
Cobordism of  Pairs 

By C. T. C. WilL1),  Princeton, N . J .  (USA) 

This paper extends the results of ordinary cobordism theory to cobordism 
of pairs of manifolds (a pair is a pair ( V, M) of closed differentiable manifolds, 
with V a submanifold of M). We first reduce the cobordism problem for the 
pair to separate problems for V, M ;  for V, however, a new structural group 
must be considered (e.g. O~ • Olv). We then evaluate cobordism theory for 
the new structural groups. Our more precise results include the following: 

In the general case (groups unrestricted); or if V and M are supposed 
oriented; or if M is weakly almost complex and the normal bundle of V 
in M is reduced to the unitary group; the characteristic numbers of V and 
M determine the cobordism class. The characteristic numbers of M are as 
usual ; those of V are mixed products of characteristic classes of the tangent 
bundle of V, and of the normal bundle of V in M,  evaluated on V. These 
have coefficient groups Z2 (in the first case), Z (in the third), or both (in 
the second). Correspondingly, the cobordism groups are direct sums of copies 
of these groups. Their additive structure is completely determined. 

Corresponding extensions of these results also hold for n-tuples (defined as 
chains V 1 c V2 c . . .  c V~_I c M of submanifolds) but  appear rather 
less interesting. Products of various kinds can be defined; the most natural 
one appears to be 

W • (M, V)--+(W • M , W  • V) 

which establishes the cobordism group above as a free module over the usual 
cobordism group (in cases 1 and 3 only). 

I.  Cobordism over a sequence of groups 

A cobordism theory is defined using a sequence of groups G, such that  
(i) G, is a subgroup of the orthogonal group On, (ii) Gn is a subgroup of 
G,+I (using the usual imbedding of O~ in On+l). (A similar formulation has 
been suggested by  M_mNo~). I t  is possible to consider the more general situa- 
tion in which we have maps Gn --> On, Gn --> Gn+i not required to be inclusions, 
but  we shall adhere to the simpler version. 

1) T h e  resu l t s  o f  th i s  paper were a n n o u n c e d  in  a lec ture  to  t h e  I n t e r n a t i o n a l  Col loquium on  
Differential  G e o m e t r y  and Topology ,  Ziirich,  J u n e  1960. 
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A manifold M,  is said to be endowed with G-structure, or called a G- 
manifold, if for some imbedding M , - +  S ~+x, a reduction of the normal 
bundle to G x is given. We shall identify a G-structure with those induced 
from it by suspension (adding a trivial bundle preserves a natural G-structure 
in virtue of the inclusions above), i t  is known (ST]~S~-ROD [12]) tha t  a G- 
structure may be specified by a homotopy class of cross-sections of the bundle 
associated to the normal bundle of M and with fibre OK/GK. 

Two closed G-manifolds are G-cobordant if together they form the bound- 
ary of another G-manifold, and its G-structure induces theirs. A little care is 
needed here : we regard the normal bundle of the boundary as the direct sum 
of the normal bundle of the manifold and the normal bundle of the boundary 
in the manifold, where the latter must be counted as pointing respectively 
inwards and outwards for the two manifolds on the boundary. This convention 
will allow us to show that  G-cobordism is an equivalence relation, in view of 
Lemma 1. 

We must now explain 'pasting and straightening', as introduced by M_~NOR 
[7]. We shall adopt different, but  equivalent definitions to his. Let M, ,  M ,  t 
be two differentiable manifolds, and let V,_I be a submanifold of the bound- 
ary of each. Write L --~ M + M I , identified along V; we shall show tha t  
L has a natural  differentiable structure. Near its boundary M is locally a 
product, also M' .  Fixing a differentiable product structure allows us to 
define a differentiable structure on the union, except on OV. Now a neigh- 
bourhood of O V in aM or aM' is also a product with an interval, so a 
neighbourhood of OV in L is a product of OV with Fig. 1. L is made 
differentiable by  giving a homeomorphism of this with Fig. 2, diffeomorphic 
except on OV. (This is easy.) We can then form Fig. 3, showing how copies, 
M s ,M:  of M,  M' can be imbedded in L,  and a c o p y  L, of L differen- 
tiably in M 8 ~ M~ without change of differentiable structure. 
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Similar diagrams can also be drawn in the case when one or both of M,  
M'  has already a corner along O V; for our application, M will be straight 
and M' have a right angle there. 

Lemma 1. Suppose M,  M' are G-mani/olds, and induce the same G-structure 
on V. Then L admits a G-structure inducing the given G-structures on M,  M'. 

Proo/. Suppose N so large that  the normal bundle of an n-manifold in 
S N+~ is independent of the choice of imbedding (e.g., n ~ N,  WmTNEY [15]). 
Take an imbedding of L in SN+'~; this induces imbeddings of the submani- 
folds M,,  M:,  whose normal bundles are reduced to GN. Hence we have 
cross-sections of the associated 0iv/G~-bund]es. The two structures induce 
the same G-structure on V,, so the restrictions of the suspended bundles 
with fibre O~+l/G;v+l to V8 are homotopic. Extending a homotopy on V~ 
to one on M~, we can find a cross section over M~ ~- M:,  and thus reduce 
the bundle to GN+I. But this is the suspended bundle, which is the same as 
the normal bundle for the suspended imbedding in S N+I. Hence L~ has a 
G-structure, and it is clear from its construction that  the corresponding G- 
structure on L induces the given ones on M, M' .  

]~ote. The structure is not unique; we had to make a choice of a homotopy 
on V~, and the difference between two such structures can be described by 
a bundle on S V. 

Corollary. G-cobordism is an equivalence relation. 
For we may paste together manifolds giving G-cobordisms of U to V and 

of V to W to find one g iv ingacobo rd i smof  U to W. 
Examples of sequences (G~) are On, SO n (THoM [13], MIL~OR [8], Avm~- 

BUCH [4] and W.~LL [14]), U�89 (MILNOR [8] and NOVIKOV [10]), 1 (PONTR- 
JAOIN [11] and KERvAn%E) SP�88 (NOVIKOV [10]), SU�89 and 0 ,  x 0~_~, 
which suggests a general type which we will s tudy below. 

2. The reduction lemma 

In accordance with the spirit of the first paragraph, we now make the 
following definitions. (M, V) is a (G, L~)-pair if M is a G-manifold, and 
V a submanifold with normal bundle reduced to L k. Two closed (G, L~)- 
pairs (M, V), (M', V') are (G,L~)-cobordant if there is a (G,L~)-pair 
(N, W) such tha t  aN ~ M ~ M  ~, aW ~ V ~ V' and the (G,L~)-structure 
of (N, W) induces the given (G, Lk)-structures of (M, V) and (M', V'). 

Now if (M, V) is a (G, Lk)-pair, we may choose an imbedding of M in 
a sphere with normal bundle reduced to GN. But then the normal bundle of 
V is reduced to L~• G~, so V has a natural H-structure, where H is 
defined by H~+N = L~ • GN (the definition of H t for i < k does not matter, 
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but could be made by Hi -~  1 or by H i - ~ L ~ O i ) .  We then see that  if 
(N, W) provides a (G,L~)-cobordism of (M, V) with (M', V'), W pro- 
rides an H-cobordism of V with V'. We can now state the reduction lemma. 

Lemma2.  Two (G, Lk)-pairs (M, V), (M', V') are (G,L~)-cobordant if  
and only if M ,  M'  are G-cobordant and V, V' are H-cobordant. 

Proof. We have just seen the necessity of the condition. Now suppose it 
satisfied. Let W provide an H-cobordism of V, V'.  Choose an imbedding 
of W in a sphere with normal bundle reduced to H~+~v. A neighbourhood 
of W is diffeomorphie to the associated bundle with fibre E k+N ~-- E k x  E iv 
(a small cell) and the subset E k of this is stable under the operations of the 
group H~+~v --~ Lk X Gg, so we can select a corresponding submanifold with 
boundary X,  whose normal bundle, we note, is reduced to GN, and the 
normal bundle of W in which is reduced to L k. Now form the manifold 
P = M  •  •  

I,r F' 

Since by definition X induces the correct G-structure of a neighbourhood 
of V in M,  we may apply Lemma 1 to deduce tha t  P (with corners rounded 
as in the figure) is a G-manifold. I f  M" denotes the middle components of 
the boundary of P ,  P induces a G-structure on it, and provides a G-cobordism 
of M" (endowed with this G-structure) to M ,~ M ' ,  hence, since M is G- 
cobordant to M' and G-cobordism is transitive, M" is G-cobordant to zero. 
I f  Q provides this G-cobordism, P H- Q ~- R, which by Lemma 1 may be 
endowed with G-structure inducing the given structures on P ,  Q, provides 
a G-cobordism of M to M ' ,  and contains the submanifold Y ~ V x I H- 
H- W H- V' • I whose normal bundle is reduced to L k by construction, so 
that  (R, Y) provides the required (G, L~)-cobordism. 

This lemma reduces the general problem of cobordism of pairs to the con- 
sideration of a single cobordism theory. I t  is now easy to see that  by the same 
method we can now provide similar reductions for the problem of cobordism 
of n-tuples M 1 c Ms c . . .  c M~, with (if we so desire) assigned structural 
groups at each stage. For suppose inductively a cobordism given for M._I 
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(and the smaller manifolds); then this gives also (as above) a cobordism of 
the neighbourhood of M~_ 1 in M, ,  and a glueing argument as above extends 
this to a cobordism of M~ as well. I t  is with this application in mind that  
we keep both G and L~ quite general. 

In subsequent paragraphs we shall compute many of these groups of cobord- 
ism classes. We close this section by noting that  the lemma has direct conse- 
quences such as the following: 

The only obstruction to extending a cobordism W of V to one of M is the 
obstruction to extending the normal bundle of V in M to a bundle on W. 

For once this extension is made, the above method will give an extension 
of W. 

3. Algebraic Preliminaries 

We now wish to compute cobordism theory for certain groups, which results 
of THOM [13] reduce to computing certain stable homotopy groups. These we 
shall evaluate using the homology of the appropriate spaces and the ADAMS 
spectral sequence. For this we must study certain modules over the STv.E~-ROD 
algebra. Our main tool will be the following lemma. 

Lemma 3. Let A be a connected graded Hope algebra over a field k, F a 
free graded A-module, and M any graded A-module. Then F | M is a free 
A-module. I f  (/~) is an A-base for F ,  and (m~) a k-base for M ,  then (f~ | m~) 
is an A-base for F | M .  

Proof. Let (a~) be a k-base for A. Then by hypothesis (a~f.) is a k-base 
for F .  Hence (ai/~ | mr) is a k-base for F | M.  The lemma states tha t  
(ai(f~|  is a k-base for F Q M .  To prove this we filter F |  by 
C, ~ Z0vFi | M.  Then prove by induction on p that  the a~(f~ | mr) with 
dim (a~/~) _< p form a base for C~. For p ~ 0 this is trivial, A being con- 
nected. 

Suppose it true for p -- 1. Now if dim (ad,~) ~ p, 

ai (f~ | mr) = Xa' fn | a" mr 
:_ a~[n | m~ (mod C,_1) 

(using what we know about the diagonal homomorphism for A), and as it is 
clear that  the ( a J ,  | mr) with dim (aJ~) --~ p form a base of C, modulo 
C,_x, the result follows. 

Complement. Let A~. be the SrnB~noD algebra over Zz, G an A2-module 
on one generator x and one relation Sq lx  = O, and M any A~-module. Then 
G | M is a direct sum of a free module, and modules o/ type G. 

Proof. A~, with the differential operator induced by right multiplication 
by Sq x, is a free chain complex (first shown by ADEM [2], but also follows 
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from general results about HOPF algebras and suba]gebras [9]; we have a 
base consisting of elements aj, ajSq I, and the ajx form a base of G. 

M,  with the differential operator induced by Sq ~, is also a chain complex. 
We take it in normal form, i.e. take a homogeneous base (ls, mE, nt) of ele- 
ments such tha t  

Sqlls ---- O, Sqlmt ~ n t ,  Sqlnt  ---- O . 

We now assert tha t  G | M is the direct sum of free modules on the x | m E 
and modules of type  G on the x |  In fact, aj.x i s a b a s e o f  G; 
ajSq~(x | ls) ~ O; and the top terms of a~(x | 1,), a~(x | m~) and 
a~Sql(x Q mE) ----- aj(x | nt) with respect to the same filtration as used in the 
proof of the lemma are ar Q l~, %x Q mE, and ajx | n~ respectively, so 
the same inductive argument as before shows that  we have a base of G | M.  

Let  us call an A2-module simple if it is the direct sum of a free module and 
modules of type  G. 

Corollary. I f  F is a simple graded A2-moduIe, and M any graded A2-module, 
then F Q M is simple. 

This follows at once from the lemma and complement, on taking direct sums. 

4. Application of THOM theory 

I t  follows from the work of T~oM [13], (which we shall suppose known), 
tha t  cobordism groups for the structural group G, are given by the homotopy 
groups of M(Gn). Now in all the cases with which we shall be concerned, 
{Gn} satisfies a certain stability condition. We shall denote the classifying 
space of a group L by  B (L) ; over it there is a canonical L-bundle [5]. Given 
a linear representation of L ,  we may form the associated vector bundle over 
B(L) ;  its one point compactification is the THOM space M(L) .  

(G,} is said to be stable if for each n there exists a q such tha t  for q < p 
the induced cohomology map Hn(B(G~))-~H'*(B(Gq)) is an isomorphism. 
Hn(B(Gq)) is called a stable group, and denoted by Hn(B(G)) .  

Now G~ is a subgroup of On, so we have a linear representation ready 
to hand, and can define M(G,) .  Suspending the representation has the 
effect of suspending the THOM space [3], so the inclusion of Gq in Gq+ 1 de- 
fines a natural  map of SM(Gq) to M(G~+~) which, since the eohomology 
groups of a TI~OM space are isomorphic to those of the classifying space, but  
with a dimensional shift, induces an isomorphism of cohomology in dimen- 
sion n -k q q- 1. Or supposing, as we clearly may, tha t  q is chosen to increase 
with n,  we have an isomorphism up to dimension n -b q -k 1. By the Uni- 
versal Coefficient Theorem, we have an isomorphism of homology up to 

10 CMH 'col 35 
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dimension n ~- q, and by  a theorem of J. H. C. W~TEH~AD, of homotopy 
up to dimension n ~- q -- 1. Thus we have homotopy groups of the M(Gq) 
which become stable (for as M (Gq) is q-connected, its homotopy groups up 

dimension 2q -- 2 are stable under suspension [13]). We shall refer to 
these as stable homotopy groups of M(G). We may now state the following 
corollary of THOM theory. 

Proposition. I ]  {G~} is stable, the cobordism groups ]or G are the stable 
homotopy groups o[ M (G). 

We also note that  the stability of cohomology of M (G~) allows us to define 
stable cohomology groups H* (M(G)),  and that  since the isomorphisms are 
defined by induced homomorphisms and the suspension isomorphism, we can 
define stable cohomology operations acting in H* (M(G)). 

We now consider HN+~----L~• GN. Since B(H~v+k) : B(Lk) • B(G~), 
the K ~  relations show that  if G is stable, so is H.  By [3], M(H~+~) 
is the collapsed product M(Lk) ~ M(GN). Hence for any coefficient field K,  
using reduced cohomology, we have 

H* (M (HN+~), K) : H* (M (L~), K) | H* (M (GN), K) (1) 

and if K ~ Z~, the two sides of this equation are even isomorphic as modules 
over the STEV.~OD algebra A~, as its action on an algebraic tensor product, 
using the diagonal homomorphism, was originally defined from the topological 
product (or cup product, which is the same thing) [6]. 

Before mentioning special cases, we shall define characteristic numbers in 
the general case. These we define as invariants of cobordism class directly; 
in fact given a map of a sphere SN into a THOM space M(G~) defining a 
class, the corresponding characteristic numbers are the inverse images of 
classes in H ~v (M(G~)), evaluated on the fundamental homology class of 
S N. To see the connection with the usual definition of characteristic numbers, 
we recall THOM'S procedure; given a manifold V, we take a classifying map 
for its normal bundle in some S N, and extend to a map of a tubular  neigh- 
bourhood of V into the associated vector bundle; the rest of S N is then 
mapped to the point at  infinity. Hence the inverse image of the class in 
H N (M (G~)), which can be regarded as a class on the tubular neighbourhood 
of V, is the result of lifting the inverse image of the corresponding class in 
H k (B (G~)) in V~. But this is the usual definition of characteristic classes ; 
take a classifying map for the normal bundle of V, and evaluate the inverse 
image of a class on B (G~) on the fundamental class of V. 

We are now ready to consider the orthogonal group. Note that  in (1), there 
is a module multiplication by H* (M(G~v), K) ; this is the algebraic counter- 
par t  of the module multiplication mentioned in the introduction. 
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The 0rthogonal Group 

We now take G , ~ - O  n. I t  is well known that  H*(M(O)) is zero over 
any field K of characteristic not 2, and H* (M(O), Z2) is a free A2-module 
(THoM [13]). By Lemma 3, H* (M(H),  Z2) is also a free A2-module, and we 
know how to choose a base. I~ence there is a map of M (H) to a product of 
EmE~BERG-MAcLA~E spaces K(Z2, r) inducing an isomorphism of mod 2 
cohomology, and hence also of integer homology since (by the analogue of(l) 
for Z as coefficient group) this consists entirely of torsion of order 2. Since 
the spaces are both simply connected, by the theorem of WHITEHEAD already 
mentioned, the map induces also an isomorphism of homotopy. 

This determines the cobordism groups for the sequence H~+~ ~ L~ • 0~.  
The full cobordism group is the graded direct sum of the cobordism groups 
in the various dimensions. Using the remark at the end of the previous para- 
graph, and the A2-base constructed in Lemma 3, we may now enunciate 

Theorem 1. The cobordism groups/or the sequence H are all o/ exponent 2. 
The cobordism class o/ a mani/old is determined by its characteristic numbers. 
The /ull cobordism group is a /ree ~-module, with a base corresponding to a 
Z2-base o/ H* (B(Lk), Z2) . 

The Unitary Group 

We now take G2,~ = G2n+l -~ Un. I t  is convenient to work only with groups 
L~ satisfying a certain condition: 
(B) H* (B(Lk)) ks torsion free, and zero in odd dimensions. We note that  (B) 
holds if L~ itself is a unitary group, or a product of such. I f  (B) holds only 
up to a certain dimension, or modulo a certain set of primes, then our results 
will also hold up to nearly that  dimension, or modulo those primes; such 
refinements we leave to the reader. 

We shall now follow the arguments of lV[ILHOR [8]. Now H*(Bv)  is itself 
torsion free. Hence H * ( M v ,  Z~) has a BOCKSTEIN operator Qo identically 
zero, and hence can be considered as a module over the algebra A~/(Qo) , 
quotient of the STEENROD algebra by the ideal generated by Q0. We now use 
the fundamental result of M/LHOl~ [8], Theorem 2 to the effect that  it is a 
free module. By (B), H*(M(L~) ,  Zv) also has zero BOCKST]~INS. We now 
apply Lemma 3 to the HOPF algebra Ar/(Q0), the free module H* (M (U), Zv), 
and the module H* (M (L~), Zv) to deduce tha t  their product H* (M(H),  Zv) 
is again a free module. 

l~oreover, since the generators of the Z-module H*(B(Lk)  ) are even- 
dimensional, those of the A~/(Qo)-module H*(M(H) ,  Z~) are also even- 
dimensional. 
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I t  now follows from MIL~OR, loc. cit., Theorem 1, that  the stable homotopy 
groups are torsion free, and from the fact that  the stable ItUREWICZ homo- 
morphism is an isomorphism mod finite groups we can deduce what the 
groups are. 

Finally, we consider the module multiplication by the unitary group. We 
now know that  the ADAMS spectral sequence [1] is trivial, so the fact that  we 
have a free module in the E2-term leads to one also in the E| from 
which we can see tha t  we not only have the cobordism group as a free module 
over the uni tary one but also tha t  all the divisibility conditions for charac- 
teristic numbers are implied by this product structure. We can now sum up 
our results in 

Theorem 2. The cobordism groups for the sequence H are torsion /ree, and 
zero in odd dimension. The cobordism class of a mani/old is determined by its 
characteristic numbers. The/ul l  cobordism group is a/ree module over the unitary 
cobordism group, with generators in (1 -- 1) correspondence with a base /or 
H*(B(Lk)  ) . Characteristic numbers satis/y just those divisibility conditions 
which are implied by the module structure. 

The Special Orthogonal Group 

The case Gn = SOn, as for straight cobordism theory, presents features 
which are a mixture of the two previous cases. The odd torsion behaves 
precisely as in the case of the unitary groups : if H* (B (Lk)) is free of odd torsion, 
and in odd dimensions consists entirely of 2-torsion, the arguments of the 
preceding section go through without modification (even the references are 
the same) as fas as odd torsion is concerned. To make further progress, we 
now require in addition that  all torsion in H* (B (Lk)) be of order 2. Using 
the corollary to Lemma 3, and the fact that  H* (M (SO), Z2) is simple 
[14], we deduce that  H* (M(H) ,  Z2) is also simple. In  fact, the G-type gener- 
ators for H*(M(SO))  correspond to the free part of •, hence, since the 
1, of the complement to Lemma 3 are the mod 2 restrictions of the free gen- 
erators of H*(B(Lk) ) ,  the G-type generators of H*(M(H))  stand in cor- 
respondence with generators of the free part  of stable homotopy (as determined 
above by considering the odd primes). Take then generators of the free part  
of H*(M(H) )  and corresponding maps to EILENBERG-)SAcLA~E spaces 
K (Z, n) ; then we already know tha t  the product map induces isomorphisms 
of homotopy mod finite groups. Now these generators restrict rood 2 to pre- 
cisely the generators of type G of the simple As-module. Choose a set of 
free generators, and corresponding maps to En~]~NBW~G-M~cLA~E spaces 
K (Z2, m); then the map to the product of all these Em]~NBERG-MAcLA~E 
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spaces induces rood 2 cohomology isomorphisms, and hence also rood 2 homo- 
logy isomorphisms. We already know (using the above cited theorem of 
W H I T E H E A D )  that  the map induces isomorphisms of homology mod finite 
groups ; it now follows that  it induces isomorphisms mod finite groups of odd 
order. Hence again it does also for homotopy, so all the 2-torsion has order 2, 
and is a]l captured by the homology. 

Module multiplication follows as before; however we no longer have a free 
module unless H* (B(L~)) is completely torsion free; in the contrary case 
the Z2-structure is different. (In fact, if we follow the appearances of all the 
Z 2's, it would appear that  we should have the direct sum of a free module 
over ~2, and one over the algebra ~ of [14].) 

Theorem 3. Cobordism groups /or the sequence H are sums o/ /ree groups 
(which all occur in even dimensions) and groups o/ order 2. The cobordism class 
o/ a mani/old is determined by its characteristic numbers. The /ull cobordism 
group contains a /roe Q-submodule, with generators corresponding to a base o/ 
the /ree part o/ H* (B(Lk)) , as direct summand, its complement having expo- 
nent 2. Divisibility conditions (all by odd primes) are those implied by the 
module structure. 
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