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Abstract. Invariants for Lagrangians of symplectic vector spaces, such as the

Maslov index for paths and the Maslov triple index, have many applications in
symplectic geometry and index theory. Here we study the properties of their

generalizations for modules over C∗-algebras and correct an error in our earlier

work on the subject.

1. Introduction

The Maslov triple index τ(L0, L1, L2), also called Leray–Kashiwara index, is
an invariant associated to a triple of Lagrangian subspaces of a finite dimensional
symplectic vector space. It is related to the Maslov index for a pair of paths of
Lagrangians µ(L1(t), L2(t)) through the formula

τ(L0(1), L1(1), L2(1))− τ(L0(0), L1(0), L2(0)) =(1.1)

2
(
µ(L0(t), L1(t)) + µ(L1(t), L2(t)) + µ(L2(t), L0(t))

)
.

Furthermore, one may associate η-invariants to a pair of Lagrangians and prove
the following cocycle formula for the Maslov triple index

τ(L1, L2, L3) = η(L0, L1) + η(L1, L2) + η(L2, L0) .(1.2)

These invariants have found applications in symplectic geometry, the theory of
quantization and in index theory, among others. For example, in a classical result of
Wall, the Maslov triple index appears as a correction term in an additivity formula
for signatures for manifolds with boundary [Wa]. Formula (1.2) arises in the context
of cut-and-paste results for η-invariants [Bu]. For a survey on Maslov indices and
references we refer to [CLM] and, more up-to-date, the webpage on the Maslov
index maintained by Ranicki [R].

Using the Atiyah–Patodi–Singer index theorem for families, Bunke and Koch
defined and studied (1.2) for families of Lagrangians [BK]. In previous work, we
generalized (1) and (2) to a noncommutative context, considering C∗-modules in-
stead of vector spaces [W1][W2]. The original motivation came from higher index
theory. For example one may ask for a generalization of Wall’s non-additivity re-
sult to higher signatures for manifolds with boundary, which were introduced by
Leichtnam and Piazza (see the survey [LP3]). Closely related is the question on
cut-and-paste results for higher η-invariants.

In the meantime there has been an independent interest in generalizations of
Maslov indices to a purely algebraic context, which was also reflected at the 2014
AMS-meeting on “The many facets of the Maslov index” [Bo]. Barge and Lannes
defined and studied Maslov indices for modules over rings [BL][L]. These results
are relevant for an algebraic analogue of Wall’s result in Ranicki’s L-theory. While
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Barge and Lannes defined and proved (1.1) algebraically, it is not clear how an
algebraic analogue of (1.2) should look like since the definition of the η-invariants
is highly analytic. In this context, the C∗-algebraic context presents a test case
where an analogue exists and its properties may be studied.

While the generalization of (1.1) to a C∗-algebraic context is rather direct and
does not involve major technical difficulties [W2], this is not the case for the second
formula. The technical prerequisites were developed in [W1]. The aim of the
present paper is to give a short survey on the noncommutative analogue of (1.2)
and to establish further properties of these invariants. We also correct an error in
our earlier generalization of (1.2): Contrary to what is claimed in [W1], there are
choices involved in the definition of the noncommutative η-forms (which replace the
η-invariants) which cannot be eliminated.

A crucial technical condition in our framework, which is not present in the clas-
sical case, is that the Lagrangians are transverse (in the case of paths this concerns
the endpoints). In this case the Maslov indices for triples and paths yield K-theory
classes. The fact that in general the Maslov indices are less well-behaved, can been
seen in the work of Barge and Lannes who do not make this assumption.

We heavily rely on results from noncommutative Atiyah–Patodi–Singer index
theory. The framework used here, which builds on and extends foundational work
by Lott, Wu and Leichtnam–Piazza [Lo][LP1][LP2], has been developed in [W1][W2][W3].

Acknowledgements: I would like to thank the organizers of the 2014 AIM-meeting
“The facets of the Maslov index” and of the Minisymposium “Symplectic structures
in geometric analysis” at the 2015 annual DMV-meeting for the invitation. The
questions discussed at the first workshop motivated the reconsideration of my earlier
results, which was then presented at the second workshop.

2. Lagrangian projections and the Maslov triple index

Let A be a unital C∗-algebra.
In this section we recall the definition and properties of noncommutative ana-

logues of Lagrangian subspaces and of the Maslov triple index, relying on and
slightly expanding [W1, §1.4]. For simplicity, we replace the symplectic vector
space by a free finitely generated C∗-module. However, many of the following
results can be adapted to projective modules.

Let n ∈ IN.

Definition 2.1. Two selfadjoint projections P1, P2 ∈ Mn(A) are called trans-
verse if RanP0 ∩ RanP1 = {0} and RanP1 + RanP2 = An.

Let A2n be endowed with the standard A-valued scalar product and let

I0 =

(
i 0
0 −i

)
: An ⊕An → An ⊕An .

Definition 2.2. A Lagrangian projection on A2n is a selfadjoint projection
P ∈M2n(A) with

PI0 = I0(1− P ) .

We define the standard Lagrangian projection

Ps := 1
2

(
1 1
1 1

)
∈M2n(A) .
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Lemma 2.3. (1) For every Lagrangian projection P on A2n there is a unitary
p ∈Mn(A) such that

P = 1
2

(
1 p∗

p 1

)
.

(2) For every Lagrangian projection P on A2n the unitary

U =

(
1 0
0 p∗

)
∈M2n(A)

with p as in (1) fulfills UI0 = I0U and UPU∗ = Ps .
(3) A Lagrangian projection P is transverse to Ps if and only if 1−p is invert-

ible.

If U =

(
1 0
0 u∗

)
is a unitary, then UPU∗ = 1

2

(
1 p∗u
u∗p 1

)
.

Thus, two Lagrangian projections P0, P1 ∈M2n(A) are transverse to each other
if and only if p∗0p1 has a gap at 1. Here p0, p1 ∈ Mn(A) are the corresponding
unitaries.

The unitary in (2) of the lemma is not uniquely determined by the conditions
UI0 = I0U and UPU∗ = Ps as we show now:

Assume that U =

(
a b
c d

)
has these properties. Since

[U, I0] =

(
0 −2bi

2ci 0

)
it follows that b = c = 0.

Now

UPU∗ = 1
2

(
a 0
0 d

)(
a∗ p∗d∗

pa∗ d∗

)
= 1

2

(
1 ap∗d∗

dpa∗ 1

)
.

Thus the unitary has to fulfill the condition dpa∗ = 1.
Clearly, we may enforce uniqueness by assuming a = 1.

Let (P0, P1, P2) be a triple of pairwise transverse Lagrangian projections on A2n.
For x ∈ A2n write x = x1 + x2 with xi ∈ RanPi, i = 1, 2.

The form

h : RanP0 × RanP0 → A, (x, y) 7→ 〈x2, I0y1〉
is hermitian and non-singular. It defines an element in K0(A).

Definition 2.4. The Maslov index τ(P0, P1, P2) ∈ K0(A) of a triple of pairwise
transverse Lagrangian projections is the class of the hermitian form h in K0(A).

Proposition 2.5. Let p, q be projective projections over A.
Then 2([p] − [q]) ∈ K0(A) may be expressed as the Maslov index of a triple of

pairwise transverse Lagrangian projections.

Proof. Let p ∈Mk(A) be a projection.
For m = −2, 0, 2 let (Pm0 , Pm1 , Pm2 ) be a triple of pairwise transverse Lagrangian

projections in M4(C) with τ(Pm0 , Pm1 , Pm2 ) = m via the identification K0(C) ∼= ZZ.
(That such a choice is possible, follows from the Normalization property on [CLM,
p. 163].)
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We define the Lagrangian projections

Pi = P 2
i ⊗ p⊕ P 0

i ⊗ (1− p) ∈M4k(A) .

Then

τ(P0, P1, P2) = τ(P 2
0 , P

2
1 , P

2
2 )[p] + τ(P 0

0 , P
0
1 , P

0
2 )[1− p] = 2[p] ∈ K0(A) .

By defining Pi = P−2
i ⊗ p⊕ P 0

i ⊗ (1− p) one gets −2[p]. �

One may easily define the Maslov triple index in more generality by allowing
that the form h has a projective radical and is non-singular on the complement.

3. ‘Smooth’ Lagrangian projections

While the C∗-algebra A generalizes a compact topological space, a closed smooth
manifold B is generalized by a projective system of Banach algebras, mimicking
the projective system (Cj(B))j∈IN0

. Heuristically, such an additional structure
is necessary since the definition of η-invariants is not topological, but analytic.
Practically, it is motivated by the fact that cyclic homology (or the closely related
de Rham homology used here) for C∗-algebras does not contain much information.

For details on the following see [W1, §1.3].

Let (Aj , ιj+1,j : Aj+1 → Aj)j∈IN0 be a projective system of involutive Banach
algebras with unit satisfying the following conditions:

• The algebra A := A0 is a C∗-algebra.
• For any j ∈ IN0 the map ιj+1,j : Aj+1 → Aj is injective.
• For any j ∈ IN0 the map ιj : A∞ := lim←−

i

Ai → Aj has dense range.

• For any j ∈ IN0 the algebra Aj is stable with respect to the holomorphic
functional calculus in A.

The projective limit A∞ is an involutive locally m-convex Fréchet algebra with
unit. Note that it is a local C∗-algebra. In particular K∗(A∞) ∼= K∗(A) [Bl].

One can associate to A∞ a universal differential algebra (Ω̂∗A∞,d). The de

Rham homologyHdR
∗ (A∞) is defined using the complex (Ω̂∗A∞/[Ω̂∗A∞, Ω̂∗A∞],d).

Here by [·, ·] we denote supercommutators. There is a Chern character ch: K∗(A)→
HdR
∗ (A∞).

Proposition 3.1. Let (P0, P1) be a pair of transverse Lagrangian projections with
P0, P1 ∈ M2n(A∞) and let (P s0 , P

s
1 ) be a pair of (not necessarily transverse) La-

grangians with P si ∈ M2n(C). Then for 0 < x1 < 1
2 < x2 < 1 there is U ∈

C∞([0, 1],M2n(A∞)) such that

(1) UU∗ = 1,
(2) UI0 = I0U ,
(3) U(i)PiU(i)∗ = P si ,
(4) U is constant on [0, x1] and on [x2, 1].

The proof is given in the following as a separate section.
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3.1. Special paths via logarithm. Here we construct a particular path fulfilling
the assumptions of the proposition. It will be useful later on.

Let ϕ : [0, 1] → [0, 1] be a increasing function with ϕ(x) = 0 on [0, x1] and
ϕ(x) = 1 on x ∈ [x2, 1].

Let a = −i log p∗1p0. Thus eia = p∗1p0. Here we assume the logarithm to be
defined with respect to the gap of p∗1p0 at 1.

Set U0 =

(
1 0
0 p∗0

)
and V (x) =

(
1 0
0 eiϕ(x)a

)
.

Using logarithm we easily define a path Us(x) ∈M2n(C) such that

Us(0)P s0Us(0)∗ = P s and Us(1)P s1Us(1)∗ = P s .

Then the path Ua(x) := Us(x)∗V (x)U0 fulfills

Ua(0)P0U
a(0)∗ = P s0 and Ua(1)P1U

a(1)∗ = P s1 .

Furthermore since the spectrum σ(a) is contained in (0, 2π), there is ε > 0 such
that ei(2π−ε) /∈ σ(V (x)) for all x ∈ [0, 1].

Th path Ua depends on the choice of ϕ and of Us. However different choices
lead to homotopic paths and thus to a homotopy of Lagrangians transverse to Ps.

We study the properties of these paths:

• Unitary transformation.

Let U =

(
1 0
0 p∗

)
and define P ′i := U∗PiU and p′i = ppi. Then

a′ = −i log(p′1)∗p′0 = −i log p∗1p0. It follows that Ua
′

= UaU .
• Transposition.

Let (P ′0, P
′
1) = (P1, P0) and assume that P si = Ps. Furthermore we

assume that 1− ϕ(x) = ϕ(1− x).
Then a′ = −i log p′∗1 p

′
0 = −i log p∗0p1 = 2π − a.

Thus

Ua
′
(x) =

(
1 0
0 eiϕ(x)(2π−a)+ia

)(
1 0
0 p∗0p1

)(
1 0
0 p∗1

)
=

(
1 0
0 e2πiϕ(x)

)
Ua(1− x) .

4. The η-form associated to a pair of Lagrangians

We recall the definition of the η-form from [W1, §4.1]. As in family index theory,
its construction is based on the Quillen superconnection formalism.

Let (P0, P1) be a pair of transverse Lagrangians in M2n(A∞) and U a path of
unitaries as in Prop. 3.1 with U(i)PiU(i)∗ = P si ∈M2n(C). In contrast to [W1] we
do not assume here that the pair (P s0 , P

s
1 ) is transverse. Indeed, we will restrict to

the case P si = Ps below.
Let C1 be the ZZ/2-graded unital algebra generated by an odd element σ with

σ2 = 1. Let trσ(a+ σb) = tr(a).
We write DI for the closure of the operator I0∂ on L2([0, 1],A2n) with boundary

conditions given by Pi((I0∂)lf)(i) = (I0∂)lf)(i).
We define the superconnection

AI := U∗ dU + σDI



6 CHARLOTTE WAHL

and for t ≥ 0 the rescaled superconnection

AIt := U∗ dU +
√
tσDI .

We cannot just use d instead of U∗ dU since d does not commute with the
projection Pi and therefore does not preserve the boundary conditions.

Note furthermore that without changing the superconnection we may change the
projections P si . This is seen as follows. We choose a path of unitaries Us : [0, 1]→
M2n(C) as in Prop. 3.1 with Us(i)P

s
i Us(i)

∗ = Ps. Then Us(i)U(i)PiU(i)∗Us(i)
∗ =

P si . Since it holds that U∗s dUs = d we end up with the same superconnection and
thus the same η-form.

The curvature is (AI)2 = D2
I + σR with R = −U∗ d(UI0(∂U∗))U .

For t ≥ 0 by Volterra development

e−tA
2
I =

∞∑
n=0

(−1)ntn
∫

∆n

e−u0tD
2
IσRe−u1tD

2
IσR . . . e−untD

2
I du0 . . . dun

=

∞∑
n=0

σn(−1)
(n+1)n

2 tnIn(t)

with

In(t) :=

∫
∆n

e−u0tD
2
IRe−u1tD

2
IR . . . e−untD

2
I du0 . . . dun .

It follows that

e−(AI
t )2 =

∞∑
n=0

σn(−1)
(n+1)n

2 tn/2In(t) .

For every n ∈ IN0 and t > 0 the operator In(t) is an integral operator. Let
pt(x, y)n be its integral kernel and let (DIpt)(x, y)n denote the integral kernel of
DIIn(t).

The following statement follows from heat kernel estimates:

Lemma 4.1. For every n ∈ IN0 the integral∫ ∞
0

t
n−1
2

∫ 1

0

trσ(DIpt)(x, x)ndxdt

is well-defined in Ω̂∗A∞/[Ω̂∗A∞, Ω̂∗A∞].

Thus we can define:

Definition 4.2. The η-form of the superconnection AI is

η(AI) :=
1√
π

∫ ∞
0

t−
1
2 TrσDIe

−(AI
t )2dt ∈ Ω̂∗A∞/[Ω̂∗A∞, Ω̂∗A∞] + d Ω̂∗A∞ .

Here Trσ denotes the operator trace associated to trσ.
In degree zero

η0(AI) =
1√
π

∫ ∞
0

t−
1
2 TrσDIe

−t(DI)2dt ,

which depends only on the pair (P0, P1) and not on the choice of U .
But in higher degree the form depends on the path U . Unfortunately, the proof

of [W1, Prop. 4.1.7], whose aim is to construct an η-form independent of U , has
a gap since it may not be allowed to interchange integration and the limit process
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used there. Indeed, we will see in §7 that the η-form depends nontrivially on U . In
the following section we will study this dependence in more detail.

Clearly, instead of starting with a pair of Lagrangians we may start with a path
of unitaries U : [0, 1]→M2n(A∞) as in the following definition.

Definition 4.3. For a smooth path U : [0, 1]→M2n(A∞) of unitaires such that

(1) UI0 = I0U ,
(2) the pair of Lagrangians (P0, P1) := (U(0)∗PsU(0), U(1)∗PsU(1)) is trans-

verse,
(3) U is constant near 0 and 1

we define the form η(U) as the η-form η(AI) constructed above.

For a path U we define the path U by setting U(x) := U(1− x).

5. Invariance properties of the η-form

The following invariance properties are immediate:

• For a unitary V ∈M2n(A∞) with [V, I0] = 0 we have η(UV ) = η(U).
• For a smooth path of unitaries V : [0, 1] → M2n(C) with V (x) = 1 for x

near 0, 1 and [V, I0] = 0 it holds that η(V U) = η(U).
• The degree zero component η0(U) depends only on the pair (P0, P1) =

(U(0)∗PsU(0), U(1)∗PsU(1)) and not on the path U .
• η(U) = −η(U).

Recall that the Maslov index of a pair of paths of Lagrangian projections

µ(P0(t), P1(t)) ∈ K0(A)

may be defined as the spectral flow of the operator DI with boundary conditions
given by the path of pairs (P0(t), P1(t)) [W2, §7]. For the definition it is needed
that P0(t), P1(t) are transverse at t = 0, 1. The Maslov index for pairs fulfills an
analogue of (1.1).

Proposition 5.1. We have the following homotopy invariance properties:

(1) If U,U ′ are homotopic through paths of unitaries commuting with I0, then
ηm(U) − ηm(U ′), m > 0, is closed and can be calculated via the Chern
character of the Maslov index for paths of pairs of Lagrangians.

(2) If U,U ′ are homotopic through paths of unitaries which commute with I0
and whose endpoints define transverse Lagrangians, then ηm(U) = ηm(U ′)
for m > 0.

Proof. Let W : IR × [0, 1] → U(A2n
∞ ) be smooth with W (x1, x2) = U(x2) for x1 ≤

0, W (x1, x2) = U ′(x2) for x1 ≥ 1, and [W, I0] = 0 and such that W (x1, x2) is
independent of x2 in a small neighborhood of x2 = 0 resp. x2 = 1.

Define the paths Pi(x1) := W (x1, i)
∗PsW (x1, i) for i = 0, 1.

We set

W̃ := diag(W,W ) ∈M4d(A∞) .

Consider the Dirac operator ∂/Z = c(dx1)∂1 + c(dx2)∂2 on C∞c (IR × [0, 1],A4d
∞)

with boundary conditions given at (x1, 0) by diag(P0(x1), P0(x1)) and at (x1, 1) by

(P0(x1), P1(x1)). Via the unitary transformation W̃ we transform this operator to

W̃∂/ZW̃
∗ = ∂/Z + W̃ c(dx1)(∂1W̃

∗) + W̃ c(dx2)(∂2W̃
∗)
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with constant boundary conditions given by diag(Ps, Ps) at x2 = 0 and x2 = 1.
The index of this operator equals the spectral flow of the operator DI with

boundary conditions defined by the path of pairs (P0(x1), P1(x1)), thus the Maslov
index µ(P0, P1). In situation (2) this operator is invertible for any x1 and therefore
the spectral flow vanishes. (Alternatively one may use homotopy invariance to show
directly that the index vanishes: The path of boundary conditions is homotopic to
constant boundary conditions.)

Since W̃ c(dx1)(∂1W̃
∗) is compactly supported, the index of W̃∂/ZW̃

∗ equals

the index of ∂/Z + W̃ c(dx2)(∂2W̃
∗), which is the Dirac operator associated to the

connection dx1∂1 + dx2∂2 + dx2W̃ (∂2W̃
∗). Hence we can use the superconnection

d +c(dx1)∂1 + c(dx2)∂2 + c(dx2)W̃ (∂2W̃
∗) for the index theorem.

The methods from [W1] imply an Atiyah–Patodi–Singer index theorem in this

situation, since the support of W̃ (∂2W̃
∗) does not meet the boundary.

As usual, the local term is calculated from the Chern character of the connection

∇ := d +dx1∂1 + dx2∂2 + dx2W̃ (∂2W̃
∗) .

Its curvature equals

∇2 = dx1dx2(∂1W̃ )(∂2W̃
∗)− dx2 d(W̃ (∂2W̃

∗)) .

Hence ∫
[0,1]×IR

ch(∇) =

∫
dx1dx2 tr((∂1W̃ )(∂2W̃

∗)) .

In particular, the local term does not have any components in degree m > 0.
Hence for m > 0

ηm(U ′)− ηm(U) = 2 chm µ(P0, P1) .(5.1)

In situation (2) the Maslov index µ(P0, P1) vanishes, as mentioned above. �

The proposition allows us to define η(U) for general paths of unitaries U ∈
C([0, 1], U2n(A)) with [U, I0] = 0 since such a path can always be approximated by
a path in C∞([0, 1], U2n(A∞)) and any two approximations are homotopic through
a homotopy W as in the proof. This follows from the fact that A∞ is a local
C∗-algebra [Bl, 3.1.7].

Corollary 5.2. (1) For a path Ua defined as in §3.1 it holds that η(Ua)m = 0
for m > 0.

(2) In general, η(U)m is closed for m > 0 and can be expressed via the Maslov
index for paths of Lagrangians.

Proof. (1) Let Ua(x) = V (x)U0 as in §3.1 with V (x) =

(
1 0
0 eiϕ(x)a

)
and σ(a) ∈

(0, 2π). Set at := (1 − ϕ(t))a + ϕ(t)ε. Then a0 = a and a1 = ε. For ε > 0 small

enough σ(at) ∈ (0, 2π) for all t ∈ [0, 1]. Set W (x1, x2) =

(
1 0
0 eiϕ(x2)ax1

)
.

Since 1 /∈ σ(eiϕ(1)ax1 ) for all x1 ∈ IR, the projections W (x1, 0)∗PsW (x1, 0) = Ps
and W (x1, 1)∗PsW (x1, 1) are transverse to each other for all x1. It holds that
η(Ua) = η(W (0, ·)U0). For m > 0 by homotopy invariance ηm(W (0, ·)U0) =
ηm(W (1, ·)U0). Furthermore η(W (1, ·)U0) = η(W (1, ·)) ∈ C since W (1, x2) ∈
U2n(C) for all x2.
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(2) Let ϕ be as before. Clearly η(U) = η(U◦ϕ). Define the homotopyW (x1, x2) =(
1 0
0 eπix2ϕ(1−x1)

)
U(ϕ(x1)ϕ(x2)). Then

W (0, x2) =

(
1 0
0 eπix2

)
U(0), W (1, x2) = U(ϕ(x2)) .

For i = 0, 1 we define the path of Lagrangian projections Pi := W (x1, i)
∗PsW (x1, i).

The pairs (P0(0), P1(0)) and (P0(1), P1(1)) are transverse. By (5.1) for m > 0

ηm(U)− ηm(W (0, ·)) = 2 chm µ(P0, P1) .

Furthermore ηm(W (0, ·)) = ηm(W (0, ·)U(0)∗) = 0 for m > 0 since W (0, x2)U(0)∗ ∈
M2n(C). Thus

ηm(U) = 2 chm µ(P0, P1) .

�

6. Relation to η-forms for the circle

In [W1, Prop. 4.5.1] we established a relation between η(U) and η-forms on the
circle. However, the proof only works for paths of the form Ua. Since η(U) does
depend on the path, as we will see below, we have to study the general case as well.

Let u ∈ Un(A∞). We define the A-vector bundle

L(u) = ([0, 1]×An)/∼
with (0, v) ∼ (1, uv). Then we can identify a smooth section of L(u) with a smooth
function f : IR → Ani satisfying f(x + 1) = uf(x). The trivial connection ∇f :=
f ′dx induces a hermitian connection on L(u). The associated Dirac operator is
denoted by ∂/L(u).

Now we start with a path u ∈ C∞([0, 1], Un(A∞)) of unitaries with is locally
constant near 0, 1. We assume that u(0) = 1 and that 1 /∈ σ(u(1)). Then ∂/L(u(1))

is invertible. We consider the associated rescaled superconnection At := udu∗ +√
tσ∂/L(u(1)) and the η-form

ηS1(u) :=
1√
π

∫ ∞
0

t−
1
2 Trσ∂/L(u(1))e

−(At)
2

dt ∈ Ω̂∗A∞/[Ω̂∗A∞, Ω̂∗A∞] + d Ω̂∗A∞ .

Set U(x) =

(
1 0
0 u(x)∗

)
.

Then the pair of Lagrangians (U(0)∗PsU(0), U(1)∗PsU(1)) is transverse.

Proposition 6.1. It holds that ηS1(u) = η(U).

Proof. For u = eiϕa with σ(a) ∈ (0, 2π) this was shown in [W1, Prop. 4.5.1].
Since both sides of the asserted equation do not depend on u in degree zero, it

holds that η0
S1(u) = η0(U) for general u.

For m > 0 we have ηm(U) = 2 chm µ(P0, P1) for the pair of paths (P0, P1) defined
as in the proof of Cor. 5.2.

Note that here P0 is the constant path Ps and P1(0) ∈ M2n(C). Since P1(1) is

transverse to Ps, we can extend the path P1 to a path P̃1 : [0, 2]→M2n(A∞) such

that P̃1(x) is a Lagrangian projection transverse to Ps for all x ∈ [1, 2] and such

that P̃1(2) = P̃1(0). Thus P̃1 is now a loop of Lagrangians projections fulfilling

µ(P0, P̃1) = µ(P0, P1). We write P̃1 = 1
2

(
1 ũ∗

ũ 1

)
. By the relation established
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in [W2, §7.2] between Maslov index for loops and Bott periodicity on the one hand,
and in [W2, §4] between Bott periodicity and spectral flow on the other hand, the

Maslov index µ(P0, P̃1) equals the spectral flow of the loop (∂/L(ũ(x)))x∈[0,2]. This,

in turn, equals the spectral flow of the path
(
∂/L(u(x))

)
x∈[0,1]

. Now we apply the

classical equality spectral flow=index of a cylinder to this situation. Then we can
apply the Atiyah–Patodi–Singer index theorem. The local term vanishes in degree
m > 0 by arguments as in the proof of Prop. 5.1. It follows that for m > 0

chµm(P0, P1) = ηmS1(u) .

�

For a fixed unitary v ∈ Un(A∞) and u as above, we can define ηS1(uv) as above
and get ηS1(uv) = ηS1(u). This implies that we can define ηS1(u) for any path
u ∈ C∞([0, 1], Un(A∞)) of unitaries with is locally constant near 0, 1 and such that
u(1)− u(0) is invertible and the proposition still holds for these paths.

7. Maslov index and η-forms

Let (P0, P1, P2) be a triple of pairwise transverse Lagrangian projections. Let
U01, U12, U20 be paths of unitaries as in Prop. 3.1 corresponding to the pairs
(P0, P1), (P1, P2), (P2, P0), respectively. (Here we take P is = Ps in Prop. 3.1.)
We make the following crucial assumption:

Assumption 7.1. For x ∈ [0, 1
2 ] it holds that Uij(1− x) = Ujk(x).

Theorem 7.2. For a triple (P0, P1, P2) of pairwise transverse Lagrangian projec-
tions

ch τ(P0, P1, P2) = η(U01) + η(U12) + η(U20) ∈ HdR
∗ (A∞) .

Proof. One defines the unitary W in [W1, §2.1.2] using the Uij . Note that in
[W1] we assumed the complex triple (P s0 , P

s
1 , P

s
2 ), to which the triple (P0, P1, P2) is

transformed, to consist of mutually transverse projections. However, one may well
take more general projections since, as in §4, the choice of the complex projections
cancels out in the definition of the superconnection used in the proof of the index
theorem [W1, Theorem 4.4.11]. This theorem implies the assertion. �

In §3.1 we exhibited a way to associate a canonical (up to homotopy) path of
unitaries Ua to a pair of transverse Lagrangians. In Cor. 5.2, it was shown that
the associated canonical form η(Ua) has no higher degree components. However,
it follows from Prop. 2.5 that ch τ(P0, P1, P2) can have nontrivial higher degree
components. Hence in general η(U) depends nontrivially on U . In particular it
is in general not possible to choose each of the three unitaries Uij in the theorem
homotopic to a canonical path.

However, if we assume that all Pi are transverse to a fixed Lagrangian projection
P3, then we may fix a procedure of defining the unitaries Uij : Via logarithm as in
§3.1 (with U is = 1) we construct a path of unitaries Ui such that Ui(0)PiUi(0)∗ =
Ui(

1
2 )P3Ui(

1
2 )∗ = Ps, i = 0, 1, 2. Then we concatenate the paths Ui(x) and Uj(1−x)

at x = 1
2 to obtain Uij . This construction leads to a form ηP3

(Pi, Pj), i = 0, 1, 2, i 6=
j, which does not depend on the choices since different choices lead to homotopic
paths of unitaries.

The following invariance properties follow immediately from the invariance prop-
erties of the η-form and of the paths constructed via logarithm:
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• For a unitary V ∈M2n(A∞) with [V, I0] = 0 it holds that

ηP3
(Pi, Pj) = ηV ∗P3V (V ∗PiV, V

∗PjV ) .

• It holds that ηP3
(Pi, Pj) = −ηP3

(Pj , Pi).

The previous theorem implies:

Corollary 7.3. For a quadruple (P0, P1, P2, P3) of pairwise transverse Lagrangian
projections it holds that

ch τ(P0, P1, P2) = ηP3
(P0, P1) + ηP3

(P1, P2) + ηP3
(P2, P0) ∈ HdR

∗ (A∞) .
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