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Similarly, we see that f”/(0) = m. Thus M = m. Therefore, f”'(a) is a constant function in [0, 27].
Let f”(a) = a. Then f is given by the quadratic polynomial

(11) f(a) = aa®/2 + Ba + v.
Our final step is to determine constants «, 8, and y explicitly. Substitute (11) in (6) and then
equate the coefficients of the term a and the constant term to obtain

(12) —ma/2 =B/2, ma/2+ Bw+2y=7vy/2.

Notice that the coefficient of the term a? vanishes. By (1) and by a basic theorem on
differentiation under the integral sign we obtain f'(7/2) = « /2, which, with (11), implies

(13) wa/2 + B =m/2.

It follows from (12) and (13) that « = —1, 8 = o, and y = —72/3. Thus, (11) yields (5). This
completes the proof of Theorem.

The values of the Euler integrals (2), (3) and (4) now follow from (1) and (5) by setting a equal
to 0, 7, and 7 /2 respectively.

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada Grant
Nr. A-4012.
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A HOMOLOGY VERSION OF THE BORSUK-ULAM THEOREM

JAMES W. WALKER
Department of Mathematics, California Institute of Technology, Pasadena, CA 91125

An involution on a topological space X is a continuous map from X to X which is its own
inverse. For example the antipodal map, which maps a point to the opposite end of the diameter
on which it lies, is an involution on the n-sphere S”.

Suppose X and Y are spaces equipped with involutions a and b, respectively. A map f from X
to Y is equivariant if it respects the involutions, i.e., be f = fea.

One formulation of the Borsuk-Ulam theorem is that if m is greater than », then there is no
map from S™ to S” which is equivariant with respect to the antipodal map. Many sources, for
example [1, § 7.2], include proofs of the Borsuk-Ulam theorem, as well as applications such as the
“ham sandwich theorem.” We will use singular homology theory to prove a somewhat stronger
theorem.

Our stronger theorem shows that the existence of any equivariant maps to S” from any space X
with an involution forces the existence of very special homology classes for X, so special that X
could not be a sphere of dimension greater than n.

A few words about terminology: An elementary 0-chain is a singular 0-simplex with coefficient
1; loosely speaking, it’s just a single point. We will use reduced homology, which essentially means
that we consider the empty set to be a singular simplex of dimension — 1, which is the boundary
of every 0-simplex. It follows that H_,(X) vanishes unless X is empty, and H,(X) vanishes if X is
path connected. Recall that each continuous map f induces a chain map f.., defined by composing
f with singular simplices. In turn, such a chain map f,, induces a homology homomorphism f .

THEOREM. Suppose X is a space with involution v, and g: X — S" is an equivariant map. Then
there exists an integer j < n, and a homology class B of I:Ij(X; Z/2) such that B is nonzero and
v «(B) = B. Furthermore, if no such B exists for j less than n, then B can be chosen such that g () is
the nonzero element of H,(S";Z/?2).
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In this framework our theorem applied to an equivariant map g:S™ — §" with m > n would
require the existence of a special nonzero element of H;(S™) for somej < n < m. But H,(S™) = 0
for all j < m so our result generalizes the Borsuk-Ulam theorem.

Proof of theorem: The case n = 0 is straightforward, so assume that n is greater than 0. The
proof will proceed by inductively constructing singular chains. (Similar methods were used on a
higher level by P. A. Smith; see [2, chapter 13].) Bear in mind that signs can be ignored, since we
are using coefficients in Z /2.

It is convenient to define a “symmetrizer” chain map 6 = id, + v, on the singular chain
complex of X, where “id” denotes the identity map. We use the same notation for the chain map
id, + a, on S”, where a is the antipodal map. These operators satisfy 0 = 0 and 0g.. = g.0, as
one can easily verify.

Assume that for all j less than »n and for all 8 in FII(X; Z/2),v4(B) = B implies 8 = 0.
(Otherwise, we have a B which satisfies the first part of the theorem.) Hence if x; is a j-cycle such
that §x, = 0, then x, must be a boundary. Our goal is to produce a nontrivial element 8 of
H,(X;Z/2) such that v ,(B) = B and g,(B) =+ 0. Our strategy will be to make some observations
about j-dimensional hemispheres 4, in §”, construct chains ¢, in X which behave much like the
hemispheres, compare g,.c; to 4, and finally show that fc, is a cycle which determines the desired
homology class.

First we choose singular j-chains 4, in §", corresponding to hemispheres, such that

h, is an elementary 0-chain,
dh;=06h;_ forl <j<n,and

0h, generates H,(S";Z/2).
Next, we will construct singular j-chains ¢, in X, for j ranging from 0 to n, such that

¢, is an elementary 0-chain, and
dc,=0c,_,forl <j<n.

We have assumed that there is no nonzero 8 in H_,(X;Z/2) such that v,(8) =B, so X is
nonempty. Pick a point in X, and let ¢, be the corresponding elementary 0-chain. Note that f ¢, is
a cycle. Since §0c, = 0, there is a 1-chain ¢, such that d¢, = fc,.

Suppose that dc, = fc,_, for some j less than n. We compute that dfc, = §dc, = 66c,_, = 0,
so fc, is a cycle. Since §fc; = 0, there exists a (j + 1)-chain ¢, such that dc,,, = fc,. This
completes the inductive definition of ¢, cy,..., ¢,.

Now we will inductively construct j-chains e; in S, for j ranging from O to n, such that
h; — guc; — fe,is acycle.

Note that &, — g.c, is a cycle, since &, and ¢, were chosen to be elementary 0-chains. Therefore
we can let e, = 0.

_ Suppose that e, is a j-chain, where j is less than n, such that &; — g.c; — fe; is a cycle. Since
H,(S";Z/2) = 0, there is a (j + 1)-chain e, | such that

de, 1 =h, — guc; — Oe,.
Apply 0 and obtain
dbe; ., =0h, — g.bc,.
Since 6h; = dh;,, and Oc; = dc;, |, this becomes
dfe, .| = dh, . — 0guc, .

Therefore k| — guc;41 — Oe, ., is a cycle, as desired.
To complete the proof, we note that 4, — g.c, — fe, is a cycle in §”, which is therefore
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homologous to either zero or 04,,. In either case, when we apply 8, we find that 04, — g.fc, is
homologous to zero. That is, 84, and g..0c, belong to the same homology class. Note that f¢, is a
cycle, because dfc, = 03dc, = 00c,_, = 0. Therefore, if B is the homology class of fc,, then
g+(B) is the nonzero element of H,(S";Z/2). 1t follows that B is nonzero. Finally, the fact that
60c, = 0 means that v,.0c, = fc,, so v4(B) = B.
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ON THE NUMBER OF MULTIPLICATIVE PARTITIONS

JoHuN F. HUGHES
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1. A Number-Theoretic Function. In this note we show that if f(») is the number of essentially
different factorizations of n, then

f(n) < 202,

In considering numbers that have exactly k divisors, one is led to examine this function f(n),
the number of ways to write n as the product of integers > 2, where we consider factorizations
that differ only in the order of the factors to be the same. We call these representations of n
multiplicative partitions. For example, f(12) = 4, since

12=6-2=4-3=3-2-2
are the four multiplicative partitions of 12. From these four representations, we can conclude that
a number has exactly 12 divisors if and only if its prime factorization is one of the following:

p", p’q, P°q*, par.
This follows from the expression for 7(n), the number of divisors of n = p{'p32 - - - pg~.

k
r(n) = jl:[l (1+a,).

For example, see [1].

The behavior of f(n) is quite erratic, and apparently has not been previously studied in this
form. We observe that if g is prime, then f(q*) = p(k), the number of additive partitions of k.
Also, if gy, g,,. .., g are distinct primes, then f(q,q, -+ q;) = B(k), the kth Bell number. See

(2]
More geherally, f(gq® --- gf*) is the number of additive partitions of the “multi-partite
number” (a,, d,,. .., a;), where addition is defined component-wise. See [3] for further details.
We will show that
(1) f(n) < 2n.
For a table of f(n) for 1 < n < 100, see the Appendix.
II. Proof of the Main Result. To prove (1) we first define an auxiliary function:
g(m, n) = the number of multiplicative partitions of » with all elements < m.

Clearly f(n) = g(n, n). We have the following
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