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Abstract. We define and prove a noncommutative generalization of a formula
relating the Maslov index of a triple of Lagrangian subspaces of a symplectic
vector space to eta-invariants associated to a pair of Lagrangian subspaces.
The noncommutative Maslov index, defined for modules over a C∗-algebra A,
is an element in K0(A). The generalized formula calculates its Chern character
in the de Rham homology of certain dense subalgebras of A. The proof is a
noncommutative Atiyah-Patodi-Singer index theorem for a particular Dirac
operator twisted by an A-vector bundle. We develop an analytic framework
for this type of index problem.
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Introduction

The purpose of this paper is twofold. We establish a noncommutative general-
ization of a formula by Cappell, Lee and Miller [CLM] relating the Maslov index of
a triple of Lagrangian subspaces of a symplectic vector space to certain η-invariants
which can be associated to a pair of Lagrangian subspaces. The formula was gener-
alized to families of Lagrangian subspaces by Bunke and Koch [BK]. Our Maslov
index will be defined for C∗-modules and will be an element in the K-theory of the
C∗-algebra, whereas the η-invariants are replaced by noncommutative differential
forms. The proof of our formula is a noncommutative index theorem for a particular
Dirac operator twisted by a C∗-vector bundle on a two-dimensional manifold with
boundary and cylindric ends. The index theorem calculates the Chern character of
index of the Dirac operator in the de Rham homology of certain dense subalgebras
of the C∗-algebra.

The second aim is to provide a precise analytic framework for the index theory
of Dirac operators over a certain type of dense subalgebras of C∗-algebras based
on heat kernel methods and the Quillen superconnection formalism. In particular
these dense subalgebras are assumed to be projective limits of Banach algebras,
so that we mostly deal with Banach space valued functions. Our results apply
to higher index theory for invariant Dirac operators on covering spaces. Proofs in
higher index theory based on the superconnection formalism have been given before
[Lo1] [Lo2] [LP1] [LP2] [Wu]. Some analytical methods relevant for the general
situation have been developed by Lott in [Lo3].

The Maslov index τ(L0, L1, L2) of a triple of Lagrangian subspaces (L0, L1, L2)
of IR2n endowed with the standard symplectic form ω is defined as the signature of
the quadratic form q on L0 ∩ (L1 + L2) [LV] given by

q(x1 + x2) := ω(x2, x1), xi ∈ Li .

Its geometric significance comes from a gluing formula for signatures of manifolds
with boundary [Wa]: Let M4n be an oriented manifold with boundary and let N be
a hypersurface in M with boundary. Cutting along N produces two (topological)
manifolds M1,M2 with boundary. The images of H2n−1(N) and H2n−1(Mi), i =
1, 2, in H2n−1(∂N) are Lagrangian subspaces with respect to the symplectic form
induced by the cup product. Up to sign the difference of the signatures σ(M) −
σ(M1)− σ(M2) equals the Maslov index of these subspaces.

The η-invariant associated to a pair (L0, L1) of Lagrangian subspaces is defined
as the η-invariant of the operator DI = I0

d
dx on L2([0, 1], IR2n) with boundary

conditions f(0) ∈ L0, f(1) ∈ L1. Here I0 is the skewsymmetric matrix representing
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2 INTRODUCTION

the symplectic form ω with respect to the standard scalar product on IR2n. Then

η(L0, L1) =
1√
π

∫ ∞

0

t−
1
2 Tr DIe

−tD2
Idt .

It is a regularization of the difference between the number of positive and negative
eigenvalues of DI . The η-invariant η(L0, L1) occurs as a correction term in a gluing
theorem for η-invariants [Bu]. The formula

τ(L0, L1, L2) = η(L0, L1) + η(L1, L2) + η(L2, L0) ,

which will be generalized to a noncommutative context, can be interpreted as re-
flecting the connection between the gluing problems for signatures and η-invariants
via the Atiyah-Patodi-Singer index theorem.

The noncommutative Maslov index and the η-forms should play a similar role in
gluing problems for higher signatures for manifolds with boundaries [LP3], [LLP],
[LLK], higher η-invariants and ρ-invariants [Lo1]. In §4.5 we explain how our for-
mula is related to a gluing formula for noncommutative η-forms for Dirac operators
on the circle.

The proof by Cappell, Lee and Miller relies on the axiomatic properties of the
Maslov index, which are not expected to hold for a noncommutative generalization.
Bunke and Koch [BK] formulated an index problem whose solution, an Atiyah-
Patodi-Singer type index theorem, yields the above formula. They interpreted the
Maslov index as the index of a Dirac operator on a two-dimensional manifold with
boundary and six cylindric ends isometric to IR+× [0, 1]. The Lagrangian subspaces
enter in the definition of the boundary conditions. The purpose of their approach
was to prove a formula for families of Lagrangian subspaces.

Our proof is a generalization of the approach of Bunke and Koch. Instead of
a family of Dirac operators we consider a Dirac operator twisted by a C∗-vector
bundle [MF].

Before stating the result we give a short introduction in the type of noncom-
mutative index theorem considered in this paper:

Family index theorems describe Fredholm operators depending continuously on
a parameter from some compact space. The index of a family of operators is an
element in K-theory of the base space. If the kernel and the cokernel are vector
bundles, then the index is the difference of the classes of these bundles.

One may reformulate this situation by replacing the base space B by the C∗-
algebra C(B) and the family of operators by an operator on a C(B)-module. The
index is then in the C∗-algebraicK-theoryK0(C(B)), which is naturally isomorphic
to K0(B).

Mǐsčenko and Fomenko [MF] formalized and generalized this point of view by
defining Fredholm operators on Hilbert C∗-modules for general C∗-algebras. The
index of such a Fredholm operator is an element in the K-theory of the C∗-algebra.
They also elaborated a theory of pseudodifferential operators over C∗-algebras.
Important examples for geometric applications are Dirac operators associated to
C∗-vector bundles.

In order to formulate a noncommutative analogue of the family index theo-
rem, which calculates the Chern character of the index of a family of Dirac oper-
ators in the cohomology of the base space, now assumed to be a manifold, ana-
logues of differential forms, de Rham cohomology and the Chern character are



INTRODUCTION 3

needed. Karoubi [Ka] introduced a complex of differential forms (Ω̂∗A, d) associ-
ated to a Fréchet algebra A, its de Rham homology HdR

∗ (A) and a Chern character
ch : K0(A)→ HdR

∗ (A), which is defined if in addition A is a local Banach algebra.
Unfortunately the de Rham homology of a C∗-algebra does not behave well, in par-
ticular the de Rham homology of a commutative unital C∗-algebra is in general not
the cohomology of the corresponding compact space. By considering the de Rham
homology of the algebra C∞(B) instead of C(B) one recovers the Chern character
from differential geometry. This can be interpreted as reflecting the fact that a
differentiable structure on B is needed for the definition of de Rham cohomology.

In order to get a reasonable Chern character in the general situation one chooses
a dense subalgebra A∞ holomorphically closed under the functional calculus in A.
Then K0(A∞) is canonically isomorphic to K0(A), and the Chern character yields
a homomorphism

ch : K0(A)→ HdR
∗ (A∞) .

In this setting homological index theorems for Dirac operators associated to C∗-
vector bundles can be formulated and – at least formally – a noncommutative
version of Bismut’s family index theorem makes sense [BGV]. Note that formally
the noncommutative situation is less complex than the family case since the Rie-
mannian metric is fixed.

For the generalization of the heat kernel theory additional conditions have to be
imposed on the algebra A∞: It should be the limit of a projective system {Ai}i∈IN0

of involutive Banach algebras with A0 = A, such that there are dense embeddings
Ai+1 →֒ Ai and such that each Ai is closed with respect to the holomorphic func-
tional calculus in A. The motivating example is Ai := Ci(B) for a closed manifold
B. More generally, if δ is an involutive closed derivation on A with ∩i dom δi dense
in A, then the projective system given by Ai := dom δi with norm

‖a‖i :=

i
∑

j=0

‖δj(a)‖

fulfills the conditions. For a discrete finitely generated group G the unbounded
operator D on l2(G) defined by D1g = l(g)1g, where l is a word length function
on G, induces a closable derivation δ(f) = [D, f ] on B(l2(G)). Furthermore CG ⊂
Ai := dom δ

i ∩ C∗
r (G). The projective limit A∞ ⊂ C∗

r (G) is closely related to the
algebra employed by Connes and Moscovici in their proof of the Novikov conjecture
for Gromov hyperbolic groups via higher index theory [CM]. Using this setting our
results can be applied to higher index theory. A proof of a higher Atiyah-Singer
index theorem based on heat kernel methods was given by Lott [Lo2] and a higher
Atiyah-Patodi-Singer index theorem was proved by Leichtnam and Piazza [LP1]
[LP2]. Lott introduced higher η-invariants and ρ-invariants [Lo1]. A motivation
for higher index theory is the study of higher signatures and the Novikov conjecture.
Index theory for Dirac operators over C∗-algebras in general has been applied to
the study of manifolds with positive scalar curvature [PS] [Ros2].

The proofs of the higher index theorems mentioned above rely on the compar-
ison with the situation on the covering space where one can deal with operators on
sections of complex vector bundles. In the general setting the main difficulty lies
in the fact that the calculus of regular operators on a Hilbert C∗-module and the
calculus of pseudodifferential operators over a C∗-algebra are not sufficient for the
study of the heat semigroup since we have to deal with vector bundles whose fibers
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are projective A∞-modules. By proving that the de Rham homology behaves well
under the projective limit we justify the fact that one can deal with Banach spaces
instead of Fréchet spaces. Then the theory of holomorphic semigroups can be used
instead of the calculus of selfadjoint operators. We define appropriate operator
spaces on L2-spaces of vector valued functions, for example Hilbert-Schmidt oper-
ators and trace class operators. Duhamel’s principle is used for the construction
and the short time asymptotics of the heat kernels. The long time asymptotics is
more intricate: here we have to get hold of the spectrum of the Dirac operator. We
adapt a method developed by Lott, namely a restricted pseudodifferential operator
calculus giving information about the resolvent set of the Dirac operator and the
regularizing properties of the resolvents [Lo3].

Although the theory is developed only for a particular two-dimensional mani-
fold and a trivial vector bundle, the relevant parts generalize to the Atiyah-Patodi-
Singer index problem for Dirac operators over C∗-algebras, which will be considered
elsewhere.

Now we can formulate the noncommutative version of the equation relating the
Maslov index and the η-invariants.

Let C2n be endowed with the skewhermitian form ω induced by the standard
symplectic form on IR2n via the identification C2n = IR2n ⊗IR C.

For a C∗-algebra A a Lagrangian projection on A2n is a selfadjoint projection
P ∈ M2n(A) fulfilling PI0 = (1 − I0)P . Two projections are called transverse if
their sum is invertible.

As above one associates anA-valued hermitian form q to every triple (P0,P1,P2)
of pairwise transverse Lagrangian projections. The class τ(P0,P1,P2) := [q] ∈
K0(A) is called Maslov index of (P0,P1,P2).

An η-form η(P0,P1) ∈ Ω̂∗A∞/[Ω̂∗A∞, Ω̂∗A∞]s can be associated to a pair of
transverse Lagrangian projections (P0,P1) with Pi ∈ M2n(A∞), i = 0, 1. Here
[ , ]s denotes the supercommutator. The η-form is defined via a superconnection
associated to the operator DI = I0

d
dx on L2([0, 1],A2n) with boundary conditions

f(0) = P0f(0) and f(1) = P1f(1).
Then our main result is:

Theorem. For a triple (P0,P1,P2) of pairwise transverse Lagrangian projec-
tions with Pi ∈M2n(A∞), i = 0, 1, 2,

ch τ(P0,P1,P2) = [η(P0,P1) + η(P1,P2) + η(P2,P0)] ∈ HdR
∗ (A∞) .

This paper is based on the author’s PhD thesis. I would like to thank my
supervisor Ulrich Bunke for drawing my attention to the problem and for fruitful
discussions, and Margit Rösler for the introduction into the theory of semigroups.

Summary

The paper is organized in the following way:
As mentioned above, the Maslov index τ(P0,P1,P2) is the index of a Dirac

operator D+ twisted by a C∗-vector bundle on a two-dimensional spin manifold M
with six cylindric ends isometric to [0,∞)× [0, 1].
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In Chapter 1 the manifold M is described and we explain in more detail the
family index theorem of Bunke and Koch [BK]. Then the universal differential

algebra Ω̂∗A∞, the de Rham homology HdR
∗ (A∞) and the Chern character are

introduced and investigated. It is shown that HdR
∗ (A∞) is the projective limit of

HdR
∗ (Ai). Moreover Lagrangian projections and the Maslov index are defined.

In Chapter 2 we introduce the Dirac operator D = D+ ⊕ D− on M whose
boundary conditions are defined by a triple of Lagrangian projections (P0,P1,P2).
Furthermore the operator DI is defined and its properties on the Hilbert A-module
L2([0, 1],A2n) are studied. Then we show thatD+ is Fredholm between appropriate
Hilbert C∗-modules and that its index equals τ(P0,P1,P2). We define a compact
perturbation D(ρ) of D such that D(ρ)+ is surjective. Then the index of D+ can
be expressed in terms of the kernel of D(ρ).

Chapter 3 is devoted to heat semigroups and their integral kernels, in particular
those associated to DI and D(ρ).

In Chapter 4 we introduce superconnections in order to define the η-form. Now
we can formulate the index theorem. The remainder of the chapter is devoted to
its proof. We introduce the rescaled superconnection A(ρ)t associated to D(ρ)

and study the family of operators e−A(ρ)2t . We show that it is a family of integral
operators with smooth integral kernel and obtain estimates for the integral kernel
for small t. Once the heat kernel theory is established, the proof of the index
theorem itself is fairly standard. We follow the proof in [BK], which is modelled
on Melrose’s b-calculus [Me], and compare the limit of a generalized supertrace of

e−A(ρ)2t for t→∞, which is the Chern character of the index of D+, with its limit
for t→ 0. Since the differences between the calculus for Dirac operators associated
to complex vector bundles and the one for Dirac operators associated to a projective
system of vector bundles as developed here are subtle, the proof is given in detail.

In Chapter 5 the functional analytic framework is developed. The function
spaces we deal with are introduced, as for example the L2-spaces of vector valued
functions, and operators on them are studied. In particular we define and study
appropriate notions of adjointable operators, Hilbert-Schmidt and trace class op-
erators. Furthermore we recall the properties of Fredholm operators and regular
operators on Hilbert C∗-modules, and collect some facts from holomorphic semi-
group theory. The reader is advised to go through the definitions of this chapter
first in order to get acquainted with the functional analytic setting.

Notation and conventions

If not specified vector spaces and algebras are complex, manifolds are smooth.
We often deal with ZZ/2-graded spaces. Then [ , ]s denotes the supercommuta-

tor and trs the supertrace. In a graded context the tensor products are graded. For
an ungraded vector space V , we denote by V + resp. V − the same space endowed
with a grading: all elements are homogeneous of positive resp. negative degree.

Tensor products denoted by ⊗ are completed. The way of completion is in-
dicated by a suffix in all but the two most common cases: In the case of Hilbert
C∗-modules ⊗ means the Hilbert C∗-module tensor product, and if one of the
spaces is a nuclear locally convex space, then ⊗ means ⊗π or ⊗ε. The algebraic
tensor product is denoted by ⊙.

By a differentiable function on an open subset of [0, 1]n we understand a func-
tion that can be extended to a differentiable function on an open subset of IRn.
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This induces the notion of a differentiable function on a manifold with corners, in
our case M ×M .

If S,X are sets with S ⊂ X , then the characteristic function of S is denoted
by 1S : X → {0, 1}. If X is a metric space, y ∈ X and S ⊂ X then d(y, S) :=
inf
x∈S

d(x, y). For S1, S2 ⊂ X we set d(S1, S2) := inf
x∈S1

d(x, S2).

If Ei, i = 1, 2, is a vector bundle on a space Xi, i = 1, 2, and pi : X1×X2 → Xi

is the projection, then E1 ⊠ E2 = p∗1E1 ⊗ p∗2E2 on X1 ×X2.
We use the notions from [BGV] in the context of spin geometry. In addition let

a Dirac bundle be a selfadjoint Clifford module endowed with a Clifford connection
with respect to which the metric is parallel. Our sign conventions differ from those
in [BGV] since we deal with right modules over the algebra of differential forms.

The value of the constant C used in estimates may vary during a series of
estimates without an explicit remark.



CHAPTER 1

Preliminaries

1.1. The geometric situation

In this section the two-dimensional spin manifold M with boundary and cylin-
dric ends, a Dirac bundle E on it and the associated Dirac operator will be in-
troduced. The open covering U(r, b) of M constructed in this section will be used
for cutting and pasting arguments later on. Furthermore we will fix a flat open
set F ⊂ M containing the boundary and the cylindric ends and trivializations of
TM |F and of E|F , which will be used in the definition of the boundary conditions
for the Dirac operator in §2.1.1.

We begin by defining the manifold M .

For k ∈ ZZ/6 let Zk be a copy of IR× [0, 1]. With the euclidian metric and the
standard orientation Zk is an oriented Riemannian manifold with boundary. Let
(xk1 , x

k
2) be the euclidian coordinates of Zk.

For r ≥ − 1
2 , b ≤ 1

3 and k ∈ ZZ/6 let

Fk(r, b) := {(xk1 , xk2) ∈ ]r,∞[×[0, 1] ∪ ]− 1, r]×
(

[0, b[∪ ]1− b, 1]
)

} ⊂ Zk .
We define

F (r, b) :=
(

⋃

k∈ZZ/6

Fk(r, b)
)

/ ∼

with (xk1 , x
k
2) ∼ (− 3

2 − xk−1
1 , 1− xk−1

2 ) for (xk1 , x
k
2) ∈ ]− 1,− 1

2 [×[0, b[ and k ∈ ZZ/6.

Then F (r, b) inherits the structure of an oriented Riemannian manifold from
the sets Fk(r, b).

The set F (− 1
2 ,

1
3 )\F (− 1

3 ,
1
4 ) is diffeomorphic to the open ringB1(0)◦\B1/2(0) ⊂

IR2 via an oriented diffeomorphism φ. We define the manifold with boundary

M := F (− 1
2 ,

1
3 ) ∪φ B1(0)◦ .

For r > − 1
2 , b ≤ 1

3 we identify F (r, b) and Fk(r, b) with the corresponding subsets

in M . The sets Fk(r, b) are coordinate patches of M with the coordinates (xk1 , x
k
2)

from above.

Extend the orientation and metric from F := F (0, 1
4 ) to the whole of M and

endow TM with the Levi-Cività connection. In the following we identify TM and
T ∗M .

7



8 1. PRELIMINARIES

∂0M

F2(r, b)

∂4M

∂1M

F1(r, b)
F3(r, b)

F4(r, b)

F5(r, b)

∂5M

∂3M
∂2M

F0(r, b)

1

Figure 1. The manifold M

For r ≥ 0 and b ≤ 1
4 we define an open covering U(r, b) = {Uk}k∈J of M as

follows. Let J be the union of ZZ/6 with a one-element set {♣}. For k ∈ ZZ/6 let

Uk := Fk(r, b) and let U♣ := M \ F (r + 1, b/2).

For r ≥ 0 let Mr := M \ F (r, 0).

The connected components of ∂M are labelled ∂kM, k ∈ ZZ/6, in such a way
that ∂kM ∩ Fk(r, b) ⊂ {xk2 = 0} and ∂k+1M ∩ Fk(r, b) ⊂ {xk2 = 1}.

The manifold M can be embedded diffeomorphically into IR2, even with a
diffeomorphism that is an isometry on the complement of Mr for some r > 0. The
image of the embedding is illustrated by figure 1.

Now we define the Dirac operator. Choose a spin structure on M and fix
d ∈ IN. Let S be the spinor bundle endowed with the Levi-Cività connection and a
parallel hermitian metric. Let E be the graded vector bundle S⊗ ((C+)d⊕ (C−)d).

The hermitian metric on S and the standard hermitian product on Cd induce a
hermitian metric 〈·, ·〉 on E.
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Furthermore there are connections on E and its dual E∗ induced by the Clifford
connection on S and the de Rham differential. The Dirac operator associated to
the Dirac bundle E is denoted by ∂/E .

The oriented orthonormal frames ((−1)kdxk1 , (−1)kdxk2) of TM |Fk(0, 14 ) patch

together to an oriented orthonormal frame (e1, e2) of TM |F . The Clifford multipli-
cation c : TM → EndE induces an even parallel endomorphism

I = c(e2)c(e1) : E|F → E|F
defining a skew-hermitian form

E|F × E|F → C, (x, y) 7→ 〈x, Iy〉 .
Since the holonomy of TM |F is 4πZZ (measured with respect to any trivialization
of TM on the whole of M), there are nonvanishing parallel sections of S+|F and
S−|F . We choose a parallel unit section s of S+|F and fix once and for all the
trivialization of E|F defined for x ∈ F by

E+
x = S+

x ⊗ (C+)d ⊕ S−
x ⊗ (C−)d → (C+)d ⊕ (C+)d ,

(s(x) ⊗ v)⊕ (ic(e1)s(x) ⊗ w) 7→ (v, w) ,

and

E−
x = S−

x ⊗ (C+)d ⊕ S+
x ⊗ (C−)d → (C−)d ⊕ (C−)d ,

(ic(e1)s(x) ⊗ v)⊕ (s(x) ⊗ w) 7→ (v, w) .

With respect to this trivialization the endomorphism I|E+ corresponds to

I0 :=

(

i 0
0 −i

)

∈M2d(C)

and I|E− to −I0.

1.2. The family index theorem

In order to give a motivation for the definitions in the subsequent sections we
sketch the corresponding family index theorem. The presentation follows [BK].

Let C2d be endowed with the standard hermitian product 〈 , 〉 and the skew-
hermitian form (x, y) 7→ 〈x, I0y〉.

Let B be a compact space and let (L0, L1, L2) be a triple of pairwise trans-

verse Lagrangian subbundles of the trivial bundle B × C2d. For any b ∈ B the
Lagrangian subspaces Li(b) ⊂ C2d define parallel Lagrangian subbundles of E+|F
via the trivialization fixed in the previous section.

Let D+(b) be the Dirac operator associated to E with

domD+(b) := {s ∈ C∞
c (M,E+) | s(x) ∈ Li(b) for x ∈ ∂iM ∪ ∂i+3M, i = 0, 1, 2} .

It turns out that for any b ∈ B the kernel and cokernel of the closure of D+(b)
are finite dimensional and that the family {D+(b)}b∈B has a well-defined index in
K0(B), which equals the generalized Maslov index of (L0, L1, L2) defined as follows.

The triple (L0, L1, L2) induces a nondegenerate hermitian form h on L0: Let
v = v1 + v2, w = w1 + w2 ∈ L0(b) with v1, w1 ∈ L1(b); v2, w2 ∈ L2(b), then

hb(v, w) := 〈v2, I0w1〉 .
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The generalized Maslov index is the element [L+
0 ] − [L−

0 ] ∈ K0(B) where L+
0 and

L−
0 are subbundles of L0 with L+

0 ⊕L−
0 = L0 and such that h is positive on L+

0 and
negative on L−

0 .
If B is a manifold and the bundles are smooth, then by a generalization of the

Atiyah-Patodi-Singer index theorem the Chern character of the index bundle can
be expressed in terms of η-forms; the local term vanishes since ch(E/S) = 0.

We outline the definition of the η-forms.
Let ∂ be the differentiation operator on C∞([0, 1],C2d).
For i 6= j and any b ∈ B the operator DI(b) := I0∂ with domain

domDI(b) := {s ∈ C∞([0, 1],C2d) | s(0) ∈ Li(b), s(1) ∈ Lj(b)}
is essentially selfadjoint and its closure has a bounded inverse on L2([0, 1],C2d).

There is a family of rescaled superconnections AIt associated to the family of
operators σDI , where σ is a formal parameter of degree 1 with σ2 = 1.

The η-form

η(Li, Lj) :=
1√
π

∫ ∞

0

t−
1
2 TrσDIe

−(AI
t )2dt ∈ Ω∗(B) ,

with Trσ(a+ σb) := Tr(a), is well-defined.
The statement of the index theorem is:

ch(indD+) = [η(L0, L1) + η(L1, L2) + η(L2, L0)] ∈ H∗
dR(B) .

1.3. The algebra of differential forms

In this section we study the noncommutative analogues of the algebra Ω∗(B),
the Chern character and the de Rham cohomology H∗

dR(B).

1.3.1. The universal graded differential algebra. Let B be an involutive
locally m-convex Fréchet algebra with unit. In particular, the multiplication B ×
B → B, (a, b) 7→ ab is continuous, the group of invertible elements Gl(B) in B is
open and the map Gl(B) → Gl(B), a 7→ a−1 is continuous [Ma]. In this section

we recall the definition of the topological universal graded differential algebra Ω̂∗B
and collect its main properties [Ka] [CQ].

We write ⊗π for the completed projective tensor product.
Let

Ω̂kB := B ⊗π (⊗kπ(B/C))

and

Ω̂∗B :=

∞
∏

k=0

Ω̂kB .

With the following structures Ω̂∗B is an involutive Fréchet locally m-convex graded
differential algebra:

Product: There is a graded continuous product on Ω̂∗B defined for elementary
tensors by

(b0⊗b1⊗. . .⊗bk)(bk+1⊗bk+2⊗. . . bn) :=

k
∑

j=0

(−1)k−j(b0⊗b1⊗. . .⊗bjbj+1⊗bj+2⊗. . . bn) .
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Differential: There is a continuous differential d of degree one on the graded
algebra Ω̂∗B defined on elementary tensors by

d(b0 ⊗ b1 ⊗ . . .⊗ bk) := 1⊗ b0 ⊗ b1 ⊗ . . .⊗ bk .
It satisfies the graded Leibniz rule: For α ∈ Ω̂kB and β ∈ Ω̂∗B

d(αβ) = (dα)β + (−1)kα(d β) .

Furthermore in Ω̂kB
b0 ⊗ b1 ⊗ . . .⊗ bk = b0 d b1 d b2 . . . d bk .

If B is a Banach algebra, then d is a map of norm one.
Involution: We extend the ∗-operation on B to a continuous involution on

Ω̂∗B by setting

(b0 ⊗ b1 ⊗ . . .⊗ bk)∗ := (1⊗ b∗k ⊗ b∗k−1 ⊗ . . .⊗ b∗1)b∗0
or equivalently

(b0 d b1 d b2 . . . d bk)
∗ = (d b∗k d b∗k−1 . . .d b

∗
1)b

∗
0 .

For ω1, ω2 ∈ Ω̂∗B
(ω1ω2)

∗ = ω∗
2ω

∗
1 ,

and for ω ∈ Ω̂kB
(dω)∗ = (−1)k d(ω∗) .

Let

Ω̂≤mB := Ω̂∗B/
∞
∏

k=m+1

Ω̂kB .

The above structures are well-defined on Ω̂≤mB as well.

We identify Ω̂≤mB as a graded vector space with the subspace

{ω ∈ Ω̂∗B | ωn = 0 for n > m} ⊂ Ω̂∗B ,
where ωn denotes the homogeneous part of degree n of ω ∈ Ω̂∗B.

The Fréchet space [Ω̂∗B, Ω̂∗B]s, generated by the supercommutators in Ω̂∗B, is

preserved by d by Leibniz rule. It follows that (Ω̂∗B/[Ω̂∗B, Ω̂∗B]s, d) is a complex.

Definition 1.3.1. The de Rham homology of B is

HdR
∗ (B) := H∗(Ω̂∗B/[Ω̂∗B, Ω̂∗B]s, d) .

On the right hand side we take the topological homology, i.e. we quotient out the
closure of the range of d in order to obtain a Hausdorff space.

The map d induces maps d : (Ω̂∗B)n → (Ω̂∗B)n and d : Mn(Ω̂∗B)→Mn(Ω̂∗B), A 7→
d(A) by applying d componentwise. Note the difference between dA = d ◦A and
d(A). Sometimes we write (dA) for d(A).

For A ∈Mn(Ω̂kB)

dA = (dA) + (−1)kAd .

The trace

tr : Mn(Ω̂∗B)→ Ω̂∗B/[Ω̂∗B, Ω̂∗B]s

is defined by adding up the diagonal elements. It vanishes on supercommutators.
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In the following definition and proposition a projection is not assumed to be
selfadjoint.

Definition 1.3.2. Let P ∈Mn(B) be a projection. Then

ch(P ) :=

∞
∑

k=0

(−1)k
1

k!
trP (d(P ))2k ∈ Ω̂∗B/[Ω̂∗B, Ω̂∗B]s

is the Chern character form of P .

Proposition 1.3.3. (1) The Chern character form is closed.
(2) If P : [0, 1]→Mn(B) is a differentiable path of projections, then ch(P1)−

ch(P0) is exact.
(3) If B is a local Banach algebra [Bl], then the Chern character form induces

a homomorphism

ch : K0(B)→ HdR
∗ (B), ch([P ]− [Q]) := ch(P )− ch(Q) ,

called the Chern character.

Proof. First note that for a projection P ∈Mn(B)

0 = d((1− P )P ) = (1 − P )(dP )− (dP )P ,

hence (1− P )(dP ) = (dP )P and P (dP )P = 0. Therefore

P (dP )2 = (dP )2P .

Analogous formulas hold for the derivative of a path of projections.
(1) follows from

d trP (dP )2k = tr(dP )2k+1

= tr(1 − P )(dP )2k+1(1− P ) + trP (dP )2k+1P

= 0 .

(2) We have that

(trP (dP )2k)′ = trP ′(dP )2k + trP ((dP )2k)′

=
2k−1
∑

i=0

trP (dP )i(dP ′)(dP )2k−i−1 .

For i even

trP (dP )i(dP ′)(dP )2k−i−1

= tr(dP )i(d(PP ′))(dP )2k−i−1 − tr(dP )i(dP )P ′(dP )2k−i−1

= tr(dP )i(d(PP ′))(dP )2k−i−1

= d trP (dP )i−1(d(PP ′))(dP )2k−i−1 .

For i odd the argument is similar.
(3) follows from (1) and (2). �
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1.3.2. Supercalculus. Let B be as before.
In this section all spaces and tensor products are ZZ/2-graded. If no grading is

specified we assume the grading to be trivial.
Let V = V + ⊕ V − be a ZZ/2-graded complex vector space with dim V + =

m, dimV − = n and consider Ω̂∗B as a ZZ/2-graded space with the grading induced
by the form degree.

The space V ⊗ Ω̂∗B is a free ZZ/2-graded right Ω̂∗B-module. It is furthermore a

left supermodule of the superalgebra End(V )⊗ Ω̂∗B. (Note that our setting differs

from the corresponding one in [BGV] since we deal with right Ω̂∗B-modules. This
leads to different signs.)

The supertrace trs : End(V )→ C extends to a supertrace

trs : End(V )⊗ Ω̂∗B → Ω̂∗B/[Ω̂∗B, Ω̂∗B]s

trs(T ⊗ ω) := trs(T )ω .

By quotienting out the supercommutator we ensure that trs([T1, T2]s) = 0 for

T1, T2 ∈ End(V )⊗ Ω̂∗B.

The differential d acts on elements of V ⊗ Ω̂∗B resp. End(V )⊗ Ω̂∗B by

d(A⊗ ω) = (−1)degAA⊗ dω

for A ∈ V ± resp. A ∈ End±(V ) and ω ∈ Ω̂∗B.

Though the differential d is not a right Ω̂∗B-module map, the supercommutator
[d, T ]s with T ∈ End(V )⊗ Ω̂∗B is in End(V )⊗ Ω̂∗B; namely

[d, T ]s = d(T ) .

Since trs(A⊗ ω) = 0 for A ∈ End−(V ), we have that

trs[d, T ]s = trs d(T ) = d trsT

for T ∈ End(V )⊗ Ω̂∗B.

See §5.2.3, §5.2.4, §5.2.5 for notions of Hilbert-Schmidt operators, trace class
operators and adjointable operators used in the following.

If M is a complete Riemannian manifold and T is a trace class operator on
L2(M,V ⊗ Ω̂≤µB), then

TrsT :=

∫

M

trs R(T )(x) dx ∈ Ω̂≤µB/[Ω̂≤µB, Ω̂≤µB]s .

Note that

Trs[A,B]s = 0

if A is an adjointable operator and B a trace class operator or if A, B are Hilbert-
Schmidt operators.

1.3.3. The algebras A∞ and Ω̂∗A∞. Let (Aj , ιj+1,j : Aj+1 → Aj)j∈IN0 be
a projective system of involutive Banach algebras with unit satisfying the following
conditions (see [Lo3], §2.1):

• The algebra A := A0 is a C∗-algebra.
• For any j ∈ IN0 the map ιj+1,j : Aj+1 → Aj is injective.
• For any j ∈ IN0 the map ιj : A∞ := lim←−

i

Ai → Aj has dense range.
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• For any j ∈ IN0 the algebra Aj is stable with respect to the holomorphic
functional calculus in A.

The projective limit A∞ is an involutive locally m-convex Fréchet algebra with
unit.

The motivating example is Aj = Cj(B) for a closed smooth manifold B.

Proposition 1.3.4. For j ∈ IN0 and n ∈ IN we have:

(1) The map ιj : A∞ → Aj is injective.
(2) The algebras Mn(A∞) and Mn(Aj) are stable with respect to the holomor-

phic functional calculus in Mn(A).
(3) The map ι0∗ : K0(A∞)→ K0(A) is an isomorphism.

Proof. (1) follows immediately.
(2) follows from [Bo], Prop. A.2.2.
(3) follows from [Bo], Th. A.2.1. �

The projective system (Aj , ιj+1,j)j∈IN0 induces two projective systems of invo-
lutive graded differential Fréchet algebras.

One of them is given by the maps

ιj+1,j∗ : Ω̂∗Aj+1 → Ω̂∗Aj .
Furthermore (Ω̂≤mAj)m,j∈IN is a projective system of involutive Banach graded
differential algebras.

Their limits coincide:
The inclusion Ω̂≤mAj → Ω̂∗Aj is left inverse to the projection Ω̂∗Aj → Ω̂≤mAj .

The induced maps between the projective limits are inverse to each other. It follows
that

lim←−
j

Ω̂∗Aj ∼= lim←−
j,m

Ω̂≤mAj .

Furthermore the inclusions ιj∗ : Ω̂∗A∞ → Ω̂∗Aj induce a map

ι∗ : Ω̂∗A∞ → lim←−
j

Ω̂∗Aj .

Proposition 1.3.5. There are the following canonical isomorphisms of invo-
lutive Fréchet locally m-convex graded differential algebras:

(1) Ω̂∗A∞ ∼= lim←−
j

Ω̂∗Aj ∼= lim←−
j,m

Ω̂≤mAj .

There are the following canonical isomorphisms of graded Fréchet spaces:

(2) Ω̂∗A∞/[Ω̂∗A∞, Ω̂∗A∞]s ∼= lim←−
j,m

Ω̂≤mAj/[Ω̂≤mAj , Ω̂≤mAj ]s ,

(3) HdR
∗ (A∞) ∼= lim←−

j

HdR
∗ (Aj) ∼= lim←−

j,m

H∗(Ω̂≤mAj/[Ω̂≤mAj , Ω̂≤mAj ]s, d) .

Proof. (1) It is enough to prove that the right hand side and the left hand
side are isomorphic as topological vector spaces. This follows from the fact that
projective limits and projective tensor products commute ([Kö], 41.6).

(2) and (3) follow from the three technical lemmas below. �

The importance of this proposition for our purposes is the following: Since the
analysis is easier on Banach spaces than on Fréchet spaces we will prove the index
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theorem in H∗(Ω̂≤mAj/[Ω̂≤mAj , Ω̂≤mAj ]s, d), making sure that the expressions in
the index theorem behave well under the projective limit. By the proposition this
will prove the index theorem in HdR

∗ (A∞).

Lemma 1.3.6. Let (Vn, fn+1,n : Vn+1 → Vn)n∈IN be a projective system of
Banach spaces with projective limit V∞ . Let (An, fn+1,n|An+1)n∈IN be a projective
subsystem of sets such that for any n ∈ IN the range of the induced map fn : A∞ :=
lim←−
n

An → An is dense in An. Then

lim←−
n

An = lim←−
n

An .

Hence a subset S1 of V∞ is dense in S2 ⊂ V∞ if and only if fnS1 ⊂ Vn is dense in
fnS2 ⊂ Vn for any n ∈ IN.

Proof. Without loss of generality we may assume that the maps fn+1,n have

norm less than or equal to one. Let a ∈ lim←−
n

An. Then for any n ∈ IN there is

bn ∈ A∞ with |fn(bn) − fn(a)| ≤ 1
n . The sequence (bn)n∈IN converges in V∞ to a.

Hence A∞ = lim←−
n

An. �

Lemma 1.3.7. (1) Let (Vn, fn+1,n)n∈IN, (Wn, gn+1,n)n∈IN be projective sys-
tems of Banach spaces. Let (dn : Vn →Wn)n∈IN be a morphism of projec-
tive systems with induced map d∞ : V∞ →W∞. Then

Ker d∞ = lim←−
n

Ker dn .

(2) In the situation of (1) assume furthermore that the induced maps fn :
V∞ → Vn and gn : W∞ →Wn have dense range for all n ∈ IN. Then

Ran d∞ = lim←−
n

Ran dn .

(3) Let (An, fn+1,n)n∈IN be a projective system of Banach algebras such that
for any n ∈ IN the range of fn : A∞ := lim←−

n

An → An is dense in An.

Then
[A∞, A∞] = lim←−

n

[An, An] .

Proof. (1) Let x ∈ Ker d∞. Then dnfn(x) = gnd∞(x) = 0.
Conversely if dnfnx = 0 for all n ∈ IN, then by definition d∞x = 0.
(2) follows from the previous lemma since gn Rand∞ is dense in Ran dn.

(3) follows from the previous lemma since fn[A∞, A∞] is dense in [An, An] for
all n ∈ IN. �

Lemma 1.3.8. Let (Vn, fn+1,n)n∈IN be a projective system of Banach spaces and
let (An, fn+1,n|An+1)n∈IN be a projective subsystem such that An is a closed subspace
of Vn for all n ∈ IN.

Let V∞ := lim←−
n

Vn and A∞ := lim←−
n

An and assume furthermore that the image

of An+1 is dense in An for any n ∈ IN.
Then, canonically,

V∞/A∞ ∼= lim←−
n

Vn/An .
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Proof. For n ∈ IN let fn : V∞ → Vn be the induced map. We prove that the
map

f∞ : V∞/A∞ → lim←−
n

Vn/An

is an isomorphism:
For injectivity let [v] ∈ V∞/A∞ with f∞[v] = 0. Then fnv ∈ An for all n ∈ IN,

so v ∈ A∞, thus [v] = 0.
In order to prove surjectivity we assume that the norms of the maps fn+1,n are

less than or equal to one, which can be obtained by rescaling the norms inductively.
Let v ∈ lim←−

n

Vn/An. Choose inductively vn ∈ Vn such that [vn] ∈ Vn/An is the

image of v with respect to the map lim←−
n

Vn/An → Vn/An and such that

|fn+1,nvn+1 − vn| ≤ n−1 .

(Here we use that fn+1,nAn+1 is dense in An.)
For n ≥ j let fn,j : Vn → Vj be the induced map. For any j ∈ IN the sequence

(fn,j(vn))n≥j converges to an element ṽj ∈ Vj . We have that fj+1,j ṽj+1 = ṽj , hence
there is an element ṽ ∈ V∞ with fj ṽ = ṽj . Since [ṽj ] = [vj ] ∈ Vj/Aj , we have that
f∞[ṽ] = v.

�

1.4. Lagrangian projections

Let A be a unital C∗-algebra.
In this section we define and study the analogues of Lagrangian subbundles

and of the Maslov index bundle.
Let n ∈ IN.

Definition 1.4.1. Two selfadjoint projections P1, P2 ∈Mn(A) are called trans-

verse if

RanP1 ⊕ RanP2 = An .
We will often use the following transversality criterion: Two selfadjoint projec-

tions P1, P2 are transverse if and only there exist a, b ∈ Gl(A) such that aP1+bP2 ∈
Mn(A) is invertible. This is equivalent to the invertibility of aP1 + bP2 for any
a, b ∈ Gl(A).

If A = C(B) for a compact space B, then the transversality of two projections
is equivalent to the transversality of the corresponding subbundles.

1.4.1. Definition and properties. Let A2n be endowed with the standard
A-valued scalar product and let

I0 =

(

i 0
0 −i

)

: An ⊕An → An ⊕An .

Definition 1.4.2. A Lagrangian projection on A2n is a selfadjoint pro-
jection P ∈M2n(A) with

PI0 = I0(1− P ) .

If A = C(B) for some compact space B, then the Lagrangian projections are
in one-to-one correspondence with the subbundles of B ×C2n that are Lagrangian
with respect to the skew-hermitian form induced by I0.
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Note furthermore that any Lagrangian projection P onA2n is also a Lagrangian
projection on the Hilbert Mn(A)-module Mn(A)2.

Denote

Ps := 1
2

(

1 1
1 1

)

.

Lemma 1.4.3. (1) For every Lagrangian projection P on A2n there is a
unitary p ∈Mn(A) such that

P = 1
2

(

1 p∗

p 1

)

.

(2) For every Lagrangian projection P on A2n the unitary

U =

(

1 0
0 p∗

)

∈M2n(A)

with p as in (1) fulfills UI0 = I0U and UPU∗ = Ps .

Proof. (1) Since P is selfadjoint, there are a, b, c ∈Mn(A) with a = a∗, c = c∗

such that P =

(

a b
b∗ c

)

. From PI0 = I0(1 − P ) it follows that

(

ia −ib
ib∗ −ic

)

=

(

i(1− a) −ib
ib∗ −i(1− c)

)

,

thus a = c = 1
2 . Furthermore from P 2 = P it follows that 2b is unitary.

(2) is clear. �

Let A∞ be as in the previous section.

Lemma 1.4.4. Let P ∈M2n(A∞) be a Lagrangian projection of A2n transverse

to Ps. Let P̃ ∈ M2n(C) be a complex Lagrangian projection. Then for every
0 < ε1 < ε2 there is a smooth path of unitaries U : [0, ε2]→M2n(A∞) such that

(1) U(0)PU(0)∗ = P̃ ,
(2) U equals 1 on a neighborhood of ε2,
(3) U is constant on [0, ε1],
(4) U is diagonal with respect to the decomposition A2n = An ⊕An.

Note that (4) implies that UI0 = I0U .

Proof. It is enough to prove the assertion for P̃ = Ps.
For P let p be as in the previous lemma.
Since P and Ps are transverse, P − Ps is invertible. It follows that p− 1 and

p∗−1 are invertible, so log p and log p∗ are well-defined if we choose the complement
of [0,∞) in C as a domain for the logarithm.

Let χ : [0, ε2] → [0, 1] be a smooth function with χ|[0,ε1] = 0 and χ(t) = 1 for

t ∈ [ ε2−ε12 , ε2]. The smooth path of unitaries

γ : [0, ε2]→Mn(A), γ(t) := exp(2πiχ(t) + (1− χ(t)) log p∗)

connects p∗ with 1. Moreover γ(t) ∈ Mn(A∞) for all t ∈ [0, ε2] since Mn(A∞) is
stable under holomorphic function calculus in Mn(A) by Prop. 1.3.4.

Then

U :=

(

1 0
0 γ

)

satisfies the conditions. �
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1.4.2. The Maslov index. Let (P0, P1, P2) be a triple of pairwise transverse
Lagrangian projections onA2n. For x ∈ A2n write x = x1+x2 with xi ∈ RanPi, i =
1, 2.

The form
h : RanP0 × RanP0 → A, (x, y) 7→ 〈x2, I0y1〉

is hermitian and its radical vanishes [Wa]. Since x1 = P1(P1 + P2)
−1x and x2 =

P2(P1 + P2)
−1x, the corresponding selfadjoint matrix is

A := P0(P1 + P2)
−1P2I0P1(P1 + P2)

−1P0 ∈M2n(A) .

Since

A = P0(P1 + P2)
−1P2I0P1(P1 + P2)

−1P0

= P0(P1 + P2)
−1(P1 + P2)IP1(P1 + P2)

−1(P0 + P2)

= (P0 + P1)IP1(P1 + P2)
−1(P0 + P1) ,

the range of A is closed. Hence the hermitian form h is non-singular and defines
an element in K0(A) [Ros2].

Definition 1.4.5. The Maslov index τ(P0, P1, P2) ∈ K0(A) of a triple of
pairwise transverse Lagrangian projections (P0, P1, P2) is the class of the hermitian
form h in K0(A).

We can express the Maslov index in terms of A as follows:

τ(P0, P1, P2) = [1{x>0}(A)]− [1{x<0}(A)] ∈ K0(A) .

Note that the Maslov index is invariant under even permutations and changes sign
under odd permutations.

Proposition 1.4.6. Let Pi : [0, 1] → M2n(A), i = 0, 1, 2, be continuous paths
of Lagrangian projections such that Pi(t) − Pj(t) is invertible for i 6= j and all
t ∈ [0, 1].

Then the Maslov index τ(P0(t), P1(t), P2(t)) does not depend on t.

Proof. The selfadjoint element A(t) ∈M2n(A) defined by (P0(t), P1(t), P2(t))
as above depends continuously on t for all t ∈ [0, 1]. It follows that the projections
1{x>0}(A(t)) and 1{x<0}(A(t)) also depend continuously on t, thus their K-theory
classes are constant. �

Let B be a compact space and let (P0, P1, P2) be a triple of pairwise trans-
verse Lagrangian projections in M2n(C(B)). Let (L0, L1, L2) be the correspond-
ing triple of Lagrangian subbundles of B × C2n. Then the Maslov index bundle
[L+

0 ]− [L−
0 ] defined in §1.2 corresponds to τ(P0, P1, P2) under the canonical isomor-

phism K0(B) ∼= K0(C(B)).

Now we study in some detail the Maslov index of a triple (P0, P1, P2) with
P0 = Ps. The general case can be reduced to this case by Lemma 1.4.3.

The Cayley transform a 7→ a−i
a+i , defined for selfadjoint a ∈ Mn(A), yields a

bijective map

a 7→ P (a) := 1
2

(

1 a+i
a−i

a−i
a+i 1

)

.

from the space of selfadjoint elements in Mn(A) to space of projections in M2n(A)
transverse to Ps.
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Lemma 1.4.7. Let a1, a2 ∈ Mn(A) be selfadjoint. Then P (a1) and P (a2) are
transverse projections if and only if a1 − a2 is invertible.

Proof. Let U := 1√
2

(

1 1
1 −1

)

. Then

UP (aj)U
∗ = (a2

j + 1)−1

(

a2
j −iaj

iaj 1

)

.

Now P (a1) and P (a2) are transverse if and only if

(a2
1 + 1)UP (a1)U

∗ − (a2
2 + 1)UP (a2)U

∗

is invertible and this is the case if and only if a1 − a2 is invertible. �

Lemma 1.4.8. Let (Ps, P1, P2) be a triple of pairwise transverse Lagrangian
projections and let a1, a2 ∈ Mn(A) be such that Pi = P (ai), i = 1, 2. Let p+ :=
1{x>0}(a1 − a2).

(1) There are continuous paths P1, P2 : [0, 2] → M2n(A) of Lagrangian pro-
jections such that Ps, P1(t), P2(t) are pairwise transverse for all t ∈ [0, 2]
and such that P1(2) = P (2p+ − 1) and P2(2) = P (1− 2p+).

(2)
τ(Ps, P1, P2) = [p+]− [1− p+] .

Proof. (1) For t ∈ [0, 1] define a1(t) := t(a1 − a2) + (1 − t)a1 and a2(t) :=
t(a2 − a1) + (1 − t)a2. Then a1(t) − a2(t) = (1 + t)(a1 − a2) is invertible, thus
the projections P (a1(t)) and P (a2(t)) are transverse. Furthermore a1(0) = a1 and
a1(1) = a1 − a2, whereas a2(0) = a2 and a2(1) = a2 − a1.

For t ∈ [1, 2] let a1(t) be a path of invertible selfadjoint elements with a1(1) =
a1 − a2 and a1(2) = p+ − (1− p+) and let a2(t) = −a1(t).

Then the paths P (a1(t)) and P (a2(t)) satisfy the conditions.
(2) From (1) and Prop. 1.4.6 it follows that τ(Ps, P1, P2) = τ(Ps, P (2p+ −

1), P (1− 2p+)).
The Cayley transform of 2p+− 1 is i(2p+− 1). By computing the matrix A we

see that 1{x>0}(A) = p+ and 1{x<0}(A) = (1 − p+). �





CHAPTER 2

The Fredholm Operator and Its Index

2.1. The operator D on M

2.1.1. Definition of D. Now we come back to the geometric situation de-
scribed in §1.1.

By taking the tensor product of the bundle E with the C∗-algebra A we obtain
an A-vector bundle [MF]. Furthermore we consider the bundle E ⊗ Ω̂≤µAi, i, µ ∈
IN0, of right Ω̂≤µAi-modules. Keep in mind that E can be trivialized on M via a
global orthonormal frame. Thus no theory of Banach space bundles is needed in
this context.

The hermitian metric on E extends to anA-valued scalar product 〈·, ·〉 on E⊗A
and to an Ω̂≤µAi-valued non-degenerated product on E ⊗ Ω̂≤µAi (see §5.2.3 for

this notion). Furthermore parallel transport is defined on E⊗A resp. E⊗ Ω̂≤µAi.
By the trivialization of E|F fixed in §1.1 we identify (E|F ⊗ A, I)x, x ∈ F,

with (A4d, I0⊕ (−I0)) as a Hilbert A-module with a skew-hermitian structure, and

(E ⊗ Ω̂≤µAi)x, x ∈ F, with (Ω̂≤µAi)4d as a right Ω̂≤µAi-module with an Ω̂≤µAi-
valued non-degenerated product.

Recall that the Hilbert A-module L2(M,E ⊗A) can be defined as the comple-
tion of C∞

c (M,E ⊗ A) with respect to the norm induced by the A-valued scalar
product

〈f, g〉 :=
∫

M

〈f(x), g(x)〉 dx .

(For fixing notation a short introduction to Hilbert A-modules can be found in
§5.1.1.) By Prop. 5.1.18 any orthonormal basis of the Hilbert space L2(M,E) is
an orthonormal basis of L2(M,E ⊗A) and L2(M,E ⊗A) is isomorphic to l2(A).

We introduce the Schwartz space of sections of E ⊗ Ω̂≤µAi:
For k ∈ ZZ/6 define the Schwartz space

S(Zk, (Ω̂≤µAi)4d) := S(IR)⊗π C∞([0, 1], (Ω̂≤µAi)4d) .
For r ≥ 0, 0 ≤ b ≤ 1

4 choose a partition of unity {φk}k∈J subordinate to the
covering U(r, b).

The embedding Fk(r, b) →֒ Zk, k ∈ ZZ/6, and the trivialization of E|F induce
a map

C∞(M,E ⊗ Ω̂≤µAi)→ C∞(Zk, (Ω̂≤µAi)4d), f 7→ φkf .

As a vector space let S(M,E ⊗ Ω̂≤µAi) be the largest subspace of C∞(M,E ⊗
Ω̂≤µAi) such that for all k ∈ ZZ/6 the maps

S(M,E ⊗ Ω̂≤µAi)→ S(Zk, (Ω̂≤µAi)4d), f 7→ φkf

21
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are well-defined. Endowed with the seminorms of C∞(M,E ⊗ Ω̂≤µAi) and those

of S(Zk, (Ω̂≤µAi)4d) applied to φkf for k ∈ ZZ/6 the space S(M,E ⊗ Ω̂≤µAi) is a
Fréchet space. The topology does not depend on the choice of r and b, neither on
the choice of the partition of unity.

To a triple R = (P0, P1, P2) of Lagrangian projections of A2d with Pi ∈
M2d(A∞), i = 0, 1, 2, we associate boundary conditions on sections of E ⊗ Ω̂≤µAi
in the following way:

For k ∈ IN0 ∪ {∞} let

CkR(M,E ⊗ Ω̂≤µAi) := {f ∈ Ck(M,E ⊗ Ω̂≤µAi) | (Pi ⊕ Pi)∂/lEf(x) = ∂/lEf(x)

for x ∈ ∂iM ∪ ∂i+3M, i = 0, 1, 2; l ∈ IN0, l ≤ k}
endowed with the subspace topology.

Analogously we define CkR0(M,E ⊗ Ω̂≤µAi) and CkRc(M,E ⊗ Ω̂≤µAi).
Furthermore let SR(M,E ⊗ Ω̂≤µAi) be the vector space S(M,E ⊗ Ω̂≤µAi) ∩

C∞
R (M,E ⊗ Ω̂≤µAi) with the subspace topology of S(M,E ⊗ Ω̂≤µAi).

Now we introduce the operator D:
Fix a triple of pairwise transverse Lagrangian projections R = (P0,P1,P2) of

A2d with Pi ∈M2d(A∞), i = 0, 1, 2. We define D on L2(M,E ⊗A) as the closure
of the Dirac operator ∂/E with domain C∞

Rc(M,E ⊗ A) and D+ resp. D− as the
restriction of D to the sections of E+ ⊗A resp. E− ⊗A.

Note that D is symmetric.

2.1.2. Comparison with Ds. Recall that Ps = 1
2

(

1 1
1 1

)

∈M2d(C) .

Fix a triple of pairwise transverse Lagrangian projections (Ps0 ,Ps1 ,Ps2) with
Ps0 = Ps and Ps1 ,Ps2 ∈ M2d(C). Let Ds on L2(M,E ⊗ A) be the closure of the
Dirac operator ∂/E with domain C∞

Rc(M,E ⊗A) for the triple R = (Ps0 ,Ps1 ,Ps2).

Let W ∈ C∞(M,End+E ⊗A∞) be such that

• WW ∗ = 1,
• W (x)(Pi ⊕ Pi)W (x)∗ = (Psi ⊕ Psi ) for all x ∈ ∂iM ∪ ∂i+3M, i = 0, 1, 2,
• W is parallel on M \ F and on a neighborhood of ∂M ,
• for all k ∈ ZZ/6 the restriction of W to Fk(0,

1
4 ) depends only on the

coordinate xk2 ,
• W commutes with the Clifford multiplication.

Some of these properties are not needed in this section, but are important for
the proof of the index theorem.

Proposition 2.1.1. (1) We have that WDW ∗ = Ds + Wc(dW ∗) with
c(dW ∗)|F := c(e2)∂e2W

∗ and c(dW ∗)|M\F := 0. In particular, Wc(dW ∗) ∈
C∞(M,End−E ⊗A∞).

(2) The operator D is regular and selfadjoint.

Proof. (1) For R = (Ps0 ,Ps1 ,Ps2) and f ∈ C∞
cR(M,E ⊗ A) we have that

(WDW ∗f)|M\F = (Dsf)|M\F and

(WDW ∗f)|F = (Dsf)|F +W [c(e2)∂e2 ,W
∗]s(f |F )

= (Dsf)|F +Wc(e2)(∂e2W
∗)(f |F ) .
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(2) The restriction of Ds to the Hilbert space L2(M,E) is selfadjoint [BK]. Hence
(1+D2

s) has a bounded inverse on L2(M,E). It follows that the range of (1+D2
s) on

L2(M,E⊗A) is dense, thus Ds is regular. By an analogous argument the operators
Ds ± i have dense range. From Lemma 5.1.15 it follows that Ds is selfadjoint.

By (1) the operator D is a bounded perturbation of Ds, hence D is selfadjoint
and regular (see Prop. 5.1.11). �

The existence of a section W fulfilling the properties above is proved in the
following lemma and proposition:

Lemma 2.1.2. There is a parallel unitary section U ∈ C∞(M,EndE+ ⊗A∞)
such that UP0U

∗ = Ps0 = Ps.

Proof. By the isomorphism E+ ⊗ A ∼= S+ ⊗ (A+)d ⊕ S− ⊗ (A−)d any A ∈
M2d(A) of the form

(

a 0
0 b

)

with a, b ∈ Md(A) defines a parallel section of

EndE+ ⊗A.
By Lemma 1.4.3 there is a unitary U ∈ M2d(A∞) of that form such that

UP0U
∗ = Ps0 = Ps. �

Proposition 2.1.3. For any 0 < b < 1
4 there is W ∈ C∞(M,End+E ⊗A∞)

with the properties above and such that W is parallel on {x ∈M | d(x, ∂M) > b}.
Proof. By the previous lemma we may assume P0 = Ps.
In the following we identify ∂M × [0, b] with {x ∈M | d(x, ∂M) ≤ b}.
Since for i = 1, 2 the projection Pi is transverse to Ps, there are, by Lemma

1.4.4, smooth paths Wi : [0, b]→M2d(A∞) of unitaries with [Wi, I0] = 0 such that
Wi(0)PiW ∗

i (0) = Psi and such that Wi is equal to the identity in a neighborhood of

b and constant on [0, b2 ]. They induce maps W̃i := id×Wi : (∂iM∪∂i+3M)×[0, b]→
M2d(A∞). The map

∪i(W̃i ⊕ W̃i) : ∂M × [0, b]→M4d(A∞)

can be extended by 1 to a smooth section W ∈ C∞(M,End+E ⊗ A∞). By con-
struction W has the right properties. �

2.2. The operator DI on [0, 1]

2.2.1. Definition and comparison with DIs . Let ∂ be the differentiation
operator on [0, 1].

For a pairR = (P0, P1) of transverse Lagrangian projections with Pj ∈M2d(A∞),
j = 0, 1, and k ∈ IN0 ∪ {∞} we define the function space

CkR([0, 1], (Ω̂≤µAi)2d)
:= {f ∈ Ck([0, 1], (Ω̂≤µAi)2d) | Px(I0∂)lf(x) = (I0∂)lf(x)

for x = 0, 1; l ∈ IN0, l ≤ k}
and endow it with the subspace topology.

Given a pair (P0, P1) of transverse Lagrangian projections on A2d we write DI

for the closure of the operator I0∂ on the Hilbert A-module L2([0, 1],A2d) with
domain C∞

R ([0, 1],A2d).
We write DIs if (P0, P1) = (Ps, 1− Ps).
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Proposition 2.2.1. Let (P0, P1) be a pair of transverse Lagrangian projections
with P0, P1 ∈M2d(A∞). Then for 0 < x1 < x2 < 1 there is U ∈ C∞([0, 1],M2d(A∞))
such that

(1) UU∗ = 1,
(2) UI0 = I0U ,
(3) U(0)P0U(0)∗ = Ps,
(4) U(1)P1U(1)∗ = 1− Ps,
(5) U is constant on [0, x1] and on [x2, 1].

Proof. By Lemma 1.4.3 there is a unitary U0 ∈ M2d(A∞) with U0I0 = I0U0

and U0P0U
∗
0 = Ps. Since U0P1U

∗
0 is transverse to Ps, we can apply Lemma 1.4.4

to P = U0P1U
∗
0 and P̃ = 1 − Ps in order to get a smooth path of unitaries U1 :

[0, 1]→M2d(A∞) such that U(t) := U1(t)U0 has the right properties. �

Proposition 2.2.2. Let (P0, P1) be a pair of transverse Lagrangian projections
of A2d with P0, P1 ∈M2d(A∞) and let DI be the associated operator.

(1) Let U be as in the previous proposition. Then

UDIU
∗ = DIs + UI0(∂U

∗)

with UI0(∂U
∗) ∈ C∞([0, 1],M2d(A∞)).

(2) The operator DI is regular and selfadjoint.

Proof. (1) For f ∈ C∞
R ([0, 1],A2d

∞) with R = (Ps, 1− Ps) we have:

UDIU
∗f = UI0∂U

∗f

= DIsf + UI0(∂U
∗)f .

(2) follows as in Prop. 2.1.1. �

2.2.2. Generalized eigenspace decomposition. We construct a decompo-
sition of L2([0, 1],A2d) into free finitely generated A-modules preserved by DI . For
d = 1 these can be understood as analogues of eigenspaces.

Assume that the boundary conditions of DI are given by a pair (P0, P1) with
P0 = Ps. For the general case use Lemma 1.4.3.

Let p ∈Md(A) be such that P1 = 1
2

(

1 p∗

p 1

)

.

The transversality of P0 and P1 implies that 1− p is invertible. Hence log p is
defined for log : C \ [0,∞)→ C.

Lemma 2.2.3. Assume that d = 1.
Then for k ∈ ZZ the function

fk(x) = 1√
2

((

1
0

)

exp[(− 1
2 log p+ πki)x] +

(

0
1

)

exp[(1
2 log p− πki)x]

)

is in domDI and DIfk = λkfk with λk := − 1
2 i log p− πk.

The system {fk}k∈ZZ is an orthonormal basis of the Hilbert A-module L2([0, 1],A2).

Note that λkfk = fkλk and σ(λk) ⊂]− πk,−π(k − 1)[.

Proof. Clearly the system {fk}k∈ZZ is orthonormal in the sense of Def. 5.1.17.
In order to prove that these functions form a basis we first show that there is

an orthogonal projection onto the closure of their span. This implies that the span
is orthogonally complemented. The second step will be to see that the complement
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is trivial. Then the claim follows from Prop. 5.1.18.

The system {e±l (x) := v±e2πilx}l∈ZZ,± with v+ := (1, 0), v− := (0, 1) is an
orthonormal basis of L2([0, 1],A2) by Prop. 5.1.18.

We have that

〈fk, e±l 〉 = 1√
2

∫ 1

0

exp((∓ 1
2 log p∗ ∓ πki)x) exp(2πilx) dx

= 1√
2

(

(−1)k exp(∓ 1
2 log p∗)− 1

∓ 1
2 log p∗ + πi(2l ∓ k)

)

,

hence {〈fk, e±l 〉}k∈ZZ ∈ l2(A) for all l ∈ ZZ and for ±. Thus

Pe±l :=
∑

k∈ZZ

fk〈fk, e±l 〉 ∈ L2([0, 1],A2) .

The A-linear extension of P to the algebraic span of the functions e±l has norm
one. It follows that its closure is an orthogonal projection

P : L2([0, 1],A2)→ spanA{fk | k ∈ ZZ} .
It remains to show that the kernel of P is trivial.

Let g = (g1, g2) ∈ L2([0, 1],A2) with 〈fk, g〉 = 0 for all k ∈ ZZ.
Hence for all k ∈ ZZ

(∗)
∫ 1

0

exp((− 1
2 log p∗ − πki)x)g1(x) + exp((1

2 log p∗ + πki)x)g2(x) dx = 0 .

Since exp(− 1
2 (log p∗) x)g1(x) is in L2([0, 1],A), there is a unique {λl}l∈ZZ ∈ l2(A)

such that
∑

l∈ZZ

λle
2πilx = exp(− 1

2 (log p∗) x)g1(x) .

Inserting this in (∗) and evaluating the integral for k even leads to

λk/2 +

∫ 1

0

exp((1
2 log p∗ + πki)x)g2(x)dx = 0 .

It follows that
exp(1

2 (log p∗) x)g2(x) =
∑

l∈ZZ

(−λl)e−2πilx .

Substituting again and evaluating (∗) for k = 2ν + 1 with ν ∈ ZZ we obtain

0 =

∫ 1

0

∑

l∈ZZ

λl(e
πi(2(l−ν)−1)x − e−πi(2(l−ν)−1)x)dx

= −
∑

l∈ZZ

λl
4

πi(2(l − ν)− 1)
.

Note that for every l ∈ ZZ the function

al : ZZ→ C, ν 7→ 2

πi(2(l− ν) − 1)

is in l2(C). We claim that {al}l∈ZZ is an orthonormal basis of l2(C). Then {al}l∈ZZ

is an orthonormal basis of l2(A) as well, thus λl = 0 for all l ∈ ZZ and hence
g1 = g2 = 0.
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The Fourier transform of

a0 : ν 7→ −2

πi(2ν + 1)

is
h(x) = −ie−πix(1[0,1/2](x)− 1]1/2,1](x)) ∈ L2(IR/ZZ) .

Since al(ν) = a0(ν − l), the Fourier transform of al is h(x)e−2πilx.
By hh∗ = 1 the system {h(x)e−2πilx}l∈ZZ is an orthonormal basis of L2(IR/ZZ).

This implies that {al}l∈ZZ is an orthonormal basis of l2(C). �

For general d there is a decomposition of L2([0, 1]A2d) into A-modules of rank
d:

Proposition 2.2.4. For k ∈ ZZ let Uk ⊂ L2([0, 1],A2d) be the right A-module
spanned by the column vectors of

1√
2

(

exp[(− 1
2 log p+ πki)x]

exp[(1
2 log p− πki)x]

)

∈ C∞([0, 1],M2d×d(A∞)) .

Each Uk is a free right A-module of rank d and

L2([0, 1],A2d) =
ˆ⊕

k∈ZZ

Uk .

The sum is orthogonal.
Furthermore Uk ⊂ domDI and for f ∈ Uk

DIf =

(

λk 0
0 λk

)

f ∈ Uk

with λk = − 1
2 i log p− πk.

Proof. The projections P0, P1 ∈M2d(A) are Lagrangian projections onMd(A)2

(see remark after Def. 1.4.2).

Let D̃I be the closure of I0∂ on L2([0, 1],Md(A)2) with domainC∞
R ([0, 1],M2d(A))

with R = (P0, P1). Then D̃I = ⊕dDI with respect to the decomposition as right
Md(A)-modules

L2([0, 1],Md(A)2) = L2([0, 1],A2d)d

induced by the decomposition of a matrix into its column vectors.
By the previous proposition the Hilbert Md(A)-module L2([0, 1],Md(A)2) has

an orthonormal basis {fk}k∈ZZ such that

D̃Ifk =

(

λk 0
0 λk

)

fk .

For k ∈ ZZ let Pk be the orthogonal projection onto the span of fk in L2([0, 1],Md(A)2).
It is diagonal with respect to the decomposition L2([0, 1],Md(A)2) = L2([0, 1],A2d)d.

Hence

L2([0, 1],A2d) =
ˆ⊕

k∈ZZ

PkL
2([0, 1],A2d) .

The assertion follows now since PkL
2([0, 1],A2d) = Uk. The module Uk is free since

exp[(− 1
2 log p+ πki)x] is invertible in Md(A) for all x ∈ [0, 1]. �

Corollary 2.2.5. Let λ ∈ C. The operator DI − λ has a bounded inverse on
L2([0, 1],A2d) if and only if exp(2iλ) /∈ σ(p).
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Proof. By the previous proposition (DI − λ)|Uk
is invertible if and only if

e2iλ /∈ σ(p). Furthermore for λ with e2iλ /∈ σ(p) the inverse of (DI − λ)|Uk
is

uniformly bounded in k. Hence the closure of ⊕k(DI −λ)|Uk
has a bounded inverse

by Cor. 5.1.20. In particular the closure of ⊕kDI |Uk
is selfadjoint. Since DI is

a selfadjoint extension of ⊕kDI |Uk
, it follows that DI is the closure of ⊕kDI |Uk

.
Hence DI − λ has a bounded inverse if exp(2iλ) /∈ σ(p). �

2.3. The operator DZ on the cylinder

Let X = IR, IR/ZZ. Endow X × [0, 1] with the euclidean metric and a spin
structure and let (x1, x2) be the euclidian coordinates ofX×[0, 1]. Let S = S+⊕S−

be the spinor bundle on X × [0, 1] endowed with the Levi-Cività connection and a
parallel metric. Then S ⊗

(

(A+)d ⊕ (A−)d
)

is Dirac bundle on X × [0, 1] with the
A-valued scalar product induced by the hermitian metric on S and the standard
A-valued scalar product on Ad. Let ∂/Z be the associated Dirac operator.

We choose a parallel unit section s of S+ and identify S ⊗
(

(A+)d ⊕ (A−)d
)

with the trivial bundle (X × [0, 1])×
(

(A+)2d ⊕ (A−)2d
)

via the isomorphisms

S+
x ⊗ (A+)d ⊕ S−

x ⊗ (A−)d → (A+)d ⊕ (A+)d ,

(s(x) ⊗ v)⊕ (ic(dx1)s(x) ⊗ w) 7→ (v, w) ,

and

S−
x ⊗ (A+)d ⊕ S+

x ⊗ (A−)d → (A−)d ⊕ (A−)d ,

(ic(dx1)s(x) ⊗ v)⊕ (s(x) ⊗ w) 7→ (v, w) .

for x ∈ X × [0, 1].
Let I := c(dx2)c(dx1) = I0 ⊕ (−I0). Then

∂/Z = c(dx1)(∂x1 + I∂x2) .

Given a pair (P0, P1) of transverse Lagrangian projections ofA2d with Pi ∈M2d(A∞)
we define DZ to be the closure of ∂/Z with domain

{f ∈ C∞
c (X × [0, 1],A4d

∞) | (Pi ⊕ Pi)f(x, i) = f(x, i) for all x ∈ X, i = 0, 1}
on the Hilbert A-module L2(X × [0, 1],A4d).

We write H(DZ) for the Hilbert A-module whose underlying right A-module
is domDZ and whose A-valued scalar product is 〈f, g〉DZ = 〈f, g〉 + 〈DZf,DZg〉
(see §5.1.3).

Proposition 2.3.1. (1) The operator DZ is selfadjoint on L2(X×[0, 1],A4d)
and has a bounded inverse.

(2) If X = IR/ZZ, then the inclusion ι : H(DZ) → L2(IR/ZZ × [0, 1],A4d) is
compact.

Proof. The proof is analogous to the family case [BK].
(1) By Lemma 1.4.3 we may assume P0 = Ps. Recall from Prop. 2.2.4 that the

operator DI with boundary conditions (P0, P1) induces a decomposition

L2([0, 1], (A+)2d) =
ˆ⊕

l∈ZZ

Ul

such that for each l ∈ ZZ there is λl ∈Md(A) with DIf =

(

λl 0
0 λl

)

f for f ∈ Ul.
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We define submodules Ul,+ := Ul and Ul,− := ic(dx1)Ul of L2([0, 1],A4d). Then
⊕

l∈ZZ

(Ul,+ ⊕ Ul,−)L2(X)

is dense in L2(X × [0, 1],A4d).
First consider the case X = IR:
For l ∈ ZZ let ∂l,± be the closure of the unbounded operator (∂x1 ± λl) on

Ul,±L2(IR) with domain Ul,±S(IR) and let ∂e be the closure of c(dx1)
(
⊕

l∈ZZ,± ∂l,±
)

.
The operator DZ is an extension of ∂e.
We claim that ∂e has a bounded inverse on L2(IR× [0, 1],A4d).
The Fourier transform on L2(IR) induces an automorphism on Ul,±L2(IR). Con-

jugation by it transforms ∂l,± into multiplication by

ix1 ±
(

λl 0
0 λl

)

.

Since σ(λl) ⊂ IR∗, we see that the operator ∂l,± has a bounded inverse and the
norm of the inverse tends to zero for l → ±∞. By Cor. 5.1.20 it follows that the
closure of ⊕l,±∂l,± has a bounded inverse.

Hence the operator ∂e has a bounded inverse as well. In particular it is selfad-
joint, thus DZ = ∂e. For X = IR the assertion follows.

If X = IR/ZZ, then the spaces Ul,±L2(IR/ZZ) decompose further into a direct
sum

Ul,±L
2(IR/ZZ) =

ˆ⊕

k∈ZZ

Vkl,±

with Vkl,± := e2πikx1Ul,±. Note that Vkl,± is isomorphic to Ad as a Hilbert A-
module.

Let ∂kl,± ∈ B(Vkl,±) be defined by

∂kl,±f := (∂x1 ± λl)f =

(

2πik ± λl 0
0 2πik ± λl

)

f

and let ∂e be the closure of c(dx1)
(
⊕

k,l,± ∂kl,±
)

.
The operator DZ is an extension of ∂e.
Since |(2πik±λl)−1| tends to zero for k, l→ ±∞, the closure of ⊕kl,±∂kl,± has

a compact inverse by Cor. 5.1.20 and hence ∂e has a compact inverse as well.
Now (1) follows as above.
(2) follows from the compactness of D−1

Z for X = IR/ZZ since ι = D−1
Z DZ :

H(DZ)→ L2(IR/ZZ× [0, 1],A4d). �

2.4. The index of D+

Recall from §2.1.1 that the boundary conditions of D were defined by a triple
R = (P0,P1,P2) . For an open precompact subset U of M we define H1

R0(U,E⊗A)
to be the closure of C∞

Rc(U,E⊗A) in H(D) (see §5.1.3 for the definition of H(D)).
Note that H(D) is isomorphic to l2(A) as a Hilbert A-module, since L2(M,E⊗

A) is isomorphic to l2(A) and since L2(M,E ⊗ A) and H(D) are isomorphic by
Lemma 5.1.10.

Lemma 2.4.1. The inclusion ι : H1
R0(Mr, E ⊗ A) → L2(M,E ⊗ A), r ≥ 0, is

compact.
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Proof. Let V := {Vk}k∈L be an open covering of Mr such that the index set
L is a finite subset of IN with 1 ∈ L and such that:

• V1 = M \ F (r, 1
6 );

• for k > 1 there is an isometry Vk ∼=]0, 1
2 [×[0, 1

5 [. In particular Vk is in the
flat region and has exactly one boundary component.

First we prove that the maps ιk : H1
R0(Vk, E⊗A)→ L2(Vk, E⊗A) are compact

for all k ∈ L.
The compactness of ι1 follows from the Sobolev embedding theorem ([MF],

Lemma 3.3).
For k 6= 1 let i ∈ {0, 1, 2} be such that ∂Vk ⊂ (∂iM ∪∂i+3M) and set Pk := Pi.

Let Dk be the operator DZ on the bundle (IR/ZZ × [0, 1]) × A4d with boundary
conditions given by the pair (Pk, 1− Pk).

The map ιk is compact since it factors through the map H(Dk)→ L2(IR/ZZ×
[0, 1],A4d), which is compact by Prop. 2.3.1.

Let {φk}k∈L be a smooth partition of unity subordinate to the covering V such
that ∂e2φk(x) = 0 for all x ∈ ∂M and k ∈ L . Multiplication with φk is a bounded
map from H1

R0(Mr, E⊗A) to H1
R0(Vk, E⊗A), hence by ι =

∑

k∈L
ιkφk, the inclusion

ι is compact. �

Let H(D)+ be the subspace of H(D) of homogeneous elements of degree zero.

Proposition 2.4.2. The operator

D+ : H(D)+ → L2(M,E− ⊗A)

is a Fredholm operator.

Proof. By constructing a parametrix for D+ we show that D+ is Fredholm
(see Prop. 5.1.4).

The construction of the parametrix is analogous to the construction in the
family case [BK]:

Choose a smooth partition of unity {φk}k∈J subordinate to the covering U(0, 1
4 )

(defined in §1.1) and a system of smooth functions {γk}k∈J on M such that for all
k ∈ J

• supp γk ⊂ Uk and γkφk = φk,
• ∂e2γk(x) = ∂e2φk(x) = 0 for all x ∈ ∂M .

For k ∈ ZZ/6 let DZk
be the operator defined in §2.3 on L2(Zk,A4d) with

boundary conditions given by (Pkmod3,P(k+1)mod 3). By Prop. 2.3.1 it is invertible.
Let

Qk := D−1
Zk

: L2(Zk,A4d)→ H(DZk
) .

Since the symbol ofD is elliptic and since U♣ is precompact, there is a parametrix
Q♣ : L2(U♣, E⊗A)→ H1

0 (U♣, E⊗A) such that γ♣(DQ♣−1)φ♣ resp. γ♣(Q♣D−
1)φ♣ is compact on L2(U♣, E ⊗ A) resp. H1

0 (U♣, E ⊗A) [MF]. Furthermore Q♣
can be chosen to be an odd operator.

We claim that

Q :=
∑

k∈J
γkQkφk : L2(M,E ⊗A)→ H(D)

is a parametrix of D. Then it follows that Q− : L2(M,E− ⊗ A) → H(D)+ is a
parametrix of D+.
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In the following calculations the operators DZk
and the restriction of D to Uk

are denoted by D as well. Let ∼ denote equality up to compact operators.
On L2(M,E ⊗A)

DQ− 1 =
∑

k∈J
[D, γk]Qkφk +

∑

k∈J
γkDQkφk − 1

∼
∑

k∈J
c(dγk)Qkφk .

Since c(dγk)Qkφk is bounded from L2(M,E⊗A) to H1
R0(Mr, E⊗A) with r > 0

big enough, it is a compact operator on L2(M,E⊗A) by the previous lemma. Hence
DQ− 1 is compact.

On H(D)

QD − 1 =
∑

k∈J
γkQk[D,φk] +

∑

k∈J
γkQkDφk − 1

∼
∑

k∈J
γkQkc(dφk) .

Here c(dφk) : H(D) → L2(Uk, E ⊗ A) is a compact operator by the previous
lemma since supp c(dφk) is compact. Moreover γkQk : L2(Uk, E ⊗ A) → H(D) is
bounded, hence QD − 1 : H(D)→ H(D) is compact. �

Lemma 2.4.3. Let P0, P1, P2 : [0, 1] → M2d(A) be continuous paths of La-
grangian projections and assume that P0(t), P1(t), P2(t) are pairwise transverse for
each t ∈ [0, 1]. Let R(t) = (P0(t), P1(t), P2(t)). We define D(t) to be the closure of
∂/E on L2(M,E ⊗A) with domain C∞

R(t)c(M,E ⊗A).

Let indD(t)+ be the index of the Fredholm operator D(t)+ : H(D(t))+ →
L2(M,E ⊗A).

Then

indD(0)+ = indD(1)+ ∈ K0(A) .

Proof. There is a continuous path of unitaries [0, 1] → C∞(M,EndE+ ⊗
A), t 7→Wt, such that WtD(t)+W ∗

t = D+
s +Wtc(dW

∗
t ). The family

D+
s +Wtc(dW

∗
t ) : H(Ds)

+ → L2(M,E− ⊗A)

is a continuous path of Fredholm operators, thus indW0D(0)+W ∗
0 = indW1D(1)+W ∗

1

by Prop. 5.1.7. �

Proposition 2.4.4. The index of D+ : H(D)+ → L2(M,E− ⊗A) is

indD+ = τ(P0,P1,P2) ∈ K0(A) .

Proof. The argument is analogous to the one in [BK].
By Lemma 2.1.2 we may assume P0 = Ps.

Let aj := i
pj+1
pj−1 ∈ M2d(A). Then Pj = P (aj), j = 1, 2, in the notation of

§1.4.2 .
Let p+ := 1{x>0}(a1 − a2).
From Lemma 1.4.8 it follows that

τ(P0,P1,P2) = [p+]− [1− p+] ∈ K0(A)
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and that there are continuous paths P1, P2 : [0, 2]→M2d(A) of Lagrangian projec-
tions with Pj(0) = Pj , j = 1, 2, with P1(2) = P (2p+ − 1) and P2(2) = P (1− 2p+)
and such that Ps, P1(t), P2(t) are pairwise transverse for all t ∈ [0, 2].

For t ∈ [0, 2] let D(t) be the Dirac operator on L2(M,E ⊗A) whose boundary
conditions are given by the triple (Ps, P1(t), P2(t)). The previous lemma implies
that indD(0)+ = indD(2)+.

We show that the index of D(2)+ equals [p+]− [1− p+]:

Let Q0 = 1
2

(

1 1
1 1

)

∈M2(C), Q1 = 1
2

(

1 −i
i 1

)

and Q2 = 1
2

(

1 i
−i 1

)

.

Then

P1(2) = (Q1 ⊗ p+)⊕ (Q2 ⊗ (1 − p+))

and

P2(2) = (Q2 ⊗ p+)⊕ (Q1 ⊗ (1 − p+))

with respect to the decomposition

E+ ⊗A = (S ⊗ p+An)⊕ (S ⊗ (1− p+)An) .

The Dirac operator respects the decomposition. By [BK] the Dirac operator as-
sociated to the bundle S ⊗ (C+ ⊕ C−) has index 1 if the boundary conditions are
given by the triple (Q0, Q1, Q2), and index −1 if they are are given by (Q0, Q2, Q1).
It follows that

indD(2)+ = [p+]− [1− p+] .

�

2.5. A perturbation with closed range

Imitating the construction in [BGV], §9.5, we define a perturbation of D by
a compact operator in order to obtain an operator with closed range. Then we
can express the index of D+ in terms of the kernel and cokernel of the perturbed
operator.

Choose an orthonormal basis {ψi}i∈IN ⊂ L2(M,E−) such that ψi ∈ C∞
c (M,E−)

and suppψi ⊂M \ ∂M for all i ∈ IN. By Prop. 5.1.18 this is an orthonormal basis
of L2(M,E− ⊗A) as well.

SinceD+ is a Fredholm operator, there is a projectiveA-module P ⊂ L2(M,E−⊗
A) and a closed A-module Q ⊂ RanD+ such that P ⊕ Q = L2(M,E− ⊗ A). By
Prop. 5.1.21 there is N ∈ IN such that LN := spanA{ψi | i = 1, . . . ,N} fulfills
LN + P = L2(M,E− ⊗A). In particular it follows that

LN + RanD+ = L2(M,E− ⊗A) .

Let M ′ := M ∪ ∗ be the disjoint union of M and one isolated point. Let E′+

be the hermitian vector bundle E+ ∪ (∗ × CN ) on M ′, where we endow CN with
the standard hermitian product. Let E′− be the hermitian bundle E− ∪ (∗ × {0})
and let E′ = E′+ ⊕ E′−. Extend D by zero to a selfadjoint odd operator D′ on
L2(M ′, E′ ⊗A).

As D is regular, D′ is regular as well.
Furthermore D′ : H(D′)→ L2(M ′, E′ ⊗A) is a Fredholm operator and

indD′+ = indD+ + [AN ] .
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We extend the standard basis of CN by zero to a system {ek}k=1,...,N of sections
of E′+ and define a compact selfadjoint odd operator K on L2(M ′, E′ ⊗A) by

Kf :=
N
∑

k=1

ek〈ψk, f〉+ ψk〈ek, f〉 .

Set D(ρ) := D′ + ρK for ρ ∈ IR. Then

indD(ρ)+ = indD′+ = indD+ + [AN ] .

Furthermore D(ρ) is regular by Prop. 5.1.11.
By construction D(ρ)+ is surjective for ρ 6= 0. Hence by Prop. 5.1.13 and

Prop. 5.1.6 its kernel is a projective submodule of H(D′)+ and the kernel of D(ρ)−

is trivial.
Hence:

Proposition 2.5.1. For ρ ∈ IR the operator D(ρ)+ is a Fredholm operator
with index independent of ρ. For ρ 6= 0

indD+ = indD(ρ)+ − [AN ] = [KerD(ρ)]− [AN ] .

From now on we write D,E,M for D′, E′,M ′ and we extend the operator Ds

by zero to the new manifold M . Furthermore we redefine the open covering U(r, b)
from §1.1 by including the isolated point in the set U♣.



CHAPTER 3

Heat Semigroups and Kernels

3.1. Complex heat kernels

In this section we collect some properties of the heat kernels associated to
the operators DIs and Ds, which were defined in §2.2.1 and §2.1.2, and prove some
technical lemmas for further reference. The results are proved by applying standard
methods of the theory of partial differential equations to the particular geometric
situation. The reader might skip this section at first reading.

3.1.1. The heat kernel of e−tD
2
Is . Since DIs is selfadjoint on L2([0, 1],C2d),

the operator −D2
Is

generates a semigroup e−tD
2
Is on L2([0, 1],C2d). In this section

we determine the corresponding family of integral kernels by using the method of
images (see [Ta], Ch. 3, §7) and study its properties.

The space L2([0, 1],C2d) decomposes into an orthogonal sum

L2([0, 1], PsC
2d)⊕ L2([0, 1], (1− Ps)C2d)

and the semigroup e−tD
2
Is is diagonal with respect to this decomposition.

We define an embedding

˜ : L2([0, 1],C2d)→ L2(IR/4ZZ,C2d)

by requiring that ˜ is a right inverse of the map

L2(IR/4ZZ,C2d)→ L2([0, 1],C2d), f 7→ f |[0,1]
and that the image of L2([0, 1], PsC

2d) resp. L2([0, 1], (1 − Ps)C
2d) consists of

functions that are even resp. odd with respect to y = 0 and y = 2 and odd resp.
even with respect to y = 1 and y = 3.

Then ˜ maps C∞
R ([0, 1],C2d) with R = (Ps, 1− Ps) into C∞(IR/4ZZ,C2d) since

C∞
R ([0, 1],C2d) = C∞

l ([0, 1], PsC
2d)⊕ C∞

r ([0, 1], (1− Ps)C2d) .

Here

C∞
l ([0, 1], PsC

2d)

:= {f ∈ C∞([0, 1], PsC
2d) | (i∂)2kf(1) = 0, (i∂)2k+1f(0) = 0 ∀k ∈ IN0}

and

C∞
r ([0, 1], (1− Ps)C2d)

:= {f ∈ C∞([0, 1], (1− Ps)C2d) | (i∂)2kf(0) = 0, (i∂)2k+1f(1) = 0 ∀k ∈ IN0} .
The scalar heat kernel of et∂

2

on IR/4ZZ is

H(t, x, y) = (4πt)−
1
2

∑

k∈ZZ

e−
(x−y+4k)2

4t .

33
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For f ∈ L2([0, 1], (1− Ps)C2d) and x ∈ [0, 1]

(e−tD
2
Isf)(x) = (et∂

2

f̃)(x)

=

∫ 1

0

H(t, x, y)f(y)dy +

∫ 2

1

H(t, x, y)f(2− y)dy

+

∫ 3

2

H(t, x, y)(−f(y − 2))dy +

∫ 4

3

H(t, x, y)(−f(4− y))dy .

It follows that the action of e−tD
2
Is on the space L2([0, 1], (1− Ps)C2d) is given by

the scalar integral kernel

(x, y) 7→ H(t, x, y) +H(t, x, 2− y)−H(t, x, y + 2)−H(t, x, 4 − y) .
Analogously we conclude that the action of e−tD

2
Is restricted to L2([0, 1], PsC

2d) is
given by the integral kernel

(x, y) 7→ H(t, x, y)−H(t, x, 2− y)−H(t, x, y + 2) +H(t, x, 4 − y) .
This yields the integral kernel kt of e−tD

2
Is .

In the following we write C∞
R ([0, 1],M2d(C)) for the space of functions in

C∞([0, 1],M2d(C)) with column vectors in C∞
R ([0, 1],C2d).

Lemma 3.1.1. The map

(0,∞)→ C∞([0, 1], C∞
R ([0, 1],M2d(C))), t 7→

(

y 7→ kt(·, y)
)

,

is smooth.
For φ, ψ ∈ C∞([0, 1]) with suppφ∩suppψ = ∅ the map t 7→

(

y 7→ φ(·)kt(·, y)ψ(y)
)

can be extended by zero to a smooth map from [0,∞) to C∞([0, 1], C∞
R ([0, 1],M2d(C))).

Proof. This follows from the corresponding properties of H . �

Lemma 3.1.2. Let m,n ∈ IN0. Then there is C > 0 such that for all x, y ∈ [0, 1]
and all t > 0

|∂mx ∂ny kt(x, y)| ≤ C(1 + t−
m+n+1

2 )e−
d(x,y)2

4t .

Proof. The assertion follows from the explicit formula of H above. When
estimating the derivatives we take into account that for all m ∈ IN the function

(x, y, t) 7→ (x−y)2m

tm e−
(x−y)2

4t can be continuously extended by zero to t = 0. �

3.1.2. The heat kernel of e−tD
2
s . The operator Ds is selfadjoint on the

Hilbert space L2(M,E). Hence −D2
s generates a semigroup on L2(M,E). In this

section we prove the existence of the integral kernel of e−tD
2
s and study its proper-

ties.
In parallel we study the semigroup e−tD

2
Z on L2(Z,C4d) where Z = IR × [0, 1]

and DZ is the operator defined in §2.3. Here we assume that the boundary con-
ditions are given by a pair (P0, P1) with P0, P1 ∈ M2d(C). Then DZ is selfadjoint

on L2(Z,C4d). We will compare e−tD
2
s on the cylindric ends with e−tD

2
Z with ap-

propriate boundary conditions in order to get estimates for the integral kernel of

e−tD
2
s .
Since the proofs are standard, they are only sketched here.
Recall that a solution u : IR→ domDs of the initial-value problem

d

dt
u(t) = iDsu(t), u(0) = f
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with f ∈ C∞
Rc(M,E) is unique by an energy estimate. An analogous statement

holds for a solution of the corresponding problem for DZ .

Lemma 3.1.3. If f ∈ C∞
Rc(M,E), then d(x, supp f) ≤ |t| for any x ∈ supp(eitDsf).

An analogous result holds for DZ on L2(Z,C4d).

This property is called “finite propagation speed property”.

Proof. The proof relies on a cutting-and-pasting argument.
For j ∈ ZZ/6 let Vj := {x ∈M | d(x, ∂jM) < 1

4} and let W := M \ ∂M . These
sets define an open covering of M . We show that the finite propagation speed
property holds on these sets for small times. From this we conclude that it holds
on M for all times.

By an oriented isometry we identify Vj with {0 ≤ x2 <
1
4} ⊂ IR2. Recall that

E|Vj was identified with the trivial bundle with fiber C4d in §1.1.
The restriction of ∂/E to Vj extends to a translation invariant differential oper-

ator ∂/IR2 : C∞
c (IR2,C4d)→ L2(IR2,C4d). Let DIR2 be the closure of ∂/IR2 .

We define an embedding

˜ : C∞
Rc(Vj ,C

4d) →֒ C∞
c (IR2,C4d)

intertwining the operators Ds and DIR2 using the method of images similar to
§3.1.1.

Recall that the triple defining the boundary conditions of Ds was denoted by
(Ps0 ,Ps1 ,Ps2). Let

C∞
l (Vj ,Psjmod 3C

2d)

:= {f ∈ C∞
c (Vj ,Psjmod 3C

2d) | (∂2k+1
e2 f)(x) = 0, ∀k ∈ IN0, ∀x ∈ ∂jM}

and

C∞
r (Vj , (1− Psjmod 3)C

2d)

:= {f ∈ C∞
c (Vj , (1 − Psjmod3)C

2d) | (∂2k
e2 f)(x) = 0, ∀k ∈ IN0, ∀x ∈ ∂jM} .

Then C∞
Rc(Vj , E

+) and C∞
Rc(Vj , E

−) decompose into a direct sum

C∞
l (Vj ,Psjmod 3C

2d)⊕ C∞
r (Vj , (1− Psjmod3)C

2d) .

For f ∈ C∞
l (Vj ,Psjmod 3C

2d) resp. f ∈ C∞
r (Vj , (1 − Psjmod 3)C

2d) we define f̃

by first extending f by zero to the half plane {x2 ≥ 0} and then reflecting such

that f̃ is even resp. odd with respect to {x2 = 0}.
For DIR2 the finite propagation speed property holds. Hence the assertion of

the lemma holds for all f ∈ C∞
Rc(Vj , E) with supp f ⊂ {x ∈ M | d(x, ∂jM) < 3

16}
and for |t| < 1

16 .

For f ∈ C∞
c (W,E) with supp f ⊂ {x ∈ M | d(x, ∂M) > 1

16} and for |t| < 1
16

the assertion holds by the standard theory of hyperbolic equations on open subsets
of IR2.

Since every f ∈ C∞
c (M,E) can be written as f = fW + f0 + . . . f5 with fW ∈

C∞
c (W,E) and fj ∈ C∞

Rc(Vj , E), the assertion holds for every f ∈ C∞
c (M,E) and

for |t| < 1
16 , and by the group property of eitDs it follows for all t ∈ IR.

The proof for DZ is analogous. �
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For k ∈ IN0 let Hk(C, Ds) be the Hilbert space whose underlying vector space
is domDk

s and whose scalar product is given by

〈f, g〉Hk := 〈(1 +D2
s)

k
2 f, (1 +D2

s)
k
2 g〉 .

Define Hk(C, DZ) analogously.

Lemma 3.1.4. Let k ∈ IN, k ≥ 2.

(1) There is an embedding Hk(C, DZ)→ Ck−2(Z,C4d).
(2) There is an embedding Hk(C, Ds)→ Ck−2(M,E).

Proof. We sketch the proof of (2), the proof of (1) is analogous.
Let DIR2 be as in the previous proof.
For fixed r > 0 the constants in the G̊arding inequality for the elliptic operator

(1 +D2
IR2)k on balls Br(x), x ∈ IR2, can be chosen independent of x.

For j ∈ ZZ/6 the embedding C∞
Rc(Vj , E) →֒ C∞

c (IR2,C4d) defined in the previous

proof intertwines the Dirac operators Ds on C∞
Rc(Vj , E) and DIR2 on C∞

c (IR2,C4d).
Hence the G̊arding inequality for the operator (1+D2

s)
k on balls B1/8(x) ⊂M with

x ∈ ∂M holds with constants independent of x.
For r > 0 fixed and small enough we can also find global constants for the

G̊arding inequality for (1 +D2
s)
k on balls Br(x) ⊂ M with Br(x) ∩ ∂M = ∅ since

M is of bounded geometry.
Then the assertion follows from the Sobolev embedding theorem. �

Corollary 3.1.5. The operators e−tD
2
Z on L2(Z,C4d) and e−tD

2
s on L2(M,E)

are integral operators with smooth integral kernels.

Proof. This follows from the previous two lemmas (see [Ro], Lemma 5.6). �

Lemma 3.1.6. Let f : [0,∞)× [0,∞) → IR be a function and assume that for
every ε, δ > 0 there is C > 0 such that for all r > ε and t > 0

f(r, t) ≤ Ce−
(r−ε/2)2

(4+δ)t .

Then for all ε, δ > 0 there is C > 0 such that for all r > ε and t > 0

f(r, t) ≤ Ce− r2

(4+δ)t .

Proof. Choose 0 < a < 1 with 1−a
4+δ/2 >

1
4+δ and let m > 2

a .

Then there is C > 0 such that for all r > ε and t > 0

f(r, t) ≤ Ce−
(r−ε/m)2

(4+δ/2)t .

It follows that

f(r, t) ≤ Ce−
(1−a)r2

(4+δ/2)t e
r

(4+δ/2)t (−ar+ 2ε
m )e−

(ε/m)2

(4+δ/2)t

≤ Ce−
r2

(4+δ)t .

In the last step we used the fact that r
(4+δ/2)t (−ar + 2ε

m ) < 0 for r > ε. �

Lemma 3.1.7. Let N be closed manifold resp. let N = M,Z. If N is a closed
manifold, let EN be a Dirac bundle on N and let DN be the associated Dirac
operator. If N = M resp. N = Z, then let EN = E resp. EN = Z × C4d and let

DN = Ds resp. DN = DZ . Let kt be the integral kernel of e−tD
2
N .
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For every ε, δ > 0 there is C > 0 such that for all t > 0, r > ε and x ∈ N
∫

N\Br(x)

|kt(x, y)|2 dy ≤ Ce−
r2

(4+δ)t .

Analogous estimates hold for the partial derivatives in x and y with respect to
unit vector fields on N .

Proof. Let k ∈ 2IN with k > dimN
2 .

Let S(x, ε) := {u ∈ C∞
c (Bε(x), EN ) | ‖(1 +D2

N )−
k
2 u‖ ≤ 1}.

Then by the Sobolev embedding theorem resp. by Lemma 3.1.4 there is C > 0
such that for all x ∈ N , t > 0 and r > ε

∫

N\Br(x)

|kt(x, y)|2 dy ≤ C sup
u∈S(x,ε/2)

‖e−tD2
Nu‖2N\Br(x) .

By a standard argument using the finite propagation speed property of DN (see
the proof of [CGT], Prop. 1.1) it follows that

∫

N\Br(x)

|kt(x, y)|2 dy ≤ Ct−1/2

∞
∫

r−ε/2

|(1 + (
d

ids
)2)k/2e−s

2/4t| ds

= C

∞
∫

r−ε/2√
t

|(1 + t−1(
d

ids′
)2)k/2e−s

′2/4| ds′ .

Thus there is l ∈ IN such that
∫

N\Br(x)

|kt(x, y)|2 dy ≤ C(1 + t−l)

∞
∫

r−ε/2√
t

(1 + s′l)e−s
′2/4 ds′

≤ C(1 + t−l)e−
(r−ε/2)2

(4+δ/2)t

≤ Ce−
(r−ε/2)2

(4+δ)t .

Then the assertion follows by applying the previous lemma to

f(r, t) := sup
x∈N

∫

N\Br(x)

|kt(x, y)|2 dy .

For the derivatives the argument is similar. �

Lemma 3.1.8. Let kt be as in the previous lemma.
For any ε, δ > 0 there is C <∞ such that for all x, y ∈ N with d(x, y) > ε and

all t > 0

|kt(x, y)| ≤ Ce−
d(x,y)2

(4+δ)t .

Analogous estimates hold for the partial derivatives in x and y with respect to unit
vector fields on N .

Proof. Let S(y, ε) and k ∈ 2IN be as in the proof of the previous lemma. By
the Sobolev embedding theorem resp. Lemma 3.1.4 there is C > 0 such that for all
r > ε, t > 0 and all x, y ∈ N with d(x, y) ≥ r

|kt(x, y)| ≤ C sup
u∈S(y,ε/4)

‖(1 +D2
N )

k
2 e−tD

2
Nu‖2N\Br−ε/4(y)

.
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As in the proof of the previous lemma this implies

|kt(x, y)| ≤ Ce−
(r−ε/2)2

(4+δ)t .

Then the assertion follows from Lemma 3.1.6 with f(r, t) := sup
x,y∈N : d(x,y)=r

|kt(x, y)|.

For the derivatives the argument is similar. �

For the next lemma assume that U ⊂ M is an open set for which one of the
following properties holds:

(1) U is precompact and U ∩ ∂M = ∅,
(2) there is k ∈ ZZ/6 such that U ⊂ Fk(0, 1

4 ).

In the first case there is a closed manifold N and a Dirac bundle EN on N
such that there is a Dirac bundle isomorphism E|U → EN whose base map is an
isometry. We identify E|U with its image in EN . Then Ds coincides with DN on
U .

In the second case U is a subset of Zk by §1.1. Let DZk
be the operator DZ

on Zk × C4d with boundary conditions given by (Pkmod3,P(k+1)mod 3). Then Ds

coincides with DZk
on U .

Lemma 3.1.9. Let U be as in (1) resp. (2). Let kt be the integral kernel of the
heat semigroup of Ds on M and let k′t be the integral kernel of the heat semigroup
of DN resp. DZk

.
For every T > 0 and ε, δ > 0 there is C > 0 such that for all 0 < t < T, r > ε

and x, y ∈ U with Br(x), Br(y) ⊂ U

|kt(x, y)− k′t(x, y)| ≤ Ce−
r2

(4+δ)t .

Analogous estimates hold for the partial derivatives with respect to unit vector fields
on U .

Proof. The notation is as in the proof of Lemma 3.1.7.
The estimate follows from

|kt(x, y)− k′t(x, y)| = sup
φ∈S(x,ε)

sup
ψ∈S(y,ε/2)

|〈φ, e−tD2
sψ〉 − 〈φ, e−tD2

Nψ〉|

≤ Ct−
1
2 sup
φ∈S(x,ε)

sup
ψ∈S(y,ε/2)

|〈φ,
∫

IR

e−s
2/4t(eisDs − eisDN )ψ〉|

≤ Ct−
1
2

∞
∫

r−ε/2

|(1 + (
d

ids
)2)ke−s

2/4t| .

Here we used that (eisDs − eisDN )ψ = 0 for |s| ≤ r − ε/2 by the finite propaga-
tion speed property (Lemma 3.1.3) and the uniqueness of solutions of hyperbolic
equations. �

3.2. The heat semigroup on closed manifolds

Let B be a Banach algebra with unit.
Let N be a closed manifold of dimension n. Let EN be a Dirac bundle on N

and let DN be the associated Dirac operator. For simplicity (we will only need this
case) assume that EN is trivial as a vector bundle.



3.2. THE HEAT SEMIGROUP ON CLOSED MANIFOLDS 39

By Cor. 5.2.4 the associated heat kernel defines a family of bounded operators
on L2(N,EN ⊗ B). The operators are smoothing, thus they restrict to a family of
bounded operators on Cm(N,EN ⊗ B) for any m ∈ IN0. In order to show that the
family extends to a holomorphic semigroup we have to study its behavior for small
times.

By Lemma 5.2.10 we can define −D2
N as a closed operator on L2(N,EN ⊗ B)

by requiring that C∞(N,EN ⊗ B) is a core of −D2
N .

For t → 0 the heat kernel kt ∈ C∞(N × N,EN ⊠ EN ) can be estimated as
follows:

Lemma 3.2.1. Let ε > 0 be smaller than the injectivity radius of N and let
χ : [0,∞)→ [0, 1] be a smooth monotonously decreasing function such that χ(r) = 1
for r ≤ ε/2 and χ(r) = 0 for r ≥ ε.

Let A be a differential operator of order m on C∞(N,EN ).
Then there is C > 0 such that for all x, y ∈ N and for all t > 0

|Axkt(x, y)| ≤ C + Ct−(n+m)/2e−d(x,y)
2/4tχ(d(x, y))

m
∑

i=0

d(x, y)it−
i
2 .

Proof. This follows from [BGV], Prop. 2.46, and its proof. �

Proposition 3.2.2. Let A be a differential operator of order m on C∞(N,EN⊗
B). Then there is C > 0 such that the action of the integral kernel Axkt(x, y) on
L2(N,EN ⊗ B) is bounded by C(1 + t−m/2) for all t > 0.

Proof. Choose a finite open covering {Uν}ν∈I of N of normal coordinate
patches and assume that for every x, y ∈ Uν the shortest geodesic connecting x and
y is in Uν .

Then there are c1, c2 > 0 such that for all ν ∈ I and all x, y ∈ Uν
c1|x− y|ν ≤ d(x, y) ≤ c2|x− y|ν ,

where | · |ν denotes the euclidian distance on Uν defined by the coordinates.
Let {φν}ν∈I be a partition of unity subordinate to the covering {Uν}ν∈I .
Let ε > 0 be smaller than the injectivity radius of N and such that {x ∈

N | d(x, suppφν) ≤ ε} ⊂ Uν for every ν ∈ I. Let χ be as in the previous lemma.
Then

φν(x)χ(d(x, y)) ≤ φν(x)χ(c1|x− y|ν)1Uν (y) .

By the previous lemma there is C > 0 such that for all x, y ∈ N and t > 0 the term
|Axkt(x, y)| is bounded by

C + Ct−(n+m)/2
∑

ν∈J
φν(x)

(

e−c
2
1|x−y|2ν/4tχ(c1|x− y|ν)

m
∑

i=0

ci2|x− y|iνt−
i
2

)

1Uν (y) .

The ν-th term of the outer sum is supported on Uν ×Uν . In the coordinates of Uν
it is of the form φν(x)ft(x − y)1Uν (y) with ft ∈ L1(IRn), and there is C > 0 such
that

‖ft‖L1 ≤ Ctn/2

for all t > 0.
The assertion follows now from Prop. 5.2.3 and Cor. 5.2.5. �
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Proposition 3.2.3. (1) The family of integral kernels kt(x, y) defines a
bounded strongly continuous semigroup on L2(N,EN ⊗B), which extends
to a bounded holomorphic semigroup. Its generator is −D2

N .
(2) The family of integral kernels kt(x, y) defines a bounded strongly continu-

ous semigroup on Cm(N,EN ⊗ B) for every m ∈ IN0.

Proof. (1) By the previous proposition the action of the integral kernel kt(x, y)
on L2(N,EN ⊗B) is uniformly bounded for t > 0. On L2(N,EN )⊙B it converges
strongly to the identity. Thus kt(x, y) induces a bounded strongly continuous semi-
group on L2(N,EN ⊗ B).

On C∞(N,EN ⊗ B) the action of the generator coincides with the action
of −D2

N . Since C∞(N,EN ⊗ B) is invariant under the semigroup and dense in
L2(N,EN ⊗ B), it is a core for the generator. Hence the generator is −D2

N .
By the previous proposition there is C > 0 such that on L2(N,EN ⊗B) for all

0 < t < 1

‖D2
Ne

−tD2
N ‖ < Ct−1 .

Since Ran e−tD
2
N ⊂ C∞(N,EN ⊗B) ⊂ domD2

N for t > 0, it follows, by Prop. 5.4.3,

that e−tD
2
N extends to a holomorphic semigroup.

The integral kernel of D2
Ne

−tD2
N is exponentially decaying in the supremum

norm for t → ∞, hence D2
Ne

−tD2
N is exponentially decaying as an operator on

L2(N,EN ⊗ B).
By Prop. 5.4.3 this shows that the holomorphic extension is bounded.
(2) follows from the fact that kt(x, y) defines a strongly continuous bounded

semigroup on Cm(N,EN ) by [BGV], Th. 2.30, and that Cm(N,EN ⊗ B) ∼=
Cm(N,EN )⊗ε B. �

It can be deduced from the asymptotic expansion of the heat kernel ([BGV],

Th. 2.30) that e−tD
2
N extends even to a holomorphic semigroup on Cm(N,EN ⊗B)

– we do not need this fact in the following.

3.3. The heat semigroup on [0, 1]

3.3.1. The semigroup e−tD
2
I . Let (P0, P1) be a pair of transverse Lagrangian

projections ofA2d with P0, P1 ∈M2d(A∞). By Lemma 5.2.10 the operator I0∂ with

domain C∞
R ([0, 1], (Ω̂≤µAi)2d) is closable on L2([0, 1], (Ω̂≤µAi)2d). In order to avoid

indices its closure is denoted by DI (compare with the operator DI from §2.2.1).
Let U ∈ M2d(A∞) be a unitary with UI0 = I0U and UP0U

∗ = Ps and let
p ∈Md(A∞) be such that

UP1U
∗ = 1

2

(

1 p∗

p 1

)

.

The unitaries U and p exist by Lemma 1.4.3.

Proposition 3.3.1. Let λ ∈ C with exp(2iλ) /∈ σ(p).

(1) The operator DI − λ has a bounded inverse on L2([0, 1], (Ω̂≤µAi)2d).
(2) The inverse (DI − λ)−1 maps ClR([0, 1], (Ω̂≤µAi)2d) isomorphically to

Cl+1
R ([0, 1], (Ω̂≤µAi)2d) for any l ∈ IN0.

(3) The inverse (DI − λ)−1 maps L2([0, 1], (Ω̂≤µAi)2d) continuously to

C([0, 1], (Ω̂≤µAi)2d).
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Proof. The inverse of DI − λ is given by

((DI − λ)−1f)(x) =

∫ x

0

I0e
−I0λ(x−y)f(y) dy +

∫ 1

0

e−I0λ(x−y)A(y)f(y) dy

with

A(y) = U∗ i

e2iλ − p

(

p e2iλ(1−y)

pe2iλy e2iλ

)

U .

It is straightforward to check that this map fulfills (1), (2) and (3). �

We define DI as an unbounded operator on ClR([0, 1], (Ω̂≤µAi)2d), l ∈ IN0,

by setting domDI := Cl+1
R ([0, 1], (Ω̂≤µAi)2d). By the previous proposition DI is a

closed operator on ClR([0, 1], (Ω̂≤µAi)2d).
As before DIs denotes DI with R = (Ps, 1− Ps).
We show that −D2

I generates a holomorphic semigroup on L2([0, 1], (Ω̂≤µAi)2d)
and onClR([0, 1], (Ω̂≤µAi)2d). This will be done by first proving that−D2

Is
generates

a holomorphic semigroup and by then applying Prop. 5.4.10.

Moreover we will deduce a norm estimate of the semigroup e−tD
2
I for large t

from the knowledge of the resolvent set of −D2
I .

We will use the same method again when we study the heat semigroup on M .

Lemma 3.3.2. Assume that R = (Ps, 1− Ps).
The operator −D2

Is
is the generator of a bounded holomorphic semigroup e−tD

2
Is

on L2([0, 1], (Ω̂≤µAi)2d) and on ClR([0, 1], (Ω̂≤µAi)2d) for any l ∈ IN0.

Proof. Let kt be the integral kernel of e−tD
2
Is (see §3.1.1) and let S(t) be the

induced integral operator.
By Lemma 3.1.2 and Prop. 5.2.3 the family S(t) is uniformly bounded on

L2([0, 1], (Ω̂≤µAi)2d) for t > 0 and the family D2
Is
S(t) is bounded by C(1+t−1)e−ωt

for some C, ω > 0 and all t > 0.
Since S(t) converges strongly to the identity on L2([0, 1],C2d) ⊙ Ω̂≤µAi for

t → 0 and has the semigroup property, it is a strongly continuous semigroup on
L2([0, 1], (Ω̂≤µAi)2d). By Prop. 5.4.3 it extends to a bounded holomorphic semi-

group on L2([0, 1], (Ω̂≤µAi)2d).
The kernel H from §3.1.1 defines a bounded holomorphic semigroup on

Ck(IR/4ZZ, (Ω̂≤µAi)2d) as well by §5.2.1. This implies that S(t) restricts to a

bounded holomorphic semigroup on CkR([0, 1], (Ω̂≤µAi)2d). In particular it follows

that C∞
R ([0, 1], (Ω̂≤µAi)2d) is a core of the generator of S(t). Thus the generator is

−D2
Is

. �

Proposition 3.3.3. The operator −D2
I generates a holomorphic semigroup

e−tD
2
I on L2([0, 1], (Ω̂≤µAi)2d) as well as on CkR([0, 1], (Ω̂≤µAi)2d) for all k ∈ IN0,

and there are C, ω > 0 such that for all t ≥ 0

‖e−tD2
I‖ ≤ Ce−ωt

on L2([0, 1], (Ω̂≤µAi)2d) and on CkR([0, 1], (Ω̂≤µAi)2d).
Proof. The following arguments hold on L2([0, 1], (Ω̂≤µAi)2d) as well as on

CkR([0, 1], (Ω̂≤µAi)2d):
The operator DI − U∗DIsU is bounded by Prop. 2.2.2. Since U∗DIsU has a

bounded inverse by Prop. 3.3.1 and −U∗D2
Is
U generates a bounded holomorphic
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semigroup by the previous lemma, we can apply Prop. 5.4.10. It follows that −D2
I

generates a holomorphic semigroup.
By Prop. 3.3.1 there is ω > 0 such that the spectrum of D2

I is a subset of

]ω,∞[. Hence by Prop. 5.4.2 there is C > 0 with ‖e−tD2
I‖ ≤ Ce−ωt . �

3.3.2. The integral kernel. In this section we prove the existence of the

heat kernel for e−tD
2
I . By cutting and pasting we construct an approximation of

the semigroup e−tD
2
I by integral operators. Using Duhamel’s principle (see Prop.

5.4.5) we prove that the error term is an integral operator as well. At the same

time we obtain estimates for the integral kernel of e−tD
2
I .

The same method will be used later in order to study the heat kernel on M
(see §3.5.1) and the heat kernel associated to the superconnection (see §4.3.2).

Let R = (P0, P1) be the boundary conditions of DI .
Let DI0 resp. DI1 be defined as DI with boundary conditions given by (P0, 1−

P0) resp. (1 − P1, P1).

From Lemma 1.4.3 and §3.1.1 it follows that e−tD
2
Ik , k = 0, 1, is an integral

operator for t > 0. Its integral kernel is denoted by ekt (x, y).
Let φ0 : [0, 1]→ [0, 1] be a smooth function with suppφ0 ⊂ [0, 2

3 [ and supp(1−
φ0) ⊂] 13 , 1] and let φ1 := (1 − φ0). Furthermore choose smooth functions γ0, γ1 :
[0, 1]→ [0, 1] with

• γk|suppφk
= 1, k = 0, 1,

• supp γ′k ∩ suppφk = ∅, k = 0, 1,
• supp γ0 ⊂ [0, 5

6 ] and supp γ1 ⊂ [16 , 1].

Write Et for the integral operator corresponding to the integral kernel

et(x, y) := γ0(x)e
0
t (x, y)φ0(y) + γ1(x)e

1
t (x, y)φ1(y) .

Set E0 := 1.
Then Et is strongly continuous on L2([0, 1], (Ω̂≤µAi)2d) as well as on

ClR([0, 1], (Ω̂≤µAi)2d) at any t ≥ 0.

For f ∈ C∞
R ([0, 1], (Ω̂≤µAi)2d) the map [0,∞) → L2([0, 1], (Ω̂≤µAi)2d), t 7→

Etf is even differentiable. Hence by Duhamel’s principle (Prop. 5.4.5) we have for

f ∈ C∞
R ([0, 1], (Ω̂≤µAi)2d) in L2([0, 1], (Ω̂≤µAi)2d):

(∗) e−tD
2
If − Etf = −

∫ t

0

e−sD
2
I (
d

dt
+D2

I)Et−sf ds .

In the following the norm on M2d(Ai) is denoted by | · |.
We define CkR([0, 1],M2d(Ω̂≤µAi)), k ∈ IN0 ∪ {∞}, as the space of functions in

Ck([0, 1],M2d(Ω̂≤µAi)) whose column vectors are in CkR([0, 1], (Ω̂≤µAi)2d). Then

any bounded operator on CkR([0, 1], (Ω̂≤µAi)2d) acts as a bounded operator on

CkR([0, 1],M2d(Ω̂≤µAi)) in an obvious way.

Proposition 3.3.4. For t > 0 the operator e−tD
2
I is an integral operator. Let

kt be its integral kernel.

(1) The map

(0,∞)→ C∞([0, 1], C∞
R ([0, 1],M2d(A∞))), t 7→

(

y 7→ kt(·, y)
)

is well-defined and smooth.
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(2) kt(x, y) = kt(y, x)
∗.

(3) For every m,n ∈ IN0 and every δ > 0 there is C > 0 such that

|∂mx ∂ny kt(x, y)− ∂mx ∂ny et(x, y)| ≤ Ct
∑

k=0,1

e−
d(y,supp γ′

k)2

(4+δ)t 1suppφk
(y)

for all t > 0 and all x, y ∈ [0, 1].

Proof. Let f ∈ C∞
R ([0, 1], (Ω̂≤µAi)2d). From (∗) it follows that

e−tD
2
If − Etf =

∑

k=0,1

∫ t

0

∫ 1

0

e−sD
2
I (γ′k∂ + ∂γ′k)e

k
t−s(·, y)φk(y)f(y) dyds .

By Lemma 3.1.1 we can extend the map

t 7→
(

y 7→ (γ′k∂ + ∂γ′k)e
k
t (·, y)φk(y)

)

by zero to a smooth map from [0,∞) to C∞([0, 1], C∞
R ([0, 1],M2d(Ai)).

Since e−sD
2
I acts as a uniformly bounded operator on C∞

R ([0, 1],M2d(Ai)) by
Lemma 3.1.1, it follows that the operator on the right hand side is an integral
operator with smooth integral kernel.

Hence e−tD
2
I is an integral operator with smooth integral kernel and (1) holds.

The selfadjointness of e−tD
2
I implies (2).

Since d(suppφk, supp γ′k) > ε for some ε > 0, there is C > 0, by Lemma 3.1.2,
such that for all x, y ∈ [0, 1] and t > 0

|∂mx ∂ny
(

kt(x, y)− et(x, y)
)

|

≤ C
∑

k=0,1

∫ t

0

‖e−sD2
I (γ′k∂ + ∂γ′k)∂

n
y

(

ekt−s(·, y)φk(y)
)

‖Cm ds 1suppφk
(y)

≤ C
∑

k=0,1

∫ t

0

e−
d(y,supp γ′

k)2

(4+δ)(t−s) ds 1suppφk
(y)

≤ C
∑

k=0,1

te−
d(y,supp γ′

k)2

(4+δ)t 1suppφk
(y) .

This shows statement (3). �

Corollary 3.3.5. Let kt(x, y) be the integral kernel of e−tD
2
I .

For every m,n ∈ IN0 and δ, ε > 0 we find C > 0 such that for all x, y ∈ [0, 1]
with d(x, y) > ε and t > 0

|∂mx ∂ny kt(x, y)| ≤ Ce−
d(x,y)2

(4+δ)t + Ct
∑

k=0,1

e−
d(y,supp γ′

k)2

(4+δ)t 1suppφk
(y) .

Proof. This follows from the previous proposition and Lemma 3.1.2. �

Corollary 3.3.6. Let kt(x, y) be the integral kernel of e−tD
2
I .

Let ω be as in Prop. 3.3.3. For every m,n ∈ IN0 there is C > 0 such that for
any t > 0 and any x, y ∈ [0, 1]

|∂mx ∂ny kt(x, y)| ≤ C(1 + t−
m+n+1

2 )e−ωt .
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Proof. There is C > 0 such that for all x, y ∈ [0, 1] and all 0 < t < 1

|∂mx ∂ny kt(x, y)− ∂mx ∂ny et(x, y)| ≤ Ct
∑

k=0,1

e−
d(y,supp γ′

k)2

5t 1suppφk
(y) ,

hence, by Lemma 3.1.2,

|∂mx ∂ny kt(x, y)| ≤ C(1 + t−
m+n+1

2 ) .

For all t > 1 and y ∈ [0, 1]

kt(·, y) = e−(t−1)D2
Ik1(·, y) .

The assertion follows now since (y 7→ k1(·, y)) ∈ Cn([0, 1], CmR ([0, 1],M2d(Ai))) and

since by Prop. 3.3.3 the action of e−(t−1)D2
I on CmR ([0, 1],M2d(Ai)) is bounded by

Ce−ωt for some C, ω > 0 and every t > 1. �

The following facts will be needed for the definition of the η-form.

Lemma 3.3.7. Let kt be the integral kernel of e−tD
2
Is .

Then for all x, y ∈ [0, 1] and t > 0

tr(DIs)xkt(x, y) = 0.

Proof. Let S := 2Ps − 1 ∈ Gl2d(C). Then S2 = 1, SI + IS = 0, SPs = Ps
and S(1− Ps) = −(1− Ps).

This implies SDIse
−tD2

Is +DIse
−tD2

IsS = 0. Therefore

S(DIs)xkt(x, y) + (DIs)xkt(x, y)S = 0 ,

hence

tr(DIs)xkt(x, y) = tr(−S(DIs)xkt(x, y)S) = − tr(DIs)xkt(x, y) .

It follows that tr(DIs)xkt(x, y) = 0. �

Corollary 3.3.8. Let (DIkt) be the integral kernel of DIe
−tD2

I . We have,
uniformly on [0, 1]:

lim
t→0

tr(DIkt)(x, x) = 0 .

Proof. By the previous lemma tr(DI)xet(x, y) = 0 for all x, y ∈ [0, 1]. Then
the assertion follows from the estimate in Prop. 3.3.4. �

3.4. The heat semigroup on the cylinder

Let Z = IR× [0, 1].
Let R = (P0, P1) be a pair of pairwise transverse Lagrangian projections of A2d

with P0, P1 ∈M2d(A∞).
In this section we study the action of DZ as an unbounded operator on

L2(Z, (Ω̂≤µAi)4d). If not specified the notation is as in §2.3.

First we define the following function spaces and operators:
For k ∈ IN0 ∪ {∞} let

CkR(Z, (Ω̂≤µAi)4d)
:= {f ∈ Ck(Z, (Ω̂≤µAi)4d) | (Pi ⊕ Pi)(∂/lZf)(x, i) = f(x, i)

for x ∈ IR; i = 0, 1; l ∈ IN0, l ≤ k} .
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Further suffixes, like c or 0 . . . , have their usual meaning.
We endow these spaces with the subspace topologies.
For a Fréchet space V we define the Schwartz space

S(Z, V ) := S(IR)⊗ C∞([0, 1], V ) .

Moreover let SR(Z, (Ω̂≤µAi)4d) be S(Z, (Ω̂≤µAi)4d) ∩C∞
R (Z, (Ω̂≤µAi)4d) as a vec-

tor space with the topology induced by S(Z, (Ω̂≤µAi)4d).

Let DZ as an unbounded operator on L2(Z, (Ω̂≤µAi)4d) be the closure of ∂/Z
with domain SR(Z, (Ω̂≤µAi)4d). The existence of the closure follows from Lemma
5.2.10.

Since at the moment it is not clear whether D2
Z is closed on L2(Z, (Ω̂≤µAi)4d),

we define ∆ as the closure of ∂/2
Z = −∂2

x1
− ∂2

x2
with domain SR(Z, (Ω̂≤µAi)4d).

Let ∆IR be the closure of −∂2
x1

with domain SR(Z, (Ω̂≤µAi)4d).

Let D̃I be the closure of I∂x2 as an unbounded operator on L2(Z, (Ω̂≤µAi)4d)
with domain SR(Z, (Ω̂≤µAi)4d).

By Prop. 3.3.1 the operator DI has a bounded inverse on L2([0, 1], (Ω̂≤µAi)2d).
By Lemma 5.2.2 the space L2(Z, (Ω̂≤µAi)4d) can be identified with

L2(IR, L2([0, 1], (Ω̂≤µAi)4d)), hence D̃I has a bounded inverse on L2(Z, (Ω̂≤µAi)4d).
It follows that −D̃2

I is closed.

By an analogous argument −D̃2
I generates a bounded holomorphic semigroup

on L2(Z, (Ω̂≤µAi)4d) with integral kernel kIt (x2, y2)⊕ kIt (x2, y2) for t > 0. Here kIt
is the integral kernel of e−tD

2
I , which exists by Prop. 3.3.4.

Furthermore we have a natural candidate for the integral kernel of a semigroup
generated by −∆, namely

kZt (x, y) :=
1√
4πt

e−
(x1−y1)2

4t (kIt (x2, y2)⊕ kIt (x2, y2)) .

In the following let ω > 0 be as in Prop. 3.3.3 such that

‖e−tD̃2
I‖ ≤ Ce−ωt

on L2(Z, (Ω̂≤µAi)4d) for all t ≥ 0.

Proposition 3.4.1. (1) The integral kernel kZt (x, y) defines a holomor-

phic semigroup on L2(Z, (Ω̂≤µAi)4d) with generator −∆.
(2) For every m ∈ IN0 the integral kernel kZt (x, y) defines a holomorphic semi-

group on CmR (Z, (Ω̂≤µAi)4d), denoted by e−t∆ as well.
(3) Let A be a differential operator of order m with coefficients in

C∞(Z,M4d(Ω̂≤µAi)). Then for the operator Ae−t∆ on L2(Z, (Ω̂≤µAi)4d)
as well as for Ae−t∆ : CnR(Z, (Ω̂≤µAi)4d) → Cn(Z, (Ω̂≤µAi)4d), n ∈ IN0,
we have:

There is C > 0 such that for all t > 0

‖Ae−t∆‖ ≤ C(1 + t−m/2)e−ωt .
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Proof. (1) By Prop. 5.2.3 the kernel 1√
4πt

e−
(x1−y1)2

4t defines a uniformly

bounded family of operators on L2(Z, (Ω̂≤µAi)4d). Since it converges strongly to

the identity on L2(Z)⊙ (Ω̂≤µAi)4d for t→ 0, it is a strongly continuous semigroup.

The space SR(Z, (Ω̂≤µAi)4d) is invariant under the action of the semigroup and the
action of the generator on that space is given by ∂2

x2
. Hence the generator is −∆IR.

By checking the assumptions of Prop. 5.4.3 we show that the semigroup e−t∆IR

extends to a holomorphic one:
The operator (i∂x1)e

−t∆IR equals the convolution with the function

g(x1) :=
−i√
4πt

(x1

2t

)

e−x
2
1/4t .

Since there is C > 0 such that for 0 < t < 1

‖g‖L1 ≤ Ct−1/2 ,

it follows that

‖(i∂x1)e
−t∆IR‖ ≤ Ct−1/2

on L2(Z, (Ω̂≤µAi)4d), thus for 0 < t < 1

‖∆IRe
−t∆IR‖ ≤ ‖(i∂x1)e

−(t/2)∆IR‖2 ≤ Ct−1 .

Hence −∆IR generates a holomorphic semigroup on L2(Z, (Ω̂≤µAi)4d).
Note that this estimate also holds on CR(Z, (Ω̂≤µAi)4d) showing that e−t∆IR is

a holomorphic semigroup on CR(Z, (Ω̂≤µAi)4d) as well.

Since the semigroups e−t∆IR and e−tD̃
2
I commute with each other, their compo-

sition is a holomorphic semigroup. The space SR(Z, (Ω̂≤µAi)4d) is invariant under
the action of the semigroup and the generator acts on it as ∂2

x1
+ ∂2

x2
. Thus the

generator is −∆.
(2) Since for f ∈ CnR(Z, (Ω̂≤µAi)4d), n ∈ IN, we have that (i∂x1)e

−t∆f =

e−t∆(i∂x1)f and D̃Ie
−t∆f = e−t∆D̃If , the assertion can be reduced to the case

n = 0.
From Prop. 3.3.3 it follows that the action of the integral kernel kIt (x2, y2) ⊕

kIt (x2, y2) on CR(Z, (Ω̂≤µAi)4d) extends to a holomorphic semigroup. Furthermore

in (1) we showed that the integral kernel 1√
4πt

e−
(x1−y1)2

4t defines a holomorphic

semigroup on CR(Z, (Ω̂≤µAi)4d). Hence the kernel kZt (x, y) defines a semigroup on

CR(Z, (Ω̂≤µAi)4d) that extends to a holomorphic one.
(3) We can restrict to the case n = 0 by the argument in the proof of (2).
In the following the operator norms can be understood with respect to the ac-

tion on L2(Z, (Ω̂≤µAi)4d) as well as with respect to the action on CR(Z, (Ω̂≤µAi)4d).
The differential operator A is a sum of operators ahkD̃

h
I (i∂x1)

k with ahk ∈
C∞(Z,M4d(Ω̂≤µAi)) and h+ k ≤ m. We have

D̃h
I (i∂x1)

ke−t∆ = D̃h
I e

−tD̃2
I (i∂x1)

ke−t∆IR .

By Cor. 5.4.9 there is C > 0 such that for 0 < t

‖D̃h
I e

−tD̃2
I‖ ≤ Ct−h/2e−ωt .

By the estimate in the proof of (1)

‖(i∂x1)
ke−t∆IR‖ ≤ ‖(i∂x1)e

−(t/k)∆IR‖k ≤ Ct−k/2
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for 0 < t < 1.
Now the assertion follows by taking into account that e−t∆IR is uniformly

bounded. �

Corollary 3.4.2. Let λ ∈ C with Reλ2 < ω.

(1) The operator DZ − λ is invertible on SR(Z, (Ω̂≤µAi)4d).
(2) The operator DZ − λ is invertible on L2(Z, (Ω̂≤µAi)4d).
(3) ∆ = D2

Z .

Proof. (1) For any seminorm p of SR(Z, (Ω̂≤µAi)4d) there are C > 0, n ∈ IN

and a seminorm q such that p(e−t∆IRf) ≤ C(1+tn)q(f) and p(e−tD̃
2
I f) ≤ Ce−ωtq(f)

for all f ∈ SR(Z, (Ω̂≤µAi)4d). Hence e−t∆ restricts to a bounded operator on

SR(Z, (Ω̂≤µAi)4d), and the integral

G(λ) =

∫ ∞

0

(DZ + λ)e−t(∆−λ2)fdt

defines a bounded operator on SR(Z, (Ω̂≤µAi)4d) inverting DZ − λ.
(2) The operator G(λ) extends to a bounded operator on L2(Z, (Ω̂≤µAi)4d)

since by the previous proposition there is C > 0 such that on L2(Z, (Ω̂≤µAi)4d)

‖(DZ + λ)e−t(∆−λ2)‖ ≤ C(1 + t−
1
2 )e−(ω−Reλ2)t

for all t > 0.
From (1) it follows that G(λ) inverts DZ − λ on L2(Z, (Ω̂≤µAi)4d).
(3) From (2) it follows that the operator D2

Z is closed, and from (1) that

SR(Z, (Ω̂≤µAi)4d) is a core for D2
Z . Hence the closure of D2

Z equals ∆. �

Proposition 3.4.3. Let λ ∈ C with Reλ < ω.

(1) The operator (D2
Z − λ)−1 maps L2(Z, (Ω̂≤µAi)4d) continuously to

C(Z, (Ω̂≤µAi)4d).
(2) Let n ∈ IN, n ≥ 2. The operator (D2

Z − λ)−n maps L2(Z, (Ω̂≤µAi)4d)
continuously to C2n−3(Z, (Ω̂≤µAi)4d).

Proof. (1) For Reλ < ω we have on L2(Z, (Ω̂≤µAi)4d):

(D2
Z − λ)−1 =

∫ ∞

0

e−t(D
2
Z−λ)dt

=

∫ ∞

0

eλte−t∆
2
IRe−tD̃

2
Idt .

By Prop. 3.3.1 the operator D−1
I : L2([0, 1], (Ω̂≤µAi)2d) → C([0, 1], (Ω̂≤µAi)2d) is

bounded. Thus the family of operators

e−tD̃
2
I = D̃−1

I D̃Ie
−tD̃2

I : L2(Z, (Ω̂≤µAi)4d)→ L2(IR, C([0, 1], (Ω̂≤µAi)4d))
is bounded by C(1 + t−

1
2 )e−ωt for all t > 0.

Furthermore the family

e−t∆IR : L2(IR, C([0, 1], (Ω̂≤µAi)4d))→ C(IR, C([0, 1], (Ω̂≤µAi)4d))

is bounded by sup
x1∈IR

‖ 1√
4πt

e−
(x1−y1)2

4t ‖L2
y1

, hence by Ct−1/4 for some C > 0.
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Thus the integral converges as a bounded operator from L2(Z, (Ω̂≤µAi)4d) to

C(Z, (Ω̂≤µAi)4d).
(2) We show that for any k ∈ IN0 with k ≤ 2n− 1 the map

D̃k
I (i∂x1)

2n−1−k(D2
Z − λ)−n : SR(Z, (Ω̂≤µAi)4d)→ L2(Z, (Ω̂≤µAi)4d)

extends to a bounded operator on L2(Z, (Ω̂≤µAi)4d). Then the assertion follows
from the first part.

We have for k ∈ IN0 with k ≤ 2n+ 1

D̃k
I (i∂x1)

2n−k+1(D2
Z − λ)−n−1

=

∫ ∞

0

tn−1D̃k
I (i∂x1)

2n−k+1e−t(D
2
Z−λ) dt

=

∫ ∞

0

tn−1D̃k
I e

−t(D̃2
I−λ)(i∂x1)

2n−k+1e−t∆IR dt .

As bounded operators on L2(Z, (Ω̂≤µAi)4d)

‖D̃k
I e

−t(D2
I−λ)‖ ≤ Ct−k/2e−(ω−λ)t

and

‖(i∂x1)
2n−k+1e−t∆IR‖ ≤ C(1 + t−(2n−k+1)/2) ,

hence the integral converges. �

In the following | · | denotes the norm on M4d(Ai).

Lemma 3.4.4. For every ε > 0 and α, β ∈ IN2
0 there are c, C > 0 such that for

all x, y ∈ Z with d(x, y) > ε and all t > 0

|∂αx ∂βy kZt (x, y)| ≤ Ce− d(x,y)2

ct .

Proof. For m,n ∈ IN0 there are C, c > 0 such that

|∂mx2
∂ny2k

I
t (x2, y2)| ≤ Ce−

(x2−y2)2

ct

for |x2 − y2| ≥ ε/2 and t > 0. This follows from Cor. 3.3.5 for t < 1 and from Cor.

3.3.6 for t ≥ 1. For |x2−y2| ≤ ε/2 the left hand side is bounded by C(1+ t−
m+n+1

2 )

by Cor. 3.3.6. Similar estimates hold for 1√
4πt

e−
(x1−y1)2

4t . A combination of these

estimates implies the lemma. �

In the next lemma SR(Z,M4d(Ai)) is the subspace of S(Z,M4d(Ai)) of func-
tions whose columns are in SR(Z,A4d

i ). Then operators on SR(Z,A4d
i ) act on

SR(Z,M4d(Ai)) columnwise. The space C∞
Rc(Z,M4d(Ai)) is analogously defined.

Lemma 3.4.5. Let λ ∈ C with Reλ < ω. Let ξ1, ξ2 ∈ C∞(Z) with supp ξ1 ∩
supp ξ2 = ∅ and assume that supp ξ2 is compact.

Then for any n ∈ IN the operator ξ1(D
2
Z − λ)−nξ2 is an integral operator.

Let κ be its integral kernel. Then (y 7→ κ(·, y)) ∈ C∞
c (Z,SR(Z,M4d(Ai))) and

(x 7→ κ(x, ·)∗) ∈ S(Z,C∞
Rc(Z,M4d(Ai))).

In particular ξ1(D
2 − λ)−nξ2 maps L2(Z, (Ω̂≤µAi)4d) continuously to

SR(Z, (Ω̂≤µAi)4d).
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Proof. First we prove the claim for n = 1.
Let f ∈ C∞

Rc(Z, (Ω̂≤µAi)4d).
In L2(Z, (Ω̂≤µAi)4d)

ξ1(D
2
Z − λ)−1ξ2f =

∫ ∞

0

ξ1e
−t(D2

Z−λ)ξ2f dt

=

∫ ∞

0

∫

Z

ξ1k
Z
t (·, y)eλtξ2(y)f(y) dydt .

Let ε > 0 be such that d(supp ξ1, supp ξ2) > ε.
By the previous lemma there are c, C > 0 such that for all x, y ∈ Z and all

t > 0

|ξ1(x)eλtkZt (x, y)ξ2(y)| ≤ C1{t>1}(t)|ξ1(x)|e(Re λ−ω)te−
(x1−y1)2

4t |ξ2(y)|

+ C1{t≤1}(t)|ξ1(x)|e−
d(x,y)2

ct |ξ2(y)| .
Analogous estimates hold for the partial derivatives. Hence we can interchange the
order of integration. It follows that ξ1(D

2
Z − λ)−1ξ2 is an integral operator with

integral kernel

κ(x, y) :=

∫ ∞

0

ξ1(x)e
−λtkZt (x, y)ξ2(y)dt .

For n = 1 the other statements of the lemma also follow from the estimates.
For n > 1 choose a smooth compactly supported function ψ : Z → [0, 1] such

that suppψ ∩ supp ξ1 = ∅ and supp(1− ψ) ∩ supp ξ2 = ∅. Then

ξ1(D
2
Z − λ)−nξ2 = ξ1(D

2
Z − λ)−1ψ(D2

Z − λ)−n+1ξ2

+ ξ1(D
2
Z − λ)−1(1− ψ)(D2

Z − λ)−n+1ξ2 .

By induction the lemma can be applied to ξ1(D
2
Z−λ)−1ψ and (1−ψ)(D2

Z−λ)−n+1ξ2.
The statement of the lemma follows for ξ1(D

2
Z −λ)−nξ2 from this and the fact that

by Cor. 3.4.2 the operator (D2
Z − λ)−m acts continuously on SR(Z,M4d(Ai)) for

all m ∈ IN. �

3.5. The heat semigroup on M

3.5.1. Definitions. Recall the definition of the operatorD(ρ)2 on the Hilbert
A-module L2(M,E ⊗A) in §2.1.1 and §2.5. By Lemma 5.2.10 the operator (∂/E +

ρK)2 with domain SR(M,E⊗Ω̂≤µAi) is closable on L2(M,E⊗Ω̂≤µAi). Its closure
will be denoted by D(ρ)2 as well in order to simplify notation.

So far the notation is misleading: It suggests that D(ρ)2 is the square of some

unbounded operator on L2(M,E⊗ Ω̂≤µAi). This is indeed the case as will become
clear in §3.5.5.

Define D2
s as a closed operator on L2(M,E ⊗ Ω̂≤µAi) in an analogous way.

We will often make use of cutting and pasting arguments on M . We fix the
setting:

Let 0 < b0 ≤ 1
4 be small enough and r0 > 0 large enough such that

suppkK ∩
(

(F (r0, b0)×M) ∪ (M × F (r0, b0))
)

= ∅ ,
with F (r0, b0) as in §1.1. Here kK denotes the integral kernel of the operator K
from §2.5.
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Let U(r0, b0) be the open covering defined in §1.1 and modified in §2.5.
Choose a smooth partition of unity {φk}k∈J subordinate to U(r0, b0) and

smooth functions {γk}k∈J on M such that for all k ∈ J
• supp γk ⊂ Uk,
• supp(1 − γk) ∩ suppφk = ∅,
• the derivatives ∂e2(φk|F ) and ∂e2(γk|F ) vanish in a neighborhood of ∂M .

Let EN be a Dirac bundle on a compact spin manifold N that is trivial as
a vector bundle and assume that there is a Dirac bundle isomorphism E|U♣ →
EN , whose base map is an isometric embedding. Let DN be the associated Dirac
operator. We identify U♣ with its image in N and E|U♣ with its image in EN .

Since the support of kK is in U♣×U♣, the restriction of D(ρ) = D+ ρK to U♣
extends to an operator DN + ρK on the sections of EN .

For k ∈ ZZ/6 let DZk
be the operator DZ on L2(Z, (Ω̂≤µAi)4d) from §3.4 with

boundary conditions given by the pair (Pkmod3,P(k+1) mod3).

3.5.2. The resolvents of D(ρ)2. This section has three different aims:
Using a method of Lott ([Lo3], §6.1.) we investigate the resolvent set of D(ρ)2

on L2(M,E ⊗ Ω̂≤µAi).
Furthermore we prove a kind of Sobolev embedding theorem – more precisely

an analogue of Lemma 3.1.4 for the operator D(ρ)2 on L2(M,E ⊗ Ω̂≤µAi).
Third we obtain more information about the kernel of D(ρ)2 on L2(M,E ⊗

Ω̂≤µAi), namely that there is a projection on it and that this projection is a Hilbert-
Schmidt operator with a smooth integral kernel.

Let ω > 0 be such that there is C > 0 with

‖e−tD
2
Zk ‖ ≤ Ce−ωt

on L2(M,E ⊗ Ω̂≤µAi) for all t ≥ 0 and all k ∈ ZZ/6.
Let ν ∈ IN. For λ ∈ C with Reλ < ω we define a parametrix of (D(ρ)2 − λ)ν :
By Cor. 3.4.2 we can set Qk(λ) = (D2

Zk
− λ)−ν for k ∈ ZZ/6.

Let Q♣(λ) be a local parametrix of (D2 − λ)ν on U♣ defined by the symbol of
(D2 − λ)ν such that φ♣(Q♣(λ)(D2 − λ)ν − 1)γ♣ and φ♣((D2 − λ)νQ♣(λ) − 1)γ♣
are integral operators with smooth integral kernels.

The operator

Q(λ) :=
∑

k∈J
φkQk(λ)γk

acts as a bounded operator on the spaces L2(M,E⊗Ω̂≤µAi) and SR(M,E⊗Ω̂≤µAi)
by §5.2.6 and by Cor. 3.4.2.

Lemma 3.5.1. For any ρ ∈ IR and λ ∈ C with Reλ < ω the operator Q(λ)(D(ρ)2−
λ)ν − 1 restricted to SR(M,E ⊗ Ω̂≤µAi) is an integral operator K with smooth in-
tegral kernel κ ∈ L2(M ×M, (E ⊠ E∗)⊗Ai).

Furthermore (x 7→ κ(x, ·)∗) ∈ S(M,C∞
cR(M,E ⊗Ai)⊗ E∗) and (y 7→ κ(·, y)) ∈

C∞
c (M,SR(M,E ⊗Ai)⊗ E∗).

In particular K extends to a bounded operator from L2(M,E ⊗ Ω̂≤µAi) to

SR(M,E ⊗ Ω̂≤µAi).
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Proof. The difference (D(ρ)2 − λ)ν − (D2 − λ)ν on SR(M,E ⊗ Ω̂≤µAi) is
an integral operator with smooth integral kernel whose support is contained in
supp kK . Hence we only need to investigate Q(λ)(D2 − λ)ν − 1.

For any k ∈ J choose a function ξk ∈ C∞
c (M) with values in [0, 1] and such

that supp ξk ⊂ Uk, ξk|supp dγk
= 1 and suppφk ∩ supp ξk = ∅. Furthermore assume

that ∂e2 (ξk|F ) vanishes in a neighborhood of ∂M .
By induction we have that [γk, (D

2 − λ)ν ] = ξk[γk, (D
2 − λ)ν ] since

[γk, (D
2 − λ)ν ]

= (D2 − λ)ν−1
(

c(dγk)D +Dc(dγk)
)

+ [γk, (D
2 − λ)ν−1](D2 − λ)

= ξk(D
2 − λ)ν−1

(

c(dγk)D +Dc(dγk)
)

+ [γk, (D
2 − λ)ν−1](D2 − λ) .

In the following the operators DZk
, k ∈ ZZ/6, are denoted by D as well. Further-

more ∼ means equality up to integral operators with smooth compactly supported
integral kernels.

Then on SR(M,E ⊗ Ω̂≤µAi)

Q(λ)(D2 − λ)ν − 1 =
∑

k∈J
φkQk(λ)[γk, (D

2 − λ)ν ] +
∑

k∈J
φkQk(λ)(D

2 − λ)νγk − 1

∼
∑

k∈J
φkQk(λ)ξk[γk, (D

2 − λ)ν ] .

For all k ∈ J the operator φkQk(λ)ξk is an integral operator whose integral kernel
has the properties stated in the lemma. This holds for k ∈ ZZ/6 by Lemma 3.4.5
and for k = ♣ by the properties of pseudodifferential operators. Now the assertion
follows. �

Proposition 3.5.2. Let ρ ∈ IR. Let λ ∈ C with Reλ < ω such that D(ρ)2 − λ
has a bounded inverse on the Hilbert A-module L2(M,E ⊗A).

Then D(ρ)2 − λ has a bounded inverse on L2(M,E ⊗ Ω̂≤µAi).
The inverse (D(ρ)2−λ)−1 acts as a bounded operator on the space SR(M,E⊗

Ω̂≤µAi).
Proof. Let Q(λ) and K be as in the previous lemma such that Q(λ)(D(ρ)2 −

λ)f = (1−K)f for f ∈ domD(ρ)2.
We want to apply Prop. 5.3.1. Since in general 1 − K is not invertible on

L2(M,E ⊗A), we modify the parametrix:
Choose an integral kernel s ∈ C∞

c (M × M, (E ⊠ E∗) ⊗ Ai) vanishing near
(∂M ×M) ∪ (M × ∂M) such that in B(L2(M,E ⊗A))

‖K − S(D(ρ)2 − λ)‖ ≤ 1
2 .

This choice is possible since by assumption (D(ρ)2 − λ) has a bounded inverse,
hence also (D(ρ)2 − λ) has a bounded inverse on L2(M,E ⊗A).

It follows that

(Q(λ) + S)(D(ρ)2 − λ) = 1−
(

K − S(D(ρ)2 − λ)
)

has a bounded inverse on L2(M,E ⊗A).

Prop. 5.3.1 implies that 1−K−S(D(ρ)2−λ) is invertible on L2(M,E⊗Ω̂≤µAi)
as well. Thus

(

1− (K − S(D(ρ)2 − λ))
)−1

(Q(λ) + S)
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is a bounded operator on L2(M,E⊗Ω̂≤µAi), which is a right inverse for (D(ρ)2−λ).
Hence D(ρ)2−λ is injective and bounded below. It remains to show that its range
is dense. This follows from the fact that D(ρ)2 − λ is invertible on L2(M,E ⊗A).

Since Q(λ) acts continuously on SR(M,E ⊗ Ω̂≤µAi) and K maps L2(M,E ⊗
Ω̂≤µAi) continuously to SR(M,E ⊗ Ω̂≤µAi) by the previous lemma, the operator

(D(ρ)2 − λ)−1 acts continuously on SR(M,E ⊗ Ω̂≤µAi) by

(D(ρ)2 − λ)−1 = (1−K)(D(ρ)2 − λ)−1 + K(D(ρ)2 − λ)−1

= Q(λ) +K(D(ρ)2 − λ)−1 .

�

Proposition 3.5.3. Let ρ ∈ IR. Let λ ∈ C with Reλ < ω be such that
(D(ρ)2 − λ) has a bounded inverse on L2(M,E ⊗ Ω̂≤µAi).

Then for ν ∈ IN, ν ≥ 2, the operator (D(ρ)2 − λ)−ν maps L2(M,E ⊗ Ω̂≤µAi)
continuously to C2ν−3

R (M,E ⊗ Ω̂≤µAi).

Proof. Let Q(λ)(D(ρ)2 − λ)ν = 1−K as before, thus

(D(ρ)2 − λ)−ν = Q(λ) +K(D(ρ)2 − λ)−ν .

By Prop. 3.4.3 and Lemma 5.2.18 the operator Q(λ) maps L2(M,E ⊗ Ω̂≤µAi)
continuously to C2ν−3

R (M,E ⊗ Ω̂≤µAi). Furthermore K is smoothing. �

Corollary 3.5.4. The kernel of D(ρ)2 on L2(M,E ⊗ Ω̂≤µAi) is a subspace

of SR(M,E ⊗ Ω̂≤µAi).
Proof. Let λ 6= 0 be as in the previous proposition.
Then (D(ρ)2 − λ)−νf = (−λ)−νf for f ∈ KerD(ρ)2 and every ν ∈ IN. By the

previous proposition it follows that the elements of KerD(ρ)2 are smooth.
For k ∈ ZZ/6 and f ∈ KerD(ρ)2

D2
Zk
φkf ∈ C∞

cR(Zk, (Ω̂≤µAi)4d) .
From Cor. 3.4.2 it follows that

φkf = D−2
Zk

(D2
Zk
φkf) ∈ SR(Zk, (Ω̂≤µAi)4d) .

Hence f ∈ SR(M,E ⊗ Ω̂≤µAi). �

Proposition 3.5.5. Let ρ 6= 0.
Let P be the projection onto the kernel of D(ρ) on L2(M,E ⊗A).
Then P is a finite Hilbert-Schmidt operator whose integral kernel is of the form

∑m
j=1 fj(x)hj(y)

∗ with fj , hj ∈ KerD(ρ) ∩ SR(M,E ⊗A∞).

Furthermore on L2(M,E ⊗ Ω̂≤µAi) we have that KerD(ρ)2 = PL2(M,E ⊗
Ω̂≤µAi) and RanD(ρ)2 = (1−P )L2(M,E⊗Ω̂≤µAi). Hence there is a decomposition

L2(M,E ⊗ Ω̂≤µAi) = KerD(ρ)2 ⊕ RanD(ρ)2

with respect to which

D(ρ)2 = 0⊕D(ρ)2|RanD(ρ)2 .

Moreover D(ρ)2|RanD(ρ)2 is invertible.
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Proof. First consider the situation on L2(M,E⊗A): Since the range of D(ρ)
is closed, there is an orthogonal projection P onto the kernel of D(ρ) by Prop.
5.1.12. Furthermore D(ρ) is selfadjoint, hence KerD(ρ) = KerD(ρ)2. The range
of D(ρ)2 is closed, thus zero is an isolated point in the spectrum of D(ρ)2 on
L2(M,E ⊗A).

Hence, for r small enough,

P =
1

2πi

∫

|λ|=r
(D(ρ)2 − λ)−1dλ .

From Prop. 3.5.2 it follows that zero is an isolated point in the spectrum of
D(ρ)2 on L2(M,E⊗ Ω̂≤µAi) as well. Thus P is well-defined as a bounded operator

on L2(M,E ⊗ Ω̂≤µAi). By Prop. 5.3.6 it is a Hilbert-Schmidt operator whose
integral kernel is as asserted.

The remaining parts follow from the spectral theory for closed operators on
Banach spaces ([Da], Th. 2.14). �

Corollary 3.5.6. Let Reλ < ω.

(1) Let ρ 6= 0 and let P be the orthogonal projection onto the kernel of D(ρ)2.
If D(ρ)2+P−λ has a bounded inverse on L2(M,E⊗A), then D(ρ)2+P−λ
has a bounded inverse on L2(M,E ⊗ Ω̂≤µAi) and the inverse acts as a

bounded operator on the space SR(M,E ⊗ Ω̂≤µAi) as well.
(2) Let P0 be the orthogonal projection onto KerD2

s . If D2
s + P0 − λ has a

bounded inverse on L2(M,E⊗A), then D2
s+P0−λ has a bounded inverse

on L2(M,E ⊗ Ω̂≤µAi) and the inverse acts as a bounded operator on the

space SR(M,E ⊗ Ω̂≤µAi) as well.

In particular there is c > 0 such that {Reλ < c} is in the resolvent set of
D(ρ)2 + P resp. D2

s + P0.

Proof. (1) From the previous proposition it follows that P (1 − λ)−1 + (1 −
P )(D(ρ)2 − λ)−1 inverts D(ρ)2 + P − λ on L2(M,E ⊗ Ω̂≤µAi). Since P acts as a

bounded operator on the space SR(M,E⊗Ω̂≤µAi) by Cor. 3.5.4 and (D(ρ)2−λ)−1

is bounded on SR(M,E ⊗ Ω̂≤µAi) by Prop. 3.5.2, the operator (D(ρ)2 + P − λ)−1

is bounded on SR(M,E ⊗ Ω̂≤µAi) as well.
(2) follows analogously. �

3.5.3. An approximation of the semigroup. By cutting and pasting we
construct a family of integral operators that behaves similar to a semigroup gener-
ated by −D(ρ)2 for small times.

We work in the setting fixed in §3.5.1.

Let e(ρ)♣t (x, y) be the restriction of the integral kernel of e−t(DN+ρK)2 to U♣×
U♣ and for k ∈ ZZ/6 let e(ρ)kt (x, y) be the restriction of the integral kernel of e−tD

2
Zk

to Uk × Uk. Extend these functions by zero to M ×M . Clearly for k ∈ ZZ/6 we
have e(ρ)kt (x, y) = e(0)kt (x, y).

We write E(ρ)t for the family of integral operators on L2(M,E ⊗ Ω̂≤µAi)
corresponding to the integral kernel

e(ρ)t(x, y) :=
∑

k∈J
γk(x)e(ρ)

k
t (x, y)φk(y)

and set E(ρ)0 := 1.
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Using the results in §3.2 and §3.4 one deduces:

(1) The family E(ρ)t is strongly continuous in t on L2(M,E ⊗ Ω̂≤µAi).
(2) If f ∈ C∞

cR(M,E⊗Ω̂≤µAi), then the map [0,∞)→ L2(M,E⊗Ω̂≤µAi), t 7→
E(ρ)tf is differentiable.

(3) RanE(ρ)t ⊂ SR(M,E ⊗ Ω̂≤µAi) for t > 0.

(4) Let A be a differential operator on C∞(M,E ⊗ Ω̂≤µAi) of order m with
bounded coefficients. For T > 0 there is C > 0 such that for all 0 < t < T
on L2(M,E ⊗ Ω̂≤µAi)

‖AE(ρ)t‖ ≤ Ct−
m
2 .

(5) For any m ∈ IN0 and T > 0 there is C > 0 such that for all y ∈ U♣, ρ ∈
[−1, 1] and 0 < t < T in Cm(U♣, (E ⊗ Ey)⊗Ai)

‖e(ρ)♣t (·, y)− e(0)♣t (·, y)‖Cm ≤ Ct|ρ| .
An analogous estimate holds for the partial derivatives in y with respect
to unit vector fields on U♣.

The last statement follows by Volterra development (Prop. 5.4.4): On N

e−tDN (ρ)2 − e−tD2
N

= ρt

∞
∑

n=1

(−1)n(ρt)n−1

∫

∆n

e−u0tD
2
N
(

[DN ,K]s + ρK2
)

e−u1tD
2
N . . .

. . . e−untD
2
N du0 . . . dun ,

and the sum is an integral operator whose integral kernel is uniformly bounded in
0 < t < T and ρ ∈ [−1, 1].

3.5.4. The semigroup e−tD
2
s . By Cor. 3.1.5 the operator e−tD

2
s on the

Hilbert space L2(M,E) is an integral operator with smooth integral kernel kt for
t > 0. In this section we show that kt defines a strongly continuous semigroup on
L2(M,E ⊗ Ω̂≤µAi) and that this semigroup extends to a holomorphic one.

ForDs define ekt (x, y) analogously to e(ρ)kt (x, y) forD(ρ) in the previous section
and let

et(x, y) :=
∑

k∈J
γk(x)e

k
t (x, y)φk(y) .

The corresponding family of operators is denoted by Et. We set E0 := 1. The
properties of Et are as described in the previous section.

For f ∈ C∞
cR(M,E)

e−tD
2
sf − Etf = −

∫ t

0

e−sD
2
s

(

d

dt
+D2

s

)

Et−sf ds

by Duhamel’s principle.

Proposition 3.5.7. (1) The heat kernel kt associated to Ds defines a

strongly continuous semigroup on L2(M,E⊗Ω̂≤µAi) with generator −D2
s ,

which extends to a bounded holomorphic semigroup.
(2) Let A be a differential operator of order m ∈ IN0 with bounded smooth

coefficients. Then for any t > 0 the operator Ae−tD
2
s is bounded on
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L2(M,E ⊗ Ω̂≤µAi) and for any T > 0 there is C > 0 such that for
0 < t < T

‖Ae−tD2
s‖ ≤ Ct−m

2 .

Proof. First we show that for T > 0 there is C > 0 such that for 0 < t < T
the difference Axkt(x, y)−Axet(x, y) is bounded by Ct in L2(M ×M,E ⊠ E∗).

For k ∈ J let χk ∈ C∞
c (M) be a function with values in [0, 1], with compact

support in Uk and equal to one on a neighborhood of supp dγk.
From Duhamel’s principle it follows that

Axkt(x, y)−Axet(x, y)

= −
∑

k∈J

∫ t

0

∫

M

Axks(x, r)[(∂/E)r, c(dγk(r))]se
k
t−s(r, y)φk(y) drds .

This can be re-written as

−
∑

k∈J

∫ t

0

∫

M

(1 − χk(x))Axks(x, r)[(∂/E)r, c(dγk(r))]se
k
t−s(r, y)φk(y) drds

−
∑

k∈J

∫ t

0

∫

M

χk(x)Ax(ks(x, r) − eks(x, r))[(∂/E)r, c(dγk(r))]se
k
t−s(r, y)φk(y) drds

−
∑

k∈J

∫ t

0

∫

M

χk(x)Axe
k
s(x, r)[(∂/E)r , c(dγk(r))]se

k
t−s(r, y)φk(y) drds .

Using Lemma 3.1.8 and Lemma 3.1.9 we estimate the norms of the three terms in
Ex ⊗ Ey:

Since supp dγk ∩ suppφk = ∅ and supp dγk ∩ supp(1 − χk) = ∅, there is C > 0
such that for x, y ∈M and t > 0 the norm of the first term is bounded by

C
∑

k∈J
t(1 − χk(x))e−

d(x,supp dγk)2

(4+δ)t e−
d(y,supp dγk)2

(4+δ)t 1suppφk
(y) ,

and such that for x, y ∈ M and t > 0 the norms of the second and third term are
bounded by

Ctχk(x)e
− d(y,supp dγk)2

(4+δ)t 1suppφk
(y) .

When estimating the third term we used that the action of the integral kernel
eks(x, r)χk(r) is uniformly bounded for k = ♣ on Cn(U♣, E ⊗ Ey) by Prop. 3.2.2
and for k ∈ ZZ/6 on CnR(Uk, E ⊗ Ey) by Prop. 3.4.1.

Analogous estimates hold for the derivatives in y with respect to unit vector
fields on M .

Hence Axkt(x, y) − Axet(x, y) is bounded by Ct in L2(M × M,E ⊠ E∗) for
0 < t < T and some C > 0. By Cor. 5.2.4 the corresponding family of operators
on L2(M,E ⊗ Ω̂≤µAi) is bounded by Ct for 0 < t < T , hence Axkt(x, y) defines a

family of bounded operators on L2(M,E ⊗ Ω̂≤µAi).
Write S(t) for the integral operator induced by the integral kernel kt(x, y).
By property (4) in §3.5.3 there is C > 0 such that ‖AEt‖ ≤ Ct−m

2 on L2(M,E⊗
Ω̂≤µAi) for 0 < t < T and some C > 0, hence

(∗) ‖AS(t)‖ ≤ Ct−m
2 .

The fact that S(t) extends to a bounded holomorphic semigroup on L2(M,E ⊗
Ω̂≤µAi) is an almost immediate consequence of (∗):
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Since Et converges strongly to the identity on L2(M,E ⊗ Ω̂≤µAi) for t → 0,
the operator S(t) also does. Furthermore the kernels kt obey the semigroup law,

hence S(t) is a strongly continuous semigroup on L2(M,E ⊗ Ω̂≤µAi).
Note that the range of S(t) − Et is a subset of SR(M,E ⊗ Ω̂≤µAi). Hence

SR(M,E⊗ Ω̂≤µAi) is invariant under the action of S(t). It follows that −D2
s is the

generator of S(t).
From Prop. 5.4.3 and the estimate (∗) applied to A = D2

s it follows that the

semigroup S(t) = e−tD
2
s extends to a holomorphic semigroup on L2(M,E⊗Ω̂≤µAi).

In order to show that the holomorphic semigroup is bounded, let P0 be the
projection onto the kernel of D2

s .
By Cor. 3.5.6 there is c > 0 such that {Reλ < c} is in the resolvent set of

D2
s + P0 on L2(M,E ⊗ Ω̂≤µAi). Hence by Prop. 5.4.2 the holomorphic semigroup

e−t(D
2
s+P0) is bounded. Thus

e−tD
2
s = e−t(D

2
s+P0)(1 − P0) + P0

is bounded as well. �

Recall that in §3.5.1 we fixed the domain of D2
s as an unbounded operator on

L2(M,E ⊗ Ω̂≤µAi), but not the domain of Ds. This is done now:

Let Ds be the closure on L2(M,E ⊗ Ω̂≤µAi) of the Dirac operator ∂/E with

domain SR(M,E ⊗ Ω̂≤µAi).
Corollary 3.5.8. Let P0 be the projection onto the kernel of D2

s .
Let λ ∈ C with Reλ2 < 0.
Then the operators Ds + P0 and Ds − λ have a bounded inverse on L2(M,E ⊗

Ω̂≤µAi).
Proof. By Cor. 3.5.6 there is c > 0 such that {Reλ ≤ c} is in the resolvent

set of D2
s + P0 on L2(M,E ⊗ Ω̂≤µAi).

By the previous proposition and Prop. 5.4.2 it follows that there is C > 0 such
that for all t > 0 on L2(M,E ⊗ Ω̂≤µAi)

‖(Ds + P0)e
−t(D2

s+P0)‖ ≤ Ct− 1
2 e−ct .

Thus

G :=

∫ ∞

0

(Ds + P0)e
−t(D2

s+P0)dt

is a bounded operator on L2(M,E ⊗ Ω̂≤µAi). Furthermore G = (Ds + P0)
−1 on

the Hilbert space L2(M,E). From Cor. 3.5.6 it follows that G acts as a bounded

operator on SR(M,E). Hence G inverts Ds + P0 on SR(M,E) ⊙ Ω̂≤µAi, thus G

inverts Ds + P0 on L2(M,E ⊗ Ω̂≤µAi).
The proof of the fact that

∫ ∞

0

(Ds + λ)e−t(D
2
s−λ2)

inverts (Ds − λ) for Reλ2 < 0 is analogous. �

This answers a question from the beginning of §3.5.1: the operatorD2
s is indeed

the square of Ds.
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3.5.5. The semigroup e−tD(ρ)2. This section is devoted to the study of the
holomorphic semigroup generated by −D(ρ)2.

First we prove its existence.
Define D(ρ) on L2(M,E⊗ Ω̂≤µAi) as the closure of the operator ∂/E +ρK with

domain SR(M,E ⊗ Ω̂≤µAi).
Let P0 be the orthogonal projection onto the kernel of D2

s . Then D(ρ) is a
bounded perturbation of W ∗(Ds+P0)W with W as in §2.1.2. By the results of the
previous section we can apply Prop. 5.4.10 and conclude that D(ρ)2, as defined in
§3.5.1, is the square of D(ρ) and furthermore that −D(ρ)2 generates a holomorphic
semigroup. This shows the first assertion of the following proposition.

For ρ 6= 0 let P be the orthogonal projection onto the kernel of D(ρ)2.

Proposition 3.5.9. (1) Let ρ ∈ IR. The operator −D(ρ)2 generates a

holomorphic semigroup e−tD(ρ)2 on L2(M,E ⊗ Ω̂≤µAi). For ρ 6= 0 the
semigroup is bounded holomorphic.

(2) For t ≥ 0 the operator e−tD(ρ)2 depends analytically on ρ. For every T > 0
there is C > 0 such that

‖e−tD(ρ)2‖ ≤ C
for all ρ ∈ [−1, 1] and 0 ≤ t ≤ T .

(3) For ρ 6= 0 there are C, ω > 0 such that for all t ≥ 0

‖(1− P )e−tD(ρ)2‖ ≤ Ce−ωt .
Proof. (1) Let ρ 6= 0. By Cor. 3.5.6 there is c > 0 such that {Reλ ≤ c} is in

the resolvent set of D(ρ)2 + P on L2(M,E ⊗ Ω̂≤µAi), hence by Lemma 5.4.2 the

holomorphic semigroup e−t(D(ρ)2+P ) is bounded by Ce−ct for some C > 0, thus for
T > 0 there is C > 0 such that for t > T

‖D(ρ)2e−tD(ρ)2‖ = ‖D(ρ)2e−t(D(ρ)2+P )‖ ≤ Ce−ct .
Now Prop. 5.4.3 implies that the semigroup e−tD(ρ)2 is bounded holomorphic.

(2) follows from Prop. 5.4.4.

(3) follows from (1− P )e−tD(ρ)2 = (1 − P )e−t(D(ρ)2+P ). �

The following proposition shows that e−tD(ρ)2 is smoothing.

Proposition 3.5.10. (1) Let n ∈ IN0. For every ρ ∈ IR and every t > 0

the operator e−tD(ρ)2 maps L2(M,E⊗Ω̂≤µAi) continuously to CnR(M,E⊗
Ω̂≤µAi).

(2) Let n ∈ 2IN, n ≥ 4. For every ρ 6= 0 the family e−tD(ρ)2 : CncR(M,E ⊗
Ω̂≤µAi)→ Cn−3

R (M,E ⊗ Ω̂≤µAi) is uniformly bounded.

(3) Let n ∈ 2IN, n ≥ 4. For every T > 0 the family e−tD(ρ)2 : CncR(M,E ⊗
Ω̂≤µAi)→ Cn−3

R (M,E ⊗ Ω̂≤µAi) is uniformly bounded in 0 ≤ t < T and
in ρ ∈ [−1, 1].

Proof. We conclude (1) from

e−tD(ρ)2 = (D(ρ)2 + 1)−k(D(ρ)2 + 1)ke−tD(ρ)2 ,

taking into account that (D(ρ)2 +1)ke−tD(ρ)2 is bounded on L2(M,E⊗ Ω̂≤µAi) for

t > 0 and that (D(ρ)2+1)−k maps L2(M,E⊗Ω̂≤µAi) continuously to C2k−3
R (M,E⊗

Ω̂≤µAi) for k ∈ IN, k ≥ 2, by Prop. 3.5.3.
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(2) and (3) follow from

e−tD(ρ)2 = (D(ρ)2 + 1)−ke−tD(ρ)2(D(ρ)2 + 1)k

by Prop. 3.5.3. �

3.5.6. The integral kernel. In order to prove that the operator e−tD(ρ)2 is
an integral operator we use the same method as in §3.3.2: Via Duhamel’s principle

we compare e−tD(ρ)2 and the approximation E(ρ)t, which was defined in §3.5.3.
In the following | · | denotes the norm on the fibers of (E ⊠ E∗)⊗Ai.

Proposition 3.5.11. For every ρ ∈ IR and every t > 0 the operator e−tD(ρ)2

is an integral operator with smooth integral kernel. Let k(ρ)t(x, y) be its integral
kernel.

(1) The map (0,∞)→ C∞(M ×M, (E ⊠ E∗)⊗A∞), t 7→ k(ρ)t is smooth.
(2) k(ρ)t(x, y) = k(ρ)t(y, x)

∗.
(3) For every T > 0 there are c, C > 0 such that

|k(ρ)t(x, y)− e(ρ)t(x, y)| ≤ Ct
(

|ρ|1U♣(y) +
∑

k∈J
e−

d(y,supp dγk)2

ct 1suppφk
(y)
)

for all 0 < t < T , ρ ∈ [−1, 1] and x, y ∈M .
(4) Let ρ 6= 0. There are c, C > 0 such that

|k(ρ)t(x, y)− e(ρ)t(x, y)| ≤ Cte−
d(y,U♣)2

ct

for all t > 0 and all x, y ∈M .

Statements analogous to (3) and (4) hold for the partial derivatives in x and y
with respect to unit vector fields on M .

Proof. For (1) it is enough to prove an analogous statement for the operator

e−tD(ρ)2 − E(ρ)t.
Let f ∈ C∞

cR(M,E ⊗Ai). Then by Duhamel’s principle

e−tD(ρ)2f − E(ρ)tf

= −
∑

k∈J

∫ t

0

∫

M

e−sD(ρ)2
( d

dt
+D(ρ)2

)

γke(ρ)
k
t−s(·, y)φk(y)f(y) dyds .

We write
∑

k∈J

( d

dτ
+D(ρ)2

)

γke(ρ)
k
τ (·, y)φk(y)

= −
∑

k∈J
[∂/E , c(dγk)]se(0)kτ (·, y)φk(y)

−[∂/E , c(dγ♣)]s
(

e(ρ)♣τ (·, y)− e(0)♣τ (·, y)
)

φ♣(y) .

Note that the map

(0,∞)→ C∞(M,C∞
cR(M,E ⊗A∞)⊗ E) ,

τ 7→
(

y 7→
∑

k∈J

( d

dτ
+D(ρ)2

)

e(ρ)kτ (·, y)φk(y)
)

is smooth. We show that it extends smoothly by zero to τ = 0. From this and

Prop. 3.5.10 it follows that e−tD(ρ)2 − E(ρ)t is an integral operator.
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We estimate the terms on the right hand side of the previous equation.
From the estimates in Lemma 3.1.8 and Lemma 3.4.4 it follows that for any

m ∈ IN0 there are C, c > 0 such that

‖[∂/E , c(dγk)]se(0)kτ (·, y)φk(y)‖Cm
R
≤ Ce−

d(y,supp dγk)2

cτ 1suppφk
(y)

in CmR (M,E ⊗Ai)⊗ E∗
y for all k ∈ J, 0 < τ < T, ρ ∈ [−1, 1] and y ∈M .

Furthermore by §3.5.3, property (5), there is C > 0 such that

‖[∂/E, c(dγ♣)]s
(

e(ρ)♣τ (·, y)− e(0)♣τ (·, y)
)

φ♣(y)‖Cm
R
≤ Cτ |ρ|1U♣(y)

in CmR (M,E ⊗Ai)⊗ Ey for 0 < τ < T, ρ ∈ [−1, 1] and y ∈M .
Analogous estimates hold for the derivatives in y and also in τ since by the

heat equation the derivatives with respect to τ can be expressed in terms of the
derivatives with respect to x. This shows (1).

The property k(ρ)t(x, y) = k(ρ)t(y, x)
∗ follows from the selfadjointness of

e−tD(ρ)2 .
Statement (2) and (3) follow from the estimates using Prop. 3.5.10. For the

proof of (3) we also take into account that the kernel e(ρ)♣t and its derivatives are
uniformly bounded in t with t > T . �

Corollary 3.5.12. Let ν ∈ IN0. For every ρ ∈ IR and T > 0 there is C > 0
such that

‖D(ρ)νe−tD(ρ)2‖ ≤ Ct− ν
2

for 0 < t < T on L2(M,E ⊗ Ω̂≤µAi).

Proof. By Duhamel’s principle, for f ∈ C∞
Rc(M,E ⊗ Ω̂≤µAi),

D(ρ)νe−tD(ρ)2f −D(ρ)νE(ρ)tf

= −
∑

k∈J

∫ t

0

∫

M

e−sD(ρ)2D(ρ)ν [D(ρ)2, γk]se(ρ)
k
t−s(·, y)φk(y)f(y) dyds .

There is C > 0 such that this term is bounded in L2(M,E ⊗ Ω̂≤µAi) by Ct for
0 < t < T . Furthermore by Prop. 3.2.2 and Prop. 3.4.1 there is C > 0 such that
on L2(M,E ⊗ Ω̂≤µAi)

‖D(ρ)νE(ρ)t‖ ≤ Ct−
ν
2 .

The assertion follows. �

Corollary 3.5.13. For every ρ 6= 0 and m ∈ IN the family of integral kernels
k(ρ)t defines a strongly continuous semigroup on CmR (M,E ⊗ Ω̂≤µAi) bounded by

C(1 + t)
3
2 for some C > 0 and all t > 0.

It is denoted by e−tD(ρ)2 as well.

Proof. By the estimates in the proposition the integral kernel k(ρ)t − e(ρ)t
defines an operator on CmR (M,E ⊗ Ω̂≤µAi) bounded by Ct3/2 for every t > 0 and
some C > 0.

We show that E(ρ)t is a strongly continuous uniformly bounded family of op-

erators on CmR (M,E ⊗ Ω̂≤µAi).
For k ∈ ZZ/6 the action of the integral kernel e(ρ)kt on CmR (Uk, E ⊗ Ω̂≤µAi) is

strongly continuous and uniformly bounded in t by Prop. 3.4.1.
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By Prop. 3.2.3 and Prop. 5.4.4 the family e−t(DN+ρK)2 is a strongly continu-
ous semigroup on Cm(N,EN ⊗ Ω̂≤µAi). It is bounded since its integral kernel is

uniformly bounded for t > 1. Hence the action of e(ρ)♣t on Cm(U♣, E ⊗ Ω̂≤µAi) is
strongly continuous and uniformly bounded.

Since E(ρ)t converges strongly to the identity on CmR (Uk, E⊗Ω̂≤µAi) for t→ 0,

so does e−tD(ρ)2 . It clearly satisfies the semigroup property. �

Corollary 3.5.14. Let ρ 6= 0 and n ∈ IN.
For every ε > 0 we can find C, c > 0 such that for x, y ∈ M with d(x, y) > ε

and t > 0

|k(ρ)t(x, y)| ≤ C
(

e−
d(x,y)2

ct + te−
d(y,U♣)2

ct

)

.

An analogous statement holds for the derivatives in x and y with respect to unit
vector fields on M .

We refer to §5.2.4 for the notion of a Hilbert-Schmidt operator and the Hilbert-
Schmidt norm ‖ · ‖HS used in the next corollary.

Corollary 3.5.15. Let ρ 6= 0 and ν ∈ IN0.

The operators 1MrD(ρ)νe−tD(ρ)2 and D(ρ)νe−tD(ρ)21Mr with r ≥ 0 are Hilbert-
Schmidt operators.

(1) For every T > 0 there is C > 0 such that for any r ≥ 0 and t > T

‖1MrD(ρ)νe−tD(ρ)2‖HS ≤ C(1 + r)

and
‖D(ρ)νe−tD(ρ)21Mr‖HS ≤ C(1 + r) .

(2) For every ε > 0 there is C > 0 such that for every r, t > 0

‖1MrD(ρ)νe−tD(ρ)2(1− 1Mr+ε)‖HS ≤ C(1 + r)t1/2

and

‖(1− 1Mr+ε)D(ρ)νe−tD(ρ)21Mr‖HS ≤ C(1 + r)t1/2 .

Proof. (1) Since by Prop. 3.5.9 the semigroup e−tD(ρ)2 is bounded, it follows
from Prop. 5.2.13 that there is C > 0 such that for all r > 0 and t > T

‖1MrD(ρ)νe−tD(ρ)2‖HS ≤ C‖1MrD(ρ)νe−TD(ρ)2‖HS .
By the previous corollary there are C, c > 0 such that

|1Mr (x)D(ρ)νxk(ρ)T (x, y)| ≤ C1Mr (x)(e
−cd(x,y)2 + e−cd(y,Mr)2)

for all r > 0 and x, y ∈M . This yields the asserted estimate. The second estimate
in (1) is proved analogously.

(2) follows from the previous corollary and (1). �



CHAPTER 4

Superconnections and the Index Theorem

The notion of a superconnection on a free finitely generated ZZ/2-graded mod-
ule, which we define now, generalizes the notion of a connection on a free module
[Ka].

In the family case superconnections usually act on infinite dimensional bundles
([BGV], Ch. 9). In analogy the superconnections we consider act on modules with
infinitely many generators. In that sense the following definition should be merely
seen as a motivation for the definitions of the superconnections to come.

Definition 4.0.16. Let B be a locally m-convex Fréchet algebra and let p, q ∈
IN0.

Let V := (C+)p ⊕ (C−)q. Consider V ⊗ Ω̂∗B as a ZZ/2-graded space.
A superconnection on V ⊗ B is an odd linear map

A : V ⊗ Ω̂∗B → V ⊗ Ω̂∗B
satisfying Leibniz rule:

For α ∈ V ± ⊗ Ω̂kB and β ∈ Ω̂∗B
A(αβ) = A(α)β + (−1)degαα dβ

where degα is the degree of α with respect to the ZZ/2-grading of V ⊗ Ω̂∗B.
The map A2 is called the curvature of A.

As for a connection [Ka] the curvature of a superconnection is a right Ω̂∗B-
module map.

4.1. The superconnection AIt associated to DI

4.1.1. The family e−(AI
t )2. Let C1 be the ZZ/2-graded unital algebra gener-

ated by an odd element σ with σ2 = 1. As a vector space C1 is isomorphic to C⊕C
via the map C1 → C ⊕ C, a + bσ 7→ (a, b). We endow C1 with the scalar product
induced by the standard hermitian scalar product on C⊕ C.

We identify L2([0, 1], C1⊗ (Ω̂≤µAi)2d) with C1⊗L2([0, 1], (Ω̂≤µAi)2d) and con-
sider DI , as defined in §3.3.1 with boundary conditions induced by a pair (P0, P1),
as an unbounded operator on the ZZ/2-graded Ai-module L2([0, 1], C1 ⊗A2d

i ).
Let U ∈ C∞([0, 1],M2d(A∞)) be as in Prop. 2.2.1 with U(0)P0U(0)∗ = Ps and

U(1)P1U(1)∗ = 1 − Ps. The map U∗ dU can be seen as a flat superconnection on

L2([0, 1], C1 ⊗A2d
i ). It preserves the space C1 ⊗ C∞

R ([0, 1], (Ω̂≤µAi)2d).
We define

AI := U∗ dU + σDI

and for t ≥ 0

AIt := U∗ dU +
√
tσDI .

61
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Then AI is an odd map on C1⊗C∞
R ([0, 1], (Ω̂≤µAi)2d) fulfilling Leibniz rule and is

called a superconnection associated to σDI . The map AIt is called the corresponding
rescaled superconnection.

The curvature of AI is

A2
I = U∗ d2 U + U∗ dUσDI + σDIU

∗ dU +D2
I = D2

I + σ[DI , U
∗ dU ] .

From

[DI , U
∗ dU ] = −U∗[d, UDIU

∗]U

= −U∗([d, DIs ] + [d, UI0(∂U
∗)])U

= −U∗ d(UI0(∂U
∗))U =: R

it follows that A2
I = D2

I + σR with R ∈ C∞([0, 1],M2d(Ω̂1A∞)) vanishing near the
boundary and fulfilling R∗ = −R.

The curvature of the rescaled superconnection AIt is

(AIt )
2 = tD2

I +
√
tσR .

We see that the curvature and the rescaled curvature are right Ω̂≤µAi-module maps.
Since A2

I is a bounded perturbation of D2
I , it defines a holomorphic semigroup

e−tA
2
I on L2([0, 1], C1 ⊗ (Ω̂≤µAi)2d).
In the following we restrict to t ≥ 0:
By Volterra development

e−tA
2
I =

∞
∑

n=0

(−1)ntn
∫

∆n

e−u0tD
2
IσRe−u1tD

2
IσR . . . e−untD

2
I du0 . . . dun

=

∞
∑

n=0

σn(−1)
(n+1)n

2 tnIn(t)

with

In(t) :=

∫

∆n

e−u0tD
2
IRe−u1tD

2
IR . . . e−untD

2
I du0 . . . dun .

Note that the series is finite on L2([0, 1], C1 ⊗ (Ω̂≤µAi)2d).
It follows that

e−(AI
t )2 =

∞
∑

n=0

σn(−1)
(n+1)n

2 tn/2In(t) .

The operators In(t) obey the following recursion relation for n ≥ 1:

In(t) =

∫ 1

0

du0 e
−u0tD

2
IR

∫

(1−u0)∆n−1

e−u1tD
2
IR . . . Re−untD

2
I du1 . . . dun

=

∫ 1

0

du0 (1− u0)
n−1e−u0tD

2
IR

∫

∆n−1

e−(1−u0)u1tD
2
IR . . .

. . . Re−(1−u0)untD
2
I du1 . . . dun

=

∫ 1

0

du0 (1− u0)
n−1e−u0tD

2
IRIn−1((1− u0)t) .

Note that e−(AI
t )2 is selfadjoint on L2([0, 1], C1 ⊗ (Ω̂≤µAi)2d) in the sense of §5.2.3

and that In(t) = (−1)nIn(t)
∗.
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4.1.2. The integral kernel of e−(AI
t )2. Since e−tD

2
I is a bounded semigroup

on CmR ([0, 1], (Ω̂≤µAi)2d) for every m ∈ IN0 by Prop. 3.3.3, the family In(t) :

CmR ([0, 1],A2d
i )→ CmR ([0, 1], (Ω̂nAi)2d) is uniformly bounded in t ≥ 0.

In the following we write | · | for the norm on M2d(Ω̂≤µAi).
Proposition 4.1.1. For every n ∈ IN0 and t > 0 the operator In(t) is an

integral operator. Let pt(x, y)
n be its integral kernel.

(1) The map

(0,∞)→ C∞([0, 1], C∞
R ([0, 1],M2d(Ω̂nA∞))), t 7→

(

y 7→ pt(·, y)n
)

is smooth.
(2) pt(x, y)

n = (−1)n(pt(y, x)
n)∗.

(3) For every l,m, n ∈ IN0 there are C, ω > 0 such that for t > 0 and x, y ∈
[0, 1]

|∂lx∂my pt(x, y)n| ≤ C(1 + t−
l+m+1

2 )e−ωt .

Proof. In degree n = 0 the assertions hold by Prop. 3.3.4 and Cor. 3.3.6.

Let kt(x, y) be the integral kernel of e−tD
2
I .

For f ∈ C∞
R ([0, 1], (Ω̂≤µAi)2d)

(In(t)f)(x) =

∫ 1

0

∫ 1

0

∫ 1

0

(1− s)n−1kst(x, r)R(r)p(1−s)t(r, y)
n−1f(y) dydrds

by induction and by the recursion formula above.
We can interchange the integration over r and y.
For the proof of the existence of the integral kernel and of (1) it suffices to show

that the map

(s, t) 7→
(

y 7→
∫ 1

0

(1− s)n−1kst(·, r)R(r)p(1−s)t(r, y)
n−1dr

)

is a smooth map from [0, 1]× (0,∞) to C∞([0, 1], C∞
R [0, 1],M2d(Ω̂nAi))):

For s ≥ 1
2 this follows from the fact that by induction the map

(s, t) 7→
(

y 7→ Rp(1−s)t(·, y)n−1
)

is a smooth map from [12 , 1] × (0,∞) to C∞([0, 1], C∞
R ([0, 1],M2d(Ω̂nAi))

)

. Fur-

thermore the family e−stD
2
I is uniformly bounded on ClR([0, 1],M2d(Ω̂nAi)) for any

l ∈ IN0 by Prop. 3.3.3 and depends smoothly on s, t.
For s ≤ 1

2 this holds since

(s, t) 7→
(

x 7→ R∗kst(x, ·)∗
)

is a smooth map with values in C∞([0, 1], C∞
R ([0, 1],M2d(Ω̂1Ai))) and since the

action of the family In−1((1− s)t)∗ on CmR ([0, 1],M2d(Ω̂≤µAi))) depends smoothly
on s, t and is uniformly bounded for any m ∈ IN0.

Assertion (2) holds since In(t)∗ = (−1)nIn(t).
The preceding arguments and the following facts imply the estimate in (3):
By induction there is C > 0 such that the norm of

(

y 7→ Rp(1−s)t(·, y)n−1
)

in

Cm
(

[0, 1], ClR([0, 1],M2d(Ω̂nAi))
)

is bounded by C(1 + t−
l+m+1

2 )e−ωt for 0 ≤ s ≤
1
2 , t > 0. Furthermore by Cor. 3.3.6 the norm of

(

x 7→ R∗kst(x, ·)∗
)

is bounded in

Cl([0, 1], CmR ([0, 1],M2d(Ω̂1Ai)) by C(1 + t−
l+m+1

2 )e−ωt for s > 1
2 , t > 0. �
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The proof of the previous proposition did not use the fact that D2
I + σR is

the curvature of a superconnection. Hence an analogous argument shows that

e−t(D
2
Is

+σR) is an integral operator whose integral kernel can be written as
∞
∑

n=0

(−1)
(n+1)n

2 σntnpst (x, y)
n

with
(

y 7→ pst (·, y)n
)

∈ C∞([0, 1], C∞
R ([0, 1],M2d(Ω̂nAi)) for R = (Ps, 1− Ps).

Lemma 4.1.2. For every l,m, n ∈ IN0 and ε, δ > 0 there is C > 0 such that for
all x, y ∈ [0, 1] with d(x, y) > ε and all t > 0

|∂lx∂my pst (x, y)n| ≤ Ce−
d(x,y)2

(4+δ)t .

Proof. In degree n = 0 the assertion holds by Lemma 3.1.2.
Let η = ε/4.
Let χ : IR→ [0, 1] be a smooth function with χ(x) = 0 for x > η and χ(x) = 1

for x ≤ η/2.

Let kt be the integral kernel of e−tD
2
Is .

For l,m ∈ IN0

∂lx∂
m
y p

s
t (x, y)

n

=

∫ 1

0

∫ 1

0

(1− s)n−1∂lxkst(x, r)R(r)χ(d(x, r))∂my p
s
(1−s)t(r, y)

n−1drds

+

∫ 1

0

∫ 1

0

(1− s)n−1∂lxkst(x, r)R(r)
(

1− χ(d(x, r))
)

. . .

. . . χ(d(r, y))∂my p
s
(1−s)t(r, y)

n−1drds

+

∫ 1

0

∫ 1

0

(1− s)n−1∂lxkst(x, r)R(r)
(

1− χ(d(x, r))
)

. . .

. . .
(

1− χ(d(r, y))
)

∂my p
s
(1−s)t(r, y)

n−1drds .

We begin by estimating the first term on the right hand side: By induction
there is C > 0 such that for x, y ∈ [0, 1] with d(x, y) > ε, 0 < s < 1 and t > 0

‖Rχ(d(·, x))∂my ps(1−s)t(·, y)n−1‖Cl
R
≤ Ce−

(d(x,y)−η)2

(4+δ)t

in ClR([0, 1],M2d(Ω̂nAi)).
Since the operator e−stD

2
Is is uniformly bounded on ClR([0, 1],M2d(Ω̂nAi)), the

first term is bounded by Ce−
(d(x,y)−η)2

(4+δ)t .
An analogous bound exists for the second term: By Lemma 3.1.2 there is

C > 0 such that for all x, y ∈ [0, 1] with d(x, y) > ε and 0 < s < 1 and t > 0 in

CmR ([0, 1],M2d(Ω̂nAi))

‖
(

∂lxkst(x, ·)R
)∗(

1− χ(d(·, x))
)

χ(d(·, y))‖Cm
R
≤ Ce−

(d(x,y)−η)2

(4+δ)t .

Furthermore the integral kernel (y, r) 7→ (∂my p
s
(1−s)t(r, y)

n−1)∗ induces a uniformly

bounded family of operators fromCmR ([0, 1],M2d(Ω̂≤µAi)) to CR([0, 1],M2d(Ω̂≤µAi)).
The third term is bounded by Ce−

d(x,y)2

(4+δ)t since by Lemma 3.1.2

|∂lxkst(x, r)R(r)
(

1− χ(d(x, r))
)

| ≤ Ce−
d(x,r)2

(4+δ)st
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and by induction

|
(

1− χ(d(x, r))
)

∂my p
s
(1−s)t(r, y)

n−1| ≤ Ce−
d(r,y)2

(4+δ)(1−s)t

for all x, y, r ∈ [0, 1], all 0 < s < 1 and t > 0.
Hence there is C > 0 such that for all x, y ∈ [0, 1] and all t > 0

|∂lx∂my pst (x, y)n| ≤ Ce−
(d(x,y)−ε/2)2

(4+δ)t .

The assertion follows now from Lemma 3.1.6.
�

As in §3.3.2 we apply Duhamel’s principle in order to obtain an estimate for
the kernel pt(x, y)

n:
Recall the definitions of φk, γk, k = 0, 1, in §3.3.2.
By Lemma 1.4.3 we can find unitaries Uk ∈ M2d(A∞), k = 0, 1, with UkI0 =

I0Uk and UkPkU
∗
k = Ps.

Let W k
n (t) be the integral operator with integral kernel

wkt (x, y)
n := U∗

kp
s
t (x, y)

nUk

and denote by Wn(t) the integral operator of

wt(x, y)
n := γ0(x)w

0
t (x, y)

nφ0(y) + γ1(x)w
1
t (x, y)

nφ1(y) .

Set W0(0) := 1 and Wn(0) := 0 for n ≥ 1. Then Wn(t) is a strongly con-

tinuous family of operators on L2([0, 1], (Ω̂≤µAi)2d) for all n ∈ IN0. For f ∈
C∞
R ([0, 1], (Ω̂≤µAi)2d) the map [0,∞) → L2([0, 1], (Ω̂≤µAi)2d), t 7→ Wn(t)f ∈

L2([0, 1], (Ω̂≤µAi)2d) is even smooth.

Furthermore for t > 0 the range of Wn(t) is in C∞
R ([0, 1], (Ω̂≤µAi)2d).

Hence Duhamel’s principle yields for f ∈ C∞
R ([0, 1],A2d

i ):

(

e−tA
2
I −

∞
∑

n=0

σn(−1)
n(n+1)

2 tnWn(t)
)

f

= −
∫ t

0

e−sA
2
I
( d

dt
+A2

I

)

∞
∑

n=0

σn(−1)
n(n+1)

2 (t− s)nWn(t− s)f ds

=

∫ t

0

e−sA
2
I

∑

k=0,1

∞
∑

n=0

σn(−1)
n(n+1)

2 (t− s)n[γk, D
2
I ]sW

k
n (t− s)φkf ds

=
∞
∑

n=0

σn
n
∑

j=0

(−1)k(n,j)
∫ t

0

sn−j(t− s)jIn−j(s) . . .

· · ·
∑

k=0,1

(γ′k∂ + ∂γ′k)W
k
j (t− s)φkf ds

with k(n, j) = (n−j)(n−j+1)+j(j+1)
2 .

It follows that

(∗)
(

In(t)−Wn(t)
)

f

= t−n
n
∑

j=0

(−1)j(n−j)
∫ t

0

sn−j(t− s)jIn−j(s)
∑

k=0,1

(γ′k∂ + ∂γ′k)W
k
j (t− s)φkf ds .
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Proposition 4.1.3. For every l,m, n ∈ IN0 and every δ > 0 there is C > 0
such that

|∂lx∂my pt(x, y)n − ∂lx∂my wt(x, y)n| ≤ Ct
∑

k=0,1

e−
d(y,supp γ′

k
)2

(4+δ)t 1suppφk
(y)

for all t > 0 and all x, y ∈ [0, 1] .

Proof. The proof is as for e−tD
2
I (see Prop. 3.3.4).

From the previous lemma it follows that for every j ∈ IN0 and k = 0, 1 there is
C > 0 such that

‖(γ′k∂ + ∂γ′k)∂
m
y

(

wkt−s(·, y)jφk(y)
)

‖Cl
R
≤ Ce−

d(y,supp γ′
k)2

(4+δ)t 1suppφk
(y)

for all y ∈ [0, 1], all t > 0 and 0 < s < t. From this estimate, from the fact that

In−j(s) is a uniformly bounded family of operators on ClR([0, 1],M2d(Ω̂≤nAi)) and
from the equation (∗) one deduces as in the proof of Prop. 3.3.4 that

‖∂my pt(·, y)n − ∂my wt(·, y)n‖Cl
R
≤ Ce−

d(y,supp γ′
k)2

(4+δ)t 1suppφk
(y)

for all y ∈ [0, 1], all t > 0 and 0 < s < t. �

Corollary 4.1.4. For every l,m, n ∈ IN0 and ε > 0 there are c, C > 0 such
that

|∂lx∂my pt(x, y)n| ≤ Ce−
d(x,y)2

ct

for all x, y ∈ [0, 1] with d(x, y) > ε and all t > 0.

Proof. Note that the assertion is equivalent to the assertion that for every
l,m, n ∈ IN0 and ε > 0 there are c, C > 0 such that

|∂lx∂my pt(x, y)n| ≤ Ce−
1
ct

for all x, y ∈ [0, 1] with d(x, y) > ε and all t > 0. The estimate follows for 0 < t < 1
from the previous proposition and Lemma 4.1.2 since supp γ′k ∩ suppφk = ∅. For
t > 1 it holds by the estimate in Prop. 4.1.1. �

4.1.3. The η-form. In the following (DIpt)(x, y)
n denotes the integral kernel

of DIIn(t).

Lemma 4.1.5. For every n ∈ IN0 the integral
∫ ∞

0

t
n−1

2

∫ 1

0

tr(DIpt)(x, x)
ndxdt

is well-defined in Ω̂∗A∞/[Ω̂∗A∞, Ω̂∗A∞]s.

Proof. The integral converges in Ω̂≤µAi/[Ω̂≤µAi, Ω̂≤µAi]s for all n, µ, i ∈ IN0:
For n = 0 and t→ 0 the convergence follows from Cor. 3.3.8; for n > 0 and t→ 0
and for n ∈ IN0 and t → ∞ it follows from Prop. 4.1.1. For the convergence in

Ω̂∗A∞/[Ω̂∗A∞, Ω̂∗A∞]s apply Prop. 1.3.5. �

Let trσ(a + σb) := tr a for a, b ∈ M2d(Ω̂∗Ai) and let Trσ be the corresponding
trace on integral operators.
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Definition 4.1.6. The η-form of the superconnection AI is

η(AI) :=
1√
π

∫ ∞

0

t−
1
2 TrσDIe

−(AI
t )2dt ∈ Ω̂∗A∞/[Ω̂∗A∞, Ω̂∗A∞]s .

Since

η(AI) =
1√
π

∞
∑

n=0

(−1)n
∫ ∞

0

tn−
1
2

∫ 1

0

tr(DIpt)(x, x)
2n dxdt

the η-form is well-defined by the previous lemma.
For ε ∈]0, 1

2 ] let AI(ε) := U∗
ε dUε + σDI be a family of superconnections with

supp(Uε − 1) ⊂ [0, ε] ∪ [1− ε, 1] .

Proposition 4.1.7. The limit lim
ε→0

η(AI(ε)) exists and does not depend on the

choice of Uε.

Proof. Let Rε := [DI , U
∗
ε dUε] . It suffices to prove that for y, z ∈ [0, 1] and

s, t > 0 the limit

lim
ε→0

∫ 1

0

ks(y, x)Rε(x)kt(x, z) dx

exists and does not depend on the choice of Uε.
Let f(x) := ks(y, x) and g(x) := kt(x, z).
Then
∫ 1

0

f(x)Rε(x)g(x) dx

=

∫ 1

0

f(x)[I0∂x, U
∗
ε (x) dUε(x)]g(x) dx

=

∫ 1

0

∂x
(

f(x)I0U
∗
ε (x) dUε(x)g(x)

)

dx

−
∫ 1

0

f ′(x)I0U
∗
ε (x) dUε(x)g(x) dx−

∫ 1

0

f(x)I0U
∗
ε (x) dUε(x)g

′(x) dx

= f(1)I0U
∗
ε (1) dUε(1)g(1)− f(0)I0U

∗
ε (0) dUε(0)g(0)

−
∫ 1

0

f ′(x)I0U
∗
ε (x) dUε(x)g(x) dx−

∫ 1

0

f(x)I0U
∗
ε (x) dUε(x)g

′(x) dx

= −
∫ 1

0

f ′(x)I0U
∗
ε (x) dUε(x)g(x) dx−

∫ 1

0

f(x)I0U
∗
ε (x) dUε(x)g

′(x) dx .

Since for ε→ 0 and x ∈ (0, 1) the term U∗
ε (x) dUε(x)g(x) resp. U∗

ε (x) dUε(x)g
′(x)

converges to d g(x) resp. d g′(x), it follows that

lim
ε→0

∫ 1

0

f(x)Rε(x)g(x) dx = f(0)I0 d g(0)− f(1)I0 d g(1) .

�

Definition 4.1.8. We call

η(P0, P1) := lim
ε→0

η(AI(ε))

the η-form associated to the pair (P0, P1).
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4.2. The superconnection associated to DZ

Let (P0, P1) be a pair of transverse Lagrangian projections with Pi ∈M2d(A∞),

i = 1, 2, and let DZ be the operator on L2(Z, (Ω̂≤µAi)4d) with boundary conditions
(P0, P1) as in §3.4.

Let U ∈ C∞([0, 1],M2d(A∞)) be as in Prop. 2.2.1 with U(0)P0U(0)∗ = Ps and
U(1)P1U(1)∗ = 1 − Ps. We consider U as a function on Z depending only on the
variable x2 and set

W̃ := U ⊕ U ∈ C∞(Z,M2d(A∞)) .

We call AZ := W̃ ∗ d W̃ + DZ a superconnection associated to DZ and AZt :=

W̃ ∗ d W̃ +
√
tDZ the corresponding rescaled superconnection.

The curvature is

A2
Z = D2

Z + [W̃ ∗ d W̃ ,DZ ]s

= D2
Z + W̃ ∗[d, W̃ c(dx2)∂x2W̃

∗]sW̃

= D2
Z − c(dx1)W̃

∗[d, W̃ I∂x2W̃
∗]sW̃

= D2
Z − c(dx1)W̃

∗ d(W̃ I∂x2W̃
∗)W̃

= D2
Z + c(dx1)(R ⊕ (−R))

with R = −U∗ d(UI0(∂U
∗))U .

Let R̃ = c(dx1)(R ⊕ (−R)). Then R̃ ∈ C∞(Z,M4d(Ω̂≤µAi)) and R̃∗ = R̃.

We have a holomorphic semigroup e−tA
2
Z on L2(Z, (Ω̂≤µAi)4d).

From §3.4 recall that e−tD
2
Z = e−tD̃

2
I e−t∆IR .

By Prop. 4.1.1 the operator

In(t) =

∫

∆n

e−u0tD
2
IRe−u1tD

2
IR . . . e−untD

2
I du0 . . . dun

is an integral operator. Its integral kernel is denoted by pIt (x, y)
n.

Since e−t∆IR commutes with R̃ and c(dx1) commutes with e−tD
2
Z and R⊕(−R),

we obtain from Volterra development:

e−tA
2
Z =

∞
∑

n=0

(−1)ntn
∫

∆n

e−u0tD
2
Z R̃e−u1tD

2
Z R̃ . . . e−untD

2
Z du0 . . . dun

=
∞
∑

n=0

(−1)ntne−t∆IR

∫

∆n

e−u0tD̃
2
I R̃e−u1tD̃

2
I R̃ . . . e−untD̃

2
I du0 . . . dun

=

∞
∑

n=0

(−1)ntnc(dx1)
ne−t∆IR

(

In(t)⊕ (−1)nIn(t)
)

.

We define

pZt (x, y)n := c(dx1)
n 1√

4πt
e−

(x1−y1)2

4t

(

pIt (x2, y2)
n ⊕ (−1)npIt (x2, y2)

n
)

.

The integral kernel of e−tA
2
Z is

∞
∑

n=0

(−1)ntnpZt (x, y)n
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and the integral kernel of e−(AZ
t )2

∞
∑

n=0

(−1)nt
n
2 pZt (x, y)n .

Note that for all multi-indices α, β ∈ IN2
0

trs∂
α
x ∂

β
y p

Z
t (x, y)n = 0 .

Furthermore
(DZ)xp

Z
t (x, y)n = c(dx1)(∂x1 + I∂x2)p

Z
t (x, y)n .

Since trsc(dx1)∂x1p
Z
t (x, y)n vanishes for x1 = y1 and trsc(dx1)I∂x2p

Z
t (x, y)n van-

ishes for all x, y ∈ Z,
trs(DZ)xp

Z
t (x, y)n = 0

if x = y.
Furthermore the integral kernel pZt (x, y)n satisfies the following Gaussian esti-

mate:

Lemma 4.2.1. Let α, β ∈ IN2
0. For every ε > 0 there are c, C > 0 such that for

all x, y ∈ Z with d(x, y) > ε and all t > 0

|∂αx ∂βy pZt (x, y)n| ≤ Ce− d(x,y)2

ct .

Proof. The assertion follows from Prop. 4.1.1 and Cor. 4.1.4. The arguments
are as in the proof of Lemma 3.4.4. �

4.3. The superconnection A(ρ)t associated to D(ρ)

4.3.1. The family e−A(ρ)2t . In §3.5.1 we fixed r0, b0 > 0 such that

suppkK ∩
(

(F (r0, b0)×M) ∪ (M × F (r0, b0))
)

= ∅ .
Let W ∈ C∞(M,End+E ⊗ A∞) be as in §2.1.2 such that W is parallel on {x ∈
M | d(x, ∂M) > b0}. Then [W,K]s = 0.

We define a superconnection associated to D(ρ) on the ZZ/2-graded Ai-module
L2(M,E ⊗Ai) by

A(ρ) := W ∗ dW +D(ρ) .

The corresponding rescaled superconnection is

A(ρ)t := W ∗ dW +
√
tD(ρ) .

The curvature of A(ρ) is

A(ρ)2 = W ∗ d2W + [D(ρ),W ∗ dW ]s +D(ρ)2

= D(ρ)2 +W ∗[d,Wc(dW ∗)]sW

=: D(ρ)2 +R .

We used Prop. 2.1.1 and [W,K]s = 0.

Then R ∈ C∞(M,EndE ⊗ Ω̂≤1Ai) with R∗ = R. In the flat region

R|F = W ∗[d,Wc(e2)∂e2W
∗)]sW

= −c(e1)W ∗ d(WI∂e2W
∗)W .

Furthermore R vanishes on {x ∈M | d(x, ∂M) > b0}.
For every k ∈ ZZ/6 the restriction of R to Uk is of the form c(e1)(R ⊕ (−R))

with R ∈ C∞(Uk,M2d(Ω̂≤1Ai)) and R is independent of the variable xk2 .
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The rescaled curvature is

A(ρ)2t = tD(ρ)2 +
√
tR .

As expected, A(ρ)2 and A(ρ)2t are right Ω̂≤µAi-module homomorphisms.
Since A(ρ)2 is a bounded perturbation of D(ρ)2, it generates a holomorphic

semigroup e−tA(ρ)2 on L2(M,E ⊗ Ω̂≤µAi).
In the following we assume that t ≥ 0.
By Volterra development

e−tA(ρ)2 =
∞
∑

n=0

(−1)ntn
∫

∆n

e−u0tD(ρ)2Re−u1tD(ρ)2R . . . e−untD(ρ)2 du0 . . . dun

=:

∞
∑

n=0

(−1)ntnIn(ρ, t) .

It follows that

e−A(ρ)2t =

∞
∑

n=0

(−1)ntn/2In(ρ, t) .

For ρ 6= 0 the family t 7→ In(ρ, t) is uniformly bounded on L2(M,E ⊗ Ω̂≤µAi).
By Cor. 3.5.13 it acts as a strongly continuous family of operators on CmR (M,E ⊗
Ω̂≤µAi) and there are C, l > 0 such that the action is bounded by C(1 + t)l.

4.3.2. The integral kernel of e−A(ρ)2t . In this section we prove that In(ρ, t)
is an integral operator for t > 0. As usual we construct an approximation of the
family In(ρ, t) by a family of integral operators and compare it with In(ρ, t) by
Duhamel’s principle.

Let U(r0, b0) = {Uk}k∈J , {φk}k∈J and {γk}k∈J be as in §3.5.1.
For k ∈ ZZ/6 the function W |Uk

: Uk → M4d(A∞) does not depend on the

coordinate xk1 . We extend it to a section W̃k : Zk → M4d(A∞) independent of xk1
and define the superconnection AZk

:= W̃ ∗
k d W̃k+DZk

, which coincides on Uk with
the superconnection A(ρ).

For k ∈ ZZ/6 and n ∈ IN0 let w(ρ)kt (x, y)
n be the restriction of pZk

t (x, y)n to
Uk × Uk.

Let furthermorew(ρ)♣t (x, y)0 be the restriction of the integral kernel of e−tDN (ρ)2

to U♣ × U♣ and set w(ρ)♣t (x, y)n = 0 for n > 0.
The reason for this is that A(ρ)2 equals D(ρ)2 on U♣.
We extend w(ρ)kt (x, y)

n by zero to M ×M and set

w(ρ)t(x, y)
n :=

∑

k∈J
γk(x)w(ρ)kt (x, y)

nφk(y) .

Write Wn(ρ, t) for the corresponding integral operator. It is a bounded operator

on L2(M,E ⊗ Ω̂≤µAi) and on CmR (M,E ⊗ Ω̂≤µAi).
Set W0(ρ, 0) = 1 and Wn(ρ, 0) = 0 for n > 0.

Then for f ∈ L2(M,E ⊗ Ω̂≤µAi) the family Wn(ρ, t)f ∈ L2(M,E ⊗ Ω̂≤µAi)
depends continuously on t for all t ∈ [0,∞), and for f ∈ C∞

Rc(M,E ⊗ Ai) even
smoothly.
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For f ∈ C∞
Rc(M,E ⊗Ai) Duhamel’s principle yields:

(

e−tA(ρ)2 −
∞
∑

n=0

(−1)ntnWn(ρ, t)
)

f

= −
∫ t

0

e−sA(ρ)2(
d

dt
+A(ρ)2)

∑

k∈J

∞
∑

n=0

(−1)n(t− s)nγkW k
n (ρ, t− s)φkf ds

=

∫ t

0

e−sA(ρ)2
∑

k∈J
[γk, D(ρ)2]s

∞
∑

n=0

(−1)n(t− s)nW k
n (ρ, t− s)φkf ds

=
∞
∑

n=0

(−1)n
∫ t

0

n
∑

m=0

sn−m(t− s)mIn−m(ρ, s) . . .

· · ·
∑

k∈J
[γk, D(ρ)2]sW

k
m(ρ, t− s)φkf ds .

Hence
(

In(ρ, t)−Wn(ρ, t)
)

f

= −t−n
∫ t

0

n
∑

m=0

sn−m(t− s)mIn−m(ρ, s)
∑

k∈J
[γk, D(ρ)2]sW

k
m(ρ, t− s)φkf ds .

In the following proposition | · | denotes the norm on the fibers of (E⊠E∗)⊗Ω̂≤µAi.
Proposition 4.3.1. The operator In(ρ, t) is an integral operator for t > 0. Let

p(ρ)t(x, y)
n be its integral kernel.

(1) The map (0,∞)→ C∞(M ×M, (E⊠E∗)⊗ Ω̂nA∞), t 7→ p(ρ)nt is smooth.
(2) p(ρ)t(x, y)

n = (p(ρ)t(y, x)
n)∗.

(3) For every T > 0 there are C, c > 0 such that

|p(ρ)t(x, y)n − w(ρ)t(x, y)
n| ≤ Ct

(

|ρ|1U♣(y) +
∑

k∈J
e−

d(y,supp dγk)2

ct 1suppφk
(y)
)

for all 0 < t < T , ρ ∈ [−1, 1] and all x, y ∈M .
(4) Let ρ 6= 0. Then there are C, c > 0 and j ∈ IN such that

|p(ρ)t(x, y)n − w(ρ)t(x, y)
n| ≤ Ct(1 + t)je−

d(y,U♣)2

ct

for all t > 0 and all x, y ∈M .

Statements analogous to (3), (4) hold for the partial derivatives of p(ρ)t(x, y)
n in

x of y with respect to unit vector fields on M .

Proof. The proof follows the proof of Prop. 3.5.11.
In order to show the existence of the integral kernel and (1) we need only

investigate In(ρ, t)−Wn(ρ, t).
For f ∈ C∞

Rc(M,E ⊗Ai)
(

In(ρ, t)−Wn(ρ, t)
)

f

= t−n
∫ t

0

∫

M

n
∑

m=0

sn−m(t− s)mIn−m(ρ, s)
∑

k∈J
[c(dγk), D]sw(ρ)kt−s(·, y)mφk(y)f(y) dyds .
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For ρ ∈ IR and t > 0 the family In−m(ρ, s) is uniformly bounded on CνR(M,E ⊗
Ω̂≤µAi) in s < t.

The function

τ 7→
(

y 7→
∑

k∈J
[c(dγk), D]sw(ρ)kτ (·, y)mφk(y)

)

is smooth from (0,∞) to Cl(M,CνRc(M,E ⊗ Ω̂≤m+1Ai)⊗ E∗) for any l, ν ∈ IN0.
If k ∈ ZZ/6, then by Lemma 4.2.1 there are c, C > 0 such that for all y ∈ M

and 0 < τ

‖[c(dγk), D]sw
k
τ (·, y)mφk(y)‖Cν ≤ Ce−

d(y,supp dγk)2

cτ 1suppφk
(y) .

Furthermore w(ρ)♣τ (x, y)m = 0 for m > 0. The kernel w(ρ)♣τ (x, y)0 is equal to the
kernel e(ρ)♣τ (x, y) in the proof of Prop. 3.5.11 and was estimated there. It follows
that for T, δ > 0 there is C > 0 such that

‖[c(dγk), D]sw(ρ)♣τ (·, y)0φ♣(y)‖Cν ≤ C
(

e−
d(y,supp dγ♣)2

(4+δ)τ + τ |ρ|
)

1suppφ♣(y)

for y ∈M , ρ ∈ [−1, 1] and 0 < τ < T .
Analogous estimates hold for the derivatives in y and also in τ by the heat

equation. This shows that the function above extends smoothly to τ = 0. The
existence and (1) and (3) follow now by the usual arguments.

Assertion (2) follows from In(ρ, t)∗ = In(ρ, t).
(4) follows from the estimates by taking into account that for every ρ 6= 0 there

is C > 0 and j ∈ IN such that the norm of In(ρ, t) on ClR(M,E⊗Ω̂≤µAi) is bounded
by C(1 + t)j for all t > 0. �

We deduce the following estimates for later use:

Corollary 4.3.2. Let ρ 6= 0. For every ε > 0 and m,n ∈ IN0 there are
c, C > 0 and j ∈ IN such that for t > 0 and x, y ∈M with d(x, y) > ε

|D(ρ)mx p(ρ)t(x, y)
n| ≤ C(1 + t)j

(

e−
d(x,y)2

ct + e−
d(y,U♣)2

ct

)

.

Proof. This follows from the proposition and Lemma 4.2.1. �

Corollary 4.3.3. Let k ∈ ZZ/6.

(1) For every T > 0 and m,n ∈ IN0 there are c, C > 0 such that for all
x, y ∈ Uk, for 0 < t < T and ρ ∈ [−1, 1]

|D(ρ)mx p(ρ)t(x, y)
n − (DZk

)mx p
Zk
t (x, y)n| ≤ Ce−

d(y,U♣)

ct .

(2) For every ρ 6= 0 and n ∈ IN0 there are c, C > 0 and j ∈ IN such that for
all x, y ∈ Uk and t > 0

|D(ρ)mx p(ρ)t(x, y)
n − (DZk

)mx p
Zk
t (x, y)n| ≤ C(1 + t)je−

d(y,U♣)

ct .

4.4. The index theorem and its proof

4.4.1. The generalized supertrace. In the following trs denotes the super-
trace on the fibers of (E ⊗ E∗)⊗ Ω̂≤µAi and Trs the corresponding supertrace for
trace class operators (see §1.3.2).

Let χ : IR→ [0, 1] be a smooth function with χ(x) = 1 for x ≤ 0 and χ(x) = 0
for x ≥ 1. Let φr : M → [0, 1], φr(x) := χ(d(Mr, x)) for r > 0.
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Definition 4.4.1. Let K be a bounded operator on L2(M,E ⊗ Ω̂≤µAi) such
that φrKφr is a trace class operator for all r ≥ 0. Then we define the generalized
supertrace

TrsK := lim
r→∞

Trs
(

φrKφr)

if the limit exists.

For trace class operators the generalized supertrace coincides with the usual
one. Note that in general it does not vanish on supercommutators.

Proposition 4.4.2. For ρ ∈ IR and t > 0 the generalized supertraces

Trse
−A(ρ)2t

and

TrsD(ρ)e−A(ρ)2t

exist.

Proof. We show the assertion for e−A(ρ)2t , the proof for D(ρ)e−A(ρ)2t is anal-
ogous.

The operator φre
−A(ρ)2tφr is trace class for t > 0 since

φre
−A(ρ)2tφr = (φre

−A(ρ)2t/2)(e−A(ρ)2t/2φr)

is a product of Hilbert-Schmidt operators. The operators φrIn(ρ, t)φr are also trace
class for t > 0.

We show that trsp(ρ)t(x, x)
n is in L1(M, Ω̂≤µAi/[Ω̂≤µAi, Ω̂≤µAi]s).

By Cor. 4.3.3 there are c, C > 0 such that

|p(ρ)t(x, x)n − pZk
t (x, x)n| ≤ Ce−cd(x,U♣)2

for all x ∈ Uk.
Since trsp

Zk
t (x, x)n = 0 by §4.2,

|trsp(ρ)t(x, x)n| ≤ Ce−cd(x,U♣)2 .

Now the assertion follows. �

4.4.2. The limit of Trse
−A(ρ)2t for t → ∞. This section is devoted to the

proof of

Theorem 4.4.3. Let ρ 6= 0.
Let P0 be the projection onto the kernel of D(ρ). Then for T > 0 there is C > 0

such that for all t > T

|Trse
−A(ρ)2t −

∞
∑

n=0

(−1)n
1

n!
Trs(P0W dW ∗P0)

2n| ≤ Ct− 1
2

and

|TrsD(ρ)e−A(ρ)2t | ≤ Ct−1

in Ω̂≤µAi/[Ω̂≤µAi, Ω̂≤µAi]s.
Note that (P0W dW ∗P0)

2n = W (W ∗P0W )(d(W ∗P0W ))2nW ∗ by Lemma 5.3.4,

hence (P0W dW ∗P0)
2n is a trace class operator on L2(M,E ⊗ Ω̂≤µAi).

The proof is subdivided into some lemmata.
Throughout the section ρ 6= 0 is fixed.
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In the following | · | denotes the norm on Ω̂≤µAi/[Ω̂≤µAi, Ω̂≤µAi]s resp. the

fiberwise norm of (E ⊠E∗)⊗ Ω̂≤µAi (depending on the context), and ‖ · ‖ denotes

the operator norm of B(L2(M,E ⊗ Ω̂≤µAi)). Furthermore we make use of the
Hilbert-Schmidt norm ‖ ‖HS and the trace class norm ‖ ‖TR, which are defined in
§5.2.4 and §5.2.5.

Lemma 4.4.4. Let ν = 0, 1. For any T > 0 there are ε, C > 0 such that for all
t > T

|TrsD(ρ)νe−A(ρ)2t − Trsφ
2
tD(ρ)νe−A(ρ)2t | ≤ Ce−εt .

Proof. We prove the case ν = 0, the case ν = 1 can be proved analogously.
By Cor. 4.3.3 there are c, C, r > 0 such that

|p(ρ)t(x, x)n − pZk
t (x, x)n| ≤ C(1 + t)je−

d(x,Mr)2

ct

for t > 0 and x ∈ Uk with k ∈ ZZ/6.
Hence for T > 0 there are c, C > 0 such that for all x ∈M and t > T

|trsp(ρ)t(x, x)n| ≤ Ce−
d(x,Mr)2

ct

and thus there are C, ε > 0 such that for all t > r

|Trse
−A(ρ)2t − Trsφ

2
t e

−A(ρ)2t | = |Trs(1− φ2
t )e

−A(ρ)2t |

≤ C

∫ ∞

t

e−
(r′−r)2

ct dr′

≤ Ce−εt .

�

Let P1 := 1− P0.

Lemma 4.4.5. Let ν = 0, 1 and k ∈ IN0. Then the integral
∫

∆k

φtD(ρ)νP1e
−u0tD(ρ)2RP1e

−u1tD(ρ)2R . . .RP1e
−uktD(ρ)2φt du0 . . . duk

converges in the space of trace class operators and for T > 0 there are C, ε > 0 such
that for all t > T the norm

‖
∫

∆k

(

φtD(ρ)νP1e
−u0tD(ρ)2RP1e

−u1tD(ρ)2R . . .RP1e
−uktD(ρ)2φt

)

du0 . . . duk‖TR

is bounded by Ce−εt.

Proof. Note that for any (u0, . . . uk) ∈ ∆k we can find i ∈ {0, 1, . . . , k} such
that ui ≥ 1

k+1 .
We begin by showing that for any T > 0 there are C, ε > 0 such that for

1
k+1 ≤ ui ≤ 1, for 0 < u0, . . . , ui−1 ≤ 1 and for t > T the family

φtD(ρ)νP1e
−u0tD(ρ)2RP1e

−u1tD(ρ)2R . . .RP1e
−ui

2 tD(ρ)2

is a family of Hilbert-Schmidt operators with Hilbert-Schmidt norm bounded by

Cu
− ν

2
0 e−εt. If not specified the estimates in the following hold for 1

k+1 ≤ ui ≤ 1,
for 0 < u0, . . . , ui−1 ≤ 1 and for t > T .
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We have that

φtD(ρ)νP1e
−u0tD(ρ)2RP1e

−u1tD(ρ)2R . . .RP1e
−ui

2 tD(ρ)2

= φtD(ρ)νP1e
−u0tD(ρ)2RP1e

−u1tD(ρ)2R . . .RP1e
−ui

2 tD(ρ)2φ(t+6)

+ φtD(ρ)νP1e
−u0tD(ρ)2R . . . P1e

−ui−1tD(ρ)2Rφ(t+6)P1e
−ui

2 tD(ρ)2(1− φt+6)

+φtD(ρ)νP1e
−u0tD(ρ)2R . . . P1e

−ui−1tD(ρ)2R(1 − φ(t+6))P1e
−ui

2 tD(ρ)2(1 − φ(t+6)) .

Consider the first term on the right hand side. By Cor. 3.5.15 the Hilbert-Schmidt

norm of e−
ui
4 tD(ρ)2φ(t+6) is bounded by Ct.

Furthermore by Prop. 3.5.9 and Cor. 3.5.12 there are ε, C > 0 such that the
operator norm of

φtD(ρ)νP1e
−u0tD(ρ)2RP1e

−u1tD(ρ)2R . . .RP1e
−ui

4 tD(ρ)2

is bounded by Cu
− ν

2
0 e−εt.

Hence (see Prop. 5.2.13) the first term is a family of Hilbert-Schmidt operators

with Hilbert-Schmidt norm bounded by Cu
− ν

2
0 e−εt.

In the second term the factor

φ(t+6)P1e
−ui

2 tD(ρ)2(1− φ(t+6)) = (φ(t+6)e
−ui

4 tD(ρ)2)P1e
−ui

4 tD(ρ)2(1− φ(t+6))

is a Hilbert-Schmidt operator bounded by Ce−εt for some C, ε > 0. Hence the

second term is bounded in the Hilbert-Schmidt norm by Cu
− ν

2
0 e−εt.

The estimate of the third term requires more effort. We prove by induction on
j ∈ IN that there is C > 0 such that

φtD(ρ)νP1e
−u0tD(ρ)2RP1e

−u1tD(ρ)2R . . . P1e
−ujtD(ρ)2(1 − φ(t+6))

is a Hilbert-Schmidt operator with Hilbert-Schmidt norm bounded by Cu
− ν

2
0 (1+ t)

for t > T and 0 < u0, . . . , uj ≤ 1. Then it follows that the third term is uniformly

bounded by Ce−εt for some C, ε > 0 since P1e
−ui

2 tD(ρ)2 is exponentially decaying
for t→∞ by Prop. 3.5.9.

For j = 0 the assertion follows from Cor. 3.5.15 by

φtD(ρ)νP1e
−u0tD(ρ)2(1− φ(t+6))

= φtD(ρ)νe−u0tD(ρ)2(1− φ(t+6))− φtD(ρ)νP0(1− φ(t+6)) .

Now assume the assertion is true for j − 1. We have that

φtP1D(ρ)νe−u0tD(ρ)2RP1 . . .RP1e
−ujtD(ρ)2(1− φ(t+6))

= φtP1D(ρ)νe−u0tD(ρ)2P1RP1 . . .

. . . P1e
−uj−1tD(ρ)2P1Rφ(t+3)P1e

−ujtD(ρ)2(1− φ(t+6))

+ φtP1D(ρ)νe−u0tD(ρ)2P1 . . .

. . . P1e
−uj−1tD(ρ)2P1(1− φ(t+3))RP1e

−ujtD(ρ)2(1− φ(t+6)) .

Both terms on the right hand side are bounded in the Hilbert-Schmidt norm

by Cu
−ν/2
0 (1 + t) for all t > T and 0 < u0, . . . , uj ≤ 1: the first term since

φ(t+3)P1e
−ujtD(ρ)2(1 − φ(t+6)) is bounded by C(1 + t) by Cor. 3.5.15, the second

term by induction.
This shows the claim from the beginning of the proof.
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An analogous argument yields that for any T > 0 there are C, ε > 0 such that
the family

P1e
−ui

2 tD(ρ)2RP1e
−ui+1tD(ρ)2R . . . P1e

−uktD(ρ)2φt

is a family of Hilbert-Schmidt operators with Hilbert-Schmidt norm bounded by
Ce−εt for all ui >

1
k+1 , 0 ≤ ui+1, . . . , uk ≤ 1 and t > T .

It follows that the integral
∫

∆k

φtP1D(ρ)νe−u0tD(ρ)2RP1e
−u1tD(ρ)2R . . .RP1e

−uktD(ρ)2φt du0 . . . duk

converges in the trace class norm and is bounded by Ce−εt for some C, ε > 0 and
all t > T . �

We have that

φtD(ρ)νe−A(ρ)2tφt =

∞
∑

k=0

(−1)ktk/2 φtD(ρ)νIk(ρ, t)φt .

The decomposition e−uitD(ρ)2 = P0 + P1e
−uitD(ρ)2 induces a decomposition of

D(ρ)νIk(ρ, t) into a sum of 2k+1 terms. For 0 ≤ j ≤ k + 1 let P νjk(t) be the

sum of those terms with exactly j factors of the form P1e
−uitD(ρ)2 .

Thus

D(ρ)νe−A(ρ)2t =

∞
∑

k=0

(−1)kt
k
2

k+1
∑

j=0

P νjk(t) .

Note that Prop. 3.5.5 implies that P0 is a trace class operator, hence the operators
P νjk(t) with j 6= k + 1 are trace class for t 6= 0.

From P0RP0 = P0[W
∗ dW,D(ρ)]sP0 = 0 it follows that P νjk(t) = 0 for j < k

2 .
Furthermore for k even

P νk
2 k

(t) =

∫

∆k

D(ρ)νP0RP1e
−u1tD(ρ)2RP0RP1e

−u3tD(ρ)2RP0 . . .

. . . P0RP1e
−uk−1tD(ρ)2RP0 du0 . . . duk .

Since D(ρ)P0 = 0, it follows that P 1
k
2 k

(t) = 0.

Moreover by the previous lemma

‖φtP ν(k+1)k(t)φt‖TR ≤ Ce−εt

for t large.
Now we study the behavior of the remaining cases for large t.

Lemma 4.4.6. Let ν = 0, 1 and j, k ∈ IN0 with k
2 ≤ j ≤ k. For every T > 0

there is C > 0 such that for t > T

‖P νjk(t)‖TR ≤ Ct−j .
If k is odd, then for every n ∈ IN and T > 0 there is C > 0 such that for t > T

|Trsφ
2
tP

ν
k+1
2 k

(t)| ≤ Ct−n .

Proof. For j ≤ k the operator P νjk(t) is a sum of terms of the form
∫

∆k

(A(u0, . . . ui, t)P0)(P0B(ui+1, . . . uk, t)) du0 . . . duk ,
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where A and B are continuous families of bounded operators on L2(M,E⊗ Ω̂≤µAi)
for u0 6= 0.

Since P0 is a Hilbert-Schmidt operator by Prop. 3.5.5, Prop. 5.2.13 implies
that

‖
∫

∆k

A(u0, . . . ui, t)P0

)(

P0B(ui+1, . . . uk, t) du0 . . . duk‖TR

≤ C‖P0‖2HS
∫

∆k

‖A(u0, . . . ui, t)‖‖B(ui+1, . . . uk, t)‖ du0 . . . duk .

Let ω > 0 be such that there is C > 0 with ‖P1e
−tD(ρ)2‖ ≤ Ce−ωt for all t > 0.

Then

‖P νjk(t)‖TR

≤ C

∫ 1

0

du0 (u0t)
−ν/2e−ωu0t

∫

(1−u0)∆k−1

exp(−
j−1
∑

i=1

ωuit) du1 . . . duk

= C

∫ 1

0

du0 (u0t)
−ν/2e−ωu0t

∫ 1−u0

0

e−ωst vol(s∆j−2) vol
(

(1 − u0 − s)∆k−j) ds

= C

∫ 1

0

du0 (u0t)
−ν/2e−ωu0t

∫ 1−u0

0

e−ωst
sj−2(1− u0 − s)k−j

(j − 2)!(k − j)! ds

= Ct−j
∫ t

0

dy y−ν/2e−ωy
∫ t−y

0

e−ωx
xj−2(1− y/t− x/t)k−j

(j − 2)!(k − j)! dx

≤ Ct−j
(

∫ ∞

0

y−ν/2e−ωy dy
)(

∫ ∞

0

e−ωx
xj−2

(j − 2)!(k − j)! dx
)

≤ Ct−j .

This shows the first statement.
For k odd

Trsφ
2
tP

ν
k+1
2 k

(t)

=

∫

∆k

Trsφ
2
tD(ρ)νP0RP1e

−u1tD(ρ)2RP0 . . . P0RP1e
−uktD(ρ)2 du0 . . . duk

+

∫

∆k

TrsD(ρ)νP1e
−u0tD(ρ)2RP0RP1 . . . e

−uk−1tD(ρ)2RP0φ
2
t du0 . . . duk .

By Prop. 3.5.5 we can estimate ‖(1 − φ2
t )P0‖HS and ‖P0(1 − φ2

t )‖HS by Ct−n.
The second estimate follows then from the cyclicity of the supertrace since P0P1 =
P1P0 = 0. �

From the estimates so far obtained the second assertion of the theorem follows.
Furthermore the previous lemmas imply that for t > T there is C > 0 such

that

|Trsφ
2
t e

−A(ρ)2t −
∞
∑

n=0

tn Trsφ
2
tP

0
n(2n)(t)| ≤ Ct−

1
2 .

Hence it remains to study the behavior of tnPn(2n)(t) for t→∞.
Recall that

P 0
n(2n)(t) =

∫

∆2n

P0RP1e
−u0tD(ρ)2RP0RP1e

−u1tD(ρ)2RP0 . . .

. . . P0RP1e
−un−1tD(ρ)2RP0 du0 . . . du2n .
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By Prop. 3.5.5 for any j ∈ IN there is C > 0 such that

‖P0 − φ2
tP0‖HS ≤ Ct−j ,

hence

|Trsφ
2
tP

0
n(2n)(t)− TrsP

0
n(2n)(t))| ≤ Ct−j .

In the next lemma we show that for T > 0 there is C > 0 such that

‖tnP 0
n(2n)(t)− (−1)n

1

n!
(P0WdW ∗P0)

2n‖ ≤ Ct−1

in B(L2(M,E ⊗ Ω̂≤µAi)) for t > T . This implies that there is C > 0 such that for
t > T

|tnTrsP
0
n(2n)(t)− (−1)n

1

n!
Trs(P0WdW ∗P0)

2n|

≤ C‖P0‖2HS‖tnP 0
n(2n)(t)− (−1)n

1

n!
(P0WdW ∗P0)

2n‖ ≤ Ct−1 .

Both estimates combined yield the first assertion of the theorem.

Lemma 4.4.7. Let k, n ∈ IN0 with n ≤ k. For t→∞ the term

tn
∫

∆k

P0RP1e
−u0tD(ρ)2P1RP0RP1e

−u1tD(ρ)2RP0 . . .

. . . P0RP1e
−un−1tD(ρ)2RP0 du0 . . . duk

converges in B(L2(M,E ⊗ Ω̂≤µAi)) to

(−1)n
1

(k − n)!
(P0W dW ∗P0)

2n

with O(t−1).

Proof. For i, j ∈ {0, 1} write idj := PiW dW ∗Pj .
By R = [W ∗ dW,D(ρ)]s

P1RP0 = P1D(ρ)W ∗ dWP0 ,

P0RP1 = P0W
∗ dWD(ρ)P1 ,

thus

P0RP1e
−tD(ρ)2RP0 = 0d1D(ρ)2e−tD(ρ)2

1d0 .

This term is uniformly bounded for t→ 0. Hence the integral
∫ t

0
0d1D(ρ)2e−sD(ρ)2

1d0 ds

converges and equals 0d1(e
−tD(ρ)2 − 1) 1d0.

For n ∈ IN and k ≥ n

tn
∫

∆k

P0RP1e
−u0tD(ρ)2RP0RP1e

−u1tD(ρ)2RP0 . . .

. . . P0RP1e
−un−1tD(ρ)2RP0 du0 . . . duk

= tn
∫

∆k
0d1D(ρ)2e−u0tD(ρ)2

1d00d1D(ρ)2e−u1tD(ρ)2
1d0 . . .

. . . 0d1D(ρ)2e−un−1tD(ρ)2
1d0 du0 . . . duk .



4.4. THE INDEX THEOREM AND ITS PROOF 79

Set

Dn := {(u0, u1, . . . un−1) ∈ IRn |
n−1
∑

i=0

ui ≤ 1; 0 ≤ ui ≤ 1, i = 0, . . . , n− 1} .

By integration on un, . . . , uk the previous term equals

(∗) tn
∫

Dn

. . . 0d1D(ρ)2e−un−1tD(ρ)2
1d0 vol((1−

n−1
∑

i=0

ui)∆
k−n) du0 . . . dun−1 .

We claim that (∗) converges to 1
(k−n)! (0d11d0)

n with O(t−1). Then it follows from

(W ∗ dW )2 = 0 that 0d11d0 = −0d
2
0. This shows the assertion of the lemma.

For n = 1 and k = 1 the term (∗) equals 1.
For n = 1 and k > 1 the claim follows by induction since by partial integration
∫ 1

0
0d1D(ρ)2e−u0tD(ρ)2

1d0 vol((1− u0)∆
k−1) du0

= 0d1e
−tD(ρ)2

1d0 +

∫ 1

0
0d1D(ρ)2e−u0tD(ρ)2

1d0 vol((1 − u0)∆
k−2) du0

because of

∂u0 vol((1 − u0)∆
k−1) = − vol((1 − u0)∆

k−2) .

Furthermore 0d1e
−tD(ρ)2

1d0 decays exponentially for t→∞.
For general k and n the term (∗) equals, by partial integration on un−1,

tn
∫

∆n−1

. . . 0d1

[

−t−1e−xtD(ρ)2 vol((1 −
n−2
∑

i=0

ui − x)∆k−n)
]un−1

0
1d0 du0 . . . dun−1

+ tn−1

∫

Dn

. . . 0d1e
−un−1tD(ρ)2

1d0 ∂un−1 vol((1−
n−1
∑

i=0

ui)∆
k−n) du0 . . . dun−1 .

Note that the first integral vanishes for x = un−1.
We obtain

tn−1

∫

Dn−1

. . . 0d1D(ρ)2e−un−2tD(ρ)2
1d00d11d0 vol((1 −

n−2
∑

i=0

ui)∆
k−n) du0 . . . dun−2

−tn−1

∫

Dn−1

. . . 0d1e
−un−1tD(ρ)2

1d0 vol((1−
n−1
∑

i=0

ui)∆
k−n−1) du0 . . . dun−1 .

There are C, ω > 0 such that the last term is bounded by

Ctn−1

∫ 1

0

e−sωt vol(s∆n−1) vol((1− s)∆k−n−1) ds ,

hence it vanishes with O(t−1) for t → ∞ (by a calculation as the proof of the
previous lemma).

By induction the first term converges with O(t−1) to

1

(k − 1− (n− 1))!
(0d11d0)

n =
1

(k − n)!
(0d11d0)

n .

�
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4.4.3. The limit of Trse
−A2

t for t→ 0. Recall the definition of N from §2.5.

Theorem 4.4.8. (1) lim
t→0

Trse
−A2

t = N .

(2) lim
t→0

TrsDe
−A2

t = 0 .

Proof. (1) By Prop. 4.3.1

lim
t→0

Trse
−A2

t =

∞
∑

n=0

(−1)n lim
t→0

t
n
2

∑

k∈J

∫

Uk

γk(x) trsw(0)kt (x, x)
nφk(x) dx .

Now trsw(ρ)kt (x, x)
n = 0 for k ∈ ZZ/6 and for all n ∈ IN0 and t > 0 by §4.2.

Furthermore w(0)♣t (x, y)n = 0 for n > 0.

Recall that U♣ contains the isolated point ∗. Since w(0)♣t (x, y)0 is the integral

kernel of e−tD
2
N ,

lim
t→0

trsw(0)♣t (x, x)0 = N1∗(x)

in C(U♣) by the local index theorem ([BGV], Th. 4.2) and by ch(E/S) =
ch((C+)d) + ch((C−)d) = 0.

(2) Prop. 4.3.1 implies that

lim
t→0

TrsDe
−A2

t =
∞
∑

n=0

(−1)n lim
t→0

t
n
2 TrsDWn(0, t) .

SinceDW0(0, t) is an odd trace class operator, its supertrace vanishes. Furthermore
TrsDWn(0, t) = 0 by §4.2. �

4.4.4.
d

dt
Trse

−A(ρ)2t and
d

dρ
Trse

−A(ρ)2t .

Lemma 4.4.9. (1)

d

dt
Trse

−A(ρ)2t = −Trs
dA(ρ)2t
dt

e−A(ρ)2t .

(2)

d

dρ
Trse

−A(ρ)2t = − dTrs
dA(ρ)t
dρ

e−A(ρ)2t .

Proof. (1) First we calculate d
dte

−A(ρ)2t .

Consider the holomorphic semigroup e−t
′(D(ρ)2+zR) depending on the parame-

ter z. By the semigroup law

d

dt′
e−t

′(D(ρ)2+zR) = −(D(ρ)2 + zR)e−t
′(D(ρ)2+zR)

and by Duhamel’s formula (Prop. 5.4.4)

d

dz
e−t

′(D(ρ)2+zR) = −
∫ t′

0

e−(t′−s)(D(ρ)2+zR)Re−s(D(ρ)2+zR)ds .
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It follows that
d

dt
e−A(ρ)2t =

d

dt
e−t(D(ρ)2+t−1/2R)

=
d

dt′
e−t

′(D(ρ)2+t−1/2R)|(t′=t) −
1

2
t−3/2 d

dz
e−t(D(ρ)2+zR)|(z=t−1/2)

= −(D(ρ)2 + t−1/2R)e−t(D(ρ)2+t−1/2R)

+
1

2
t−3/2

∫ t

0

e−(t−s)(D(ρ)2+t−1/2R)Re−s(D(ρ)2+t−1/2R)ds

= −t−1A(ρ)2t e
−A(ρ)2t +

1

2
t−1/2

∫ 1

0

e−(1−s)A(ρ)2tRe−sA(ρ)2t ds .

Using this equation we prove that

(∗1) | d
dt

trsp(ρ)t(x, x)
n| ≤ Ce−cd(x,Mr)2

for all x uniformly in t for t ∈ [t1, t2] with t1, t2 > 0. This yields that

d

dt
Trse

−A(ρ)2t = Trs
d

dt
e−A(ρ)2t .

By Cor. 4.3.3 and the fact that the pointwise supertrace of the integral kernel

(AZk
t )2e−(A

Zk
t )2 vanishes for k ∈ ZZ/6 the pointwise supertrace of the integral kernel

ofA(ρ)2t e
−A(ρ)2t can be estimated by Ce−cd(x,Mr)2 uniformly in t on compact subsets

of (0,∞).

The integral kernel of
∫ 1

0 e
−(1−s)A(ρ)2tRe−sA(ρ)2t ds is the sum over m,n ∈ IN0

of the terms

(−1)m+nt
m+n

2

∫ 1

0

(1 − s)m/2sn/2
∫

M

p(ρ)(1−s)t(x, y)
mR(y)p(ρ)st(y, x)

n dyds .

We decompose

p(ρ)(1−s)t(x, y)
mR(y)p(ρ)st(y, x)

n

= p(ρ)(1−s)t(x, y)
mR(y)

(

p(ρ)st(y, x)
n − w(ρ)st(y, x)

n
)

+
(

p(ρ)(1−s)t(x, y)
m − w(ρ)(1−s)t(x, y)

m
)

R(y)w(ρ)st(y, x)
n

+w(ρ)(1−s)t(x, y)
mR(y)w(ρ)st(y, x)

n .

By Prop. 4.3.1 and the fact that the operator Im(ρ, (1− s)t) is uniformly bounded

on CR(M,E ⊗ Ω̂≤µAi) for 0 ≤ (1 − s)t ≤ t2 there are C, c, r > 0 such that for all
x ∈M and 0 ≤ s ≤ 1 and t1 ≤ t ≤ t2
|
∫

M

p(ρ)(1−s)t(x, y)
mR(y)

(

p(ρ)st(y, x)
n − w(ρ)st(y, x)

n
)

dy| ≤ Ce−cd(x,Mr)2 .

An analogous estimate holds for the second term.
By §4.2 and since R|U♣ = 0

trsw(ρ)(1−s)t(x, y)
mR(y)w(ρ)st(y, x)

n = 0 .

We conclude that there are r, c, C > 0 such that for x ∈ Mr, 0 ≤ s ≤ 1 and
t1 ≤ t ≤ t2

(∗2) |trs
∫

M

p(ρ)(1−s)t(x, y)
mR(y)p(ρ)st(y, x)

n dy| ≤ Ce−cd(x,Mr)2 .

Now (∗1) follows.
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The next step is to show that

Trs

∫ 1

0

e−(1−s)A(ρ)2tRe−sA(ρ)2t ds = TrsRe−A(ρ)2t

or equivalently
∫

M

∫ 1

0

(1− s)m/2sn/2
∫

M

trsp(ρ)(1−s)t(x, y)
mR(y)p(ρ)st(y, x)

n dydsdx

=

∫ 1

0

(1− s)m/2sn/2
∫

M

∫

M

trsp(ρ)(1−s)t(x, y)
mR(y)p(ρ)st(y, x)

n dxdyds .

We can interchange the integration over s and x by the estimate (∗2).
Fix s and t. Consider once more the decomposition of

p(ρ)(1−s)t(x, y)
mR(y)p(ρ)st(y, x)

n

from above. From Cor. 4.3.2 it follows that for ε > 0 there are r, c, C > 0 such that
for all x, y ∈M

|p(ρ)(1−s)t(x, y)mR(y)
(

p(ρ)st(y, x)
n − w(ρ)st(y, x)

n
)

|
≤ C

(

e−cd(x,y)
2

+ e−cd(x,Mr)2
)

e−cd(y,Mr)2 .

The second term can be estimated in an analogous manner and the supertrace of
the third term vanishes as we saw.

Hence we can interchange dx and dy.
This shows (1) by

Trs
d

dt
e−A(ρ)2t = Trs(−t−1A(ρ)2t +

1

2
t−1/2R)e−A(ρ)2t

= −Trs
dA(ρ)2t
dt

e−A(ρ)2t .

(2) As above, since A(ρ)2t = t(D2+ρ[D,K]s+ρ
2K2)+

√
tR, Duhamel’s formula

(Prop. 5.4.4) and the chain rule imply that

d

dρ
e−A(ρ)2t = −

∫ 1

0

e−(1−s)A(ρ)2t
dA(ρ)2t
dρ

e−sA(ρ)2t ds .

Note that
dA(ρ)2t
dρ is a trace class operator, hence we conclude immediately that

d

dρ
Trse

−A(ρ)2t = Trs
d

dρ
e−A(ρ)2t = −Trs

dA(ρ)2t
dρ

e−A(ρ)2t .

Since A(ρ)t is a bounded perturbation of
√
tWDsW

∗, we have, by Cor. 3.5.8 and

Prop. 5.4.10, that A(ρ)t and e−A(ρ)2t commute.
It follows that

dA(ρ)2t
dρ

e−A(ρ)2t = [A(ρ)t,
dA(ρ)t
dρ

e−A(ρ)2t ]s

= [W ∗ dW,
dA(ρ)t
dρ

e−A(ρ)2t ]s +
√
t[D(ρ),

dA(ρ)t
dρ

e−A(ρ)2t ]s .

The first term of the last line is an integral operator with integral kernel W ∗d(k)W
where k is the integral kernel of W dA(ρ)t

dρ e−A(ρ)2tW ∗. Hence the supertrace of the
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first term equals

d Trs
dA(ρ)t
dρ

e−A(ρ)2t .

Now consider the second term. Let P be the orthogonal projection onto the range
of K. It is an even Hilbert-Schmidt operator with smooth complex integral kernel.

Since dA(ρ)t

dρ =
√
tK,

Trs[D(ρ),
dA(ρ)t
dρ

e−A(ρ)2t ]s = Trs
√
t[D(ρ)P,Ke−A(ρ)2t ]s .

Since D(ρ)P and Ke−A(ρ)2t are Hilbert-Schmidt operators, the supertrace vanishes.
�

Let DIk
be the operator DI from §3.3.1 with boundary conditions given by the

pair (Pkmod3,Pk+1 mod3).

In §4.3.2 we defined AZk
t = W̃ ∗

k d W̃k +
√
tDZk

such that AZk
t coincides with

A(ρ)t on Uk. There is Uk ∈ C∞([0, 1],M2d(A∞)) such that W̃k(x1, x2) = Uk(x2)⊕
Uk(x2). Let AIk

t = U∗
k dUk +

√
tσDIk

.

Lemma 4.4.10.

d

dt
Trse

−A(ρ)2t =
1√
4πt

∑

k∈ZZ/6

TrσDIk
e−(A

Ik
t )2 − 1

2
√
t
d TrsD(ρ)e−A(ρ)2t .

Proof. Since
dA(ρ)2t
dt = [dA(ρ)t

dt , A(ρ)t]s, it follows from the previous lemma
that

d

dt
Trse

−A(ρ)2t = −Trs[
dA(ρ)t
dt

, A(ρ)t]se
−A(ρ)2t .

Furthermore

−[
dA(ρ)t
dt

, A(ρ)t]se
−A(ρ)2t

= −[A(ρ)t,
dA(ρ)t
dt

e−A(ρ)2t ]s

= − 1

2
√
t
[W ∗ dW,D(ρ)e−A(ρ)2t ]s −

1

2
[D(ρ), D(ρ)e−A(ρ)2t ]s .

The supertrace of the first supercommutator in the last line equals

− 1

2
√
t
d TrsD(ρ)e−A(ρ)2t .

Now consider the second term.
We have that

−1

2
Trs[D(ρ), D(ρ)e−A(ρ)2t ]s

= −1

2
lim
r→∞

(

TrsφrD(ρ)2e−A(ρ)2tφr + TrsφrD(ρ)e−A(ρ)2tD(ρ)φr

)

.



84 4. SUPERCONNECTIONS AND THE INDEX THEOREM

Since for ν ∈ IN0 the operators φrD(ρ)νe−A(ρ)2t/2 and e−A(ρ)2t/2D(ρ)νφr are Hilbert-
Schmidt operators, it follows that

−1

2
Trs[D(ρ), D(ρ)e−A(ρ)2t ]s

=−1

2
lim
r→∞

(Trse
−A(ρ)2t/2φ2

rD(ρ)2e−A(ρ)2t/2 − Trse
−A(ρ)2t/2D(ρ)φ2

rD(ρ)e−A(ρ)2t/2)

=
1

2
lim
r→∞

Trse
−A(ρ)2t/2c(dφ2

r)D(ρ)e−A(ρ)2t/2

=
1

2
lim
r→∞

Trsc(dφ
2
r)D(ρ)e−A(ρ)2t .

For r > 0 we define the function χr : Z → IR, χr(x) := χ2(x1 − r) where χ is the
function from the beginning of §4.4.1. Cor. 4.3.3 implies that

1

2
lim
r→∞

Trsc(dφ
2
r)D(ρ)e−A(ρ)2t =

1

2
lim
r→∞

∑

k∈ZZ/6

Trsc(dχr)DZk
e−(A

Zk
t )2 .

Recall from §4.2 that the integral kernel of e−(A
Zk
t )2 is

∞
∑

n=0
(−1)nt

n
2 pZk

t (x, y)n with

pZk
t (x, y)n = c(dx1)

n 1√
4πt

e−
(x1−y1)2

4t

(

pIk
t (x2, y2)

n ⊕ (−1)npIk
t (x2, y2)

n
)

.

The integral kernel of c(dχr)DZk
e−(A

Zk
t )2 is

∞
∑

n=0

(−1)n+1tn/2χ′(x1 − r)(∂x1 + I∂x2)p
Zk
t (x, y)n .

It follows that

Trsc(dχr)DZk
e−(A

Zk
t )2

=
1√
4πt

∞
∑

n=0

(−1)ntn/2
∫ 1

0

trs c(dx1)
n
(

(DIk
pIk
t )(x2, x2)

n ⊕

⊕(−1)n+1(DIk
pIk
t )(x2, x2)

n) dx2 .

Comparison with Def. 4.1.6 and the subsequent remark yields that

trsc(dx1)
n
(

(DIk
pIk
t )(x2, x2)

n ⊕ (−1)n+1(DIk
pIk
t )(x2, x2)

n
)

= 2intrσσ
n(DIk

pIk
t )(x2, x2)

n .

It follows that

Trsc(dχr)DZk
e−(A

Zk
t )2 =

2√
4πt

∞
∑

n=0

(−1)ntn
∫ 1

0

tr (DIk
pIk
t )(x2, x2)

2ndx2

=
1√
πt

TrσDIk
e−(A

Ik
t )2 ,

hence

−1

2
Trs[D(ρ), D(ρ)e−A(ρ)2t ]s =

∑

k∈ZZ/6

1√
4πt

TrσDIk
e−(A

Ik
t )2 .

�
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4.4.5. The index theorem. In this section the notation is as in Prop. 2.5.1.
Let AIk

be as in the previous section.

Theorem 4.4.11.

ch(indD+) =
1

2
[
∑

k∈ZZ/6

η(AIk
)] ∈ HdR

ev (A∞) .

Here we understand indD+ as a class in K0(A∞) via the isomorphismK0(A) ∼=
K0(A∞) induced by the injection A∞ →֒ A.

Proof. Let ρ 6= 0.
By Prop. 2.5.1

indD+ = [KerD(ρ)2]− [AN ]

in K0(A). Let P0 be the projection onto the kernel of D(ρ)2.
From Prop. 3.5.5 and Prop. 5.3.6 it follows that

indD+ = [Ran∞ P0]− [AN
∞] = [Ran∞WP0W

∗]− [AN
∞]

in K0(A∞), hence in HdR
∗ (A∞)

ch(indD+) = ch[Ran∞WP0W
∗]−N .

By Prop. 5.3.6 in HdR
∗ (A∞)

ch[Ran∞WP0W
∗] =

∞
∑

n=0

(−1)n
1

n!
Trs(WP0W

∗ dWP0W
∗)2n

=
∞
∑

n=0

(−1)n
1

n!
Trs(P0W

∗ dWP0)
2n .

Let T > 0. By Th. 4.4.3 and Th. 4.4.8 in Ω̂∗A∞/[Ω̂∗A∞, Ω̂∗A∞]s

∞
∑

n=0

(−1)n
1

n!
Trs(P0W

∗ dWP0)
2n −N = lim

t→∞
Trse

−A(ρ)2t − lim
t→0

Trse
−A2

t

=

∫ ∞

T

d

dt
Trse

−A(ρ)2t dt

+

∫ ρ

0

d

dρ′
Trse

−A(ρ′)2T dρ′

+

∫ T

0

d

dt
Trse

−A2
tdt .
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By the results of §4.4.4, the estimate of Th. 4.4.3 and Th. 4.4.8 the integrals
converge and we have:

∞
∑

n=0

(−1)n
1

n!
Trs(P0W

∗ dWP0)
2n −N =

∑

k∈ZZ/6

∫ ∞

0

1√
4πt

TrσDIk
e−(A

Ik
t )2dt

− d

∫ ∞

T

1

2
√
t
TrsD(ρ)e−A(ρ)2t dt

− d

∫ ρ

0

Trs
dA(ρ′)T
dρ′

e−A(ρ′)2T dρ′

− d

∫ T

0

1

2
√
t
TrsD(0)e−A

2
t dt .

The assertion follows. �

Corollary 4.4.12. In HdR
∗ (A∞)

ch τ(P0,P1,P2) = [η(P0,P1) + η(P1,P2) + η(P2,P0)] .

Proof. For ρ > 0 we define a family A(ρ, b) of superconnections associated to
D(ρ). For 0 < b < b0 let W (b) ∈ C∞(M,End+E ⊗A∞) be as in §4.3.1 such that
W (b) is parallel on {x ∈M | d(x, ∂M) ≥ b}. As in §4.3.1 we set

A(ρ, b) := W (b)∗ dW (b) +D(ρ) .

For every k ∈ ZZ/6 this induces a family of superconnections AIk
(b). By Prop. 4.1.7

and the subsequent definition

lim
b→0

η(AIk
(b)) = η(Pkmod3,Pk+1 mod3) .

The assertion follows now by the previous theorem and Prop. 2.4.4. �

4.5. A gluing formula for η-forms on S1

In the following we sketch a reinterpretation of Cor. 4.4.12 as a gluing formula
for η-forms on S1 (which we identify with IR/ZZ as a Riemannian manifold).

Given u ∈ U(An∞) we define a projective system of vector bundles on S1:

Li(u) = ([0, 1]×Ani )/∼
with (0, v) ∼ (1, uv). The standard A-valued scalar product on An induces a
hermitian A-valued metric on L(u) := L0(u). We identify a smooth section of
Li(u) with a smooth function f : IR → Ani satisfying f(x + 1) = uf(x). The
trivial connection f 7→ f ′dx on IR × An induces a connection on L(u) preserving
the metric. The associated Dirac operator is denoted by ∂/L(u) (as are its closures

on the spaces L2(S1,Li(u)) in the following).
Assume now 1 /∈ σ(u). Then there is a path w : [0, 1] → U(An∞) with w(0) =

1, w(1) = u, and the map f 7→ w∗f defines a trivialization of Li(u). Hence
∂/L(u) can be identified with the operator i∂ +w∗w′ on the trivial bundle. One can

easily deduce that −∂/2
L(u) generates a holomorphic semigroup on L2(S1,Li(u)) with

integral kernel in C∞(S1×S1,Mn(A∞)). Since ∂/2
L(u) is invertible on L2(S1,Li(u)),

the integral kernel vanishes exponentially for t→∞. Locally there is a trivialization
of L(u) with respect to which ∂/L(u) equals i∂. By Duhamel’s principle it follows

that Tr ∂/L(u)e
−t(∂/L(u))

2

converges to zero in A∞/[A∞,A∞] for t→ 0.
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We define a superconnection A := w dw∗ + ∂/L(u) and the associated rescaled

superconnection At := w dw∗ +
√
t∂/L(u). Then e−A

2
t is a well-defined integral

operator with smooth integral kernel. Furthermore Tr ∂/L(u)e
−A2

t has a limit for
t→ 0, and the η-form

η(Aw) :=
1√
π

∫ ∞

0

t−1/2 Tr ∂/L(u)e
−A2

t dt ∈ Ω̂∗A∞/[Ω̂∗A∞, Ω̂∗A∞]s

is well-defined. As in Def. 4.1.8 we can eliminate the dependence of the trivializa-
tion w by defining

η(∂/L(u)) = lim
ε→0

η(Awε)

where wε is a family of trivializations with w′
ε ⊂ [0, ε] ∪ [1− ε, 1]. The existence of

the limit follows from the proof of the next proposition.
In the following let

P (u) :=
1

2

(

1 u∗

u 1

)

.

Proposition 4.5.1. Let u0, u1 be unitaries such that u0−u1 is invertible. Then
up to exact forms

η(∂/L(u∗
0u1)) = η(P (u0), P (u1)) .

Proof. For a unitary U ∈Mn(A∞)

η(U∗P (u0)U,U
∗P (u1)U) = η(P (u0), P (u1)) .

Since for U :=

(

1 0
0 u0

)

we have that U∗P (u0)U = P (1) and U∗P (u1)U =

P (u∗0u1), we may assume u0 = 1. Let u := u1.
Let V : IR→ U(An∞) be a smooth path with V (x) = u for x ≤ 0 and V (x) = −1

for x ≥ 1 and with 1 /∈ σ(V ); we define the bundle

Li(V ) := (IR× [0, 1])×Ani /∼
where (x1, 0, v) ∼ (x1, 1, V (x1)v). The smooth sections of Li(V ) can be identified
with smooth functions f : IR × IR → An fulfilling f(x1, x2 + 1) = V (x1)f(x1, x2).
Let W : IR× [0, 1]→ U(An∞) be smooth with W (x1, 0) = 1, W (x1, 1) = V (x1) and
such that W (x1, x2) is independent of x2 in a small neighborhood of 0 resp. 1 and
independent of x1 for x1 < 0 resp. x1 > 1. Then f 7→W ∗f is a bundle isomorphism
between Li(V ) and the trivial bundle (IR×S1)×Ani . Since dx1∂1 +W ∗dx2∂2W =
dx1∂1 + dx2∂2 + dx2W

∗(∂2W ) is a connection preserving the metric on the trivial
bundle, the operator Wdx1∂1W

∗ + dx2∂2 is a connection preserving the metric on
Li(V ). It agrees with the trivial connection for |x1| large.

Let ∂/Li(V ) be the Dirac operator associated to the connection Wdx1∂1W
∗ +

dx2∂2 on the bundle Li(V ). The index of ∂/+
Li(V ) vanishes, which can be seen as

follows. For t ∈ [0, 1] let Wt : IR × [0, 1] → U(An∞) be a homotopy with W0 = 1
and W1 = W and independent of x1 on the complement of a compact set. Then
dx1∂1+W

∗
t dx2∂2Wt is a homotopy of connections on the trivial bundle interpolating

between the trivial connection and the connection dx1∂1 +W ∗dx2∂2W . The index
of the Dirac operator associated to the trivial connection vanishes, hence the index
of the Dirac operator associated to dx1∂1 +W ∗dx2∂2W vanishes as well.

The local term in the index theorem is determined by the superconnection

B1 := d +W∂/Li(V )W
∗ = d +c(dx1)∂1 + c(dx2)∂2 + c(dx2)W (∂2W

∗)
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on the trivial bundle S ⊗An on IR× S1. The contribution from the cylindric ends
is given by 1

2 (η(∂/L(−1))− η(A)).
Compare this with the index theorem for the Dirac operator ∂/Z on the sections

of (IR×[0, 1])×((A+)2n⊕(A−)2n) with boundary conditions defined by P (1)⊕P (1)
and P (V (x1))⊕ P (V (x1)). Let

W̃ := diag(1,W, 1,W ) ∈M4n(A∞) .

Then

W̃ ∗∂/ZW̃ = ∂/Z + W̃ ∗c(dx1)(∂1W̃ ) + W̃ ∗c(dx2)(∂2W̃ ) ,

and the boundary conditions transform to P (1)⊕ P (1) and P (−1)⊕ P (−1).

An argument analogous to the one above shows that the index of W̃ ∗∂/+
ZW̃

vanishes. Since W̃ ∗c(dx1)(∂1W̃ ) is compactly supported, the index of W̃ ∗∂/ZW̃
equals the index of ∂/Z+W̃ ∗c(dx2)(∂2W̃ ), which is the Dirac operator associated to

the connection dx1∂1+dx2∂2+dx2W̃
∗(∂2W̃ ). Hence we can use the superconnection

B2 := d +c(dx1)∂1 + c(dx2)∂2 + c(dx2)W̃
∗(∂2W̃ ) for the index theorem, and it

follows that the local term here equals the local term in the index theorem for
∂/L(V ). Since the proposition is true for u = −1 by [CLM], Prop. 6.3, the assertion
follows. �

Corollary 4.5.2. If u0, u1, u2 ∈ Mn(A∞) are unitaries such that ui − uj is
invertible for i 6= j, then

ch τ(P (u0), P (u1), P (u2)) = [η(∂/L(u∗
0u1)) + η(∂/L(u∗

1u2)) + η(∂/L(u∗
2u0)] ∈ HdR

∗ (A∞) .

Assume that Pi − Pj and Pi − (1− Pj) are invertible for i 6= j and define

τI(P0, P1, P2) := τ(P0, P1, P2) + τ(P0, 1− P1, P1)

+ τ(P1, 1− P2, P2) + τ(P2, 1− P0, P0) ∈ K0(A) .

Then from the corollary, the previous formula and the fact that 1−P (u) = P (−u)
it follows after some straightforward calculations:

Corollary 4.5.3. In HdR
∗ (A∞)

ch τI(P (u0), P (u1), P (u2)) = [η(∂/L(−u∗
0u1)) + η(∂/L(−u∗

1u2)) + η(∂/L(−u∗
2u0)] .

In the following we explain how this formula is related to a gluing formula for
η-invariants ([Bu], §1.7 and Cor. 1.20).

Consider the Clifford bundle An × [0, π] on the manifold with boundary [0, π]
with Clifford multiplication i and Dirac operator i∂. Its restriction to the boundary
is An × ({0} ∪ {π}) and the Clifford multiplication by the inward pointing normal
vector is given by the bundle morphism I0 = i ∪ (−i). Via the standard A-valued
scalar product it induces a skew-hermitian form on the bundle An×({0}∪{π}). We
identify the sections of this bundle with A2n. The image of the kernel of the Dirac
operator with respect to restriction to the boundary is the Lagrangian submodule
L = {(x, x) | x ∈ An}.

Now let

φj := (1 ∪ (uj)) : An × ({0} ∪ {π})→ An × (∗ ∪ ∗) .
Then φj(L) is the range of the projection P (uj).

The bundle L(−u∗juj+1) on S1 can be obtained by gluing

(An × [0, π]) ∪φ−1
j ◦I0◦φj+1

(An × [0, π]) ;
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and by gluing the operator i∂ on one copy of [0, π] with −i∂ on the second copy
one obtains ∂/L(−u∗

0u1).
From the proposition it follows that up to exact forms

η(∂/L(−u∗
juj+1)) = η(P (uj), 1− P (uj+1)) .

Since the projection φi(L) in A2n is given by the projection P (uj), we have in
HdR

∗ (A∞):

ch τI(φ0(L), φ1(L), φ2(L)) = [η(∂/L(−u∗
0u1)) + η(∂/L(−u∗

1u2)) + η(∂/L(−u∗
2u0)] .

For A = C this is a particular case of the well-known general gluing formula.





CHAPTER 5

Definitions and Techniques

5.1. Hilbert C∗-modules

5.1.1. Bounded operators. Let A be a unital C∗-algebra with norm | · |.
In order to fix notation we recall some facts about Hilbert A-modules. Refer-

ences are [La] and [WO].

Definition 5.1.1. A pre-Hilbert A-module is a right A-module H with an
A-valued scalar product 〈 , 〉 : H ×H → A; i.e.

(1) 〈 , 〉 is A-linear in the second variable,
(2) 〈x, y〉 = 〈y, x〉∗ for all x, y ∈ H,
(3) 〈x, x〉 ≥ 0 for all x ∈ H,
(4) if 〈x, x〉 = 0, then x = 0.

If H is complete with respect to the norm ‖v‖ := |〈v, v〉|1/2, then H is called a
Hilbert A-module.

The completion of a pre-Hilbert A-module is a Hilbert A-module.
The rightA-module An is a Hilbert A-module when endowed with the standard

A-valued scalar product

〈a, b〉 :=
n
∑

i=1

a∗i bi .

The right A-module {(an)n∈IN ⊂ A |
∞
∑

n=1
a∗nan converges} endowed with the A-

valued scalar product

〈(an)n∈IN, (bn)n∈IN〉 :=

∞
∑

n=1

a∗nbn

is a Hilbert A-module and is denoted by l2(A). Sometimes we use ZZ as index set.
Let M be a measure space and let 〈 , 〉 be the standardA-valued scalar product

on An. Then the Hilbert A-module L2(M,An) is defined in the following way: By

〈f, g〉L2 =

∫

M

〈f(x), g(x)〉dx

an A-valued scalar product is defined on the quotient of the space of simple func-
tions on M with values in An by the space of simple functions vanishing almost
everywhere. Hence the quotient is a pre-Hilbert A-module. Its completion is the
Hilbert A-module L2(M,An).

Let H be a Hilbert A-module.
A submodule U ⊂ H is called complemented if

U⊥ = {x ∈ H | 〈x, u〉 = 0 ∀u ∈ U}
91
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satisfies U ⊕ U⊥ = H . Any projective submodule in H is complemented.
Let H1, H2 be Hilbert A-modules. The elements of

B(H1, H2) = {T : H1 → H2 | T is continuous and ∃T ∗ : H2 → H1 with

〈Tv,w〉H2 = 〈v, T ∗w〉H1 ∀v ∈ H1, w ∈ H2}
are called bounded operators from H1 to H2. They form a Banach space with
respect to the operator norm. With the composition as a product B(H1) :=
B(H1, H1) is a C∗-algebra. Note that the existence of an adjoint must be required.

A continuous A-module map K : H1 → H2 is called compact if it can be
approximated by a linear combination of operators of the form x 7→ z〈y, x〉 with
y ∈ H1, z ∈ H2, in the operator norm topology.

Every compact operator is adjointable.
A projection in B(H) is compact if and only if it is a projection onto a projective

submodule of H .
If the range of T ∈ B(H1, H2) is complemented, we call its complement the

cokernel CokerT . Clearly a necessary condition for its existence is that the range
of T is closed. The following proposition shows that it is sufficient:

Proposition 5.1.2. Suppose that T ∈ B(H1, H2) has closed range. Then

(1) KerT is a complemented submodule of H1,
(2) RanT is a complemented submodule of H2,
(3) T ∗ : H2 → H1 also has closed range.

Proof. [La], Th. 3.2. �

5.1.2. Fredholm operators. Let H1, H2 be Hilbert A-modules isomorphic
to l2(A).

Definition 5.1.3. An operator F ∈ B(H1, H2) is Fredholm if there are
decompositions H1 = M1 ⊕N1 and H2 = M2 ⊕N2 with the following properties:

(1) N1, N2 are projective A-modules and M1,M2 are closed A-modules.
(2) The operator F is diagonal: F = FM ⊕ FN with FM : M1 → M2 and

FN : N1 → N2.
(3) The component FM : M1 →M2 is an isomorphism.
(4) The projection onto Ni along Mi is adjointable for i = 1, 2.

The index of F is defined as

indF := [N1]− [N2] ∈ K0(A) .

Proposition 5.1.4. A selfadjoint operator F ∈ B(H1, H2) is Fredholm if and
only if there exists an A-linear continuous, not necessarily adjointable, map G :
H2 → H1 such that FG− 1 and GF − 1 are compact.

Proof. Analogous to [MF], Theorem 2.4. �

From the proposition it follows that if F is Fredholm, then for any compact
operator K the operator F +K is Fredholm.

Proposition 5.1.5. If F : H1 → H2 is a Fredholm operator and K : H1 → H2

is a compact operator, then

indF = ind(F +K) .

Proof. [MF], Lemma 2.3. �
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Another important property of Fredholm operators is the following:

Proposition 5.1.6. If F ∈ B(H1, H2) is Fredholm and RanF is closed, then
KerF and CokerF are projective modules.

Hence
indF = [KerF ]− [CokerF ] .

Proof. Let PKerF ∈ B(H1) resp. PCokerF ∈ B(H2) be the orthogonal projec-
tion onto the kernel resp. cokernel of F . They exist by Prop. 5.1.2. We have to
prove that they are compact.

There is E ∈ B(H2, H1) such that EF = 1− PKerF and FE = 1− PCokerF .
Let G be a parametrix of F . It follows that

PKerF = 1− EF = (1−GF )(1 − EF )

and
PCokerF = 1− FE = (1− FE)(1 − FG)

are compact operators. �

Proposition 5.1.7. If F : [0, 1]→ B(H1, H2) is a continuous path of Fredholm
operators, then the map [0, 1]→ K0(A), t 7→ indF (t) is constant.

Proof. see [WO], Prop. 17.3.4. �

5.1.3. Regular operators. In this section some basic facts about unbounded
operators on Hilbert A-modules are collected. Most of them and more can be found
in [La].

Let H be a Hilbert A-module with A-valued scalar product 〈 , 〉. Let D :
domD → H be a densely defined operator on H .

Lemma 5.1.8. If the adjoint D∗ of D is densely defined, then D is closable.

Proof. Let (fn)n∈IN be a sequence in domD such that (fn, Dfn) converges
to (0, f) in H ⊕H for n→∞. Then for every g ∈ domD∗

〈f, g〉 = lim
n→∞

〈Dfn, g〉 = lim
n→∞

〈fn, D∗g〉 = 0 .

Since domD∗ is dense in H , it follows that f = 0. �

If D is closed, then

〈f, g〉D := 〈f, g〉+ 〈Df,Dg〉
is an A-valued scalar product on domD, with respect to which domD is a Hilbert
A-module, denoted by H(D).

Lemma 5.1.9. Assume that D is closed.

(1) Suppose that D has a densely defined adjoint D∗. Then KerD∗ = (RanD)⊥.
(2) KerD is complemented in H(D) if and only if KerD is complemented in

H.

Proof. (1) Since for f ∈ KerD∗ and h ∈ domD

〈f,Dh〉 = 〈D∗f, h〉 = 0 ,

the A-module KerD∗ is a submodule of (RanD)⊥.
For g ∈ (RanD)⊥ the A-linear functional

domD → A, f 7→ 〈g,Df〉
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vanishes. Thus g ∈ domD∗ and D∗g = 0.
(2) For g ∈ KerD and f ∈ domD the conditions 〈f, g〉D = 0 and 〈f, g〉 = 0 are

equivalent. Hence if KerD is complemented in H(D), then KerD is complemented
in H .

Conversely, if KerD is complemented in H , we can decompose g ∈ H(D) in
a sum g = g1 + g2 with g1 ∈ KerD and g2 ∈ (KerD)⊥. From KerD ⊂ H(D) it
follows that g2 = g − g1 ∈ H(D), hence g2 ∈ (KerD)⊥H(D) . �

Recall that D is called regular if it is closed with densely defined adjoint D∗

and if 1 +D∗D has dense range, or equivalently if it is closed with densely defined
adjoint and if its graph is complemented in H ×H .

If D is regular, then 1 +D∗D has a bounded inverse.
In the following the adjoint of an operator A ∈ B(H(D), H) is denoted by AT ∈

B(H,H(D)) in order to distinguish it from the adjoint A∗ of A as an unbounded
operator on H .

Lemma 5.1.10. Assume that D is closed.

(1) The operator D is regular if and only if the inclusion ι : H(D) → H is
in B(H(D), H) and (1 +D∗D) is selfadjoint. Then ιT = (1 +D∗D)−1 ∈
B(H,H(D)) and (1 +D∗D)−

1
2 : H → H(D) is an isometry.

(2) Assume that D is regular and selfadjoint. Then D ∈ B(H(D), H) and
DT = D(1 +D2)−1 .

Proof. If D is regular, then for v ∈ H(D) and w ∈ H
〈ιv, w〉 = 〈v, w〉

= 〈v, (1 +D∗D)(1 +D∗D)−1w〉
= 〈v, (1 +D∗D)−1w〉 + 〈Dv,D(1 +D∗D)−1w〉
= 〈v, (1 +D∗D)−1w〉D .

This shows ιT = (1 +D∗D)−1.
Now the converse direction:
Let v ∈ H . Then for any w ∈ dom(1 +D∗D)

〈v, w〉 = 〈ιT v, w〉D = 〈ιT v, (1 +D∗D)w〉 .
Since (1 + D∗D) is selfadjoint, it follows that ιT v ∈ dom(1 + D∗D) and (1 +
D∗D)ιT v = v.

This shows that (1 +D∗D) is surjective and that ιT is a right inverse of (1 +
D∗D). Since (1 + D∗D) is bounded below, it is injective as well. It follows that
(1 +D∗D) is invertible and ιT is its inverse.

The remaining parts are immediate.
�

Proposition 5.1.11. Let D0 be a regular selfadjoint operator and assume D =
D0 + V with V ∈ B(H).

(1) Then D is closed.
(2) The identity map induces a continuous isomorphism from H(D0) toH(D).
(3) D ∈ B(H(D0), H).
(4) Suppose that V is selfadjoint. Then D is regular.
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Proof. (1) From domD∗∗ = domD∗∗
0 = domD0 = domD it follows that

D = D∗∗. Thus D is closed.
Assertion (2) follows from the fact that there is C > 0 such that for all f ∈

H(D0)

‖f‖2D ≤ ‖f‖2 + ‖D0f‖2 + ‖〈V f,D0f〉‖+ ‖〈D0f, V f〉‖+ ‖V f‖2
≤ C(‖f‖2 + ‖D0f‖2) + 2‖V f‖‖D0f‖
≤ C‖f‖2D0

.

We applied Cauchy-Schwarz inequality.
(3) By (2) the operator D : H(D0)→ H is continuous. By the previous lemma

the adjoint of D = D0 + V ι : H(D0)→ H is

DT = D0(1 +D2
0)

−1 + (1 +D2
0)

−1V ∗ : H → H(D0) .

(4) By (3) the operator D + i : H(D0) → H is an adjointable bounded operator.
By [La], Lemma 9.7, the range of D + i is closed. Thus it is complemented by
Prop. 5.1.2. From Lemma 5.1.9 it follows that the cokernel of D + i agrees with
the kernel of D− i. By [La], Lemma 9.7, the operator D− i is injective. It follows
that Coker(D + i) = {0}. By [La], Lemma 9.8, this shows that D is regular. �

It can be shown that the condition of selfadjointness for D0 and V in statement
(4) of the previous proposition can be dropped.

Proposition 5.1.12. Let D be a regular and selfadjoint operator on H with
closed range.

(1) The cokernel of D exists and KerD = CokerD. In particular KerD is
complemented.

(2) The A-module domD ∩ RanD is dense in RanD and domD = KerD ⊕
(domD ∩RanD), thus D = 0⊕D|RanD and D|RanD is invertible.

Proof. (1) Since, by Lemma 5.1.10, D ∈ B(H(D), H) and since the range of
D is closed, Prop. 5.1.2 implies that the range is complemented. Its complement
is CokerD. Since D is selfadjoint, KerD = CokerD by Lemma 5.1.9.

(2) Let P : H → RanD be the orthogonal projection. From (1−P )(domD) ⊂
KerD ⊂ domD we conclude that P (domD) ⊂ domD. The assertion follows
because P (domD) is dense in P (H) = RanD. �

We will need the following ZZ/2-version of the previous proposition:
If H = H+ ⊕H− is ZZ/2-graded, then we call a closed operator D on H even

resp. odd if domD decomposes in (domD)+ ⊕ (domD)− and if the action of D is
even resp. odd.

Proposition 5.1.13. Let H be a ZZ/2-graded Hilbert A-module and let D be
an odd regular selfadjoint operator on H.

Suppose that D+ : (domD)+ → H− is surjective.
Then the range of D is closed and complemented. Furthermore KerD+ =

KerD = CokerD = CokerD− and this module is complemented.

Proof. Since D+ is surjective, D− is injective and so KerD+ = KerD.
Let P+ be the orthogonal projection onto H+. Since D is odd, DP+ = P+D.
By Lemma 5.1.10 the operator DP+ : H(D) → H is adjointable with adjoint

P+D(D2 + 1)−1. From P+D|H(D)± = D± it follows that D−(D2 + 1)−1 : H− →
H(D)+ is the adjoint of D+ : H(D)+ → H−.



96 5. DEFINITIONS AND TECHNIQUES

Since D+ is surjective, KerD+ is complemented in H(D)+ and the range of
the adjoint D−(D2 + 1)−1 : H− → H(D)+ is closed. Furthermore

D−(D2 + 1)−1 = (D2 + 1)−
1
2D−(D2 + 1)−

1
2 ,

and (D2 + 1)−1/2 : H± → H(D)± is an isomorphism by Lemma 5.1.10, hence
RanD− is closed, too. �

Proposition 5.1.14. Let D be a regular selfadjoint operator on H.

(1) For all λ ∈ C \ IR the operator D − λ is invertible.
(2) Assume that the range of D is closed and let P be the projection onto the

kernel of D. Then there is c > 0 such that the spectrum of (D + P ) is
contained in IR\]− c, c[ and the spectrum of D is contained in
(IR\]− c, c[) ∪ {0}.

Proof. This follows from the functional calculus for regular operators ([La],
Th. 10.9) and from the decomposition in Prop. 5.1.12. �

The following criteria for selfadjointness are useful:

Lemma 5.1.15. Let D be a symmetric regular operator such that the range of
D + i and of D − i is dense in H. Then D is selfadjoint.

Proof. The operators D+ i and of D− i have closed range (see [La], Lemma
9.7). It follows that they have a bounded inverse on H . Then they are adjoint to
each other, thus D is selfadjoint. �

Lemma 5.1.16. Assume that D is symmetric and has an inverse D−1 ∈ B(H).
Then D is regular.

Proof. Since D is symmetric, the adjoint is densely defined. From D−1 ∈
B(H) it follows that the graph of D−1 is complemented, hence the graph of D is
complemented as well. Hence D is regular. �

5.1.4. Decompositions of Hilbert C∗-modules. Let H be a Hilbert A-
module with A-valued scalar product 〈 , 〉. Let J = {1, . . . ,m} ⊂ IN resp. J = IN.
If J = IN, then set m =∞.

Definition 5.1.17. A system {fk}k∈J ⊂ H is called orthonormal if for all
k, l ∈ J

〈fk, fl〉 = δkl .

It is called an orthonormal basis of H if for all f ∈ H there is (an)n∈J ⊂ A
such that f =

m
∑

n=1
fnan.

Since an = 〈fn, f〉, the coefficients are uniquely defined by the system.

Proposition 5.1.18. Let {fk}k∈J be an orthonormal system in H whose span
is dense in H. Then it is an orthonormal basis of H and the map

f 7→ (〈fn, f〉)n∈J
is an isomorphism from H to Am if m <∞ and to l2(A) else.
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Proof. Let Pn be the orthogonal projection onto the span of the first n vectors
of the system {fk}k∈J . On spanA{fk | k ∈ J} the projection Pn converges strongly
to the identity for n → ∞. Since ‖Pn‖ = 1 for all n ∈ IN, it follows that Pn
converges strongly to the identity on H . �

Lemma 5.1.19. Let {Ui}i∈IN be a family of pairwise orthogonal closed subspaces
of H such that ⊕i∈INUi is dense in H. Let {Ti}i∈IN be a family of operators with
Ti ∈ B(Ui) and assume that there is c ∈ IR such that ‖Ti‖ ≤ c for all i ∈ IN.

Then the closure T of the operator ⊕i∈INTi is in B(H) and ‖T ‖ ≤ c.
Proof. The spectral radius of an operator A ∈ B(H) is denoted by r(A).
Write T (n) for the restriction of T on ⊕ni=1Ui. Then for all n ∈ IN

‖T (n)‖2 = r(T (n)∗T (n)) = max
1≤i≤n

r(T ∗
i Ti) = max

1≤i≤n
‖T ∗

i Ti‖ ≤ c2 .

For v ∈ domT there is n ∈ IN such that v ∈ ⊕ni=1Ui. Then Tv = T (n)v and thus

‖Tv‖ = ‖T (n)v‖ ≤ c‖v‖ .
It follows that the closure of ⊕i∈INTi is a bounded operator on H . The adjoint is
given by the closure of ⊕i∈INT

∗
i . �

Corollary 5.1.20. Let {Ui}i∈IN be a family of pairwise orthogonal closed sub-
spaces of H such that ⊕i∈INUi is dense in H. Let {Ti}i∈IN be a family of operators
such that T−1

i ∈ B(Ui) and assume that there is c ∈ IR such that ‖T−1
i ‖ ≤ c for all

i ∈ IN. Then the closure T of the map ⊕i∈INTi is invertible with inverse in B(H).

Proof. The operator ⊕i∈INT
−1
i is inverse to ⊕i∈INTi. It fulfills the conditions

of the previous lemma, hence its closure is a bounded operator on H . It is the
inverse of the closure of T . �

Proposition 5.1.21. Let {ei}i∈IN be the standard basis of l2(A). Let M be
a closed and N a projective submodule of l2(A) such that l2(A) = M ⊕ N . Let
P be the projection onto N along M and let Pn be the orthogonal projection onto
Ln := spanA{ei | i = 1, . . . , n}. Assume that P is adjointable.

For n ∈ IN such that

‖P (1− Pn)‖ ≤
1

2
it holds:

(i) The A-module N ′ := Pn(N) is projective and the maps

Pn : N → N ′ and P : N ′ → N

are isomorphisms.
(ii) l2(A) = M ⊕N ′ .

Note that for n ∈ IN large enough ‖P (1 − Pn)‖ ≤ 1
2 since P is a compact

operator.

Proof. From ‖P (1− Pn)‖ ≤ 1
2 it follows that

‖1N − (PPn)|N‖ ≤
1

2
.

Hence (PPn)|N : N → N is invertible.
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The module N ′ := Pn(N) is closed and finitely generated, thus projective.
Furthermore, since (PPn)|N is an isomorphism, the maps

Pn : N → N ′ and P : N ′ → N

are isomorphisms as well.
It remains to show N ′ ⊕M = l2(A).
The intersection N ′ ∩M is trivial: If x ∈ N ′ ∩M , then Px = 0, hence, as

P : N ′ → N is an isomorphism, x = 0.
Let now x ∈ l2(A). Since PPn : N → N is invertible, there is y ∈ N such that

Px = PPny.
Then

x = (1 − P )x+ Px

= (1 − P )x+ PPny

= (1 − P )x+ Pny − (1− P )Pny

= (1 − P )(x− Pny) + Pny .

Since (1 − P )(x− Pny) ∈M and Pny ∈ N ′, it follows that x ∈M ⊕N ′. �

5.2. Operators on spaces of vector valued functions

5.2.1. Vector valued functions and tensor products. Let V be a Fréchet
space.

In the following we are interested in spaces Γ(M,V ) where Γ = C,C∞, Ck, Lp

and M is endowed with the appropriate structure. It is desirable to have an isomor-
phism Γ(M,C) ⊗ V ∼= Γ(M,V ) extending the inclusion Γ(M,C) ⊙ V →֒ Γ(M,V )
because this ensures that every bounded operator on Γ(M,C) extends to a bounded
operator on Γ(M,V ) (at least if the tensor product is an ε- or π-tensor product).
Examples where such an isomorphism exists are listed below whereas the example
Γ = L2 where in general such an isomorphism cannot be found is studied in detail
in the following sections.

Proofs can be found in [Tr]. If not specified the functions are assumed to be
complex valued.

• Let M be a compact topological space. Then

C(M)⊗ε V ∼= C(M,V ) .

For compact spaces M,N

C(M ×N) ∼= C(M)⊗ε C(N) .

• Let U ⊂ IRn be open and precompact. For all m ∈ IN0

Cm0 (U)⊗ε V ∼= Cm0 (U, V ) .

• Let M be a closed smooth manifold. For all m ∈ IN0

Cm(M)⊗ε V ∼= Cm(M,V ) .

• Let U ⊂ IRn be open and precompact. Then C∞
0 (U) is nuclear, in partic-

ular

C∞
0 (U)⊗π V ∼= C∞

0 (U)⊗ε V ∼= C∞
0 (U, V ) .
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• LetM be a closed smooth manifold. Then C∞(M) is nuclear, in particular

C∞(M)⊗π V ∼= C∞(M)⊗ε V ∼= C∞(M,V ) .

For closed smooth manifolds M,N

C∞(M ×N) ∼= C∞(M)⊗ C∞(N) .

• The space of Schwartz functions S(IR) is nuclear, in particular

S(IR)⊗π V ∼= S(IR)⊗ε V ∼= S(IR, V ) .

The isomorphisms are given by the unique extension of the inclusion of the algebraic
tensor product.

5.2.2. L2-spaces and integral operators. Let E be a Banach space with
norm | · |. Let EndE be the Banach algebra of bounded operators on E. We denote
the operator norm on EndE by | · | as well.

Definition 5.2.1. Let M be a measure space and p ∈ IN.
The Banach space Lp(M,E) is defined to be the completion of the quotient of

the space of simple E-valued functions on M by the subspace of functions vanishing
almost everywhere with respect to the norm

‖f‖Lp :=

(
∫

M

|f(x)|pdx
)

1
p

.

In order to avoid confusion we make the following convention: If E = An for a
C∗-algebra A, then L2(M,E) denotes the Hilbert A-module defined in §5.1.1 and
not the space just defined. In general these spaces do not coincide.

Lemma 5.2.2. Let M1,M2 be σ-finite measure spaces. Then the map

L2(M1 ×M2, E)→ L2(M1, L
2(M2, E)), f 7→ (x 7→ f(x, ·))

is an isometric isomorphism.

Proof. The lemma follows from Fubini. �

Proposition 5.2.3. Let M be a measure space.
Let k : M ×M → EndE be a measurable function such that the integral kernel

|k(x, y)| defines a bounded operator |K| on L2(M) with norm ‖|K|‖. Then k defines
a bounded operator on L2(M,E) with norm less than or equal to ‖|K|‖.

Proof. For a simple function f : M → E

‖
∫

M

k(·, y)f(y) dy‖L2 ≤ ‖
∫

M

|k(·, y)||f(y)| dy‖L2 ≤ ‖|K|‖ ‖f‖L2.

�

Corollary 5.2.4. Let M be a measure space.
There is a norm-decreasing map

L2(M ×M,EndE)→ B(L2(M,E), L2(M,E))

k 7→
(

f 7→ Kf :=

∫

M

k(·, y)f(y) dy
)

.

Corollary 5.2.5. The convolution induces a continuous map

L1(IRn,EndE)→ B(L2(IRn, E)), f 7→ (g 7→ f ∗ g) .
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Proof. The convolution with f ∈ L1(IRn,EndE) is an integral operator with
integral kernel f(x−y). Since |f | ∈ L1(IRn) for f ∈ L1(IRn,EndE), the convolution
with |f | is bounded on L2(IRn). Then the assertion follows from the previous
proposition. �

Lemma 5.2.6. For any f ∈ Lp(IRn, E) the translation map

τf : IRn → Lp(IRn, E), y 7→ τyf ,

defined by
τyf(x) := f(x− y) ,

is continuous.

Proof. The proof is analogous to the case E = C, see [Co], Ch. VII, Prop.
9.2. �

5.2.3. Adjointable operators on Banach spaces. Let B be an involutive
Banach algebra with unit. In this section all operators are assumed to be right
B-module maps. Let E be a Banach right B-module with norm | · |.

Definition 5.2.7. A B-valued non-degenerated product on E is a map
〈 , 〉 : E × E → B that is C-linear in the second variable and has the following
properties:

(1) 〈v, wb〉 = 〈v, w〉b for all v, w ∈ E, b ∈ B,
(2) 〈v, w〉 = 〈w, v〉∗ for all v, w ∈ E,
(3) if 〈v, w〉 = 0 for all w ∈ E, then v = 0,
(4) there is C > 0 such that |〈v, w〉| ≤ C|v|E |w|E for all v, w ∈ E.

Let E be endowed with a B-valued non-degenerated product 〈 , 〉.
Definition 5.2.8. A bounded operator T : E → E is called adjointable if

there is a map T ∗ : E → E satisfying

〈v, Tw〉 = 〈T ∗v, w〉
for all v, w ∈ E.

Lemma 5.2.9. Let T : E → E be adjointable.

(1) The adjoint T ∗ is unique.
(2) T ∗ is a right B-module map.
(3) T ∗ is bounded.
(4) T ∗∗ = T .
(5) (ST )∗ = T ∗S∗.

Proof. (1) Let T ∗ be an adjoint of T and Γ(T ∗) its graph. Then

Γ(T ∗) ⊂ G := {(x, y) ∈ E × E | 〈y, w〉+ 〈−x, Tw〉 = 0 ∀w ∈ E} .
Let v ∈ E. There is a unique v1 ∈ E with (v, v1) ∈ G since from

〈v1, w〉 = 〈v, Tw〉 = 〈v2, w〉 ∀w ∈ E
it follows 〈v1 − v2, w〉 = 0 for all w ∈ E and therefore v1 = v2. This shows
Γ(T ∗) = G.

(2) If (x, y), (v, w) ∈ Γ(T ∗) and b ∈ B, then (xb + v, yb + w) ∈ Γ(T ∗) by the
proof of (1).

(3) Since Γ(T ∗) is closed, the operator T ∗ is bounded.
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(4) From (1) it follows that Γ(T ∗∗) = Γ(T ).
(5) 〈(ST )∗v, w〉 = 〈v, STw〉 = 〈S∗v, Tw〉 = 〈T ∗S∗v, w〉. �

Lemma 5.2.10. Let T be a densely defined operator on E. If there exists a
densely defined operator S, called formal adjoint of T , such that

〈f, T g〉 = 〈Sf, g〉
for all f ∈ domS, g ∈ domT , then T is closable.

Proof. The set

{(x, y) ∈ E ⊕ E | 〈f, y〉 − 〈Sf, x〉 = 0 ∀f ∈ domS}
is the graph of a closed extension of T . �

The standard B-valued non-degenerated product on Bn is given by

〈v, w〉 :=
n
∑

i=1

v∗i wi .

Since the endomorphism set of Bn can be identified with Mn(B), all elements of
End(B) are adjointable and taking the adjoint is a bounded linear map.

If M is a measure space, the standard B-valued non-degenerated product on
L2(M,Bn) is defined by

〈f, g〉L2 :=

∫

M

〈f(x), g(x)〉dx .

We check condition (3) of Def. 5.2.7:
Let B′ be the topological dual of B endowed with the weak topology.
We use that every λ ∈ B′ induces a map λ : Bn → Cn by componentwise

application.
If f ∈ L2(M,Bn) with 〈f, g〉L2 = 0 for all g ∈ L2(M,Bn), then in particular

for all g ∈ L2(M,Cn) and λ ∈ B′
∫

M

λ(f(x)∗)g(x)dx = 0 ,

hence λ(f(x)∗) vanishes almost everywhere. Since B′ is separable, it follows f = 0
in L2(M,Bn).

5.2.4. Hilbert-Schmidt operators. Let the notation be as in the previous
section. Assume that M is a σ-finite measure space.

Lemma 5.2.11. Let k ∈ L2(M ×M,Mn(B)) and let K be the corresponding
integral operator on L2(M,Bn). Then k is uniquely defined by K.

Proof. It is enough to show that k vanishes in L2(M ×M,Mn(B)) if K = 0.
Applying λ ∈ B′ componentwise yields maps λ : Mn(B) → Mn(C) and λ :

Bn → Cn.
For f ∈ L2(M,Cn) we have that almost everywhere

λ(

∫

M

k(x, y)f(y) dy) =

∫

M

λ(k(x, y))f(y) dy = 0 .

It follows that λ(k(x, y)) = 0 in L2(M ×M,Mn(C)). Since B′ is separable, the set
of all (x, y) ∈ M ×M such that there is λ ∈ B′ with λ(k(x, y)) 6= 0 has measure
zero. On the complement of this set k vanishes. �
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Definition 5.2.12. A Hilbert-Schmidt operator on L2(M,Bn) is an inte-
gral operator with integral kernel in L2(M×M,Mn(B)). Let A be a Hilbert-Schmidt
operator on L2(M,Bn) with integral kernel kA ∈ L2(M ×M,Mn(B)). We define

‖A‖HS := ‖kA‖ ,
where the norm on the right hand side is taken in L2(M ×M,Mn(B)).

The normed space of Hilbert-Schmidt operators on L2(M,Bn) is denoted by
HS(L2(M,Bn)).

Note that HS(L2(M,Bn)) is a Banach algebra and that the inclusion

HS(L2(M,Bn))→ B(L2(M,Bn))
is bounded. Prop. 5.2.13 below shows that HS(L2(M,Bn)) is a left B(L2(M,Bn))-
module.

All operators in HS(L2(M,Bn)) are adjointable. The integral kernels of A ∈
HS(L2(M,Bn)) and A∗ are related by kA∗(x, y) = kA(y, x)∗. It follows that taking
the adjoint is a bounded map on HS(L2(M,Bn)).

Proposition 5.2.13. Let A ∈ B(L2(M,Bn)), K ∈ HS(L2(M,Bn)).
(1) Then AK ∈ HS(L2(M,Bn)). Furthermore there is C > 0, independent

of A and K, such that

‖AK‖HS ≤ C‖A‖‖K‖HS .
(2) If A is adjointable, then KA ∈ HS(L2(M,Bn)). Furthermore there is

C > 0, independent of A and K, with

‖KA‖HS ≤ C‖A∗‖‖K‖HS .
Proof. (1) There is an isomorphism

L2(M ×M,Mn(B)) ∼= L2(M ×M,Bn)n

that is equivariant with respect to the left Mn(B)-action on both spaces. Further-
more the map

L2(M ×M,Bn)→ L2(M,L2(M,Bn)), k 7→ (y 7→ k(·, y))
is an isomorphism by Lemma 5.2.2. The operator A induces a bounded map on
L2(M,L2(M,Bn)), namely k 7→ (y 7→ Ak(·, y)), clearly its norm is less than or
equal to the norm of A on L2(M,Bn).

(2) The mapK 7→ KA is a composition of the following maps onHS(L2(M,Bn)):

K
∗7→ K∗ A∗

7→ A∗K∗ = (KA)∗
∗7→ KA .

By (1) and the fact that taking the adjoint is bounded on HS(L2(M,Bn)) these
maps are bounded. �

Definition 5.2.14. (1) Let 〈 , 〉 : Bn×Bn → B be the standard B-valued
non-degenerated product. For e ∈ Bn define the map

e∗ : Bn → B, v 7→ 〈e, v〉 .
(2) An integral operator A on L2(M,Bn) is called finite if there is k ∈ IN

and there are functions fj , hj ∈ L2(M,Bn), j = 1 . . . k, such that

kA(x, y) =

k
∑

j=1

fj(x)hj(y)
∗ .
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5.2.5. Trace class operators. Let M be a σ-finite Borel space. Assume
that there is a uniformly bounded sequence (Km)m∈IN ⊂ B(L2(M,Bn)) converging
strongly to the identity such that each Km is an integral operator with continuous
compactly supported integral kernel.

This condition is fulfilled for example if M is a complete Riemannian manifold:
Using Prop. 5.2.3 and the fact that the heat kernel kt(x, y) of the scalar Laplacian
∆ is positive, one can deduce that kt(x, y) defines a strongly continuous semigroup

e−t∆ on L2(M,Bn). Then Km := φme
− 1

m ∆φm is an appropriate sequence, where
(φm)m∈IN is a sequence in Cc(M) that converges to the identity on compact subsets
of M .

The composition of operators induces a continuous map

µ : HS(L2(M,Bn))⊗π HS(L2(M,Bn))→ B(L2(M,Bn)) .
Definition 5.2.15. A trace class operator on L2(M,Bn) is an element

in the range of µ. The space of trace class operators is denoted by Tr(L2(M,Bn)).
We identify it with

(

HS(L2(M,Bn))⊗π HS(L2(M,Bn))
)

/Kerµ

and endow it with the quotient norm.

It follows from Prop. 5.2.13 that Tr(L2(M,Bn)) is a left B(L2(M,Bn))-module
and that there is a well-defined action of adjointable operators from the right.

Proposition 5.2.16. The map

R : HS(L2(M,Bn))⊗π HS(L2(M,Bn))→ L1(M,Mn(B)) ,

(A,B)→ (x 7→
∫

M

kA(x, y)kB(y, x) dy)

descends to a continuous map

R : Tr(L2(M,Bn))→ L1(M,Mn(B)) .

Proof. Note that R is continuous, hence all we have to show is that R is
well-defined. Since the sequence Km is uniformly bounded, the map F 7→ KmFKm

on HS(L2(M,Bn)) ⊗π HS(L2(M,Bn)) converges strongly to the identity. The
assertion follows if we can show that µ(F ) = 0 implies R(KmFKm) = 0.

The map F 7→ KmFKm is continuous as a map from HS(L2(M,Bn)) ⊗π
HS(L2(M,Bn)) to Cc(M,L2(M,Mn(B))) ⊗π Cc(M,L2(M,Mn(B))). The compo-
sition with the continuous map Cc(M,L2(M,Mn(B)))⊗πCc(M,L2(M,Mn(B)))→
Cc(M ×M,Mn(B)) induced by the product

L2(M,Mn(B))× L2(M,Mn(B))→Mn(B), (f, g) 7→
∫

M

f(x)g(x) dx

agrees with the map that sends F to the continuous integral kernel kµ(KmFKm) of
µ(KmFKm). We compose further with the restriction to the diagonal and get a
continuous map

HS(L2(M,Bn))⊗π HS(L2(M,Bn))→ Cc(M,Mn(B)) ⊂ L1(M,Mn(B)) ,

which agrees with the map F 7→ R(KmFKm). This shows that the map F 7→
R(KmFKm) factors through the map

HS(L2(M,Bn))⊗π HS(L2(M,Bn))→ Cc(M ×M,Mn(B)), F 7→ kµ(KmFKm) .
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Now µ(F ) = 0 implies µ(KmFKm) = 0, hence kµ(KmFKm) = 0 by the uniqueness
of the integral kernel in Cc(M ×M,Mn(B)). �

Let

tr : Mn(B)→ B/[B,B]

be the trace defined, as usual, by adding up the diagonal elements and let

Tr(T ) :=

∫

M

tr R(T )(x) dx

for T ∈ Tr(L2(M,Mn(B))). Then for Hilbert-Schmidt operators A,B

Tr(AB) = Tr(BA) .

From the fact that any trace class operator can be approximated by finite sums
of products of Hilbert-Schmidt operators it follows that the equation holds also for
A ∈ Tr(L2(M,Bn)) and B any adjointable operator.

5.2.6. Pseudodifferential operators. Let E be a Banach space.
Let U be an open precompact subset of IRn. Recall the notion of a symbol of

order m on U :

Definition 5.2.17. A function a ∈ C∞(U × IRn,Ml(C)) is called a symbol

of order m ∈ IR if it is compactly supported in the first variable and if for all
multi-indices α, β ∈ INn

0 the expressions

sup
x∈U, ξ∈IRn

(1 + |ξ|)−m+|β||∂αx ∂βξ a(x, ξ)|

are finite.
These are seminorms on the space Sm(U,Ml(C)) of symbols of order m on U ,

which turn Sm(U,Ml(C)) into a Fréchet space.

In order to simplify formula involving Fourier transform it is convenient to
rescale the Lebesgue measure on IRn by setting d′x := (2π)−

n
2 dx.

We consider L2(U,El) as a subspace of L2(IRn, El) in the following.
The Fourier transform is bounded from L1(IRn, E) to C0(IR

n, E).
A symbol a ∈ Sm(U,Ml(C)) defines a continuous operator

Op(a) : C∞
c (U,El)→ C∞

c (U,El), (Op(a)f)(x) =

∫

IRn

eixξa(x, ξ)f̂ (ξ) d′ξ

called a pseudodifferential operator of order m.
Due to the fact that the Fourier transform is in general not continuous on

L2(IRn, El), the continuity properties of pseudodifferential operators acting on vec-
tor valued functions are in general weaker that those one gets for E = C. They are
still weaker if we allow for symbols with values in EndE.

Lemma 5.2.18. (1) For m < −n2 and a ∈ Sm(U,Ml(C)) the operator

Op(a) extends to a bounded operator on L2(U,El) and the map

Op : Sm(U,Ml(C))→ B(L2(U,El))

is continuous.
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(2) Let m < −n2 and ν, k ∈ IN0 with k < −n2 −m. Then for a ∈ Sm(U,Ml(C))
the operators

Op(a) : Cν0 (U,El)→ Cν+k0 (U,El)

and
Op(a) : L2(U,El)→ Ck0 (U,El)

are continuous.

Proof. (1) Let m < −n2 .
The Fourier transform in ξ induces a bounded map

Sm(U,Ml(C))→ C∞
c (U,L2(IRn,Ml(C))), a 7→ (x 7→ â(x, ·)) .

If a ∈ Sm(U,Ml(C)), we extend Op(a) to L2(U,El) by

(Op(a)f)(x) :=

∫

IRn

â(x, z)f(−x− z)d′z .

The map
Sm(U,Ml(C))→ B(L2(U,El)), a 7→ Op(a)

is well-defined and continuous since

IRn → L2(IRn, El), x 7→ (z 7→ f(−x− z))
is continuous by Lemma 5.2.6, hence Op(a)f ∈ C0(U,E

l) and

‖Op(a)f‖C0 ≤ sup
x∈U
‖â(x, ·)‖L2‖f‖L2 .

(2) First let m < −n2 and k = 0.

If f ∈ Cν0 (U,El), then x 7→ (z 7→ f(−x− z)) is in Cν0 (IRn, L2(IRn, El)).
It follows as above that Op(a)f ∈ Cν0 (U,El) and

‖Op(a)f‖Cν ≤ C sup
|α|≤ν

sup
x∈U
‖∂αx â(x, ·)‖L2‖f‖Cν .

Now assume that the assertion holds for k − 1 and all a ∈ Sm(U,Ml(C)) with
m < −n2 − k + 1.

We prove the assertion for k and a ∈ Sm(U,Ml(C)) with m < −n2 − k:
If α ∈ INn

0 with |α| = 1, then the map

f 7→ ∂α(Op(a)f)

is a pseudodifferential operator of degree m + 1. By induction it is a bounded
operator from Cν(U,El) to Cν+k−1(U,El). It follows that Op(a) is continuous
from Cν(U,El) to Cν+k(U,El).

An analogous induction argument shows that Op(a) is continuous from L2(U,El)
to Ck0 (U,El). For k = 0 this was proved in (1). �

5.3. Projective systems and function spaces

The projective systems (Ai)i∈IN0 and (Ω̂≤µAi)i,µ∈IN0 from §1.3.3 induce pro-

jective systems of spaces
(

L2(M,Ali)
)

i∈IN0
and

(

L2(M, (Ω̂≤µAi)l)
)

i,µ∈IN0
.

Recall the convention fixed in §5.2.2: The space L2(M,Al) is the Hilbert A-

module defined in §5.1.1. For µ ∈ IN0 and i ∈ IN the space L2(M, (Ω̂≤µAi)l) was
defined in §5.2.2.

In the following we investigate the behavior of some particular classes of oper-

ators on L2(M, (Ω̂≤µAi)l) under the projective limit.
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5.3.1. Integral operators. Hilbert-Schmidt operators on L2(M,Ali) have the

property that they extend to bounded operators on L2(M, (Ω̂≤µAj)l) for all j ∈ IN0

with j ≤ i and all µ ∈ IN0. We investigate how the spectrum depends on j, µ.
We extend a method developed by Lott ([Lo3], §6.1.) for closed manifolds

to certain non-compact manifolds with boundary (in particular for the manifold
defined in §1.1).

Let [0, 1]n be endowed with a measure of the form hdx where h is a positive
continuous function on [0, 1]n and dx is the Lebesgue measure.

In the proof of the following proposition we use that there exists a Schauder
basis of C([0, 1]n) that is orthonormal in L2([0, 1]n) (here and in the following we
understand L2([0, 1]n) with respect to hdx). For h = 1 a Franklin system [Se]

yields such a basis {fn}n∈IN, then for general h the system {h− 1
2 fn}n∈IN is one.

The proposition still holds true if [0, 1]n is replaced by a compact Borel space
for which such a basis exists.

Proposition 5.3.1. (1) Let [0, 1]n be endowed with a measure hdx as
above. Let k ∈ C([0, 1]n × [0, 1]n,Ml(Ai)) and let K be the corresponding
integral operator. Assume that 1 − K is invertible in B(L2([0, 1]n,Al)).
Then 1−K : L2([0, 1]n, (Ω̂≤µAi)l)→ L2([0, 1]n, (Ω̂≤µAi)l) is invertible.

(2) Let M be a Riemannian manifold of dimension n, possibly with boundary.
Suppose that there is a covering {Km}m∈IN of M with Km compact, Km ⊂
Km+1 and such that Km is diffeomorphic to [0, 1]n for every m ∈ IN. Let
k ∈ L2(M ×M,Ml(Ai)) ∩ C(M ×M,Ml(Ai)) and assume furthermore
that x 7→ k(x, ·) and y 7→ k(·, y) are in C(M,L2(M,Ml(Ai))).

If 1 − K is invertible in B(L2(M,Al)), then 1 − K is invertible in

B(L2(M, (Ω̂≤µAi)l)).
Proof. (1) Choose a basis of C([0, 1]n) which is orthonormal with respect

to hdx and let PN denote the projection onto the first N basis vectors. The
integral kernel of PN is in L2([0, 1]n × [0, 1]n), hence PN acts continuously on

L2([0, 1]n, (Ω̂≤µAi)l).
We decompose L2([0, 1]n, (Ω̂≤µAi)l) into the direct sum

PNL
2([0, 1]n, (Ω̂≤µAi)l)⊕ (1− PN )L2([0, 1]n, (Ω̂≤µAi)l)

and write

1−K =

(

a b
c d

)

with respect to the decomposition.
If we find N such that d is invertible on (1−PN)L2([0, 1]n, (Ω̂≤µAi)l) and prove

that then a− bd−1c is invertible on PNL
2([0, 1]n, (Ω̂≤µAi)l), we can conclude that

(1−K) is invertible by the equality
(

a b
c d

)

=

(

1 bd−1

0 1

)(

a− bd−1c 0
0 d

)(

1 0
d−1c 1

)

.

First we show that

d = (1− PN )(1−K)(1− PN )

is invertible for N big enough. By Prop. 5.2.13 the operator (1−PN )K(1−PN ) is
a Hilbert-Schmidt operator. Its integral kernel is continuous.
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For N →∞ the projections PN converge strongly to the identity on C([0, 1]n).
Since

C([0, 1]n × [0, 1]n,Ml(Ai)) ∼= C([0, 1]n)⊗ε C([0, 1]n)⊗εMl(Ai) ,
there is N such that the norm of the integral kernel of (1−PN )K(1−PN ) is smaller
than 1

2 in C([0, 1]n × [0, 1]n,Ml(Ai)).
For that N the series

(1− PN ) +

∞
∑

ν=1

((1 − PN )K(1− PN ))ν

converges as a bounded operator on (1 − PN )L2([0, 1]n, (Ω̂≤µAi)l) and inverts d.
Hence a− bd−1c is well-defined.

Via the basis we identify a− bd−1c with an element of MNl(Ai). Since 1−K
is invertible on L2(M,Al), the matrix a− bd−1c is invertible in MNl(A). By Prop.
1.3.4 it follows that a− bd−1c is invertible in MNl(Ai) as well.

(2) Let m ∈ IN be such that in L2(M ×M,Ml(Ai))

‖(1− 1Km(x))k(x, y)(1 − 1Km(y))‖ ≤ 1

2
.

Write

(1−K) =

(

a b
c d

)

with respect to the decomposition

L2(M, (Ω̂≤µAi)l) = 1KmL
2(M, (Ω̂≤µAi)l)⊕ (1− 1Km)L2(M, (Ω̂≤µAi)l) .

By the choice of m ∈ IN the entry d = 1 − (1 − 1Km)K(1 − 1Km) is invertible on

(1− 1Km)L2(M, (Ω̂≤µAi)l).
We prove that a− bd−1c is invertible on L2(Km, (Ω̂≤µAi)l) and then the asser-

tion follows as in the proof of (1).

On L2(Km, (Ω̂≤µAi)l)
a− bd−1c = 1Km − (1KmK1Km + bd−1c) .

The operator 1KmK1Km + bd−1c is an integral operator on L2(Km, (Ω̂≤µAi)l) with
continuous integral kernel: The integral kernel of b is 1Km(x)k(x, y)(1 − 1Km(y))
and x 7→ 1Km(x)k(x, ·)(1 − 1Km) is in C(Km, L

2(M,Ml(Ai))). For the integral
kernel (1 − 1Km(x))k(x, y)1Km (y) of c we have y 7→ (1 − 1Km)k(·, y)1Km(y) ∈
C(Km, L

2(M,Ml(Ai))). It follows that bd−1c is an integral operator with continu-
ous kernel on Km ×Km. Clearly the integral kernel of 1KmK1Km is continuous as
well.

Since a−bd−1c is invertible on L2(Km,Al) and since the measure on Km pulled
back by an orientation preserving diffeomorphism [0, 1]n → Km is of the form hdx,

we conclude by (1) that a− bd−1c is invertible on L2(Km, (Ω̂≤µAi)l) as well. �

Corollary 5.3.2. Let k be an integral kernel as in part (2) of the proposition
and let K be the corresponding integral operator. Then for λ ∈ C∗ the operator
K − λ is invertible on L2(M, (Ω̂≤µAi)l) if K − λ is invertible on L2(M,Al).

Proof. For λ ∈ C \ {0} the integral kernel k/λ fulfills the conditions of the
lemma. Thus if λ − K = λ(1 − K/λ) is invertible on L2(M,Al), then λ − K is

invertible on L2(M, (Ω̂≤µAi)l) as well. �
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5.3.2. The Chern character.

Definition 5.3.3. Let V be a ZZ/2-graded finite dimensional vector space. Let

K be an integral operator on L2(M,V ⊗ Ω̂≤µAi) with integral kernel k : M ×M →
End(V )⊗ Ω̂≤µAi. Then we define d(K) to be the integral operator on L2(M,V ⊗
Ω̂≤µAi) with integral kernel d(k(x, y)). (The action of d on End(V )⊗ Ω̂≤µAi was
described in §1.3.2.)

Note that if K is of degree n with respect to the ZZ/2-grading on L2(M,V ⊗
Ω̂≤µAi), then

d(Kf) = d(K)f + (−1)nK d f .

Lemma 5.3.4. Let M be a σ-finite measure space.
Let P be a Hilbert-Schmidt operator on L2(M, (Ω̂≤µAi)l) with integral kernel

in L2(M ×M,Ml(Ai)) and assume that P 2 = P . Then

P dP dP = P (d(P ))2 .

Proof. As for matrices (see the beginning of the proof of Prop. 1.3.3) we have
that (dP ) = P (dP ) + (dP )P and P (dP )P = 0.

It follows that

P dP dP = P (dP ) dP = P (dP )2P

= P (dP )(dP )− P (dP )P (dP )

= P (d(P ))2.

�

Lemma 5.3.5. Let P : [0, 1]→ HS(L2(M, (Ω̂≤µAi)l)) be a differentiable path of
Hilbert-Schmidt operators with integral kernels in L2(M ×M,Ml(Ai)), and assume
that P (t)2 = P (t) for every t ∈ [0, 1].

Then for k ∈ IN0 in Ω̂≤µAi/[Ω̂≤µAi, Ω̂≤µAi]
TrP (1)(dP (1))2k − TrP (0)(dP (0))2k

is exact.

Proof. As for matrices (see Prop. 1.3.3). �

If T is a trace class operator on L2(M, (Ω̂≤µAi)l) restricting to a trace class

operator on L2(M, (Ω̂≤νAj)l) for all j, ν ∈ IN with j ≥ i and ν ≥ µ, then by taking

the projective limit we can consider Tr(T ) as in element in Ω̂∗A∞/[Ω̂∗A∞, Ω̂∗A∞]s.
In the next lemma we show that under certain conditions the formula for the Chern
character can be generalized to projections which are Hilbert-Schmidt operators.

Proposition 5.3.6. Let M be a Riemannian manifold of dimension d, possibly
with boundary. Suppose that there is a covering {Km}m∈IN of M with Km compact,
Km ⊂ Km+1 and such that Km is diffeomorphic to [0, 1]d for all m ∈ IN.

Let P ∈ B(L2(M,Al)) be a projection onto a projective submodule of L2(M,Al).
Assume further that for any i ∈ IN it restricts to a bounded projection on L2(M,Ali)
and that P (L2(M,Ali)) ⊂ C(M,Ali). Let

Ran∞ P :=
⋂

i∈IN

P (L2(M,Ali)) .
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(1) The projection P is a Hilbert-Schmidt operator with integral kernel of the
form

∑m
j=1 fj(x)hj(y)

∗ with fj , hj ∈ Ran∞ P .

(2) The intersection Ran∞ P is a projective A∞-module. The classes [RanP ] ∈
K0(A) and [Ran∞ P ] ∈ K0(A∞) correspond to each other under the
canonical isomorphism K0(A) ∼= K0(A∞).

(3) In HdR
∗ (A∞)

ch[Ran∞ P ] =

∞
∑

n=0

(−1)n
1

n!
Tr(P dP )2n .

Proof. (1) Let {en}n∈IN ⊂ C∞
0 (M,Cl) be an orthonormal basis of L2(M,Cl).

The orthogonal projection Pn onto the span of the first n basis vectors is a
Hilbert-Schmidt operator with integral kernel in C∞

0 (M ×M,Ml(C)).
In particular Pn ∈ B(L2(M,Ali)) for any i ∈ IN.
First we consider the situation on L2(M,Al):
Since P is compact, there is n ∈ IN such that on L2(M,Al)

‖P (Pn − 1)‖ ≤ 1

2
.

Then by Prop. 5.1.21 the map PPnP : RanP → RanP is an isomorphism.
It follows that KerPPnP = (RanP )⊥ = KerP and therefore

P = 1− PKerPPnP .

Here PKerPPnP denotes the orthogonal projection onto KerPPnP .
We can find r > 0 such that Br(0) \ {0} is in the resolvent set of PPnP .
Then

P = 1− PKerPPnP

= 1− 1

2πi

∫

|λ|=r
(λ− PPnP )−1dλ

=
1

2πi

∫

|λ|=r

(

λ−1 − (λ− PPnP )−1
)

dλ

= − 1

2πi
PPnP

∫

|λ|=r
λ−1(λ− PPnP )−1dλ .

The integral kernel of PPnP fulfills the conditions of Prop. 5.3.1. From Cor. 5.3.2
we conclude that the spectrum of PPnP in B(L2(M,Ali)) is independent of i ∈ IN0,
thus

R :=

∫

|λ|=r
λ−1(λ− PPnP )−1dλ

is a bounded operator on L2(M,Ali) for all i ∈ IN0.
This and the equation PR = PRP show that P is an integral operator with

integral kernel

kP (x, y) = − 1

2πi

n
∑

j=1

Pej(x)(PR
∗Pej(y))

∗ .

The integral kernel is in L2(M ×M,Ml(Ai)) for all i ∈ IN0 and is of the form we
asserted.

(2) Let Pn as above with ‖(Pn − 1)P‖ ≤ 1
2 in B(L2(M,Al)).
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The operator (1 + (Pn − 1)P ) is invertible in B(L2(M,Al)), hence by Prop.
5.3.1 it is invertible in B(L2(M,Ali)) for any i ∈ IN0. From PnP = (1+(Pn−1)P )P
it follows that

PnP (L2(M,Ali)) ∼= RanP (L2(M,Ali))
for all i ∈ IN0. FurthermoreQ := (1+(Pn−1)P )P (1+(Pn−1)P )−1 ∈ B(L2(M,Ali))
is a projection onto PnP (L2(M,Ali)). Identify Pn(L2(M,Ali)) with Ani via the basis
and let Q′ ∈ Mn(A∞) be the restriction of Q to Pn(L

2(M,Ali)). From Ran∞ P ∼=
Q′(An∞) it follows that [RanP ] = [Q′] in K0(A) and [Ran∞ P ] = [Q′] in K0(A∞).
This shows the assertion.

(3) Let Pn, Q and Q′ be as in the proof of (2). In HdR
∗ (A∞)

ch[Ran∞ P ] = ch(Q′)

=

∞
∑

k=0

(−1)k
1

k!
tr(Q′ dQ′)2k

=
∞
∑

k=0

(−1)k
1

k!
Tr((PnQPn) d(PnQPn))

2k

=

∞
∑

k=0

(−1)k
1

k!
Tr(PnQ)(dPnQ)2k

=

∞
∑

k=0

(−1)k
1

k!
Tr(Q(dQ)2k) .

Since

H : [0, 1]→ B(L2(M, (Ω̂≤µAi)l)) ,
H(t) = (1 + t(Pn − 1)P )P (1 + t(Pn − 1)P )−1

is a differentiable path of finite projections with H(0) = P and H(1) = Q, the

difference Tr(Q dQ)2k − Tr(P dP )2k is exact in Ω̂∗A∞/[Ω̂∗A∞, Ω̂∗A∞]s by the
previous lemma.

This shows the assertion. �

5.4. Holomorphic semigroups

5.4.1. General facts. Let X be a Banach space.
In order to fix notation we collect some well-known facts about holomorphic

semigroups on X . A general reference is [RR].

For δ ∈]0, π] let Σδ := {λ ∈ C∗ | | argλ| < δ}.
Recall that a family S : Σδ ∪ {0} → B(X) is called a holomorphic semigroup

if it is a semigroup, i.e. S(0) = 1 and S(t + s) = S(t)S(s) for all s, t ∈ Σδ ∪ {0},
moreover if it is strongly continuous on Σδ′ ∪{0} for all δ′ < δ and holomorphic on
Σδ.

Given a holomorphic semigroup S(t), the unbounded operator Z with Zx :=
d
dt(S(t)x)|t=0 whenever defined is called the generator of Z. It is densely defined
and closed. Any subset of its domain that is dense in X and invariant under the
action of the semigroup is a core for Z.
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Recall that a densely defined operator Z on X generates a holomorphic semi-
group etZ if and only if there is ω ∈ IR such that Z + ω is δ-sectorial for some
δ ∈]0, π/2], i.e. if and only if Σδ+π/2 is a subset of the resolvent set ρ(Z + ω) and
for any ε with 0 < ε < δ there is C > 0 such that for all λ ∈ Σε+π/2

‖(Z + ω − λ)−1‖ ≤ C

|λ| .

Then there is C > 0 such that for all t > 0

‖etZ‖ ≤ Ce−ωt .
Lemma 5.4.1. Let Z be a densely defined operator on X and let δ > 0 be such

that

(i) Σδ+π/2 ∪ {0} ⊂ ρ(Z) ,
(ii) for every α < δ there are c ∈ IR and r > 0 such that

‖(Z + c− λ)−1‖ ≤ C

|λ|
for λ ∈ Σα+π/2 with |λ| > r and λ− c ∈ ρ(Z).

Then Z is δ-sectorial.

Proof. Let 0 < ε < δ.
Let α ∈ (ε, δ) and R > r big enough such that any λ ∈ Σε+π/2 with |λ| > R

satisfies λ− c ∈ Σα+π/2. By assumption we find C > 0 such that for all λ ∈ Σε+π/2
with |λ| > R

‖(Z − λ)−1‖ ≤ C

|λ+ c|

≤
(

C

|λ|

)( |λ+ c|+ |c|
|λ+ c|

)

≤
(

C

|λ|

)(

1 +
|c|

(R− |c|)

)

≤ C

|λ| .

Since Σε+π/2 ∩ {|z| ≤ R} is a compact subset of the resolvent set of Z, this implies
the assertion.

�

We have the following relation between the spectrum of a δ-sectorial operator
Z and the behavior of the holomorphic semigroup etZ for t→∞.

Proposition 5.4.2. If Z is a δ-sectorial operator and there is ω > 0 such that

{Reλ > −ω} ⊂ ρ(Z) ,

then for any ω′ < ω there is C > 0 such that for all t ≥ 0

‖etZ‖ ≤ Ce−ω′t .

Proof. For any ω′ < ω there is 0 < δ′ ≤ δ such that Σδ′+π/2∪{0} ⊂ ρ(Z+ω′).
Now it follows from the previous lemma that Z + ω′ is δ′-sectorial. �
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Proposition 5.4.3. If etZ is a strongly continuous semigroup with generator
Z such that Ran etZ ⊂ domZ for all t ∈ (0,∞) and if there are T > 0 and C > 0
such that for t ≤ T

‖ZetZ‖ ≤ Ct−1 ,

then etZ extends to a holomorphic semigroup.
If the estimate holds for all t > 0, then the extension is bounded holomorphic.

Proof. The assertion follows immediately from [Da], Th. 2.39. �

Part (1) of the next proposition is known under the name Volterra development
and the formula in part (2) is called Duhamel’s formula:

Proposition 5.4.4. Let Z be the generator of a strongly continuous semigroup
and let M,ω ∈ IR be such that ‖etZ‖ ≤Meωt for all t ≥ 0.

(1) Let R ∈ B(X). Then Z + R is the generator of a strongly continuous
semigroup and for all t ≥ 0

et(Z+R) =

∞
∑

n=0

tn
∫

∆n

eu0tZReu1tZR . . . euntZ du0 . . . dun

with ∆n = {u0 + · · ·+ un = 1;ui ≥ 0, i = 0, . . . , n}. Furthermore

‖et(Z+R)‖ ≤Me(ω+M‖R‖)t .

(2) Let R1, . . . , Rn ∈ B(X). For t ≥ 0 the map

Cn → B(X), (z1, . . . , zn) 7→ et(Z+z1R1+···+znRn)

is analytical and for i = 0, . . . n

d

dzi
et(Z+z1R1+···+znRn) =

∫ t

0

e(t−s)(Z+z1R1+···+znRn)Rie
s(Z+z1R1+···+znRn) ds .

Proof. (1) follows from [Da], Th. 3.1 and the proof of it.
(2) The analyticity follows from (1).
For the formula it is enough to consider n = 1. Let R := R1.
For z0 ∈ C by (1)

e(Z+zR)t =

∞
∑

n=0

(z−z0)ntn
∫

∆n

eu0t(Z+z0R)Reu1t(Z+z0R)R . . . eunt(Z+z0R) du0 . . . dun .

This implies that

d

dz
e(Z+zR)t|z0 = t

∫ 1

0

eu0t(Z+z0R)Re(1−u0)t(Z+z0R)du0 .

�

The following proposition is known in the literature as Duhamel’s principle:

Proposition 5.4.5. Let Z be the generator of a strongly continuous semigroup
on X. Let u ∈ C1([0,∞), X) such that u(t) ∈ domZ and d

dtu(t)− Zu(t) ∈ domZ
for all t ∈ [0,∞). Then

etZu(0)− u(t) = −
∫ t

0

esZ
( d

dt
− Z

)

u(t− s)ds .

Proof. see [Ta], Appendix A, (9.37) and (9.38). �
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5.4.2. Square roots of generators and perturbations. Assume that D is
a densely defined closed operator on a Banach space X with bounded inverse and
such that −D2 is δ-sectorial.

There are well-defined fractional powers (D2)α for α ∈ IR ([RR], §11.4.2).
These are densely defined closed operators that coincide for α ∈ ZZ with the usual
powers and satisfy

(D2)α+βf = (D2)α(D2)βf

for all α, β ∈ IR and f ∈ dom(D2)γ with γ = max{α, β, α + β}. For α ≤ 0 the
operator (D2)α is bounded and depends of α in a strongly continuous way.

In particular it follows that for α ≥ 0 the operator (D2)−α is a bounded inverse
of (D2)α.

Define |D| := (D2)
1
2 .

By [Kat], Th. 2, the operator−|D| is (δ+ π/2−δ
2 )-sectorial and can be expressed

in terms of the resolvents of D2.
Note that for every n ∈ IN the domain of |D|n is a core of |D| and domDn is

a core of D.

Lemma 5.4.6. (1) Let P be a closed densely defined operator on X and
assume that P 2 is densely defined and P 2|M = P |M for some dense subset
M of domP 2.

Then P is a bounded projection.
(2) Let I be a closed densely defined operator on X and assume that I2 is

densely defined and that there is a dense subset M of dom I2 with I2|M =
1|M .

Then I is a bounded involution.

Proof. (1) If f ∈M , then f = (1−P )f +Pf and (1−P )Pf = P (1−P )f =
0. We conclude that M ⊂ KerP + Ker(1 − P ) ⊂ domP . If P is closed, then
KerP + Ker(1− P ) is closed, hence KerP + Ker(1− P ) = X , thus domP = X .

(2) The operator P := 1
2 (1 + I) is a closed projection on X in the sense of (1).

Thus P is bounded. It follows that I is bounded as well. �

Proposition 5.4.7. The closure of the operator |D|−1D : domD → X is a
bounded involution I on X and

(1) domD = dom |D| and I(domD) ⊂ domD.
(2) |D| = ID = DI and D = I|D| = |D|I.

Proof. The operator D−1 commutes with the resolvents of D2. It follows
that |D|−1D−1 = D−1|D|−1. Hence |D|−1(domD) ⊂ domD because of domD =
D−1X , so domD2 ⊂ dom(|D|−1D)2.

If f ∈ domD, then |D|−1Df = D|D|−1f . For f ∈ domD2 it follows that
(|D|−1D)2f = f .

Let (fn)n∈IN be a sequence in domD converging to zero. If |D|−1Dfn =
D|D|−1fn converges, the limit is zero since D is closed. Hence |D|−1D is clos-
able. By the previous lemma it extends to a bounded involution.

Since for f ∈ domD2 we have that DIf = |D|f and since DI is closed, the
composition IDI : dom |D| → X is well-defined and closed. It coincides with D on
domD2, hence it is a closed extension of D. It follows that domD ⊂ dom |D|. The
inclusion dom |D| ⊂ domD is shown analogously.

The equations are clear on domD2, which is a core for D and |D|. �
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The operator P := 1
2 (1 + I) with I as in the previous proposition is a bounded

projection on X . By the proposition P domD ⊂ domD and P commutes with D
and |D|.

From ID = |D| and I|D| = D it follows that PD = −P |D|. Thus with respect
to the decomposition X = PX ⊕ (1− P )X

D =

(

PDP 0
0 −(1− P )D(1 − P )

)

and

|D| =
(

PDP 0
0 (1− P )D(1− P )

)

.

By taking into account that −|D| is (δ+ π/2−δ
2 )-sectorial it follows for the resolvent

set of D:

Proposition 5.4.8. For λ ∈ C

{λ,−λ} ⊂ ρ(D)⇔ {λ,−λ} ⊂ ρ(|D|) .
Thus if λ ∈ C with −λ2 ∈ Σπ/2+δ, then λ ∈ ρ(D).

Furthermore for every δ′ < δ there is C > 0 such that for all λ with −λ2 ∈
Σδ′+π/2

‖(D − λ)−1‖ ≤ C

|λ| .

Corollary 5.4.9. Let ω ≥ 0 be such that there is C > 0 with ‖e−tD2‖ ≤ Ce−ωt
for all t ≥ 0.

(1) For every α ∈ IR and ω′ < ω there is C > 0 such that for all t > 0

‖|D|αe−tD2‖ ≤ Ct−α/2e−ω′t .

(2) For every n ∈ IN and ω′ < ω there is C > 0 such that for all t > 0

‖Dne−tD
2‖ ≤ Ct−n/2e−ω′t .

Proof. The first assertion is [RR], Lemma 11.36, and the second one follows
from the first one by D = I|D| and DI = ID. �

Proposition 5.4.10. Let A be a bounded operator and let δ′ < δ.

(1) There is R > 0 such that D+A− λ has a bounded inverse if |λ| > R and
−λ2 ∈ Σδ′+π/2.

(2) There is ω > 0 such that −(D +A)2 + ω is δ′-sectorial.
(3) D +A commutes with e−t(D+A)2 .

Proof. By Prop. 5.4.8 there is M > 0 such that for all λ with −λ2 ∈ Σδ′+π/2

‖(D − λ)−1‖ ≤ M

|λ| .

Hence the Neumann series

(D +A− λ)−1 = (D − λ)−1
∞
∑

n=0

(A(D − λ)−1)n

converges for |λ| > M‖A‖ and −λ2 ∈ Σδ′+π/2.
This shows (1).
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If |λ| > 2M‖A‖ and −λ2 ∈ Σδ′+π/2, then

‖(D +A− λ)−1‖ = ‖
∞
∑

n=0

(D − λ)−1
(

A(D − λ)−1
)n ‖

≤
∞
∑

n=0

‖A‖n‖(D − λ)−1‖n+1

≤
∞
∑

n=0

Mn+1‖A‖n
|λ|n+1

=
M

|λ| (1−
M‖A‖
|λ| )−1

≤ 2M

|λ| .

Let µ ∈ {|µ| > 4M2‖A‖2} ∩ Σδ′+π/2. If λ ∈ C with −λ2 = µ, then λ ∈ ρ(D + A),
hence the resolvent

(−(D +A)2 − µ)−1 = −(D +A− λ)−1(D +A+ λ)−1

exists and is bounded by

‖(−(D +A)2 − µ)−1‖ ≤ 4M2

|µ| .

There is ω > 4M2‖A‖2 such that

Σδ′+π/2 ∪ {0} ⊂
(

{|µ| > 4M2‖A‖2} ∩ Σδ′+π/2
)

− ω
and thus

Σδ′+π/2 ∪ {0} ⊂ ρ
(

−(D +A)2 + ω
)

.

Assertion (2) follows now from Lemma 5.4.1.

(3) follows from the fact that e−t(D+A)2 can be expressed in terms of the resol-
vents of (D +A)2, which commute with D +A. �
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