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In recent work on some topological problems (7), I was forced to adopt a complicated
definition of 'Hermitian form' which differed from any in the literature. A recent
paper by Tits (5) on quadratic forms over division rings contains a new and simple
definition of these. A major objective of this paper is to formulate both these definitions
in somewhat more general terms, and to show that they are equivalent.

We also discuss corresponding notions of reflexive sesquilinear forms, which also
arose in topological work ((8), section 12); it is no longer true (as it is over division
rings) that such forms are equivalent to hermitian or skew-symmetric ones.

It is not claimed that these topics are treated below with the maximum possible
generality; however, we do work with arbitrary rings (with unit), so any further
generalization is likely to involve additional elements of structure (e.g. a grading or a
group of operators) or a higher degree of abstraction (e.g. working over schemes in-
stead of rings). We preface each definition by a discussion, which is intended to show
some of the reasons for adopting the definition.

Sesquilinear forms. Let A be a ring (with unit), M a (unital) right .4-module. We
will discuss bilinear maps <f>: M x M->A satisfying some axioms related to the module
structure: these can as well be discussed for a pair M, N of right .4-modules. We think
of bilinear maps of M ® N. Now the tensor product inherits any right module struc-
ture possessed by N and any left module structure possessed by M. Since A is naturally
an (A-A) bimodule, it is natural to require that M be a left A -module, N a right
A -module, and that <p induce a map M ®iV->J. of {A-A) bimodules. But we are
only given a right A -module structure on M; this induces a left module structure over
the opposite ring Aov. Thus to make M a left A -module, we require an isomorphism
a: A -> Aov; which is also to be interpreted as an anti-automorphism of A.

We have thus arrived at a definition. Let A be a ring with anti-automorphism a;
let M, N be right A -modules. Then a map <j>: M x N->A is oc-sesquilinear if

for all m, mls m2 e M; n, nv n2 £ N and av a2 e A. The set of all such maps will be denoted
by Sa(M,N): pointwise addition gives it the structure of Abelian group. It does not
have a natural A -module structure, though it can be made a module over the centre
of A. We will further abbreviate Sa(M) = 8a(M,M). This is of course the usual de-
finition: see e.g. (3), pp. 10-12, (4), p. 10.

Reflexive sesquilinear forms. In the case when A is a field or division ring, an element
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§6 ofSa(M) is termed reflexive when the conditions <j>(m,ri) = 0,<fi(n,m) = Oare equiva-
lent. For the present more general situation, a stronger condition is appropriate. Let
us require provisionally that <f>{n,m) depends only on <f>{m,n), say

Then we have <j>{m,n) = F(<t>{n,m)) = F(F(^>(m,n)))

a n d F((f>(m,n)a) = F(<f>(m,na)) = <p(na,m)

= <x(a)<f>(n,m) = a{a)F(<j>{m,n)).

Thus if <f> takes the value 1 (and hence all values) we have the identities

(1) x = F(F(x)) (2) F(xa) = a(a)F(x).

Writing y = F(x), b = a(a), and applying F to (2) we find, using (1), that

(3) F(by) = F{y)oi-\b).

Now set u = F{1). Then (2) with x = 1 and (3) with y = 1 give

(4) a(a)u = F(a) = uorx{a).

Putting a = w, we find <x(u)u = 1 = uctrx(u),

so n is a unit, cc(u) = u~x. Now (4) shows that a2 is the corresponding inner automor-
phism of A.

Suppose given a sesquilinear form <j>e8a{M). Suppose u a unit of A with a(u) = u~x

and a.2(a) = uau~x for all ae A. Then we call <j> (a,u)-reflexive, and write0ei?(a u)(M),ii

for all m, n e M. We observe that—as usual—the conjunction of this with either of the
identities defining Sa(M) implies the other. Particular cases to be noted are u = 1,
when <j> is called Hermitian, and u = — 1, when it is termed skew-Hermitian; in these
cases, of course, a2 must be the identity.

Our result coincides with the usual description ((l), p. 113, (4), p. 13) of reflexive
sesquilinear forms of rank ^ 2 over a division ring.

If <f>eR(a>u)(M), and v is any unit in A, then the map xjr: M x M->A defined by

i/r(m,n) = v0(m,n)

is (/?, vociv1) (u)) -reflexive, where /?(«) = va{a)v~1. In the usual case, one can choose v
so that ifr is Hermitian or skew-symmetric; we can generalize the argument here as
follows (see again (l), pp. 113-114; (4), p. 14). If, for some meM, <p(m,m) = 1, then
1 = F(l) = oc(l)u implies u = 1 and <f> Hermitian. If now (j>{m,m) = v~x is a unit, it
follows that the form xjr above is Hermitian. Now for A a division ring, non-units are
zero, and <fi(m,m) identically zero implies <f> skew-symmetric (hence a = 1 and A is
commutative). In general, we may have <j>{m,m) neither zero nor a unit.

Quadratic forms. We retain the notation of the preceding section. For <peSa(M),

define Tu(<t>) by Tu($)(m,n) = *(<j>{n,m))u.

I t is easily seen that Tu(<f>)eSa(M); thus Tu: 8a{M)^Sa(M). Further, Tu is a group
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homomorphism, T\=\, and JLU = — Tu. We have called <j> (a, u)-reflexive if Tu(<f>) = <j>:
this amounts to defining B(au)(M) = ~Ker(Tu— 1). We now define

and refer to the elements of Q(a^(M) as (a,u)-quadratic forms on M. We owe this
terminology to Tits (5): we hope that the reason for it will become clear in the sequel.

Since T\ - 1 = 0, multiplication by Tu + 1 induces a map b ofQ(au)(M) = Coker (Tu — 1)
into Ker (Tu— 1) = R^U^(M), called bilinearization. In the classical case (A afield, a
the identity, u = 1, maps represented by matrices), this operation amounts to sym-
metrizing a matrix. If 2 is invertible in A, b is an isomorphism (an inverse is obtained
by dividing the composite map R^tn)(M) <= Sa(M)-*Q(au)(M) by 2), so the definition
introduces no essentially new concept in this case. In general, however, b is neither
injective nor surjective; in particular, over division rings, its image is the set of tracic
forms of Dieudonne ((4), p. 19), as we see from the formulae below.

For further discussion of a quadratic form 6 we need, as well as the bilinearization
be, a certain associated quadratic mapping qe. Represent 6 by <peSa{M); then the
other representatives are the forms 0 + Tu(x) — X f° r Xe®a.{M). Now for meM,

Define the value group T^^to be the quotientof A by the additive subgroup of elements
oc(a)u — a, for as A. Then the class oi<t>(m, m) in T(a>M) depends only on the quadratic form
6, not on the choice of representative <j)\ we denote it by qg(m).

Next, given a form deQ(atU)(M), we elucidate the formal properties of qe—orrather,
of the pair (qe,bg). Again let <f>eSa{M) represent 6; and write {a} for the class in F(au)
of a e A. Then

^ m2) + 0(m2, mi)} + {<j>{m2, m2)}

2> ™i) - oc(<p{m2, m^u) + qg(m2)

2). (1)

qe(ma) = {(j>(ma,ma)}

= {a(a)(f>(m,m)a}.

Now a(a) (ot(x)u — z)a = a(oc(a)xa)u — a(a)xa, and so {oc(a)ya} depends only on {y};
we may thus write it as <x(a) {y}a. The formula then becomes

qg(ma) = <x(a)qg(m)a. (2)

Finally, we make the analogous observation that for x e A, z + ac(x)u depends only on
{x}, so that for ve V we can write v + a(v)u for the indicated element of A. Then

bg{m,m) = <j>{m,m) + Tu{<t>){m,m)

= qg(m) + a(qe(m))u. (3)

These are the desired formal properties; we will write Quad(at()(Jf) for the set of
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pairs (b,q) where beRia^(M) and q: M - ^ a > u ) satisfy (1), (2) and (3): this, too, can
be regarded as an additive group. If we set/(0) = (bg,qe), then

THEOREM 1. If M is a projective A-module, f is an isomorphism.
Proof. In the natural direct sum decomposition

Sa(M ®N)^ Sa(M) © Sa(M,N) © Sa(N,M) © Sa(N),

the map Tu induces an isomorphism between the middle two summands, so that

Q(a>u)(M) = Q(«,u)(M) © Sa(M,N) © Q^N);

and similarly for i?(a>u). We claim that there is a corresponding splitting for Quad<a u),
and that / respects the splittings. Indeed, by taking the restrictions of b to M x M,
M xN and N x N and of q to M, {0} and N respectively we obtain a map

Quad<ajU)(lf © i^)^Quad(ajU)(ilf) © Sa(M,N) © Q u a d ^ i V ) .

Conversely, given a quintuple defining an element of the right-hand side, we define
b on N x M by requiring b(n,m) = a(b(m,n)}u; then additivity shows how to extend
b uniquely to (M © N) x (M © N), and the result is then necessarily reflexive. We
now extend q to M ® N

q((m,n)) = q(m) +{b(m,n)} + q(n).

This extension is uniquely determined by (1): we now claim that (1), (2) and (3) are
satisfied by it. The verification of this presents no difficulty.

Now the splittings were defined so that / does respect them. Hence / induces an
isomorphism for M © N if and only if it does so for both M and N. The same argument
will also work for infinite direct sums. Hence if we can show the theorem for M = A,
it will follow first for free modules, and then for arbitrary projective modules.

Finally, take M = A. Assigning 0(1,1) to <j> gives an isomorphism of Sa(A) on A
which carries Tu to the map a->a(a)i*, and hence induces an isomorphism of Q(a U)(A)
on V(a>uy This isomorphism factors as the composite with/of the map taking (6,^) to
q(l). I t remains to show this map injective. But q(a) = oc{a)q{\)a and

b(a,a') = a(a) 6(1, l)a'= a{a)(q{l) + a{q(l))u)a'

are both determined by g(l). This completes the proof.
The usual case of quadratic forms is of course when u = 1, a is the identity, and A is

commutative. In this case, T âu) is the quotient of A by the zero subgroup. Thus Axiom 1
for quadratic forms shows that qg determines bg in this case. The remaining conditions
(Axiom 3 is now superfluous) are the usual axioms for quadratic forms (see e.g. (3),
p. 54).

The consideration of pairs (b,q) with b reflexive and q satisfying axioms (l)-(3)
above was forced on us in (7), (8) as the algebraic expression of certain geometrical
facts about intersection and self-intersection numbers.

Apropos of the splitting used in this proof, we may note that a form on M ® N
whose component in Sa(M,N) is zero in the usual (orthogonal) direct sum of the forms
induced on M and on N. Thus a quadratic form splits as an orthogonal direct sum
whenever its bilinearization does.
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Duality. If M is a right A -module, the dual JIom.A{M,A) is naturally a left A-

module. If a is an anti-automorphism of A we can make the dual a right A -module,
M', by defining y a ( m ) = «(«)/(«)

for aeA, meM a n d / : M-+A. If g: M->N is a map of right ^4-modules, we will
write ga: Na -> M" for the corresponding dual map: we have, of course, a contravariant
functor.

In this notation, the natural map of M to its double dual associates to each meM
the A -linear map (oMa(m): Ma->A defined by

Then o)M a is an A -module map M -»(Ma)a~1. I t is an isomorphism when M is a finitely
generated projective module. Whenever it is an isomorphism (and this does not de-
pend on the choice of a) the module M is called reflexive.

Now let <f>eSa(M,N). We define the associated homomorphism A(j>: M->Na by

byThis is a map of right A -modules. We also define the transpose

this has an associated homomorphism A<p*: N->Ma~x.

LEMMA 2. The following diagrams commute

*(N')'

W)*"

Proof. By symmetry, it is enough to consider the first. Now

= oNja{n){A<l>{m))

= A<f>\n){m).

In the case considered above when u is a unit of A with a(u) = w1 and a2(a) = uavr1

for aeA, left multiplication by u gives a natural isomorphism Au: M
a~l-*Ma for

any M. With this notation, (a, w)-reflexivity of <fieSa(M) is expressed by commuta-
tivity of the diagram

A?
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For this commutativity means that A<j)(m) = Au(-40*(ra)) for meM; applying this
to n eN, the formula reduces to

Note also that the natural transformation from M to its double dual is now

Non-singularity. We call <j>eSa{M,N) non-singular if A<fi and Aft are isomorphisms;
non-degenerate if both are monomorphisms. The two concepts coincide, of course, over
division rings. Bourbaki ((3), p. 13) uses the term 'non-degenerate' in the above sense,
and (see e.g. p. 23) uses also the concept of non-singularity. We owe the terminology
to Hirzebruch, and have used it also in (6). Lemma 2 shows that if 0 is non-singular,
M and JV are both reflexive; and that conversely, if A<j> is an isomorphism and N is
reflexive, <f> is non-singular. This argument comes from (6), as does the next remark.

Let <f> e R(au)(M) and let S be a submodule of M such that the restriction of <j> to S
is non-singular. Then if

T = {meM: <p{m,s) = 0 for all seS}

is the orthogonal complement of S in M, M is the direct sum of S and T. Moreover,
<f> is non-singular if and only if its restriction to T is. For since the composite

is an isomorphism, say e, e~1 o ia o A<j>: M ->• S is a retraction, and clearly has kernel T.
Thus M is the direct sum; now by reflexivity, <f>(8x T) = 0, so {M,<j>) is the ortho-
gonal direct sum of its restrictions to 8 and T.

Given a non-singular <j>eSa(M,N), and / : N'-> N', we define the adjoint J^(f)
to be the (unique) map which makes the diagram

•W)

commute; equivalently, it is characterized by the identity

4>{m,f(n)) = <f>(J4f)(m),n).

Clearly we have fyfg) = J${g)J${f), and J$ is additive.
If M = N, J$ maps the ^4-endomorphism ring of M to itself; we say that if <fi is

(a,it)-reflexive, J^ is an involutory anti-automorphism of the ring. It remains, in fact
only to check that J\ = 1.

This is equivalent to obtaining the identity
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and this is achieved by the computation

= a(<f>(n,f(m)))u

A quadratic form is called non-singular if its biUnearization is. A sub module on which
a quadratic form is non-singular splits as an orthogonal direct summand: this follows
by applying an earlier remark to its bilinearization. The concept of non-singular
quadratic form is the one we have been leading up to, we suggest that it is the most
interesting sort of quadratic (or Hermitian) form to study. We conclude with one
result which supports this contention.

For a reflexive A -module M, we define the 'hyperbolic space' Ha(M) to be the module
M © M" equipped with the a-sesquilinear form h given by

The coset of h defines a quadratic form 6M in Q(a u){M ® M*). The bilinearization of
dM is given by

and Ab: M ®Ma->(M@Ma)a = Ma®(Ma)a

can be expressed as Ab(p,q) = {q,hua>MiJjp)) which, by the remark above, is (for M
reflexive) the natural isomorphism. We now give our result (see also (7), 4-5).

THEOREM 3. Let 6 be a non-singular (a,,it.)-qtiadratic form on M. Then

(M, 6) ® (M, - d) s (M ® M«, 6M).

Proof. Let <j> represent 6. We define/: M ® M^-M © Ma by

f(m,n) = (TO — (Abe)~
1{A(f)){m — n),Abe(m — n)).

Then h(f(m,n),f(m'>')) = <p(m-n,m') + Tu(0)(m-n,n')

as is seen after a little calculation, and this differs from (f>{m,m') — <f>(n,n') only by

for ifr((m,n),(m',n')) = <j>{n,m' — n').

Thus / takes one quadratic form to the other. I t follows, since each quadratic form is
non-singular, tha t / i s an isomorphism (alternatively, this can easily be seen directly).

Observe that the corresponding result for R{a U)(M) is false even in the elementary
case of forms over the field with 2 elements (or indeed, also over Z) with a = identity,
u = 1. For with H(M), and hence with any submodule or summand, be(x,x) is always
zero (even). But the non-singular form defined on A by b(x,y) = xy does not share
this property. In the terminology of Bass (2), the hyperbolic functor is cofinal, but
the corresponding functor to reflexive sesquilinear forms is not.
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