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0 Introduction

In [Wi1] Witten introduced new 3-manifold invariants which “explain” the Jones poly-
nomial and its generalizations. The main goal of this paper is to present a mathemati-
cally rigorous approach to these invariants which is palatable to low-dimensional topol-
ogists. (Consequently, very little emphasis is given to their relationship to physics.)
Secondary goals are to show the relationships of other approaches to this problem
([RT2], [KM], [L], [MSt], [TV], . . . ) to the one given here, and to assemble various
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well-known results in one place. The long range goal is to lay the groundwork for the
application of these invariants to problems in 3-manifold topology.

At first glance, this paper may seem unpleasantly long. At second glance, one no-
tices that many of the sections are independent of one another (see Figure 1), so things
aren’t quite as bad as they seem. Readers may also find that there are unpleasantly
many details at places, and that there is too much formalism. I hope that this is ex-
cused by the fact that there is no shortage of papers in circulation with the opposite
faults.

Before explaining the contents of this paper in more detail, it will be necessary to
give a very brief and selective history of the subject.

Given a compact Lie group G and an integer k Witten constructs, for each com-
pact, oriented 3-manifold M , an invariant Z(M) (the “partition function”) which lies
in a finite dimensional vector space V (∂M) functorially associated to the boundary
of M . Z and V together comprise a “topological quantum field theory”∗ (TQFT).
(If G = SU(2) and M is the complement of a link in S3, one can recover the Jones
polynomial of the link from Z(M) for various k. Similar things are true for generaliza-
tions of the Jones polynomial.) Witten’s construction involves the use of the chimerical
Feynmann path integral, and so cannot be made rigorous using current mathematical
technology. Witten argues that Z and V have certain nice properties, the most impor-
tant of which concern their behavior when manifolds are glued together. Most of the
things which Witten proves about his invariants follow from these properties via clever
but elementary arguments. Thus it seems natural to regard them as axioms, and to
try to find alternative methods for proving the existence of Z’s and V ’s which satisfy
the axioms. (The axiomatic point of view has its origins in Segal’s paper [S1], and was
elaborated on by Atiyah [A2].)

It turns out that the functor V is an example of a “modular functor” (a concept
due to Segal and closely related to a “rational conformal field theory”), an object of in-
dependent interest. (Witten considered this coincidence (?) to be the most important
observation of [Wi1], since, as modular functors were already reasonably well under-
stood, it made concrete calculations possible.) By virtue of the axioms which they
must satisfy, modular functors are determined by their values on certain simple sur-
faces. Moore and Seiberg [MS] worked out what relations this basic data must satisfy
in order to consistently determine a modular functor. This result can be viewed as both
a tool for classifying modular functors and a method for establishing their existence.
In other words, if one can postulate basic data and show that it satisfies the relations,
then one has proved the existence of a modular functor.

∗More precisely, a “2 + 1-dimensional modular topological quantum field theory”, but this seems
too cumbersome.
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A main idea of this paper is to adapt Moore and Seiberg’s approach to the 3-
dimensional invariant Z. This necessitates a couple of technical innovations. The first
concerns the phase of the partition function Z. If one interprets Witten’s definition
of Z(M) in a straight forward manner, it turns out to be well-defined only up to a
unit complex number. Similarly, according to the usual definitions modular functors
are only projective functors. To correct this defect Witten proposes (see [A1]) that
instead of the category (loosely defined) of ordinary 3- and 2-manifolds, one should
consider the extended category of 3-manifolds equiped with (appropriately defined
equivalence classes of) framings of their tangent bundles and 2-manifolds equiped with
framings of their stabilized tangent bundles. (This move should remind one of the fact
that a projective representation of a group corresponds to an honest representation
of a central extension of that group.) Unfortunately, framings are difficult to work
with when making concrete calculations (for me, at least). So here framed 3- and 2-
manifolds will be replaced by 3- and 2-manifolds equiped with (an abstract version of)
a bordism class of null-bordisms. This leads to an extended category which is easier
to work with. (The idea that a (closed) 3-manifold with a null-bordism can serve the
same function as a framed 3-manifold seems to have occured to many people. I first
heard of it from Andrew Casson.) The second innovation is to expand the axioms of
the partition function to allow for gluing 3-manifolds “with corners” (e.g. attaching a
handle). This added flexibility is crucial for applying Moore and Seiberg’s approach to
the partition function.

This paper is organized as follows. (More detailed introductory remarks can be
found at the beginnings of the sections. (Some of them, anyway.)) Section 1 de-
fines extended 2- and 3-manifolds. Section 2 defines modular functors and partition
functions. Section 3 introduces basic data. In Section 4 we present some elementary
consequences of the axioms of a TQFT. In Section 5 we show how to reconstruct a
modular functor from its basic data. In Section 6 we derive a set of relations for ba-
sic data which guarantee that the reconstruction procedure gives consistent answers.
(This is a version of Moore and Seiberg’s result. The basic idea of the proof given here
is due to them.) In Section 7 we show that a modular functor admits a compatible
partition function if and only if it satisfies a certain relation. This reduces the problem
of proving the existence of a partition function to proving the existence of a modular
functor and verifying the relation.

The goal of Sections 8 through 11 is to clarify the relationship between the invariants
of Reshetikhin and Turaev [RT2] and the invariants discussed here. In Section 8 we
present a modified version of the some of the results of [RT2]. (Some of the new results
in this section are joint work with Turaev.) In Section 9, we use these results to show
that a modular Hopf algebra (as defined in [RT2]) leads to basic data which satisfy the
relations of Sections 6 and 7, and thus to a TQFT. This raises the question of to what
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extent this process can be reversed. Section 10 contains the definition of a “modular
reduced tangle functor”, which, roughly, is the part of the tangle functors of Section 8
which can be recovered† from the corresponding TQFT. Section 11 shows how to effect
this recovery.

In Section 12 we define the “Verlinde algebra” associated to a TQFT and derive
some of its properties. Section 13 specifies the basic data of sl2-theories. In Section 14
we show how other surgery-based approaches ([KM], [L], [MSt]) fit into the framework
developed here.

In Section 15 we derive, using the axioms of a TQFT, a state model for |Z(M)|2,
where Z is unitary. This state model is based on a triangulation of M . In the case
where Z is one of the partition functions corresponding to SU(2) and M is closed, this
state model is the same as the one of Turaev and Viro [TV].

The definition of a modular functor given in Section 2 differs from Segal’s definition
in that holomorphic surfaces are replaced by (extended) piecewise-linear surfaces. In
Section 16 we show that any modular functor, as defined by Segal, gives rise to a
modular functor as defined here, and vice-versa. Section 17 contains remarks on the
2-cocycles and central extensions arising from extended surfaces.

Section 18 contains background material on the nonadditivity of signature for 4-
manifolds. Section 19 proves two topological results needed for Sections 6 and 7.

The interdependence of the sections is indicated in Figure 1.

It should be emphasized that most of the important ideas contained herein are not
new. As explained above, they are due to Witten (mostly), Moore and Seiberg, Segal,
Atiyah, and Reshetikhin and Turaev.

There have been many approaches to putting Witten’s invariants on a rigorous
footing. In addition to the ones mentioned above, I am aware of [Ko], [C], [CLM], [Koh]
and [We]. (Any omissions from this list are, of course, unintentional.) Kontsevich’s
paper, in particular, has some overlap with Sections 1 and 7. (I was unaware of [Ko]
until recently.)

Acknowledgements: I would like to thank Andrew Casson, Dan Freed and Rob
Kirby for helpful conversations.

Conventions: All homology groups will have coefficients in R unless stated oth-
erwise. Closely related maps which have distinct domains will often share the same
notation. Maps will sometimes (though not usually) be confused with their isotopy
classes.

†Perhaps more can be recovered, but this is all that can be recovered easily.
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Figure 1: Boxes, numbers, arrows.
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1 Extended 2- and 3-manifolds

This section contains the definitions of extended 2- and 3-manifolds, their morphisms,
and their gluing operations. We begin with some lengthy motivational remarks, saving
the precise definitions for the end.

In order to resolve phase ambiguities in the partition function, Witten considers
framed 3-manifolds rather than garden variety 3-manifolds (see [Wi1, A1]). In other
words, the partition function in an invariant of a 3-manifold M together with a section
of its frame bundle F (TM). Two framings are considered equivalent if they are isotopic
(rel boundary, if ∂M 6= ∅) after being included diagonally into F (TM ⊕ TM). This
equivalence relation sees π3(SO(3)) but not π1(SO(3)), since the diagonal inclusion
SO(3) ↪→ SO(3)⊕ SO(3) ⊂ SO(6) is zero on π1.

Another way of accomplishing the same thing is to redefine a framing of M to be a
real singular cycle in C3(F (TM), ∂F (TM);R) which projects to a representative of the
fundamental class in H3(M,∂M ;R). (A section of F (TM) clearly gives rise to such a
cycle.) Framings a and b are considered equivalent if a−b is a null-homologous cycle in
C3(F (TM);R). Note that in order for a− b to be a cycle we must have ∂a = ∂b. It is
not hard to see that the set of all equivalence classes of framings with a fixed boundary
is affinely equivalent toH3(SO(3);R) ∼= R. Define a framed 3-manifold to be a smooth,
compact, oriented 3-manifold equiped with an equivalence class of framings.

A framed 2-manifold is defined to be the sort of thing which one gets if one takes
the boundary of a framed 3-manifold. In other words, a framed 2-manifold is a smooth,
closed, oriented 2-manifold Y together with a cycle in C2(F (TY ⊕ε);R) which projects
to a representative of the fundamental class in H2(Y ;R). (Here ε denotes the trivial
R bundle over Y , which can be identified with the normal bundle of Y in the tangent
bundle of a 3-manifold which Y bounds.) A morphism of framed 2-manifolds is defined
to be the sort of thing which can be used to glue framed 3-manifolds together along
their boundaries. More precisely, a morphism from (Y1, a1) to (Y2, a2) is a pair (f, b),
where f : Y1 → Y2 is a diffeomorphism and b is a chain in C3(F (TY2⊕ ε);R) such that
∂b = a2 − f∗(a1). (f0, b0) is considered equivalent to (f1, b1) if there is an isotopy {ft}
connecting f0 to f1 and if the cycle b1− b0 +{(ft)∗(a1)} is null-homologous. The group
of (equivalence classes of) morphisms of a framed surface is a central extension by R
of the mapping class group of the underlying unframed surface.

This is all well and good, but not quite well enough or good enough. Less obscurely,
it would be nice (for purposes of computation) to replace framed 2- and 3-manifolds
with simpler objects. Furthermore, it would nice to be able to glue framed 3-manifolds
together “with corners”, that is, glue them together along codimension zero submani-
folds of their boundaries which themselves have boundary. (An example of this oper-
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ation would be a framed version of attaching a 1- or 2-handle to a 3-manifold.) But
with the above definitions such gluings are awkward, since the tangent bundle is badly
behaved at the corners.

Our goal, then, is to transmogrify framed 2- and 3-manifolds into something more
to our liking. This will be done in two stages, the intermediate stage motivating the
final one.

Consider first the case of a closed, oriented 3-manifold M . Let W be an oriented 4-
manifold with ∂W = M . Given a framing a of M (as defined above), one can compute
the relative first Pontryagin class∗ p1(W, a) ∈ R. This is an affine function of a (with
slope ??? (see [A1])), so there is a unique framing aW of M such that p1(W, aW ) = 0.
Thus the pair (M,W ) determines the framed 3-manifold (M,aW ), and the intermediate
transmogrification of a framed 3-manifold is such a pair.

If ∂W ′ = M also, then W and W ′ determine the same framing of M if and only
if σ(W ) = σ(W ′), where σ(W ) denotes the signature of the cup product on H2(W ).
(This follows from the fact that 3σ(X) = p1(X) if X is a closed 4-manifold and the
additivity properties of σ and p1.) So the only essential information W contributes is
its signature. Note also that any value for the signature is possible. Hence we define
a closed extended 3-manifold to be a pair (M,n), where M is a closed, oriented 3-
manifold and n is an integer which can be thought of as the signature of a 4-manifold
bounded by M .

What sorts of objects should extended 3-manifolds with boundary be? They cer-
tainly ought to have the property that they can be glued together (via “extended
diffeomorphisms” of their “extended boundaries”) to get a closed extended 3-manifold.

Let M1 and M2 be compact, oriented 3-manifolds. Let f : ∂M1 → −∂M2 be a
diffeomorphism of their boundaries. (“−” indicates a reversal of orientation.) Let
M be the closed 3-manifold M1 ∪f M2. Since Mi (i = 1, 2) is not closed, it cannot
bound a 4-manifold. This can remedied by capping off ∂Mi with another 3-manifold
M †

i . In other words, ∂M †
i = −∂Mi and Mi ∪M †

i is a closed 3-manifold. Let Wi be a
4-manifold bounded by Mi ∪M †

i . We wish to combine the triples (M1,M
†
1 ,W1) and

(M2,M
†
2 ,W2) and get a 4-manifold bounded by M . Let If be the mapping cylinder of

f (i.e. If = ∂M1×I with ∂M1×{1} identified with ∂M2 via f and ∂M1×{0} identified

with ∂M1 via id). Let W be a 4-manifold with ∂W = (−∂M †
1) ∪ If ∪ (−∂M †

2). Then
W1 ∪W ∪W2 is a 4-manifold with

∂(W1 ∪W ∪W2) = M1 ∪ If ∪M2
∼= M1 ∪M2 = M

∗p1(W,a) is defined to be the integral over W of the first Pontryagin form of a connection whose
restriction to a collar of ∂W is a product connection such that the cohomology class of the Chern-
Simons form of the ∂W factor of the product is Poincaré dual to a.
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Figure 2: Some manifolds glued together.

(see Figure 2).
The above discussion suggests the following provisional definitions: that an ex-

tended 3-manifold should be a triple (M,M †,W ), where M is a compact 3-manifold,
∂M † = −∂M and ∂W = M ∪M †; that an extended surface should be a pair (Y,M †),
where ∂M † = −Y ; that ∂(M,M †,W ) = (∂M,M †); and that an extended diffeomor-
phism from (Y1,M

†
1) to (Y2,M

†
2) is a pair (f,W ), where f : Y1 → Y2 is a diffeomorphism

and ∂W = (−M †
1) ∪ If ∪ (−M †

2).

The above definitions can clearly be pared down. All one ultimately cares about
is the signature of W1 ∪W ∪W2. To compute this one only needs to know σ(W1),

σ(W ), σ(W2), Ki
def
= ker(H1(∂Mi)→ H1(M

†
i )) and Li

def
= ker(H1(∂Mi)→ H1(M

†
i )) (see

Section 18 or [Wa]). This suggests that the final definitions of extended objects should
be as follows. An extended 3-manifold is a triple (M,L, n), where M is a compact
3-manifold, L is a lagrangian subspace of H1(∂M) (with respect to the intersection
pairing on H1(∂M)), and n is an integer. (Needless to say, one should think of L as
being ker(H1(∂M) → H1(M

†)) and n as being σ(W ), where ∂W = M ∪ M †.) An
extended surface is a pair (Y, L), where Y is a surface and L is a lagrangian subspace
of H1(Y ). ∂(M,L, n) is defined to be (∂M,L). A morphism from (Y1, L1) to (Y2, L2)
is a pair (f, n), where f : Y1 → Y2 is a diffeomorphism and n is an integer (thought of
as being the signature of a 4-manifold with appropriate boundary).

Enough motivation. Now for the official definitions (the first few of which will
simply be restatements of the above).

(1.1) Definition. An extended 3-manifold is a triple (M,L, n), where M is a piecewise-
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linear, compact, oriented 3-manifold, L is a maximal isotropic (i.e. lagrangian) sub-
space of H1(∂M), and n is an integer.

(1.2) Definition. An extended surface is a pair (Y, L), where Y is a piecewise-linear,
compact, oriented surface with parameterized boundary, and L is a maximal isotropic
subspace of H1(Y ).

To say that Y has parameterized boundary means that Y is equiped with orientation
preserving piecewise-linear homeomorphisms from the standard S1 to each boundary
component of Y . An isotopy of a surface with parameterized boundary is, by definition,
fixed on the boundary. (One could alternatively replace the parameterizations with
base points.)

Note that if L ⊂ H1(Y ) is maximal isotropic, then im (H1(∂Y ) → H1(Y )) ⊂ L.
Note also that L maps to a lagrangian subspace of H1(Ŷ ), where Ŷ denotes Y with its
boundary capped of by disks.

(1.3) Definition. ∂(M,L, n)
def
= (∂M,L).

(1.4) Definition. An extended morphism from an extended surface (Y1, L1) to an
extended surface (Y2, L2) is a pair (f, n), where f : Y1 → Y2 is an isotopy class of
orientation preserving piecewise-linear homeomorphisms which also preserve boundary
parameterizations, and n is an integer.

Let Ŷi denote Yi with its boundary capped off by disks, and let f̂ : Ŷ1 → Ŷ2 be the
induced map. Let M †

i be a 3-manifold such that ∂M †
i = −Ŷi and Li = ker(H1(Yi) →

H1(M
†
i )). Then (f, n) should be thought of as corresponding to a 4-manifold W such

that ∂W = (−M †
1)∪If̂∪(M †

2) and σ(W ) = n. In fact, we make the following definition.

(1.5) Definition. The mapping cylinder of an extended morphism (f, n) : (Y1, L1) →
(Y2, L2) is the extended 3-manifold

I(f,n)
def
= (If , L, n),

where L is induced from the inclusions of L1 and L2 into H1(∂If ).

Note that in the above definition the boundary of Yi was not capped off.

(1.6) Definition. Composition of extended morphisms. Let (f1, n1) : (Y1, L1)→ (Y2, L2)
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and (f2, n2) : (Y2, L2)→ (Y3, L3) be extended morphisms. The composition of (f2, n2)
and (f1, n1) is defined to be

(f2, n2)(f1, n1)
def
= (f2f1, n2 + n1 + σ((f2f1)∗L1, (f2)∗L2, L3)),

where σ( · , · , · ) is Wall’s non-additivity function (see [Wa] or Section 18).

Let Wi be a 4-manifold corresponding to (fi, ni), as described above. Then W2∪W1

is a 4-manifold corresponding to (f2, n2)(f1, n1). (It clearly has the right boundary, and
its signature is easily (in view of [Wa] or ???) seen to be n2+n1+σ((f2f1)∗L1, (f2)∗L2, L3).)
This viewpoint makes it clear that composition of extended morphisms is associative.
One can easily verify that morphisms of the form (id, 0) are left- and right-sided identi-
ties, and that (f, n)−1 = (f−1,−n). (Hint: use the fact that σ(A,A,B) = σ(A,B,B) =
σ(A,B,A) = 0 for all A,B.) Thus extended morphisms form a groupoid.

For (Y, L) an extended surface, define the mapping class group of (Y, L),M(Y, L),
to be the group of extended automorphisms of (Y, L). If Y is a collection of extended
surfaces, M(Y) will denote the corresponding mapping class groupoid. The set of
extended morphisms from (Y1, L1) to (Y2, L2) will be denoted byM((Y1, L1), (Y2, L2)).
Note thatM(∅) ∼= Z.

The mapping class group of an extended surface (Y, L) is a central extension by Z
of the mapping class group of Y . The 2-cocycle which defines this extension is

c(f, g)
def
= σ((fg)∗L, f∗L,L).(1.7)

This is just the well-known Shale-Weil cocycle. In Section 16 we will show that this
cocycle arises naturally from considering the action of the mapping class group of Y on
its determinant line bundle. In Section 17 we discuss this cocycle and central extension
further.

(1.8) Definition. Gluing extended surfaces . Let (Y, L) be an extended surface and let
g be a fixed point free involution of a closed submanifold of ∂Y which fails to preserve
parameterizations by the standard reflection of S1. Define the gluing of (Y, L) by g to
be

(Y, L)g
def
= (Yg, Lg),

where Yg is Y with part of its boundary identified by g, Lg = q∗(L), and q : Y → Yg

is the quotient map. For (f, n) an automorphism of (Y, L) such that f commutes with
g, define (f, n)g : (Y, L)g → (Y, L)g by

(f, n)g
def
= (qfq−1, n).
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(1.9) Definition. Let (Y1, L1) and (Y2, L2) be extended surfaces. The disjoint union of
(Y1, L1) and (Y2, L2) is

(Y1, L1)
∐

(Y2, L2)
def
= (Y1

∐
Y2, L1 ⊕ L2).

(Here we are identifying H1(Y1
∐
Y2) with H1(Y1) ⊕ H1(Y2).) If (fi, ni) (i = 1, 2) are

extended morphisms, then

(f1, n1)
∐

(f2, n2)
def
= (f1

∐
f2, n1 + n2).

(1.10) Definition. (Y1, L1) contains (Y2, L2) (or (Y2, L2) ⊂ (Y1, L1)) if Y2 ⊂ Y1, i∗(L2) ⊂
L1 (where i : Y2 ↪→ Y1), each component of ∂Y1 ∩ ∂Y2 is a component of ∂Y1 and ∂Y2,
and the parameterizations agree on each such component.

(1.11) Definition. Let (M1, L1, n1) and (M2, L2, n2) be extended 3-manifolds . The
disjoint union of (M1, L1, n1) and (M2, L2, n2) is

(M1, L1, n1)
∐

(M2, L2, n2)
def
= (M1

∐
M2, L1 ⊕ L2, n1 + n2).

(1.12) Definition. Gluing extended 3-manifolds. Let (M,L, n) be an extended 3-
manifold (possibly disconnected). Let (Yi, Li) ⊂ ∂(M,L, n), i = 1, 2. Assume Y1∩Y2 =
∅. Let (f,m) : (Y1, L1) → (−Y2, L2) be an extended morphism. Let (Z, J) =
∂(M,L, n) \ ((Y1, L1) ∪ (Y2, L2)). (In other words, ∂(M,L, n) = (Z, J) ∪ (Y1, L1) ∪
(Y2, L2), where “∪” should be interpreted in the sense of gluing extended surfaces,
defined above.) Define the gluing of (M,L, n) by (f,m) to be

(M,L, n)(f,m)
def
= (Mf , J

′, n+m+ σ(K,L1 ⊕ L2,∆
−)),

where Mf denotes the (piecewise-linear) gluing of M by f , J ′ is the image of J under
the quotient map Z → ∂Mf , ∆− is the antidiagonal

{(x,−f∗(x)) |x ∈ H1(Y1)} ⊂ H1(Y1)⊕H1(Y2),

K = i−1
∗ (j∗(J)), and i : Y1 ∪ Y2 → ∂M and j : Z → ∂M are the inclusions.

Contemplating the following picture may reduce the opacity of the above definition.
Cap off ∂M with a 3-manifoldM † such that L = ker(H1(∂M)→ H1(M

†)) and ∂Y1∪∂Y2

bounds a collection of disjoint disks in M †. Let Ŷ1 and Ŷ2 denote the closed surfaces
obtained by adding these disks to Y1 and Y2. Let If̂ denote the mapping cylinder of
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the induced map f̂ : Ŷ1 → Ŷ2. Assume that Ŷ1 and Ŷ2 bound disjoint submanifolds
N1 and N2 of M †. Note that Li = ker(H1(Yi) → H1(Ni)). Let Wa be a 4-manifold of
signature n bounded by M ∪M †. Let Wb be a 4-manifold of signature m bounded by

(−N1)∪ If̂ ∪ (−N2). Let W
def
= Wa∪N1∪N2 Wb. ∂W can be decomposed into two pieces,

one of which is M ∪ If ∼= Mf . Denote the other piece by M †
f . It is easy to see that

J ′ = ker(H1(∂Mf )→ H1(M
†
f )).

We also have
σ(W ) = n+m+ σ(A,B,C),

where A,B,C ⊂ H1(Ŷ1 ∪ Ŷ2) = H1(Ŷ1)⊕H1(Ŷ2) are the kernals of the inclusion maps
from Ŷ1 ∪ Ŷ2 into the three 3-manifolds which it bounds in this picture. It is not hard
to see that A, B and C, when pulled back to H1(Y1)⊕H1(Y2), are K, L1⊕L2 and ∆−.
Shifting things from H1(Ŷ1 ∪ Ŷ2) to H1(Y1) ⊕H1(Y2) does not affect the computation
of σ(A,B,C). Hence

σ(W ) = n+m+ σ(K,L1 ⊕ L2,∆
−).

If (M,L, n) = (M1, J1, n1)
∐

(M2, J2, n2) and (Y1, L1) ⊂ (M1, J1, n1), (Y2, L2) ⊂
(M2, J2, n2), then we will denote (M,L, n)(f,m) by (M1, J1, n1) ∪(f,m) (M2, J2, n2). If
the map f is canonical or obvious, we denote (M,L, n)(f,0) by (M1, J1, n1) ∪(Y1,L1)

(M2, J2, n2) or simply (M1, J1, n1) ∪ (M2, J2, n2). For example, if (g1,m1) and (g2,m2)
are composable morphisms one can check that

I(g2,m2)(g1,m1)
∼= I(g2,m2) ∪ I(g1,m1).

Notation: In the rest of this paper, we will usually be concerned with extended
objects (rather than unextended objects), so we will use capital roman letters (e.g. M ,
Y ) to denote them. If we need to refer to the constituent pieces of extended objects,
we will do so as follows. For M an extended 3-manifold, let M [ denote the underlying
unextended 3-manifold, let LM denote the lagrangian subspace of H1(∂M

[), and let
nM denote the associated integer. That is,

M = (M [, LM , nM).

Similarly, if Y is an extended surface, then

Y = (Y [, LY ).

The prefix “e-” will be used as a shorthand for “extended” (e.g. “e-3-manifold”, “e-
surface”). The integers associated to e-3-manifolds and e-morphisms will be called
“framing numbers”. If the framing number of an e-3-manifold or e-morphism is not
specified, it is assumed to be zero.
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2 The definition of a TQFT

In this section we give the axioms of a topological quantum field theory (TQFT) and
note some of their consequences. (The objects defined here should perhaps be called
modular 2 + 1-dimensional TQFTs, instead of simply TQFTs.)

Define a label set to be a finite set L equiped with an involution a ↔ â and a
distinguished “trivial label”, denoted by 1, with the property that 1 = 1̂. â is called
the dual of a. (In practice L will usually be a finite set of representations of some-
thing (e.g. a modular Hopf algebra), the involution will correspond to taking the dual
representation, and 1 will be the trivial representation.)

Given a label set L, one can define the category of labeled, extended surfaces (le-
surfaces). The objects are e-surfaces with an element of L assigned to each boundary
component. The morphisms are morphisms of e-surfaces which preserve the labeling.
le-surfaces will be denoted (Y, l), where Y is an e-surface and l is a function from the
boundary components of Y to L. Such a function is called a labeling of ∂Y (or simply
a labeling of Y ). We will sometimes denote (Y, l) by Y , l being understood. For C any
collection of parameterized circles, let L(C) denote the set of all labelings of C. Note
that a closed le-surface is just an e-surface.

Definition. A topological quantum field theory based on a label set L consists of

• A functor V from the category of le-surfaces to the category of finite dimensional
complex vector spaces and linear isomorphisms.

• An assignment M 7→ Z(M) ∈ V (∂M) for each e-3-manifold M .

In addition, V and Z are required to satisfy (2.1) through (2.10) below.

(2.1) Disjoint union axiom for V . The theory provides an identification

V (Y1
∐
Y2, l1

∐
l2) = V (Y1, l1)⊗ V (Y2, l2)

for each pair of le-surfaces V (Y1, l1) and V (Y2, l2). These identifications are compatible
with the actions of the mapping class groupoids (i.e. V (f1

∐
f2) = V (f1) ⊗ V (f2) for

le-morphisms f1 and f2). The identifications are also associative in the obvious sense.

(2.2) Gluing axiom for V . Let Y be an e-surface. Let g : C → −C ′ be a parameteri-
zation reflecting homeomorphism of closed disjoint submanifolds C and C ′ of ∂Y . Let
Yg denote Y glued by g. For l a labeling of Yg and x a labeling of C, let (l, x, x̂) denote

14



the corresponding labeling of Y (i.e. g takes labels to their duals). Then the theory
provides an identification

V (Yg, l) =
⊕

x∈L(C)

V (Y, (l, x, x̂))

which is compatible with the actions of the mapping class groupoids. The identifica-
tions are also associative (i.e. it doesn’t matter what order one glues things in).

(2.3) Duality axiom. The theory provides an identification

V (Y, l) = V (−Y, l̂)∗

for each le-surface (Y, l), where V (−Y, l̂)∗ denotes the space of complex-linear maps
V (−Y, l̂) → C. These identifications are compatible with orientation reversal, the
actions of the mapping class groupoids, (2.1) and (2.2) as follows.

• The identifications

V (Y ) = V (−Y )∗

V (−Y ) = V (Y )∗

are mutually adjoint.

• Let f = (f [, n) : (Y1, l1) → (Y2, l2) be an le-morphism and let f−
def
= (f [,−n) :

(−Y1, l̂1)→ (−Y2, l̂2). Then

〈x, y〉 = 〈V (f)x, V (f−)y〉

for all x ∈ V (Y1, l1), y ∈ V (−Y1, l̂1). In other words, V (f) is the adjoint inverse
of V (f−).

• Let

α1 ⊗ α2 ∈ V (Y1
∐
Y2) = V (Y1)⊗ V (Y2)

β1 ⊗ β2 ∈ V (−Y1
∐− Y2) = V (−Y1)⊗ V (−Y2).

Then
〈α1 ⊗ α2, β1 ⊗ β2〉 = 〈α1, β1〉〈α2, β2〉.

• Let ⊕
x

αx ∈ V (Yg, l) =
⊕
x

V (Y, (l, x, x̂))⊕
x

βx ∈ V (−Yg, l̂) =
⊕
x

V (−Y, (l̂, x̂, x))

15



(same notation as in (2.2)). Then

〈
⊕
x

αx,
⊕
x

βx〉 =
∑
x

S(x)〈αx, βx〉.

Here S(x) = S(x1) · · ·S(xn), where x = (x1, . . . , xn) and S : L → C× is a certain
function which is determined by V (see (4.4))∗. For the time being, the reader
may wish to simply regard S as being part of the data of the theory.

(2.4) Empty surface axiom. Let ∅ denote the empty le-surface. Then

V (∅) ∼= C.

(2.5) Disk axiom. Let D denote the (extended) disk. Then

V (D, a) ∼=
{

C , a = 1
0 , a 6= 1.

(2.6) Annulus axiom. Let A denote the (extended) annulus. Then

V (A, (a, b)) ∼=
{

C , a = b̂

0 , a 6= b̂.

(2.7) Disjoint union axiom for Z. Let M1 and M2 be e-3-manifolds. Then

Z(M1
∐
M2) = Z(M1)⊗ Z(M2).

(This makes sense in view of (2.1).)

(2.8) Naturality axiom. Let M1 = (M [
1, L1, n) and M2 = (M [

2, L2, n) be e-3-manifolds
and let f [ : M [

1 →M [
2 be an orientation preserving homeomorphism such that

(f [|∂M[
1
)∗(L1) = L2.

Then
V (f [|∂M[

1
, 0)Z(M1) = Z(M2).

∗Note to experts: S(a) = S1a.
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Some preliminary remarks will be needed before stating the next axiom. Let M be
an e-3-manifold and let Y1, Y2 ⊂ ∂M be disjoint e-surfaces. Then, by (2.2), we have

V (∂M) =
⊕
l1,l2

V (Y1, l1)⊗ V (Y2, l2)⊗ V (∂M \ (Y1 ∪ Y2), (l̂1, l̂2)),

where li runs through all labelings of Yi. Hence we can write

Z(M) =
⊕
l1,l2

∑
j

αj
l1
⊗ βj

l2
⊗ γj

l̂1 l̂2
,

where αj
l1
∈ V (Y1, l1), β

j
l2
∈ V (Y2, l2) and γj

l̂1 l̂2
∈ V (∂M \ (Y1 ∪ Y2), (l̂1, l̂2)). Let

f : Y1 → −Y2 be an e-morphism. Then, as in (1.12), we can form the glued e-3-
manifold Mf . By (2.2) we have

V (∂Mf ) =
⊕

l

V (∂M \ (Y1 ∪ Y2), (l, l̂)).

(2.9) Gluing axiom for Z. For all M and f as above,

Z(Mf ) =
⊕

l

∑
j

〈V (f)αj
l , β

j

l̂
〉γj

l̂l
.

(2.10) Mapping cylinder axiom. Let Iid be the mapping cylinder of id : Y → Y (see
(1.5)). By (2.2) and (2.3) we have

V (∂Iid) =
⊕

l∈L(Y )

V (Y, l)⊗ V (Y, l)∗.

Let idl be the identity in V (Y, l)⊗ V (Y, l)∗. Then

Z(Iid) =
⊕

l∈L(Y )

idl.

Remarks.

V (f) will usually be denoted by f∗ (for f an le-morphism).
A functor V satisfying (2.1) through (2.6) is a PL version of what Segal calls a

modular functor (see [S1]). In section 16 we will show that a modular functor as
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Figure 3: Two annuli are not really much better than one.

defined by Segal leads to a modular functor as defined here. According to physics
jargon, Z is called the partition function†.

In view of the disjoint union axiom, (2.4) is clearly a nontriviality axiom. It is also
a consequence of the disjoint union axiom that V (∅) has a canonical identification with
C.

(2.6) is also a nontriviality axiom. For let A be an annulus and let A ∪ A denote
the annulus obtained from gluing two copies of A together. Then, by (2.2),

V (A, (a, â)) ∼= V (A ∪ A, (a, â)) ∼=
⊕
x∈L

V (A, (a, x))⊗ V (A, (x̂, â))

(see Figure 3). This is possible only if V (A, (a, x)) ∼= 0 for x 6= â and V (A, (a, â))
is 0 or 1 dimensional. In the former case a second application of (2.2) implies that
V (Y, l) = 0 for any le-surface (Y, l) with a boundary component labeled by a. If we
drop such labels from the label set the other axioms continue to hold and we obtain a
theory which satisfies (2.6). In making this modification we lose no useful information,
so we might as well assume that (2.6) holds.

(2.10) is similarly a nontriviality axiom. Using (2.9) it is easy to verify that

Z(Iid) =
⊕

l∈L(Y )

Pl,

where Pl : V (Y, l)→ V (Y, l) is an idempotent. Furthermore, if we replace V (Y, l) with

V ′(Y, l)
def
= Pl(V (Y, l)) ⊂ V (Y, l) for all (Y, l), then the other axioms continue to hold

and (2.10) is satisfied. (In particular, Z(M) ∈ V ′(∂M) for all M .) This modification
preserves all of the useful information in the theory (at least for e-3-manifolds), so we
might as well assume (2.10).

(2.9) and (2.10) imply the following generalization of (2.10).

(2.11) Mapping cylinder axiom (strong form). Let f : Y1 → Y2 be a morphism of
e-surfaces. For l ∈ L(Y1) let fl : (Y1, l) → (Y2, l) denote the corresponding morphism

†Actually, the term “partition function” is usually reserved for the case where M is closed.
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of le-surfaces. Then
Z(If ) =

⊕
l∈L(Y1)

V (fl).

Using (2.9) and (2.8) one can prove the following extension of (2.8).

(2.12) Naturality axiom (strong form). Let M1 = (M [
1, L1, n1) and M2 = (M [

2, L2, n2)
be e-3-manifolds and let f [ : M [

1 →M [
2 be an orientation preserving homeomorphism.

Let K = ker(H1(∂M
[
2)→ H1(M

[
2)). Then

V (f [|∂M[
1
, n2 − n1 − σ(K, (f [|∂M[

1
)∗(L1), L2)) : Z(M1) 7→ Z(M2).

The above relation between Z(M1) and Z(M2) will be abbreviated

Z(M1) ≡ Z(M2).

It is worth noting some special cases of (2.9). If Y1, Y2 ⊂ ∂M are closed then

V (∂M) = V (Y1)⊗ V (Y2)⊗ V (∂M \ (Y1 ∪ Y2)),

and so we can write
Z(M) =

∑
j

αj ⊗ βj ⊗ γj.

For f : Y1 → −Y2 (2.9) implies

Z(Mf ) =
∑
j

〈αj, βj〉γj.

If ∂M1 = (−Y1)
∐
Y2 and ∂M2 = (−Y2)

∐
Y3 (that is, M1 is a bordism from Y1 to Y2 and

M2 is a bordism from Y2 to Y3), then

Z(M1) ∈ V (Y1)
∗ ⊗ V (Y2) = Hom(V (Y1), V (Y2))

Z(M2) ∈ V (Y2)
∗ ⊗ V (Y3) = Hom(V (Y2), V (Y3)),

and (2.9) implies
Z(M1 ∪M2) = Z(M2)Z(M1).

In particular, if Y1 = Y3 = ∅, so that M1 ∪M2 is closed, then

Z(M1 ∪M2) = 〈Z(M2), Z(M1)〉.
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(2.13) An alternative definition. For a ∈ L, choose k(a) ∈ C such that k(a)2 = S(a).

Define k(a1 . . . an)
def
= k(a1) · · · k(an). Define alternative pairings

〈 · , · 〉\ : V (Y, l)⊗ V (−Y, l̂)→ C

by
〈 · , · 〉\ = k(l)〈 · , · 〉.

With these pairings, the compatibility condition with the gluing axiom becomes more
natural:

〈
⊕
x

αx,
⊕
x

βx〉\ =
∑
x

〈αx, βx〉\.

But the gluing axiom for Z becomes less natural:

Z(Mf ) =
⊕

l

∑
j

k(l)−1〈V (f)αj
l , β

j

l̂
〉\γj

l̂l
.

(2.14) Unitary TQFTs. A unitary modular functor is a modular functor such that each
V (Y ) is equiped with a nonsingular hermetian pairing

〈 · , · 〉h : V (Y )⊗ V (Y )→ C

and each morphism is unitary. The hermetian structures are required to satisfy com-
patibility conditions similar to the ones in (2.3). In particular,

〈
⊕
x

αx,
⊕
x

βx〉h =
∑
x

S(x)〈αx, βx〉h.

(The notation is similar to that of (2.3).) Note tht this implies that S(a) is real and
positive for all a ∈ L. Also, we require that the following diagram commutes for all Y .

V (Y ) ↔ V (−Y )∗

l l
V (Y )∗ ↔ V (−Y )

(The horizontal isomorphisms come from (2.3). The vertical ones come from the her-
metian structures on V (Y ) and V (−Y ).)

A unitary TQFT is a TQFT whose modular functor is unitary and whose partition
function satisfies

Z(−M) = Z(M).

(The hermetian structure induces an identification V (∂(−M)) = V (∂M).)
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3 Basic data

A modular functor contains a large amount of data satisfying some strong axioms.
This raises the question of what is the minimal amount of data (“basic data”) which,
by virtue of the axioms, determines the entire modular functor. In this section we in-
troduce the basic data of a modular functor. In Section 5 we show how to reconstruct
a modular functor from its basic data. In Section 6 we determine what relations puta-
tive basic data must satisfy in order for the reconstruction procedure to give consistent
answers.

Roughly, the idea is as follows. Any le-surface can be decomposed into a disjoint
union of simple le-surfaces (disks, annuli, pairs of pants). Knowing V for these simple
le-surfaces allows one, using (2.1) and (2.2), to determine V for any le-surface. A given
le-surface Y can be sliced up many different ways, and one needs identifications between
the corresponding descriptions of V (Y ). Using (2.1) and (2.2), one can express a general
identification in terms of identifications corresponding to some simple decompositions
of some simple le-surfaces (i.e. an annulus, a four-punctured sphere, a torus and a once
punctured torus).

The material in this section, Section 5 and Section 6 is essentially a reworking of
results of Moore and Seiberg [MS]. Basic data which satisfies the relations of Section
6 is called a “modular tensor category” by some authors.

First we introduce notation for some simple e- and le-surfaces. Let D denote a fixed
(for the rest of this paper) extended disk, A denote a fixed annulus, and P denote a
fixed pair of pants (thrice punctured sphere). (Note that if X is an extended punctured
sphere, we must have LX = H1(X), since the intersection pairing on H1(X) is zero.)

Fix a bijective correspondence of Z3 = {1, 2, 3} with the boundary components
of P . (Such a correspondence will be called a numbering, since “labeling” has been
reserved for another meaning.) Fix three disjoint properly embedded arcs in P joining
the point eiε on the jth boundary component to the point e−iε on the j + 1st boundary
component, where 0 < ε < π is fixed. Such arcs will be called seams. Similarly equip
A and D with seams and numberings of their boundary components (see Figure 4).
Note that if X is any other pair of pants (or annulus or disk) with numbered boundary
and seams, then there is a unique homeomorphism from P (or A or D) to X which
preserves the numbering and the isotopy classes of the seams.

This is as good a place as any to introduce some notation for the mapping class
groups of P , A and D. Let T [

1 , B
[
23, R

[ ∈ M(P [) be as shown in Figure 5. Define T [
2 ,

T [
3 , B

[
31, B

[
12 ∈ M(P [) similarly (e.g. T [

2 = (R[)−1T [
1R

[). Let T1
def
= (T [

1 , 0) ∈ M(P ).

Define T2, T3, B23, B31, B12, R ∈M(P ) similarly. Let C
def
= (id, 1) ∈M(P ). M(P ) is
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Figure 4: D, A and P .

Figure 5: Elements ofM(P [)
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Figure 6: Elements ofM(A[)

generated by T1, T2, T3, B23, B12 and C subject to the relations

[C, Ti] = [C,Bij] = [Ti, Tj] = 1
B23B12B23 = B12B23B12

B2
23 = T2T3T

−1
1 , B2

12 = T1T2T
−1
3

T1B23 = B23T1 , T2B23 = B23T3 , T3B23 = B23T2

T1B12 = B12T2 , T2B12 = B12T1 , T3B12 = B12T3.

Let T [, R[ ∈ M(A[) be as shown in Figure 6. Let T
def
= (T [, 0), R

def
= (R[, 0)

C
def
= (id, 1) ∈M(A). M(A) is generated by T , R and C subject to the relations

R2 = 1
[T,R] = [R,C] = [C, T ] = 1.

Let C
def
= (id, 1) ∈M(D). M(D) is freely generated by C. (The multiple definitions of

R and C should not lead to confusion. In fact, for any e-surface Y define C
def
= (id, 1) ∈

M(y).)

Now for the corresponding le-surfaces. For a, b, c ∈ L, let Pabc denote P with
boundary components 1, 2 and 3 labeled by a, b and c, respectively. Elements of
M(P ) give rise to elements of the mapping class groupoid

M({Pabc, Pacb, Pcab, Pcba, Pbca, Pbac}).

We will usually use the same symbols to denote the induced maps. For example,
T1 : Pabc → Pabc, B12 : Pabc → Pbac, R : Pabc → Pcab. Define Aab and Da (for a, b ∈ L)
similarly.
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Figure 7: The standard orientation reversing maps.

For a, b, c ∈ L, let

Vabc
def
= V (Pabc)

Vab
def
= V (Aab)

Va
def
= V (Da).

(Note that Vab is nonzero only if a = b̂ and Va is nonzero only if a = 1.) The mapping
class groupoid of the le-surfaces {Pabc} [or {Aab} or {Da}] acts on the vector spaces
{Vabc} [or {Vab} or {Va}], and we will use the same symbols to denote this action. So,
for example, we have linear isomorphisms B12 : Vabc → Vbac and R : Vab → Vba.

Since dim(Vaâ) = 1, the action of T on Vaâ is multiplication by a scalar T(a) ∈ C.
The compatibility of the gluing axiom with the actions of mapping class groupoids
implies the following:

(3.1) The action of a left-handed Dehn twist along a boundary component of D, A or P
on V1, Vaâ or Vabc is multiplication by a scalar T(x), where x is the label of the boundary
component. Furthermore, T(x) = T(x̂) and T(1) = 1.

Define the standard orientation reversing maps on D, A and P as in Figure 7. Each
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Figure 8: The le-morphism F .

of these maps will be denoted by ψ. Note that ψ2 = id. ψ induces identifications

Vabc = V ∗
âĉb̂

Vaâ = V ∗
aâ

V1 = V ∗
1

for all a, b, c ∈ L. The corresponding pairings wil be denoted by 〈 · , · 〉. The analog
of “compatibility with the mapping class groupoids” (see (2.3)) for these pairings is

〈x, y〉 = 〈f∗x, (ψfψ−1)∗y〉.(3.2)

An action of the mapping class groupoids of P (or A or D) together with a pairing
which satisfies (3.2) will be called an action of the unoriented mapping class groupoid.

Next we introduce the simple identifications mentioned above. Let F = Fabcd be
the le-morphism between two labeled gluings of P

∐
P shown in Figure 8. (The map

depicted in Figure 8 is the one corresponding to horizontal translation of the drawings.
The maps between P

∐
P and the drawings are indicated by seams and numberings.

The circled numbers are used to distinguish the first and second copies of P .) By (2.2),
F induces an isomorphism

F :
⊕
x∈L

Vxab ⊗ Vx̂cd →
⊕
y∈L

Vybc ⊗ Vŷda.

Let S = Sa be the le-morphism from a labeled gluing of P to itself shown in Figure
9. By (2.2), S induces an isomorphism

S :
⊕
x∈L

Vaxx̂ →
⊕
y∈L

Vayŷ.
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Figure 9: The le-morphism Sa.

Figure 10: The le-morphism S.
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Figure 11: Labelings and gluings of A.

Let S be the le-morphism from a labeled (trivially) gluing of A to itself shown in
Figure 10. By (2.2), S induces an isomorphism

S :
⊕
x∈L

Vxx̂ →
⊕
y∈L

Vyŷ.

Consider the le-morphism between a labeling of A and a labeled gluing of A
∐
A

shown in Figure 11. This induces an isomorphism

Vaâ → Vaâ ⊗ Vaâ.

Let βaâ ∈ Vaâ be the unique element such that

βaâ 7→ βaâ ⊗ βaâ.(3.3)

(Recall that Vaâ
∼= C.)

The elements βaâ (a ∈ L) satisfy a stronger property, which will require a short
digression to explain. There is an isotopy class of homeomorphisms A[ → S1 × I
which takes boundary component number 1 of A[ to S1 × {0}, preserves boundary
parameterizations (up to conjugation of S1), and takes seams of A[ to arcs of the form
{θ}× I. In other words, the seams of A[ determine a prefered isotopy class of product
structures on A[.

Let Y be an e-surface with a distinguished boundary component. Let Y ∪A denote
the e-surface obtained by gluing that component to boundary component number 2 of
A. There is a unique homeomorphism f [ : Y [ → (Y ∪A)[ which satisfies the following
condition: f [ is isotopic to id : Y [ → Y [ ⊂ (Y ∪ A)[ via an isotopy which takes the
distinguished boundary component to S1×{t} ⊂ A[ (in a parameterization preserving
fashion) at time t and which fixes the rest of ∂Y [. Let f = (f [, 0) : Y → Y ∪ A.

Let l ∈ L(Y ). Let a be the label which l assigns to the distinguished boundary
component. Then, by (2.1) and (2.2), f induces an isomorphism

f∗ : V (Y, l)→ V (Y, l)⊗ Vaâ.
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Figure 12: More le-surfaces.

I claim that for all x ∈ V (Y, l),

f∗ : x 7→ x⊗ βaâ.(3.4)

Clearly, for some g ∈ Aut (V (Y, l)), we have f∗(x) = g(x)⊗ βaâ. But by (3.3) and the
associativity of gluing (applied to Y ∪ A ∪ A), g2 = g. Therefore g = id.

There is a unique orientation reversing e-morphism from D to itself. By (2.3), this
induces a nondegenerate pairing

V1 ⊗ V1 → C.

Recall (see (2.5)) that V1 is 1-dimensional. Fix once and for all β1 ∈ V1 such that

β1 ⊗ β1 7→ 1.

(There are exactly two such elements, β1 and −β1.)
Consider the le-morphism between a labeled gluing of P

∐
D and Aaâ shown in

Figure 12. This induces an isomorphism

Vaâ1 ⊗ V1 → Vaâ.

Let βaâ1 ∈ Vaâ1 be the unique element such that

βaâ1 ⊗ β1 7→ βaâ.(3.5)

Also define

β1aâ = R(βaâ1) ∈ V1aâ

βâ1a = R2(βaâ1) ∈ Vâ1a.
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(3.6) The stuff discussed above will be collectively called “basic data”. In other words,
basic data consists of

• vector spaces Vabc, Vaâ and V1 (for all a, b, c ∈ L), together with actions of the
appropriate unoriented mapping class groupoids which satisfy (3.1)

• isomorphisms

F :
⊕
x∈L

Vxab ⊗ Vx̂cd →
⊕
y∈L

Vybc ⊗ Vŷda

S :
⊕
x∈L

Vaxx̂ →
⊕
y∈L

Vayŷ

S :
⊕
x∈L

Vxx̂ →
⊕
y∈L

Vyŷ

(for all a, b, c, d ∈ L)

• elements βaâ ∈ Vaâ, β1 ∈ V1, βaâ1 ∈ Vaâ1 (for all a ∈ L), with 〈β1, β1〉 = 1.
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Figure 13: Some decompositions of a punctured torus.

4 Miscellaneous calculations

In this section we calculate Z for certain e-3-manifolds in terms of the basic data
introduced in Section 3. We also show how TQFTs lead to invariants of labeled,
framed links and give surgery formulae in terms of these invariants. This is done both
to give the reader practice in applying the axioms of a TQFT and to establish certain
elementary results which will be needed in later sections.

Let Y be an le-surface with a decomposition into disks, annuli and pairs of pants.
Using the disjoint union and gluing axioms, V(Y) can be expressed as a direct sum
of tensor products of V1’s, Vaâ’s and Vabc’s. For example, the decomposition shown in
Figure 13(a) leads to

V (Y ) =
⊕

x,y,z,w∈L
Vaxy ⊗ Vzx̂w ⊗ Vŵ ⊗ Vẑŷ

=
⊕
x

Vaxx̂ ⊗ Vxx̂1 ⊗ V1 ⊗ Vx̂x.

The decompositions shown in Figures 13(b) and 13(c) lead to

V (Y ) =
⊕
x

Vaxx̂ ⊗ Vxx̂ ⊗⊗Vx̂x

V (Y ) =
⊕
x

Vaxx̂.

The ordering of the factors of the tensor product is not important; only their correspon-
dence to the components of the decomposition matters. A general element α ∈ V (Y )
can be written, with respect to the first decomposition, as

α =
⊕
x

∑
j

αj
axx̂ ⊗ βxx̂1 ⊗ β1 ⊗ βx̂x
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=
⊕
x

∑
j

αj
axx̂ ⊗ βxx̂ ⊗⊗βx̂x

=
⊕
x

∑
j

αj
axx̂,

where αj
axx̂ ∈ Vaxx̂. The first and second lines are equal by (3.5). The second and

third lines are equal by (3.4). In general, adding/subtracting annuli corresponds to
adding/subtracting βxx̂’s, and moves like the one shown in Figure 12 correspond to
replacing βxx̂1 ⊗ β1 ’s with βxx̂’s.

In the rest of this paper, equalities such as the above will usually be written without
commenting on the decompositions to which they correspond.

It is left as an exercise for the reader to show that for all a ∈ L

R(βaâ) = βâa.(4.1)

(A proof is buried in Section 6.)
Let x = x⊗ βaâ ∈ V (Y, l) and y = y ⊗ βâa ∈ V (−Y, l̂) (see (3.4)). By (4.1), we can

also write y = y ⊗ βaâ. By the duality axiom,

〈x, y〉 = 〈x⊗ βaâ, y ⊗ βaâ〉
= S(a)〈x, y〉〈βaâ, βaâ〉.

Hence, for all a ∈ L,
〈βaâ, βaâ〉 = S(a)−1.(4.2)

(Here 〈 · , · 〉 is induced by the standard orientation reversing map on A.) Similar
arguments show that for unitary modular functors

〈βaâ, βaâ〉h = S(a)−1.

LetQn denote the standard n-punctured sphere. (SoQ1 = D, Q2 = A andQ3 = P .)
Let l be a labeling of Ql. Define

Vl
def
= V (Qn, l).

Let 1̄ = (1, . . . , 1). V1̄ is 1-dimensional and has a prefered element

β1̄ ∈ V1̄

whose definition is similar to that of β111 in Section 3.
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Let T 2 be a torus with a decomposition into an annulus. With respect to this
decomposition,

V (T 2) =
⊕
x∈L

Vxx̂.

Vxx̂ is 1-dimensional and has a prefered element βxx̂. Thus an annulus decomposition
of T 2 leads to a prefered basis of V (T 2). Note that when βxx̂ is regarded as an element
of V (T 2), we have 〈βxx̂, βxx̂〉 = 1. If the decomposition is changed as in Figure 10, we
get an isomorphism

S :
⊕
x

Vxx̂ →
⊕
y

Vyŷ.

Let [Sxy] (x, y ∈ L) be the matrix representation of S with respect to the prefered
bases. In other words,

βxx̂
S7→
⊕
y

Sxyβyŷ.

By (4.1) and the fact that S commutes with (a gluing of) R, we have

Sxy = Sx̂ŷ.

Since S2 is equal to the map βaâβâa,

(S−1)xy = Sx̂y.

Since ψ2 = 1 and ψSψ = S,
Sxy = Sŷx.

Let B3 be a 3-ball with framing number zero. B3 is the mapping cylinder of
id : D → D. Hence, by the mapping cylinder axiom,

Z(B3) = (id : V1 → V1) = β1 ⊗ β1.(4.3)

(The second equality follows from the fact that 〈β1, β1〉 = 1.) Note that β1 appears an
even number of times, so it’s sign ambiguity is of no concern.

Gluing two copies of B3 together along their boundaries yields S3 (with framing
number zero). By the gluing axiom,

Z(S3) = 〈β1 ⊗ β1, β1 ⊗ β1〉 = S(1)〈β1, β1〉〈β1, β1〉 = S(1).

It follows from (4.3) that for any e-3-manifold M ,

Z(M \B3) = S(1)−1Z(M)⊗ β1 ⊗ β1.
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(M \B3 denotes M with a 3-ball removed from its interior.) This implies

Z(M1#M2) =
Z(M1)⊗ Z(M2)

S(1)
=
Z(M1)⊗ Z(M2)

Z(S3)
.

(Note that if M1 and M2 are closed then Z(M1)⊗ Z(M2) = Z(M1)Z(M2).)

We now compute the partition function of a solid torus in two different ways.
Comparing the computations will show that

S(a) = S1a(4.4)

for all a ∈ L.
S1 ×D2 can be obtained from B3 by gluing two disks on ∂B3 together. If ∂B3 is

decomposed as two disks and an annulus,

Z(B3) = β1 ⊗ β1 ⊗ β11.

Hence, by the gluing axiom,

Z(S1 ×D2) = 〈β1, β1〉β11 = β11 ∈
⊕
x

Vxx̂.

This is with respect to an annulus decomposition of ∂(S1 ×D2) such that the decom-
posing curve bounds a disk in S1×D2. With respect to a decomposition such that the
decomposing curve is a longitude (and the seams bound a disk), we have

Z(S1 ×D2) =
⊕
y

S1yβyŷ.(4.5)

Z(S1 ×D2) can also be thought of as the mapping cylinder of id : A→ A. Hence,
by the mapping cylinder axiom and (4.2),

Z(S1 ×D2) =
⊕
y

(id : Vyŷ → Vyŷ)

=
⊕
y

S(y)βyŷ ⊗ βyŷ

=
⊕
y

S(y)βyŷ.(4.6)

The last line is with respect to an annulus decomposition such that the decomposing
curve is a longitude and the seams bound a disk. Comparing (4.5) and (4.6) yields
(4.4).

Next we compute the partition function of a genus two handlebody in two different
ways. Comparing the computations will yield a relation which V must satisfy. We will
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Figure 14: Two decompositions of H.

see in Section 7 that a modular functor V has a compatible partition function if and
only if it satisfies this relation.

Let H denote a genus two handlebody (with framing number zero). H can be
obtained by gluing two copies of S1 ×D2 together along disks in their boundaries. By
(4.5) and the disjoint union axiom,

Z((S1 ×D2)
∐

(S1 ×D2)) =
⊕
a,b

S(a)S(b)βâa ⊗ βbb̂

=
⊕
a,b

S(a)S(b)β1âa ⊗ β1bb̂ ⊗ β1 ⊗ β1.

Hence
Z(H) =

⊕
a,b

S(a)S(b)β1âa ⊗ β1bb̂.

(This is with respect to the decomposition shown in the left hand side of Figure 14.)
On the other hand, H is the mapping cylinder of id : P → P . Thus

Z(H) =
⊕
c,a,b

idcab,

where idcab denotes the identity in Vcab ⊗ V ∗
cab = Vcab ⊗ Vĉb̂â. (This is with respect to

the decomposition shown in the right hand side of Figure 14.) The two decompositions
are related by (a gluing of) F (see Figure 14). So we must have, for all a, b ∈ L,

S(a)S(b)F (β1âa ⊗ β1bb̂) =
⊕

c

idcab,

or

β1âa ⊗ β1bb̂
F7→
⊕

c

idcab

S(a)S(b)
.(4.7)

Let K be a framed link in a closed e-3-manifold M . (A framing of a link is a
choice of homotopy class of parallel for each component of the link.) The framing of
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K determines a decomposition of ∂(M \ nbd(K)) into annuli. The meridians are the
decomposing curves and the framing curves are parallel to the seams. (It follows that
the lagrangian in H1(∂(M \ nbd(K))) is the one spanned by the meridians.) With
respect to this decomposition we can write

Z(M \ nbd(K)) =
⊕

l

J(K; l)βa1â1 ⊗ · · · ⊗ βanân ,

where J(K; l) ∈ C and l = (a1, . . . , an) ranges over all labelings of the components of
K. J(K; l) may be regarded as an invariant of the framed, labeled link (K; l). We
will see in Section ?? that for certain TQFTs J(K; l) is equal to a generalized Jones
polynomial evaluated at a root on unity.

This construction can be extended to give invariants of labeled, properly embedded
graphs in e-3-manifolds with boundary. Each boundary of a regular neighborhood
of a vertex of the graph should be equiped with a homeomorphism to the standard
punctured sphere with the appropriate number of punctures. (In other words, the
vertices must be “pinned”.) The label of a vertex is an element of Vl, where l is the
labeling determined by the label of the edges incident to the vertex. The details are
left to the reader. (Compare [Wi2]; see also Section 11.)

A framed link K can be regarded as representing a closed e-3-manifold χ(K) via
surgery. (Glue S1 × D2’s to M \ nbd(K) so that the framing curves bound disks in
the S1 ×D2’s.) It is left as an exercise for the reader to show that if M is a homology
sphere, then the framing numbers of χ(K) and M differ by the signature of the linking
matrix of K.

Using the gluing axiom and (4.6), we can express Z(χ(K)) in terms of the numbers
J(K; l):

Z(χ(K)) =
∑

l

S(l)J(K; l).
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5 Reconstructing modular functors from basic data

In this section we show how to reconstruct a modular functor V from its basic data. (In
the next section we will drop the assumption that the basic data comes from a modular
functor and determine what relations putative basic data must satisfy in order for this
reconstruction procedure to work.)

Fix an le-surface Y . We will construct a 1-complex Γ1 = Γ1(Y ) whose 0-cells are
le-morphisms from labeled gluings of copies of D, A and P to Y , and whose 1-cells
are elementary transformations between the le-morphisms. (In the next section we will
add 2-cells to Γ1, obtaining a connected and simply connected 2-complex Γ. The 2-cells
will determine the relations on basic data mentioned above.)

Let, for i, j, k ≥ 0,

Qijk
def
=

(
i∐
1

D

)∐ j∐
1

A

∐(
k∐
1

P

)
.

DefineWijk to be the set of all le-surfaces W such that W is a labeled gluing of Qijk and
W is le-morphic to Y . Note that, in the case where Y is connected, Wijk is nonempty
exactly when i+ k = χ(Y ) and at least one of i, j and k is positive. Let

W def
=

⋃
i,j,k≥0

Wijk.

Define Γ0, the 0-skeleton of Γ1, to be the set of all le-morphisms f : W → Y where
W ∈ W .

Here is a more concrete description of Γ0. Let α ⊂ Y be a collection of disjoint
parameterized circles such that the components of Y cut along α are disks, annuli
and pairs of pants (see Figure 15). Call such a collection an overmarking of Y . (If
the number of components is minimal, then it is called a marking (see [HT]).) An
overmarking α together with

• seams on the components of Y cut along α

• numberings of the boundary components of Y cut along α

• an ordering (segregated according to topological type) of the components of Y
cut along α

is called a DAP-decomposition of Y (see Figure 16). A DAP-decomposition determines
a unique (up to isotopy) map from a labeled gluing of Q[

ijk (for appropriate i, j and k)
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Figure 15: An overmarking.

Figure 16: A DAP-decomposition.
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to Y , and conversely. It follows that Γ0 is in bijective correspondence with Z cross the
set of isotopy classes of DAP-decompositions of Y . (The Z corresponds to the framing
number of the morphism.)

Next we describe the 1-skeleton of Γ1. A subset E ⊂M(W) will be specified below.
For each f ∈ Γ0 and g ∈ E with the same domain, we add a (directed) 1-cell joining f
to g−1f ∈ Γ0. We will see in the next section that E generatesM(W), or equivalently
that Γ1 is connected. (Homotopy theory enthusiasts will note that if E =M(W) then
the resulting Γ1 is the 1-skeleton of the homotopy colimit of the functor which assigns
to each W ∈ W the set of le-morphisms from W to Y .) Edges of Γ1 can be thought of
as moves between DAP-decompositions of Y .

Elements of E (and hence edges of Γ1) come in five types:

TypeM. Elements ofM(Qijk) (for any i, j, k) give rise to elements ofM(W). Include
all of these elements in E . (Note that f, f ′ ∈ Γ0 are connected by a type M 1-cell if
and only if they determine the same overmarking of Y .)

Type F. Any morphism in M(W) which is obtained by gluing the morphism F to an
identity morphism is in E . (The two copies of P on which F acts are allowed to be
anywhere in the ordering.)

Type S. Any morphism in M(W) which is obtained by gluing (either version of) the
morphism S to an identity morphism is in E . (The copy of P or A on which S acts is
allowed to be anywhere in the ordering.)

Type A. Let X be a component of Qijk (for any i, j, k). Let f : X → X ∪ A be a
morphism of the type involved in (3.4). Let g ∈ M(Qijk, Qi,j+1,k) ⊂ M(W) be a
morphism which is a gluing of f and a morphism which corresponds to reordering the
components. Include all such morphisms in E . (In terms of DAP-decompositions, type
A edges correspond to inserting a copy of A at one of the decomposing circles or at
a boundary component of Y , and then reordering the components of the decomposi-
tion. A should be inserted in such a way that the seams are preserved and boundary
component number two of A is not part of the boundary of Y .)

Type D. Let f : A→ P ∪D be the morphism depicted in Figure 12. Let

g ∈M(Qijk, Qi+1,j−1,k+1) ⊂M(W)

be a morphism which is a gluing of f and a morphism which corresponds to reordering
the components. Include all such morphisms in E . (In terms of DAP-decompositions,
type D edges correspond to replacing an annulus component of the decomposition with
a gluing of D and P (as shown in Figure 12) and reordering the components.)
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Figure 17: Illustration of V ′(W )

It is easy to see that the assignment Y 7→ Γ1(Y ) is functorial. (If h ∈M(Y, Y ′) and
f ∈ Γ0(Y ), then h∗(f) = hf ∈ Γ0(Y ′).) Assigning to each vertex of Γ1 its domain and
to each edge of Γ1 its associated morphism turns Γ1 into a big diagram of le-surfaces
and morphisms. By construction, this diagram commutes.

Next we describe, using only the basic data of V , a functor V ′ from Γ1(LE) (where
LE is the category of le-surfaces) to the category of complex vector spaces and iso-
morphisms. The composition of Γ1 and V ′ will be isomorphic to V . Moreover, it is
possible to recover the “modular” part of V (i.e. the identifications in the disjoint
union, gluing, and duality axioms), again using only the basic data.

For W ∈ W , the disjoint union and gluing axioms give an identification of V (W )
with a direct sum of tensor products of Vabc’s, Vaâ’s and V1’s. Define V ′(W ) to be the

latter space (see Figure 17). For (f : W → Y ) ∈ Γ0, define V ′(f)
def
= V ′(W ). (Note

that, paradoxically, V ′(f) is a vector space while V (f) is a linear map.) Let e be a
1-cell of Γ1 with initial endpoint f1 : W1 → Y and final endpoint f2 : W2 → Y . Let

m(e)
def
= f−1

2 f1 ∈M(W1,W2) be the le-morphism associated to e. It is easy to see that
V (m(e)) : V ′(f1) → V ′(f2) can be expressed in terms of the basic data. Define V ′(e)
to be this expression.

To be slightly more precise, for if e is a type M edge one defines V ′(e) in terms
of the actions of M(P ), M(A) and M(D), and well as the obvious action of the
permutation group of components. For type F and S edges, ones uses the linear maps
F and S. For type A edges one inserts βaâ’s into the tensor products. For type D edges
one replaces βaâ’s with β1 ⊗ βaâ1’s.

The assignment V ′ associates to Γ1 a diagram of vector spaces and linear isomor-
phisms. Because we are assuming that the basic data comes from a modular functor,
and because the underlying diagram of le-surfaces and morphisms commutes, this di-
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agram commutes. Thus all the vector spaces V ′(f), for f ∈ Γ0, can be unambiguously
identified. Define V ′(Γ1) to be this vector space. For any le-surface Y , define

V ′(Y )
def
= V ′(Γ1(Y )).

Let h : Y1 → Y2 be an le-morphism. Let f ∈ Γ0(Y1). f and h∗(f) = hf share the
same domain. Therefore

V ′(h∗(f)) = V ′(f).

Let e be an edge of Γ1(Y1) connecting f0 to f1. Then

m(h∗(e)) = (hf1)
−1(hf0) = f−1

1 f0 = m(e).

Therefore
V ′(h∗(e)) = V ′(e).

The above identifications induce a well defined map

V ′(h) : V ′(Y1)→ V ′(Y2).

The functor V ′ is clearly isomorphic to the functor V .

Next we show that the basic data also determines the “modular” part of V . First
consider the disjoint union axiom. Let Y1 and Y2 be le-surfaces. The 1-skeleton of
Γ1(Y1)× Γ1(Y2) can be identified with a subcomplex of Γ1(Y1

∐
Y2).

More precisely, Qijk
∐
Qlmn can be identified with Qi+l,j+m,k+n by putting the com-

ponents of Qlmn at the end of the ordering. This leads to an identification of Γ0(Y1)×
Γ0(Y2) with a subset of Γ0(Y1

∐
Y2). Let e be an edge of Γ1(Y1) joining f1 to f ′1, and

let f2 ∈ Γ0(Y2). Then there is an edge ē of Γ1(Y1
∐
Y2) joining (f1, f2) to (f ′1, f2) with

m(ē) = m(e)
∐

id. Similar things are true if the roles of Y1 and Y2 are reversed. It
follows that Γ1(Y1)× Γ1(Y2) can be identified with a subcomplex of Γ1(Y1

∐
Y2).

For fi ∈ Γ0(Yi) there is a natural identification

V ′(f1
∐
f2) = V ′(f1)⊗ V ′(f2).

It is easy to see that this gives rise to a well-defined identification

V ′(Y1
∐
Y2) = V ′(Y1)⊗ V ′(Y2).

It is equally easy to see that this identification is compatible with the actions of the
mapping class groupoids.

Next we consider the gluing axiom (2.2), the notation of which will be used without
reintroduction. For each x, Γ1(Y, (l, x, x̂)) can be identified with a subcomplex of
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Γ1(Yg, l). In other words, DAP-decompositions of Y , when glued, give rise to DAP-
decompositions of Yg; moves between DAP-decompositions of Y , when glued, give rise
to moves between DAP-decompositions of Yg; and this correspondence is one-to-one.
Let

hx : Γ1(Y, (l, x, x̂))→ Γ1(Yg, l)

denote this map. It is easy to see that for each f ∈ Γ0(Yg, l) which lies in the image of
hx (for all/any x),

V ′(f) =
⊕
x

V ′(h−1
x (f)).

Also, for each edge e in the image,

V ′(e) =
⊕
x

V ′(h−1
x (e)).

Hence there is a well-defined identification

V ′(Yg, l) =
⊕
x

V ′(Y, (l, x, x̂)).

It is easy to see that this identification is compatible with the actions of the mapping
class groupoids.

Now for the duality axiom. Recall the standard orientation reversing maps (Fig-
ure 7). Applying these maps to each component of a DAP-decomposition leads to a
bijective correspondence h : Γ0(Y, l) → Γ0(−Y, l̂). h can be extended to an isomor-
phism between Γ1(Y, l) and Γ1(−Y, l̂). For each f ∈ Γ0(Y, l) the basic data provides
an identification

V ′(f) = V ′(h(f))∗.

In order to see that these identifications lead to a well-defined identification

V ′(Y, l) = V ′(−Y, l̂)∗,

we must for a second time appeal to the assumption that the basic data comes from
a modular functor. It is easy to see (without appealing to this assumption) that the
above identification is compatible with the actions of the mapping class groupoids, and
also with the disjoint union and gluing axioms.

This completes the reconstruction of V from its basic data.
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6 Relations for basic data

In this section we establish sufficient (and necessary) conditions for basic data to come
from a modular functor. (The conditions are stated in (6.4).) In the previous section
we described a procedure for reconstructing a modular functor from its basic data.
The assumption that the basic data was derived from a modular functor in the first
place was used in only two places. The first was in showing that the diagram of vector
spaces and isomorphisms associated to Γ1(Y ) was commutative. The second was in
showing that the identification V ′(Y, l) = V ′(−Y, l̂) was well-defined, or equivalently
that certain other diagrams commuted. Note that we were able to verify the axioms
((2.1) through (2.6)) for V ′ without further appeal to this assumption.

Our strategy will be to attach 2-cells to Γ1(Y ) in such a way that the resulting
2-complex Γ(Y ) is simply connected. If the associated diagram commutes around each
2-cell, then it will commute in general. Thus the 2-cells lead to a set of relations on
the basic data sufficient to guarantee that the reconstruction procedure of Section 5
produces a well-defined functor. The diagrams whose commutativity is needed for the
well-definedness of the identifications V ′(Y, l) = V ′(−Y, l̂)∗ lead to further relations.

Throughout this section we will assume that Y is connected, leaving it to the reader
to verify that the general case follows from this one.

We introduce two auxiliary 1-complexes, Γ1
1 = Γ1

1(Y ) and Γ1
2 = Γ1

2(Y ). (These are
the 1-skeleta of 2-complexes Γ1 and Γ2 which will be defined later.) Define Γ0

1 to be the
set of all isotopy classes of overmarkings of Y (see Figure 15). There is an obvious map
Γ0 → Γ0

1; in terms of DAP-decompositions, just forget about the seams, numberings
and orderings. Define Γ1

1 to be the 1-complex obtained by adding a 1-cell connecting
two points of Γ0

1 if there exist corresponding points of Γ0 joined by a 1-cell of type F,
S, A or D.

Define Γ0
2 to be the set of all isotopy classes of markings of Y . Since any marking

is also an overmarking, Γ0
2 ⊂ Γ0

1. Define Γ1
2 to be the subcomplex of Γ1

1 spanned by Γ0
2.

Thus Γ1
2 has 1-cells of types F and S. Each overmarking contains a marking which is

unique up to isotopy. This leads to a map Γ0
1 → Γ0

2.
The maps Γ0 → Γ0

1 → Γ0
2 extend in an obvious fashion to maps

Γ1 → Γ1
1 → Γ1

2.

Our strategy will be to use the techniques of Hatcher and Thurston [HT] to prove that
Γ1

2 is 0-connected and to find 2-cells which render it 1-connected. We will then use the
structure of the above maps to obtain similar results for Γ1

1 and finally Γ1.

We now define Γ2. 2-cells of Γ2 will be specified by giving the cycles of 1-cells
in Γ1

2 to which they are attached. Figure 18 shows four classes of 2-cells for Γ2. (A
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Figure 18: Type HT 2-cells.
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Figure 19: Type DC 2-cells.

2-cell (i.e. cycle of 1-cells) is of one of these classes if it can be obtained from one of
the cycles drawn in Figure 18 by gluing on a fixed marking and/or gluing boundary
components together.) We will call these classes of 2-cells collectively type HT 2-cells.
Two examples of a fifth (and final) class of 2-cells are shown in Figure 19. In general,
Γ2 has 2-cells reflecting the commutativity of disjoint F or S moves on markings. We
will call these 2-cells type DC 2-cells.

(6.1) Lemma. Γ2 is 0,1-connected.

The proof is a straight-forward application of the techniques of [HT] and will be given
in Section 19.

In order to obtain similar results for Γ1 and Γ, we need the following two lemmas.

(6.2) Lemma. Let A be a 2-complex and let f : A1 → B be a cellular map from the
1-skeleton of A to a 2-complex B such that

• B is 0,1-connected

• for each 0- or 1-cell z of B, f−1(z) is nonempty and 0-connected

• for each 0- or 1-cell z of B, the image of π1(f
−1(z))→ π1(A) is trivial

• for each 2-cell y of B there exists a 2-cell x of A such that f(∂x) is homotopic
to ∂y.

Then A is 0,1-connected.
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The proof is elementary and is left to the reader.

(6.3) Lemma. Let A be a 0,1-connected 2-complex on which a discrete group G acts
discretely. Suppose that there is a set of generators of G such that each generator has
a fixed point in A. Then A/G is 0,1-connected.

Proof: [The proof is elementary and will be included in a later version of this paper.]

(6.2) won’t be applied to Γ1
1 → Γ2 directly. (It will be applied directly to Γ1 → Γ1.)

Rather, we will apply (6.2) to
f : Γ1

1 → Λ,

where Λ a 2-complex with a 0-cell for each non-negative integer ≥ χ(Y ), a 1-cell
connecting each pair of adjacent 0-cells, and no 2-cells. f sends each 0-cell x of Γ0

1 to
the 0-cell of Λ corresponding to the number of disks in the overmarking corresponding
to x. f sends a 1-cell of type F, S or A to the 0-cell of Λ containing the image of its
endpoints. f sends a 1-cell of type A to the 1-cell of Λ which joins the images of its
endpoints.

We will attach 2-cells to Γ1
1 (obtaining a 2-complex Γ1) so that the third hypothesis

of (6.2) is satisfied. In the course of so doing we will see that the second hypothesis is
also satisfied. It will follow that Γ1 is 0,1-connected, since the first hypothesis is easily
verified and the fourth hypothesis is vacuous.

First consider Φ1
def
= f−1(0-cell). This is a 1-complex whose 0-skeleton consists

of overmarkings of Y with a fixed number of disk components and whose 1-skeleton
has 1-cells of types F, S and A. Let Φ2 ⊂ Φ1 be the subcomplex spanned by those
overmarkings with as few annulus components as possible. The 1-skeleton of Φ2 has
edges of types F and S.

Attach type HT and DC 2-cells to Γ1
1. Redefine Φ1 and Φ2 to include any of these

2-cells whose boundaries they contain. Let

g : Φ1
1 → Φ2

be the map given by erasing extra annulus components.
We will apply (6.2) to g. The fourth hypothesis of (6.2) is clearly satisfied, since

Φ2 ⊂ Φ1 and g is the identity on Φ1
2.

Next we verify the first hypothesis. Let Y ′ be Y with n disks removed, where n
corresponds to the vertex of Λ under consideration. Let G be the kernal ofM(Y ′)→
M(Y ). It is easy to see that

Φ2
∼= Γ2(Y

′)/G.

G can be identified with the framed braid group of n points in Y . The following three
types of elements generate G: twisting the framing of one of the points; sending a
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Figure 20: Examples of more type DC 2-cells

point around an embedded curve in Y ; and “braiding” two points. (The last type
of generator should be familiar as the usual sort of generator for the standard braid
group.) If we can find a fixed point in Γ2(Y

′) for each of these elements, then (6.3) will
imply the first hypothesis of (6.2).

All point of Γ2(Y
′) are fixed points of the first type of generator. Let γ ∈ G

send one of the points around an embedded loop α ⊂ Y . Let x be a marking of Y ′

which contains a pair of pants with one boundary component equal to the boundary
component of Y ′ corresponding to the point, and the other two boundary components
parallel to α. Then γ fixes x. For γ ∈ G which braids two points, let y be a marking
of Y ′ which contains a pair of pants with two boundary components corresponding to
the two points. Then γ fixes y.

Now we consider the second and third hypotheses of (6.2). g−1(0-cell) is 0-connected
by virtue of its type A 1-cells. Attach 2-cells, refered to hereafter as “type A”, so that
it is 1-connected. (We won’t need a precise description of these 2-cells.) Also attach
2-cells reflecting the commutativity of disjoint A and F or S moves (see Figure 20).
(These 2-cells will be subsumed under the DC rubric.) These 2-cells guarantee that
g−1(1-cell) is 1-connected. Applying (6.2) to g : Φ1

1 → Φ2 shows that enough 2-cells
have been added to Γ1

1 to make Φ1 0,1-connected.
Recall that Φ1

1 = f−1(0-cell) and that our task is to add 2-cells to Γ1
1 so that the

hypotheses of (6.2) are satisfied for f : Γ1
1 → Λ. The 0-connectedness of f−1(0-cell) im-

plies that of f−1(1-cell), so all that remains is to add 2-cells so that the third hypothesis
holds for f−1(1-cell).

Let e be a 1-cell of Λ. Let E be the set of all (type D) 1-cells of Γ1
1 which are mapped

by f to e. For e1, e2 ∈ E, define e1 ∼ e2 to mean that e1 and e2 are homotopic, rel
f−1(∂e), in Γ1. It is easy to see that the third hypothesis holds for f−1(e) if and only
if e1 ∼ e2 for all e1, e2 ∈ E.
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Figure 21: Type D 2-cells

Associated to ei (i = 1, 2) is an overmarking mi of Y which contains a distinguished
disk and pair of pants. (This overmarking is one of the endpoints of ei; the other
endpoint is obtained by replacing the disk and pair of pants with an annulus.) Since
f−1(f(mi)) is 0-connected, there is a sequence of overmarkings m1 = n1, . . . , nk =
m2 ∈ f−1(f(mi)) such that nj and nj+1 are connected by a 1-cell of type F, S or A
for all j. Corresponding to each nj is a type D 1-cell dj ∈ E which corresponds to
replacing the appropriate disk and pair of pants with an annulus. (Here we assume
that no nj contains an annulus which separates the appropriate disk and pair of pants,
which is easily arranged.)

It suffices to attach 2-cells to Γ1
1 so that for each j there is a 2-cell whose boundary

is contained if f−1(e), runs over each of dj and dj+1 exactly once, and runs over no
other elements of E. Here are 2-cells which do the job. The first group are 2-cells (type
DC) which reflect the commutativity of disjoint D and F, S or A moves. The second
(and last) group, type D, is indicated in Figure 21. If the 1-cell joining nj to nj+1

changes the overmarking away from the distinguished pair of pants, then a type DC
2-cell implies that dj ∼ dj+1. If the 1-cell corresponds to a change which does involve
the pair of pants, then a type D 2-cell implies that dj ∼ dj+1.

47



Figure 22: Convention for drawing punctured tori.

Define Γ1 to be Γ1
1 with 2-cells of types DC, HT, A and D attached. We have

just finished verifying the hypotheses of (6.2) for f : Γ1
1 → Λ. It follows that Γ1 is

0,1-connected.

Now we apply (6.2) to h : Γ1 → Γ1, obtaining a collection of 2-cells for Γ1 which
render it 1-connected. We will also see that Γ1 is 0-connected. (This fact was needed
in Section 5.)

DAP-decompositions of punctured tori will sometimes be drawn as in Figure 22.
First consider h−1(0-cell). All of the edges of this 1-complex are of type M. It

is easy to see that h−1(0-cell) is 0-connected. Add 2-cells which make h−1(0-cell) 1-
connected. [It follows from (3.1) that basic data automatically satisfies the relations
which these 2-cells impose. This will be proved in a later version of this paper.]

Now we consider h−1(e), where e is a 1-cell of Γ1. e is of type F, S, A or D. If
h(e′) = e, then the type of e′ is denoted by the same letter as the type of e. It is
easy to see that h−1(e) is 0-connected. Add 2-cells to Γ1 which reflect the disjoint
commutativity between type M edges and type F, S, A and D edges, as well as the
relations between the reorderings which can occur in type M, A and D moves. Also
add 2-cells (type X) as indicated in Figure 23. We have now added enough 2-cells to
kill π1(h

−1(e)). The proof is similar to the proof of the corresponding fact for the map
f : Γ1

1 → Λ above, and is left to the reader.
Finally, we must add, for each 2-cell of Γ1, at least one lift to Γ1. These 2-cells are

indicated in Figures 24 through 27. We ignore the type DC and A 2-cells, since it is
easy to see that basic data automatically satisfies the relations they imply. By (6.2), we
have now specified enough 2-cells to make Γ 0,1-connected. These 2-cells determine a
sufficient (and necessary) set of relations basic data must satisfy in order to determine
a functor V .
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Figure 23: Type X 2-cells
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Figure 24: Some type HT 2-cells for Γ.
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Figure 25: More type HT 2-cells for Γ.
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Figure 26: One more type HT 2-cell for Γ.
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Figure 27: Some type D 2-cells for Γ.
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The basic data must satisfy further relations in order for the identifications V ′(Y, l) =
V ′(−Y, l̂)∗ to be well-defined. Let e be an edge of Γ1(Y, l) connecting f1 to f2, and let
h(e), h(f1) and h(f2) be the corresponding edge and vertices of Γ1(−Y, l̂) (see the end
of Section 5). Associated to this setup is a diagram

V ′(f1)
V ′(e)→ V ′(f2)

l l
V ′(h(f1))

∗ V ′(h(e))∗← V ′(h(f2))
∗.

(The vertical arrows come from the standard orientation reversing maps.) In order for
the identification V ′(Y, l) = V ′(−Y, l̂) to be well-defined, the diagram must commute
for all edges e. If e is of typeM, the diagram commutes automatically. If e is of type
F, we obtain the relation

Fabcd = F †
ĉb̂âd̂

.

(The † denotes the adjoint, and the identification

Vxab ⊗ Vx̂cd = (Vx̂b̂â ⊗ Vxd̂ĉ)
∗

comes from the standard orientation reversing maps. (But don’t forget the correction
factor of S(x); see (2.3))) For type S edges, we obtain

Sa = S†a

and
S = S†.

For type A edges we obtain
〈βaâ, βaâ〉 = S(a)−1.

For type D edges we obtain

S(1)〈β1aâ, β1aâ〉〈β1, β1〉 = 〈β1aâ ⊗ β1, β1aâ ⊗ β1〉 = 〈βaâ, βaâ〉 = S(a)−1.

Since 〈β1, β1〉 = 1 by assumption, we have

〈β1aâ, β1aâ〉 = S(1)−1S(a)−1.

We have now, at long last, found a complete set of relations for basic data. It is
easy to see that these relations are necessary as well as sufficient. Summarizing, we
have

(6.4) Theorem (after Moore and Seiberg). Basic data (see Section 3) determines
(see Section 5) a modular functor (see Section 2) if and only if, for all a, b, c, d ∈ L,
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1. P (13)R(2)F (12)R(2)F (23)R(2)F (12)R(2)F (23)R(2)F (12) = 1

2. F (B
(2)
23 )−1F (B

(2)
23 )−1F (B

(2)
23 )−1T

(2)
2 = 1

3. (T
(2)
3 )−1T

(2)
1 B

(2)
23 F (B

(1)
23 )−1(B

(2)
23 )−1F (S(2))−1FR(2)(R(1))−1FS(2) = 1

4. CB−1
23 T

2
3ST3ST3S = 1 ; CRTSTSTS = 1

5. F (R−1(x)⊗ βĉc1) = x⊗ βâ1a for all x ∈ Vabc

6. S = ϕ−1S1ϕ, where ϕ : βxx̂ 7→ β1xx̂

7. F 2P = 1

8. T3B
−1
23 S

2 = 1 ; RS2 = 1

9. R(βaâ) = βâa

10. R = ϕ−1(T−1
1 B12)ϕ, where ϕ : βxx̂ 7→ βxx̂1

11. Fabcd = F †
ĉb̂âd̂

12. S = S†

13. 〈βaâ, βaâ〉 = S(a)−1

14. 〈β1aâ, β1aâ〉 = S(1)−1S(a)−1 .

(Relations 1 through 10 correspond to Figures 23 through 27. Subscripts have been
omitted from F ’s, S’s, etc. whenever this has seemed unlikely to cause confusion.)
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7 Constructing partition functions from modular

functors

In this section we establish necessary and sufficient conditions for a given modular
functor V to have a compatible partition function Z. The result is that V admits such
a Z if and only if V satisfies one simple relation. [I suspect that this relation is satisfied
automatically for any modular functor, but I do not at present have a proof of this.]

The proof is straightforward. One first notes that in view of the axioms ((2.7)
through (2.10)), Z is determined by V . One next defines a class of decompositions of
e-3-manifolds (“slicings”). Given an e-3-manifold M with slicing s, one can calculate
(using the axioms) an element Z ′(M, s) ∈ V (∂M) in terms of V and . Requiring that
Z ′(M, s) be independent of s imposes a relation on V . If this condition is satisfied, one

defines Z(M)
def
= Z ′(M, s). Slicings are designed so that when Z is defined this way, it

(almost) obviously satisfies the axioms of a partition function ((2.7) through (2.10)).
(This last point is the major advantage slicings have over other ways of representing
3-manifolds, e.g. surgery descriptions and Heegaard splittings.)

For the next few paragraphs we will be dealing exclusively with unextended 2- and
3-manifolds, and so will depart from our usual notation conventions and denote these
objects with unadorned capital letters rather than capital letters with superscript “[”.

Let M be a (piecewise-linear) 3-manifold. A Morse function on M is defined to be a
function f from a smoothing of M to R such that f |∂M and f |int(M) are Morse functions
in the usual sense and all critical point have distinct levels. Critical points of a Morse
function come in 10 types. These types will be denoted by a letter and an integer,
the integer indicating the index of the critical point and the letter indicating whether
the critical point occurs in the interior of M (“I”), on ∂M with grad(f) pointing out
(“T”), or on ∂M with grad(f) pointing in (“B”). Thus the possible types are I0, I1,
I2, I3, T0, T1, T2, B0, B1 and B2.

A slicing function for a compact 3-manifold M is defined to be a Morse function
f on M together with real numbers t0 < · · · < tk such that each ti is a regular value
of f , at most one critical point occurs between ti and ti+1 (0 ≤ i ≤ k − 1), all critical
points lying below t0 are of type B0 or B1, and all critical points lying above tk are of
type T2 or T1. Note that this implies that M ∼= f−1([t0, tk]).

A slice is defined to be a compact 3-manifold N together with a decomposition
∂N = ∂0N ∪ ∂vN ∪ ∂1N such that there exists f : N → [0, 1] with ∂0N = f−1(0),
∂1N = f−1(1), and f restricted to int(M) ∪ ∂v(M) is a Morse function with at most
one critical point. Slices come in 11 types, corresponding to the 10 types of critical
points and the case of no critical point. The latter type of slice is homeomorphic to a
compact surface cross I and is called a trivial slice.

Note that any slice can be constructed as follows. Start with the mapping cylinder
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of id : Y → Y (where Y is some surface), add a 0-, 1-, 2- or 3-handle (except for a trivial
slice or types B1, B2, T1 or T0), and then decompose the boundary appropriately.

A slicing, s, of a compact 3-manifold is a decomposition

M = N1 ∪ · · · ∪Nk,

where each Ni is a slice and Ni ∩Ni+1 = ∂1Ni = ∂0Ni+1 for 1 ≤ i ≤ k − 1. (All other

intersections of Ni s are, of course, empty.) Define ∂0(M, s)
def
= ∂0N1, ∂1(M, s)

def
= ∂1Nk,

and ∂v(M, s)
def
= ∪k

i=1∂vNi.

The proof of the following lemma is elementary and is left to the reader.

(7.1) Lemma. Let (f, t0, . . . , tk) be a slicing function for a compact 3-manifold M .
Then

f−1([t0, t1]) ∪ · · · ∪ f−1([tk−1, tk])

is a slicing of f−1([t0, tk]) ∼= M . Furthermore, every slicing of M (up to appropriately
defined equivalence) arises from a slicing function in this manner.

Using the above correspondence between slicing functions and slicings, it is easy to
prove

(7.2) Proposition. Let M be a compact 3-manifold and let Y0 and Y1 be disjoint
codimension zero submanifolds of ∂M . The there exists a slicing s of M such that
∂0(M, s) = Y0 and ∂1(M, s) = Y1.

The statements of the next lemma and proposition, while accurate, are not as
precise as they might be. They are also not as cumbersome as they might be. I hope
that the latter fact makes up for the former one.

(7.3) Lemma. Let M be a compact 3-manifold and let f0 and f1 be two Morse func-
tions on M . Then f0 and f1 can be joined by a 1-parameter family of functions
{ft}0≤t≤1 such that ft is a Morse function for all but finitely many values of t. At
each of the exceptional values of t, the critical point structure changes by one of the
following “moves” (or one of their inverses).

1. The ordering (induced from R) of two critical points is exchanged.

2. Two critical points whose indices differ by one cancel. (The critical points are
necessarily both of type I, both of type B, or both of type T.)
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3. A critical point of type Bi is replaced by two critical points of types Ii and Ti
(i = 0, 1, 2).

4. A critical point of type Ti is replaced by two critical points of types Bi and I(i+1)
(i = 0, 1, 2).

The proof will be given in Section 19.

It might be helpful to give examples of the last two moves. Let H
def
= {(x, y, z) ∈

R3 | z ≥ 0}. Define

gt : H → R

(x, y, z) 7→ x2 − y2 − (z − t)2.

Then for t < 0, gt has a single critical point of type T1, while for t > 0 gt has two
critical points of types B1 and I2. Changing the signs of the terms in the definition of
gt produces examples of all the other sorts of behavior covered by the last two moves.

Using (7.3), it is easy to prove

(7.4) Proposition. Any two slicings of a compact 3-manifold are related by a finite
sequence of the following moves and their inverses.

1. Insert a trivial slice.

2. Replace two adjacent slices with two other slices in a manner consistent with
(7.3.1).

3. Replace adjacent slices of types I0 and I1 with a trivial slice (when appropriate).

4. Same as above, but with I1, I2 ; trivial.

5. I2, I3 ; trivial.

6. B0, B1 ; trivial.

7. B1, B2 ; trivial.

8. T0, T1 ; trivial.

9. T1, T2 ; trivial.

10. Replace a slice of type B0 with slices of types I0 and T0.
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11. Same as above, but with B1 ; I1, T1.

12. B2 ; I2, T2.

13. T0 ; B0, I1.

14. T1 ; B1, I2.

15. T2 ; B2, I3.

16. Add a slice of type B0 to the bottom of the slicing.

17. Add a slice of type B1 to the bottom of the slicing.

18. Add a slice of type T0 to the top of the slicing.

19. Add a slice of type T2 to the top of the slicing.

We now revert to our usual notation convention (e.g. M denotes an e-3-manifold).
An e-slice is defined as follows. Start with the mapping cylinder of id : Y → Y

(where Y is some e-surface), add an extended 0-, 1-, 2- or 3-handle with framing
number 0 (except for a trivial e-slice or types B1, B2, T1 or T0), and then decompose
the boundary appropriately. (For the case of a trivial e-slice, we will also allow the
case where id is replaced with an arbitrary e-morphism. This has certain technical
advantages.) Note that this is the same as the alternative description of an unextended
slice, except that the mapping cylinder and handle attachment are extended. Another
way of describing an e-slice is that it is an e-3-manifold (N [, L, n) where N [ is a slice,
n = 0, and L satisfies certain conditions (roughly, that the “∂0-part” of L is as similar
as possible to the “∂1-part” of L (except for trivial e-slices)).

Define a slicing of an e-3-manifold M to be a decomposition

M = N1 ∪ · · · ∪Nk,

where each Ni is an e-slice and Ni ∩ Ni+1 = ∂1Ni = ∂0Ni+1 for 1 ≤ i ≤ k − 1. (All
other intersections are empty.) “∪” should be interpreted in the sense of (1.12). If s is
a slicing of M , s[ will denote the underlying slicing of M [.

Our next task is to define Z ′(N) ∈ V (∂N), where N is an e-slice. Since an e-slice
is a gluing of a mapping cylinder and (possibly) a 3-ball (i.e. a handle), and a 3-ball
is just the mapping cylinder of id : D → D, the axioms ((2.7) through (2.10)) leave us
no choice in this matter.
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First, a couple of preliminary definitions. Let A be the standard extended annulus
(see Section 3). Let

An def
= A

∐ · · ·∐A (n times).

Let l = (a1, . . . , an) be a sequence of labels. Define

An
l

def
= (A, (a1, â1))

∐ · · ·∐(A, (an, ân)).

Also define
Wl

def
= V (An

l ) = Va1â1 ⊗ · · · ⊗ Vanân

and
βl

def
= βa1â1 ⊗ · · · ⊗ βanân ∈ Wl,

where βaâ ∈ Vaâ is the canonical element (see Section 3).

Trivial e-slices. A trivial e-slice N is the mapping cylinder of an e-morphism f : Y0 →
Y1 with ∂0N = Y0, ∂vN = ∂Y0 × I = An, and ∂1N = Y1. Hence

V (∂N) =
⊕

l∈L(Y0)

V (Y0, l)
∗ ⊗Wl ⊗ V (Y1, l)

=
⊕

l∈L(Y0)

Hom(V (Y0, l),Wl ⊗ V (Y1, l)).

In view of the mapping cylinder axiom and (3.4), we define Z ′(N) by⊕
l

xl 7→
⊕

l

[βl]⊗ f∗(xl),

where xl ∈ V (Y0, l). The brackets (“[ · · · ]”) are used to distinguish V (∂vN) from
V (∂1N), a convention which will be used throughout this section.

Type I0. A type I0 e-slice N is the mapping cylinder of id : Y → Y disjoint union an
extended 3-ball B with framing number zero (i.e. a 0-handle). Also, ∂0N = Y × {0},
∂vN = ∂Y × I = An, and ∂1N = Y × {1}∐∂B. B is is equivalent to the mapping
cylinder of id : D → D. In view of the disjoint union axiom and the definition of β1

we define Z ′(N) by ⊕
l

xl 7→
⊕

l

[βl]⊗ xl ⊗ β1 ⊗ β1,

where xl ∈ V (Y, l) and β1 ⊗ β1 ∈ V (D ∪ D) = V (∂B). (Note that since β1 appears
twice, its sign ambiguity is of no concern.)

Type I1. A type I1 e-slice N is the mapping cylinder of id : Y → Y union a 1-
handle B (with framing number zero). Let Y = Y ′ ∪ D ∪ D, where B is attached to
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(D∪D)×{1}. Decompose ∂B as D∪D∪A, where D∪D is the attaching region. We
have ∂0N = Y ×{0}, ∂vN = ∂Y × I = An, and ∂1N = Y ′×{1} ∪A. Define Z ′(N) by⊕

l

xl ⊗ β1 ⊗ β1 7→
⊕

l

[βl]⊗ xl ⊗ β11,

where xl ∈ V (Y ′, (l, 1, 1)), β1⊗β1 ∈ V (D∪D, (1, 1)) = V1⊗V1, and β11 ∈ V (A, (1, 1)) =
V11.

Type I2. A type I2 e-slice N is the mapping cylinder of id : Y → Y union a 2-handle
B. Let Y = Y ′ ∪ A, where B is attached to A × {1}. Decompose ∂B as D ∪D ∪ A,
where A is the attaching region. We have ∂0N = Y × {0}, ∂vN = ∂Y × I = An, and
∂1N = Y ′ × {1} ∪D ∪D. Define Z ′(N) by⊕

l,a

xlaâ ⊗ βaâ 7→
⊕

l

S(1)−1[βl]⊗ xl11 ⊗ β1 ⊗ β1,

where xlaâ ∈ V (Y ′, (l, a, â)).

Type I3. A type I3 e-slice N is the mapping cylinder of id : Y → Y with a 3-handle
attached. Decompose Y as Y ′ ∪D ∪D, where D ∪D is the 2-sphere to which the 3-
handle is attached. We have ∂0N = Y ×{0}, ∂vN = ∂Y ×I = An, and ∂1N = Y ′×{1}.
Define Z ′(N) by ⊕

l

xl ⊗ β1 ⊗ β1 7→
⊕

l

S(1)[βl]⊗ xl.

Type B0. A type B0 e-slice N is the mapping cylinder of id : Y → Y union a 0-handle
B. Decompose ∂B as D∪D. We have ∂0N = Y ×{0}, ∂vN = (∂Y × I)∐D = An∐D,
and ∂1N = (Y × {1})∐D. Define Z ′(N) by⊕

l

xl 7→
⊕

l

[βl ⊗ β1]⊗ xl ⊗ β1.

(Note that this differs from Z ′(I0) only in that one of the β1’s has been moved from
V (∂1N) to V (∂vN).)

Type B1. A type B1 e-slice N is the mapping cylinder of id : Y → Y with boundary
decomposed as follows. Let Y = Y ′ ∪ P , with Y ′ ∩ P consisting of either one (case
1) or two (case 2) components. Absorb the (∂P ∩ ∂Y ) × I part of ∂N into P × {0}.
Let n be the number of components of ∂Y ′ ∩ ∂Y . Let ∂0N = Y ′ × {0}, ∂vN =
((∂Y ′ ∩ ∂Y ) × I)

∐
(P × {0}) = An∐P , and ∂1N = Y × {1} (see Figure 28). For

a, b, c ∈ L, let {γj
abc} be a basis of Vabc and let {δj

âĉb̂
} be the dual basis of Vâĉb̂. (Vâĉb̂ is
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Figure 28: Type B1 e-slices.
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identified with V ∗
abc via the standard orientation reversing map (see Figure 7).) In case

1 Z ′(N) is defined to be⊕
l,a

xla 7→
⊕

l,a,b,c

∑
j

S(a)−1[βl ⊗ γj
abc]⊗ δ

j

âĉb̂
⊗ xla,

where a labels Y ′∩P , b and c label the other two components of ∂P , l labels the other
n components of ∂Y ′, and xla ∈ V (Y ′, (l, a)). Similarly, in case two we define Z ′(N)
by ⊕

l,b,c

xlbc 7→
⊕

l,a,b,c

∑
j

S(b)−1S(c)−1[βl ⊗ γj
abc]⊗ δ

j

âĉb̂
⊗ xlbc.

Type B2. A type B2 e-slice N can be thought of as the mapping cylinder of id :
Y ∪D → Y ∪D, with the bottom copy of D belonging to ∂vN rather than ∂0N . Define
Z ′(N) by ⊕

l,a

xla 7→
⊕

l

S(1)−1[βl ⊗ β1]⊗ xl1 ⊗ β1.

An e-slice of type Ti is just an e-slice of type B(i− 2) turned upside-down, and so
requires little additional explanation.

Type T0. Define Z ′(N) by⊕
l

xl1 ⊗ β1 7→
⊕

l

[βl ⊗ β1]⊗ xl1.

Type T1. In case one define Z ′(N) by⊕
l,a,b,c

∑
j

xj
lâ ⊗ γ

j
abc 7→

⊕
l,a,b,c

∑
j

[βl ⊗ γj
abc]⊗ x

j
lâ.

In case two define Z ′(N) by⊕
l,a,b,c

∑
j

xj

lb̂ĉ
⊗ γj

abc 7→
⊕

l,a,b,c

∑
j

[βl ⊗ γj
abc]⊗ x

j

lb̂ĉ
.

Type T2. Define Z ′(N) by ⊕
l

xl ⊗ β1 7→
⊕

l

[βl ⊗ β1]⊗ xl.

(7.5) Remark. There is some redundancy in the above definitions. Namely, Ii e-slices
are I(i − 3) e-slices turned upside-down, and Bi e-slices are T (i − 2) e-slices turned
upside-down. It is left to the reader to check that this redundancy is consistent.
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For s an e-slicing define Z ′(s) ∈ V (∂(M(s))) by applying (2.9) to Z ′({slices}) in
the obvious way. We must show that if s1 and s2 are e-slicings with M(s1)

[ ∼= M(s2)
[,

then
Z ′(s1) ≡ Z ′(s2).(7.6)

This will be done in two steps. The first is to verify (7.6) in the case where s[
1 = s[

2.
The second is to show that if s[

1 and s[
2 are slicings which differ by one of the moves of

(7.4), then there exist extensions sj of s[
j which satisfy (7.6). It will follow (by (7.2))

that for any e-3-manifold M we can unambiguously define Z(M) ≡ Z ′(s), where s is
an e-slicing such that M [ ∼= M(s)[.

To show that Z ′(s1) ≡ Z ′(s2) if s[
1 = s[

2, it suffices to consider the case where s1 and
s2 coincide except for a single e-slice. It is not hard to see that changing a single e-slice
(within its homeomorphism class) has the same effect on Z ′ as inserting appropriate
trivial e-slices before and after the slice in question. Thus it suffices to show that the
insertion of a trivial slice does not affect Z ′.

Suppose that the trivial slice corresponding to

(id,m) : (∂1N
[
i , L

′
1)→ (∂0N

[
i+1, L

′
0)

is inserted between the e-slices Ni and Ni+1 of an e-slicing s. Let ∂1Ni = (∂1N
[
i , L1)

and ∂0Ni+1 = (∂0N
[
i+1, L0). By (1.12), the framing number of M(s) changes by

m+ σ(K,L1, L
′
1) + σ(K,L′1, L

′
0) + σ(K,L′0, L0)− σ(K,L1, L0),(7.7)

where K is the kernal of the appropriate inclusion-induced map. Also, the lagrangian
of M(s) does not change. It is easy to see that Z ′(M) changes by C raised to the power

m+ σ(L1, L
′
1, L

′
0) + σ(L1, L

′
0, L0).(7.8)

So what must be shown is that (7.7) and (7.8) are equal. This follows from two
applications of (18.6).

Next we must show that if s[
1 and s[

2 are two slicings which differ by one of the 19
moves of (7.4), then there are extensions s1 and s2 of s[

1 and s[
2 such that Z ′(s1) ≡

Z ′(s2). We will see that the only relation this imposes on V is (4.7).

Move 1. (Insertion of a trivial slice.) Invariance under extensions of this move was
shown above.

Move 2. This move corresponds to exchanging the order of attachment of two disjoint
handles. Except in the case where one of the corresponding slices is of type B1 and the
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other is of type T1, it is easy to see that this does not affect Z ′. For the B1-T1 case,
the T1 slice can be converted into B1 and I2 slices using move 14, the B1 slice can be
moved past these two slices, and then the inverse of move 14 will put things back on
track.

Move 3. (I0-I1 cancellation.) Let Ni be the type I0 e-slice and Ni+1 be the type I1
e-slice. Since Ni and Ni+1 cancel, one of the attaching disks of the 1-handle associated
to Ni+1 lies in the boundary of the 0-handle part of Ni and the other attaching disk
does not. Let ∂0Ni = Y ∪ D, where D corresponds to one of the attaching disks. A
general element of V (∂0Ni, l) can be written as xl ⊗ β1, where xl ∈ V (Y, (l, 1)) and
β1 ∈ V (D, 1) = V1. Z

′(Ni) is⊕
l

xl ⊗ β1 7→
⊕

l

[βl]⊗ xl ⊗ β1 ⊗ β1 ⊗ β1,

where the second β1 on the right hand side corresponds to the attaching disk on the
boundary of the 0-handle and the third β1 corresponds to its complement. Z ′(Ni+1) is⊕

l

xl ⊗ β1 ⊗ β1 ⊗ β1 7→
⊕

l

[βl]⊗ xl ⊗ β11 ⊗ β1.

Hence Z ′(Ni ∪Ni+1) is⊕
l

xl ⊗ β1 7→
⊕

l

[βl ⊗ βl]⊗ xl ⊗ β11 ⊗ β1.

By (3.4), the left hand side is equivalent to⊕
l

[βl]⊗ xl ⊗ β1.

Hence Z ′(Ni ∪Ni+1) = Z ′(a trivial slice).

It seems unwise to treat each of the remaining 16 moves in as much detail as above,
so from now on the explanations will be more terse. As an illustration, we repeat the
above argument in the terse format:⊕

l

xl ⊗ β1
I07→

⊕
l

[βl]⊗ xl ⊗ β1 ⊗ β1 ⊗ β1

I17→
⊕

l

[βl ⊗ βl]⊗ xl ⊗ β11 ⊗ β1

=
⊕

l

[βl]⊗ xl ⊗ β1.
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Figure 29: Illustration of I1-I2 cancellation.

Move 4. (I1-I2 cancellation.) Decompose ∂0Ni as Y ∪ P ∪D ∪D, where P is a pair of
pants surrounding the attaching disks D ∪D. We have⊕

l

xl ⊗ β111 ⊗ β1 ⊗ β1
I17→

⊕
l

[βl]⊗ xl ⊗ β111 ⊗ β11

=
⊕

l

[βl]⊗ xl ⊗ β111

≈
⊕

l

∑
a

S1a[βl]⊗ xl ⊗ β1aâ

=
⊕

l

∑
a

S1a[βl]⊗ xl ⊗ β1aâ ⊗ βaâ

I27→
⊕

l

S11S(1)−1[βl ⊗ βl]⊗ xl ⊗ β111 ⊗ β1 ⊗ β1

=
⊕

l

[βl]⊗ xl ⊗ β111 ⊗ β1 ⊗ β1,

where “≈” indicates the natural map from V (∂1Ni, l) to V (∂0Ni+1, l) (see Figure 29).
This is equivalent to a trivial e-slice. (Recall that S(a) = S1a.)

Move 5. (I2-I3 cancellation.) This is just move 3 turned upside-down. By (7.5), move
5 invariance is equivalent to move 3 invariance.

Move 6. (B0-B1 cancellation.) Note that the B1 e-slice must be of subtype 2. Recall
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the notation from the definition of Z ′(B1). By (6.4.14),

S(1)S(a)βa1â ⊗ βâa1 = id ∈ Va1â ⊗ Vâa1,

so we may assume that γa1â = S(1)S(a)βa1â and δâa1 = βâa1. We have⊕
l,a

xla
B07→

⊕
l,a

[βl ⊗ βaâ ⊗ β1]⊗ xla ⊗ β1

B17→
⊕
l,a

[βl ⊗ βl ⊗ βaâ ⊗ β1 ⊗ βa1â]⊗ βâa1 ⊗ xla ⊗ β1

=
⊕
l,a

[βl ⊗ βaâ]⊗ xla.

Move 7. (B1-B2 cancellation.) Note that the B1 e-slice must be of subtype 1. We have⊕
l,a

xla
B17→

⊕
l,a,b,c

∑
j

S(a)−1[βl ⊗ γj
abc]⊗ δ

j

âĉb̂
⊗ xla

B27→
⊕
l,a

[βl ⊗ βl ⊗ βaâ1 ⊗ β1]⊗ βâ1a ⊗ β1 ⊗ xla

=
⊕
l,a

[βl ⊗ βaâ]⊗ xla.

Move 8. (T0-T1 cancellation.) This is just move 7 turned upside-down. By (7.5),
move 8 invariance is equivalent to move 7 invariance.

Move 9. (T1-T2 cancellation.) This is just move 6 turned upside-down.

Move 10. (B0 ; I0, T0.) We have⊕
l

xl
I07→

⊕
l

[βl]⊗ xl ⊗ β1 ⊗ β1

T07→
⊕

l

[βl ⊗ βl ⊗ β1]⊗ xl ⊗ β1

=
⊕

l

[βl ⊗ β1]⊗ xl ⊗ β1.

This is equivalent to a B0 e-slice.

Move 11. (B1 ; I1, T1.) For a, b, c ∈ L, define {ηj
cab} and {θj

ĉb̂â
} by

F (β1âa ⊗ β1bb̂) =
⊕

c

∑
j

ηj
cab ⊗ θ

j

ĉb̂â
∈
⊕

c

Vcab ⊗ Vĉb̂â.
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Figure 30: Second case of move 11.

There are two cases, depending on whether the B1 and T1 e-slices are of subtypes 1
or 2. In the second case, decompose ∂0(I1) as Y ∪ P ∪ P ∪ D ∪ D, where D ∪ D is
the attaching region for the 1-handle and each copy of P surrounds one of the D’s and
contains one of the two boundary components of ∂0(I1) which will be joined by the T1
e-slice (see Figure 30). We have⊕

l,a,b

xlab ⊗ β1âa ⊗ β1bb̂ ⊗ β1 ⊗ β1

I17→
⊕
l,a,b

[βl ⊗ βâa ⊗ βbb̂]⊗ xlab ⊗ β1âa ⊗ β1bb̂ ⊗ β11

=
⊕
l,a,b

[βl ⊗ βâa ⊗ βbb̂]⊗ xlab ⊗ β1âa ⊗ β1bb̂

=
⊕

l,a,b,c

∑
j

[βl ⊗ βâa ⊗ βbb̂]⊗ xlab ⊗ ηj
cab ⊗ θ

j

ĉb̂â

T17→
⊕

l,a,b,c

∑
j

[βl ⊗ βl ⊗ βâa ⊗ βbb̂ ⊗ η
j
cab]⊗ xlab ⊗ θj

ĉb̂â

=
⊕

l,a,b,c

∑
j

[βl ⊗ ηj
cab]⊗ xlab ⊗ θj

ĉb̂â
.

On the other hand,⊕
l,a,b

xlab ⊗ β1âa ⊗ β1bb̂ ⊗ β1 ⊗ β1 =
⊕
l,a,b

xlab

B17→
⊕

l,a,b,c

∑
j

S(a)−1S(b)−1[βl ⊗ γj
cab]⊗ δ

j

ĉb̂â
⊗ xlab.

Thus the I1 and T1 e-slices are equivalent to the B1 e-slice if, for all a, b ∈ L,⊕
c

∑
j

ηj
cab ⊗ θ

j

ĉb̂â
=
⊕

c

∑
j

S(a)−1S(b)−1γj
cab ⊗ δ

j

ĉb̂â

or

F (β1âa ⊗ β1bb̂) =
⊕

c

idcab

S(a)S(b)
.

where idcab is the identity in Vcab ⊗ Vĉb̂â. This is just (4.7).
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Figure 31: First case of move 11.

For the first case, decompose ∂0(I1) as Y ∪ P ∪ P ∪ D ∪ D, where D ∪ D is the
attaching region for the 1-handle, as shown in Figure 31. We have⊕

l,a

xla ⊗ β1âa ⊗ β111 ⊗ β1 ⊗ β1

I17→
⊕
l,a

[βl ⊗ βaâ]⊗ xla ⊗ β1âa ⊗ β111 ⊗ β11

=
⊕
l,a

[βl ⊗ βaâ]⊗ xla ⊗ β1âa ⊗ β111

≈
⊕
l,a,b

S1b[βl ⊗ βaâ]⊗ xla ⊗ β1âa ⊗ β1bb̂

=
⊕

l,a,b,c

∑
j

S(b)[βl ⊗ βaâ]⊗ xla ⊗ ηj
cab ⊗ θ

j

ĉb̂â

T17→
⊕

l,a,b,c

∑
j

S(b)[βl ⊗ βl ⊗ βaâ ⊗ ηj
cab]⊗ xla ⊗ θj

ĉb̂â

=
⊕

l,a,b,c

∑
j

S(b)[βl ⊗ ηj
cab]⊗ xla ⊗ θj

ĉb̂â
.

On the other hand,⊕
l,a

xla ⊗ β1âa ⊗ β111 ⊗ β1 ⊗ β1 =
⊕
l,a

xla

B17→
⊕

l,a,b,c

∑
j

S(a)−1[βl ⊗ γj
cab]⊗ δ

j

ĉb̂â
⊗ xla.

The above two expressions are equivalent if, for all a, b ∈ L,

F (β1âa ⊗ β1bb̂) =
⊕

c

idcab

S(a)S(b)
.

Again, this is just (4.7).
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Move 12. (B2 ; I2, T2.) We have

⊕
l,a

xla ⊗ βaâ
I27→

⊕
l

S(1)−1[βl]⊗ xl1 ⊗ β1 ⊗ β1

T27→
⊕

l

S(1)−1[βl ⊗ βl ⊗ β1]⊗ xl1 ⊗ β1

=
⊕

l

S(1)−1[βl ⊗ β1]⊗ xl1 ⊗ β1.

This is equivalent to Z ′(B2).

Move 13. (T0 ; B0, I1.) This is move 12 upside-down.

Move 14. (T1 ; B1, I2.) This is move 11 upside-down.

Move 15. (T2 ; B2, I3.) This is move 10 upside-down.

Move 16. (Add B0 to bottom.) Easy.

Move 17. (Add B1 to bottom.) Easy.

Move 18. (Add T1 to top.) Easy.

Move 19. (Add T2 to top.) Easy.

We have just shown that given a modular functor V which satisfies (4.7), one can
unambiguously define an element Z(M) ∈ V (∂M) for each e-3-manifoldM . (To repeat,
Z(M) is defined by Z(M) ≡ Z ′(s), where s is any slicing such that M(s)[ ∼= M [.)

Next we show that Z, as defined above, satisfies the axioms (2.7) through (2.10).
By the nature of its definition it is obvious that Z satisfies (2.7), (2.8) and (2.10). For
(2.9), first assume that M can be decomposed as M1

∐
M2, with Yj ⊂ ∂Mj. Choose

slicings s1 and s2 such that M(sj)
[ = Mj, ∂1(M(s1)) = Y1, and ∂0(M(s2)) = Y2. (This

is possible by (7.2).) Using the fact that s1 and s2 can be glued together to give a
slicing of M(s1) ∪f M(s2), it is easy to see that (2.9) holds for the gluing

M(s1)
∐
M(s2) ; M(s1) ∪f M(s2).
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It is also easy to see that this implies that (2.9) holds for the gluing

M1
∐
M2 ; M1 ∪f M2.

Now assume that Y1 and Y2 lie in the same component of M . Let If be the mapping
cylinder of f . Let g be the “identity” map from Y1

∐
Y2 ⊂ ∂M to Y1

∐
Y2 ⊂ ∂If . Using

(2.12) (which follows from the definition of Z), it is easy to see that the truth of (2.9)
for the gluing

M ; Mf

is equivalent to the truth of (2.9) for the gluing

M
∐
If ; M ∪g If .

But we have already shown that (2.9) hold for the latter gluing. This completes the
proof that Z satisfies the axioms.

The results of this section may be summarized as follows.

(7.9) Theorem. A modular functor V admits a compatible partition function Z if and
only if

F (β1âa ⊗ β1bb̂) =
⊕

c

(
1

S(a)S(b)

)
idcab

for all a, b ∈ L, in which case Z is unique.
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Figure 32: Convention for drawing ribbon tangles.

8 Review of [RT2]

In this section we present a slightly modified version of the work of Reshetihkin and
Turaev on modular Hopf algebras and 3-manifold invariants [RT2]. These results will
be used in the next section to construct TQFTs starting from modular Hopf algebras
(as defined in [RT2] or below). The proof of the key lemma, (8.21), was obtained
during a conversation with V. Turaev. (This lemma might not seem very important
to the reader, but once it is proved the results of the next section are more or less
obvious, assuming one is well versed in the results of [RT2].) It is assumed that the
reader has some familiarity with the results of [RT1]. (These are reviewed in [RT2]
and, very briefly, here.)

First we give a brief review of the results of [RT1]. (See [RT1] of [RT2] for details
and definitions.) Let U be a ribbon Hopf algebra (RHA). Let RepU denote the category
of finite dimensional representations of U . (The objects are representations and the
morphisms are U -linear maps between representations. The dual of a representation
a will be denoted ǎ .) Let TangU denote the category of (isotopy classes of oriented,
homogeneous, directed) ribbon tangles in R2×I labeled by objects of RepU . ‘Oriented’
means that the ribbons have a prefered side. ‘Homogeneous’ means that at the ends
of the ribbons the prefered side faces frontward. ‘Directed’ means that the cores of the
ribbons are oriented. The objects of TangU are labeled sequences of directed ribbon
ends. The morphisms are tangles. t1t2 is given by placing t2 above t1. t1 ⊗ t2 is given
by placing t1 and t2 side by side.

In the figures, ribbons will be drawn as arcs or circles. The ribbons can be recon-
structed by using the “blackboard framing” (see Figure 32.)

Reshetihkin and Turaev construct a functor [ · ] : TangU → RepU . This functor
has the following properties (see Figures 33 and 34):
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Figure 33: Properties of the functor [ · ]
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Figure 34: More properties of the functor [ · ]

(8.1) Let x be an obect of TangU consisting of a single ribbon end labeled by the
representation a. If x is directed downward, then [x] = a. If x is directed upward,
then [x] = ǎ . Also, [∅] = 1, where ∅ is the empty object of TangU and 1 is the trivial
representation of U .

(8.2) [ · ] preserves tensor products.

(8.3) Let t be a tangle which contains a ribbon r labeled by a⊗ b. Let t′ be the tangle
obtained by replacing r with two parallel copies of r labeled by a and b. Then [t] = [t′].

(8.4) Let t be a tangle and let r be a closed ribbon (annulus) of t labeled by a⊕ b. Let
t1 and t2 be the tangles obtained by changing the label of r to a and b, respectively.
Then [t] = [t1] + [t2]. Similarly, if r connects the top and bottom of the tangle, then
[t] = [t1]⊕ [t2].

(8.5) Let t be a tangle with a ribbon r labeled by the trivial representation. Let t′ be
t with r deleted. Then [t] = [t′].

We won’t really be concerned with the RHA U , but rather with the functor [ · ].
Such functors will be called tangle functors.

It will be useful to add morphisms to TangU , obtaining the category GraphU of
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Figure 35: The definition of [ · ] on coupons.

Figure 36: The definition of trq and dimq.

labeled ribbon graphs. A ribbon graph contains, in addition to ribbons, “coupons”:
rectangles with ribbons incident to the top and the bottom. Coupons are labeled with
appropriate morphisms in RepU . The functor [ · ] extends to GraphU , as illustrated
in Figure 35.

The quantum trace of a morphism f : a → a of RepU , trqf , is defined in Figure
36. The quantum dimension of a representation a, dimqa, is defined to be the quantum
trace of the identity morphism of a.

Let R(U) denote the semiring of representations of U . For R ⊂ R(U) a subsemiring,
define RB, the bad part of R, to be the set of all x ∈ R such that trqf = 0 for all
f ∈ End(x). Define RG, the good part of R, to be the subsemigroup of R generated
by all irreducible representations a ∈ R such that dimqa 6= 0. (A representation a of
U is irreducible if it contains no U -invariant subspace. This this a stronger condition
than indecomposability. a is indecomposable if it cannot be written (U -invariantly) as
a1 ⊕ a2.)

Note that if a ∈ R is irreducible, then a ∈ RB if and only if dimqa = 0. (This
follows from Schur’s lemma.) Note also that for x ∈ RB and a ∈ R, x⊗ a, a⊗ x ∈ RB.
In other words,

R⊗RB = RB ⊗R = RB.(8.6)

For a proof, see Figure 37.
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Figure 37: Proof of (8.6)

Figure 38: Part of (8.7)

We are now ready to define a modular Hopf algebra (MHA). The definition given
here differs slightly from the one given in [RT2], but by the end of this section it should
be apparent that the two definitions are equivalent. This fact is left to the reader to
verify.

Definition. A modular Hopf algebra consists of an RHA U and a finite set L of finite
dimensional, irreducible, mutually non-isomorphic representations of U . It is assumed
that 1 ∈ L and that L is equiped with an involution a↔ â such that 1 = 1̂. U and L
are required to satisfy axioms (8.7) through (8.11) below.

(8.7) There exist U -linear isomorphisms

wa : ǎ → â

(for all a ∈ L) such that w1 = id and the identity in Figure 38 holds. (This allows us
to identify a ribbon end labeled by a with an oppositely directed ribbon end labeled
by â. Figure 38 guarantees that this identification extends to tangles.)

(8.8) Let R(L) be the subsemiring of R(U) generated by L. Then R(L)G is equal to
the subsemigroup of R(L) generated by L. Furthermore, any x ∈ R(L) can be written
uniquely (up to isomorphism) as

x = xG ⊕ xB,
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Figure 39: An axiom for MHAs.

Figure 40: Another axiom for MHAs.

with xG ∈ R(L)G and xB ∈ R(L)B. More concretely, any x ∈ R(L) can be written
uniquely as

x =

(⊕
a∈L

xa

)
⊕ xB

xa
∼= Na

xa,

where xB ∈ R(L)B, Na
x ∈ Z≥0, and Na

xa denotes the direct sum of Na
x copies of a.

(Note that this axiom implies that dimqa 6= 0 for all a ∈ L.)

The last three axioms are nondegeneracy assumptions.

(8.9) [See Figure 39.]

(8.10) [See Figure 40.]

(We will see below that one half of (8.10) implies the other.)

(8.11) For all a ∈ L, a 6= 1, there exist tangles t and t′ such that (i) each of t and t′

have a closed ribbon labeled by a, (ii) t and t′ are equal if this component is deleted,
and (iii) [t] 6= [t′].

It is easy to see that for x, y ∈ R(L) and f : x → y a morphism, f(xG) ⊂ yG. Let
fG denote the restriction of f to xG. Similarly, for a ∈ L, f(xa) ⊂ ya. Let fa denote
the restriction of f to xa. Note that for morphisms f and g,

(fg)G = fGgG(8.12)

(f ⊗ g)G = (fG ⊗ gG)G(8.13)
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Figure 41: The good part of the whole is equal to the tensor product and composition
of the good parts of its parts.

(The second equation follows from (8.6).) (8.12) and (8.13) imply the substitution
property illustrated in Figure 41

We won’t really be concerned with the MHA U , but rather with the functor [ · ]G.
Call such functors modular tangle functors.

We are now ready to define invariants of labeled ribbon graphs in the presence of
surgery diagrams. Define a extended surgered ribbon graph (ESRG) to be a morphism
of GraphU together with a disjoint collection of ribbons (the “surgery ribbons”) in
the complement of the graph. The surgery ribbons are neither labeled nor directed.
The labels of (the ribbon part of) the graph are required to be in R(L) ⊂ R(U).
By surgering the surgery ribbons, an ESRG leads to a ribbon graph in an oriented
3-manifold. Two ESRGs are defined to be equivalent if the corresponding pairs of
(3-manifold, ribbon graph) are equivalent and if the signatures of the linking matrices
of the surgery ribbons are equal. (The signature should be thought of as the framing
number of an extension of the 3-manifold. See Section 1.) By Kirby’s theorem [K],
two ESRGs are equivalent if and only if they differ by a sequence of handle slides and
balanced [de]stabilizations. (A balanced [de]stabilization is the addition [deletion] of
an unlinked pair of surgery ribbons with framings 1 and −1. See Figure 42 for an
illustration. A dot on a component indicates that it is a surgery ribbon.)

Choose X ∈ C× such that

X2 =
∑
a∈L

(dimqa)
2.

For a ∈ L, define

s(a)
def
=

dimqa

X
.
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Figure 42: Moves for ESRGs.
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For l = (a1, . . . , an) a sequence of elements of L, define

s(l)
def
=

n∏
i=1

s(ai).

The following lemma is a consequence of (8.7) and is proved in [RT2].

(8.14) Lemma. Let t be a ribbon graph with a closed ribbon labeled by a ∈ L Let t′

be the ribbon graph obtained by reversing the direction of this ribbon and changing its
label to â. Then [t] = [t′].

It follows that
s(a) = s(â)(8.15)

for all a ∈ L.

For t an ESRG and l a labeling of the surgery ribbons by elements of L, let (t; l)
denote the corresponding ribbon graph. This entails choosing directions for the surgery
ribbons. Finally, define, for t an ESRG,

[t] =
∑

l

s(l)[(t; l)],

where the sum is taken over all labelings of the surgery ribbons (by elements of L). It
follows from (8.14) and (8.15) that [t] does not depend on the choice of directions for
the surgery ribbons.

We will show that [t]G (the good part of [t]) depends only on the equivalence class
of the ESRG t.

(8.16) Lemma. Let y be a closed ESRG. Let t be the ESRG obtained by placing y
beside the identity tangle with label b ∈ R(L). Let t′ be the ESRG obtained by sliding
the b ribbon over a surgery ribbon of y. Then [t]G = [t′]G. (See Figure 43.)

Proof: By (8.4), we may assume that b ∈ L, and hence that [t] = [t]G, [t′] = [t′]G.
Since b is irreducible, [t] = [t′] if and only if trq[t] = trq[t

′]. Let (t;a) denote the ESRG
obtained by changing the surgery ribbon on which the handle slide occurs to a ribbon
labeled by a ∈ R(L). It follows from Figure 44 that

trq[t] =
∑
a∈L

s(a)[(t; a)]dimqb

trq[t
′] =

∑
a∈L

s(a)[(t; a⊗ b)] (by (8.2))

=
∑
a∈L

s(a) (
∑

c∈L[(t; (a⊗ b)c)] + [(t; (a⊗ b)B)]) (by (8.4))

=
∑

a,c∈L
s(a)N c

a⊗b[(t; c)] (by (8.4))
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Figure 43: Picture for (8.16)

Figure 44: Part of the proof of (8.16).
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Figure 45: Part of the proof of (8.16).

So the lemma will be proved if it can be shown, for all d ∈ L, that

s(d)dimqb =
∑
a∈L

s(a)Nd
a⊗b.

This is equivalent to
(dimqd)(dimqb) =

∑
a∈L

(dimqa)N
d
a⊗b.(8.17)

It is easy to see that
Nd

a⊗b = N1
a⊗b⊗d̂

= N â
b⊗d̂
.

Keeping in mind that dimqa = dimqâ, we see that the right hand side of (8.17) can be
rewritten as ∑

a∈L
(dimqâ)N

â
b⊗d̂

= dimq(b⊗ d̂).

(8.17) now follows from Figure 45 .

(8.18) Corollary. [See Figure 46.]

Proof: [See Figure 47.]

(8.19) Corollary. Let t and t′ be two ESRGs which differ by a handle slide. Then
[t] = [t′].

Proof: Define C+, C− ∈ C as in Figure 48. It follows from (8.10) that C± 6= 0. This
being the case, it suffices prove the result after t and t′ have been stabilized with
equal numbers of unlinked, ±1-framed surgery ribbons. (Both [t] and [t′] change by
Cp

+C
q
− 6= 0.) The corollary now follows from (8.18), (8.12), (8.13), and a well known

result of Fenn and Rourke [FR].

(8.20) Lemma. Let tb be the ESRG shown in Figure 49 (b ∈ R(L)). Then [tb]G is
equal to X time the projection onto b1 (the trivial part of b).
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Figure 46: Statement of (8.18).

Figure 47: Proof of (8.18).
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Figure 48: Definition of C±

Figure 49: Definition of tb.

Figure 50: [ta]
2 = X[ta].
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Figure 51: Definition of tab.

Proof: It suffices to show that [t1] = X · id and that [ta] = 0 for a ∈ L, a 6= 1. The
first equality follows from (8.5). If [ta] 6= 0, then Figure 50 and the irreducibility of a
imply that [ta] = X · id.

Let y be a tangle with a closed component c labeled by a. Let y′ be y with a small
meridian linking surgery ribbon around c. Then [y′] = X[y]. By (8.19), [y′] does not
change if crossings with c are changed. Since X 6= 0, the same is true of y. This
contradicts (8.11).

(8.21) Corollary. Let tab be the ESRG shown in Figure 51 (a, b ∈ L). Then

[tab]G =

{
0, a 6= b
X(dimqa)

−1idG, a = b.

Proof: [See Figure 52.]

(8.22) Corollary. C+C− = 1.

Proof: [See Figure 53.]
Note: The only instances of (8.19) used in proving (8.22) and (8.20) were sliding
ribbons over unknotted surgery ribbons of framing zero. The reader may verify that
these handle slides can be effected using only +1 [or only −1] stabilizations and the
+1 [−1] version of (8.18). (More generally, the same is true for handle slides over
knotted surgery ribbons of framing ≤ 1 [≥ −1].) It follows that half of (8.10) (i.e. the
assumption that C− 6= 0 [C+ 6= 0]) is unnecessary.

It follows from (8.19) and (8.22) that [t]G depends only on the equivalence class of
the ESRG t.
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Figure 52: Proof of (8.21).
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Figure 53: Proof of (8.22).
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9 TQFTs from modular Hopf algebras

In this section we use the results of [RT2], as described in the previous section, to
show how to construct a TQFT from a modular Hopf algebra. (Actually, we need
only the corresponding modular tangle functor.) More precisely, we will derive basic
data (Section 3) and gluing coefficients from a modular Hopf algebra and show that it
satisfies the relations of (6.4) and (7.9). The verification of the relations is accomplished
by using the fact that the functor [ · ]G depends only on the equivalence class of the
extended surgered ribbon graph; one is free to perform isotopies, handle slides, and
balanced (de)stabilizations.

(A more direct approach to achieving the goals of this section is given in [RT2],
but at present I don’t see how it can be refined to produce a TQFT which satisfies the
“gluing with corners” axiom. (The projectors which appear in [RT2] can be shown to
be the identity using (8.21). The phase ambiguities can be resolved by working in the
“extended” category.))

Fix a MHA (U,L). L will be our label set, and the trivial representation will be
the the trivial label. Define, for a, b, c ∈ L,

V1
def
= 1 ∼= C

Vaâ
def
= (a⊗ â)1

∼= C

Vabc
def
= (a⊗ b⊗ c)1.

(Note that 1, the trivial representation of U , is canonically identified with C.) Elements
of Vabc can be thought of as U -linear maps from 1 to a⊗ b⊗ c, so can be represented
as in Figure 54. Figures (tangles) with unlabeled coupons will represent the map from
the space of coupon labels to the space associated to the top of the tangle.

Next we define the actions of the mapping class groupoids. The actions of generators
ofM(P ),M(A) andM(D) are shown in Figure 55. (The action of the central element
C is defined to be multiplication by C+ = C−1

− ∈ C.) That these generators define

Figure 54: Representing elements of Vabc.
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Figure 55: Generators of the actions of the mapping class groupoids.
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Figure 56: Definition of k(a)

Figure 57: The standard pairings.

representations of the mapping class groupoids follows from the fact that isotopy classes
of braided ribbons connecting the top of R2× I to the top of a coupon are isomorphic
to the mapping class groupoid of a punctured sphere. Alternatively, one could check
the relations for the mapping class groupoids (see Section 3).

Choose, for each a ∈ L, k(a) ∈ C× such that

k(a)2 = s(a) =
dimq a

X

(see Figure 56.)
The pairings corresponding to the standard orientation reversing maps are shown

in Figure 57. The trivial representation of U (i.e. V1) can be identified with C, and

we define 〈x, y〉 def
= k(1)−1xy for x, y ∈ V1. The proof that these pairings satisfy (3.2)

is indicated in Figure 58. (The figure illustrates the fact that if a braid representing
ψfψ−1 is pushed through the tangle corresponding to the pairing, it becomes a braid
representing f−1.)

The definition of βaâ ∈ Vaâ is shown in Figure 59. Let β1 = k(1)1/2 ∈ C = V1.
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Figure 58: Compatibility of pairings with actions.

Figure 59: Definition of βaâ.
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Figure 60: Definitions of F and S.

V1aâ = (1 ⊗ a ⊗ â)1 is canonically identified with (a ⊗ â)1 = Vaâ. Let β1aâ be the
element corresponding to k(1)−1/2βaâ. Define βâ1a and βaâ1 similarly.

The definitions of F and S are shown in Figure 60. This completes the specification
of the basic data.

Next we verify the relations of (6.4) and (7.9). This is done in Figures 61 through 9.
(The proofs rely heavily on (8.21), (8.19) (and (8.18)), (8.22), and isotopy invariance.
For relations 2 and 4a, the “

⊕
k(·)k(·)” is omitted. The proofs of relations 6, 10 and 11

are easy and are left to the reader. The proofs of 4b and 12b are similar to the proofs
of 4a and 12a. The proof of 14 is similar to the proof of 13. [The proofs of relations
1 and 3 are omitted from this draft; they will be included in a later one. (I’m tired of
drawing figures, and the proofs of these two relations are similar to the others.)])
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Figure 61: Proof of relation 7.
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Figure 62: Proof of relations 8, 9 and 13.
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Figure 63: Proof of relations 5 and 12a.
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Figure 64: Proof of relation 2.
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Figure 65: Proof of relation 4a and (4.7).
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10 Reduced tangle functors

[Warning: This section is furthr from its final form than most of the other sections in
this paper. It should be considered a very rough draft.]

In this section we axiomatize (or rather, sketch an axiomatization of) that part of
a tangle functor (see Section 8) which is easily recoverable from a TQFT; in the next
section we show how to recover such an object. The basic idea is to replace a represen-
tation v of U with ⊕xHomU(v, x) (where x ranges over the irreducible representations),
and to regard morphisms as lying in HomU(v, w) rather that Hom(v, w). I have found
it somewhat tedious and cumbersome to make this precise, so some of the definitions
are only sketched.

First we axiomatize some properties of the spaces HomU(a1 ⊗ · · · ⊗ an, x), where
the ai’s and x are irreducible representations of U . Let L be a label set, not necessarily
finite. That is, L is equiped with an involution a ↔ â and a trivial label 1 = 1̂.
(For example, L could be a complete set of irreducible representations of an RHA U ,
â ∼= ǎ , and 1 the trivial representation. Also, L could be the distinguished set of good
irreducible representations of a MHA.)

Definition. A Hom system for L consists of a finite dimensional complex vector space
W x

l for each x ∈ L and sequence l = (l1, . . . , ln), li ∈ L, together with some identifica-
tions specified below. We require that for fixed l, W x

l is nonzero for only finitely many
x. We also require that the identifications satisfy some coherence conditions.

[Because I have chosen to specify a long list of identifications, the coherence con-
ditions are rather unwieldy and are therefore omitted. Another option would be to
build everything up out of the W x

ab’s (x, a, b ∈ L). This would reduce the number of
coherence conditions. (There would be the “pentagon” and two or three others.) But
this approach seems unnatural to me. (On the other hand, I can’t, at the moment,
think of a better way to do it, so I might end up adopting this approach in a later
version of this paper.)]

Here are the identifications:

• For any x ∈ L and sequences l1, l2, l3,

W x
l1l2l3

=
⊕
y∈L

W x
l1yl3
⊗W y

l2
.

• For any x ∈ L and sequences l1, l2,

W x
l1l2

=
⊕

y,z∈L
W x

yz ⊗W
y
l1
⊗W z

l2
.

(This follows from the previous identification.)

98



• For any x, y ∈ L and sequence l,

W x
yl = W ŷ

lx̂.

• For any x ∈ L and sequence l,

W x
l1 = W x

l .

Definition. A reduced tangle functor based on a label set L consists of

• A hom system for L.

• A linear map
[t]x : W x

l1
→ W x

l2

for each x ∈ L and each L-labeled ribbon tangle, where l1 [l2] is the sequence
associated to the bottom [top] of t.

Define

Wl
def
=

⊕
x

W x
l

[t]
def
=

⊕
x

[t]x : Wl1 → Wl2 .

The [t]x’s are required to satisfy the following axioms ((10.1) through (10.4)).

(10.1)Functoriality. The assignment (downward directed ribbon ends labeled by l)
7→ Wl, t 7→ [t] is a functor from the category of ribbon tangles labeled by L to the
category of L-graded complex vector spaces.

(10.2)Tensoriality. Let ti (i = 1, 2) be a ribbon tangle with bottom [top] sequence li1
[li2]. We have identifications

W x
l11l21

=
⊕
y,z

W x
yx ⊗W

y
l11
⊗W z

l21

W x
l12l22

=
⊕
y,z

W x
yx ⊗W

y
l12
⊗W z

l22
.

With respect to these identifications, we require (for all x ∈ L)

[t1 ⊗ t2]x =
⊕
y,z

id⊗ [t1]y ⊗ [t2]z.
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(10.3)Cabling. Let t be a ribbon tangle with an unlabeled ribbon r. Let ty denote
t with r labeled by y ∈ L. Let t′ denote t with r replaced by an n-cable with label
l = (a1, . . . , an).
Case (i): r is closed. Then

[t′] =
∑
y

dim(W y
l )[ty].

Case (ii): r goes from the bottom to the top. The domains and ranges of [t′]x and [ty]x
are

[t′]x : W x
k1
1lk2

1
→ W x

k1
2lk2

2

[ty]x : W x
k1
1yk2

1
→ W x

k1
2yk2

2

(for appropriate sequences kj
i ). Furthermore, we have identifications

W x
k1
1lk2

1
=

⊕
y

W y
l ⊗W x

k1
1yk2

1

W x
k1
2lk2

2
=

⊕
y

W y
l ⊗W x

k1
2yk2

2
.

With respect to these identifications, we require (for all x ∈ L)

[t′]x =
⊕
y

idy ⊗ [ty]x,

where idy denotes the identity on W y
l .

Case (iii): r goes from the bottom to the bottom. [t′]x and [ty]x share the same range.
The domain of [t′]x is W x

k1lk2l∗k3
(for appropriate sequences ki), and the domain of [ty]x

is W x
k1yk2ŷk3

. We have

W x
k1lk2l∗k3

=
⊕
y,z

W y
l ⊗W z

l∗ ⊗W x
k1yk2zk3

,

which contains the subspace ⊕
y

W y
l ⊗W

ŷ
l∗ ⊗W x

k1yk2ŷk3
.

We require that [t′]x be zero when z 6= ŷ, and

[t′]x =
⊕
y

〈 · , · 〉y[ty]x

on the above subspace, where 〈 · , · 〉y denotes the pairing

W y
l ⊗W

ŷ
l∗ ↪→ W 1

yŷ ⊗W
y
l ⊗W

ŷ
l∗ → C
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Figure 66: A pairing.

shown in Figure 66.
Case (iv): r goes from the top to the top. This is similar to the previous case. We
require that

[t′]x(α) =
⊕
y

idy ⊗ [ty]x(α),

where α is in the common domain of [t′]x and [ty]x, and idy denotes the identity in

W y
l ⊗W

ŷ
l∗ (with respect to the above pairing).

(10.4)Trivial label. Let t be a ribbon tangle with a ribbon labeled by the trivial label,
and let t′ denote t with this ribbon deleted. Then [t′] = [t].

It is easy to see that a tangle functor induces a reduced tangle functor. Hence
ribbon Hopf algebras give rise to reduced tangle functors.

Definition. A modular reduced tangle functor (MRTF) is a reduced tangle functor
which satisfies the following additional axioms.

(10.5) L is finite.

(10.6) dimq(a) 6= 0 for all a ∈ L. (dimq is defined as in Figure 36.)

(10.7) [Same as (8.9).]

(10.8) [Same as (8.10).]

(10.9) [Same as (8.11).]

It is not hard to see that modular tangle functors (and hence modular Hopf algebras)
give rise to MRTFs. (Use [ · ]G, not [ · ].) Furthermore, the the proofs of the results
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in the end of Section 8 and in Section 9 can easily be modified to work for MRTFs.
Hence MRTFs lead to invariants of extended surgered ribbon graphs and to TQFTs.
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11 Modular reduced tangle functors from TQFTs

[Warning: This section is furthr from its final form than most of the other sections in
this paper. It should be considered a very rough draft.]

In this section we show how to construct a modular reduced tangle functor from a
TQFT. In other words, we describe the inverse of the construction of Section 9.

Let V be a modular functor with label set L. Define

W x
l

def
= Vx̂l.

(Recall that Vx̂l is the vector space associated to the standard punctured sphere labeled
be x̂l.) The identifications required to make the W x

l ’s into a hom functor are easily
derived from the axioms of a modular functor.

Let (Z, V ) be a TQFT. Let t be an ESRG (extended surgered ribbon graph) with
labels in L. Let Xt denote the complement of t: Regard t as lying is B2 × I. Surger
the surgery ribbons of t and excise regular neighborhoods of the other ribbons of t.
The framing number of Xt is defined to be the signature of the linking matrix of t.
The lagrangian of Xt is defined to be the one spanned by the meridians of the excised
ribbons.

The boundary of Xt can be decomposed into annuli and two punctured spheres.
One annulus (the “outer” one) corresponds to ∂B2 × I. Its seams are given by the
product structure of ∂B2 × I. The other (“ribbon”) annuli correspond to the excised
ribbons, which determine their seams. The labels of t determine labels for the ribbon
annuli.

Let (Y, l) be an le-surface. Define

〈 · , · 〉\ : V (Y, l)⊗ V (−Y, l̂)→ C

by
〈 · , · 〉\ = k(l)〈 · , · 〉,

where 〈 · , · 〉 is the usual pairing, k(a)2 = S(a) for a ∈ L, and k(a1 . . . an) = k(a1) · · · k(an).
(See (2.13).)

Given a labeling x of the outer annulus and l of the ribbon annuli, let x̂l1 [x̂l2] be
the labeling associated to the bottom [top] punctured sphere of Xt. (Here the bottom
punctured sphere given the orientation opposite of the one induced from Xt.) With
respect to the above decomposition, Z(Xt) can be written

Z(Xt) =
⊕
x,l

βxx̂ ⊗ βl ⊗ αx
l2
⊗ αx

l1
,

where x ranges over L, l ranges over labelings of the ribbon annuli, αx
l1
∈ (W x

l1
)∗ and

αx
l2
∈ W x

l2
. Here we identify W x̂

l∗1
= Vxl∗1

with W x
l1
)∗ = V ∗

x̂l1
using the modified pairing
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Figure 67: Extending [ · ] to coupons.

〈 · , · 〉\. (Actually, Z(Xt) can be written as a sum of such things, but for the sake
of clarity of exposition we will ignore this fact.) Let m be the actual labeling of the
ribbon annuli (the one induced from t). Let m̄ be the sublabeling of m corresponding
to the non-closed ribbons. Define, for all x ∈ L,

[t]x = k(x)−1k(m̄)−1αx
m2
⊗ αx

m1
∈ Hom(W x

m1
,W x

m2
)

and
[t] =

⊕
x

[t]x.

Using the axioms of a TQFT, it is easy to check that [ · ] satisfies the axioms of a
MRTF. In particular, tensoriality (10.2) follows from (4.7)

[ · ] is extended to ribbon graphs (coupons) as follows. Let c be a coupon with bot-
tom [top] sequence l1 [l2]. A label for c is a collection of elements αx ∈ Hom(W x

l1
,W x

l2
),

x ∈ L. [ · ] is extended to ribbon graphs with labeled coupons as shown in Figure 67.

In Section 9 we showed how to construct a TQFT from a MRTF. Next we show
that this construction is the inverse of the one described above.

Let (Z, V ) be a TQFT. Let [ · ] be the MRTF derived from (Z, V ) as above.
Let (Z ′, V ′) be the TQFT derived from [ · ] as in Section 9. We must show that
(Z ′, V ′) = (Z, V ). To do this it suffices to show that V ′ = V , and to do that it suffices
to show that V ′ and V have isomorphic basic data.

.

.

.
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12 The Verlinde algebra

In this section we define the Verlinde algebra and prove some well known results con-
cerning it. The approach given here is similar to those in [Ko] and [S2].

Let T 2 = S1 × S1 be the standard torus. Define the meridian to be the curve
µ

def
= S1 × {1} and the longitude to be the curve λ

def
= {1} × S1. Note that 〈µ, λ〉 = 1.

Let (Z, V ) be a TQFT. Define the Verlinde algebra associated to Z to be

A def
= V (T 2).

(The multiplication on A will be defined below.) The orientation reversing involution
(α, β)↔ (ᾱ, β) induces an identification

A = A∗.(12.1)

Let P be a pair of pants. Identify each boundary component of P × S1 with T 2 by
sending ∂ × {1} to µ and pt× S1 to λ. With respect to this identification we have

Z(P × S1) ∈ A⊗A⊗A = A⊗A∗ ⊗A∗.

Thus Z(P × S1) defines a multiplication

A⊗A → A.

It is easy to see from the naturality and gluing axioms for Z that this multiplication
is commutative and associative. Gluing D2 × S1 to one of the boundary components
of P × S1 in such a way that the meridian of the boundary component bounds a disk
in D2 × S1 results in A× S1 ∼= T 2 × I. It follows that

e
def
= Z(D2 × S1)

is the identity for the multiplication on A.

Consider the two decompositions of T 2 into a copy of the standard annulus A shown
in Figure 68. In the meridian decomposition boundary component number one of A
goes to µ and the seams are parallel to λ. In the longitude decomposition boundary
component number one of A goes to λ and the seams are parallel to µ. These two
decompositions give rise to two bases of A:

ma
def
= βaâ ∈ A (meridian decomposition)

la
def
= βaâ ∈ A (longitude decomposition)
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Figure 68: Two decompositions of T 2.

(a ∈ L). These two bases are related by S:

la =
∑

b

Sabmb(12.2)

ma =
∑

b

(S−1)ablb =
∑

b

Sâblb.(12.3)

With respect to (12.1) we have

〈ma,mb〉 = δab̂

〈la, lb〉 = δab.

Let Nabc
def
= dim(Vabc) (a, b, c ∈ L). With respect to the meridian decomposition on

∂(P × S1) we have (by the mapping cylinder and gluing axioms)

Z(P × S1) =
⊕
a,b,c

tr (id : Vabc → Vabc)βaâ ⊗ βbb̂ ⊗ βcĉ

=
⊕
a,b,c

Nabcma ⊗mb ⊗mc.

It follows that
mbmc =

∑
a

Nab̂ĉma.(12.4)

(Most authors take this as the definition of multiplication. Note that Nab̂ĉ = Nâbc.)
P × S1 can also be constructed by starting with D2 × S1 and gluing two pairs of

“longitudinal” annuli together (see Figure 69). By (4.5) and (3.4),
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Figure 69: Constructing P × S1 from D2 × S1.

Z(D2 × S1) =
⊕
a

S1aβaâ ⊗ βaâ ⊗ βaâ ⊗ βaâ ⊗ βaâ ⊗ βaâ ⊗ βaâ ⊗ βaâ.

By (4.2) and the gluing axiom,

Z(P × S1) =
⊕
a

S−1
1a βaâ ⊗ βaâ ⊗ βaâ ⊗ βaâ

=
⊕
a

S−1
1a βaâ ⊗ βaâ ⊗ βaâ

=
⊕
a

S−1
1a la ⊗ la ⊗ la.

It follows that
lalb = δabS

−1
1a la.(12.5)

Using (12.4), (12.5) and (12.3) we can express Nabc interms of the Sxy’s:

Nabc = 〈mâ,mb̂mĉ〉
= 〈

∑
x

Saxlx, (
∑
y

Sbyly)(
∑
z

Sczlz)〉

= 〈
∑
x

Saxlx,
∑
y

SbyScyS
−1
1y ly〉

=
∑
x

SaxSbxScx

S1x

.
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Next we calculate dim(Vl), where Vl is the vector space associated to an n-punctured
sphere with labels l = (a1, . . . , an). Let Y be an (unlabeled) n-punctured sphere. Then

Z(Y × S1) =
⊕

l

dim(Vl)βa1â1 ⊗ · · · ⊗ βanân

=
⊕

l

dim(Vl)ma1 ⊗ · · · ⊗man .

(l ranges over all labelings of ∂Y .) As Z(Y × S1) can be interpreted as the tensor
describing (n− 1)-fold multiplication on A, we have

dim(Vl) = 〈mâ1 ,mâ2 · · ·mân〉

= 〈
∑
x

Sa1xlx,
∑
y

(
n∏

i=2

Sai1)S
−n+2
1y ly〉

=
∑
x

(
n∏

i=1

Saix

)
S2−n

1x .

Finally, we consider the general case of a genus g surface Y with n punctures labeled by
l = (a1, . . . , an). Cutting Y along g well chosen curves results in an (n+2g)-punctured
sphere. Hence

dim(V (Y )) =
∑

y=(y1,...,yg)

dim(Vlyŷ)

=
∑
y

∑
x∈L

S2−2g−n
1x

(
n∏

i=1

Saix

) g∏
j=1

SyixSŷjx


=

∑
x

S2−2g−n
1x

(∏
i

Saix

)(∑
z∈L

SzxSẑx

)g

=
∑
x

S2−2g−n
1x

(∏
i

Saix

)
(1)g

=
∑
x

(∏
i

Saix

)
S

χ(Y )
1x ,

where χ(Y ) = 2− 2g − n is the Euler characteristic of Y .
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13 sl2 theories

In this section we describe explicitly the TQFTs arising from Uq(sl2)), where q is a
root of unity. This material is extracted from [RT2] and [KR].

.

.

.
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14 Remarks on other surgery approaches

In this section we relate the approach to TQFTs given in this paper to [KM], [L] and
[MSt].

.

.

.
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Figure 70: The local model for a generic cell decomposition.

15 State models

Let Z be a unitary TQFT. In this section we derive a “state model” for |Z(M)|2, based
on a generic cell decomposition of M . In the case where Z is an sl2 theory and M is
closed, this state model is the same as the one described by Turaev and Viro [TV].
Since we will only compute |Z(M)|2, we won’t concern ourselves with the lagrangian
or framing number of M .

Let M be an e-3-manifold equiped with a generic cell decomposition. This means
that near each point of M the decomposition looks locally like some point of Figure 70.
(For points of ∂M , Figure 70 should be interpreted as having one of the four components
of the 3-dimensional stratum removed.) If M is closed, then the cell decomposition
dual to a triangulation of M is a generic. Note that the cell decompositions considered
here differ from the cell decompositions considered in [TV] at ∂M . Also, in [TV] the
components of the 2-dimensional stratum are allowed to be planar surfaces; here we
require that they be disks.

Let ci (i = 0, 1, 2, 3) denote the number of i-cells of the decomposition. Let Mi

denote a regular neighborhood of the i-skeleton. Mi may be obtained from Mi−1 by
adding ci i-handles. We will prefer to view M1 as obtained by gluing c0 caltrops
together (see Figure 71). Each caltrop consists of a 0-handle and half of each of the
four adjacent 1-handles. ∂(caltrop) can be decomposed into four disks (the dual cores
of the 1-handles) and a 4-punctured sphere. With respect to this decomposition,

Z(caltrop) = β1 ⊗ β1 ⊗ β1 ⊗ β1 ⊗ β1111,

where β1111 ∈ V1111 is the canonical element (see Section 4). It follows that

Z(M1) = β⊗c0
1111.

This equation is with respect to the decomposition of ∂M1 into c0 4-punctured spheres
arising from the decomposition of M1 into c0 caltrops. Call this decomposition the
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Figure 71: A caltrop.

edge decomposition. Note the its decomposing curves correspond bijectively to the
edges (1-cells) of the cell decomposition of M .

There is a second decomposition of ∂M1 given by the attaching circles of the 2-
handles. Call this decomposition the face decomposition. With respect to this decom-
position we can write

Z(M1) =
⊕
lf

Z(M1)lf ,(15.1)

where lf ranges over all labelings of the faces (2-cells), and Z(M1)lf is the (orthogonal)
projection of Z(M1) onto the lf summand. Let pf denote the projection onto the 1f

summand, where 1f assigns the trivial label to each face. Let

α
def
= pf (Z(M1)) = Z(M1)1f

.

We will regard pf (Z(M1)) as lying in V (∂M1), and regard α as lying in V (∂M1 cut
along the attaching circles). Hence

|pf (Z(M1))|2 = S(1)c2|α|2.

Closely related to the face decomposition is the decomposition of ∂M1 obtained by
replacing each attaching circle with an annulus. With respect to to this decomposition
we have

pf (Z(M1)) = β⊗c2
11 ⊗ α.

It follows that
Z(M2) = S(1)−c2(β1 ⊗ β1)

⊗c2 ⊗ α.
(The (β1 ⊗ β1)’s correspond to the non-attaching part of the boundaries of the 2-
handles.)

∂M2 consists of ∂M and c3 2-spheres. With respect to this decomposition write

Z(M2) = γ ⊗ (β1 ⊗ β1)
⊗c3 .
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(The (β1 ⊗ β1)’s lie in the V (S2)’s, and γ ∈ V (∂M).) It follows that

Z(M) = S(1)c3γ.

If we could calculate α, it would be easy to calculate γ and hence Z(M). This
cannot be conveniently be done, so instead we will calculate |pf (Z(M1))|2 (in terms of
a state model), and hence |Z(M)|2. Note that

|Z(M)|2 = S(1)2c3 |γ|2

= S(1)c3 |Z(M2)|2

= S(1)c3 |α|2

= S(1)c3−c2|pf (Z(M1))|2.(15.2)

The operation of attaching a 2-handle to a curve C in the boundary of a 3-manifold
N can be factored into the following three operations. First, excise from N a regular
neighborhood of a curve C ′, where C ′ is isotopic to C and contained in the interior of
N . Second, Dehn surger the resulting manifold with respect to a curve on ∂(nbd(C ′))
which is isotopic to C. Third, cut along the disk in the surgered manifold which consists
of a meridinal disk of the surgery solid torus and an annulus connecting the surgery
curve to C.

Let M−
1 be the manifold obtained from M1 by excising neighborhoods of curves

in the interior of M1 isotopic to the attaching circles of the 2-handles. Let M−+
1

be the manifold obtained from M−
1 by doing Dehn surgery as described above. We

will calculate each of Z(M−
1 ) and Z(M−+

1 ) in two different ways. Comparing these
calculations will yield a calculation of |pf (Z(M1))|2.

Consider the decomposition of ∂M1 obtained from the face decomposition by re-
placing each attaching circle with three parallel annuli. Gluing the outer two annuli
together yields M−

1 (see Figure 72). It follows from (15.1) that

Z(M−
1 ) =

⊕
lf

S(lf )
−1βlf ⊗ Z(M1)lf .(15.3)

(βlf denotes βa1â1 ⊗ · · · ⊗ βanân , where lf = (a1, . . . , an).) In the above equation,
∂M1 ⊂ ∂M−

1 has the face decomposition and the tori in ∂M−
1 are decomposed along

the surgery curves.
M−

1 can also be obtained be gluing together c0 tunneled caltrops (see Figure
73). The boundary of a tunneled caltrop can be decomposed into six annuli, four
4-punctured spheres, and another 4-punctured sphere. With respect to this decompo-
sition write

Z(tunneled caltrop) =
⊕
m,n

ϕmn ⊗ βm.
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Figure 72: Achieving an excision by gluing up the boundary.
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Figure 73: A tunneled caltrop.

The sum is over all labelings m = (m1, . . . ,m6) and n = (n1, . . . , n4) (see Figure 73).
βm denotes βm1m̂1 ⊗ · · · ⊗ βm6m̂6 , and

ϕmn ∈ Vn1n2n3n4 ⊗ Vn̂1m1m2m3 ⊗ Vn̂2m̂1m5m6 ⊗ Vn̂3m4m̂2m̂6 ⊗ Vn̂4m̂4m̂5m̂3 .

We will think of φmn as a tensor with five indices.
Let le be a labeling of the edges and lf be a labeling of the faces. le and lf induce a

labeling (m,n) for the tunneled caltrop associated to each 0-cell. Let con(le, lf ) denote
the result of contracting all of the resulting ϕmn’s together in the obvious fashion. Then

Z(M−
1 ) =

⊕
le,lf

βlf ⊗ con(le, lf ).(15.4)

Here the tori in ∂M−
1 are decomposed along meridinal curves, and con(le, lf ) should

be thought of as lying in the vector space associated to the edge decomposition of
∂M1 ⊂ ∂M−

1 .
Now we use (15.3) and (15.4) to calculate Z(M−+

1 ) in two different ways. For (15.3)
this is easy since the tori are already decomposed along the surgery curves. The result
is

Z(M−+
1 ) = S(1)−c2Z(M1)1f

= S(1)−c2α.(15.5)

For (15.4) we must first apply S to the tori. The result is

Z(M−+
1 ) =

⊕
le

∑
lf

S(lf )con(le, lf ).(15.6)
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Recall that the first equation is with respect to the face decomposition of ∂M−+
1 = ∂M1,

and the second equation is with respect to the edge decomposition.

Let 1e denote the labeling which assigns the trivial label to each edge. Let pe

denote the projection of V (∂M1) onto the 1e summand (with respect to the edge
decomposition). By (15.5) and (15.6),

pf (Z(M1)) = α =
⊕
le

∑
lf

S(1)c2S(lf )con(le, lf ).

Hence
pe(pf (Z(M1))) = S(1)c2

∑
lf

S(lf )con(1e, lf ).

Keeping in mind that pe(Z(M1)) = Z(M1) = β⊗c0
1111, we see that

|pf (Z(M1))|2 = 〈pf (Z(M1)), pf (Z(M1))〉h
= 〈pf (Z(M1)), Z(M1)〉h
= 〈pe(pf (Z(M1))), Z(M1)〉h
= S(1)c2

∑
lf

S(lf )〈con(1e, lf ), β
⊗c0
1111〉h.

Thus, by (15.2),

|Z(M)|2 = S(1)c3
∑
lf

S(lf )〈con(1e, lf ), β
⊗c0
1111〉h.(15.7)

[It is not hard to express the tensors ϕm1 which appear in (15.7) in terms of the
partition function of a labeled tetrahedron in B3 or S3. (Compare [Wi2].) Using the
results of Sections 8 through 11 this can, in turn, be related to 6j-symbols, in the case
where Z comes from a modular Hopf algebra. Using Section 13, one can obtain the
formulae of [TV]. Details will be included in a later draft.]

.

.

.
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16 PL Modular Functors from Holomorphic Mod-

ular Functors

The definition of a modular functor given in Section 2 is a piecewise linear version of
Segal’s original definition [S1]. In this section we show how to construct such a PL
modular functor starting from one of Segal’s holomorphic modular functors. A similar
construction is described in [S2].

[There are some details missing below. Some are missing because the corresponding
details are missing from [S1]. Some are missing because the corresponding details are
not missing from [S1], and there’s no point in repeating them. Some are missing because
this is merely the first draft of this section. And there are probably some details which
are not missing, but are wrong. Reader’s capable of detecting these errors should have
no trouble correcting them.]

Define an lh-surface to be a smooth, compact, oriented surface whose boundary
components are equiped with smooth parameterizations and are labeled by elements
of some label set L, and whose interior is equiped with a holomorphic structure. The
orientations of the boundary components coming from the parameterizations should
agree with the orientations induced by the orientation of the surface. lh-surfaces have
well-defined gluing operations.

Define a holomorphic modular functor to be a functor E from the the category of lh-
surfaces and structure-preserving diffeomorphisms to the category of finite dimensional
complex vector spaces and isomorphisms which satisfies axioms analogous to (2.1)
through (2.6) and also

(16.1) If X is a [holomorphic] family of lh-surfaces then {E(Σ)}Σ∈X has the structure
of a [holomorphic] vector bundle over X.

Let Y = (Y [, L) be an le-surface. Define C(Y ) to be the space of all lh-structures
on Y . A point of C(Y ) is represented by a pair (Σ, h), where Σ is an lh-surface and
h : Σ → Y [ is a label and parameterization preserving homeomorphism. (Σ1, h1) is
considered equivalent to (Σ2, h2) if there is a morphism g : Σ1 → Σ2 such that the
diagram

Σ1
g→ Σ2

h1 ↘ ↓ h2

Y [

commutes up to homotopy. (Homotopies are required to fix the boundary.) C(Y ) is
contractable. (We will use only the fact that C(Y ) is 0- and 1-connected.)

117



Let E be a holomorphic modular functor. By (16.1), there is a complex vector
bundle E(Y ) over C(Y ) whose fiber at (Σ, f) is E(Σ). The operation of gluing annuli
to boundary components of lh-surfaces gives rise to a projectively flat connection on
E(Y ) whose (scalar valued) curvature is equal to cω, where c ∈ R depends only on E
and ω is a certain 2-form on C(Y ). We will assume that c 6= 0. There is also, over
C(Y ), the determinant line bundle Det(Y ) which is equiped with a connection whose
curvature is equal to ω. [More details in a later version of this paper.]

Let us now pause to summarize and motivate the remainder of the section. If
c were an integer, then Det(Y )−c would be a line bundle with curvature −cω, and
E(Y ) ⊗ Det(Y )−c would be a flat bundle. Since C(Y ) is 0, 1-connected, the fibers of
E(Y ) ⊗ Det(Y )−c could be unambiguously identified as a single vector space V (Y [).
The important thing here is that V (Y [) is functorially associated to Y [ (not just to Y ).
Is is easy to see that V , so defined, would satisfy (2.1) through (2.6), since E satisfies
similar axioms.

In reality, c is not in general an integer, so defining Det(Y )−c requires more work.
This extra work includes using the fiberwise universal cover of the square of the unit
determinant line bundle Det1(Y )2. This step means that Det(Y )−c is not functorially
associated to Y [ (because Det(Σ)−c is not functorially associated to the lh-surface Σ).
This is essentially the fact that the universal cover is not a functor of topological spaces.
It is, however, a functor of pointed topological spaces. The maximal isotropic subspace
L of Y = (Y [, L) allows us to define a section of Det1(Y )2 over C(Y ). This section plays
the role of the base point of a pointed topological space, and allows us to functorially
associate the fiber of E(Y )⊗Det(Y )−c to the le-surface Y .

Define Det1(Y ), the unit determinant line bundle of Y , to be the S1 bundle over
C(Y ) whose fiber at (Σ, f) is Det(Σ)/R+. Det1(Y ) inherits a connection with curvature
ω. Let Det1(Y )2 be the square of this bundle. The curvature of Det1(Y )2 is 2ω.

Let (Σ, f) ∈ C(Y ). Det(Σ) can be identified with the maximal exterior power of
H1(Σ)/H1(∂Σ) thought of as a complex vector space. [More needs to be said in the
case where the genus of Y is zero.] Thus elements of Det(Σ) are represented by things
of the form e1 ∧ · · · eg, ei ∈ H1(Σ)/H1(∂Σ). f−1

∗ (L)/H1(∂Σ) is a totally real subspace
of H1(Σ)/H1(∂Σ). Hence

Det(L)(Σ,f)
def
= a1 ∧ · · · ∧ ag,

where (ai) is a basis of f−1
∗ (L)/H1(∂Σ), is well defined up to non-zero real numbers. It

follows that Det(L)(Σ,f) is a well-defined element of Det1(Σ)2. Let Det(L) denote the
corresponding section of Det1(Y )2.

Let D̃et1(Y )2 be the fiberwise universal cover of Det1(Y )2: The fiber at p ∈ C(Y )
is the set of all homotopy classes (rel boundary) of paths in Det1(Y )2

p which start
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at Det(L)p ∈ Det1(Y )2
p. This is an R bundle over C(Y ) with curvature 2ω. (The

structure group is R, acting by translations.) Let Det1(Y )−c be the S1 bundle obtained
by dividing out by the Z action generated by translation by −πc−1 in each fiber of
D̃et1(Y )2. This S1 bundle has curvature −cω. Define Det(Y )−c to be the corresponding
complex line bundle.

E(Y )⊗Det(Y )−c is a flat vector bundle over the 0, 1-connected space C(Y ). There-
fore there is a well-defined identification between any two fibers. Define V (Y ) to be
“the” fiber of E(Y )⊗Det(Y )−c.

Let f = (f [, n) be a morphism from Y1 = (Y [
1 , L1) to Y2 = (Y [

2 , L2). We must define
a map

V (f) : V (Y1)→ V (Y2).

To do this it suffices to define a (connection preserving) isomorphism

f̄ : E(Y1)⊗Det(Y1)
−c → E(Y2)⊗Det(Y2)

−c.

f̄ gives rise to an isomorphism f̄ : V (Y1)→ V (Y2), and we define

V (f)
def
= (e2πic)

n
4 f̄ .

f [ induces a homeomorphism f∗ : C(Y1)→ C(Y2). By the axioms of a holomorphic
modular functor, this map is covered by a isomorphism f̄1 : E(Y1) → E(Y2). So all
that remains is to define an isomorphism

f̄2 : Det(Y1)
−c → Det(Y2)

−c.

We will then define
f̄ = f̄1 ⊗ f̄2.

Before defining f̄2, a digression. Let K1 and K2 be lagrangians in a symplectic
vector space. Let e1, . . . , em be a basis of K1 such that e1, . . . , ek is a basis of K1 ∩K2.
Then there is a basis f±1 , . . . , f

±
n of K2 such that

f±i = ei, i ≤ k
Ω(ei, f

±
i ) = ±1, i > k

Ω(ei, f
±
j ) = 0, i 6= k.

(Ω is the symplectic form.) Define

P±(K1, K2)t
def
= span({(1− t)ei + tf±i }1≤i≤m).

P±(K1, K2) is a path of lagrangians from K1 to K2. It is easy to see that the homotopy
class of P±(K1, K2) is independent of the choices of the ei’s and fi’s. Thus P+(K1, K2)
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and P−(K1, K2) are a canonical pair of (homotopy classes of) paths from K1 to K2.
For future reference we observe that P± is additive in the following sense:

P±(K1 ⊕ J1, K2 ⊕ J2) = P±(K1, K2)⊕ P±(J1, J2).(16.2)

(It is interesting to note that similar paths of lagrangians are used in [W].)
Let p1 ∈ C(Y1) and p2 = f∗(p1) ∈ C(Y2). f

[ induces an isomorphism

f∗ : Det1(Y1)
2
p1
→ Det1(Y2)

2
p2
.

Thus if a ∈ D̃et1(Y1)
2
p1

, then f∗(a) is a homotopy class of path in Det1(Y2)
2
p2

which starts
at f∗(Det(L1)p1) = Det(f∗(L1))p1 . Det(P±(L2, f∗(L1)))p2 is a path in Det1(Y2)

2
p2

from
Det(L2)p2 to Det(f∗(L1))p2 . (Here we are letting Lj denote its image inH1(Yj)/H1(∂Yj).)
Hence we have two elements

Det(P±(L2, f∗(L1)))p2 ∗ f∗(a) ∈ D̃et1(Y2)
2
p2
.

(“∗” denotes composition of paths.) Define f̄2(a) to be the average of these two ele-
ments. The maps (for all p1)

f̄2 : D̃et1(Y1)
2
p1
→ D̃et1(Y2)

2
p2

induce a map
f̄2 : Det(Y1)

−c → Det(Y2)
−c.

This is the desired isomorphism, and completes the definition of V (f).

Next we must show that V is a functor. That is, we must show that

V (gf) = V (g)V (f).(16.3)

Recall that if
f = (f [, n) : (Y1, L1) → (Y2, L2)
g = (g[,m) : (Y2, L2) → (Y3, L3),

then
gf = (g[f [,m+ n+ σ((g[f [)∗L1, g

[
∗L2, L3)).

Let σ
def
= σ((g[f [)∗L1, g

[
∗L2, L3). Since a holomorphic modular functor is a functor,

(gf)1 = ḡ1f̄1. So (16.3) reduces to

(e2πic)
m+n+σ

4 (gf)2 = (e2πic)
m
4 ḡ2(e

2πic)
n
4 f̄2

or
(e2πic)

σ
4 = ḡ2f̄2(gf)−1

2 .

120



Figure 74: Part of the proof of (16.4).

This implied by the claim that, for any three lagrangians K1, K2, K3,

−σ(K1, K2, K3)

2
= deg

(
Det(P±(K3, K2) ∗ P±(K2, K1) ∗ (−P±(K3, K1))

)
.(16.4)

Here “∗” denotes composition of paths and “−” means traverse the path in the opposite
direction. The right hand side should be interpreted as the average of the degrees of
the two closed paths coming from P+ and P−. These paths lie in Det1(W )2, where
W is the symplectic vector space containing the Ki’s and equiped with a compatible
complex structure.

By (18.7), (18.4) and (16.2), it suffices to verify (16.4) when dim(Ki) = 1. This is
easily done by hand. One case of the verification is shown in Figure 74.

We have now succeeded is defining a functor V from the category of le-surfaces to
the category of complex vector spaces. As was pointed out above, it is easy to show
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that V satisfies the axioms of a PL modular functor by using the fact that E satisfies
the corresponding axioms of a holomorphic modular functor.

.

.

.
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Figure 75: 4-manifold for d.

17 Central extensions of mapping class groups

In this section we remark briefly on the central extensions of mapping class groups
arising from e-surfaces.

.

.

.

[Outline:

Point #1: (1.7) is the well-known Shale-Weil cocycle (see [LV]).

Point #2: (16.4) shows that this central extension is equal to −4 times the central
extension arising from the action of the mapping class group on the determinant line
bundle. (The right hand side corresponds to −1/2 times our favorite cocycle, and the
left hand side corresponds to a cocycle representing 2 times the determinant line bundle
extension (= the extension aring from the square of the determinant line).)

Point #3: [This was typed in a hurry; there might be some sign and ordering errors.]
In [A1] (see also [A3]) Atiyah discusses the following cocycle. Let Y be a closed surface.
Let f, g ∈M(Y ). Let D(f, g) be the Y bundle over a pair of pants with monodromies
f and g (see Figure 75). Define

d(f, g)
def
= σ(D(f, g)),

where σ denotes the signature of a 4-manifold. Atiyah shows that d arises naturally
when one considers framed 3-manifolds.
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Figure 76: 4-manifold for c.

We wish to show that c (see (1.7)) and d are cohomologous. One way to do this
would be to use Point #2 above and a similar fact about d (see [A1]). Another way
would be to exploit the correspondence between framed 3-manifolds and 3-manifolds
equiped with a bordism class of null-bordisms (i.e. e-3-manifolds), as explained in
Section 1.

A third, simpler way goes as follows. Let L ⊂ H1(Y ) be a lagrangian subspace. Let
M be such that ∂M = Y and ker(H1(Y )→ H1(M)) = L. (This puts some restrictions
on L.) Let C(f, g) be the 4-manifold obtained by gluing three copies of M × I to
Y ×D2 as shown in Figure 76. Then

c(f, g)
def
= σ(C(f, g)).

Let f ∈M(Y ) Let J(f) be the 4-manifold obtained by gluing M×I to the mapping
torus of f cross I as shown in Figure 77. Define

j(f)
def
= σ(J(f)).

Let X be the 5-manifold obtained by gluing M × D2 to D(f, g) × I as shown in
Figure 78. ∂X can be decomposed as

∂X = C(f, g) ∪ −D(f, g) ∪ J(f) ∪ J(g) ∪ −J(fg).

This decomposition is along closed 3-manifolds. It follows from Novikov additivity and
the fact that the signature of a boundary is zero that

0 = σ(∂X)

= σ(C(f, g))− σ(D(f, g)) + σ(J(f)) + σ(J(g))− σ(J(fg))

= c(f, g)− d(f, g) + j(f) + j(g)− j(fg)
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Figure 77: 4-manifold for j.

Figure 78: A 5-manifold.
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In other words, d− c is equal to the coboundary of the 1-cochain j.

Point #4: H2(M(T 2);Q) = H2(SL2(Z);Q) = 0. It follows that when Y = T 2

there is a Q-valued 1-cochain whose coboundary is c. For the proper choice of L this
cochain is precisely Φ/3, where Φ : SL2(Z) → Z is Rademacher’s Φ function. (For d,
Φ is replaced by Ψ; see [A3].)]
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18 Nonadditivity of the signature

This section contains the definition of σ(·, ·, ·) and reviews Wall’s theorem on the non-
additivity of the signature. For more details see [Wa]. A decomposition theorem for
triples of lagrangian subspaces is also proved.

Let A, B and C be subspaces of a real vector space W . The three place relation
a+ b+ c = 0 (a ∈ A, b ∈ B, c ∈ C) induces isomorphisms

U
def
=

A ∩ (B + C)

(A ∩B) + (A ∩ C)
=

B ∩ (C + A)

(B ∩ C) + (B ∩ A)
=

C ∩ (A+B)

(C ∩ A) + (C ∩B)
.

Let ω be an antisymmetric bilinear form on W . Assume that A, B and C are isotropic
with respect to ω (i.e. ω(A× A) = ω(B × B) = ω(C × C) = 0). Let a + b + c = 0 =
a′ + b′ + c′. Then a and a′ represent elements [a], [a′] ∈ U . Define

ψ([a], [a′])
def
= ω(a, b′).

ψ is a well-defined, symmetric bilinear form on U . If A, B and C are maximal isotropic,
then ψ in nondegenerate. Define

σ(A,B,C)
def
= sign (ψ).

(sign (ψ) denotes the signature of ψ, i.e. the number of positive eigenvalues of ψ minus
the number of negative eigenvalues of ψ.)

The proofs of the following lemmas are elementary and are left to the reader.

(18.1) Lemma. If A, B and C are permuted, then σ(A,B,C) changes by the sign of
the permutation.

(18.2) Lemma. If ω is replaced by −ω, then the sign of σ(A,B,C) changes.

Let N ⊂ W be the null space of ω. Then W/N inherits a symplectic structure from
ω. If A, B and C are maximal isotropic, then A/N , B/N and C/N are lagrangian.
(Geometrically, this corresponds to capping off the boundary of a surface.)

(18.3) Lemma.

σ(A,B,C) = σ(A/N,B/N,C/N).
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Figure 79: Two 4-manifolds glued together.

(18.4) Lemma. Let Ai, Bi and Ci be isotropic subspaces of Wi with respect to ωi

(i = 1, 2). Then A1 ⊕ A2, B1 ⊕ B2 and C1 ⊕ C2 are isotropic subspaces of W1 ⊕W2

with respect to ω1 ⊕ ω2, and

σ(A1 ⊕ A2, B1 ⊕B2, C1 ⊕ C2) = σ(A1, B1, C1) + σ(A2, B2, C2).

Let X be a 4-manifold decomposed along a properly embedded 3-manifold M0 into
X1 and X2. As oriented manifolds, let

∂X1 = (−M1) ∪M0

∂X2 = (−M0) ∪M2

Y = ∂M0 = ∂M1 = ∂M2

(see Figure 79). Let

Ki
def
= ker(H1(Y ;R)→ H1(Mi;R)

(i = 0, 1, 2). Ki is a lagrangian subspace of H1(Y ;R) with respect to the intersection
pairing. Let σ(X∗) denote the signature of X∗.

(18.5) Theorem (Wall).

σ(X) = σ(X1) + σ(X2)− σ(K1, K0, K2).
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Let Y be a surface and let L ⊂ H1(Y ;R) be a maximal isotropic subspace. Let f
and g be elements of the mapping class group of Y . Define

c(f, g)
def
= σ((fg)∗L, f∗L,L).

As explained in Section 1, Wall’s theorem implies that c(f, g) is a 2-cocycle onM(Y ).
The fact that the coboundary of c is zero implies the following proposition.

(18.6) Proposition. Let L1, L2, L3 and L4 be maximal isotropic subspaces. Then

σ(L1, L2, L3) + σ(L1, L3, L4) = σ(L2, L3, L4) + σ(L1, L2, L4).

(Presumably this proposition can be proved algebraically without resorting to Wall’s
theorem, but I have not done so.)

(18.7) Proposition. Let W be a 2n-dimensional symplectic vector space and let L1,
L2 and L3 be lagrangian subspaces of W . Then there exist 2-dimensional symplectic
subspaces W i ⊂ W (i = 1, . . . , n) and lagrangian subspaces Li

j ⊂ W i (j = 1, 2, 3) such
that

W = W 1 ⊕ · · · ⊕W n

Lj = L1
j ⊕ · · · ⊕ Ln

j .

Proof:

.

.

.
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19 The combinatorics of 1- and 2-parameter fami-

lies of Morse functions

In this section we prove (7.3) and (6.1).

.

.

.
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