
LYIR",EndE) — B(L*(R", E)), fr (g [*g)) .

Proof. The convolution with f € L'(IR", EndE) is an integral operator with integral
kernel f(z —y). For f € L*(IR",EndF) it holds |f| € L'(IR"), hence the convolu-
tion with |f| is bounded on L*(IR"™). Thus the assertion follows from the previous
proposition. 0

Lemma 5.2.6. For any f € LP(IR", E) the translation
7f:R" — LP(R"E), y—1,f

with
Ty f () == f(z —y)

18 continuous map.

Proof. The proof is analogous to the case E = C, see [Cd|, ch. VII, prop. 9.2. O
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5.2.3 Hilbert-Schmidt operators

Let B be an involutive Banach algebra with unit, and let M be a o-finite mea-
sure space. In this section operators are assumed to be right B-module maps. In
particular we identify End(B") with M, (B).

Lemma 5.2.7. Let k € L*(M x M, M, (B)) and let K be the corresponding integral
operator. Then k is uniquely defined by K.

Proof. Tt is enough to show that k vanishes in L*(M x M, M, (B)) if K = 0.

Let B’ be the topological dual of B. Applying A € B’ componentwise yields maps
A M, (B) — M,(C) and X : B” — C". Both maps separe points.

It holds for f € L?(M,C"™) almost everywhere:

A /M ke, y) fy)dy) = /M Ak (2, ) f(y)dy = 0

It follows A(k(x,y)) = 0 in L*(M x M, M,(C)). Since B’ is separable, the set
containing all (z,y) € M x M such that there is A € B’ with A(k(z,y)) # 0 has
measure zero. Outside this set k£ vanishes. ]

Definition 5.2.8. A Hilbert-Schmidt operator on L*(M,B") is an operator with
an integral kernel in L*(M x M, M, (B)). Let A be a Hilbert-Schmidt operator on
L*(M, B™). Its integral kernel in L*(M x M, M, (B)) is denoted by ka. We define

[Allzzs := l[Fall

where the norm on the right hand side is taken in L*(M x M, M, (B)).

The normed space of Hilbert-Schmidt operators on L*(M,B"™) is denoted by
HS(L*(M,B")).

Note that HS(L?*(M,B")) is a Banach algebra and that the inclusion
HS(L*(M,B")) — B(L*(M,B")) is bounded. Prop. BZIZA below shows that
HS(L*(M,B")) is a left B(L*(M,B™))-module.

Definition 5.2.9. Let E be a Banach right B-module with norm | - |.

A B-valued non-degenerated product on E is a sesquilinear map < , >: EXE — B
such that the following properties hold:

1. <v,wb>=<v,w>band <vbyw >=b" <wv,w> forallv,w e E, be B,
2. if <v,w>=0 for all w € E, then v =0,

3. there is C > 0 such that | <v,w > | < C|v|g |w|g for allv,w € E.
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Definition 5.2.10. Let < , > be a B-valued non-degenerated product on E. A
bounded operator T : E — E s said to be adjointable if there is a map T : F — E
satisfying

<v,Tw >=<T*v,w >

for allv,w € E.

Lemma 5.2.11. Let T : E — E be adjointable. Then it holds:

1. The adjoint T* is unique.
T* is a right B-module map.
T* is bounded.

T =T.

T*S* = (ST)*.
Proof. For the graph I'(T*) of an adjoint 7% of 7" it holds
') cG:={(x,y) e EXE| <y,w>+ < —x,Tw>=0Vw € E} .
Let v € E. Then there is a unique v; € E with (v,v;) € G since from
< v, w>=<v,Tw >=< vy, w > Yw e FK

it follows < vy — vy, w >= 0 for all w € E and therefore v; = vy. This shows
T =G.

-

2) If (x,y), (v,w) € I'(T*) and b € B, then (xb+ v,yb+ w) € I'(T*) by the proof of
1).

3) Since I'(T™) is closed, the operator T* is bounded.

4) From 1) it follows I'(T**) = I'(T).

5) It holds < (ST)*v,w >=< v, STw >=< S*v, Tw >=< T*S* v, w >. m

On B" there is a standard B-valued non-degenerated product, namely
n
<v,w >= Zv;‘wi .
i=1

All elements of M,(B) are adjointable and taking the adjoint is a bounded linear
map.

Furthermore there is a standard B-valued non-degenerated product on L?(M, B")
defined by

<f g >L2::/M < f(x),9(x) > dx .

We check condition 2):
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We use that any A € B’ induces a map A : B” — C" by componentwise application
and that this map separes points in B".

If fe L*(M,B") with < f,g >;2= 0 for all ¢ € L*(M,B"), then in particular it
holds for all g € L*(M,C") and \ € B

/M A(f(2))g(x)dz =0 ,

hence A(f(z)) equals zero outside a set of measure zero. Since B’ is separable, it
follows f =0 in L?*(M, B").

All operators in HS(L?(M, B")) are adjointable: If A € HS(L?*(M,B")), then A* is
an integral operator whose integral kernel is ka«(x,y) = ka(y, x)*, in particular it is
in L?(M x M, M, (B)). Taking the adjoint is a bounded map on HS(L*(M, B")).

Proposition 5.2.12. 1. Let A € B(L*(M,B")), K € HS(L*(M,B")). Then it
holds AK € HS(L2(M, B")).

Furthermore there is C > 0 such that
|AK ||zs < Cl A K ms
for all A € B(L2(M, B")), K € HS(LQ(M, B")).

2. It holds KA € HS(L*(M,B")) for any adjointable bounded operator A on
L*(M,B") and any K € HS(L*(M,B")). Furthermore there is C' > 0 with

IKA|lus < ClIA 1K ms

for any such A and K.

Proof. 1) There is an isomorphism
L*(M x M, M,(B)) = L*(M x M,B")"

that is equivariant with respect to the left M, (B)-action on both spaces. Further-
more the map

L*(M x M,B") — L*(M, L*(M,B")), k> (y — k(-,9))

is an isomorphism by lemma B2, The operator A induces a bounded map on
L*(M, L*(M,B™)), namely k — (y — Ak(-,y)), clearly its norm is less than or equal
as the norm of A on L*(M,B").

2) The map is a composition of the following maps on HS(L*(M, B")):
K& K& AK* = (KA 5 KA

By 1) and the fact that taking the adjoint is bounded on HS(L?(M,B")) these maps
are bounded. O
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Note that the integral kernel of (T'A)* is AXkp«(x,y). By the suffix we indicate on
which variable A* acts.

Definition 5.2.13. 1. Let
<, >B"xB"—=>B
be as above. If e € B" then define

e B" =B, v—<ev> .

2. An integral operator A on L*(M, B") is called finite if there is k € IN and there
are functions f;,h; € L*(M,B"), j =1...k, such that

ka(w,y) = ij(l")hj(y)* :

5.2.4 Pseudodifferential operators

Let E be a Banach space.
Let U be an open precompact subset of IR". Recall the notion of a symbol of order

m on U:

Definition 5.2.14. A function a € C*(U x IR", M;(C)) is called a symbol of order
m € R, if it is compactly supported in the first variable and if for all multi-indices
a, B € IN{ the expressions

sup (14 [¢]) " V00 Ogoa(z, €)|
zeU, £eR™

are finite.

These are seminorms on the space S™(U, M;(C)) of symbols of order m on U that
turn S™(U, M;(C)) into a Fréchet space.

In order to simplify formula involving Fourier transform we rescale the Lebesgue
measure on IR" by setting d'z := (27)2dx.

We consider L?(U, E') as a subspace of L*(IR", E').
Note that the Fourier transform is bounded from L'(IR", E) to Co(IR™, E).
A symbol a € S™(U, M,;(C)) defines a continuous operator

Op(a) s CX(U,E') =+ CF(U B, (Op(@h(a) = [ e*ala,)f(€) d¢

An operator defined by a symbol of order m is called a pseudodifferential operator
of order m.
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Lemma 5.2.15. 1. For m < —% and a € S™(U, M(C)) the operator Op(a)
extends to a bounded operator on L*(U, E') and the map

Op : S™(U, M;(C)) — B(L*(U, EY))
1S continuous.

2. Letm < =% and v,k € INg with k < =% —m. Then for a € S™(U, M;(C)) the

operators
Op(a) : C¥(U, EY — Cy¥™(U, EY)

and

Op(a) : L*(U, E") — C¥(U, EY)
are continuous.

Proof. 1) Let m < —%.

The Fouriertransform induces a bounded map

S™(U, My(C)) — C=(U, L*(R™, My(€))), a > (z+ a(z,-)) .
For a € S™(U, M;(C)) and f € L*(U, E') we define

(Op(a)f)(x) = / il ) (a2

The map
R" — L*(R", EY), .+ (2 f(—z — 2))

is continuous by lemma B2, hence the function Op(a)f is in Cy(U, E') and satisfies

10p(a)flico, < sup la(z, )zl 1= -

Since U is precompact, the inclusion Co(U, E') — L2*(U, E') is well-defined and
continuous. Hence Op(a) is a bounded operator on L*(U, E'). Furthermore the
estimate shows that the map

S™(U, My(C)) — B(L*(U,E")), a — Op(a)

1s continuous.

2) First let m < —% and k = 0.

If feCyU,E") then x — (2 — f(—z — 2)) is in C¥(IR", L*(R", EY)).

It follows as above that Op(a)f is in C¥(U, E') and that it holds
1Op(a)flicr < € sup sup 97, -)l| 2]l flle- -

la|<v ze
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We go on by induction on k: Assume the assertion holds for £ — 1 and all a €
S™(U, M(C)) with m < =% —k+ 1.

We prove the assertion for k and a € S™(U, M;(C)) with m < —5 — k:
If o € N} with |a| = 1, it holds for f € C5°(U, E'):

ag/n iz, 2) =z — 2)d'=

= 8d(xz)f—x—z ’z+/ a(z,2)00 f(—x — 2)d'z

Rn
= / o%a( (—x —2)d'z + a(z,2)0% f(—x — 2)d' 2
n Rn
= oa(z,z)f(—x — 2) / o%a —x—2z)dz .
R'n/ Rn

The last step is justified since the symbols £%a(z,§) and 0%a(z,§) are in
ST (U, My(C)), thus by m 4+ 1 < —% the functions

x = (2 0%a(x, 2))
and
T (2 05a(x, 2))
are both in C°(U, L*(IR", M;(C))).
It follows that the map
f = 0%(Op(a)f)

is a pseudodifferential operator of degree m + |a] = m + 1. By induction it is a
bounded operator from C*(U, E') to C***=1(U, E'). Since this holds for all o € IN}
with |a| = 1, it follows that Op(a) is continuous from C*(U, E') to C***(U, E').

From an analogous induction argument it follows that Op(a) is continuous from
L*(U, E') to C¥(U, E"). For k = 0 this was proven in 1). O

5.3 Projective systems and function spaces

The projective systems (A;)ien, and (Q<,Ai)ipen, from §C33 and §C33 induce
i€Ng and (L2(M, (QSMA’) ))i,uE]No'

Recall our convention fixed in §622: The space L*(M, A') is the Hilbert .A-module
defined in §5T. For 4 € INg and i € IN the space L*(M, (Q<,.A;)") was defined in
)

In the following we investigate the behaviour some particular classes of operators
under the projective limit.

projective systems of spaces (L?(M, Al))
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5.3.1 Integral operators

Hilbert-Schmidt operators on ALQ(M , AY) have the property that they extend to
bounded operators on L?(M, (Q<,A;)!) for all j € Ny with j < i and all u € IN,.
We investigate how the spectrum depends on j, p.

A result in this direction was proved by Lott ([Cd], §6.1.) for the case that M is a
closed manifold. We extend Lott’s method in order to obtain an analogous result

for certain non-compact manifolds M with boundary (in particular for the manifold
defined in §I).

Let [0, 1]™ be endowed with a measure of the form hdz where h is a positive contin-
uous function on [0, 1]" and dz is the Lebesgue measure.

In the proof we use that there exists a Schauder basis of C([0, 1]™) which is orthonor-
mal in L?([0, 1]") (here and in the following L?([0, 1] is defined with respect to hdx).
For h = 1 a Franklin system [Bd] yields such a basis { f,, }new, then for general h the

system {h_%fn}neﬂ\l is one.

Proposition 5.3.1. 1. Let hdz be a measure on [0,1]" as above.
Let k € C([0,1]™ x [0,1]", M;(A;)) and let K be the corresponding integral
operator.

Assume that 1=K is invertible in B(L*([0,1]", A")). Then the operator 1-K :
L2([0,1]™, (Q<,ADY) — L2([0, 1], Q< Ai)Y) is invertible.

2. Let M be a Riemannian manifold of dimension n, possibly with boundary.
Suppose there is an exaustion {Ky,}mew of M such that K, is diffeomor-
phic to [0,1]" for any m € IN. Let k € L*(M x M, M;(A;)) N C(M x
M, M;(A;)) and assume furthermore that x w— k(z,-) and y — k(-,y) are
in C(M, L*(M, My(A))).

Then it holds for the corresponding integral operator K :
If 1 — K is invertible in B(L*(M, A")), then 1 — K s invertible in
B(L*(M, (<, Ai)")).

Proof. 1) Choose a basis of C([0,1]™) which is orthonormal with respect to hdx
and let Py denote the projection onto the first N basis vectors. It is an integral
operator with integral kernel in L?([0,1]™ x [0,1]"), thus it acts continuously on

L2([0, 11", (Q<di))-
We decompose L*([0,1]", (Q<,.A;)!) into the direct sum

PyL2([0,1]", (Q<Ai)') @ (1 — Py)L*([0, 1], (Q<,A:)")

a b
1—K_<Cd)

with respect to the decomposition.

and write
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If we find N such that d is invertible on (1 — Py)L2([0,1]", (Q<,.4;)") and prove that
then a —bd~'c is invertible on Py L*([0,1]", (Q<,.A;)"), we can conclude that (1 — K)
is invertible by the equality

a b\ (1 bd! a—bdtc 0 1 0
cd) \0 1 0 d dte 1)

First we show that
d=(1-Py)(1—-K)(1- Py)

is invertible for N big enough. By prop. B22132 the operator (1 — Py)K (1 — Py) is
a Hilbert-Schmidt operator. Furthermore its integral kernel is continuous.

For N — oo the projections Py converge strongly to the identity on C([0,1]"). By
C(]0,1]" x [0,1]™, M;(A;)) = C([0,1]") ®: C([0,1]") @. M;(A;) ,

the projection Py acting on the first factor of C(]0, 1]™ x [0, 1]™, M;(.A;)) converges
strongly to the identity as well. It follows that there is N such that the norm of the
integral kernel of (1 — Py)K (1 — Py) is smaller than § in C'([0,1]™ x [0, 1]™, M;(A;)).

For that N the series

(1—PN)+Z((1—PN)K(1—PN))V

v=1

converges as a bounded operator on (1 — Py)L*([0,1]", (Q<,A;)!) and inverts d.
Hence a — bd~'c is well-defined.

Via the basis we identify a — bd~'c with an element of My;(A;). Since 1 — K is
invertible on L?*(M, A'), the matrix a — bd'c is invertible in My;(A). By lemma
34 it follows that a — bd !¢ is invertible in My;(A;) as well.

2): Let m € IN be such that

(1= 1k, (2)k(z,y) (1 = Lr,, W) L2 xar,m40)) <

vm= (2 )

with respect to the decomposition

N | —

Write

L2(M, Qe Ai)') = Lo, L (M, (R, A)) @ (1 = 1, ) L (M, (<, Ai)')

By the choice of K, the entry d = 1 — (1 — 1k, )K(1 — 1k,,) is invertible on
(1= 1k, ) L2(M, (Q<pAi)").

We prove that a — bd~'c is invertible on L?(K,,, (Q2<,A;)!) and then the assertion
follows as in the proof of 1).
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On L2(K,,, (Q<,Ai)Y) it holds
a — bdilc = 1Km — (1KmK1Km —+ bdilc)

and 1g, K1k, + bd~'c is an integral operator on L*(K, (Q<,A;)!) with con-
tinuous integral kernel: The integral kernel of b is 1k, (2)k(x,y)(1 — 1k, (y))
and = — 1y, (v)k(z,)(1 — 1g,) is in C(K,,, L*(M, M;(A;))). For the integral
kernel (1 — 1k, (z))k(x,y)lk, (y) of ¢ it holds y — (1 — 1k, )k(-,y)lk, (v) €
C(K,,, L*(M, Mj(A;))). Tt follows that bd~'c is an integral operator with contin-
uous kernel on K, x K,,. Clearly the integral kernel of 15 K1k, is continuous as
well.

Since a — bd~1c is invertible on L?(K,,, A') and since the measure on K,, pulled
back by an orientation preserving diffeomorphism [0, 1]* — K, is of the form hdz,
we conclude by 1) that a — bd~'c is invertible on L?*(K,,, (Q<,A;)") as well. O

Corollary 5.3.2. Let k be an integral kernel as in part 2) of the proposition and
let K be the corresponding integral operator. Then for A € C* the operator K — X is
invertible on L*(M, (<, A;)Y) if and only if K — X is invertible on L*(M,A").

Proof. For A € C\ {0} the integral kernel k/\ fulfills the conditions of the lemma.
Thus if A — K = A(1 — K/)) is invertible on L*(M, A') then A — K is invertible on
L*(M, (<, Ai)Y) as well. O

5.3.2 Projections and the Chern character

Proposition 5.3.3. Let {e;}iew be the standard basis of 12(A). Let M be a closed
and N a projective submodule of 1?(A) such that I*(A) = M & N. Let P be the
projection onto N along M and let P, be the orthogonal projection onto L, :=
span{e; | i =1,...,n}.
For all n € IN with

[1P(1 =P <

DO | —

it holds:

(i) The A-module N':= P,(N) is projective and the maps
P,:N—=N and P: N — N

are isomorphisms.

(i) 2(A) = M @& N’ .

Note that there exists n € IN with ||P(1 — P,)| < 3 since P is a compact operator.
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Proof. From ||[P(1 — P,)|| < 5 it follows

My = (PE)|n| <

DN | —

By that (PP,)|y : N — N is invertible and thus for any finite set G' of generators
of N the set PP,(G) generates N as well.

The module N’ := P,(N) is projective. Furthermore, since (PP,)|y is an isomor-
phism, the maps

P,:N— NandP: N — N
are isomorphisms as well.

It remains to show N’ & M = [2(A).

The intersection N’ N M is trivial: For x € N’ N M it holds Px = 0, but as
P : N’ — N is an isomorphism, x must be zero.

Let now x € [?(A). Since PP, : N — N is invertible, there is y € N such that
Px = PP,y.

Then it holds

r = (l1-—P)x+ Px
= (1-P)x+ PP,y
(1= P)z+ Py — (1= P)Puy
= (1=P)(z—Py)+ Py .
Since (1 — P)(x — P,y) € M and P,y € N' it follows x € M & N'. O

Definition 5.3.4. Let V' be a Z/2-graded finite dimensional vector space. Let K
be an integral operator on L*(M,V ® quAi) with integral kernel k : M x M —
End(V) ® Q< A;. Then d(K) is the integral operator on L*(M,V & Q<,A;) with
integral kernel d(k(z,y)). (The action of d on End(V) ® Q< A; was described in

Note that if K is of degree n with respect to the Z/2-grading on L*(M,V ® QéuAi)a
then it holds

d(Kf) =d(K)f+ (=1)"Kdf.
Lemma 5.3.5. Let M be a o-finite measure space.

Let P be a Hilbert-Schmidt operator on L*(M, (Q<,.A)Y) with integral kernel in
L*(M x M, My(A;)) and assume that P2 = P. Then it holds

PdPdP = Pd(P))?

Proof. As for matrices (see the beginning of the proof of prop. [E33) it holds
(dP)=P(dP)+ (dP)P and P(dP)P =0.
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It follows
PdPdP = P(dP)dP=P(d )
)

= P(dP)(d ) P(dP)P(dP)
= P(d(P))*.

dP
dP

]

We introduced the notion of trace class operators in §IC33. For the proof of the
next proposition we have to define a more general trace:

If A, B are Hilbert-Schmidt operators on L?(M, (QSMAi)l) where M is a o-finite
measure space, then we define

TI‘(A,B) Z:/ trk:A(x,y)kB(y,x) dydl’ c QSuAi/[QS,uAhQSuAi] .
M
It holds
Tr(A, B)| < [[Allus||Bllus

and

Tr(A, B) = Tr(B, A) .
If A, B are as in §I33 such that in particular AB is trace class, then it holds
Tr(A, B) = TrAB.

Lemma 5.3.6. Let P : [0,1] — HS(L*(M, (Q<,A)) be a differentiable path of
Hilbert-Schmidt operators with integral kernels in L*(M x M, M;(A;)), and assume
P(t)*> = P(t) for any t € [0, 1].

Then for any k € Ny it holds in Q< A; /[QcpAi, Qe Aj):

Tr(P(1), (d P(1))%*) — Tr(P(0), (d P(0))%)

d[Tr(P(1), (A P(1))*1) = Tr(P(0), (A P(0))**1)] .

1
2

Proof. As for matrices (see prop. [33). O]

If S, T are Hilbert-Schmidt operators on L*(M, (Q<,.A;)!) that restricts to Hilbert-
Schmidt operators S, ;, T,,; on L*(M, (QSV.A]-)I) forall j,v € Nwithj >iandv > pu
then we define the trace of (S, T') in €, (A ) /[ (Aso), 2 (Aso)]s by Wm Tr(S,,5, T0,5)-

v.j
It is denoted by Tr(S,T'). This notation has still another meaning: namely the trace

of (S,T) in Q< Ai/[QcpAs, Q< Al The context will decide what is meant. An
analogous convention is made for the trace of trace class operators.
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Proposition 5.3.7. Let M be a Riemannian manifold of dimension d, possibly
with boundary. Suppose that there is an exaustion { K, }mew of M such that K,, is
diffeomorphic to [0,1]% for all m € IN.

Let P € B(L*(M,A")) be a projection onto a projective submodule of L?*(M, A").
Assume further that for any i € IN it restricts to a bounded projection on L*(M, Al
and that P(L*(M, AL)) c C(M,Al). Let

Rany P := () P(L*(M, Al) .

i€N
Then the following assertions hold:

(i) The projection P is a Hilbert-Schmidt operator of the form Y 7", f;(x)h;(x)*
with fj, h; € Rany, P.

(i1) The intersection Rany P is a projective As-module. The classes [Ran P| €
Ky(A) and [Rany, P] € Ko(Ax) correspond to each other under the canonical
isomorphism Ko(A) = Ky(Ax)-

(iii) It holds in H(AL):

G 1
ch([Rany, P]) = Z(—l)”mTr(PdP)Q” .
n=0
Proof. (i): Let {e,}nenw € C°(M, C') be an orthonormal basis of L?(M,C").

Let P, be the projection onto the span of the first n basis vectors. It is a Hilbert-
Schmidt operator with integral kernel in C§°(M x M, M;(C)).

In particular P, € B(L?*(M, A!)) for any i € IN.
First we consider the situation on L?(M, A'):

Since P is compact, there is n € IN such that on L?(M, A!) it holds

I1P(P, =Dl <

N | —

Hence by prop. the map PP,P : Ran P — Ran P is an isomorphism.
It follows Ker PP, P = (Ran P)* = Ker P and therefore

P=1—Pkapr=1— Pearp,Pp -

Here Pxerp resp. Pkerpp,p denotes the orthogonal projection onto Ker P resp.
Ker PP, P.

Furthermore we can find r > 0 such that B,.(0)\ {0} is in the resolvent set of PP, P.
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Then it holds

P = 1- PKerPPnP

= 1- i (A— PP,P)"'d\
210 Jpj=r
1
= — At — (A= PP,P) ) d\
21 [A|=r ( ( ) )
1
= ——PP, P/ A\ — PP,P)td\
211 By

Since P, is a Hilbert-Schmidt operator on L?*(M, A"), the operator P is one as well.

In order to show that the equation holds on L*(M, Al) as well for all i € IN, we
prove that
R = A Y\ = PP,P) tdA
[A|=r
is well-defined in B(L*(M,A!)) or equivalently that (A — PP,P) is invertible in
B(L*(M,AL)) for |\ =r.

The integral kernel of PP, P is k(z,y) := Y Pe;(z)(Pe;(y))*. It is in L*(M x
=1

iz
M, M;(A)) N C(M x M, M(A;)) for all i € INg and the maps = — k(zx,-) and y —
k(-,y) are in C'(M, L*(M, M;(A;))). From cor. B3 we conclude that the spectrum
of PP,P on B(L*(M,Al)) is independent of i, thus R is a bounded operator on
L2(M, A) for all i € IN.

This and the equation PR = PRP show that P is an integral operator with integral
kernel

kp( —5 ZPeJ )(PR*Pe;(y))*

The integral kernel is in L?(M x M, Ml (A;)) for all i € INy and is of the form we
asserted.

(ii): Since [|(P,—1)P|| < 1 in B(L*(M, A")), the operator (1+(P,—1)P) is invertible
in B(L*(M, A")). The integral kernel x of (P, — 1)P is continuous and the maps
r +— k(z,-) and y — k(-,y) are in C(M, L*(M, M;(A;))). Hence by prop. B3
the operator (1 + (P, — 1)P) is invertible in B(L*(M, A!)) for any i € INg. From
P,P=(1+ (P, —1)P)P it follows

P,P(L*(M, A)) = Ran P(L*(M, A))) .

Furthermore Q := (1+(P,—1)P)P(1+(P,—1)P)~* € B(L*(M, A})) is a projection
onto P, P(L*(M, Al)). Hence Q(Ln(A;)) = P,P(L*(M,Al)). Identify L, (A;) with
AP via the basis. Then @ restricted to L, (A;) is given by a projection @' € M,,(A).
From Ran,, P = Q'(AZL) it follows [Ran P] = [Q'] in K((A) and [Rany P] = [Q'] in
Ky(Ax). This shows the assertion.
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(iii): Let P,,@ and @’ be as in the proof of (ii). In the following computations
we use the fact that P,QQ = @, hence @) is a finite Hilbert-Schmidt operator. In
HdR(Aoo> it holds

ch([Rany P]) = ch(Q")

o)

_ kZ_g(—l)’“%tr@’d@’)”“

_ g‘a(_l)k%wmzﬂm d(PQP,)*
_ g(—l)k%Tf((PnQ)v(dPnQ)zk)

_ 2(—1)’“%%(@ 4@

Since

H :[0,1] = B(L*(M, (Q<,A)") |
H(t)=1+tP,—1)P)P(1+t(P, —1)P)*
is a differentiable path of finite projections with H(0) = P and H(1) =
Q for any i,u € IN, the difference Tr(Q,(dQ)%) — Tr(Pd P)* is exact in
QAo /[ As), Q4 Ao]s by the previous lemma.

This shows the assertion. O

5.4 Holomorphic semigroups

5.4.1 Generalities

Let X be a Banach space.

Recall that an operator Z on X generates a holomorphic semigroup e*? if and only
if there is w > 0 such that Z — w is d-sectorial for some § €]0,7/2], i.e.

Yspnsg ={N€C | |argA| < 7/24 0}

is a subset of p(Z —w) and for any € with 0 < & < 6 there is C' > 0 such that for all
A € Xr/24. it holds
C
(Z —w =27 <57
A
The semigroup is bounded holomorphic if we can choose w = 0. Then in particular
e'? is uniformly bounded for ¢ > 0.

Lemma 5.4.1. Let Z be an operator on X and let w € IR and 6 > 0 be such that
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1. Bsirp2 U{0} C p(Z +w)
2. for any o < 0 there are R,C > 0 such that

C

I(Z =07 < o

for X € ¥oir/2 \ Br(0) .
Then Z + w is d-sectorial.

Proof. Let € < 0 and choose « €]e,§[. We have to show that there is C' > 0 such
that o

I(Z +w =27 < 7 -
Ry

Let » > max(R, |w|) be such that X. ./, C ((Eaﬂ/g U B.(0)) + w). (If w <0, this
is fulfilled for all r > max(R, |w|).)
The compact set K = ¥ /o N (B,(0) +w) is a subset of p(Z + w). The resolvent

(Z + w — A\)7! is uniformly bounded on K, in particular there is C' > 0 such that

for A € K\ {0} it holds

_ C
I(Z +w =271 SW-

IfAe X r\ K, then A —w € Xoi7/2 \ Br(0) thus by assumption there is C' > 0
such that for all A € ¥,y /5 \ K it holds

C

Z - < —.
2+ =07 < gy

It follows that there is C' > 0 such that for all A € ¥ /2 it holds

 (5))
(50 )

IA

IN

This proves the assertion. O

The lemma yields the following connection between the spectrum of a d-sectorial
operator Z and the behaviour of the holomorphic semigroup e’ for ¢t — oo.
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Proposition 5.4.2. If Z is a §-sectorial operator and there is w > 0 such that
{ReA >0} C p(Z +w) ,
then for any w' < w there is C > 0 such that for all t > 0 it holds
||| < Ce 't .
Proof. For all w" < w there is 0 < ¢ < § such that X542 U {0} C p(Z + w') and
thus by the previous lemma Z + w’ is ¢’-sectorial. ]

Proposition 5.4.3. If ¢ is a strongly continuous semigroup with generator Z such
that Rane'? C dom Z for all t € (0,00) and if there is T > 0 and C > 0 such that
fort < T it holds

|Ze?|| < Ot

then e*? extends to a holomorphic semigroup.

If the estimate holds for allt > 0, then the extension is bounded holomorphic.
Proof. The assertion follows immediately from [Od], th. 2.39. O

Part 1) of the next proposition is known under the name Volterra development and
the formula in part 2) is called Duhamel’s formula:

Proposition 5.4.4. Let Z be the generator of a strongly continuous semigroup and
let M,w € IR be such that ||e'?|| < Me** for all t > 0.

1. Let R € B(X). Then Z+R is the generator of a strongly continuous semigroup
and for all t > 0 it holds

o0

el 7R — Z(—l)”tn/ eWZ ReMZ R e"tZ duy . .. du,

n=0 "

with A™ = {ug+ -+ +u, = L;u; >0, i =0,...,n}. Furthermore

Het(ZJrR)” < Me(w+M||R||)t )

2. Let Ry, ..., Ry € B(X). Fort >0 the map
" = B(X)> (21; cen ,Zn) s el (Z+z1 Rt +zn Rn)

1s analytical and for 1 =0,...n it holds

d
—e

t
t(Z+z1R1++znRpn) t—s)(Z4+z1R1++zn R s(Z4+z1R1++zn R
dz‘ ( 1411 n n) _/ 6( )( 1411 n n)Rie( 1411 n n) dS .
7 0
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Proof. 1) follows from [O&], th. 3.1 and the proof of it.
2) The analyticity follows from 1).
For the formula it is enough to consider n = 1. Let R := R;.

For zy € C it holds by 1):

oo

e(Z—Q—zR)t _ Z(Z_Zo)n(_l)ntn/ euot(Z—‘rzoR)Remt(Z—i-zoR)R‘ N eunt(Z-l-zoR) dug . . . du,

n=0 "

and the series converges absolutely for all z € €. This implies

1
ie(Z+zR)t|Z0 — —t/ euot(Z+z0R)Re(l—uo)t(Z—l—zoR)duO '
dz 0

The assertion follows now by the change of variables s := (1 — ug)t. O]

The following proposition is known in the literature as Duhamel’s principle (]3],

§9):

Proposition 5.4.5. Let Z be the generator of a strongly continuous semigroup on
X. Letu € C*([0,00), X) such that Su(t) — Zu(t) € dom Z for all t € [0,00). Then
it holds

e ?u(0) — u(t) = —/0 esz(% — Z)u(t — s)ds .

5.4.2 Square roots of generators and perturbations

Assume that D is a densily defined closed operator on a Banach space X with
bounded inverse and such that —D? is §-sectorial.

There are well-defined fractional powers (D?)* for a € R ([BR], 11.4.2). These are
densily defined closed operators that coincide for o € Z with the usual powers and

satisfy
(D)0 f = (D*)*(D*)°f

for all a,8 € R and f € dom(D?)” with v = max{«, 3,a + B}. For a < 0 the
operator (D?)® is bounded and depends in a strongly continuous way of a.
It follows in particular that for & > 0 the operator (D?)~* is a bounded inverse of
(D?)e.
Define .

|D| = (D?):.
By [KH|, th. 2, the operator —|D| is § + (7/2 — ) /2-sectorial and can be expressed
in terms of the resolvents of D?.

Note that for any n € IN the domain of |D|" is a core of |D| and dom D™ is a core
of D.
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Lemma 5.4.6. 1. Let P be a projection on X, i.e. we demand P? to be densily
defined and P?|y; = P|y for some set M C dom P? dense in X.

Then it holds: If P is closed, then P is bounded.

2. Let I be a involution on X, i.e. assume that I? is densily defined and that
there is a set M C dom I* dense in X with I*|yr = 1|

Then it holds: If I is closed, then I is bounded.

Proof. 1) For f € M itholds f = (1-P)f+Pfand (1-P)Pf = P(1-P)f =0. We
conclude M C Ker P+Ker(1—P) C dom P. If P is closed, then Ker P+ Ker(1— P)
is closed, hence Ker P + Ker(1 — P) = X, thus dom P = X.

2) The operator P := (1 — 1) is a closed projection on X in the sense of 1). Thus
P is bounded. It follows that I is bounded as well. O

Proposition 5.4.7. 1. The operator |D|™'D : dom D — X extends to a bounded
involution I on X.

2. It holds dom D = dom |D| and I(dom D) C dom D.
3. It holds |D| = ID = DI and D = I|D| = |D|I.

Proof. 1) The operator D~' commutes with the resolvents of D?. Tt follows
|D|7'D~! = D71|D|7!. Hence because of dom D = D' X it holds |D|~!(dom D) C
dom D, so dom D? C dom(|D|™' D).

For f € domD it holds |D|7'Df = D|D|7'f. For f € domD? it follows
(IDI7'D)*f = f.

We prove that |D|™'D is closable, then the assertion follows from the previous
lemma:

Let (f,)new be a sequence in dom D converging to zero. Then |D|7!f,, € dom D
converges to zero for n — oco. But then if |D|™'Df, = D|D|™!f, converges, the
limit is zero since D is closed and injective. Thus (|D|~'D) is closable.

2) The composition IDI : dom|D| — X is well defined and closed. It coincides
with D on dom D?, hence it is a closed extension of D. Tt follows dom D C dom | D).
The inclusion dom |D| C dom D is shown analogously. O

Let P := %(1 + I) with I as in the previous proposition. It is a bounded projection
on X. By the proposition it holds P dom D C dom D, and P commutes with D and
D).

From ID = |D| and I|D| = D it follows PD = —P|D|. Thus with respect to the
decomposition X = PX @ (1 — P)X it holds

p= (" _uepa-r)
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and
PDP 0
'D':( 0 <1—P>D<1—P>>'

Taking into account that —|D| is § + (w/2 — §)/2-sectorial it follows for the resolvent
set of D:

Proposition 5.4.8. For A € C it holds

{A =AY Cp(D) = {A, =AF Cp(ID]) -

Thus if A € C with —A\* € £, /245, then X € p(D).

Furthermore for every ' < & there is C' > 0 such that for all X with —\* € X045

it holds: o
(D -7 <= -
Al

Corollary 5.4.9. Let w > 0 be such that there is C > 0 with ||e”*P°|| < Ce™** for
all t > 0.

For any o € IR and w' < w there is C' > 0 such that for all t > 0 it holds

|HD|a67tD2H < tha/2€7w’t

For anyn € IN and W' < w there is C' > 0 such that for all t > 0 it holds
||Dn€—tD2 || < Ct_n/2€_u/t.

Proof. The first assertion is [RR]], lemma 11.36, and the second one follows from the
first one by D = I|D| and DI = ID. O

Proposition 5.4.10. Let A be a bounded operator. Then for every &' < § there is
w > 0 such that —(D + A)? 4+ w is ¢'-sectorial.

Proof. Let &' < §. We show that there is w > 0 such that —(D + A)? +w and ¢’
satisfy the assumptions of lemma BT

By prop. BZR there is M > 0 such that for all A with —\? € Y245 it holds:

Hence the Neumann series

(D+A—-N"1=(D- )" f:(A(D )

n=0

converges for |[A| > M||A| and —\* € X, /214
If |\ > 2M||A]| and —A? € ¥, /214, the norm is bounded by
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ID+A=NT = 1D (D=N"(AD -1

< S IAIID = 2
n=0
o MrHA"
< N el |
S
n=0
M o M|A]
= - =
Al Al
2M
S -
Al

Let p € {|pu| > AM?*||A|’} N Es4r/2. Then for X € € with —A\? = g it holds
A € p(D + A), hence the resolvent

(—-(D+A? =) '=—-(D+A-N""'(D+A+N)!
exists and is bounded by

Ly o AMEAYP
=D+ AP =) < ——.
|
Furthermore there is w > 4M?|| A||? such that
Seensz C ({lul > 4MP AP} N Syimyo — w)

and thus
Sorpns2 C p(—(D + A)* +w) .

The assertion follows now from lemma BEZ1. ]
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