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The object of this paper is two-fold: first to collect together the known facts about
combinatorial cobordism in general, and then to calculate the groups for the first
8 dimensions. As in (29), we shall denote the unoriented and oriented cobordism
groups in dimension n by 3tn and Qn, and will distinguish the combinatorial from the
differential case by affixes c, d.

Using the results of Whitehead (30) on C1 triangulations, we have natural maps

-*TI- Jln ^ Jin> un- Lin ^ " » •

Now Stiefel numbers give a complete set of invariants of cobordism class in 92d (23).
These have been defined and proved invariant in the combinatorial case by Wu and
Thorn (22) (indeed, the proof is valid even for homology manifolds). Hence Tn is a
monomorphism.

Similarly, Stiefel and Pontrjagin numbers together give a complete set of invari-
ants of cobordism class in Q.d (26). Pontrjagin numbers (with rational values) have
also been defined in the combinatorial case by Thorn (24), Rohlin and Svarc (17);
so Un is a monomorphism. Moreover, in dimension n ^ 0 (mod 4), if we choose a set of
Stiefel numbers inducing an isomorphism of Q^, we obtain (effectively) a left inverse
of Un, and so 0% is a direct summand of QPn.

It has further been proved by Adams (l) that the relations between Stiefel numbers
which hold for differential manifolds hold also for combinatorial (again, even homo-
logy) manifolds. This gives no direct information about combinatorial cobordism.
The corresponding result for Pontrjagin numbers is false; this is essentially due to
Milnor (8). Thus Un is not onto and does not in general split if n = 0 (mod 4).

Finally, exact sequences which relate the combinatorial cobordism groups were
obtained in the author's paper (29); they are as follows:

Q^n^^iin^Xn^, (i)

O + SB^^^^O, (2)

o (3}sr> ( H ' L (^f' ( H (

As far as the author is aware, no other facts are known about combinatorial co-
bordism which do not involve smoothing theory. We thus turn next to the groups
r n - 1 of differential structures on spheres (9).

LEMMA 1. There is a natural homomorphism
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Proof. Let T71-1 be an (n — l)-sphere, with exotic differential structure, representing
x e F , ^ . Its tangent bundle is stably trivial, so all characteristic classes vanish. Hence
it bounds a differential manifold Vn. Form a closed combinatorial manifold Wn by
triangulating Vn and adjoining a cone on its boundary. We define Cn(x) as the class of
Wn.

This is well defined. For let V, leading to W, be another choice for V. The con-
nected sum W # (— W) is defined by attaching V to — V by a diffeomorphism of the
boundary, hence admits a differential structure. Thus its class in QPJQ.^ is zero, and
the classes of W, W are equal.

Our construction is clearly compatible with connected sums, so we have a homo-
morphism. It is a more precise statement of a construction of Milnor (8).

We shall use the values of Tn in low dimensions. In fact, for n =% 6, Fn = 0; F7 ~ Z28.
Proofs that F3 = 0 may be found in (14), (18). A result of J. Cerf (31) states that F4 = 0.
Using Milnor's result (11) that a homotopy 5-sphere bounds a contractible manifold,
it follows from Smale (19) that F6 = 0. Smale also shows (20), (21) that for n > 6, Yn

is isomorphic to Milnor's group Qn ((6); see also (ll), (12)). But 06 = 0 ((6), (27)), and
0 7 is cyclic of order 28 (ll). This proves all the results; in particular, note that F7is
the first non-vanishing group Fm.

We now invoke smoothing theory. A smoothing of a combinatorial manifold is a
differential manifold which gives rise to it by C^-triangulation. We need the following
results.

PROPOSITION 1. Let M be a triangulated combinatorial manifold, K a subcomplex.
Let a be a smoothing of a neighbourhood of K^iMi. Then the obstruction to existence of a
smoothing of a neighbourhood of KvMi+1 agreeing with a on a neighbourhood of KvM**1

is an element of Hi+1(M, K; F^).
We also need an interpretation of the obstruction in one case. Let M be closed, of

dimension m, K contain all of M except one m-simplex, i = m— 1. Then a induces a
smoothing of a boundary of K (by the Cairns-Hirsch theorem (3), (4)), which defines
an element of Fm_1.

PROPOSITION 2. In this case, the obstruction may be identified with this element of
I m-i-

I t seems worth commenting on these results. The original obstruction theory of
Thorn (25) was not entirely rigorous. The work of Munkres (15), (16) does not give
smoothings in the sense used here. Milnor's work with microbundles (13) is more
relevant; however, his work does not give a relative theorem of the type above, and
he did not know the coefficient groups—this difficulty, however, was settled by Mazur
(7). The results above may be found in a paper of Hirsch (5). We observe that we
possessed the arguments in this paper 2 years ago; however, this result of Hirsch,
and Cerf's result F4 = 0 were needed to justify them.

It is now trivial that if m ^ 7, Mm possesses a smoothing.
From results above, we deduce

LEMMA 2. For n < 7, Tn and Un are isomorphisms.
We shall now prove



Cobordism of combinatorial manifolds 809

LEMMA 3. Cs is an isomorphism.
It is easy to see that cobordism groups defined by connected manifolds coincide

(in positive dimensions) with general ones; sum is defined by connected sum. We
may, then, suppose all manifolds connected.

If W8 is a closed combinatorial manifold, the unique obstruction to smoothing it is
an element Bw of H8{W; F7). If a simplex is removed, W becomes smoothable, giving
rise to a differential manifold V. The boundary of V is a 7-sphere T with exotic dif-
ferential structure; in fact, by Proposition 2, this is determined by the obstruction
above. The construction of Lemma 1 leads from T to W; hence C8 is onto.

Suppose x in the kernel of C8. With the notation above, W is cobordant to a triangu-
lation M of a differential manifold. Taking the connected sum of W with — M, we
may suppose that W bounds a manifold JV, say. It is clear from Proposition 1 that
Bw is induced from the obstruction RN e H8(N; F7) to smoothing N. But

i*: Hs(N;r7) ^ H*(W; F7)

is zero, so Rw = 0 and x = 0. Hence Cs is also (1-1).
We now use Lemma 3 to prove our main result.

THEOREM. For n < 7, Tn and Un are isomorphisms. We have Q | s Z + Z + Z4,
and Sftg has rank 6. Stiefel and Pontrjagin numbers do not determine oriented cobordism
class nor Stiefel numbers unoriented cobordism class, in dimension 8.

Proof. We first discuss Pontrjagin numbers in dimension 8. We shall work with
the triple (p\,p2, <?), where cr is the signature; these are related in the differential case
by 45cr = 1p2— p\ (due to Thorn (23)) and by definition, this is valid also in the com-
binatorial case.

By a result of (23), Q| ~ Z + Z, and a basis is given by the classes ul7 u2 of
P^CjxP^C) and P2(C), which have Pontrjagin numbers (18, 9, 1) and (25, 10, 1).
A more convenient basis consists of vx = u2 — u±, v2 = 9u2— 10%, with Pontrjagin
numbers (7, 1, 0) and (45, 0, — 1), which puts the relation above in evidence.

Now (T remains integral for combinatorial manifolds. Also, Thorn showed in (24)
that the combinatorial class px was always in the image of H\M.\ Z). Hence p\ is an
integer. Thus the Pontrjagin numbers are linear combinations of the two sets for
\vx and v2: (1, \, 0) and (45, 0, —1). Alternatively, we could obtain this result
using Lemma 3 and specific manifolds constructed in (8), (28) in the construction of
Lemma 1.

Pontrjagin numbers thus define a homomorphism P of D.% onto the free Abelian
group generated by \vx and v2. Since the group is free, P splits as the projection of a
direct sum. Now P(iif) is a subgroup of index 7, so P induces a homomorphism

(see (8)), with Ker P ~ Ker A. By Lemma 3, D.%jO.i = T7 s Z28, so Ker A is cyclic of
order 4. Hence Q | s Z + Z + Z4 as stated. It follows that Stiefel and Pontrjagin
numbers cannot determine cobordism class in it.

To deduce the unoriented groups we use the exact sequences (1) and (2). In particu-
lar, we have „

Q8 —* Q8 -> SS8 -+ Q7 = 0.
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Thus SEB| has rank 3 whereas 2Bf has rank 2. The rank of Sft® now follows from Lemma 2
and sequence (2). The inadequacy of Stiefel numbers follows from the result of
Adams (i) that Stiefel numbers take no new values. This completes the proof of the
theorem.

In conclusion, it seems worth putting the following conjecture in print. The author
is convinced of its truth, and feels that it will soon be proved—the main lacuna is a
theory of ̂ -regularity for combinatorial manifolds. (Apparently this gap has now been
filled by Williamson.)

Added in proof. See Notices American Math. Soc. 11 (1964), p. 222.

CONJECTURE. The cokernel of Un is finite for all n.
The corresponding result for Tn would follow as a corollary. It is hard to see further

than this; the following is the simplest possibility.

GUESS. The free part of Q.c is a polynomial ring.
Presumably, if this is so, a generator of Q.cin is given (modulo decomposable elements)

as a submultiple of a generator of Q.fn, using the homomorphism Gin. I t seems that the
relevant part of F47l_1 ~ O4n_i lies inMilnor's subgroup Qin-^^n) (11). Perhaps it is
the maximal subgroup of odd order: the order of this is known ((11), (2)) to be
(22»-i_ l) times the numerator of (BJn).
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