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INTRODUCTION

Tris monograph was originally planned as a series of papers,
the first of which has already appeared, namely [11]. The
nature of the subject, however, along with the length of the
treatment, made it seem more advisable to rearrange the
work in book form. The material of {11] appears in a modified
form in Chapters I-IV of this monograph.

The main theorems whose proofs are given here were fizst
formulated by Lefschetz in [9], and have since turned out to
be of fundamental importance in the topological aspects of
algebraic geometry. These theorems may be briefly described
as follows. Let V be a non-singular »-dimensional algebraic
variety in complex projective space, and let ¥V, be a non-
singular hyperplane section of V. Then Lefschetz’s first main
theorem states that all cycles of dimension less than r on V
are homologous to cycles on V,. Now V, may be taken as a
member of a pencil of hyperplane sections of ¥, a pencil which
contains only a finite number of singular sections. Lefschetz’s
second main theorem, interpreted in terms of relative homo-
logy, shows how to obtain a set of generators for H,(V,V,),
one of which is associated in a certain way with each of these
singular sections. The third main result of Lefschetz concerns
the Poincaré formula, which describes the variation of cycles
of V4 as this section is made to vary within a pencil of sections.

The proofs of these theorems are fairly elaborate and involve
a considerable amount of verification of intricate detail. In
view of this, I have set apart some of the more complicated
pieces of working in sections or chapters by themselves,
introducing the actual details of the proofs by geometrical
descriptions, sometimes aided with diagrams. Thus a des-
criptive outline of the proofs of the main theorems may be
obtained by reading Chapter I, §1 of Chapter II, Chapter II1,
Chapter IV, Chapter VI and the first four sections of Chapter
VIII. Throughout the book singuiar homology theory will be
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viii INTRODUCTION

used, and the coefficient group will be the group of integers,
except in Chapter VIII.

I conclude this introductory note with some remarks on
other work in this field. Zariski in [13] gives a detailed
description of the work [9] of Lefschetz, in so far as it concerns
surfaces. In [3] Chow, discussing a variety of any dimension,
obtains a result for the fundamental group similar to the
first main theorem of Lefschetz stated above. A different
formulation of the theory, in terms of cohomology and making
use of the technique of spectral sequences, is given by Fary
in [5]. The theorems as stated in the present monograph are
treated essentially from a geometrical point of view, but it
will be realised that there is a close link with the trans-
cendental theory of algebraic varieties. For a discussion of
the relationship between the two approaches, see Hodge [7].



CHAPTER I

LINEAR SECTIONS OF AN
ALGEBRAIC VARIETY

1. Hyperplane sections of a non-singular‘variety

The main tool in this work is the fibring of a variety by
linear sections. As a preparation for this, some results will be
worked out concerning the linear, and, in particular, the
hyperplane sections of a non-singular variety W defined over
an arbitrary field k-of characteristic zero and contained in
projective n-space. It will be assumed that W is of dimension
r and is absolutely irreducible.

Let L" be the projective space containing W and let L'* be
the dual projective space, that is to say the space whose
points represent the hyperplanes of L", the hyperplane with

nt+l

equation Zl v,X, = 0 being represented by the point (v) =
(vy, 04, ...,v,,1). For convenience the hyperplane represented
by the point (v) of L'* will be called the hyperplane (v).

The hyperplane (v) will be called a tangent hyperplane to
W at the point (z) = (z,, z,, . . ., Z,4,) if and only if it con-
tains the tangent linear variety 7'(x) to W at (z); since W
is non-singular, 7'(z) exists for all () on W. Note that this
concept of tangent hyperplane reduces to the usual one when
W is a hypersurface of L". ‘

If (2) is a generic point of W and (v) is a generic tangent
hyperplane to W at (z) (that is to say a generic hyperplane
passing through 7T(z)), then (v) has a locus W’ in L. W’ is
an absolutely irreducible variety of dimension not greater
than % — 1 (in other words it cannot fill the whole space L.
Also it is not hard to see that every hyperplane (v') which is
a tangent hyperplane to W at some point is a specialization
of (v) over k. W’ is called the dual of W.

Since W is non-singular, it follows easily by t&kmg a

1



2 HOMOLOGY THEORY ON ALGEBRAIC VABIITIHS'

suitable affine model and using the Jacobian criterion for a
gingularity, that (v) is a tangent hyperplane to W at a point
(z) if and only if () is a singularity of the intersection (v) N W.”
Thus W' represents the set of hyperplanes whose sections with
W have at least ore singular point. The fact that the dimen-
sion of W’ is not greater than n — 1 can therefore be stated
as follows:

LEMMA a. A generic hyperplane of L* cuis W in a non--
singular variely.

Combining this with the fact that a generic hyperplane |
section of an absolutely irreducible variety is absolutely
irreducible, it follows at once by induction that:

Lemma b. The intersection of W with a generic linear variety
of any dimension is non-singular.

Consider now a generic pencil IT of hyperplanes in L"; that
is to say, the set of hyperplanes corresponding by duality to
the points of & generic line [ in L'*. If the dimension of W’
is less than n — 1, [ will not meet W’, and it will follow that
all the members of II will cut non-singular sections on W. If,
on the other hand, W’ is of dimension n — 1, ! will meet W’
in a finite number of points all simple on W’. Now a classical
argument shows that, if (v) is a simple point of W’ (assumed
of dimension # — 1) then the tangent hyperplane to W’ at
(v) corresponds by duality to the point (which is consequently
unique) at which (v) is a tangent hyperplane for W. In other
words if (v) is a simple point of W', the intersection C)Xal 4
has exactly one singular point. This argument applies to each
 intersection of / and W’. And so, summing up:

Lemma c. A generic hyperplane pencil I sn L* either cuts
all non-singular sections on W or cuis at most u finste number
of singular sections each of which has exactly one singular point.

2. A family of linear sections of W
It will turn out later in this work that the cases in which
the dimension of W’ is less than or is equal to # — 1 usually

require separate attention. Until further notice, then, it will
be assumed that the dimension of W’ is exactly n — 1.
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Let L be an (s — 1)-dimensional linear subspace of L", and
let A denote the family of all s-dimensional linear spaces
through L. The members of A can be set in one-one corre-
spondence with the points of an (n — s)-dimensional projective
space L, In fact, for the sake of definiteness it will be
assumed that L, is a subspace of L” not meeting L and each
member of A corresponds to the point in which it meets L.

If, now, L is a generic (¢ — 1)-space it is clear that a generic
member of A is actually a generic s-space in L*, and con-
sequently cuts a non-singular section on W. Also the con-
ditions for a linear variety to cut W in a singular section are
expressible (using the Jacobian condition) by polynomial
equations in the coefficients of the equations of the linear
variety. It follows at once that L can be chosen with equations
having coefficients in k in such a way that the generic member
of A cuts a non-singular section on W. And in addition, the
members of A cutting singular sections on W will correspond,
in the manner just described, to the points of a bunch of
varieties I' in L,

It will now be shown that the bunch I' consists of exactly
one absolutely irreducible variety, if L is suitably chosen
(always under the assumption that W’ is of dimension n — 1).
Let L’ be the linear (n — 8)-dimensional variety in L’* which
corresponds by duality to L. It will be assumed that s satisfies
the inequality n — r <8 <n — 1. This condition excludes
the case in which A is a hyperplane pencil, when T reduces to
a finite set of points, and also ensures that the sections of W by
members of A will be varieties of positive dimension, and not
simply finite sets of points. If L, and so L', is generic, the inter-
section W’ N L’ will be an absolutely irreducible variety not
lying entirely in the singular variety of W', and the condition
for this not to happen is a set of polynomial equations in the
coefficients of the equations of L. It may therefore be
assumed that L is chosen with equations over k in such a way
that, in addition to satisfying the conditions already laid on
it earlier in this section, the intersection L' N W’ is absolutely
irreducible and has a generic point which is simple on W’'.
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Let (v) be a generic point of L' N W’ over k. Since (v) is
gimple on W', the tangent hyperplane to W’ at (v) is defined,
and, a8 pointed out in §1, corresponds by duslity to the
singular point of the intersection of W and the hyperplane
(v). Let this singular point be (z); then clearly the ratios of
the homogeneous coordinates z,, Zy, - : - , Z,4, are in k(v), the
field generated over k by the ratios of the v. Let (y) be the
intersection with L, of the linear s-space L(x) joining L and
the point (). L(x) is a member of A. Also, since (v) is &
point of L', the hyperplane (v) contains L, and (z) too, by the
definition of (z), and hence L(z). But (z) is singular on
(v) N W; and so L(z) cuts W in a variety having (z) as a
singular point. From this it follows that (y) is a point of I'.
On the other hand it has been mentioned that k(x) C k(v);
- and sinoe (y) is the intersection of L(x) and L (which can be
assumed to be defined over k), k(y) C k(z). Hence the ratios
of the coordinates of (y) are in ¥(v), which is a regular exten-
sion of k (since W’ N L’ is absolutely irreducible) and from
this it follows that k(y) is a regular extension of k. Thus (y)
is the generic point of an absolutely irreducible variety Iy,
and from what has been said it follows that I'y C T'. :

It will now be shown that I'y = I. Let (y') be any point of

I'; it is required to prove that (y') is in Iy, that is to say,
that (y’) is a specialization of (y) over k. (The term specializa-
tion here means the specialization of the ratios of the coordi-
nates rather than of the coordinates themselves.)

The definition -of I' implies that, since (y’) € I', the linear
s-space L(y') joining L and (y’) cuts a singular section on W.
Let (2') be a singular point of the intersection L(y') N W.
Consideration of the Jacobian condition for a singularity
shows at ence that there is at least one hyperplane (v) con-
taining L(z') and outting on W a singular section having a
gingularity at (z’). Inother words, (v') is a tangent hyperplane

to W at (2’). It is not hard to see from this that (v, 2’) is a
specialization of (v, ) over k; and so (z') is a specialization of
(z). On the other hand, (y) is the intersection of L, and the

“join of L to (z) while (y’) is the intersection of L, and the
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join of L to (z'), from which it follows at once that (2', y') is
a specialization of (z, y) over k. In particular. (y’) is a speciali-
zation of (y). (') is any point of T', and so it has been shown
that I' C I'y. It is already known that rycr and go I'y =

I', as was to be shown.

I has thus been shown to be an absolutely irredueible
variety in L,, (y) being a generic point. It will now be checked
that, if L is chosen suitably, the linear s-space joining L and
(y) cuts on W a section having exactly one singular point.
This will b® proved with the aid of the following lemma:

Lemma d. If W is a variety of projective n-space L* with a
dual W’ of dimension n — 1, and if H is a generic hyperplane of
L», represented dually in L'™ by the point H', then the dual of
W N H is the cone of tangent lines from H' to W'.

Proor. Let (z) be a generic point of W N H; () is of
course, at the same time, a generio point of W. Let Ty(x) =
T(x) N H; here T(x) is the tangent linear variety to W at
(x) and it is easy to see that 7'(x) is the tangent linear variety
to W N H at this point. Let {v,) be a generio tangent hyper-
plane to W N H at (z). This means that (vy) contains T'g(z).
It is then clear that every hyperplane of the pencil determined
by H and (v,) contains T'y(x), and is therefore a tangent hyper-
plane to W N H at (x). In other words, the line in L™
joining H’ to the point (v,) lies in the dual of W N H. The
latter variety is therefore a cone of vertex H’.

On the other hand, the pencil determined by H and the-
hyperplane (v,) contains exactly one hyperplane (v) which
contains 7'(z); namely the hyperplane determined by the
intersection H N (v,) and a point of 7'(z} not on that inter-
gection. (v) is then a point of W’. If it is a simple point then,
a8 has already been remarked, the tangent hyperplane to W’
(supposed to be of dimension » — 1) at (v) corresponds by

" duality to (z). But, since () is in the hyperplane H, it follows
that the tangent hyperplane to W' at (v) passes through H’.
That is to say, the join of H' and (v), or H' and (v,), is &
tangent line to W', provided that (v) is simple on W’. It has
thus been shown that the generic generator of the cone dual
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to W N H is either a tangent line to W' or the join of H' to &
singular point of W’.

The proof will be completed by showing that any tangent
line to W’ from H’ lies in the dual of W N H. To do this,
let (v) be the point of contact of some tangent line to W’
from H’, (v) being, of course, simple on W’. Then the hyper-
plane (v) cuts on W a section with just one singularity (z),
namely the point corresponding by duality to the tangent
hyperplane to W’ at (v). Then the hyperplane (v) contains
T(z), and so, if (w) is any point on the join of J’ and the
point (v), the hyperplane (w) will contain the intersection of
H and the hyperplane (v), and so will contain H N T'(z) =
To(x). Thus the tangent line from H’ touching W’ at (v) is
contained in the dual of H N W. This completes the proof of
the lemma. ‘

The consequence of this lemma which is wanted for the
present purpose is thaj the assumption that W’ is of dimension
n — 1 implies that the dual of H N W is also of dimension
n — 1. Also it is clear that the lemma, and so this corollary
of it, will hold for a non-generic H, just so long as the inter-
seotion H N W is absolutely irreducible, and this is true
provided that the coefficients of the equation of H do not
satisfy certain polynomial equations.

Repeated application of the result just proved yields the
following: '

Lemma e. If W’ is of dimension n — 1 and L, is a linear
space whose intersection with W s absolutely srreducible, then
the dual of W N L, 18 of dimension n — 1. -

Return now to the family A of s-spaces through L in L®,
and in particular to those members of A corresponding to the
points of the variety I'. It is easy to see that L can be chosen
80 that, in addition to satisfying the conditions which have
already been required of it, a generic linear (s + 1)-space L,
through L ocuts W in an absolutely irreducible non-singular .
variety. Lemma e then applies to W N L,, which has thus
an (n — 1)-dimensional dual. By Lemma o, a suitably chosen
hyperplane pencil cuts W N L, in at most a finite number of
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singular sections, each with exactly one singular point.
Moreover it is not hard to see that a pencil whose axis contains
L will do, provided that the equations of L do not satisfy
certain polynomial equations, and it will now be assumed that
they do not. Finally it is clear that the members of this
pencil cut L, in members of A corresponding to a generio
line in Ly Such a line therefore cuts I' in a finite number- of
points, each corresponding to a member of A cutting W in a
section with just one singularity. Each of these points on
T is generic on I', and it has, incidentally, been shown that
I is of dimension # — 8 — 1. Summing up now all that has
been proved:

TaEOREM 1. If the linear (s — 1)-8pace L s sustably chosen,
ifn —r <s<n—1,and ¢f W i3 of dimension n — 1, then
I', whose poinis correspond to members of A cutisng singular
sections on W, is an absolutely irreducible variety of dimension
n — & — 1 (i.e. a hypersurface of the space L), and a generic
point of T corresponds to a member of A cuiting on W a section
with just one singularity.

3. The fibring of a variety defined over the complex
numbers

The notations of §2 will still be used, with the exception
that W will now be replaced by an irreducible non-singular
variety V defined over the complex numbers. Let V be of
dimension 7, and for the moment assume that the dual of ¥V
is of dimension n — 1. Let L be a linear (s — 1)-dimensional
space, whose equations have complex coefficients, chosen in
one of the following ways. Either s =n — 1, and L is the
axis of a pencil II of hyperplanes satisfying Lemma ¢ in
relation to V. Or n —r <s <n — i, and the family of
s-spaces through L satisfies Theorem 1 in relation to ¥. Note
that in the first alternative L, becomes a linear 1-space, that
is, topologically speaking, a sphere and " becomes a finite
set of points.

Some terminology and notation will now be introduced. The
points of L, not on T' will be called ordinary points, while
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those of I' will be called special (these terms being used in
both cases, s =n — 1 and ¢ <n — 1). If p is any point of
L,, ordinary or special, V(p) will denote the section out on
¥ by the member of A corresponding to p. Also if 4 is any
set of points on L, V(4) will denote the union of all the
V(p) for p € A. P will denote the intersection L N\ V. L can
be chosen, simply by ensuring that the coefficients of its.
equations do not satisfy certain polynomial equations, so that
P is non-singular. It will be assumed that this choice has
been made. Note that this implies that any singularities of
any of the V(p), p € T, will certainly not lie on P.

The object of the present section is to examine V(K), where
K is a subset of L, consisting entirely of ordinary points. The
main result is that V(K) bears a close relation to a certain fibre
bundle, the sections ¥(p) for p € K corresponding to the fibres.

It will be convenient for this purpose to introduce a special
coordinate system in L*. Complex homogeneous coordinates
(23, 23, - - ., 2,4,) Will be chosen in L* in such a way that the
equations of L are 2z, =2z3=...=2, ,=2,,,=0. The
members of A not lying in the hyperplane z,,, = 0 will then
have equations of the form z, = [z,,1, $ =1,2,..., % — 8.

‘Moreover, in discussing any particular member of A, corre-
sponding say to p € Ly, it can be assumed that the coordinates
are chosen in such a way that no member of A corresponding
to a point near p lies in z,,; = 0. For discussing such s-spaces
through L, it can therefore be assumed that the homogeneous
coordinates are normalized with z,,, = 1. The members of A
will then have equations z, = {,,4 = 1,2,...,n — s.

With the arrangement of coordinates just made, z,,
Zy .. ., Z,_, &N be taken as affine coordinates on Ly, Andso
the section of V by the s-space z, ={,,s =1,2,...,n —ag,
can be written as ¥V({,, {5, .. ., {,-,) or more briefly as V({);
this is simply a modification of the notation already introduced
for such sections.

Now V, being a non-singular algebraic variety in complex
Projective space, is a eompact complex analytic manifold, and
80 also a real analytic manifold. And since an analytic
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Riemann metric can be constructed on a complex projective
spaoce it follows that the same is true of ¥. Assume then that
V is given a Riemann metric whose coefficients in terms of
any local coordinate system are real analytic funotions of these
coordinates. Using this metric, geodesios can be constructed
on V.

The section V({), for an ordinary point ({) of L,, is &
compact submanifold of V of dimension 2(r — n 4 8), and so

" a sufficiently small neighbourhood B of V({) may be entirely

filled by geodesic arcs orthogonal to V({), in such a way that
the union of points of all the ares through any point of ¥({)
is an open (2n — 2s)-cell, and through each point of B — V({)
passes exactly one such arc. Modifying B if necessary it can
be arranged that all the geodesic arcs in question are of
length & say. B thus has the structure of a fibre bundle of
base V({) and fibre a (2n — 2s)-cell; the fibres in B are the
(2n — 2s)-dimensional surface elements formed by geodesics
normal to V({) at points of V(). If attention is to be drawn
to the base of B and the radius of its fibres, it will be denoted
by B(, 8), and will be called the normal bundle to V({) of
radius 4. (For further details concerning the normal bundle
of a submanifold in a given manifold see Cairns [2].)

Asgociated with the idea of the normal bundle to V() is
the idea of a normal neighbourhood of a point p on ¥V ({).
Here V(!) may be a singular section of ¥, with ({) € T, but p
must be a non-singular point on it. Let U be any neighbour-
hood of p on V({) such that all points of U are non-singular
on ¥({). Then a normal neighbourhood of p in V is the point-
set union of all the geodesic arcs of some fixed length. &
normal to V({) at points of U. & is called the radius of the
normal neighbourhood. If W is a normal neighbourhood of
p on V() constructed over the neighbourhood U in ¥({), then
W is the topological product of U and an open (27 — 2s)-cell.
In fact, if (£) denotes an admissible coordinate system around
p on V({), then there is a set of admissible coordinates in W
of the form (£, u), where (u) = (uy, ©y, . . ., %g,_,,) specify the
displacement from V({).
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K being a set of ordinary points en L,, the next step is to
construct & bundle B({, 4(f)) for each ({) € K. It will be
shown that, for (z) sufficiently near ({) on L, V(2) is an
analytio cross section of B({, 8({)). This is to be done for
each ({) in K. K will thus have a covering {N,} such that, for
(2) € N‘, V(z) is an analytio cross-section of B({, 8({)). The
idea is then to regard V(X,) as obtained from F({) X N‘ by
compressing the subset P X N, into P. That is to say, for
each ({) a mapping will be constructed of V(1) X N, onto
V(,), and finally the sets ¥({) X N, will be put together
form a fibre bundle X(K) over K as base in such a way that
the mappings just mentioned fit together to form a continnous
mapping y : X(K) — V(K). The essential property of ¢ will
be that it is & homeomorphism if P is removed from V(K)
and from each fibre of X(KX). The details of the operation
just described will now be carried out in the following sequence
of lemmas and theorems.

LzMma a. (1) Let p be a non-singular point of V({) (({) not
necessarily am ordinary point) not on P and noton z, ., = 0, the
equations of the members of A being z, = {2, ¢+ =1,
2,...,n — 8. Then complex local cocrdinates on V, regarded as
a complex analytic manifold, can be chosen around p to include
21, 29y o o oy 2q_y; herE 2., 18 NOrmalized to equal 1,

(2) Let p € P. Then complex local coordinates on V around
p can be taken to snclude z,, 2,, . . ., 2,_, , 2,,,, 80Me coordinate
other than these being set equal to 1.

(3) In terms of the local coordinates of part (1) of thw lemma,
V(L) has, locally around p, the equations z, = {,; in terma of the
local coordinates of part (2) the corresponding local equations are
2, = [Z.,1, § running from 1 to n — s in each case.

Proor. This is an immediate consequence of the condition
for a point to be simple on a variety along with the implicit
function theorem.

If p is a point not on P and if p is a simple point on V({),
where () is any point of L, then, in the first place, the above
lemma implies that there is a system of real local coordinates
around p of the form (z, y) = (%4, Zg,. .., Zas—g0 Y1> Y3 -« + 5
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Yar—s0s9s) Where 2, = Zg, ; +124,§=1,2,...,0 — 8. In the
second place, it has already been seen that,-in a normal
neighbourhood of p, there are local coordinates of the form
(ey “) = (5, Uy Ugy oo o “’h—!:)- Then:

Lemma b. If pe V), p¢ P, and (z, y), (§, u) are the
coordinate systems just mentioned, then (£, z) t8 also an admissible
coordinale system around p.

Proor. The values of (&, x) for a point ¢ near p are under-
stood to be calculated by noting on which section V(z) ¢ lies,
this giving the values of the z,, and then taking as values of
(&) the coordinates of the foot (on ¥V({)) of the geodesic arc
through ¢ normal to V(). The proof may be carried out by
writing down the differential equations of the geodesics in
terms of the local coordinates (z, ) and considering as initial
conditions orthogonality to V({) at points near p on V({). If
8 denotes geodesic arc-length, these conditions allow the dz,/ds
to be given arbitrary values «,, «,, . . ., g,_, for 8 =0. As
usual in the construction of normal coordinates, the a8 (i = 1,
2,..., 2n — 2s) are the coordinates u, and the equations of
the geodesics may be written down as power series in the u,
with coefficients depending on the initial point on V(). If
this process is carried out explicitly, it turns out that the
condition of orthogonality to ¥({) implies the non-vanishing at
p of the Jacobian of the coordinates (£,z) with respect to (£, ),
and this gives the required result.

LrMMma c. Let p € P and let (¢, u) be a normal coordinate
system sn a normal nesghbourhood of p over some neighbourhood

on V(L), () besng any point of Ly. Then the linear section V(z)
has locally the equations '

u, = fi(&, x), t =12 ...,2n — 28,

where. the f, are real analyiic functions of their argumenis when
(&) s8 sufficiently near to ¢ on V(L) and (2) 12 sufficiently near to
({) on Ly, the x, being defined by z, = x5, _, + $2qy, j =1,
2,...,n —s.

Proor. Let complex local coordinates be taken around p
on ¥ asin part (2) of Lemma a (noting that the z, appearing
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there are not the same as those in the statement of this
lemma) and let ¥, ¥s, - - . , Y35—2.+9 be the real and imaginary
parts of the z, named there. Then the y, belong to a system of
real analytic coordinates around p. Part (3) of Lemma a
implies that, in terms of these local coordma.tes, the equations
of V(z) are:

Ysi—1 = Tai—1Ysn-2e+1 — TaYan-22+3

Yo = Ty 1Yan—20t+2 T T3 an-2041

where § =1, 2,..., n — &. Substitute for the y, in terms of
the coordinates (£, u); this is done by writing down the
analytical expressions for the geodesics normal to V({), para-
metrized by arc-length s, and introducing the u, &8 «¢ in the
manner indicated in the proof of Lemma b. If the equations
for V(z) obtained from this substitution are ¢,(&, u) =0,
t=12,..., 2n — 23, then the condition of orthogonality of

the geodesics to V({) implies that, for (z) sufficiently near to

(¢) in L,, the Jacobian a¢‘ is not zero at p. The equations
Uy

#, = 0 can therefore be solved for the u, to give the required
result. A

Levma d. If (2) ¢8 sufficiently near ({) on L, V(z) ltes
entirely inside the normal bundle B(, 8) for preassigned § > 0,
({) being an ordinary point of L,.

Proor. If the theorem were false there would be a sequenoe
(z'V), (2'), . . . of points on L, tending to ({) such that each
V(z9) contains a point p, outside B({, 4). The p, will have a
limit point p, necessarily outside B({, 8), and it may as well
be assumed that a subsequence has already been picked out
‘86 that p, tends to p as a limit. Take complex coordinates
around p including z,, 2,,..., z,_, (cf. Lemma a, (1)); this
can be done since p ¢ B({, ) and so » ¢ P. Then for suffi-

ciently large 1, the 2, 2, ..., z,_, coordinates of p,, namely
20, 2{", ov, 29, will tend to the corresponding coordinates

of p, na.mely {1, {a -+ {as 88 limits. This would imply
p € V({), which is a contradiction.
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TrEOREM 2. If (2) 18 sufficiently near the ordinary point ({)
of Ly, V(z) 18 an analytic cross-section of B(Z, 8). ’

Proor. To each p € V({) assign a neighbourhood U, in V,
as follows:

If p € P, U, is & normal neighbourhood of radius 4, in which
¥V(z) has, locally, the equations u, = f{P(§,z),1 =1,2,...°
2n — 28, the f{ being analytic in their arguments and the
point (¢, f?, f, ..., f#-s) lyingin U, for (§) € U, N V(§)
and the distance of (z) from ({) less than k,, say. (cf. Lemma.
o above.)

If p¢ P, let U, be a coordinate neighbourhood for local
coordinates (£, ) around p (cf. Lemma b above), defined by
making (&) lie in a neighbourhood of p on V({), and making
the distance of (z) from ({) on L, less than k..

By the compactness of V({), the covering {U, N V({)} may
be assumed to be reduced to a finite covering. Let k be less
than all the k,, now finite in number, and also so small that
V(z) C B({, 6) whenever the distance of (z) from ({) is less
than k (Lemma d).

Now for (z) at distance less than k from (), define the
mapping f,;: V({) — V(z) by making f,;(p) the point of
intersection of ¥(z) and the fibre of B({, é) through p. The
fact that f,;(p) is uniquely defined in this way (and this is
the main point of the theorem) can be seen at once by inspect-
ing a neighbourhood U, in which p lies, where U, is one of
the above constructed neighbourhoods. The analytic property
of f,; follows easily from local considerations in one of the U,

CoroLLARY 1. It follows at once from the above proof that,
for (z) suffictently near ({), f,; depends analytically on =z,
Zgy -« Loy g, the real and ¢ rmagmary parts of the coordinates of
(z) on Lo

CoroLLARY 2. If ({) and ({’) are ordinary points of L,, V()
and V(') are analytically homeomorphic.

For ({) and ({’) can be joined by a finite chain of neighbour-
hoods in each of which Theorem 2 can be applied.

Let V, be a fixed non-singular section of ¥V by a member
of A. By Corollary 2 of Theorem 2 there is an analytic
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homeomorphism ¢ : V({) - V,, where () is any ordinary
point of L,. Let = : B({, 8) — V({) be the projection mapping .
in the bundle B(Z, 8). By Theorem 2, there is a neighbourhood
N; of ({) on L, such that f,; is defined and analytic for
(2) e Ny. If ({') is & second ordinary point on L, define N
similarly and suppose that N; N N % . Take (z)e NN\ N,

-1
and define ¢y (z) = ymfy ;-

THEOREM 3. ¢y;(2) 18 an analytic homeomorphism of V4 onto
stself leaving P invariant, and ¢y (2, p), for p € V,, depends
analytically on the real and imaginary parts of the coordinates
(21, 29, . + 5 20-,) Of (2) S0 L,

Pnooxr This result follows at once from the analytxolty of

éc ¢; , m; and from Theorem 2 and its first oorollary

Let G be the group of all analytic homeomorphisms of ¥V,
onto iteelf leaving P invariant. @ can be made in & natural
manner into a topological group acting continuously on V.
Theorem 3 moreover implies that ¢;;- is a continuous mapping
of Ny N Ny into @. The functions ¢y for varying ({) and
({’) are now to be used as transition functions of a fibre bundle
with fibre ¥V, and group Q.

Let K be a subset of L, consisting entirely of ordinary
points, and let K be contained in the union of a collection of
nelghbourhoods of the type Ny, that is to say, such that f, -
is defined as in Theorem 2 for (z) € N;. For each pair ({),
({') such that N; N N, 0 K + 9, §,,. is & continuous mapping
of NNNN.NnK mto @, and it is easy to see that the transi-
tivity condition required of transition functions is satisfied by
the ¢,.. Hence there is a fibre bundle X(K) with base K,
fibre ¥, group @, defined by the covering {N; N K} of K and
the transition functions ¢, (cf. Steenrod [10]).

-In addition, since @ acts as identity on P it follows that
each fibre of X(K) contains a subspace homeomorphio to P
and that the union of these subspaces is homeomorphic to
K x P. This subspace K x P of X(K) will be denoted by
X‘(K). The main result already promised can now be proved: _

THEOREM 4. T'here is a continuous mapping v : X(K) —V(K)
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which acts as a homeomorphism on X(K) — X'(K), mapping
this set onto V(K) — P.

Proor. Take p € X(K) and let ¥V, X (N; N K) be a local
product representation of X(K), such that the projection (z)
of pisin N, N K. Then, using the maps f,; and ¢, introduced
above let p = (py, 2) € ¥y X (N; N K) and define y(p) =

fzt¢:(p°). It is not hard to see that y is continuous and is
independent of the particular choice of local representation
of X(K), on account of the special choice of transition
functions in X(K).

-1
Now restrict y to X(K) — X'(K). ¢; and f,, for fixed (2),
are both homeomorphisms and so if p ¢ X'(K), y(p)¢ P.

Define :plas the mapping g — (¢,m,q, z) where g € V(2) C B({,9).

It can again be checked that this definition of —{olm terms
of a local product representation of X(K) is actually a well
defined mapping of V(K) — P — X(K) — X’(K), is continu-
ous, and is the inverse of y.

-1

CoROLLARY. Since the restrictions of ¢, and f, to P are both
the sdentity st follows from the above proof that the restriction of
y to X'(K) = K X P is the natural projection on P.

Theorem 4 implies that a covering homotopy theorem holds
in V(K). The actual form in which this is to be used is the
following:

TurorEM 5. Let K and K' be subsets of L, consisting entirely
of ordinary points. Let f, and f, be homotopic mappings of K into
K',and let Fy: V(K)— V(K’) be a mapping which acts as the
sdentity on P, and 18 such that, for (z)e K, pe V(z), then
Fo(p) € V(fo(2z)). Then there exists a mapping F,: V(K)—
V(K'), homotopic to F,, and such that:

M Iff':KEXI—>K and F':V(K) X I+ V(K') define
the homotopies of fo and F to f, and F| respectively, then, for
(2) € K, the image under F' of V(z) X {t} i3 the sectionV(f'(z, t))
foralltel.

(2) F' beingasin (1), F'(q,t) =qforallge Pand all tel,
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Proor. The proof is a modification of the usual proof of the
covering homotopy theorem for fibre bundles. As in the proof
for bundles (cf. Steenrod [10]) the idea is to construct the
homotopy F’ in stages over a sequence of subintervals of f,
each stage being broken down into the construction over &
sequence of neighbourhoods covering K. The object is, of
course, to break the theorem down to a sequence of operations
over coordinate neighbourhoods, that is to say neighbour-
hoods on the base space over which the bundle is locally a
product. Here the N, correspond to the coordinate neighbour-
hoods. It is clear that each of the stages in the construction
of F’ can be carried out if the following lemma is true.

Lemma. Let N, and N, be two neighbourhoods on L, as
described before Theorem 3. Let A, B, B’ be subsets of N, such
that B is a relatively closed set of A and B’ 33 a relatively open
eetofA containing B and let F be a given mapping of A X I -
snto N .. Alsolet Fbea mapping of (V(B') x I) U (V(4) X {0})
- V(N ‘) with the property that Fy(V(z) x {t}), when
defined, is the section V(F(z,t)). Then F, can be extended to
a mapping F':V(A) X I - V(N,) with the same covering
property and with the property that ¥’ agrees with Fyon V(B) x I.
In addition, given that Fo(p, t) = p forall pin P and all t in
I, F' has the same property.

" The connection of this with the main theorem is that N, is
supposed to be one of a collection of such neighbourhoods
covering K, N, being one of a covering of K', 4 = KN N,.
and B’ is the intersection of K with members of the covering .
over which the covering homotopy has already been defined."
Also it is assumed that there is a second covering {U,} of K
with the property that U C N;. Bis to be the intersection
of K with the closures of those sets of this second covering
over which the covering homotopy has already been
defined.

Proor or LEMMA. Urysohn’s Lemma implies the existence
of a continuous real valued function ¢ on A taking values
between 0 and 1 and equal to 1 on B and to 0 on 4 — &',

" Now to define F'(p, t) for a point (p, t) of V(4) X I, suppose
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first that p ¢ P. Let p € V(z), and let F(z, t) = (z'). Then set
F'(p, t) =f,m.Fo(p, $(2)t); ¢(z) is defined here since
p € V(4),and so (z) € 4. The definition of F' is completed by
setting F'(p, t) = p if p € P. The various requirements on
F' stated in the lemma are trivially satisfied, except for the
continuity at points (p, t) where p € P. The continuity ab
such a point follows easily, however, from the fact that the
continuity of F, at a point (p, ¢) with p € P implies the
existence, corresponding to a preassigned neighbourhood U
of p, of a neighbourhood U, of p such that F'(p’, t') € U for
all p’e U, and all ¢'€l. This completes the proof of the
lemma, and so the sketch of the proof of Theorem 5.

4. Homology groups related to V(X)

The object of the present section is to compare ocertain
homology groups related to V(K), K consisting entirely of
ordinary points, with the corresponding groups related to the
bundle X(K). The following topological lemma will be useful
for this purpose, and also in later sections.

SHRINKING LEMMA. Let A be space and B a subspace, and
suppose that there 18 a famsly F of curves tn A satisfying the
following conditions:

(1) There is exactly one member of F through each posnt of
A — B.

(2) The curves are all to be homeomorphic images of the
snterval 0 <t < 1, and each curve is to have exactly one point
on B, namely that of parameter t = 0. Each point of B s to be
on at least one curve of F.

(3) The parameter value t(p) on the curve of F through p
(the curve may not be unique for p € B, but then t(p) = 0) is to
be a continuous function on A.

(4) For any p € A let U be a given neighbourhood of p and let
q be a point such that p, g lie on some curve of F with t(q) > t(p).
Then there 18 a nesghbourhood W of g and a number § such that
if 9’ is on @ curve of F through W and if |t(p’) — ¥(p)] < 8,
then p' € U.

Then under these conditions there is a homotopy of the identity
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map of A on stself into a mapping which carries the set for which
t(p) < } onto B, while leaving those points for which ¢(p) = 1
The idea behind this lemma is, of course, that the part of
each ourve of F from ¢ = 0 to ¢ = § is to be shrunk to the
point ¢ = 0 on B while the portion ¢ = } to ¢ = 1 is stretched
out. The proof consists of a straightforward verification that
such an operation can be carried out, and that it represents
" & oontinuous mapping of 4 X I — A as required. ‘
- The Shrinking Lemma will now be used to show that a
neighbourhood of P in ¥ can be retracted onto P in such a
way that, if a point is on V(z) for some (z) € L, then through-
out the retraction it remains in that same section V(z). To-
verify this, construot in each section V(z) geodesic arcs normal
to P in a neighbourhood of P, that is to say geodesic with
respect to the metric induced in V(z) by the metric already
selected on V. This is assumed to be done for each (z) € L,,
remembering that there are no singularities on any of the
¥(z) in a small enough neighbourhood of P. A compactness
argument shows that the family of arcs F so constructed of
length o, say, for sufficiently small o, entirely fills a neighbour-
hood P(s) of P. This is proved by noting that the equations
of the curves of F depend analytically, not only of the initial
conditions in each V(z), but also on the real and imaginary
parte of the coordinates of (z) on L,. This same point implies
by an easy deduction that the family F just defined can be
used for the Shrinking Lemma with 4 and B replaced by
P(c) and P respectively. The curves F are, of course, para-
metrized by arc-length from P. Summing up the result just
obtained: ‘
THEOREM 8. There is a homaolopy of the identity map of P(o)
- onlo siself into a mapping of P(c) onto stself carrying P(a/2)
inlo P, and leaving fized the points at distance o from P. Also
if ¢:P(c) X I— P(o) denotes the homotopy, I being the
snterval 0 <t < 1, then p € V(z) implies $(p, t) € V(z) for all
tel.
The first application of this theorem is to the proof of an
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excision theorem for sets of the type V(4) where A is a subset
of L,. For the purpose of the following theorem it is not
assumed that all the points of A are ordinary.

TaeoREM 7. Let A, B, C be three sets on L, such that
A D BD C and such that C is contained in the interior of B in
the relative topology of A. Then the snclusion mapping
(V(4 —C), V(B — C)) — (V(4), V(B)) induces ssomorphisms
of the corresponding homology groups. :

Pnoor Define 4’ =V(4), B = V(B)u (4’ n P(a/2)),

= FV(C), where P(c/2) is as in Theorem 6. By the excigion
theorem for singular homology groups,

H(4', B) >~ H(4' —C", B' —C')

for each ¢g. But, using Theorem 6, it turns out that
the pair (V(4), V(B)) is a deformation retract of (4’, B’)
and (V(A4—-C), V(B —C)) is a deformation retract of
(4" — ', B' — ("), whence the required result follows.

A second application of Theorem 6 will now be given, of
immediate importance in comparing homology groups associ-
ated with ¥(K) and X(K), where K is a set on L, consisting
entirely of ordinary points. The mapping v of Theorem 4 is -
a relative homeomorphism of the pair (X(X), X’(K)) onto the
pair (F(K), P), that is to say induces & homeomorphism of
X(K) — X'(K) onto V(K) — P. Now, in general, the singular
homology groups are not invariant under relative homeo-
morphisms. That is to say, it is not & priori evident that
H(X(K), X'(K)) =2 H(V(K), P) for all g. In this case, how-
ever, this isomorphism does hold, as will be shown by proving
that y is & relative homeomorphism of a special kind, to be
deacribed in the following lemma.

Lemma. Let A, B, C, D be four spaces, BC A, D C C and
let f A—»Cbeamappmgwhwhmdumahomeomorphumof,
A — Bonto C — D. Let U be a neighbourhood of B in A,
W = f(U) a neighbourhood of D in C suchithat BC U, D C W.
Fmallyawppoaethereuahomotopyofthcsdentuymapofthe
pair (4, U) onto itself inlo a mapping which carries U into B
and still acts as the identity on B, and a similar homotopy with
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A, B, U, replaced by C, D, W. Then f induces an ssomorphssm
H(A, B) =~ H,(C, D) for all q.

Proor. This is a simple consequence of well known proper-
ties of homology groups, namely:

H,(A, B) =< H(A, U) (Homotopy theorem)
~ H(A — B, U — B) (Excision theorem)
= B (C — D, W — D) (isomorphism induced by f)
= H(C, D) (reasoning as before).

The lemma just proved will now be applied to the com-
parigon of X(K) and V(K).
THEOREM 8. Let K be a set of ordinary posnis of Ly Then

H/(V(K), P) =~ H(X(K), X'(K)),
Jor all q.

Proor. To prove this, repla.oe A, B, C, D, f of the above
lemma by X(K), X'(K), V(K), P, y respectively, v being the
mapping of Theorem 4. The neighbourhood W of the above
lemma is to be replaced by P(¢/2) in the notation of Theorem
6, for suitable o, while U is to be replaced by the full inverse
image under y of W. There are two homotopies just as
required in the lemma. That concerning W has been estab-
lished by Theorem 6 (the mappings of that theorem being
extended to aot as the identity outside P(s)), while that
concerning U and X(K) is obtained in a similar way by
applying the Shrinking Lemma to the pair (¥ P(a), X'(K)),
noting that the family of ecurves constructed in P(c) for the
purpose of proving Theorem 6 is carried over into a suitable
family of curves in the neighbourhood of X’(K). Then the
required result follows at once from the lemma.

The result of Theorem 8 is not general enough for future use,
but will now be extended to a comparison of H, H(V(K), V(M))
and H(X(K), X(M) U X'(K)) where M is a subset of K.
It will be shown that, under suitable conditions, these groups
are isomorphic.
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THEOREM 9, Let M, U, K be three sets on Ly, K consisting
of ordinary points, such that M C U C K. Let M be closed in
‘K, U a neighbourhood of M in K and suppose that M 15 a
deformation retract of U. Then

H(V(M), P) = H(X(M) L X'(K), X'(K))

for all gq.
Proor. By the excision property of the relative homology

groups ,
H(X(M) v X'(K), X'(K)) = H(X(M) v X'(U), X'(U))

for all g, the excised set being X'(X — U) = P x (K — U).
By the hypotheses of the theorem there is a deformation
retraction of U onto M, which extends to a retraction of
X'(U) onto X'(M). Using Theorem 8 the result follows at
once. '

And now the result indicated before Theorem 9 will be
obtained, by examining the diagrams I and II on p. 22, where
the pairszo€ M, 2z, € K, M C K all fulfil the conditions imposed
on the pair M C K in Theorem 9. The rows and columns are
all exact sequences and commutativity holds throughout both
diagrams. ¥, is written for V(z,).- |

‘TrrorEM 10. The two diagrams I, I1 are isomorphic under
mappings induced by the mapping v of Theorem 4.

- Proor. The three pairs 2o M, 2,6 K, M C K are all suit-
able for the application of Theorem 9, and so, by that theorem,

H(X, X'(K)) o HyW, P)

for all ¢, where X can be ¥V, U X'(K), X(M) U X'(K) or X(K)
and W is, respectively, ¥V,, V(M) or V(K). When all these
isomorphisms are set up, an application of the “five Iemma.”
(cf. [4]) shows that the diagrams are isomorphic.

COROLLARY. In particular, under the conditions on M and K
in Theorem 9

H(V(K), V(M)) == H(X(K), X(M) v X'(K))
or all ¢. '
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CHAPTER II

THE SINGULAR SECTIONS

1. Statement of the results

The objeot of this chapter is to study a set of the type
V(K), where K may now contain special points. V(K) will
be even less like a fibre bundle than in the case where K is
restrioted to consist of ordinary points, and in fact the covering
homotopy theorem, Theorem 5, no longer holds. A special
form of covering homotopy theorem holds in the situation
now to be examined: namely, a retraction of K onto a subset
containing the special points of K can be lifted to a retraction
of V(K). This chapter will be occupied mainly by the proof
of this retraction theorem.

Let K then be a set on L, and let E be a subset of K such
that all the points of K — X are ordinary. Assume also that,
if (2) is a special point belonging to E, ¥(z) contains exactly
one singularity. The last condition could be dispensed with,
but is included because it makes some of the proofs easier
and because this is the only case which will actually be used
later. Finally it will be assumed that a family F of curves
is given in K with the following properties:

(1) Each member of F is a homeomorphic image of the
unit interval 0 < ¢ < 1 and the mapping of the interval into
K — E is real analytic for ¢ > 0 (that is to say, real analytio
in the sense of the real analytio structure of L,). Also each
curve of F is to have exactly one point on Z, namely the
point of parameter ¢ = 0. Each point of ¥ is to be on at
least one curve of F.

(2) If p € K — E, there is a neighbourhood U of p in which
there is an admissible set of local coordinates (in the sense of the
real analytic structure of L,) of the form (¢, z,, z,, . . ., ,,_4,),
where ¢ is as in (1), and the ourves of F through U are,
locally, the loci z, = ¢y, Z3 = ¢, ..., Zgn_3, = Cge_3,, Where

23
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“the ¢, are constants, a different set of constants belonging to
" each relevant curve.

Again stronger restrictions are being assumed than are
necessary; the assumption of analyticity for the curves of F,
rather than just differentiability is made to facilitate the
proofs, and is in any case sufficient for later applications.

(3) The family F is to satisfy the conditions for the Shrink-
ing Lemma, the sets A and B of that lemma being replaced
by K and E.

It is olear, of course, that some of the Shrinking Lemma
conditions are already implied by (1) and (2) above; (3)
ensures that conditions (3) and (4) of the Shrinking Lemma
are satisfied for pe K.

The idea now is to show that the family F can be lifted
into a similar family F’ in V(K) satisfying the oconditions of'
the Shrinking Lemma with 4 and B replaced by V(K) — P
and V(E) — P. To construct the family F’, consider any
ourve y € F. Let ({) be the point on y of parameter ¢{ = 0,
and let C({) denote the singularity on V({) if ({) is special.
Then V(y) — P — C({) is a real analytic manifold and the
V() for (z) € y form a family of submanifolds of which one
passes through each point. Construct, in V(y) — P — C((),
the orthogonal trajectories of this family of submanifolds. If
this is carried out for each y € F, a family F’ of analytic curves
in V(K) is obtained. Certain members of F' do not have
points defined on them for ¢ = 0, on account of the removal
- of singular points on sections V({) for ({) special. When this
defect has been remedied, as it will be in the course of the
proof of Lemma c of §2, F' will satisfy the Shrinking Lemma
oconditions as already indicated. More explicitly, the following
theorem will be proved:

TaEOREM 11. (1) The Shrinking Lemma holds for the family -
F', with A, B replaced by V(K) — P, V(E) — P, respect-
tvely.

(2) 1f p€ F, and U 18 a given neighbourkood of p, there 8a
“nesghbourhood U’ of p such that any curve of F’ meetmg U' lies
entirely in U.
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" The proof of this will be postponed for & moment. In the
meantime, an immediate consequence of Theorem 11 is:

TarorEM 12. Let K and E be as above; let Ko C K be the
subset for which t = 1 (¢ being the parameter on curves of F) and
let K, be the set for which t < }. Then there is a homotopy of the
sdentity mapping of V(E) onto stself snto a mapping which.acts
as identity on V(K,) and carries V(K,) onto V(E). Points of
V(E) are fized throughout the deformation.

Proor. By the first part of Theorem 11 along with the
Shrinking Lemma there is a mapping ¢ : (V(K) — P) X I —
V(K) — P, where I is the unit interval 0 < ¢ < 1, such that
é(p, 1) = p, all p, and ¢(p, 0) = p for pe V(K,) — P, and
é(p, 0) € V(E) for p € V(K,) — P. Now extend ¢ to points of
P x I by setting ¢(p, 8) = p foralt pe P and s € I. Part (2)
- of Theorem 11 implies at once that the extended mapping
¢ is continuous on V(K) x I, and so ¢ effects the required
homotopy. ’

Theorem 12 is the main result of this chapter; roughly
speaking it says that Shrinking Lemma conditions in the
pair K, E can be lifted to similar conditions in V(X), V(E),
and this is the restricted form of the covering homotopy
theorem which holds when singular sections of ¥ are involved.
The remainder of the chapter will be occupied with the
analytical details of the proof of Theorem 11.

2. Proof of Theerem 11

The proof of the second part of Theorem 11, which is a
rather elaborate computaticn, will be tackled first. To begin
with, some spebial coordinate systems will be set up. Let
g€ P, and let (&) = (&y, &5 ..., Zarias2a) DO & set of local
coordinates on V({) around ¢, where the ¢, vanish at ¢; here
({) is any point of L,, ordinary or special. Next, set up co-
ordinates (£,u), normal cocrdinates in & normal neighbour- -
hood of ¢ over a neighbourhoed of ¢ in ¥({). In addition (cf.
Lemma b, §3, Chapter I), around .any point near g but not .
on P there is a local coordinate system of the type (¢, ). By
Lemma c¢, §3, Chapter I, V(z) has locally the equations’

3
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u, =f(82),+=12,...,2n — 23 and these same equations
can be used to make the transition from the (£, u) system of
ooordinates to the (¢, ) system.

Now at a point p near g but not on P, if p € V(z) and
(%) € ¥, & curve belonging to the family F, the member of the
family 7 through p must be tangential to V(y) and orthogonal
to ¥(z). This condition implies that, in terms of coordinates
(¢, ) around p, the differential equations of the family F”’ can
be written in the form:

L@ ()
dioz |\ dz
dt

dejdt =dg,fdt, i =1,2,...,2n — 2,

where partitioned matrix notation is used; —- is the

o
(2n — 28) X (2r — 2n + 25) matrix whose 4j-th element is

g’% and (g—é) is its transpose, a gimilar notation being used in
g‘:;-; g, %c denote the columns of derivatives of the ¢, and z,
with respect to ¢; the matrix @ has 8s elements the coefficients
g,y of the Riemann metric on ¥V with respeot to the local
coordinates (£, u); and finally z;, = ¢,(),¢ =1,2,...,2n — 2s
are the equations of the curve y of F.

Using the equations u, = f,(¢, z), the g,, can be written as
analytio funotions of the £, and z,, The product of the first
three matrioes in (1) can then be written as a matrix H whose
elements A,, are analytio functions of the ¢, and z,, The values
of the h,, at ¢ will now be caloulated, the object being to show
that, at points near enough to g, the equations (1) can be
solved for the df /dt in terms of the dz,/ds.

Now V(l)is defined by 4, = 0,4 = 1,2,..., 2n — 2s. And
80, setting {, = @y, ; + fxy, it follows that the f; vanish when
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the z, are set equal to the corresponding a;, On the other
hand, if the &, are put equal to 0, for any values of the z,,
the u, will vanish. It follows that, when the f, are written as
power series in the £, and (z; — «,), every term must contain

0
a8 & factor (z; — a,)¢, for some ¢ and j. The matrices %’ 5’-;
are therefore both zero whenz;, — a;, =0(s =1,...,2n — 2¢),

& =00 =1,..., 2r — 2n + 28), and so, for these values of
the variables, H reduces to (¢i0), in partitioned matrix
notation, where g is the submatrix of @ consisting of the g,,
with ¢, j =1, 2,..., 2r — 2n 4 28, these elements being
evaluated at g. But since @ is a positive definite matrix, this
submatrix, being symmetrically situated, is non-singular. It
follows at once that, when the £,and the z, — «, are sufficiently
small, H is of the form (H,: H,), in partitioned notation,
where H, is non-singular. Hence the equations (1) can be
solved, the solutions being of the form

d&i 2n—28 dx’

a& = A

,i=1,2,...,2 —2n 4+ 2, (2)

where the a,, are analytio functions of the &, and 2z, these
solutions being valid for the £, and (z, — a,) sufficiently small.
Some further information on the a,, is available. For, when

the &, are all zero, the matrix —aix is zero, as has already been

pointed out. And when this happens, the last 2n — 2s
columns of H are zero. It follows that, when the £, are all
zero, the a,, vanish.

The phrase “sufficiently small” as applied to the £, and
z, — «, requires explanation at this point. The starting point
of this working was a set of normal coordinates in a normal
neighbourhood over a neighbourhood in ¥({). Points at which
equations (1) or their solutions (2) make sense must therefore
lie in a neighbourhood U, of ¢, which can be assumed to be a
normal neighbourhood. Suitable selection of U, will make the
§, sufficiently small for the solutions (2) to hold. In addition,
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the points in question can be represented in" a coordinate
system (£, z), where a point with the coordinates (¢, z) lies in
V(z), the z, being the real and imaginary parts of the z,. Thus
‘to make the z, — «, sufficiently small for (2) to hold, (2) must
lie in a sufficiently small neighbourhoed W; of ({) on L.
Now when (z) € Wy, the functions dz,/dt are bounded. And,
since the a,; are analytic for (£, z) € U, and (2) e W, and
since these functions vanish for §; = 0, + =1, 2, ...,
2¢ — 2n + 23, it follows that the a,, are bounded multiples of
2r—2n+2s oo .
& = 3| &| whenever (£, z) € U, and (z) € W,. That is to say,
1
there is & constant k; such that, for (¢, z) € U, and (2) e W,
%,
dt

<k (3)

The next step is to transform the inequality (3) into a
similar one, which however, does not depend on any partioular
coordinate system. Let (y) = (¥,, ¥y, - - -, ¥a) be normal. co-
ordinates on V around ¢. That is to say they are coordinates
in terms of which the geodesic arcs through ¢ have the
equations y, = 1,5, where s is geodesic arc length from ¢, and -
the 4, are fixed for each such arc. In addition, in terms of the
Y, the geodesic distance squared from g, namely s%, is a
quadratic function of the y, with constant coefficients.

On the other hand, at points of a curve satisfying the
differential equations (1), s is a function of the parameter f.

An upper bound for (g—:) / 8 will now be obtained for points
near ¢. A
In the first place, the y, can be written as power series in
the local coordinates (£, u) around ¢, and since s2 is a quadratic
function of the y,, it can he written as a power series in the
&, and u, all of whose terms are of degree at least two. It
follows that 2s(ds/dt) is a linear combination of the d¢,/dt
and the du,/d¢ with coefficients vanishing at . When these
coefficients are expressed back in terms of the y, they will
therefore be bounded multiples of s in a neighbourhood of
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q. In other words, in a suitable neighbourhood U, of ¢, da/dt:
is & linear combination Za,(d¢,[/dt) + Zb,(dw,/dt) where the a,"
and b, are bounded.

Assume now that the neighbourhood U, for which (3)
holds is in U,. Then |ds/dt| < Zja|(dg,/dt)| + Zib,] (du,fdt)| <

Tla k& + Z{b,l i(du,jdt). On the other hand |(du/dt)| =
| o d¢, of, dz,| | af, ! of é}’_fl
Rl AL R il bl

a
But the -a—':—: all vanish when the £, are put equal to zero, and
1

so in a neighbourhood of ¢ they are bounded multiples of
& Combining all the inequalities just established it follows
that, if (£, z) € U, and (2) € W, where U, and W, are suitable
neighbourhoods of ¢ and ({) respectxvely, then there is a
constant k; such that

|ds/d¢| < k. (4)

Finally, the £, can be expressed as power series in the y, in

a sufficiently small neighbourhood of ¢, and it can be assumed

that U, is small enough for this purpose. It follows at once

that, in U, ¢ is less than some constant nmltxple of s.

" Combining this with (4) it follows that, for each ({) € L,, there

are neighbourhoods U,  of ¢ and W, of ({) and a constant k;
such that :

id-?/dt‘ < ks,

where it is understood that ¢ is expressed as a function of ¢
along some curve of the family F’, that is, some curve
satisfying the differential equations (1).

But L, is compact, and so can be covered by a finite
number of neighbourhoods of the type W,. Then taking U
as the intersection of the corresponding finite collection of U
and k as the maximum of the corresponding finite collection
of k;, the following lemma sums up the result which has
been obtained:;

Lemma a. Let q be a point of P and let s denote geodesic arc
distance from q. Along a curve of F’, 8 13 to be expressed as a
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function of t. Then in a sufficiently small neighbourhood U of
g, there is a constant k such that |ds/dY| < ks.

The properties of the family F’ will now be deduced from
this lemma.

Lemma b. (1) If U is a neighbourhood of a point g€ P,
there is a neighbourhood W of q such that any curve of F' meeting
W lies entirely ¢n U.

(2) No curve of F’ has a limit point on P.

Proor. The first part is, of course, part (2) of Theorem 11.
To prove this result integrate the inequality of Lemma a,
namely, —ks < ds[dt < ks, obtaining

a(ty)e M0 < a(ty) < s(t))eHaTH, (5)

where ¢, and ¢, are two values of the parameter ¢{ on some
curve of F, s(t,) and s(t;) being the corresponding values of
8, and where it is assumed that the whole are ¢,¢4 on the ourve
in question lies in a sufficiently small neighbourhood U, of ¢
for Lemma a to apply. Assume for convenience that U, C U,
and that U, is a geodesic sphere about ¢ of radius p. Let W
be the geodesic sphere about ¢ of radius }pe*. Then, since
|ta — ta] <1, the inequality (5) shows that, if the point of
parameter ¢, on the curve of F' in question lies in W, then
this curve cannot leave U, and 8o lies entirely in U.

Part (2) of this lemma is an immediate corollary of the first
part. For suppose a ocurve 4 in the family F’ has the limit
point ¢ € P. Let U be any neighbourhood of q. Then if W is
constructed as in part (1) of this lemma, 4 must have a point
in W, gince q is a limit point of 4, and so 2 must lie in U. But
it is not possible for a curve to lie in every preassigned neigh-
bourhood of ¢, and so the lemma is proved.

This completes the proof of part (2) of Theorem 11, and it
remains now to prove part (1), namely that the family F”
satisfies the Shrinking Lemma conditions with 4, B replaced
by V(K -- P, V(E) — P. Condition (1) obviously holds.
Conditicn (2) requires checking, the following lemma giving
the required result:

LeMMA c. Every member of F' s either a homeomorphic
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cmage of the unit inferval 0 <t < 1, or can be made 8o by the
additton of the singular pomt on V({) for some special poini
() of E. When this adjustment has been made condition (2)
of the Slmnkmg Lemma holds for F' with respect to V(K) —

and V(E) —

Proor. Let C’ be the set of singular points on all the
sections V(z) for (z) € I' in the notation of §2, Chapter 1. It
has already been assumed that, for (z) e ' K, V(z) has
exactly one singular point C(2). 1t is clear that the orthogonal
trajectory construction makes sense on V(K) — P — C. That
is to say, certain of the members of F’, as already constructed,
meet V(E) at points not on C, and such curves are orthogonal
trajectories right up to ¢ = 0. Call the set of such curves Fy
and ‘let the remaining members of F' be called F, The
curves of ¥, are analytically homeomorphic images of the
interval 0 <t < 1. On the other hand, a curve y’' of F,
must lie in a set V(y), where y is a curve of F ending (fort = 0)
at a point ({) e I' N K and it is clear that ' must have some
limit point on ¥({). This limit point is not on P, by Lemma
b above, and is not on ¥ ({) — P — C({), since then y’ would
be in F;. Hence as ¢ tends to zero, the points of y’ tend to
the unique point C({). IfC({) is added to y’ this curve becomes
a homeomorphic image (not necessarily analytic at ¢t = 0) of
the interval 0 <t < 1. If all the curves of F, are treated in
this way, the required result is obtained, namely that every
curve of F' is a homeomorphic image of 0 <t < 1. The fa.ct.
that every curve of F’ has exactly one point on V() —
follows from the corresponding property of the family F. A
point p € V({) for ({) in E is clearly the end point of a member
of F if ({) i8 ordinary or if ({) is special and p is non-singular
on V({). Suppose that, for () special, the point C({) is not
the end point of any curve of F'. It would then follow that
V(z) for (z) on a curve of F ending at ({) would be homeo-
morphic to V() — C({), but this is impossible sinoe V(z) is
compact and V({) — C({) is not. This completes the verifica-
tion of condition (2) of the Shrinking Lemma.

Condition (3) of the Shrinking Lemma for F’ follows casily
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from the corresponding condition for F. Condition . (4) will
be shown to hold by means of the following.three lJommas.
Lemma d. Let p be any point of V(K) — P — C, where C i3
as in the proof of the last lemma. Let q bea pomt such that p, ¢
lie on some curve of F' with tg) = t(p). Then for any given
neighbourhood U of p there 15 a neighbourhood W of q and a
number 8 such that if p’ 18 on a curve of F’' meeting W and
(p") — #p)| <9, then p e U.
Proor. This is simply a statement of the properties of the
integral curves of a set of ordinary differential equstxons of the
first order and degree.
This lemma checks condition (4) of the Shrinking Lemma
for F' except when p € C. This case will now be dealt with in
two stages.
- LEMMA e. Define the mapping f: V(K) — V(E) as follows:
. f(p) = p if p € P; otherwise f(p) 18 the end point on V(E) of

any curve of F' through p (this curve only fasls to be unigye if
2 €C and then the definition gives f(p) = p unambiguously).
Then f is a continuous mapping.

Proor. Note first that Lemmas ¢ and d imply the continuity
of f at any point p such that f(p) ¢ C. Let f(p) = qeC; it is
required to prove that f is continuous at p. Let ® be the
filter of neighhourhoods of p in V(K). f(®) is the basis of a
filter on V. (Bourbaki [1], p. 40.) ¥ is compact and so f(®)
has an adherent point ¢’. If p € V(2), g€ V(L) it is not hard
to see that, by projeoting the family F’ onto the family F,
J induces & mapping f,: K — E such that fy(z) = ({). On
acocount of the given properties of F, the mappmg fo 18 con-
tinuous. It is then not hard to see that ¢’ € V({). The next
step is to show that ¢’ = ¢ = C({), the singular point of V().
Suppose that ¢’ 7 C({). If ¢’ € P there are neighbourhoods
U, and U, of p and ¢’ such that U, N U, = @ (for p ¢ P).
Then, by Lemma b of this section, there is a neighbourhood
U, of ¢’ such tha.t every curve of F’ meeting U, lies entirely

in U,. Hencef (U,) N U, = 0. If on the other hand ¢’ ¢ P,
still assuming that ¢’ 5% C({), the properties of the differential
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equatlons of F’, depend.mg analytmally on the local coordi-

. nates, lmply tha.t f(q )is a compact set in V(K) not oontalmng
P And a simple argument shows that there are neighbour-

-1
hoods U, of p and U; of ¢’ such that f (Uy) N U, = 9. But
U,e® and so ¢’ is adherent to f(U,;) and so f(U,) N U,

-1

contains a point ¢" = f(p’), p' € U;. Thus p’ef (Uy) N U,.
This contradiction shows that ¢’ ¢ C({) is impossible. Hence
f(®) has a unique adherent point C({) = ¢, and so f is con-
tinuous at p (Bourbaki [1], p. 92 and p- 52). This completes
the proof of the lemma.

Lemma f. Let U be a neighbourhood of C({) € C and let q be
some posnt on @ curve of F' ending at C(l). Then there i a
nesghbourhood W of q and a number 8 > 0 such that if a point
9’ lies on a curve of F' through W and t(p') < 8, then p' € U.

Proor. Let U’ be a second neighbourhood of C({) such that
0’ C U. Then by the last lemma, there is a neighbourhood
W of g such that all curves of F’ meeting W end in U’. Suppose
now that, for every number 4, there is some curve of ¥’
through W containing a point of parameter <4 outside U;
that is, suppose that the present lemma is false. Then it may
be assumed, since the curve in question ends in U’, that for
each J there is a point p(d) of parameter <4 lying on the
frontier of U. As d tends to zero the points p(8) will have some
limit point p, on the frontier of U, and so not in P if U has
been taken small enough to begin with. Of course p, € V(E).
Take a neighbourhood U, of p, such that U; N U’ = @. Then
if U, is any neighbourhood of p,, there are curves of F’
through U, and ending in U’, namely curves containing points
9(4) for ¢ small enough; whereas, by Lemma e above it should
be possible to choose U, so that all curves of ' meeting it end
in U,. This contradiction proves Lemma f.

The verification of condition (4) of the Shrinking Lemma
for F’' is thus completed, and so Theorems 11 and 12 are
completely proved.



CHAPTER II1I

A PENCIL OF
HYPERPLANE SECTIONS

1. The choice of a pencil

The present chapter will be concerned with preparing the
way for the inductive proof of the theorems whose statements
were indicated in the introduction. The idea will be to discuss
the homology of ¥V modulo V,, where ¥V, is a hyperplane
section of V, by taking ¥, as a member of a pencil of hyper-
plane sections of V. The induction hypotheses will then be
applied to a pencil of hyperplane sections of V,, that is
sections of ¥V by linear (n — 2)-spaces. The choice of a
hyperplane pencil for this purpose requires a little care to
ensure that the induction hypotheses which are to be made
carry over properly from one dimension to the next. The way
of making this choice will be the subject of this first section.

Let L be a generic (n — 3)-space in L". By Theorem 1, the
set of (n — 2)-spaces through L cutting singular sections on
the non-singular variety V in L" is a one-dimensional
algebraic family whose generic member cuts a section with
exactly one singular point. If L, is a plane not meeting L,
the family A of (n — 2)-spaces through L can be para-
metrized by the points of L, (cf. §2, Chapter I). Those points
of L, ocorresponding to (n — 2)-spaces cutting singular
sections form a curve I" on L,. Also if C is the set of all points
of V each of which occurs as a singular point on some section
of ¥V by an (n — 2)-space through L, then C is a curve pro-
]ectmg on I' from L.

The following lemmas can easily be verified by mspectlon
of ¥V and of the section of its dual ¥’ by the plane dual to
L. Tt will be assumed for the remainder of this section that
V'’ is of dimension n — 1, so that its section by the dual of
L is a curve,

34
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LeMMa a. Through L there is just a finite number of
hyperplanes whose sections with V have singularsties at singular
points of C.

LeMMA b. There 18 at most a finite number of hyperplanes
through L having triple contacts with C.

LeMMA o. There t8 at most a finite number of poinis Q,,
Q,, . .., Q, on C such that the tangent to C at @ meets L.

The above lemmas will now be applied to the operation of
choosing a pencil IT of hyperplanes suitable for the purpose
of this monograph. Let « be the plane in L* dual to L, and
let = be the finite set of points on = consisting of the
following:

(1) Points corresponding to hyperplanes of L" through L
and containing the tangent linear variety to V at some
singularity of C (Lemma a).

(2) Points corresponding to hyperplanes through L having
triple intersections with C (Lemma b).

(3) Points on = corresponding to hyperplanes of L* con-
taining the tangent linear variety to ¥ at one of the points
Q:, @, - - -, @, of Lemma ¢. There can only be a finite number
of such points, since otherwise the section of V' by 7= would
have a line as component, which cannot happen since V'’ is
irreducible and is not a hyperplane.

(4) The intersections of = with the singular loous of V’.
There will only be a finite number of these since this locus has
dimension <n — 2.

Let L, be a generic (n — 2)-space through L in L*. Then
it does not meet C and the line ! in = corresponding to it by
duality does not contain any of the points of X as listed above,
Let IT be the pencil of hyperplanes in L™ with the axis L,.
The hyperplanes of II are parametrized by a single complex
variable 2, admitting the value co, that is by the points of a
complex projective line (topologically the Riemann sphere of
complex variable theory) and the section of ¥ by the hyper-
plane I1(z) of parameter z will be called V(z). Note that this
is the notation of §2, Chapter I, with L, A, L, replaced by
L,,I1 and a complex line. Then IT has the following properties:
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THEOREM 13. () The pencil 11 has at most a finite number
of hyperplanes culting singular sections on V, and each such’
section has evactly one singular point. The finste set of singular
points Cy, O, . . . , C, has no member on V N L,.

(b) If Ii(z) ss any hyperplane of Il cutting a non-singular
section V(z) on V, then the set of linear (n — 2)-spaces through
L in T(2) cuts a pencil of sections on V(z) only a finite number
of which have singwlarities. For generic 2, and 8o with only a finite
number of exceptions, each of these singular sections of V(z) will
Rave exactly one singular point, and this point will not lie on L.

(c) C, being the singular point on the singular seckion V(z,)
by a hyperplane of I1, C, i8 a simple point of C and the tangent
to C at C, lies in 11(z,) and does not mees L.

(d) II(z,) has a double sntersection with C at C,.

(e) There exvsts through each C, a hyperplane con:ammg L
whick cuts a non-singular section on V. ‘

"Proo¥. Most of this theorem is a consequence of the fact
that the line ! corresponding by duality to the axis of IT does
not pass through the points of X listed above under (1) . . . (4).
The inclusion of the set (4) in Z implies (a) in the present
theorem (of. proof of Lemma ¢, §1, Chapter I). (b) follows
from Theorem 1 and the fact that the (n — 2)-spaces through -
L and lying in & generic hyperplane through L correspond to
& generio line on L,, which meets the curve I in a fmite number
of points, each generic on I'. (c) follows from the inclusion
of (1) and (3) in Z, and (d) from the inclusion of (2) in X.
(e) can easily be verified directly.

A pencil II satisfying the conditions of Theorem I3 would
not be quite good enough for the subsequent working, as an
inductive argument is to be carried .out. It is, however, &
matter of routine verifications to see the following:

THeROREM 14. Let H,, H,, ..., H,.be n independent hyper-
planes in L. Then the pencil I, of axis H, N H, salisfies the
requirements of Theorem 13, taking HL N H, N H, a3 L. In
any hyperplane of Il,, with a finite number of exceptions,
Theorem 13 holds for the pencil I1, of (n — 2)-spaces with axis
H,NnH,n H,, the linear space H, N H, " H,N'H, being
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taken as L. In any member of Il,, with a finite number of
exceptions, Theorem 13 holds for the pencil I1; of (n — 3)-spaces
with aris HNnH,NnH,NnH, H NH,NH,NnH, N Hy
acting as L, and soon step by step. .

In addition H,, ..., H, may be specialized to hyperplanes
whose equations have complex coefficients, and, provided that
these coefficients fail to satisfy a finite number of polynomial
equations, Theorem 14 will still hold. '

It will be understood in future that the pencil II has the
properties of a specialization of II, of this type with L as the
(n — 3)-space H; N H, " Hy. In Chapter VII a further con-
dition will be imposed on II, but it is more convenient to
postpone the statement of it until it is actually needed.

2. Notation

In this section some notational conventions will be set up
which will hold for the rest of the work.

As above, V will be a non-singular r-dimensional algebraic
variety over the complex numbers in the projective n-space
L». No assumption will, however, be made as to the dimension
of its dual V’. At various points in the subsequent arguments
the two cases dim V' =n — 1 and dim V' < n — 1 will have
to be discussed separately. ’

IT will be a pencil of hyperplanes in L" as in Theorem 14
with axis L,, and L will be a linear (» — 3)-space in L,.
Members of I will be parametrized by points of a complex
projective line § (i.e. a 2-sphere). The notation of §3, Chapter
I, will be applied to the sections of ¥ by members of I1. That
is to say, V(z) is the section of ¥ by the hyperplane in I with
parameter z, and, if X is a set on 8, V(K) will denote UV (z),
the union being taken over all ze€ K. In particular Vo=
¥ (z,) will denote some selected non-singular section of V. The
values of z for which V(z) has a singularity, namely the special
points on 8, will be denoted by z,, z,, .. ., 2,.

On the other hand, the (n — 2)-spaces through L form a
family A as in §2, Chapter I, parametrized by the points of a
Plane L,. Itisnot hard to see that affine coordinates (z, w) can
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be introduced on L, in such a way that z is the parameter of the
pencil II. When this is done, using the notation of §3, Chapter
1, the section of V by the member of A corresponding to the
point (z, w) of L, will be denoted by V(z, w). Special points
on L,, as seen in Chapter I, form a curve I'. It should be
noted that the term ‘‘special point’” generally needs the
qualification “on 8"’ or ‘“‘on L,,” but the meaning will usually
be clear in any given context.

A notation for sets of sections by members of A must be
introduced to avoid confusion with sets of sections by members
of I1. If H is a set of values of z and K is a set of values
of w then V(H, K) will denote U¥(z, w), the union being
taken over all ze H and we K. This notation will not,
of course, cover all possible sets in L, but it is sufficient
for all the sets actually to be used in what follows. One
particular section will be given & name of its own; namely
V n L, will be denoted by P (this is the notation of §3,
Chapter 1, applied to the family II rather than to A).

As in §1, above, C will denote the set of all singular points
on all sections V(z, w) with (z, w) € T'; C is a curve projecting
on I' from L. Points of C will generally be denoted by the
letter C with subscripts, superscripts or primes attached, as
was done, for example, in Theorem 13, where C, denoted the
gingularity on V(z,).

It will often be convenient to regard the coordmate w on
L, as the parameter of a second hyperplane pencil I1’ in L*,
When this is done, the section of ¥V by the hyperplane of
parameter w in I1’ will be denoted by V'(w).

3. Reduction to local theorems

It will now be shown that one of the principal aims of this
work, namely to study the homology groups H,(V, V,), can
be reduced to the consideration of neighbourhoods of the
singular points on the singular sections V(z,),s =1, 2,...,k,
of ¥V by hyperplanes of the pencil II. The first stage in this
reduction is to apply the theory of Chapters I and II to the
fibring of V by the sections cut by II. In this section it is
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assumed that the dual of V is of dimension n — 1, so that
there are singular sections by hyperplanes of II.

Let K be a set on S which is either the whole of 8 or is &
closed disc on S containing the special points z;, 24, .. ., 2,in
its interior and no special point on its circumference. Assume
also that the ordinary point z, is an interior point of K. Let
A, be an arc in K joining z, and z, (¢ =1, 2, ..., h), 4, being
analytically homeomorphic to a closed line interval and no
two of the 4, having any point except z, in common. Let K|
denote the point-set union of the 4,, Cover K by means of

closed sets U, and U, where U, is a neighbourhood of K,

d K,NU = @; a simple way to do this is to take U, as
the union of closed circles of some fixed radius with centres
at all points of K, and U as the complement of a similar union
of open circles of smaller radius. Applying Theorem 7 to the
present situation, the following result is at once obtained:

Lemma a. H(V(K), V(Ugy)) =~ H(V(U), V(Uy N U)), for
all q.

An immediate consequence of this is:

LEMMA D. 1f Hy_o(V g, £°) 18 2670, ReR 12,7 \ar )y ¥ (U o)) 10
zero.

Proor. For, by the corollary to Theorem 10,

HyV(U), V(Uy 0 1)) == H,(X(V), X(U, N U) v X'(V))

for all . Now if K is not the whole sphere S, U is homeomorphic
to an annulus and Uy N U to a narrower annulus round the rim
of U,and a fairly trivial sequence of retraction operations shows
that H (X(U), X(U, N U) U X’(U)) is zero for all ¢. On the
other hand, if K =8, U is a circular disc with U, N\ U an
annulus running round its circumference. In this case it is
not hard to see that H (X(U), X(U, N U) v X'(U)) =
H,_ 4V, P), for one is essentially dealing here with a fibre
space which is a product ¥V, X U. Thus if it is known that

H, oV, P) is zero, H(X(U), X(U,n U) U X'(U)) will be
zero. Combining these results with Lemma a, the present
lemma follows.
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The next lemma is derived from Lemma b by shrinking the
neighbourhood U, onto K,. In fact, if U, is a neighbourhood
of K, similar to U, but containing it, it is not hard to see that
a family of curves can be constructed in U, having the pro-
perties of the family F introduced at the beginnipg of Chapter
II with the sets K and E of that section replaced here by U,
and K, It follows at once (Theorem 12) that there is a
homotopy of the identity mapping of V(U,) on itself into a
mapping of V(I7,) onto itself which carries V(U,) onto V(K ).
The points of V(K ) are fixed throughout the deformation.
Moreover it is easy to see that the homotopy may be extended
to the whole of ¥(K) by leaving all points of V(K) outside
V(U,) fixed. Combining this result with Lemma b, the
following result is obtained: :

Lemma c. If H,_,(V, P) = 0, then H(V(K), V(K,)) = 0.

The main result of this section is the following theorem:

THEOREM 15. If H,_4(V,, P) = 0, H(V(K), V,) i3 generated
by the injection images of the groups II(V(2,), V), ¢+ =1,
2,...,h o

Proor. By Lemma ¢ and the exaotness of the homology
sequence, H,_ .{V, ) = 0 implies that H(V(K), V,) is
generated by the injection image of H (V(K,),V,). Write
A =AU (W K,), where W is a small closed neighbour-
hood of z;. Then Thecrem 7 along with the direct sum theorem
of relative hcomology (Kilenherg and Steenrod [4] p. 33)
implies H,(V(K4), N:V(4) = £ BV(), NFV(X). Finally
an applicaticn of Theorem 5 to the retraction of M4; onto
2o yields the result H(V(K,), Vo) = ZH(V(A,), V,), and this
completes the theorem. .

Now, in studying any one of the groups H(V(4,), V,) or its
injection imags, it is clear that z, may be assumed to be
arbitrarily close to z,, the corregponding A, being shrunk and
Theorem & being appiied to obtain a corresponding shrinkage
of V(4,). In considering one of these groups it is convenient
to drop the suffix i. The notation used for such a situation
will be as follows:

Let 2’ be a special point on § and let ¢’ be the singular
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point on V(z) Zo i8 to be an ordinary point near 2’ and 2
an analytio aro joining z, and 2’ on §. .

It will now be shown that, in order to stqdy the group
H,(V(4), V,), it is only necessary to examine relative cyoles
on an arbitrarily small neighbourhood of C’, provided that

WJ "

na ‘A v} ' “"’H

Fm; 1 FiG. 2 Fic. 8

z, is sufficiently near to z’. The idea involved here is illustrated
in the accompanying diagrams, Let y represent pictorially a:
relative g-oycle of V(1) modulo V,, with boundary ux, say.
In Fig. 1, y is drawn 2-dimensional, and the rectangular
slab denotes V(1), its left and right hand faces V(z') and V,
respectively. Constructing in V(1) orthogonal trajectories to
the V(z) for z € 4, a family F of curves is obtained, one through
each point of V(1) except C’. And so y can be pulled back
along the curves F except around the singular point C’. y
now takes the “‘broad-brimmed hat’’ shape of Fig. 2. Finally
an excision argument shows that the brim may be more or
less removed, so that y is reduced to a chain on a neighbour-
hood of ¢’ (cf. Fig. 3).

The argument just sketched will now be formulated
properly.

THEOREM 16. Let U be a preassigned neighbourhood of C’.
Then, if 4 ts contained in a sufficiently small neighbourhood of
z' on 8, there 18 a set W contatned sn U such that the inclusion
mapping (W, W O\ V) — (V(3), V,) induces isomorphisms onto
of the corresponding homology groups.

4
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Proor. Let U, and U, be two geodesioc spheres about C’ of
radii p, and p, respectively with p, < p,. If F is the family
of orthogonal trajectories of the V(z) in ¥(4), define the set W,
as follows: W is the union of all points lying on curves of F
ending in U, along with the points of parameter ¢ satisfying
(8 — p1)/(ps — p1) <t < 1 on curves of F ending at points of
V(z’) at geodesic distance s from C’ for all 8 such that p, <
8 < p;. Lemma f, §2, Chapter II implies that, if U,, U, are
small enough and 4 is contained in a small enough neighbour-
hood of 2’, then W, can be made to lie in the preassigned
neighbourhood U of €’ (it is assumed that the parameter ¢
varies from 0 to 1 on curves of F). Next define W as the
union of W, and a neighbourhood of Wy N ¥y on ¥,; it may
be assumed that W C U. Then an application of the Shrinking
Lemma using the curves F contained in V(1) — W,, along
with an excision, gives the required result.



CHAPTER IV

LEFSCHETZ'S FIRST AND
SECOND THEOREMS

1. Lefschetz’s first main theorem

In this chapter the first two main theorems of the work
will be stated and some consequences will be deduced. The
proof of the first theorem will be given in detail, but that of
the second, which is rather complicated, will be postponed to
Chapter V. In the present chapter, however, a sketch of the
ideas involvedin proving the second main theorem will be given.
And, in a similar way, the proof of the first theorem will be
preceded by a geometrical description of the idea behind it.

The statement of the first main theorem, indicated in the
introduction, is as follows:

TexoREM 17. Let V be a non-singular algebraic variety of
dimension r defined over the complex numbers and immersed in
a projective space, and let V, be a non-singular hyperplane
section. Then H(V,V,) =0forqg <r —1.

The first point to notice is that, if the theorem is true for
one non-gingular section V,, it is true for any other V,. For
Vo and V4 can be taken as members of a pencil of hyperplane
sections containing only & finite number of singular sections.
The non-singular members of this pencil form a fibring of ¥V
in the sense described in Chapter I, and so, by Theorem &,
there is a homotopy of the identity mapping of ¥V on itself
into a mapping of V onto itself which carries ¥, onto V,,
and vice versa.

Then since Theorem 17 does not depend on the choice of
the section V,, it can be assumed that it is a member V(z,)
of a pencil of sections cut by a hyperplane pencil II with the
properties described in Theorems 13 and 14. ,

The proof of Theorem 17 will actually be carried out by
proving the following slightly more general theorem:

43
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“PrEOREM 18. Let V be a non-singular r-dimensional projec-
tive variety over the complex numbers, and Il a hyperplane pencil
as tn Theorem 14, the members of Il being parametrized by the
points of the sphere (or complex projective line) S. Let K be a
closed circular dssc on S not having any special poinis 2’ on its
boundary. Then H (V(K), Vo) = Oforq<r — 1. In particular
if K is taken as the whole sphere 8, this reduces to Theorem 17.

Proor. This theorem will be proved by induction on r, and
8o it is assumed to start with that H (Ve, P) = Oforg <r — 2.
The theorem obviously holds for r = 1 which gives a basis
for the induction.

The particular case in which there are no special points 2,
on § (i.e. in which the dual of V is of dimension <n — 1)
will be treated first. In this case, if K # 8, the result is
trivial, for ¥V, is a deformation retract of V(K) (by Theorem 5).
To dispose of the case K =8, note first that Theorem 9 holds
if the pair (K, M) is taken to be (S, z,) and also that the con-
clusion of that theorem is trivial if K = M =2,. Thus
Theorem 10 holds if the triple (K, M, z,) is taken to be
(S, 2o, 2,), and yields the result H(V, Vo) >~ H (X, V, U X').
On the right of this isomorphism one is dealing with a fibre
bundle over S as base, and a simple argument (either using
the spectral sequence or by making a cellular decomposition
of 8) shows that H (X, Vo U X') ¢ d,_4 (V,, P) = 0, by the
induction hypothesis, and so H(V, V,) =0 for ¢ <r — 1.

In the remainder of the proof of Theorem 18 it will be
assumed that there are special points on 8.

The induction hypothesis along with Theorem 15, shows
that, for ¢ <7 — 1, H(V(K), V,) is generated by the injeé'-"

“tion images of the groups H (V(4;), V,), and so it simply has
to be shown that these injection images are zero. Attention
may therefore be confined to one of the H (V(4,), V,).

Changing notation as for Theorem 16, let 2’ be a special
point on S, let C” be the singular point on ¥(z’) and let 1 be
an analytic arc joining 2’ to a nearby ordinary point z,. Then
it is sufficient, in order to complete the proof of Theorem 18,
to show that, under the induction hypothesis, the image of
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the injection mappmg H(V(2), Vo) = H(V(K), V) ia zero
forg <r —1

The proof of this statement is based on the follomng.
geometrical argument:

By Theorem 18, any element of H (V (), V,), if 2z, is suffi-
ciently near z’, can be represented by a relative cycle y which
is & chain on an arbitrarily preassigned neighbourhood of ¢'.
The idea then is to show that y must be homologous to zero,
modulo V,, in V(K). To do this, introduce a second pencil I1’
such that the section ¥, through C’ cut by I1’ is non-singular;
this can be done by Theorem 13(e). If¢ < r — 1, then 4 == dy
is a cyole of dimension <r — 2 on ¥ and so, by the induction
hypothesis, is homologous to a eyole x’ on Vo4 N ¥V, and, if y
has been made small enough, this . homology can be carried
out in & normal bundle over V,. Thus u = u' 4 d«, and so
y — a« i8 a relative oycle on V(1) modulo V,, homologous to y
modulo V,, lying in a normal bundie over ¥, and having its
boundary in ¥, N ¥V,. Using the projection in this normal

-bundle, y — « may be flattened out info a relative oycle in V; -
modulo Vo N V;. And finally a “rotation” of ¥, about V, N V;,
pulls this flattened chain round into V,. Hence y ishomologous
to zero in V modulo V,. It is finally shown by an excision
argument that this homology can be carried out in V(X).

The detailed proof of Theorem 18 will now be completed.
As remarked above, it is only necessary to prove the following
lemma.

Lemma. Under the induction hypothesis, and in the nofation
already introduced, the image of the injection horcomorphism
H(V(A), V,) = H(V(K), V,) is zero for ¢ <r — i.

Proor. Choose a pencil of hyperplanes I’ with the following
properties:

(1) The section ¥, through €’ cut by II’ is nou-singular.

(2) If z is sufficiently close to z’ the pencil I cuts on ¥(z)
only a finite number of singular sections, each with one singular
point (not lying cn the axis of I1'). Also the axis of [1' meets
V(z) in a non-singular variety. Thus IT’ boars the same sort
of relation to ¥ (z) as Il bears to V.
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,

(3} 7. Pz is nen-singular for 2 sufficiently near to 2'.
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write V'(w) for the section of V by the hyperplana cf para-
meter w in I1’.

Having chosen I1’ with the steted properties, the following
sequence of choices must be made:

(a) Construct a normal bundle B ts Vi V.

(b) For any resl number %, write W(k) for the union of the
V'(w) such that jw — wg < k, where w, is the pararmeter of
Vy. By Lemma d, §3, Chapter I, W(k) C B if & is small
enough. Choose the real numbers k,m such *hat m < k and
W(m) C W(k) C B.

(c} Around C’ on V 2 set of local coordinates may be
chosen to include the real and imaginary parts of w, since
V, is non-singular, and so there is a neighbourhood U of ¢”
such that U C W(m).

(d) Construct W in Theorem 16 so that W C U.

(e) Choose & number p, m < p <k, such that no sevtlon
V'(w) NV, with jw — w,| = p is singular.

In Diagram III all the maps except @ are induced by the
appropriate inclusions, and 9 is the boundary homoemorphism
of the exact homology sequence of the triple

(Vo N V(’» Vo N W(p)» V(A) N W(p))’

part of which forms the horizontal line in the middle of the
diagram.

It will now be shown that the image of ¢ in Diagrarm IiX is
zero. To prove this, note first that, by Theorem 16, AN is
onto and therefore s¢ is k. Also, by the industion hvpothesm

Ho (Vo W(p), Vo Vg} == 0, and go the exactness of the
homology sequence in the diagram implies that j is onto. It
then follows at once from the ccmmutativity of the square in
the middle of the diagram that the imiage of ¢ is contsinred in
the image of k&', and so in the image of k. On the other hand,
¥V, is a deformation retract of B, and so ! is an isomorpkiam
onto, which implies that the image of & iz the same as the
image of m. Thus the image of ¢ is contained in thet of m.
But V,, V) and VN T’ are all non-singwiar, and so the
hyperplanes cutting V, and ¥, determine a pencil 11”7 cutting,
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like I, only & finite number of singular sections on V. The
sections of ¥ by the hyperplanes of II* thus determine a
“fibring” of V a8 described in Chapter I, and in particular,
by Theorem 5, there is a homotopy of the inclusion
(Vor Vo Vo) — (V, V) into & mapping whose image lies
entlrely in V,. It follows that the 1mage of m and so that of
t is zero, as was to be shown.

What has just been proved is rather weaker than the state-
ment of the present lemma, namely that the image of the
injection H(V(4), V¢) — H(V(K), V) is zero for g <r — 1,
ander the induction hypothesis. This stronger result will now
be derived. Let K’ be a disc on § smaller than K, contained
in it, and still containing the special points z,, 24, ..., 2, in
its interior. Let M be the closure of § — K’. Consider the
following diagram:

HYV(K), V(K N M)~ BV, V(M)
k
HV@), Vo) = H(V(K), Vo) => H(V, V)
i

H(V(K N M), V)

Ali the homomorphisms appearing are those induced by the
eppropriate inclusions. It has already been shown that the
image of ¢,1, is zero. From the commutativity of the square
-1t the diagram it follows that the image of jki, is zero. But,
by Theorem 7, j is an isomorphism for all ¢, and so the image
of kiy is zero. That is to say, the image of 1, is in the kernel
of k which is the image of [, sinoe the vertical line is part of
an exact homology sequence, namely that of the triple
(VIK), VIKN M), V,).
iie proof will now be completed by showing that

H(V(KN M),V

ic wero for ali ¢ <7 — 1. An appiication of the corollary to
Theorem 10 gives

H{V(E N M), Vo) = H(X(K " M), X'(K A M) U V)
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Here one is dealing with a fibre bundle over an annulus as
base, and it is not hard to see, either by breaking K N M into
" ocells or by a spectral sequence argument, that

H(X(K n M), X'(K 0 M) U V) |
= H](K N M’ 29, Hq-;l (VO’ P))a

where the semicolon denotes homology with the local coeffi-
. cients H,_,(V,, P). This last group is zero, by the induction
hypothesis, for ¢ < r — 1, and so the required result follows.

Although the homology groups are here assumed to have
integer coeflicients, it is clear that all results up to this point
would hold for an arbitrary coefficient group.

2. Statement of Lefschetz’s second main theorem

In the following statement of this theorem 1, C, z,, and ¥V,
have the meanings already introduced.

TueoreM 19. (1) H(V(1), V,) is infinite cyclic, with a
generator to be denoted by A",

(2) There i3 acontinuous mappingf: (E7, 8"1) — (V(4), V,)
where B' is a solid r-sphere and 8™ its boundary, such that
A" is the image under the induced homomorphism f,:

H(E", 8-Y)— H,(V(3), V,) of a generator AD of H (E*, 87-1).
Also 2, can be chosen so that the image of f is contained in a
preassigned neighbourhood of C'.

(3) Let U be a preassigned neighbourhood of C'. Then there
18.a nesghbourhood U’ of C' such that, if f(E7) C U’ and if f' is
a second mapping of (E7,871) into (V)N I, ¥y NT')
satisfying (2), then f and f', regarded as mappings into
(V(2) n U, V, N U) are homotopic.

As in the case of Theorem 18 this will be proved by induction
on r, the result being clearly true for curves in relation to 2,
sufficiently general hyperpiane pencil; and until further notice
the term “‘induction hypothesis’ will mean the assumption of
the above theorem for dimension less than r.

3. Sketch proof of Theorem 19

The proof of Theorem 19 is rather complicated, and so the
 details will be left over td the next chapter, the present section
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being intended merely to give a geometrical picture of the
proof. The notation is to be as introduced in §2 of Chapter ILI.
In particular, w is to be taken as the parameter of a second
pencil I1’ the hyperplane of which through " cuts V in a non-
singular section; this is possible by Theorem 13 (e). Let the
hyperplane of I’ through C’ have parameter w’. Then the
point C’' projeots from the linear space L into the point
(z', w') of the (z, w)-plane L,. Part (c) of Theorem 13 ensures
that (z’, w’) is a simple point of the curve I Thus in the
(2, w)-plane there is a neighbourhood N of (2, ') which is an
open 4-cell and is such that N N T' is a 2-cell. It may be
assumed that N is specified by inequalities of the type
|t — 2| <k |w—w| <k V'(w) wil denote the section of ¥
by the hyperplane of parameter w in the pencil II".

If 2 is sufficiently close to 2’, part (d) of Theorem 13 implies
that there are two values of w, say w,(z), w,(2), such that
V(z, wy(z)) and V(z, wy(z)) have singularities C,(z), C4(2) in a
preassigned neighbourhood of C’. On the other hand, part (c)
of Theorem 13 implies that the line z = 2’ in the (z, w)-plane
is the tangent to I' at the point (', »'), and so, if w is suffi-
ciently close to w’, there will be exactly one point (z(w), w) on
I such that z(w) is an analytic function of w, tending to z’ as
w tends to w'.

As z traces out the arc A, the points w,(z), wy(z) in the
complex w-plane trace out two arcs which will be called 1,
and A,. It is not hard to verify that w,(z), w,(z), are roots of
& quadratic equation whose coefficients are analytic in 2, and
in fact can be written as a(z) + b(z)Vz — 2/, where a(z) and
b(z) are analytic in z around 2’. If ¢ is the parameter on A
(equal to 0 at 2') set £ = s2. It is then clear that the union of
A, and 4; can be parametrized analytically in terms of s. This
union will be called 2’. 1’ is thus an analytic image of the
interval —-\/; <8< \/;)-, where 4 is bounded by 0 <t < p.

The construction of the element At of Theorem 19, and
the corresponding vanishing cycles, in Lefschetz’s terminology,
will now bhe desoribed in diagrammatic fashion.

Ster I. In Fig. 1 the rectangle (drawn in perspective) on



YLEFSQ_HETZ’B FIRST AND S8ECOND THEOREMS 5l

the right is to represent V(z,) for a suitable z, on 4 and the
vertical lines represent sections of ¥ by (n — 2)-spaces through
L, as marked in the diagram. The curved arc with ¢’ marked
on it represents a portion of the curve C. The two hemispheres
embedded in V(z,) and marked A{™" and A{™" are relative
(r — 1)-oyocles of ¥(z,, X)) modulo V(z,, w,) fors =1, 2, respec-
tively, where w, and w, are points on A’ near w,(z,), w,(z,)

‘\/V\V(z,.

respectively and A; is the portion of A’ joining w, to w,(z,),
for ¢ =1, 2. A{™ and A{™? are to be as described in the
induction hypothesis, applied to V(z,), and are to be con-
structed in neighbourhoods of C,(z,), C,(z,), respectively. The
first step here is to construct a homotopy which will pull the
bases of the hemispheres A{™" and A{~" back into V(z;,w').

This operation is marked in the diagram by the broken
lines with the arrows. The new positions of the bases of
these hemispheres will be called of~%, &7~ respectively.
Eventually it will be shown that 62 and &/~ can be
joined up by a cylinder so that the stretched A{~Y, Ag~D
along with this cylinder form a sphere which will be the
vanishing cycle attached to C’, and the base of the relative
cycle A" whose existence is to be proved.

Step II. In Fig. 2 the “stretched” relative oycle Ay~ ig
still called A{™". It is now a relative cyole of ¥(z,, 4,) modulo
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V(z,, w'). The application of the induction hypothesis' to
V (A, w') shows the existence of a relative (r — 1) -cycle Ay
of V(4, w’) modulo V(z;, w’). Now it can be assumed(as will
be shown later) that all the operations being described can be
carried out in a preassigned neighbourhood of ¢, whose inter-
section with V'(w’) can thus be assumed to be homologically

4, a§1~2)
- g‘~2)
Cfz) | V(z,.w'g))
iz, w')
V(z,,w,(z,)
Fia. 2

trivial. Thus ¢ ~? is the boundary of a chain A{""" on V'(w'),
and in fact a slight adjustment ensures that A"™" is in
V(A, w'). Applying the inducticn hypothesis, it follows that
A is homolcgons modulo ¥(z;, w') to kAY™ for some
integer k. Thus &2 ~ k5{~? for some integer k where 6§ 2
= dAY" V. It must be shown now that k¥ = 41. To do this a
homotopy similar to that used in Step I to stretch the A ™ ig
applied to shrink 67~ in V(z,, 1,) down to the point C,(z,).
Thus 6% i¢ the boundary of a chain A" ™" in V(z;, 4,).
The induction hypothesis, applied in V(z,, 4,) shows then
that 2" is homologous modulo ¥V(z,, w') to k’'A{" for
gome intcger X’. Taking boundaries, it follows that 6§ 2
~ k0% Thus (k&' -- 1)y ~ 0in V(z,, w’). When this is
done in detail it ‘will turn out that all these operations can still
be mad+ to work in a preassigned neighbourhood of €', and a
lemma will later be proved to show that, in a small enough
neighbourhood of C’, 87~ is not rationally homologous to
zero on ¥(z,, w). Thus the homology (k&' — 1)6y "2 ~ 0 implies
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k = +1. Part (3) of theinduction hypothesis, applied in V’(w’)
to the two mappings of a hemisphere into V'{w’) giving rise to

AY™D and AP shows that 87~ and &7~ can be joined up
in V(z,, w') by a cylinder (product of an interval and a
(r— 2)-sphere); and similarly & ~* and 8. Thus A7, Af~Y
and the cylinder joining their bases form a spherical cycle 8"~V
in a mneighbourhood of C’. This neighbourhood can be
preassigned as a geodesic sphere, and so 8‘"~1 can be taken
as the base of an r-hemisphere A(” embedded in V. A
further adjustment will enable A to be compressed into
V(2). This completes the description of the construction of
" A", The second stage in the proof of Theorem 19 will
consist in showing that A(" represents a homology class A(")
of V(A) modulo V(z,) which satisfies the conditions of that
theorem. This will now be carried out in Step III.

Step III. The outline to be given here, as in the previous
two steps, entirely glosses over the difficulties caused by
having to ensure that all operations are carried out in a
preassigned neighbourhood of ¢’. Some other refinements are
also left unmentioned until the actual details of the proof are
considered below.

- It has to be shown first that a relative r-cycle y of V(1)
modulo V(zl) is homologous to a muitiple ot A"’ 1n ¥ moaulo
V(z,). By Theorem 16, y may be assumed to be a singular
chain on & preassighed neighbourhood of C’. Let x be the
boundary of y. In Fig. 3, the oval shape in the middle
represents §("-1), the irregular outline represents u and the -
rectangle is V(z,). u may first be adjusted to lie in V(z,, ).
An application of the induction hypothesis in V(z,, 4,) and
V(z,, A;) then shows that 4 is homologous to a cycle represented
diagrammatically by the irregular outline in Fig. 4. That is
4 is homologous to a chain consisting of multiples of the parts
of §!*—1 near C,(z,) and C,(2,) (it will turn out in fact that
these multiples have the same coefficient ¢, say) and a chain
which does not meet the singular sections V(z,, w,(z,)) and
V(z,, wy(2z,)). The homotopy already employed in Step I
compresses this last mentioned chain into V(z,, w'). Thus
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p — 68~V is homologous to a cycle in V(z,, w') represented
in Fig. 5 by the two small loops at the top and bottom.
Applying again the homotopy of Step I (or rather the situation
is more similar to the shrinkage of 8§ 2 to a point in Step II)
it turns out that x — ¢8"~1 is homologous to zero in V(z,, &').

\

A A

T Y s

&le-n © V(z,w)
Fra. 3 Fra. 4 Fia. 8

Since g =dy and 8"V =dA" it follows that y — cA"
added to some chain on V(z,) is a cycle on V, and, as will be
seen later, on an arbitrarily small neighbourhood of €', which
may be assumed to be homologically trivial. It follows at once
that y is homologous to ¢cA™ in ¥ modulo V(z,), as required.

Ster IV. Having carried out Steps I, II, III it remains to
be shown that the various parts of Theorem 19 are satisfied.
In this verification the only hard part is part (3), the proof of
which is in effect a copy of the Hurewicz isomorphism
theorem, modifications being necessary only to ensure that
everything is carried out in a preassigned neighbourhood of ¢".

It is desirable at this stage to insert a note on the proof
of Theorem 19 in the case where there are no special points
on §. The statement of the theorem reduces in this case
to H(V, V,) = 0. This follows at once from the corollary
to Theorem 10. For H,(V, V,) =~ H,(X(S), X'(S) U V,), in
the notation of Theorem 10, and this is isomorphic to
H, ,(V,o, P)® H,y(S, 2,), which is zero by Theorem 17,

4. Some immediate consequences

The following theorem is obtained by combining Theorems
16 and 19. The fact that H, ,(V,, P) = 0 (required for the
_application of Theorem 15) is now known by Theorem 17.
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THEOREM 20. z, and the z, and the paths A, being as in
§3, Chapter 111, there 8 a ‘“‘hemsspherical” relative cycle A; on
V(A,) modulo V4 such that H(V, V) s8 generated by the relative
homology classes of the A,. Moreover, if z, ts taken sufficiently
cloge to z;,, A; may be assumed to be a singular chain on a
preassigned neighbourhood of C,, the singularity on V(z,).
{Lefschetz [9], p. 93, Theorem VI.)

Taking the boundaries of the A; and applying the exactness
of the homology sequences of the pair (¥, V) and of the triple
(V, Vo, P) the following is obtained:

TaEOREM 21. The boundary of A, 8 a “spherical’”’ cycle 8, on
Vo and the kernels of the two injection maps H,_(V,) — H,_4(V)
and H,_(V,o, P)— H,_(V, P) are both generated by the homo-
logy classes, in the appropriate sense, of the é,. And if z, is
taken sufficiently near to z,, 8, may be taken as a chain on
a preassigned neighbourhood of C, (Lefschetz [9], p. 93,
Theorem V.)

In addition if A, and 8, are constructed in a sufficienily small
nesghbourhood of C,, they are defined up to a homotopy, in the
sense described more precisely in Theorem 19, part (3).

Let V,, ¥,_;, V,_s ... be a sequence of non-singular
algebraic varieties such that V, is a hyperplane section of ¥, ,
for each +. Then a simple inductive argument, starting from
Theorem 17 and making use of the exactness of the homology
sequence of a triple, establishes the following results:

TrEOREM 22. H(V,, V,) =0 for ¢ <3, and consequently
the injection map H(V,, V,)— H/(V,, V,) is an isomorphism
onto for ¢ < 8 — 1, and 18 onto for ¢ = 8. Moreover the kernel
of the injection H(V,, V,) —> H/(V,, V,) is the same as that of
the injection H(V,, V) - H(V,,,, V;) and is the image of the
boundary homomorphism H, (V,.,, V,)— H(V,, V). '

Note that in the last remark H,,,(V,,,, V,) is & group of the
type described by Theorem 19 and so the kernel of the
H(V, V,)— H(V,,,, V,) is expressed in terms of something
which is not altogether unfamiliar.



CHAPTER V

PROOF OF LEFSCHETZ’S
SECOND THEOREM

1. Deformation theorems

1t is clear that the method sketched in the last chapter for
the proof of Theorem 19 depends on some mechanism which
will provide the necessary deformations and shrinkings, a
mechanism which, in addition, allows these operations to be
carried out in an arbitrary neighbourhood of (", in the notation
already introduced in §3, Chapter III. In this section two
theorems will be proved which will enable the details of the
proof sketched in §3, Chapter IV to be carried out.

The two arcs 4, and 1, in the complex w-plane have already
been introduced in §3, Chapter IV; they are the arcs traced
out by the two values of w(z) as z traces the arc 4 in the z-plane.
Also if ¢ is the parameter on 4 then 4, U 1, = A’ can be para-
metrized by s where s2 = ¢. For the point z on 4 with para-
meter ¢ the two corresponding values of w(z), namely w,(z) and

w,y(z), have parameter values 41/ t and —/t on A",

Consider now the following set 2, a subset of 4 X A’, which
in its turn is a subset, namely a 2-cell, of the (z, w)-plane. >
is to consist of the points (z, w) where z € 4, of parameter ¢,
say, and w € A’ of parameter s such that —V/ ¢ <8< +V t.
It is not hard to see that 3 is a 2-cell which can be assumed,
by taking 4 small enough, to be contained in a neighbourhood
of (2’, w’), a neighbourhood which can be assumed to be a
4-cell, and that the boundary of , is formed by the set of all
points (z, w(z)) on I' for z € 4, along with points (z,, w) for
wel'. :

Now since 3 is a 2-cell embedded differentiably (apart from

two corners on its boundary at (z,, wy(z,)) and (z4, w,(2,))) in

the (z, w)-plane, it is not hard to see that a neighbourhood of
56
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T can be taken as K and J itself as B in the notation of §1,
Chapter II, and a shrinking family F of curves can be
constructed satisfying the conditions stated in that section. It
follows from Theorem 12 that, if N is a suitable neighbourhood
of 2 in the (z, w)-plane, then U ¥(z, w) is a deformation re-

tract of U V(z, w). (@w)EL
@w)EN
Now let U be a preassigned neighbourhood of C’. In the

retraction just mentioned C’ is fixed, and so, throughout the
deformation all points of a sufficiently small neighbourhood
U, of C’ remain within U. Suppose U, projects from L onto
a set U, in the (z, w)-plane, and, by taking z, sufficiently near
to ', arrange that > C U, (if z, is moved nearer to 2’ on 4 this
simply means slicing a piece off > as already constructed).
Also, the neighbourhood N mentioned above can be assumed
to be contained in U; and to consist of points (2, w) with
z€ N, we N;, where N, and N, are neighbourhoods of 2’
and w’ respectively in the complex z- and w-planes. Having
made these arrangements, the following theorem sums up the
results obtained:

TrarorEM 23. Let U be a given meighbourhood of C' tn V.
Then sf Uy, Ny, N4 are sufficiently small nesghbourhoods of C' in
V, 2’ in the z-plane, and w' in the w-plane, respectively, and z,
i8 8o chosen that 3 C N, X N,, there is a homotopy of the
snclusion mapping V(Ny, Ng) N Uy — U tnto a mapping whose
smage 18 contained in UV (z, w), the union being taken over all
(2, w) € 2. .

The second deformation theorem to be proved here is con-
cerned with deformations carried out within a set of the type
V(z, A*), where z is some point on 4 and A" is an arc on A’
contained strictly between w,(z) and wy(z). The V(z, w) con-
tained in such a set V(z, i") are all non-singular, and so of
course Theorem 5 could be applied. The refinement needed
here is something to ensure that deformations can be carried
out in & given neighbourhood of C’. ' ' |

The required theorem will be obtained with the aid of a
family F’ of curves constructed as in §1, Chapter II. The set

6
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K of that section is to be replaced by 3, and £ by 3 N I'. The
curves F are to be those joining (z,, w) to (2(w), w), for each
we A, obtained by letting z vary along 2 from z, to z(w). If
t(w) is the parameter on 4 of z(w), for w € 1', then the parameter
on the member of F corresponding to w € &’ is to be ¢t — ¢(w).
This ensures that a parameter is chosen for the curves of F’
in such a way that the points on V(z(w), w), w e &', all have
parameter 0.

Next let A, be the sub-arc of A’ obtained by removing
the points wy(z,) and wy(z,). The points (z,, w) with w e 4,
are all ordinary and so, removing the points of the linear
space L from V(z,, A)), & fibre bundle is obtained which
is clearly trivial. That is to say, V(zy, 4;) — L is homeo-
morphic to (¥V(zy, w) — L) X 4,. Any point of V(zg, A)) ~— L
can thus be written as (p, s), where p € V(z,, ') and ¢ is the
parameter of a point on A'.

The first step in obtaining the required deformation theorem
is to prove the following lemma;:

Lemma. Let U be a given neighbourhood of C' in V. Then
there are a neighbourhood U’ of C' and numbers & and 7 such
that, if a curve of F' passing through (p,s)€ V(25 &) — L
meets U', all points of parameter less than 8 on the curve of F'
through (p, §'), for any &' such that [s — gl <, leinU.

Proor. Let U, be a olosed neighbourhood of C'. By
Lemma e, §2, Chapter I, the mapping f : V(z,, A;)) — V, which
assigns to each point g € V(z,, 4;) the point of parameter zero

-1
on the curve of 7’ through g, is continuous. And so f(0,) is
a olosed compact set G on V(zy, 4'). If U, is small enough it
is clear that G C V(2y, 4)) — L. Then, as noted above, any
point g € @ can be written as a pair (p, s) with p e V(zo, w')
and ¢ € 4. Assume U, C U, so that, for ¢ € @, f(q) will lie in U.
Then, by the lemmmas of §2, Chapter II, there is a neighbour-
hood U(g) of g in V(zo, 4)) — L and a number &(q) such that
all points of paramater less than é(¢) on curves of F* through
U(g) are contained in U. Now U(q) can be specified as
sonsisting of points (', &') such that p’ is in & neighbourhood
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of p on ¥(z,, w') and la — &'| < 7(g) for some positive number
9(¢).- In particular it follows that all points of parameter less
than &(g) on curves of F’ through points (p, 8') for s — &'| <
7(g) are in U. But @ is compact and so can be covered by a
finite number of the U(g). Let é and 5 be the minima of the
corresponding finite collections of 3(¢) and 5(g). And, finally,
use Lemma e, §2, Chapter II to find a neighbourhood U’
such that any curve of F meeting it ends in U,. Then U’, 4, 5
have the asserted properties.

Using the notations of this lemma, choose a point z on 4
such that the parameters on curves of ¥’ of all points of the
V(z, w) with w on A’ between w,(z,) and wy(7) are <4, and
also so that the difference in parameters of w;(z) and wy(z,)
on A’ is less than 7. Let A" denote any arc on A’ between but
not including wy(z;) and w,(z). Then the following is the
deformation theorem required for the working of this
chapter:

THROREM 24. Let U be a preassigned neighbourhood of C'.
T'hen there are a neighbourhood U’ of C” and a posnt z, on A with
the following properties: if ¢: X — U N V(z, A") 13 a con-
tinuous mapping whose image is in U’, and y(p), forpe X, 18
the point on A" such that ¢(p) € V (2, y(p)), and if 0 is a mapping
of 4" into stself homotopic to the identsty, then there is a mapping
¢' : X — U N V(z, A") homotopic to ¢ (that s to say, homotopic
a8 mappings into U N V(z,, A")) such that ¢'(p) € V(z1, 0,9(p)).

Proor. U’ is to be as in the above lemma, z, and A" as
desoribed just before the statement of this theorem. Now
introduce the following mappings. Given g € ¥(z,, 2") there is
& unique curve of F’ through it interseoting V(z,, A") — L C
V(2 4) — L in a point (p,s). Define the mapping g by
g9(¢) = (p, 8). Next, for a point (p, ) € V(zy, A") — L, define
h(p, 8) = (p, 6(s)). Finally, noting that g is 8 homeomorphism,
its inverse —gl is defined, and so the mapping ¢': X —

U N V(z, A") can be defined as ¢'(g) =;1:h°g°¢(q) for g€ X.
To check that ¢’ has the required properties, suppose that
©:2 xI-—>2" is a mapping such that ®(w, 0) = w and
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O(w, 1) = 6(w). Define ® on X X I by setting d(q,t) =
Eol H{g.4(q), t), where H(p, 8, t) = (p, O(s, t)). ® clearly defines
a homotopy of ¢ and ¢’, and the above lemma ensures that
its image is in Un V(z, A") as required. Also the construction
of ¢’ ensures that ¢'(p) € V(z, 6,9(p)).

There are many variations and generalizations of this
theorem. One variation in particular which will be needed in
the subsequent working is the following:

CoroLuvary. Let U, U’,z, A" and $ be as sn the above theorem.
Then there 18 a mapping ¢’ : X — V(z), wy(z,)) N U such that
¢ and ¢’ are homotopic as mappings into V(z, A') N U.

Proor. The proof is as for the main theorem, the homotopy
© being replaced by the operation of shrinking 4" onto the

point w;(z) on A’. It should be noted that;_g1 is still defined in
this situation for points on V(z,, w(z)).
Clearly a similar result would hold for w,(z,).

2. Some remarks on Theorem 19

Preliminary to giving the details of the proof of Theorem 19,
one or two results will be obtained, to be used not only in
proving this theorem, but also serving to strengthen it.

THEOREM 25. Let U be a preassigned neighbourhood of C".
Then the point z, on the arc A ending at 2’ may be chosen, and a
nesghbourhood U’ of C' may be found such that there 1s a mapping
J: (U, U N V(zo)) = (U, U N V(z,)) homotopic to the inclusion
mapping and such that j(U’) C V(A).

Proor. For if N is a small circular neighbourhood of z’ on
8, a family of curves in N may be constructed with the
properties described in §1, Chapter I, K and # being replaced
by N and A, respectively. Then by Theorem 12 there is a
deformation retraction of V(N) on V(4), ¢’ being fixed
throughout the deformation. It follows at once that a
sufficiently small neighbourhood U’ of C" will remain in U
throughout the deformation. It only remains to choose z, 80
that V(z,) meets U’.

TaeoreM 26. Let U be a given neighbourhood of C'. Then
there is a neighbourhood U’ of C" such that any cyele u- on
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V(zo) N U, 2 being sustably chosen, is homologous to zero in
V(A)n U. '

Proor. For U’ may always be chosen to be homologically
trivial and also so that U, U’, z, satisfy the conditions of
Theorem 25.

TrxoREM 27. Let A" be the relative cycle whose extstence 48
asserted by Theorem 19, and write dA" = -1, If U ¢ any
neighbourhood of C°, Theorem 19 implies that 3"~V can be
constructed as a cycle on UNV,. Then U can be chosen so
that c8"~1) is not homologous to zero sn U N V ; for any integer c.

Proor. For choose U to be, in the first place, homologically
trivial, and suppose that c6‘"-1) = d§, where 0 is a singular chain
on UN V,. Then cA” — 6 is a oycle on U and so is homo-
logous to zero in U. That is to say, cA!” is homologous to
zero modulo U N ¥V, in the relative homology of U modulo
U N V,, or, more simply, homologous to zero modulo ¥, in
the relative homology of V(N) modulo ¥, where N is a
neighbourhood of 2’ such that ¥(N) D U. But U and N can
be chosen (Theorem 25) so that the pair (¥ (4), V,) is a defor-
mation retract of the pair (V(N), ¥,) and so the fact that
A" ig a generator of the infinite cyclic group H,(V(4), ¥,)
would be contradicted. - _

TaroREM 28. (1) Suppose that f: (E*, 87— (V(4), V)
has been construcied and fo A = A", To prove parts (1) and
(2) of Theorem 19 it s sufficient to show that, if U is a given
neighbourhood of C', there is a neighbourhood U’ of C' such that,
if the image of f 8 sn U’ and if y is a relative r-cycle of V(3) N U’
modulo Vg N\ U’, then y 18 homologous to a multipte of A" in
U modulo U NV, and that no multiple of A" 3 homologous to
zero in V(4) modulo V.

(2) If f and f* are as in the statement of Theorem 19, in order
to prove part (3) of that theorem it is sufficient to show that,
given any nesghbourhood U of C', there is a nesghbourhood U’ of
C’ such that, if the images of f and f' are in U’ then f and J' are
homotopic as mappings into the pair (U, U N V).

Proor. (1) followsfrom Theorems 16 and 25, and (2) follows
from Theorem 25.
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3. Formal verification of Theorem 19; the vanishing
cycle
In this section Steps I and II (§3, Chapter IV) will be
checked in detail. Let z, be a point on 1 and let 1" be the
subarc of A’ joining w,(z;), w,(z;) (cf. Chapter IV for notation).
If M,, M, are respectively given neighbourhoods of C(z) and
C,(%,) then there are maps

fo (BT L8 > (V(z, YN M, V(z, w)) N M)

for £ = 1, 2, where w,, w, are on 1” and sufficiently near its
ends (Induction Hypothesis (2)).

If U, is a given neighbourhood of ¢, and 2z, M,, M 3 are
suitably chosen, there are maps

fi 2 (B, 87%) > (V(z, A") N Uy, Vg, w) N Uy), §=1,2.

(Application of Theorem 24 to f;, f; with the homotopy on A
being that which shrinks the arc w;w, to the point w').

Let AJ™" be a generator of H, ,(E™1, §™%), AU™D o
representative relative cycle. Write A" ™D = fi, AU~D for
¢ =1, 2 and let A{"D be the representative of A{"~1 obtained
by applying f; to A{"V. Write 8{™~ = dA{-Y for ¢ =1, 2.

There is a map

fs i (B1, 8% — (VA w') O Uy, Viz, w') A Uy),

{Induction Hypothesis, part (2)), carrying Ay ™" into AY™Y,
say. Write dAT ™D = ¢,

The next part of the verification applies to Step II, the
setting up of homotopies between f1, f5, fs.

If U, is a given neighbourhood of ¢, U, can be chosen so
that 6"*2’ is homologous to zero in ¥ (4, w') N\ U,. (Theorem
26). Wnte (™ = dA;‘*-1), where A" is a singular chain
on V(i, w') n U,. '

U, being a given neighbourhood of ¢, U, can be chosen so
that A} -1 ~ kA{™Vin the relative homology of ¥(4, w') N U,
modulo ¥(z;, w') N U, (Induction Hypothesis). % is an integer,
to be proved = 1.
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8% is a cyole on V(z,, w') N U, If U, is a given neigh-
bourhood of ¢, U, may be chosen so that 7~ is homologous
in V(z, ) N U, to a cycle 8 on V(z, wy(z)) N Us. (By the
corollary to Theorem 24, the homotopy on A" being one which
moves w’ to wy(z).) It may be assumed, by choosing U,
suitably, that V'(w) N U, is empty or homologiocally trivial for
each w e 4’, and so 4 is homologous to zero in V'(1,(z))N U,.
U, being a given neighbourhood of ¢’, U, may be chosen so
that 4 is homologous to zero in ¥(z, wy(2,)) N U, (Theorem 12).

Thus &y"® is homologous to zero in V(z, A')N U,
(assuming U,,, D U, for each {). Write &~® = dAyl"D,
where Ag™1 is a singular chain on V(z, ') N U,. By the
argument which is given in detail below, at the beginning of
the verification of Step III, U, can be chosen so that Ag(*—1) ~
k'AY"" in the relative homology of V(z,A’) N U, modulo
V(z, w') N Us, where k' is an integer and U is a given
neighbourhood of C'.

Taking boundaries in the homologies A;(-1) ~ EAl—D
and A"V ~ kAT and still assuming U, C U,,, for each
5, it follows that 8,2 ~kd{™® and &> ~ k'6™® both
homologies in V(z, w') N\ Us. Thus (1 — kk')6{™® ~ 0 in
V(z, w') N Ug. By Theorem 27, U can be chosen so that
this implies kk’ — 1 = 0, i.e. £ = 41.

And now the Induction Hypothesis, part (3), applied in
V(4, w’), implies that, if U is a given neighbourhood of ¢,
Us can be chosen so that f; and f,, restricted to S-3, are
homotopic as maps into V(z, w') N U.

Thus, given the neighbourhood U of ¢”, there is a neighbour-
hood U, of €’ such that, if f; and f; are constructed to have
images in U,, then, restricted to S"-2, they are homotopic as
maps into ¥(z, w’) N U. A similar statement may be made
concerning f;. It is thus clear that a map f:81-—»
V(z, ') N U may be constructed such that, if A~ AL-D
have the right signs, there is a singular chain » satisfying
8- = AUV 1 AV 4y where 8(™-1 is a representative
of the image under f of a generator of H,_,(§7-1).

81 ig the required vanishing cycle, constructed in a
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preassigned neighbourhood U of €’. In addition, U being
preassigned, say as an open cell, Theorem 25 shows that a
neighbourhood U’ of C' may be chosen, such that, if
8- ig constructed in U’, then f can be extended to a map
of (E,81) into (V(A) N.U, V(z;) n U). If A" represents
the image under f, of a generator of H,(E',8™!), then
-1 =dA", A will be shown to satisfy the conditions of
Theorem 19.

4. Proof of Theorem 19, parts (1) and (2)

In this section Step III will be checked, and along with
it, the proof of the homology Ay~ ~ k’AY~V which was
left incomplete in §3.

Let y be a relative r-cycle of V(1) modulo V(z,), (¥V(z,) is
being used here in place of V(z,)) and assume, as already
mentioned in the summary of Step III, that y is a singular
chain on a neighbourhood U, of C".

Applying Theorem 23 it follows that, if U, is preassigned,
U, may be chosen so that y =y’ + d«, + f,, where «, is a
gingular chain on V(1) N U,, B, is a singular chain on
V(2) N Ugand ¥ is a relative cycle on V(4, A”) N U, modulo
V(z, ") N U,, 1" being the sub-arc of 1 joining w;(z,) and wg(z,).

Writedy’ = u'. If 1" is a sub-arc of A" then u’ can be regarded
a8 a representative of an element of H, (V(z, A"), V(z, A7)).
Applying around Cj(z) and C,(2,) the homotopy and
excision of Theorem 16, and noting that if the ends of
A" are sufficiently near those of A" then this can be done
within a preassigned neighbourhood U, such that Uy D U,,
it follows that 4’ = u; + u, + p; + dey, where yu,, u, are
relative cycles of V(z,, A") modulo ¥ (z,, "), and are, moreover,
singular chains on arbitrary small neighbourhoods 3;, M, of
Cy(z), Cy(z), respectively, while u, is a singular chain on
V(z, A") N U,;, and «, is a singular chain on V(z, A") N U,. -

Assume M, and M, to be as at the beginning of §3, and
let Af¢-D A¢-1) be the singular chains induced by f, f;
acting on AJ™V. If M,, M, are preassigned neighbourhoods
of Cy(z), C4(2;), respectively, both contained in U ,, then M,;, M,
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may be chosen so that g’ = ¢ A"V + ¢AFC™D + p, + day
for integers ¢,, ¢, where u, is a singular chain on V(z, ") N U,
and o, is a singular chain on ¥(z, i") N U, (Induction
Hypothesis, and Theorem 186.)

Now the reasoning of §3 shows that, if U, is a preassigned
neighbourhood of ¢’ and U, is suitably chosen, then the
addition of suitable chains to A~V A1 yields A{™Y,
A{D, both chains contained in U,. The chain » of §3 will
alsobein U,. Thus u’ =¢; A{"™Y + ¢4 (ALY + ) 4 pg + dag,
where yuj is a singular chain on V(z, A") N U,.

At this stage the argument of §3 can be completed by showing
that A;*-1 is homologous to &’A{~? in the relative homology
of ¥(z, ') modulo ¥(z, w’'), in & given neighbourhood of C'.
To do this the argument of this section up to this point is to
be repeated, with u’ replaced by A"V, noting that only
AYV will be involved. :

Returning now tothe mainargumentof thissection, takeboun-
daries in the relation u’ = ¢; A1 + co(AF~D + 3) + pg + dag,
noting that A{V+ Ay~ +4yisa cycle. Then (¢, —c4)8{ > +dus
=0,1i.e. (6, —cg)0{ ~0ina V(z, A") N U, and so, if U,
is suitably chosen, (¢; — ¢5)8"» ~ 0 in V(z, ') N-Us
for a preassigned neighbourhood Uy of C’' (Theorem 24).
But, by Theorem 27 along with the fact that {2~ 4672
in a preassigned neighbourhood of C’ if Uj is small enough,
this implies ¢, = ¢,. Hence u; = ¢d"~1 + yu; + day for some
integer c.

Taking boundaries it follows that u;is a cycle onV(z,,A") " Us.
If Uy is small enough and Uy is & given neighbourhood of
C’, ug will be homologous to a cycle ug in V(z, wy(z,)) N U,
(Corollary to Theorem 24, deforming 4" so that A” is carried into
wy(z)). It may be assumed that V’(w,(z,)) N Ugis homologically
trivial, and finally Theorem 12 may be applied to show that,
if Ugis small enough, then ug ~ 0 in V(z, w;(2)) N U, where
U, is a preassigned neighbourhood of C".

Hence pug ~ 0 in V(z) N U,, and so u' = ¢d"V + do,
where «, is a singular chain on V() N U,. u’ = cé'"™ + da,
can be written as d(y” — cA") — a,) =0. Thusy’ —c A" —q,
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is a cyele on U,, which may be assumed to be homologically
trivial. It follows at once that ¥’ ~ cA") modulo V(z), the
homology holding in U,.

As pointed out in Theorem 28, part (1), all that remains to
be done in order to verify parts (1) and (2) of Theorem 19 is to
show that a relation cA" = 0 implies ¢ = 0. Suppose then
that ¢cA" = 0 for some integer c¢. It would follow (Theorem
16) that cA” is homologous to zero in V(1) modulo ¥V(z) in a
preassigned neighbourhood of C’, and so ¢4~ would be
homologous to zero in ¥(z,) N U, for a preassigned neighbour-
hood U of ¢". Tf U’ is a preassigned neighbourhood of ¢’ and
U is small enough, this means ¢6~) ~ 0 in V(z,3) N U’
(Theporem 23). Then since 81 = A{-D 4 Af-D 4y and
since (V(z, 2'); V(z, 4), V(z, 4,)) is a proper triad (Eilenberg
and Steenrod [4]), it would follow that cA{-D and ¢A{-D are
both homologous to zero modulo V(z, w’), contrary to the
Induction Hypothesis.

To establish part (3) of Theorem 19 let f and f' be two
mappings of (E*, §7-1) into (V(2), V,) such that f AP = A"
and f,AD = A’ are both generators of H,(V(3), V,).
Assume further that f, f* have their images in a neighbourhood
U’ of C'. It is to be shown (cf. Theorem 28) that U* can be
chosen so that the maps f, f’ of (E7, 87-1) into (U , Vo U)
are homotopic, where U is a preassigned neighbourhood of
C’. 1t is not hard to see that this will follow if the restrictions
of f and f’ to 87! are homotopic maps into ¥V, N U, for U
may be chosen to be an open cell. Now if A", A’(") gre repre-
sentatives of A", A", respectively, obtained by applying
[, f' to a representative AJ’ of AY, then, given U, U’ can be
chosen so that A’") and A" are homologous (with a suitable
choice of sign) in the relative homology of U modulo U N Vo
(Part (1) of Theorem 19, along with Theorem 16). If 61 =
dAM, §C~D = dA"" this implies 6 ~ &'~V jn YV, N U.
Thus the required result will be obtained by a suitable
modification of the Hurewicz isomorphism theorem (of. Hu
[8]). As a number of auxiliary results are needed, a separate
section will be devoted to this task.
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5. Proof of Theorem 19, part (3)

In the first place, noting that the set W of Theorem 16 can
be made arbitrarily small, and that, given W, a neighbourhood
U’ of ¢’ can be found contained in W (by Lemma e, §2,
Chapter II) it follows that (by Theorems 16 and 17):

Lemma a. If U is a given neighbourhood of C’, there exists
nesghbourhood U’ of C' such that the smage of the injection map
HVANU,V,nU)—>H(V(A) NTU, Vo, TU) is zeso for
g <r — 1, z, being sustably chosen on A.

It follows at once from this result that:

LeMMa b. If U is a given nesghbourhood of C’, there 45 a
nesghbourhood U’ of C' such that the image of the injection map
H(VonNU')—> H(V,NU) 18 zero for ¢ < r — 2, 24 being
suitably chosen on A.

The main result of this section is the following:

TaroreM 29. (a) If U is a given nesghbourhood of C', there
a neighbourhood U’ of C' and a point z, on A such that the image
of the injection map w(U' N Vo) — n (U NV, t8 zero for
gsr —2.

(b) If U 15 a given neighbourhood of C', there i3 a nesghbour-
hood of U’ of C" and a point zy € A suchthatif f : 8™ > U'N V¥V,
has the property that the snduced homomorphism fo : H,_,(8™1) —
H,_ (U’ N V,)has zero image, then f, as a mapping snto U NV,
18 homotopic to zero.

Proor. In part (a) of this theorem it is understood that the
base point for the homotopy groups is some point y € U’ N V.
Part (b) is actually the result wanted, but part (a) is required
in its proof. The proof of Part (a) is to be inductive, and will
be preceded by a discussion of the lower dimensional cases.

In the first place, if r = 1, part (a) is meaningless, and part
(b) is obviously true; for Vo N U will consist ef just two
points if U is small enough and f, has zero image if and only
if f maps the sphere S° (two points) into a single point, which
makes f homotopic to zero trivially.

Secondly put r = 2. V¥, is now a curve, and w,(z,), ws(2,)
are clearly two of its branch points over the plane of the
complex variable w, and Cy(z,) and Cy(z,) are the two points of
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the curve at which the branching in question takes place.
¥ (2, w’) consists of a finite set of points, exactly of two which,
say P, and P, lie in U if U is small enough. Now there are
well defined arcs P,C,(z,), (5, j =1, 2) in V, lying over A’
and so it follows that U N V(z,, A”) is a homeomorph of a
circle, A* being the arc on 1’ which joins (z,, w(2e)) to
(25, Wy(2z,)). Now let U be a given neighbourhood of C’; U
may as well be taken so that U N V(z,, 4") is a homeomorph
of a circle. Then, by Theorem 23 there is a neighbourhood
U’ of C’ such that any point of U’ N ¥V, can be joined by an
arc in U N V, to a point of U N V(zy, 4”). Thus any pair of
points of U’ N V, may be joined by an arc in U N V,, which
proves part (a) of the theorem for r = 2, ¢ = 0.

To prove (b) for r = 2, suppose f:8—>U'NnV,is given
so that the induced map f, : H,(S*) — H,(V, N U’) has zero
image, for some choice of U’ a.nd zo- If U’ and 2, are suitably
chosen, Theorem 23 shows that f is homotopicin U N ¥V, to a
map f’ : S'— U N V(z,, ") such that the image under f’ of a
fundamental cycle of S! is homologous to zero in U N V(z,, A").
This cannot happen unless f’, as a map into the homeomorph
of a circle U N V( 2z, A"), is homotopic to zero.

Part (a) will now be proved for all values of » >> 3 and
g =0or 1. Let U be a given neighbourhood of ¢’ and let U’
be asin Lemma b. Then if P and @ are two pointsof U' N ¥V
the zero dimensional cycle P — @ is homologous to zero in
U NV, that is P and @ can be joined by an arcin U N V,,
which establishes part (a) for r >> 3, ¢ = 0. To prove Part (a)
for ¢ = 1 and » > 3, a sequence of neighbourhoods U;, with
U, C U,, is to be constructed, in & manner similar to the
constructions of §§3, 4. Let f be a map of St into U, N V¥,
carrying a certain point 2 € 8! into a point y € V(z,, A") N U’,
A" being the arc on A’ joining (z,, wy(z,)) and (24, wy(2,)). Let
U, and U, play the parts of U, and U in Theorem 23. Then
f:8 - U,n ¥V, is homotopic to a map f’ which carries S!
entirely into V(zy, A") N U,. The continuity of f’ implies that

1

f’ acting on any closed set gives a closed, and so compact set
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on §'. Now let M; C M C M; C M, be nexghbourhoods of
C,z,) 6 =1,2)in V,. The compactness of f' (M’) and the

continuity of f’ imply that f (M ) may be covered by a finite
number of intervals mapped by f’ into M;. It follows easily
that S may be split into a finite number of arcs of three types.
Those of the first and second types are mapped by f’ into M,
and M, respectively, while those of the third type are mapped
into sets not meeting M) or M;. Let A be an arc of the first
type, say, p, ¢ its end points and P = f'(p), @ = f'(q). It is
olear that w, may be chosen on A” so close to w,(z,) that P and
Q may be joined in M, to points P’, Q' respectively on V(z,, w;);
w, may be chosen with respect to all the arcs of the first kind,
since there is only a finite number of them. Then since part
(a) of the present theorem holds for r > 2, ¢ = 0, it follows
that, M, being preassigned, M, can be assumed to be such
that P’, Q' can be joined by an arc « in V(z,, w;) N M,, and
likewise for all other ares of the first kind. Assume in addition
that M, C U, and that M, is an (r — 1)-cell. Then f'(4) is
homotopic to «, the homotopy being carried out entirely in
M,, and 50 in ¥y N U, This process is to be oarried out for
all the arcs of the first and the second kinds, the result being
that f’ is homotopic in ¥y N Uy to a map f” whose image does
not meet the M;. Then if U, and U, play the parts of U,
and U in Theorem 23 it may be assumed that the homotopy
from f’ to f” is carried out in V(ze, A") N U,;. Let Uy C U,.
Then it may be assumed that w,, selected above, and a
similarly selected w, are also such that f" is homotopic in
V(zpA") N U, to a map whose image is contained in
V(zg, ") N U,, where A" is the join of w, and wq on 2'. Now
apply Theorem 24, U, and Uj playing the parts of U’ and U,
and the relevant homotopy being that on 2" which shrinks 2"
to the point w,(z,).

Hence f’ is homotopic on ¥y N Uy to a map whose image
lies in V(zq, wy(2o)) N Ug. Assume further that V'(wy(z,)) N Uy
is an open (r — 1)-cell, which is always possible, and finally



70 HOMOLOGY THBORY ON ALGEBBAIO VARIBTIES

shrink this cell by Theorem 12 (applied in V’(15(z,))) onto
V(z,, ty(z,) which can be done in U, if U is suitably chosen.
The final result is that f’, and so f, is homotopic to zero in
U, N V,. This homotopy is a free homotopy, but its existence
establishes the existence of & homotopy throughout which
x is mapped on the selected base point y. This completes the
proof of part (a) forallr >3 and ¢ = 1.

Part (a) will now be proved in general. In view of what
has been already proved, attention may be confined to.the
cases r > 4,q > 2. The result will be proved by induection,
the basis of the induction being the already established result
for ¢ =1. Let U be a given neighbourhood of C’, and
U, C U, C U where U,, U, are neighbourhoods of ' to be
more fully specified presently. Let f:8?—V,N U, be a
map carrying the south pole of $* into some pointy € Vo N U,
to be fixed from now on. f carries a fundamental cycle of 8¢
into a g-oyole, which, if U, is chosen correctly with respect to
U,, is homologous to zero in ¥, N U, by Lemma b. Hence f
may be extended to a polyhedron Pe+! which has $7 (suitably
triangulated) as its frontier, the extended f catrying P+! into
VoN U, A step by step argument, using the hypothesis
that part (a) of the theorem holds for maps of 0-, 1-,2-,...,
(g — 1)-spheres, shows that if U, is suitably chosen the
extended map f is homotopic to a map f’ which carries the
(g — 1)-skeleton of Pe+l into the point y, the homotopy
being carried out in UN V,. Now let T,,..., T, be the
g-simplices of P*tl, The map f’ and 7', determines, for each
¢, an element of 7 (U N V,), based on y; call this element
(f’, T,). And the mapping assigning to each integral chain
Sa,T, on Pl the element Ja,f’, T} is & homomorphism
p:C(PH) > a2 (UNV,), such that u carries bounding
chains into zero (cf. Hu {8]). In particular if « is the fundamen-
tal cycle of the triangulated 89, u(«) is the class of the map
f:8—=UnNYV, but « is a boundary and so f is homotopio
tozeroin U NV,

Part (a) is now completely proved. Part (b) is proved for
r > 3 by the same argument as has just been carried out,
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with ¢ replaced by r — 1. The essential point of making the
map f* carry the r — 2 skeleton into a point y is established by
applying the already proved part (a) of the theorem.

Theorem 29 will now be applied to finish off the argument
of §4. U being a given neighbourhood of C’ let U, and U
play the parts of U’ and U in Theorem 29, part (b). Let U,
and U, play the parts of U’ and U of Lemma b, and let U’
be a neighbourhood of ¢’ such that any pair of points of
U’ N 7, may be joined by an arc in Uy N V¢ (Theorem 29
part (a) for ¢ = 0). Then if z is the south pole of 871, f(x)
and f'(z) may be joined to a point y € Uy N ¥V, by ares in
Uy N Vo, f and f being the maps introduced at the end of §4.
Then it follows that f and f’ are respectively homotopio to
maps f; and f; of 8™ into VN U,, carrying z into the
selected point y, the homotopy being carried out in ¥V N U,
f, and f] represent elements of w,_4(V, N U) in the image
of the injection of =,_,(V, N U,). The difference map f; — f}
may be construoted and is a map which, by Lemma b applied
to U, and U,, carries a fundamental cycle of 81 into a oyole
homologous to zero in ¥, N U;. Then by Theorem 29 (b), h
and f,, and so f and f’ are homotopic in U N ¥,

This completes the verifications of the various parts of the
Theorem 19 for dimension r, and so completes the induction,
thus proving that theorem. '



CHAPTER VI

THE POINCARE FORMULA

1. The automorphisms T,

As before let z,, . . ., z, be the parameters of the singular
sections of V by the penoil II, and let K denote the complex
sphere § with these points removed. Asshown in §3, Chapter
1, there is a fibre bundle X with base K and some non-singular
section ¥, of V as typical fibre, also that X contains a sub-
bundle X’ equivalent to K X P each fibre of X' being contained
in the corresponding fibre of X. Moreover (Theorem 4) there
is a continuous mapping y: X — V(K) which is homeomor-
phic on X — X', mapping this set onto V(K) — P. If ¥, is
the section of V of paramenter z, and X, is the fibre of X
over the base point z, then y restricted to X, induces a
homeomorphism y, of the pair (X, X, = (X, X, N X')
onto the pair (V,, P).

The covering homotopy theorem for fibre bundles and the
standard methods of discussing the homology of such spaces
may now be adapted to show that the fundamental group of
K acts as a group of automorphisms on H, (X, X,) for each g.
If 8, is the automorphism corresponding to the element
aem(K) and o, : H(X,, Xo) = H(V,, P) is induced by
the homeomorphism y,, then T, =y, S@:,o, is a well defined
automorphism of H (V,, P). Moreover the fibre bundle theory
gives a method of computing the effect of the operators S,,
and 8o T,. Namely, denote by « a representative path in the
class a € m(K) and let o be a singular simplex of dimension ¢
on V,, that is to say a continuous mapping of a Euclidean
simplex A into V,. Then there is a homotopy F:A X I
— V(K) covering « such that F coincides withoon A x {0} and
F(A x {1}) C V. F restricted to A X {1} is deflned as 7' (s).
T, is constructed for different singular simplexes in such a
way that cycles are carried into cycles, and boundaries into

72
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boundaries. Also simplexes on P are carried into simplexes
on P. It follows at once that 7', induces an automorphism on
H,(V, P), as required.

This chapter will be occupied with the application of this
method to the computation of 7',(7) for certain basic « and 7,
and forg =r — 1.

Let the paths A, from an ordinary point z, on § to the
special points z, be constructed as in §3, Chapter III. Let «,
be a path starting at z,, going along A, until close to z,, going
once round z, counterclockwise (round a circle say, small
enough not to contain any 2, for j 7 ¢) and back to z, along 4,.
m(K) is generated by the homotopy classes of the «,. Write
T,=1T,,. Then the T,(i =1, 2,...,k) generate the group
of automorphisms on H(V,, P) induced by =, (X) for each ¢.

Attention will now be fixed on one particular value of ¢,
and the automorphism 7', will be examined in greater detail.
As usual it is convenient to change the notation, taking
V(2') as the singular section to be considered, A as a path
from 2’ to z, C’' the singular point on V(2’) and T for the
corresponding automorphism on H(V, P). It is also con-
venient for the present purpose to take z, close to z’; just
how close will be made more explicit presently.

TeEOREM 30. T acts as the sdentsty on H(V,, P) for
gssr —2.

Proor. For if 7 € H,(V,, P) then 7'(y) — 7 is in the kernel
of the injection H (V,, P) — H,(V, P), and so in the image
of the boundary homomorphism 8 : H,(V, Vo) = Hy(V,, P).
But H,,(V,V, =0 for ¢ <r —2 (Theorem 17) and so
T(y) =7.

TerorEM 31. Let 7€ H, ((V,, P), § generate the kernel of
the injection H, (V,, P)— H,_,(V(4), P), y, & represeniatives of
7, 8 respectively, 8 being a singular cycle on some neighbourhood
of C" not meeting P. Then there i3 an snteger ¢ (independent of
7) such that T(7) = 7 + ¢(y . 8)5, where (y . 8) is the intersection
number of y and é.

Before getting started on the proof note that & can be
constructed so as to lie in a set not meeting P (§3, Chapter V),

s
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and also that, being constructed in this way, 8 is & cycle not
meeting the boundary of y, and hence that the intersection
number (y . 4) is well defined.

Next, V, is a differentiable manifold, P a submanifold, and
80 there exists a triangulation of ¥ making it into a simplicial
complex with P as a subcomplex. It follows that any element
of H,_,(V, F) can always be represented by a simplicial
chain, and any homology can always be written as a simplicial
homology.

Proor or TuHEOREM 31. To prove the theorem 7' may be

‘supposed to be induced by an element of m,(KX) represented
by a single counter-clockwise circuit of a small circle about 2/,
say the circumference D of a small circular neighbourhood ¥
of 2z’ whose closure does not contain the parameter of any
other singular section of ¥. Then 7' (§) — 7 is clearly in the
kernel of the injection H,_,(Vo, P)— H,(V(N), P), and so,
since the pair (V(4), P) is a deformation retract of (V(N), P)
(Theorem 12) also in the kernel of the injection H, _,(¥,, P) —
H, ,(V(4), P). Thus T($) — 7 = f,()3, where f; is an integer
valued function of #. If § = 0 there is no more to be said.
Otherwise write f,(y) = fi(7) for any simplicial representative
y of 9. The function f; so defined is now to be extended to
the whole group C,_,(V,) of simplicial (r — 1)-chains on V.

Using now the notation of §1, Chapter II, let F be the
family of radii of N. The conditions on F stated there are
satisfied with K and E replaced by N and z' respectively.
Construct the family of curves F’ as in Chapter I11. Let U be
an open neighbourhood of C’, and let W, be the set of all
points on all curves of F’ endingin U. WriteWy= V(N) — W,.
Lem:mas e and f, §2, Chapter II, show that W, is open in
V(¥), and moreover can be made to lie in a preassigned
neighbourhood of ¢’ if U is made small enough. Also it is
clear that ¥, N W, is a deformation retract of W,, and so,
if ye H,_,(V,, P) has a representative y which is a simplicial
chain on W, N V,, it follows that T(5) = 7, and this, along
with the assumption that § # 0, implies that f;(y) = 0.
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Define now the linear function f on C,_(V,):

(1) If yeC,4(V,) is a relative cycle modulo P, set
f() =AH) ‘

) I yeC, 4(Wyn V), set fly) = 0.

By the remark just made above, if y € C, (W, N V,) and
also is a relative cycle modulo P, fi(y) = 0, and so (1) and
(2) agree. The linear function f is thus fully defined cn the
subgroup Z, (Vo P) + C,4(WynVy) of O y(Vy), 2
denoting the group of relative cycles. Let # be the natural
homomorphism C,_y(V,) —C,_s(¥,, P) =C,_4 Vo)/ Cr—-l(P )
and d the boundary operator d : C,_;(V,, P) = C,_g(V,, P).
Then Z,_,(V,, P)isthekernel of m.d. Since Z,_,(V,o, Wy N ¥,)
is a subgroup of C,_;(V,) containing Z, ,(V,, P), the map
m.d carries Z, ,(V,, W4 N V,) onto a subgroup of C,_4(V,, P)
and the restriction of w.d to Z, (Vo Wy N V,) has kernel
Z, (Vo P). Thus Z,_,(Vy, WsN\ Vy)[Z, 4(V,, P) is isomor-
phio to a subgroup of the free group C,_4(V,, P) and so is free.
Thus Z, ,(V,, P) is & direct summand in Z,_;(V,, Wy V).
Write Z,_,(Vy, WeN Vo) = Z, 4(V,, P) + @, and extend f to
Z, (Vo Wyn V) by setting it equal to zero on G. This
extension involves no contradiction. For fis already defined on

Z,5(Vo, P)+C,(Wyn V)
=2Z,4(Vo, P) + C,s(WanN Vo) N Z, (¥, P)
+C4(Wen VNG
=2,3(Ve, P) + C,s(Wy N Vo) N @

(the last summation being direct) and the value so far given
for f on the subgroup C, ,(WaN V) NG of G is zero.
Continuing the argument, Z,_,(V,, WonN V,) is a direct
summand of C, ,(V,), since C, y(Vo)/Z, (Vo WaN V) is
isomorphic to a subgroup of C,_4(V,, Wy N ¥,) and so is free.
Hence f may be extended to the whole group C,_(V,) as
required.

Thus f is an integral valued simplicial cochain on V,. It is
also, however, a cocyocle. For f(df), where § is an r-chain on
¥, and & is the boundary operator, is given by the definition
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(1) above: f(dB) = fi(df). But df is homologous to zero on
V, and so on ¥, modulo P, and so T'(df) = dp = 0, and so,
since J is assumed at present to be non-zero, f,(df) = 0. But
a simplicial cocycle can always be represented by means of a
cycle in the dual simplicial subdivision. That is to say, there
is a cycle y, of the dual subdivision such that for any simplicial
chain y, f(y) = (¥ . y,), the intersection number. Also f has
been so defined as to vanish on any simplex which does not
meet W;. Now W, can be constructed to lie in U, where U,
is a preassigned neighbourhood of ¢, (Lemma f, §2, Chapter
II) und so if the triangulation of ¥, and the dual subdivision,
aro made fine enough, y, will be composed of simplexes lying
entirely in U,. If U, is chosen so as to be homologically
trivial it will follow that y, represents an element of the
kernel cf the injection H, ,(V,, P) — H,_( V(IV ), P), and so is
homolcgous in ¥, modulo P to an integral multiple of the
appropriate “‘vanishing cycle”. That is to say, using the usual
convention for the intersection numbers of singular chains
f(y) = c(y . 6) for some integer, ¢, where y need no longer be
simplicial, but may be any singular representative of y.

The formula 7(5) = § + ¢(y . 8)d is thus established; the
next task is to show that ¢ is in fact equal to —1. This will
be done by selecting a particular element to take the place of
7, an element for which 7'(5) may be calculated in a different
way. Also the intersection number (y . d) will be computed
for this particular y, and the two different evaluations for
T(7) will be compared. The question of evaluating ¢ only
arises, of course, when § # 0. And until further notice this
assumption, that § 0, will be made.

2. Explicit calculation of T

The integer ¢ appearing in Theorem 31 must now be
calculated. The method will be to apply Theorem 31 to an
element 7 of H,_y(V,, P) for which T'(7) and the intersection
number (y . J) can be calculated independently. As part of
this working is rather elaborate, the details of the proofs of
the theorems involved will be postponed till Chapter VII,
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and in the meantime a geometrical sketch of the argument
will be given.

It will be remembered that, by Theorem 19 applied to ¥,
a set of generators for H, ;(V,, P) can be obtained such that
one generator is associated with each singular section ¥(z,, w,)
of V, by a hyperplane of II’; the understanding is that each
point w, involved is joined by an are u, to the point o in the
complex w-plane, and the sth generator is represented by a
relative oycle of V(z,, u,) modulo P. In particular, using the
notation of §3, Chapter IV, there are two values of w, namely
w;(2) and w,(z) for each z near 2’ such that V(z, wy(z)) and
V(z, wy(z)) are singular sections of V(z). The effect of T' will
now be studied on the generator of H, ,(V,, P) associated as
just indicated with V(z,, w,(z,)). But first, suitable arcs
joining w;(z,) and wy(zy) to co on the complex w-plane must
be constructed. The following is & convenient construction for

this purpose.

z-piane

Fia. 1
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Apart from (2, w’), the line z = 2 in the (2, w)-plane meets
the curve I' in a finite number of points with w-coordinates
wg, Wy, . . ., w,, say. These are all finite since, by the way
coordinates have been chosen, the axis of II corresponds to
w = 00.

Let N, Ns, ..., N, be neighbourhoods of w’, ws, . . . , w,,
respectively, on the complex w-planie no two of which intersect.
Then, for z, sufficiently near z’, the line z =z will have s
intersections with I' two of which, (z,, w,(%)), (2,,%s(%;)) have
their w-coordinates in N,, while of the w coordinates of the
remaining intersections, one lies in each of N, ..., N,.

Fix attention for a moment on w,(z), w,(z), for values of z.
near z’. The two valued function w(z) with values w,(z), wy(2), is
given around z’ by a quadratic equation

(w — w')* + p(2)(w —w') + ¢q(z) = 0,

where p(z), ¢(z) are analytic around z’ and both vanish at
z’. The requirement that I' should have a well defined
tangent at (z', w') implies that dg/dz % 0 at z = 2'. It
follows that w(z) may be expanded in a series of the form
w + 01\/z —2' 4+ co(z —2') + ..., wherec, % 0. Thatisto
say w(z) = w’ + (¢; + ) Vz — 2’, where I < k|Vz — 2|, k
being a certain constant, provided |z — 2’| is sufficiently small.

Now assume that N is a circular neighbourhood of radius

p about z’, such that kv ; < }e)|, such that a circle about w’

in the w-plane of radius c,|V/ p is contained in Ny, and such
that the points of I" with coordinates (z, w), z € N, apart from
(2, wy(2)), (2, wy(2)) have their w coordinates lying one in each
of N;,...,N, Then as z traces the circumference y of N,
starting and finishing at z,, the two values w,*(z), w,*(z) of
the function w*(z) =’ 4 clx/ z — 2z’ trace out semicircles
about w' of radius |¢|V/p in the w-plane. And the paths of
w,(2), wg(z) approximate these semicircles. More specifically
for ¢ = 1, 2, the distance of w,(z) from w*(z) is

il [VE=7] < ko < YoV
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Starting with the value wy(z,) it thus follows that, as 2(6) =
Z + pe® traces out y from 6 =0, to 0 = 2x 4 6, this
particular value of w(z) traces out an arc y’ from w,(z,) to
4(2,), the moving point of y’ being a function w(6) of 0 only.
Moreover, the arc y’ will lis entirely within a circle y” about w’
of radius ¢;/v/p, and hence, by the choice of N, entirely
within N, (cf. Fig. 1, p. 77).

Fix any point w, on " and let x, be any path on the
w-plane from w, to oo, lying entirely outside y”, and not
meeting the closures of N, ..., N, Let u(6) denote the
path from w(f) to oo obtained by joining w(6) to a point of y”
along a radius of y” and then joining this point of y* to w, by an
arc of the circumference of ¥” finally proceeding to oo along u,.

Then it is not hard to see that, as 6 varies from 0, (at z,)
to 8, -+ 2m, the path (2(8), x(0)) in the (z, w)-plane is deformed
continuously from its initial position (zq, 1) = (2o, u(0)) to
(20> H2) = (2,4(0 + 27)). The idea is to lift this deforma-
tion into V, fibred by its sections with the (n — 2)-spaces
through L. This is not, however, a straightforward matter of
applying the modified covering homotopy theorem (Theorem
5) as the are (2(6), u(@)) always has the special point (2(8), w(6))
on it. But this difficulty may be got around with a little
care, and it will be shown that, as (z,, ;) is deformed into
(z9) pg), a relative oycle A, representing a generator of
H, ,(V(zq, ), P)is carried into a relative cycle A, represent-
ing a generator of H,_,(V (e, ¢4), P). If A,, A,, are the relative
homology classes of A}, A; in ¥V, modulo P, this implies the
following result:

Tueorem 32. T(A,) = +A,.

The proof of this theorem will be given in §3, Chapter VII.

The chains A, and A, just mentioned are to be chosen in
rather a special way. It will be noticed, by examining Fig. 1,
that A’ = 4, U 4, can be deformed into p, U u,, leaving w,(z,)
and w,(z,) fixed. It will be shown (Chapter VII) that this
deformation can be lifted into a deformation of the two
chains A-1, A~ of §3, Chapter IV or §3, Chapter V (which
are, geometrically speaking, hemispheres embedded in V) into
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two chains which are respectively relative cycles on ¥(z,, 4,)
and V(z,, u,) modulo P. These two chains are to be taken as
A, and A,

L/

AWz 2} 2

v(q.é »

4z

F1a. 2

The formula 7'(3;) = +A, will eventually be compared
with the formula T'(&,) = &, + ¢(4, . 8)8, and, since it is
intended to find ¢ in this way, attention will be confined to
the case & £ 0. The first thing to notice is that § = A, + A&,,
for in §3, Chapter V, the vanishing cyole 8§ was constructed
a8 AV 4 A{f-Y 4 » where » is a chain on V(z,, w’). The
deformation of A" and A{-" into A, and A, then shows
that 4 is homologous to A, { A, modulo P, as asserted. On
the other hand, A{"-Y + A{-1 + » can still be taken as a
representative of 4, and 8o it is not hard to see that (4, . 8) =
(8, . AY™Y), for the point C)(z,) is, geometrically speaking,
the only point in common of é and . A,; (see Fig. 2).

The next stage is to carry out the explicit calculation of an
 intersection number of the type (Af~2 . A,). For this purpose
it is oonvenient to change the notation and to consider the .
following situation (see Fig. 3, p. 81).

2" is a special point on the z-plane 8 (with the point o)
and 4 and p are two piecewise analytic arcs ending at z’. A
represents a generator of H (V(1), V(z,)). 4 can be deformed
into x4 in two essentially different ways, namely clockwise
and anti-clockwise. By lifting these deformations into V it
will be shown that: '



THE POINCARE FORMULA 81

THEOREM 33. There are two isomorphisms 1", and T, of
H(V(3), V(zo)) onto H,(V(u), V()

A fuller and more general statement of this theorem will be
proved in §1, Chapter VII (Theorem 38).

V@) ) V(z,)

Fia. 3

The object now is to calculate the intersection number
(A. T%(4)). By Theorem 1¢, A and T7,(A) are images of a
relative cycle on £" modulo §7-! under continuous mappings
ho and hy, say, into VIt will be shown that the mappinge
ko and &, can be made differentiable and homeomorphie and
that the homotopy of %. into A, which, in fact, defines the
operation T, can also be made differentiable. It will follow
at once that the interesction number (A . 7",(A)) can be
-computed by examining the configuration of the tangent
linear varieties to ky(E7) and h,(E") at C’. This will be done
in §4, Chapter VII; the result is:

TaEoREM 34. (A . T,(4)) = 1.

3. The formula T(Y) = 7 — (v . 8§)8. (Poincaré Formula)

- Using the intersection formula obtained in Theorem 34,
the study of the automorphism 7' of §1 will be continued.
The first step is to find the effect of 7' on §, the result being:

TrroreM 35. T(8) = (—1)"3.

Proor. 2 as usual is to be an arc joining z, and 2. Let u
be a second arc obtained from A by an anticlockwise rotation.
By Theorem 33 the three homomorphisms T%, T3, Tha
can be constructed, and they satisfy the relation T% = 73,
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(of. end of §1, Chapter VII). Let A represent a generator A
of H(V(A), V,). By Theorem 34, (A . Tj;(A)) = 1. Applying
Theorem 34 again to 7%(A), the result (T%(A) . T5.T5(A))
= 1 is obtained; that is to say, (Tji(A) . Tu(A)) = 1. But
T% is clearly an automorphism of H.(V(1), V,) and so
T4H(A) = kA, where k = +1. Hence k(Tii(A).A) = 1.
But (7%(A) . A) = (—=1)(A. T5(A)) = (—1), and s0 k =
(—1). The theorem is then proved by noting that T'(f) is
obtained by applying the boundary homomorphism to. the
formula T%(A) = (—1)’A which has just been proved (cf.
Theorem 38).

TaroreM 36. T(4,) = —A,.

Proor. It will be remembered that A, and A,, elements of
H,_,(V,, P), are represented by relative cycles Ay and A, in
Vizg, p,) and V(z,, ug), respectively. Also § = A, + A, (ef.
§2) and & may be represented by AY ™V 4+ AY™Y 4 » where
ATV and AV are relative cycles on V(zg, 4,) and V(zq, ,),
respectively, modulo V(z,, w'). and » is a chain in V(z,, w').
Then, using the intersection fermula of Theorem 34, it follows
that (4, .6) = (A, . A™Y) =1, since the deformation of i,
into 4, {cf. ¥ig. 1, p. 77) is anticlockwise, working this time
entirely in V,, parametrizing the pencil of seotions V(z,, w)
by w. Similarly (§.4,) = (A{™ . A,) =L

The automorphism 7', however, preserves intersection
numbers, and so (4;.4) = (T'(4,) . T{9)) = (—1)k(A; . ),
where & = +1 by Theorem 32. Hence 1 = (—1)k(A,.0d) =
—k(6.Ay) = —k,and s0 k == —1, ag was to be proved.

THEOREM 37. For any element ye H, ((V,, P), T(y)=
7 — (y.0)8, where y, 8 are representatives of y and §
respectively.

ProoF. It has already been shown that T'(7) = 3 +¢(y . 8)8
in Theorem 31. Applying this formula to 7 = A, it follows
that T(A,) = A; + ¢(A;.08)6 = A + ¢(4, . AY V) = A, + ¢8,
since (4A;.9d) = (A, . AfV) =1 by Theorem 34. But T(4))
= —A, by Theorem 36, and so -4, = A, 4 ¢§; that is to
say (¢ + 1)0 = 0 and so, since § = 0 has been excluded,
¢ = —1, a8 required.



CHAPTER VII

THE POINCARE FORMULA;
DETAILS OF PROOF

1. Clockwise and anti-clockwise isomorphisms

It is convenient to start the verifications of the results
sketched in Chapter VI by proving Theorem 33, in a slightly
more general form.

Let K be a set on the complex z-plane homeomorphic to a
closed disc, and let all the points of K be ordinary except one,
namely 2’, to be contained in its interior. Let 1, p be two
ares in K having no point in common except 2’, which is to
be an end point of both. It will be assumed that 2 and u
are both unions of arcs analytically homeomorphic to a closed
line segment and that these arcs are joined end to end, no
two of them having points in common other than endpoints.
Finally it will be assumed that 1 ard x have distinot tangents
at z’. Then the following is the theorem to be proved:

THEOREM 38. Assoctated with each homotopy class « of paths
from the end point zy of A to the end point z, of u, in the sense
of homotopy in K — 2’ with respect to fixed endpoinis, there is an
ssomorphism T, of H(V(2), V(ze)) onto H,(V(u), V(z,) such
that, if T:H,_,(V(20)) — H,_,(V(z)) is the isomorphism
tnduced as tn a fibre bundle (cf. also §1, Chapter VI) by the
operation of a path of class o in the base (in this case K — 2'),
then the follourng diagram is commutative:

HAVQ), Vize) 25 H(V(), V()

K l )
75
H =1V (2q)) —> Hr-l( V(zé))-

The proof of this theorem will be split up into the followingl
two lemmas.

83
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LEMMA a. Let a, be a path joining z, to z; in K — 2'. Then
there is a homotopy F : V(1) x I — V(K) of the inclusion
mapping of V(A) into V(K ) with the following properties:

(1) resm'cted to 1) X {0} i3 the inclusion mapping;

(2) F(V(3) x {1}) = ,“

(3) F(V zo) X {t}) = V(z(t)), where z(t) 1s the point of para-
meter t on «,.

Proor. Let N be a closed circular neighbourhood of 2z’ such
that, in &, a family of curves can be constructed with the
properties of the family F in §1, Chapter II, K and E being
replaced here by N and 2z, respectively. Assume also that
this family of curves includes the parts of 2 and u in N; this
can be done if ¥ is small enough because of the assumptions
made on 1 and u. Let N, be a second circular neighbourhood
of 2’ whose radius is half that of N. Let D be the circumference
of N, and let A and u meet D in z, and z; respectively; these
points are uniquely defined if ¥, is small enough.

Now the fundamental group of K — 2’ is isomorphic to that
of D, under the inclusion mapping, and so the closed path
which starts at 21, goes along the path 1 to z,, along «, to z,,
along u from 2/ to 2, and fina'lv back tn 2, along D (in either
direction) is homotopic in K -~ z’, and in fact in K — N 1 to
a path lying entirely on D, the homotopy being with respect
to the fixed base-point z,. This statement may be reinter-
preted in the following way; namely that there is a deforma-
tion of the part of 1 joining 2 to 2z, into a path which consists
of a path on D from z, to z; followed by the part of u from
z; to z;, the point z, being fixed throughout the deformation,
while z, moves along «, to z;. This deformation can be lifted
into V by Theorem 5. Thus, if 4’ is the curve formed by the
part of 1 from 2" to z,, followed by a certain path on D, and then
by the part of u from z; to z,, the statement of this lemma has
been proved with x replaced by u’. The proof of the lemma is
completed by applying Theorem 12, which shows the existence
of a homotopy of the identity mapping of ¥(N) onto itself into
& mapping which carries V(N,) onto V(z'). In particular this
mapping carries V(u') into V(u), and the lemma is proved.
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LemmA b. Condinuing with the notation sntroduced above, let a4
be a closed path based on z,and homotopicto a constant in K — 2’
Let F:V(A) x I—- V(K) be a mapping with the following
properties:

(1) F(V(4) x {0}) = F(V(A) x {1})) = V(4);

(2) F(V(zq) x {t}) = V(2(t)), where z(t) is the posnt of para-
meler L on ay;

(3) F(V(2) x {t}) = V(A(t)), where A(t) 18 @ path joining 2’ to
z(t), and for each zei, F(V(z) X {}) = V(f(z, t)), where
f(z, t) € A(2). '

Then, defining Foand F, as the restrictions of F to V(1) x {0}
and V(1) X {1} respectively, the two mappings F, and F, of
(V(4), V(z4)) tnto itself are homotopic (that 13 as mappings into
(V(2), V(zo))- |

Proor. Condition (3) above implies the existence of a
mapping f:4 X I — K such that f(A X {t}) = A(t). Taking
coordinates (s, t) on 4 X I, the side 8 = 0 is mapped by f into
2, the sides { = 0 and ¢ = 1 into A, and the side s = 1 into
@, Let N and N, be as in the proof of Lemma a, and in
addition chosen so small that the path «, does not meet N.
Then there is a number &’ such that the part of A X I defined

-1
by 8 >> &’ does not meet f (N )

Define the mapping g : 4 X I X I into K as follows:

(1) g(s, t, u) = f(s, t), for all 8 < &', u being the parameter
on the second copy of I;

(2) g(1, t, ) = h(t, w), where h is a mapping of I X I into
K — Nsuchthat h(z, 0) = z(t), h(t, 1) = 2, h(0, u) = h(1,%) =
zo for all u. Such a mapping k exists since «, is homotopic
to a constant in K — z’, and so in K — N if N is small enough.

(3) g(s, t, 0) = f(s, ) for all (s,t)ed X I;

(4) g(s, 0, u) = f(s, 0), and g(8, 1, 8) = f(s, 1) for all s € A.

These conditions define g on all of 2 X I x I except the
part where s’ <8 < 1,0 <t <1, and 4 > 0. And it is now
a standard cperation to extend g to this set, noting that the

extension will earry this set into X — N.
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Now g defines a homotopy of f into a new mapping f':4x I
— K which agrees with f on all points of 2 x {0}and 1 X {1},
and carries {z,} X I into z,. Also all points mapped into N
by f are left fixed throughout the deformation. It follows at
once from Theorem 5 that this homotopy can be lifted into
V(K). (To apply Theorem 5, it is understood that 4 X I is
firsb identified with a set on S which plays the part of K in
that theorem.) And so there is a mapping F': V(1) X I —
V(K) agreeing with Fg and F, on V(1) x {0} and V(4) X {1},
respectively, and carrying V(z,) X I into V(z,).

But the point set union of A and N, is a deformation retract
of K, from which it follows that F’ can be replaced by a
mapping F’’ with similar properties but carrying V(3) x I
into V(AU N 1) (Theorem 5). The proof of the lemma is then
completed by shrinking V(N,) onto V(z'), using Theorem 12
and noting that it has been arranged that such a shrinkdge
carries V(4) into itself (see the beginning of the proof of
Lemma a).

The following is a variant of Lemma b which will be needed
at the end of this chapter:

LemMa o. Lét ay be as in Lemma b, and let a mapping
F : E* X I — V(K) — L be given with the following properties:

(1) The restrictions of F to E* X {0} and Er X {1} are
mappings F, and F, respectively of (Er, 871) snto (V(), V).

(2) F(8™1 x {t}) C V(z(t)), where z2(t) ss the point of para-
meter t on a,.

Then Fy and F, are homotopic, regarded as mappings snio

Proor. The proof is a modification of that of Lemma b.
r+1

Take E’ as the set in (r + 1)-space defined by Y af =1,
i=1

—1 < z; < 0. Let = be the projection of V(K) — L onto K

defined by mapping each point of ¥(z) on the point z € K.

Then the mapping f = =.F is defined. f(S* X {t}) =z(t). If N

is a sufficiently small neighbourhood of 2z’ on K there is a

number x, such thatf carries the points of E* x I defined
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by z, >z, into K — N. Now define g as in Lemma b,
replacing 2 by E*, s by z, and ¢’ by z,. g can be lifted into
V(K) — L using this time the ordinary covering homotopy
theorem of fibre bundles, and the proof is completed as before
by a retraction onto ¥(1).

ProoF orF THEOREM 38. Let a, be a path from z, to 2z, in
K — z’. Lemma a implies the existence of a homomorphism
Ta: H(V(A), V(z)) = H(V(p), V(z)) such that 9 T =
T,, 9 (i.e. the diagram in the statement of Theorem 38 with
« replaced by a, is commutative). Let a, now be a path from
2o to z, such that o a, is homotopic to a constant in K — 2.
Then Lemma b shows that Ty, T3 and T3 T are the
identity homomorphisms. The required result follows at
once.

There are two special cases of the above theorem to be used
in the subsequent working, namely where the homotopy class
a of the path from z, to z, corresponds respectively to a
clockwise or anticlockwise rotation of 4 into x. The isomor-
phisms of H,(V(1), V(z,)) onto H/(V(u), V(z,)) obtained
corresponding to these two homotopy classes will be denoted
by T, and T, respectively. These are the isomorphisms
whose existence was asserted in Theorem 33.

Cororrary. It is not hard to see thas, if A, u, v are three arcs
radiating from 2’, appearing vn the anticlockwise order A, p, v, 2,
then the compatibility relation T;, = T, T, holds.

2. A special representative for 3

Referring back to §3, Chapter V, it will be seen that the
vanishing cycle 3 was constructed as the sum of a chain » on
V(zq, w') and two relative cycles A{—1 and A{-% on V(z,, 4,)
and V(z,, 1,) modulo V(z,, w'), where A, and 1, are paths in
the complex w-plane joining w’ to w,/z,), respectively wy(z,).
And then referring to §2, Chapter VI, it appears that the paths
4, and u, joining w,(z,) and w,(z,) to o in the w-plane can be
obtained from 4, and 4; by a clockwise and an anti-clock-
wise rotation, respectively. Let T, , : H, ,(V(zy, 4,), V(zq, w'))
~ H,_,(V(zy, 1), P)be the clockwise isomorphism construoted
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as in the last section, and T, the similar isomorphism
relative to i, and u;.

Then writing ¢, and ¢, for the injection homomorphisms of
Hr—l( V(Zo, .ul) P) a‘nd Hr~1( V(zo 2) P) into Hr—l( V(zo)» P):
define &, =1, 7%, (A7) and A,= , (8,¢-1) where A{-D
and A{-1 are the relative homology classes of A{-Y and
AY-D in V(zq, 4;) and V(z,, 4,) woduin V(zg, »'). Finally
define A; and A, to be represematlve relative cycles for A,
and A, respectively, obtained ir the obvious way from A"‘l’
and ,Ay‘l).

It is ciear, then, that 8 = » + A{~1 + Ay—D jg homologous
to A; + A, modulo P. That istosay A; + A,isarepresenta-
tive of the element § of H,_,(V(z,), P), or § = A, + A,. This
justifies the choice of A; and A; made in §2, Chapter VI.

3. Proof of Theorem 32

The object of this section is to compute 7'(4,), where 7' is
the automorphism of H,_,(V,, P) induced by a closed path,
say the circumference of a circle, going once round 2z’ in
the anti-clockwise direction. This will be done by examining
first 7, the isomorphism of H, ,(V(z,), P) onto H,_,(V(z,), P)
induced by an open path « on the z-plane, going from 2z, to
another ordinary point z,. Theorem 5 ensures the existence
of 7% (or alternatively an argument similar to that at the
beginning of Chapter VI), and also that 7 depends only on
the homotopy class of « in the z-plane with all special points
removed, and with respeet to the fixed end points z, and z,.

The idea is eventually to take « as an arc on the circum-
ference y of a circle with centre 2’, and then, by dividing y
into a sequence of s:7iciestly =mall arcs, t9 cgleulate 7'(A,)
step by step, the peir = iaing that T7 is very susy to deal with
for & sufficientiy shorr wic .

LeMMa. Let « be the arc on y joining z) = 2(0,) and zy =

2{0,), in the notai.r. of §2, Thapter VI. Lzt A{8) be ike smage of
@ generator of H, (v -i8)). u(8)), P) still in the notation of
Chapter VI, under ine LJJJ“'«O"’I. wto H, (V(z(@‘) P). Then of
2. 18 near enough fo 8., TAWG)) = 4 L0
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Proor. In the complex w-plane let U be a neighbourhood
of the path u(6,) such that V(z(6;), u(0s)) is a deformation
retract of V(z(0,), U). Such a U certainly exists if 6, is
sufficiently near to 6,, at least if u(f) is always piecewise
analytic, and this ean be assumed to be so. Now, by Theorem
19, A(6,) is the image of a generator of H,_,(Er-!, §~%) under
the homomorphism induced by a confinuous mapping
fi : (B2, 87-%) — (V(2(6,)), P), the image of f, being contained
in ¥(2(6,), u(6,)). The construction of the homomorphism 7™
involves the construction of a mapping g : (V(2,) X I, P x I)
— (V, P), which, restricted to ¥(z;) x {0}, coincides with
the inclusion mapping (V(z,), P) — (V, P), and which
carries ¥(z,) X {1} into V(z,). Write g’ for the restriction of
g to the set ¥(z,) x {1}. Then a simple argument from the
compactness of 71 shows that, if 0, is sufficiently near to 6,,
‘the image of ¢-f, = f, will be entirely contained in V(2(8,), U).
It follows at once from this that 7%(A(6,)) can be represented
by a relative cyole of ¥(z,) modulo P whioch is in fact a chain
on V(z,, U). Since the last-mentioned set can be retracted
on V(z(8,), u(8,)), it follows from Theorem 12 (the retraction
of U on u(6,) can be assumed to satisfy the necessary condition)
that T*(A(6,)) has a representative which is a relative cycle
on V(z(64), u(0,)) modulo P. Applying Theorem 19, it follows
that 7%(A(6,)) = cA(6,) for some integer c. It still has to be
checked that ¢ = +4-1.

Let o' be the path « taken in the opposite direction. Then,
of course aa’ is homotopic to a constant on the circle y. Let
T :H, (V(zy), P)— H,_,(V(2,), P) be constructed corre-
sponding to a', as T™ corresponds to «. The composition of
T* and T, which is the identity isomorphism of H,_;(V(z,), P)
on itself, involves the construction of & mapping b : V(z,) x I
— V such that A, restricted to V'{z;) x {0} is the identity,
and 2(V(z,) X {§}) C V(z,), B(V(2,) x {1}) C V(z;). If &' is the
restriction of & to V(z,) X {1}, then 2’ is homotopic to the
identity, A’ being here considered as & mapping of V(z,) into
itself; that is to say, it depends continuously on 8,. It follows
at once that, if 0, is taken small enough, the images of ¢’ f,

7—(12 pp.)
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(9’ being the same as the restriction of & to V(z;) X {}}) and
k. f, will be contained in V(z,, U) and V(z;, U), respectlvely
The above argument may then be repeated for T%, the
inverse of T% to show that T%(A(8,)) = ¢’A(6,), for some
integer ¢’. Since kA(f;) # 0 for any integer k (cf. Theorem
19) it follows from these results that c¢’ = 1, and so ¢ = 41,
as required.

4. Préof of Theorem 34

As already indicated in Chapter VI the proof of this theorem
will be carried out by constructing special models for repre-
sentatives of A and T%(A). The construction will be carried
out with the aid of the following preliminary considerations
on hypersurfaces.

Let W, be an algebraic (but not necessarily non-singular)
hypersurface in affine (2, 2, . . ., z,,;)-8pace 4,,,, and let ({)
be a generic point of W,. Make a ‘“‘parallel projection” (that
is, from a point at infinity) along any direction in the tangent
hyperplane to W, at ({) onto a subspace A,. Let W,_; denote
the branch locus in 4, corresponding to this projection; that
is to say, (z') € W,_; if and only if two or more points of W,
projecting on (z') are coincident. In particular, if () projects
on ({'), then for any (z') in 4, — W,_, near ({’), there are just
two points of W, near ({) projecting on (z'). Also it is not
hard to see that ({’) is a generic point of W,_;,. And s0 a
similar projection of W,_; onto a subspace 4,_; of 4, may be
made, this time along a direction parallel to the tangent
hyperplane to W,_; at ({’) in A,. The branch locus in 4,_,
will be called W,_,. And so on step by step until a curve W,
is reached.

Now the condition that, in the first projection mentioned
above, more than two points near ({) should project on a point
near ({’) is algebraic in the coordinates of ({), a similar state-
ment holding for each subsequent projection. It follows at
once that a point ({), no longer generic, can be taken as origin
0 of coordinates in 4,,, and the coordinates (z,, z,, . .
can be chosen so that the following condition holds:

' zr+1)
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(A) For eacht =1,2,...,r, W, has, in a sufficiently small
neighbourhood of 0, the equation 2%, + a2, + b, = 0 in the
space A,,,, where a, and b, are analytic functions around 0 in
the variables z;, z,, . . ., 2, Also a; and b, vanish at 0,-and the
only linear term in the expansion of b, in powers of z;, 2, . . . , 2;
18 a non-zero term €.2,.

Remembering that a generic hyperplane pencil contains at
most a finite number of tangent hyperplanes to W, (using
here the dual W, of W, asin Chapter I; the possible existence
of singularities makes no difference to this argument) each of
which has a generic point of W, as point of contact, it is not
hard to see that a pencil can be selected containing at most a
finite number of tangent hyperplanes of W, such that, around
each point of contact, coordinates can be chosen so that (A)
holds. This is the context in which the results about to be
described will eventually be used. In the meantime, let the
origin 0 and the coordinates (Z,, z,, . . ., z,,,) be such that (A)
holds.

A real analytic mapping of the solid r-sphere E into W, is
now to be constructed, carrying 871, the boundary of E', into
the section of W, by the hyperplane z, = ¢, where ¢ is a
sufficiently small complex number. This mapping will actually
be & homeomorphism into, and will map the centre of E” on
0, and in addition will depend continuously on ¢, which will
be allowed to vary on a certain arc on the z,-plane. The
mapping in question will be constructed inductively, starting
off with the curve W,. But first some notational conventions
must be introduced.

‘The arc along whioh ¢ is to vary will be an arc of a small
circle about the origin in the 2, plane, of radius p, say. It will
be assumed that the arc in question goes in the anticlockwise
direction from ¢, = pe to ¢; = pe™. Any point on this arc
will be written as c(t) = pe™”, where 6(t) = (1 — 1), + 16,.
Also the following notations will be used:

i+1
E* = the set 3} =1, 2, < 0 in real (i 4 1)-space;
. J=1
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i+1 ) ’

81 = the set 3z} = 1, z; = 0 in real (i 4 1)-space;
j=1

E‘1 and S* are the subsets of E¢ and 81, respectively,
i+1

Hi+1 = the set 327 < 1, z, < 0in (i + 1)-space;
j=1

Dt = the subset of H'+! for which z, = 0.

Consider now the curve W, in A4, with the equation
2 + a2, + b, = 0 around the origin. The function a; — 44,
is zero at 0, and only at 0 in a sufficiently small neighbourhood
of 0, and d&,/dz; # 0 at 0. Hence aj — 4b, = z;4,, where ¢,
is & function not zero in a neighbourhood of the origin. Define
fr(@y, zs, t) for (z, x,) € H? and 0 <t < 1 by fi(2), 2y, ?)
= the point (z,, z,) in A, where z; = p(1 — %)™,
2y = $(—ay(z) + Vp2,e"V1(2,)). 2, is & complex valued
real analytic function of z, and ¢, and z, of x;, z,, ¢ (since ¢,
is not zero near z, = 0). D! (given by z, = 0) is mapped into
2, = pe®t) = ¢(t). Andif (2, z,) € B!, 3 = + V1 — 1}, and
80 23 = }— 6,(2)) + Vzidy(z) = ¥(— a; % Vai — 4b)).
Hence E! is mapped into W,. Clearly the point {—1, 0) is
mapped on (0, 0). Finally, for any fixed ¢, f, is a homeo-
morphism on H2, and only the points of £ are mapped into W,.

The mapping f, is thus fully defined on H® x I. Assume
now that an analytic mapping f, , . H* X I — A, has been
constructed with the following properties:

(1) fiol(D-1 x {t}) C the set z; = ¢(t);

(2) fi_ (B! x I) C W,_,,andonly E*-1 X I is mapped into
Wi

(3) for fixed ¢, f,_; is an analytic homeomorphism, carrying
(—1,0,0,..., 0)into the origin;

(4) if f, (2, g, ..., %, ) = (24, 2g,..., 2,) then 2, =
p(l — 25)e ",

f1 has been constructed with these properties; it will now
be shown that the conditions stated enable a mapping f;
to be defined with similar properties.
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By condition (2) on f‘_l, o — — 4b,, when expresged by means
of fi—y in terms of z,, 25, ..., T, ¢, vanishes only on the set
2::2 = 1, and therefore contains 1 — 2:1:2 as a factor, the other

=1’
factor being also real analytlc in xl, Ty ..., T, L. Write

z, +1=_¢& 'J.‘henl~—zal:?=2{-'-—£’l sz
1

The only linear term in a} — 4b,, when expanded in a power
geries around the origin, is c;z;. That is to say a? — 4b, =
¢z, + higher powers of the z,. By condition (4) above, when
the z, are expressed in terms of z,, z,, . . ., z,, { by means of
ficys 2 = pE(2 — £)e™ = 2p¢™¢ | term in £, and near
(—1,0,0,...,0) the other 2, are all power series with zero
constant terms in ¢, z,, %, ..., z, Hence aZ — 4b, =
2¢,p¢™¢ 4 higher powers of £, 24, 7, . . ., z,. It follows that

a? — 4b, contains the factor 1 — Zx;z = 2f — £? — T} exactly
2
once. That is to say

— 4b, = (1 —sz)'#., (1)
where ¢, = ¢.pe'®® + thher powers of & o, Zs. ..., x,, and
¢ # 0 on H*.

Now for (z,, z,, ..., z,,,) € H*! and 0 <t < 1, define
i@y, Ty o oo Ty, ) = (29,29, .- -, 2;41) by:
(21,29, . . -, 2,4) =fi-1(x1’ Loy v v o) ‘?0 t),
2 = H—a, + 2,4, V). (2)

$. % 0 on H*, and so /4, is real analytio on H‘, Hence
/i is a real analytic mapping. 2, is given by f,_, as p(1 — 2%)¢"¥;
and so f(D* X {f}) C the set z; = c(t). If (z),zy,...,2.,)€

E', then z,,, = 4-(1 — S2))}, and (2) becomes the formula
1
for solving the quadratic equation 2%, 4 az,,, + b = 0.

That is to say, f(E* x I) C W,. The converse, that f‘( W,) =
E' x 1, is easy to oheck, as is also the fact that f, is a homeo-
morphism for any fixed ¢. Also f(—1, 0, 0,..., 0, t) =
(050, ..., 0) follows at once from the definition.
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The mapping f,, now simply to be called f, which has just
been constructed is the essential tool in the intersection
number calculation about to be carried out. The idea is to
project the r-dimensional variety V, which is embedded in
projective n-space, into an (r + 1)-dimensional space 4,,,, ¥
projecting thus onto a hypersurface W, of that space. This
projection 7 can be made locally homeomorphic around the
singular point C’ of the singular section V(z’), carrying this
point into the origin of suitably chosen affine coordinates in
4,,,, and it can be assumed that the pencil II of hyperplanes
in projective n-space projects into the pencil in 4,,; with the
equations z, = constant. It must also be assumed for this
purpose that IT has been chosen so that the condition (A) is
satisfied by W, at the originin 4, ,,. Thissimply means adding
_yet another to the list of algebraic conditions mentioned in
§1, Chapter III, which Il must not satisfy if it is to be
sufficiently general for the proofs of Lefschetz’s theorems. (cf.
remark at end of §1, Chapter III).

Write g, g, for frestricted to E* x {0}, E* X {1}, respectively
and let A, be a relative cycle of E” modulo 87! representing a
generator or (L7, S™"!). A, can, 1 1acv, be vaken as a
singular simplex or singular cell on Ef. Then g,(A,) and
g1(4,) are singular cells on W,, and it will turn out quite
eagsy to calculate their intersection number. On the other
hand, it will appear that they are projections, under =, of
representatives of a generator A of H (V(1), V,) and of T%(A),
respectively, where V, = V(z,) projects under = into the
section of W, by 2z, = ¢,. The homeomorphic nature of =
around C’ will then give Theorem 34 at once.

TuEOREM 39. The intersection number {go(A,) . go(A,)) ts 1.

Proor. The convention of orientation of a complex analytic
manifold will first be stated. If {;, {,, &, ..., {, are local
coordinates on such a manifold and {, = &, + i7,, then the
standard orientation of the manifold is to be that correspond-
ing totheorder &,,£,, &, ..., &, 11, . . ., 9, of real coordinates.

Then, in order to prove the theorem it is sufficient to show
that the r tangent vectors on E at (—1, 0, 0, ..., 0) parallel
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to the x,, 25, . . . , %,4, coordinate directions are carried by g,
into vectors %, %s, . . . , %, and by g, into vectors v, vy, . . ., ¥,
such that the vectors uy, %, - . ., %, ¥;, . . -, ¥,, in that order,
define the standard orientation of the tangent hyperplane to
W, at the origin. (For this to be true it may be necessary to
restrict the size of the rotation from 6, to 6,, or the simplex
having %, %y ...,%, v;,...,9, as edges will turn ous-
side in.) '

The theorem is true for » = 1, for the vectors u,, v, in this
case are given by joining the origin in the z,-plane to the values
of dzg/dx, at (—1, 0) for t =0 and ¢ =1, respectively,
the derivative being calculated from the formula 2z =
3 —ay(2;) + Vpz,e™V$)); it is clear that here the only
restriction which must be made is the natural one 6, — 0,
< 27. Suppose, then, that it is true for r replaced by » — 1.
That is to say, suppose that f,_,, restricted to ¢t = 0 and
t = 1, carries the tangent vectors to E*-1at (—1,0,0,...,0)
in the z,, %, ..., z, directions into two sets of vectors
Uy, Ugy o ooy Up_gs Uy, - .., V. such that the u, and v, in that
order, detine the stanaara urienvation On the tungent linear
variety to W,_, at the origin. There is a subvariety W,_; of
W,, transversal to the z,,,-axis, projecting on W,_, under
the projection of W, on 4, (given in fact by equation (2) with
= r and with x,,; = 0). The %; and v, lift into vectors
Uy, Ugy ..., Y_y, ¥y, ..., V,_, Spanning the tangent linear
variety of W,_; at the origin, with the standard orientation.
The directions of the image of the tangent to &= at
(—1,0,0,..., 0) in the z,,, direction under g, and ¢, are
given by the joins,in the 2, ,-plane, of the origin to the values of
02,,,/02,,, 8t (—1,0,...,0) fort =0 and for¢t = 1. By (2),
02,1102, = 3V$, = 3Ve,p ™ 4 terms in &, 2,, ..., z,.
Setting t = 0 and ¢t =1, it follows at once that the two
vectors %, and v, so obtained are such that v, lies anticlockwise
from u, in the z,,,-plane. Hence u), us, ..., %,, v;,0,, ..., 9,
define the standard orientation of the tangent linear variety
to W, at the origin, as was to be proved.
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THEOREM 40. Let = be the projection of V into the (r + 1)-
space A, ,,, m being an analytic homeomorphism around the point
C'. Let (V) = W,, n(C’) = 0. Let coordinates in A4,,, be as
described above tn condition (A), and let the image of 11 under
be the pencil with the equations z, = constant. Write hy = lv;o'go,
hy = ;rtgl and h = ;rif, in the notations already introduced. Let
A, be a generator of H (E7, 871) and let ¢ and j be the inclusions
(VA), Vo) = (V, Vo) and (V(u), V(z))— (V, V(z)), in the
notatjor of §2, Chapter VI. Then a generator A of H,(V(2), V)
can be chosen 50 that hoy(Bg) = cigA and hyy(By) = cj T%(8)
for some integer c.

Proor. A and T9%(A) are generators of H,(V(), Viz,)) and
H(V(u), V(z)), respectively. Also the images of %, and A4
can be made arbitrarily small. Theorem 19 implies that
hox(Bo) = cigA and hyu(Ag) = ¢'j, T%(4) for integers ¢ and
¢’. It must therefore be shown that ¢ = ¢'.

Since a suitable neighbourhood of V(z’) can be retracted
onto V(4), using Theoram 12, there is a mapping &, :
(Er,81) — (V, V,) homotopic to h, such that Ay (E) C V(A).
Similarly there is a mapping b, homotopic to k, and having
its image in Vix). Hence h..(A.) = ci, A and AL (A,) =
¢’juT5,(A). Now, hy and h; are homotopic, the set S~ being
carried at stage ¢ of the homotopy into V(z(t)). On the other
hand the construction of Lemma a, §1, induces a homotopy of
ho and a mapping h; : (E7, §771) — (V, V(z,)) with its image
in V(u) and such that Aj,(A) = ¢j, T%,(A). To complete the
proof it must be shown that h; and k;, as mappings into
(V(u), V(z,)) are homotopic. That this is so follows at once
from Lemma c of §1.

The proof of Theorem 34 can now be carried out. For, by
Theorem 39, along with the fact that = is locally homeomorphic
around C', (hy(Ao). ky(Ay)) =1, and so, by Theorem 40,
¢3(A.T([;A)) = 1. ¢ is an integer and so ¢2 = 1, whenoe
(A. T%,(A) = 1, as required.



CHAPTER VIII

INVARIANT CYCLES AND
RELATIVE CYCLES

1. Summary of results assumed

As already explained in Chapter VI, the fundamental group
of the complex sphere § with the special points z,, ..., 2,
removed acts as a group @ of automorphisms on H(V,, P).
For ¢ = r — 1 the form of the basic elements of this auto-
morphism group has been established in Chapters VI and VII.
The term “invariant element of H (V,, P)”’ will now be used
to denote an element which is invariant under @. If &€
H(V,, P) ig an invariant element and « a relative oycle of
¥, modulo P representing &, then « will be called an invariant
relative cyole.

Theorem 30 shows that every element of H (V, P) is
invariant for ¢ < r — 2, and so interesting results will only
be obtained for ¢ = r — 1. The first result to be obtained in
this chapter is essentially that H, ,(V,, P), with coefficients
in the rational numbers instead of the integers, is the direct
sum of its subgroup of invariant elements and of the kernel of
the injection H, ,(V,, P)—> H, ,(V, P). Being a result on
homology with rational ocefficients this lends itself readily to
a treatment involving the de Rham oohomology on V. The
following results will be used:

(s) A Kihler structure may be given to V, induced by a
Kihler structure of the ambient projective space in such a way
that, if Q is the fundamental quadratio exterior form of the
Kihler structure, Q2 is homologous in the de Rham sense to
the image under the injection map Hy, o(V,) — Hy o(V) of
a generator of the first of these groups.

(b) Let ¢ be a differential form on ¥V and write ¢ =Q A ¢
and let A be the dual operator to L (Weil [12]). Then if ¢ is

: 97
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of degree >r, A¢ = 0 implies ¢ = 0, and dually if ¢ is of
degree <r, L¢ = 0 implies ¢ = 0.

(c) Every form of degree <r can be written as A¢, and
dually, every form of degree >r can be written as L.

(d) It follows from (b) and (c¢) that L effects a homo-
morphism L* of H(V) into H*t%(V), where the upper indices
denote cohomology groups, which is onto for ¢ > r — 2 and
isomorphic for g <r.

(e) Every form ¢ of degree <{r can be written uniquely as
o + L, + L%, + ..., where A, = 0 for each ¢. Using
(b) and (c) this unique decomposition can be extended to
forms of degree r + 1.

(f) The operator L and the induced homomorphism
L* : H(V) — H**(V) give rise at once to a homomorphism in
homology. For, by Poincaré duality on the manifold V
there are isomorphisms 0, : HY(V) ~ H,,_ (V) for each gq.

-1

Then writing L, = 6,.,L*0, one obtains a homomorphism
L, : H(V)— H,_,(V) for each ¢, and by (d) above L, is onto
for ¢ < r 4 2 and is isomorphie for ¢ > 7.

The standard interpretation of L, is as an intersection of
a representative of an element of H (V) with a fundamental
cycle of V,. This interpretation will be discussed in greater
detail later in the chapter. In the meantime the following
lemma will be stated; it is essentially part of Hodge’s classifi-
cation of the cycles on an algebraic variety (cf. Hodge [6],
{7]), and follows at once from the definition of L, and the
above stated properties of the operator L:

LeMua. An element of H/(V) for g > r i3 in the image of L,
if and only if it is in the smage of the injection H(Vy) — H (V).
An element of H,_ (V) is in the image of L2 ¢f and only if it is
n the image of the injection H,_,(P) — H,_,(V).

2. The intersection and locus operators

As in some of the earlier parts of this monograph, it is

convenient at this stage to sketch some of the results required

geometrically, in order not to delay too much the main
theorems. The details of these sketched proofs will then be
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completed in §5. In the first place some intersection operators,
of which L, is one, will be described (cf. §5 for further details).

Let V, and ¥, be two non-singular hyperplane sections of
V belonging to the pencil II. Then if & € H(V), & has a
representative cycie « which is intersected by ¥, in a cycle B.
The homology class of g in V is L,a&.

Secondly if & € H(V, V,), & has a representative relative
cycle which intersects ¥, in a relative cycle g of ¥; modulo
P. The image of the relative homology class of # in ¥, modulo
P under a suitable isomorphism of H, 4V, P) onto H,_4(V,, P)
will be denoted by Ly&. The relative homology class of g in V
modulo P will be denoted by L,a.

Finally if & € H,_,(V,), there is a representative cycle inter-
secting V,, that is to say intersecting P, in a cycle 8. The
homology class of § in P will be denoted by L,&.

The operators L,, L, L,, Ly are all homomorphisms
between the appropriate homology groups, L, being the
homomorphism introduced in §1, and L,, L,, L, fit together
to form the following commutative diagram, in which the two
rows are parts of the homology sequences of the pairs (V, V)
and (V, P).

H(V)—> H(V, Vo) > H,_; (Vo) > Ho (V)

vl bz, v
He o(V) = H,o(V, P) < Hy_y(P) < H,_o(V)

The operator L, starts from relative cycles of ¥ modulo
V, and yields relative cycles of ¥V, modulo P. A partial
inverse to this operation will now be constructed, namely,
an operation which starts from relative cycles of ¥, modulo
P and, under suitable conditions, gives relative cycles of
V modulo ¥V, with the dimension increased by two. As usual
let z,, z,, . . ., % be the special points on §, and 4,, Agy ooy p
a set of arcs from an ordinary point z, to the special points,
2o being the only common point of any two of the 4,. Let K,
be the point-set union of the A, Let a be a g-dimensional
relative cycle of V, = V(z,) modulo P. The idea now is to
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~ shift z, into § — K, and then allow it to vary over the whole
of this set. As the section V(z), starting at V,, varies in this
way, it carries with it the relative cycle «, which thus traces
out & locus of dimension ¢ 4 2. This locus is a relative cycle
of ¥V modulo V(K,). The operator whose definition is based
on this geometrical idea is thus & homomorphism of H(V,, P)
inte H,,4(V, V(K,)); this homomorphism will be denoted by -
loe.

Now the locus of a relative cycle of ¥, modulo P, construoted
as just desoribed may not be a relative cycle modulo ¥,;
beoause, as z varies over the cut complex sphere § — X, «
may, 80 to speak, tend to different limite a8 z approaches one
of the cuts from different sides. It is, however, reasonable
to hope that, if a represents an invariant element of H (V,, P),
then the limits as the 1, are approached from opposite sides
can be made the same, and the resulting locus will have its
boundary in ¥,. That this conjecture is valid will be shown
by proving the following theorem:

TrzorEM 41. For 2 € H, 4(V,, P), locz is in the image of
the homomorphism n: H, (V, Vo) — H, (V, V(K,)), induced
by the appropriate inclusion mapping, if and only if & s
invariant, in the sense sniroduced at the beginning of §1.

Note that, in accordance with the remark on invariant
elements made at the beginning of §1, attention is confined to
dimension r — 1. The proof of this theorem will be given in §5.

The next step is to establish a connection between the
homomorphisms L, and loc. It is not hard to conjecture that,
if one starts from an invariant relative oygle « of ¥, modulo
P, forms its locus and then intersects this locus by V,, one
gets the relative oycle « back again. That is to say, the
composition Lglos, applied to invariant elements, is the
identity. This will not be proved in detail as it is not needed.
What is more important for the present purpose is to examine
the composition looL,. If « is a relative (r + 1)-ayole of ¥
modulo ¥,, the operation locL, means geometrically inter-
secting « with ¥V, and then constructing the locus of this
intersection as z varies over § — K,. Now if the interseotion
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of « with V¥, turns out to be invariant, then its locus can be
represented as a relative oycle of ¥ modulo ¥, (Theorem 41),
and it will turn out that this relative cycle is homologous
to the original a. That is to say it will be shown that the
composition locL, coincides with the homomorphism = :
H,(V,Vy)— Hoy(V, V(K)) induced by inclusion.

The consequence of the relation locLg = m which is wanted
here is that the image of L, is in the invariant sub-group of
H,_,(V, P). The opposite inclusion relation will also be
obtained, and so the following result will be established:

THEOREM 42. The image of Ly : H, ((V, Vo) — H, (V¢ P)
consists of the invariant elements of H,_,(V,, P).

3. Direct decomposition for H, (¥, P)

On the basis of the results whose proofs were sketched in
the last section, one of the main theorems of this chapter can
be derived. The proof will be carried out with the aid of the
following lemma;:

Lemma. The homomorphism L, : H, ((V, Vo) — H,_,(V, P)
sniroduced tn the last section (and for dimension r 4- 1) 18 an
tsomorphssm.

Proor. Consider the following diagram:

‘ ) :
Hr+1( Vo) g HH-I( V) g Hr-l-l( V’ Vo) - Hr( Vo)
Ve o ¢ {4 TR A

H, (P)—~ H, (V)= H,_,(V, P)— H,_o(P)—~ H,_4(V,)
where Ly, L,, L, are as in §2, 9, 8’ are boundary homomor-
phisms and the other mappings are all induced by the
appropriate inclusions. It is to be shown that the kernel of
L, is zero. Let « be an element of this kernel; that is to say
Lijx = 0. Then ¢’La = 0 and so, by the commutativity of the
diagram, L,da = 0. Henoce AL,0x = 0. Now AL, is a
mapping constructed for V, in the same way as L, is con-
structed for ¥, and so, for dimension 7, it is an isomorphism
(see (f)in §1). Thus da = Oandsoa = j#forsome § € H, (V).
The equation L.jf = La = 0 becomes, by commutativity
of the diagram, §'L,f = 0. Then L,8 is in the image of +" and

8
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80, by the lomma in §1, is in the image of L. That is to say
L. = L%y for some y in H, 4(V). But (see (f) in §1) L, is
an isomorphism for dimension r + 1, and 8o f = Lyy. Then,
again by the lemma of §1, § is in the image of 4, and so
e = 75 = 0, as required.

Turovum 43. H__(V,, P) ss the direct sum of the group
of «vamant elements and the kernel of the tnjection 4 :
H, (Vo P)— H, (V, P).

Proor. Consider the diagram:

L,
Ho o (V, Vo) H, n(V, P)
L, N A
H, (Ve P)

By tho definitions of L, and L, this diagram is commutative.
‘Thus L, and : L, have as image some subgroup G of H,_,(V, P),
-1

and regarded as a map onto @, L, will have an inverse L,

e 5
-1

{(by the sbove lemma). Hence (L,2)L, is the identity and so

H, (V4 P)is the direct sum of the image of L, and the
-1

kernet of L4, which is the kernel of ¢. But the image of L,

hae been identified in Theorem 42 as the group of invariant

eiewments of H,_,(V,, P).

4. Divect decomposition of H,_,(V,)

The result of §3 is to give a direct decomposition of
H,_ (Vg P), the homology groups being with real or rational
eoefficients. A similar result will now be obtained for
H, ,(V,), and this will actually be Lefschetz’s result (Lefschetz
{9}, Theovem I, p. 93). Returning to the notations of §I,
Chapter VI, the fundamental group of K acts as a group of
autonorphisms on H,(X,), where X, = ¥V, is the fibre of the
brustie X. If S, is the automorphism corresponding to the
eleszent « of my(K), write 7', = po4Sios. Then the 7', form
e rsurosentation of m(K) as a group of automorphisms on
H,(V,} for each ¢, just as the T, of Chapter VI represented
m{K} s+ an automorphism group on H(V,, P).
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An element of H,(V,) invariant under the 7', will simply be
called an invariant element of H(V,). The analogue of
Theorem 30 is practically trivial:

TuroREM 44. The entire group H,(V,) 18 invariant for
gsr—2.

- From now onwards attontion will be fixed on the value
r — 1ofq. Write T'; = T, , where the «, are as in §1, Chapter
VI,and let §; denote the element of H, (V) represented by the
vanishing cycle 8,, while §, denotes the element of H,_,(V,, P)
represented by the same cycle, foreacht =1,2,..., k.

LemmMa. The homomorphism H, (V,) — H,_;(V, P)
snduced by inclusion carries the kernel of the injection H, (Vo) —
H,_,(V) isomorphically into that of the snjection H,_,(V,, P)->
H_,(V, P).

Proor. The two kernels mentioned are already known to
consist of essentially the same elements, namely linear
combinations of the ‘‘vanishing cycles.” It must therefore
be shown that if « is in the kernels of the mappings H, ,(V,) —
H, ,(Vy, P)and H, ,(V,)— H,_,(V), induced by inclusions,
then « = 0. The proofis to be based on the following diagram:

H, oV, Vo) > H (Vo) > H, (V)

‘A > i Ly ¥ l L,
Hf(V’ P) - Hr—l(P) g Hr-—l(V) - Hr—l(V’ P)
te e AN 4 , 4w
Hr(Vo’ P) Hr——l(Vo) - Hr—l(Vo’ pP)

It is to be shown that j is an isomorphism between the kernels
of + and ¢’. Clearly j maps the first of these kernels onto the
second. Then let « be such that {x = je = 0; it is to be
shown that « =0. By the exactness of the homology
sequence of (V,, P), ja = 0 implies that « is in the image of k.
Now hL, corresponds to ¥ in the same way as L, corresponds
to ¥V, and so the lemma at the end of §1 shows that « is in the
image of hL,. That is to say a = hL,f for some g € H, (V).
Then ta = 0 becomes $hL,8 = 0, in other words k'L, = 0,
or L,kp = 0, making use here of the commutativity of the
above diagram. But L, is an isomorphism for dimension
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r + 1 (see (f), §1), and so kf = 0. Using the exactness of the
top line of the diagram, it follows that § = dy for some
yeH, oV, V,). Hence «a =hL,0y =hd'Lyy. But the
image of L, is, by its definition, contained in that of ", and
80 9’ L,y is in the image of 8's" = 0". Thus « is in the image
of k3" which is zero by the exactness of the homology
sequence of the pair (V,, P).

The Poincaré formula for H,_,(V,) can now be proved:

THEOREM 45. For each @ € H,_(V,), Ti(&) = & — (« . 8,)3;,
the homology group being over integral coefficients.

Proor. Denote by = the projection map H, ,(V,)—
H, ,(V,, P). Then #8; = §,. A repetition of the argument of
Theorem 31 yields at once that T';(a) = & + ¢(« . é,)8;, where
¢ is an integer independent of & Now it is clear from the
mode of construction of the T'; and T'; that »T (&) = T'(=&),
and so T'((n&) = & + ¢(« . §;)0; = n& — («.4,)d,, by Theorem
37. Now if §; is not a divisor of zero, that is if nd, # 0 for all

integers n, the last equation implies that ¢(« . 8;) = —(« . §,),
and there will be at least one & such that the intersection
number is non-zero, whence ¢ = —1 as required. On the

other hand if nd, = 0 for some. integer , the above Lemma
implies that §; is a divisor of zero and so (x.d,) = 0. The
formula T;(z) = & — (« . 8,)3;, with the second term on the
right vanishing, therefore still holds.

CoBOLLARY. & 8 tnvariant under all the T'; if and only if &
#8 snvariant under all the T, the coefficients for the homology
groups again being integers.

The coefficients for the homology groups will again be
assumed to be the rational or real numbers, as they have been
throughout this chapter apart from the last theorem. The
main result of this section is the following:

TarorEM 46. H,_,(V,) 1s the direct sum of tie subgroup of
elements invariant under the T ard the kernel of the injection
H, (Vo) — H, (V).

Let « € H, ,(V,) and let 7 be as in Theorem 45. Then, by
Theorem 43, ma = a; + «, where a, is invariant under the
T, and «, is in the kernel of the injection H, ,(V,, P)—



H,_,(V, P). But this kernel is genera.ted by elements repre-j
eented by the vanishing cyoles, and so a, = way, for some
ag € H,_1(V,y). Thus a; = m(e — &) i8 invariant under the
T,, and 8o, by the corollary of Theorem 15 o — ao « is
mvanant under the 7. And 80 a = a + a;, for @ invarisn
and o in the kernel of H, ,(V,)— H, (V). It must be
" shown that this expression is unique; that is to say, that
oy + oy =0 1mphes ao-—O and a; = 0. But a0+a1=0¢
implies that magy + ma; = 0, and so, since the summation is
direct in Theorem 43, mag =0 and na; = 0. But by the
lemma preceding Theorem 45, wa; = 0 implies «; = 0 and
80 also a; = 0, as requfired.

Now, it is not hard to see from the definition of Z, sketohed
in §2 that it can be written as 1Ly, where ¢ is the injection
H,_ (Vo) — H,_4(V) and L, is the homomorphism H (V)
H,_4(V,) represented by intersecting cycles of V with V4 to
obtain cycles of V,. The following is then an 1mmed1a.te
consequence of Theorem 46. )

THEOREM 47. The image sn H,_(V,) of Lgy coincides w&ﬂo
the group of invariant elements. '

Proov. 1Ly, = L, and L, 1s an isomorphism onto for

dimension r (see (f), §1). Thus (L*t)L“ is the identity, and
80, by the usual argument applied to a homomorphism with
a one-sided inverse, H,_,(V,) is the direct sum of the image

-1 ;

of Ly, and the kernel of L,s, that is, the kernel of 1. Com-

parison with Theorem 46 then gives the result. '

" Finally, as a complement to Theorem 41, a result will be

obtained on the locus of an invariant element of H, ,(V,). In’

the following diagram: |
H,\(V, V(Ko))

A
/ loo

H,(V, Vo) == H,_(Vy, P)
A

™ Ty

i

, Lin S
H, Vy—"> H,_ (V)
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m, m, mg are induced by inclusions. For the verification of
commutativity, see §5.

TaroreM 48. If e € H,_,(V,), « is invariant if and only if
locmqa t8 in the image of mm,.

For mm, = locwgLy, and so if locmge = nmyf, f € H, (V)
_it follows that locwaa = locwyLy.B, and so, since loc is an
isomorphism (see §5), my(@ — Loef) = 0. Since a — Lyyp is
in the kernel of 7,, the lemma of §1 implies « — L8 = Lgy,
where L, is related to ¥V, as L, to V. But commutativity
holds in the diagram:

Hr+1( Vo) —> Hr+1( V)
S
L, Hr-l(P) —> Hr—l( Vo)

|/

‘L H r—l( Vo)

where the unmarked maps are induced by inclusions, and so
Lyy = Loyy', for y' € H,,,(V), and so « is in the image of
L,,, and so is invariant, by Theorem 47. Conversely if « is
invariant, « = Ly,f for some fe H,, (V), and 80 nmf =
locwrgLyef = locmga, as required.

5. Proofs of Theorems 41 and 42

In this section the details of the definitions and results of
§2 will be filled in. The first step is to give the full geometrical
definitions of the operators L,, L,, Ls, L,. In order to do
this, let V, and V, be two non-singular sections of ¥V by
hyperplanes of the pencil II. Let B, be the normal bundle to
V, in V, with respect to some Riemann metric on ¥, and let
B, be the normal bundle of ¥, N ¥V, in V, with respeot to the
induced metric. It is not hard to see that, if the radii of these
bundles are small encugh, the fibres of B, in a neighbourhood
of Vo N V, can be modificd so that B, is refibred as a bundle
B having the property that the £bres of B through points of
Vo N V, lie in ¥V, and coincide with the corresponding fibres
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of B,. Let B’ and B denote the boundaries of B and B,,
respectively. Thus, while B and B, are fibred by 2-cells, B’
and B, are fibred by circles.

Since V, is an orientable submanifold of the orienteble
manifold V, the fibres of B can be consistently oriented, from
which it follows that B and B’ are trivial bundles and can be
represented as products ¥ X E2 and ¥V X §!, where £? is &
2-cell and 81 its circumference. Similarly writing P = Vg N ¥,
as usual, B, and B, can be represented as products P X E*
and P x S, respectively.

Consider now the diagram on page 108:

The vertical lines are all portions of the appropriate
homology sequences. The mappings in the left-hand half of
the diagram are induced by inclusion mappings, and so that
part of the diagram is certainly commutative. In particular,
the mappings between the second and third columns are
excisions, and so may, in fact, be reversed. The isomorphisms
marked in the middle of the diagram are obtained by identi-
fying B, B,, B’, B, a8 products, as indicated above. The
way in which B, and B, have been arranged to be the
restrictions of B and B’, corresponding to the restriction of the
base from ¥, to P, ensures that commutativity holds between
the third and fourth columns of the diagram. The mappings
between the fourth and fifth columns are also isomorphisms,
obtained by identifying H(E?, S!) with the group of integers,
at the same time making use of some homeomorphism of the
pair (V,, P) onto (V,, P). The remaining mappings on the
~ right are induced by inclusions. Commutativity in the right-
hand half of the diagram is easily seen to hold.
~ The operators of §2 can now be defined:

L, is the composition of all the mappings from left to right
along the second row of the above diagram (remembering that
the second mapping is an isomorphism onto and is to be
reversed). It is a standard result, proved, say, by effecting a
simplicial subdivision of ¥ so that V, is a subcomplex, that
this operator coincides with that obtained in §1 by way of
differential forms and the de Rham theorems. ’
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L, is the composition of all the mappings from left to right
along the third row of the diagram, stopping at H,_,(V,, P).

L, is similar to L, but goes right to the end of the third row
~ of the diagram.

L, is the composition of all the mappings along the first
row of the diagram from left to right.

It will be seen now that the diagram on p. 99 is simply a
summary of the above diagram obtained by omitting every-
thing except the first and last columns, and also writing these
columns as rows. Thus the commutativity of the diagram of
§2 is established, and also that of the other diagrams in
§§2-4, is so far as they involve the operators L,, etc.

The operator L,, which appears in Theorems 47 and 48 is
obtained by composing all the mappings of the second row of
the above diagram, stopping this time at H, o(V,). The
lower part of the diagram of Theorem 47 is thus again merely
a summary of part of the above diagram, and so is com-
mutative. |
~ The operation loc will now be defined. K, is to be as
described in §2. Let z, be a point of § not in K, and let K
be a closed circular neighbourhood of z, not meeting K,. Let
K’ be the circumference of K. It is not hard to see that thers
is & homotopy of the identity mapping of § on itself into a
mapping which carries S—XK into K,, and moreover that the
retraction of §—X on K, can be carried out along a family
of gurves with the properties listed in Chapter II, §1. It
follows at once, using Theorems 5 and 12, that there is a
homotopy of the identity mapping of ¥ onitselfinto a mapping
which carries V(S—K) into V(K,). .

The result just obtained implies that H(V, V(K,)) o~
H(V, V(S§—K)) for all q- Next the excision result, Theorem
7, can be applied along with Theorem 5 to show that

"H(V, V(§—K)) > H,(V(K), V(K')) for all ¢. Then from
the corollary to Theorem 10 it follows that H(V(K), V(K')) =
H(X(K), X(K') U X'(K)), using here the notations introduced
in Chapter I. But the bundle X(X) can be identified with the
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product V, x K (writing V(2) =V,) and the subset
X(K’) U X'(K) with (P X K) U (V, X K'). Andso

H X(K),X(K') U X'(K)) = Ho_y(Vy, P) ® Hy(E, K')
= Hq—-z( VO’ P)

the last isomorphism being obtained by identifying H,(K, K’)
with the group of integers and using some isomorphism of
H,_4(V,, P)onto H,_4(V,, P) (for convenience this should be
the same as the isomorphism already used in going-from the
fourth to the fifth column of Diagram IV. The composition
of all these isomorphisms, taking the sequence in reverse, gives
- an isomorphism of H,_4(V,, P) onto H,(V, V(K,)) which is
to be denoted by loc. The fact that loc is an isomorphism
should be noted; it is used for example in the proof of
Theorem 48.

To obtain the connection, mentioned in §2, between loc and
L,, consider the diagram on page 111.

Here the mapping at the extreme right is the isomorphism
referred to a moment ago. The mappings in the rectangle on
the right are induced by the following commutative diagram:

(B, B—IT,(K)) «— (V(K), V(K"))

v

(B, By U B') & (X(K), X(K') U X'(K))

where the mapping y is that introduced in Theorem 4, and ¢
is induced by noting that B = E? X V,and X(K) =K X V,,
and by identifying E? with K, while the remaining two
mappings are inclusions. It follows that the rectangle on
the right of Diagram (V) is commutative. The remaining
mappings of Diagram (V) are all induced by inclusions, and
so the whole diagram is commutative.

Comparison of the Diagrams (IV) and (V) shows that the
composition of all the mappings along the bottom of (V) from
left to right (reversing the excision isomorvhism second on
the left) is L,. (It will be noted that the identification of B
as a product, which was left unspecified in (IV) has now been
made just so that (IV) and (V) will be compatible).
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Also, by comparing Diagram (V) with the definition of
loc which precedes it, it is easy to see that loc is the com-
position of all the mappings along the upper right-hand edge
of (V), zig-zagging from right to left, and reversing the arrows
which point the wrong way, these being in any case isomor-
phisms.

Now the inclusion H(V, V) — H,(V, V(K,)) on the left of
(V) is the mapping = introduced in §2, and so the remarks
just made, along with the commutativity of (2), imply that
locL, = =, as was asserted in §2.

The proofs of Theorems 41 and 42 can now be carried out.
First, to prove Theorem 41, let & be an element of H, (¥, P),
and let 9 be the boundary homomorphism of H, (¥, V(K))—~
H,(V(K,), Vo). Then it must be shown that dlocd = 0 if
and only if & is invariant. To do this a formula for dloca
will be worked out. Write , (A =1, 2, ..., k) for the genera-
tors of H(V(K,), V,), A; being represented, according to
Theorem 19, by a relative cycle on V(1,) modulo ¥, Then
dloc & = Yc¢,A;, where the ¢, are to be determined. On the
other hand, let the 7', (+ =1, 2, ..., k) be asin §1 of Chapter
VI, let the 4, be numbered anticlockwise as they radiate
from z,, and write & = T, _;T, ,... T,(&). Also let 9’ be
the boundary homomorphism of H( V(K o) Vo)— H,_4(V,, P).
Then, noting that the definition of loc depends eﬁ'ectlvely on

presentmg H,(V, V(K,)) as a tensor product

q-—2(Vo» P) ® HS(S’ Ko)

it is clear that dloca = 5f,, where f, is an element of
the injection image of H(V(4,), V) in H(V(K,), V,) such
that 98, = T, (&) — & = —(a¥ . §,)J,, the last equality
following from Theorem 37. Remembering that H (V(K,), V,)
is the direct sum of the injection images of the H,(V(4,), V),

it follows that ¢, 8, = —(a" . ¢,)d; for each 1.
If, now, for some ¢, &, # 0, it follows at once that, for that
value of §, ¢, = —(«{¥ . §;). On the other hand, if §, = 0, it

will now be shown that ¢; can still be taken sz —(at¥. 4,),
namely zero, since by the lemma of 84, p.103, 8, is homologous
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zero if it is homologous to zero modulo P. To establish this to
point, write ¢, = f,(«!”); then it follows that f, is a linear
function on the (r — 1)-cycles of V,. The argument of §1,
Chapter VI, may be repeated to show that f, can be extended
to a cooycle on ¥, which is zero on all simplexes outside a
neighbourhood of the singular point on ¥(z,), if 2z, is near
enough to z, (a temporary adjustment which makes no
essential difference). And so as in §1 of Chapter VI, it follows
that ¢, = c(a'” . 8,) = 0, as required. It should be noted that
assumption § # 0 which was introduced in §1 of Chapter VI,
was made because the f(7) of that section appeared first as the
coefficient of J; here the values of f, appear first as the
coefficients of A,, which is known to be non-zero, thus making
any supplementary conditions unnecessary here.

The formula dlocgd = — 3 (a¥ . §,)A, has thus been estab-
lished. Then, remembering that the A, are linearly inde-
pendent in H,(V(K,), V,) and using Theorem 37, Theorem 41
follows at onoe. '

It is worth noting at this point another consequence of the
formula just established for dloca, which gives a means of
finding relations between the generators of H.(V, V,), namely:

THEOREM 49. Writing the A, as the generators of H,(V(K,), V)
and taking ¢ to be the homomorphism of H. (V(K,), V,) into
H,(V, V,) induced by snclusion, then §(Se,A,) = 0 if and only
tf ¢, = —(a'¥ . 8,) for some & € H,_,(V,, P) and for a sustable
ordering of the z,.

Proor. For i(ScA,) = 0 if and only if Sc,A, is in the
!mage of the boundary homomorphism 9 : H,,(V, V(K,)) —
H(V(K,), V,); that is to say, loc being an isomorphism onto,
if and only if it is of the form dloc& for some & € H,_;(V4, P).
This is equivalent to the result wanted.

Theorem 42 will now be proved. Since, as has been shown
earlier in this section, locL, = =, it follows that, for any
«€H, (V, V,), locLyx is in the image of »; and so, by
Theorem 41, L is invariant. Thus the image of L, is
contained in the group of invariant elements in H, ;(V,, P).
Conversely, let § be an invariant element of H, ,(V,, P). Then
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by Theorem 41, loo = ay, for some y € H,,(V, V,). Using
again the formula looL, = =, it follows that locf = looLy,,
and so, since loc is an isomorphism, § = Lgy. That is to say
any invariant element of H, ,(V,, P) is in the image of L,.
The proof of Theorem 42 is thus completed, and with it the
verifications of the details of results given in §2.



1.
2.
3.

4.

10.
11.

12.

13.

REFERENCES

N. BourBakri: Topologie Générale, Chapter 1 (Hermann, Paris,
1849).

8. 8. Camns: Normal coordinates for extremals transversal to a
manifold. Amer. J. Math. 60 (1038) 423—435. _

W. L. CHow: On the fundamental group of an algebraic variety.
Amer. J. Math. 74 (1952) 726-736.

8. Enznsere and N. E. STRENROD: Foundations of algebraic
topology (Princeton, 1952).

I. Fany: Cohomologie des variétée algébriques. Annals of Math 65
(1957) 21-73.

W.V.D. HopGE: The theory and applications of harmonic integrals,
2nd edition, (Cambridge, England, 1952).

. W. V. D. Honge: The topological invariants of algebmo varieties.

Proceedings of the International Congress of Mathematicians (Cam-
bridge, U.S.A., 1960).

. 8. T. Hu: An exposition of thg}htive homotopy theory. Duke

Math. J. 14 (1947) 991-1033.

8. LerscrETrz: L'analysis situs et la glométrie algébrique (Gauthier-
Villars, Paris, 1924).

N. E. SteENROD: The topology of ﬁbn bundles (Princeton, 1951),
A. H. Warrace: Homology theory on algebraic varieties. Annals
of Math. 63 (1958) 248-271.

A. WEiL: Sur la théorie des formes différentiellee attachées a une
variété analytique complexe. Comm. Math. Hely. 20 (1947) 110-116.
O. Zariski: Algebraic surfaces. Ergebnisse der Mathematik, 8,
no. §; (also Chelsea, New York, 1948).

115



	Cover
	Title Page
	Copyright
	CONTENTS�
	INTRODUCTION�
	I. LINEAR SECTIONS OF AN ALGEBRAIC VARIETY�
	1. Hyperplane sections of a non-singular variety�
	2. A family of linear sections of W�
	3. The fibring of a variety defined over the complex numbers�
	4. Homology groups related to V(K)�

	II. THE SINGULAR SECTIONS�
	1. Statement of the results�
	2. Proof of Theorem 11�

	III. A PENCIL OF HYPERPLANE SECTIONS�
	1. The choice of a pencil�
	2. Notation�
	3. Reduction to local theorems 38.�

	IV. LEFSCHETZ'S FIRST AND SECOND THEOREMS�
	1. Lefschetz's first main theorem�
	2. Statement of Lefschetz's second main theorem�
	3. Sketch proof of Theorem 19�
	.4. Some immediate consequences�

	V. PROOF OF LEFSCHETZ'S SECOND THEOREM�
	1. Deformation theorems�
	2. Some remarks dh Theorem 19�
	3. Formal verification of Theorem 19; the vanishing cycle�
	4. Proof of Theorem 19, parts (1) and (2)�
	5. Proof of Theorem 19, part (3)�

	VI. THE POINCARE FORMULA�
	1. The automorphisms T,�
	2. Explicit calculation of T�
	3. The formula T(y)* = y" - (y . b)$�

	VII. THE POINCARL FORMULA;  DETAILS OF PROOF�
	1. Clockwise and anti-clockwise isomorphisms�
	2. A special representative for�
	3. Proof of Theorem 32�
	4. Proof of Theorem 34�

	VIII. INVARIANT CYCLES AND RELATIVE CYCLES�
	1. Summary of results assumed�
	2. The intersection and locus operators�
	3. Direct decomposition for H,_i(VO,P)�
	4. Direct decomposition of Hr-i(V0)�
	5. Proofs of Theorems 41 and 42�

	REFERENCES�

