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INTRODUCTION

Tms monograph was originally planned as a series of papers,
the first of which has already appeared, namely [11]. The
nature of the subject, however, along with the length of the
treatment, made it seem more advisable to rearrange the
work in book form. The material of [11] appears in a modified
form in Chapters I-IV of this monograph.

The main theorems whose proofs are given here were first
formulated by Lefschetz in [9], and have since turned out to
be of fundamental importance in the topological aspects of
algebraic geometry. These theorems may be briefly described
as follows. Let V be a non-singular r-dimensional algebraic
variety in complex projective space, and let V. be a non-
singular hyperplane section of V. Then Lefschetz's first main
theorem states that all cycles of dimension less than r on V
are homologous to cycles on V0. Now V. may be taken as a
member of a pencil of hyperplane sections of V, a pencil which
contains only a finite number of singular sections. Lefschetz's
second main theorem, interpreted in terms of relative homo-
logy, shows how to obtain a set of generators for l!(V, VO),
one of which is associated in a certain way with each of these
singular sections. The third main result of Lefschetz concerns
the Poincare formula, which describes the variation of cycles
of Vo as this section is made to vary within a pencil of sections.

The proofs of these theorems are fairly elaborate and involve
a considerable amount of verification of intricate detail. In
view of this, I have set apart some of the more complicated
pieces of working in sections or chapters by themselves,
introducing the actual details of the proofs by geometrical
descriptions, sometimes aided with diagrams. Thus a des-
criptive outline of the proofs of the main theorems may be
obtained by reading Chapter I, § 1 of Chapter II, Chapter III,
Chapter IV, Chapter VI and the first four sections of Chapter
VIII. Throughout the book singular homology theory will be

vii



INTRODUCTION

used, and the coefficient group will be the group of integers,
exoept in Chapter VIII.

I conclude this introductory note with some remarks on
other work in this field. Zariski in [13] gives a detailed
description of the work [9] of Lefschetz, in so far as it concerns
surfaces. In [3] Chow, discussing a variety of any dimension,
obtains a result for the fundamental group similar to the
first main theorem of Lefschetz stated above. A different
formulation of the theory, in terms of cohomology and making
use of the technique of spectral sequences, is given by Fary
in [5]. The theorems as stated in the present monograph are
treated essentially from a geometrical point of view, but it
will be realised that there is a close link with the trans-
cendental theory of algebraic varieties. For a discussion of
the relationship between the two approaches, see Hodge [7].



CHAPTER S

LINEAR SECTIONS OF AN
ALGEBRAIC VARIETY

1. Hyperplane sections of a non-singular variety
The main tool in this work is the fibring of a variety by

linear sections. As a preparation for this, some results will be
worked out concerning the linear, and, in particular, the
hyperplane sections of a non-singular variety W defined over
an arbitrary field k -of characteristic zero and contained in
projective n-space. It will be assumed that W is of dimension
r and is absolutely irreducible.

Let L' be the projective space containing W and let L"be
the dual projective space, that is to say the space whose
points represent the hyperplanes of L", the hyperplane with

"+1
equation I viX = 0 being represented by the point (v) =

{=1

(v1) v1, , v"+1). For convenience the hyperplane represented
by the point (v) of L", will be called the hyperplane (v).

The hyperplane (v) will be called a tangent hyperplane to
W at the point (x) = (x1, x2, ..., if and only if it con-
tains the tangent linear variety T(x) to W at (x); since W
is non-singular, T (x) exists for all (x) on W. Note that this
concept of tangent hyperplane reduces to the usual one when
W is a hypersurface of L".

If (x) is a generic point of W and (v) is a generic tangent
hyperplane to W at (x) (that is to say a generic hyperplane
passing through T(x)), then (v) has a locus W' in L'". W' is
an absolutely irreducible variety of dimension not greater
than n - 1 (in other words it cannot fill the whole space L'").
Also it is not hard to see that every hyperplane (v') which is
a tangent hyperplane to W at some point is a specialization
of (v) over k. W' is called the dual of W.

Since W is non-singular, it follows easily by taking a
1



2 HOMOLOGY THEORY ON ALGEBRAIC VARIETIES

suitable affine model and using the Jacobian criterion for a
singularity, that (v) is a tangent hyperplane to W at & ,point
(z) if and only if (x) is a singularity of the intersection (v) r1 W.'
Thus Wrepresents the set of hyperplanes whose sections with
W have at least one singular point. The.fact that the dimen-
sion of W' is not greater than n - I can therefore be stated,
as follows:

LEMMa, a. A generic hyperplane of L" cuts W in a non-
singular variety.

Combining this with the fact that a generic hyperplane
section of an absolutely irreducible variety is absolutely
irreducible, it follows at once by induction that:

LEMMA b. The inter8ection of W with a generic linear variety
of any dimension is non-singular.

Consider now a generic pencil 11 of hyperplanes in L"; that
is to say, the set of hyperplanes corresponding by duality to
the points of a generic line l in L". If the dimension of W'
is less than n - 1, 1 will not meet W',.and it will follow that
all the members of H will out non-singular sections on W. If,
on the other hand, W' is of dimension n -- 1, 1 will meet W'
in a finite number of points all simple on W'. Now a classical
argument shows that, if (v) is a simple point of W' (assumed
of dimension n - 1) then the tangent hyperplane to W' at
(v) corresponds by duality to the point (which is consequently
unique) at which (v) is a tangent hyperplane for W. In other
words if (v) is a simple point of W', the intersection (v) rl W
has exactly one singular point. This argument applies to each
intersection of l and W'. And so, summing up:

LEMMA c. A generic hyperplane pencil 11 in L" either cuts
all non-singular sections on W or cuts at most a finite number
of singular Sections each of which has exactly one Singular point.

2. A family of linear sections of W
It will turn out later in this work that the cases in which

the dimension of W' is less than or is equal to n - 1 usually
require separate attention. Until further notice, then, it will
be assumed that the dimension of W' is exactly n - 1.
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Let L be an (8 - 1)-dimensional linear subspaoe of L", and
let A denote the family of all 8-dimensional linear spaces
through L. The members of A can be set in one-one corre-
spondence with the points of an (n - 8)-dimensional projective
space L0. In fact, for the sake of definiteness it will be
assumed that Lo is a subspace of L" not meeting L and each
member of A corresponds to the point in which it meets La.

If, now, L is a generic (8 - 1)-space it is clear that a generic
member of A is actually a generic 8-space in L", and con-
sequently outs a non-singular section on W. Also the con-
ditions for a linear variety to cut W in a singular section are
expressible (using the Jacobian condition) by polynomial
equations in the coefficients of the equations of the linear
variety. It follows at once that L can be chosen with equations
having coefficients in k in such a way that the generic member
of A outs a non-singular section on W. And in addition, the
members of A cutting singular sections on W will correspond,
in the manner just described, to the points of a bunch of
varieties r in Lo.

It will now be shown that the bunch r consists of exactly
one absolutely irreducible variety, if L is suitably chosen
(always under the assumption that W' is of dimension n - 1).
Let L' be the linear (n - 8)-dimensional variety in L", which
corresponds by duality to L. It will be assumed that e satisfies
the inequality n - r < 8 < n -- 1. This condition excludes
the case in which A is a hyperplane pencil, when 1' reduces to
a finite set of points, and also ensures that the sections of W'by
members of A will be varieties of positive dimension, and not
simply finite sets of points. If L, and so L', is generic, the inter-
section W' r) L' will be an absolutely irreducible variety not
lying entirely in the singular variety of W', and the condition
for this not to happen is a set of polynomial equations in the
coefficients of the equations of L. It may therefore be
assumed that L is chosen with equations over k in such a way
that, in addition to satisfying the conditions already laid on
it earlier in this section, the intersection L' 0 W' is absolutely
irreducible and has a generic point which is simple on W'.
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Let (v) be a generic point of L' f1 W' over k. Since (v) is
simple on W', the tangent hyperplane to W' at (v) is defined,
and, as pointed out in §1, corresponds by duality to the
singular point of the intersection of W and the hyperplane
(v). Let this singular point be (x); then clearly the ratios of
the homogeneous coordinates x1, x2, . , . , are in k(v), the
field generated over k by the ratios of the v. Let (y) be the
intersection with L. of the linear 8-space L(x) joining L and
the point (x). L(x) is a member of A. Also, since (v) is a
point of L', the hyperplane (v) contains L, and (x) too, by the
definition of (x), and hence L(x). But (x) is singular on
(v) n W; and so L(x) cuts W in a variety having (x) as a
singular point. From this it follows that (y) is a point of r.
On the other hand it has been mentioned that k(x) C k(v);
and since (y) is the intersection of L(x) and L (which can be
assumed to be defined over k), k(y) C k(x). Hence the ratios
of the coordinates of (y) are in k(v), which is a regular exten-
sion of k (since W' r) L' is absolutely irreducible) and from
this it follows that k(y) is a regular extension of k. Thus (y)
is the generic point of an absolutely irreducible variety r0,
and from what has been said it follows that ro C r.

It will now be shown that ro = F. Let (y') be any point of
r; it is required to prove that (y') is in ro, that is to say,
that (y') is a specialization of (y) over k. (The term specializa-
tion here means the specialization of the ratios of the coordi-
nates rather than of the coordinates themselves.)

The definition of r implies that, since (y') e r, the linear.
a-space L(y') joining L and (y') cute a singular section on W.
Let (x') be a singular point of the intersection L(y') n W.
Consideration of the Jacobian condition for a singularity
shows at once that there is at least one hyperplane (v') con-
taining L(x') and cutting on W a singular section having a
singularity at (x'). In other words, (v') is a tangent hyperplane
to W at (x'). It is not hard to see from this that (v', x') is a
specialization of (v, x) over k; and so (x') is a specialization of
(x). On the other hand, (y) is the intersection of L. and the
join of L to (x) while (y') is the intersection of L. and the
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join of L to (x'), from which it follows at once that (x', y') is

a specialization of (x, y) over k. In particular, (y') is a speciali-
zation of (y). (y') is any point of r, and so it has been shown
that r c r0. It is already known that ro c r and so ro =
r, as was to be shown.

r has thus been shown to be an absolutely irreducible
variety in Lo, (y) being a generic point. It will now be checked
that, if L is chosen suitably, the linear s-space joining L and
(y) cuts on W a section having exactly one singular point.
This will be proved with the aid of the following lemma:

LxamA d. If .W is a variety of projective n-space L" with a
dual Wof dimension n - 1, and if H is a generic hyperplane of
L", represented dually in L'" by the point H', then the dual of
W n H is the cone of tangent lines from H' to W.

PROOF. Let (x) be a generic point of W r) H; (x) is of
course, at the same time, a generic point of W. Let Ta(x) =
T (x) n H; here T (x) is the tangent linear variety to W at
(x) and it is easy to see that TQ(x) is the tangent linear variety
to W n H at this point. Let (v0) be a generic tangent hyper-
plane to W n H at (x). This means that (vo) contains Te(x).
It is then clear that every hyperplane of the pencil determined
by H and (v0) contains T o(x), and is therefore a tangent hyper-
plane to W n H at (x). In other words, the line in L'"
joining H' to the point (v0) lies in the dual of W n H. The
latter variety is therefore a, cone of vertex H'.

On the other hand, the pencil determined by H and the
hyperplane (v0) contains exactly one hyperplane (v) which
contains T (x); namely the hyperplane determined by the
intersection H n (vo) and a point of T(x) not on that inter-
section. (v) is then a point of W'. If it is a simple point then,
as has already been remarked, the tangent hyperplane to W'
(supposed to be of dimension n - 1) at (v) corresponds by
duality to (x). But, since (x) is in the hyperplane H, it follows
that the tangent hyperplane to W' at (v) passes through H'.
That is to say, the join of H' and (v), or H' and (vo), is a
tangent line to W', provided that (v) is simple on W'. It has
thus been shown that the generic generator of the cone dual
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to W n H is either a tangent line to W' or the join of H' to a
singular point of W'.

The proof will be completed by showing that any tangent
line to W' from H' lies in the dual of W n H. To do this,
let (v) be the point of contact of some tangent line to W'
from H', (v) being, of course, simple on W'. Then the hyper-
plane (v) cuts on W a section with just one singularity (x),
namely the point corresponding by duality to the tangent
hyperplane to W at (v). Then the hyperplane (v) contains
P (z), and so, if (w) is any point on the join of .9' and the
point (v), the hyperplane (w) will contain the intersection of
H and the hyperplane (v), and so will contain H n T(x) =
T0(x). Thus the tangent line from H' touching W' at (v) is
contained in the dual of H n W. This completes the proof of
the lemma.

The consequence of this lemma which is wanted for the
present purpose is that the assumption that Wis of dimension
n - 1 implies that the dual of H n W is also of dimension
n - 1. Also it is clear that the lemma, and so this corollary
of it, will hold for a non-generic H, just so long as the inter-
section H n W is absolutely irreducible, and this is true
provided that the coefficients of the equation of H do not
satisfy certain polynomial equations.

Repeated application of the result just proved yields the
following:

LEMMA e. If W' i8 of dimensions n - 1 and Lx is a linear
space who8e intersection with W is absolutely irreducible, then
the dual of W n Li is of dimension n - 1.

Return now to the family A of *-spaces through L in L",
and in particular to those members of A corresponding to the
points of the variety r. It is easy to see that L can be chosen
so that, in addition to satisfying the conditions which have
already been required of it, a generic linear (s + 1)-space Li
through L cuts W in an absolutely irreducible non-singular
variety. Lemma e then applies to W n L1, which has thus
an (n - 1)-dimensional dual. By Lemma o, a suitably chosen
hyperplane pencil cuts W n Li in at most a finite number of



LINEAR SECTIONS OF AN ALGEBRAIC VARIETY 7

singular sections, each with exactly one singular point.
Moreover it is not hard to see that a pencil whose axis contains
L will do, provided that the equations of L do not satisfy
certain polynomial equations, and it will now be assumed that
they do not. Finally it is clear that the members of this
pencil out Li in members of A corresponding to a generic
line in Lo. Such a line therefore cuts r in a finite number. of
points, each corresponding to a member of A cutting W in a
section with just one singularity. Each of these points on
r is generic on r, and it has, incidentally, been shown that
r is of dimension n - 8 - 1. Summing up now all that. has
been proved:

TsEOREM 1. If the linear (8 - 1)-space L is suitably chosen,
if n -- r < 8 < n -- 1, and if W' i8 of dimension n -- 1, then
I', whose points correspond to members of A cutting singular
section on W, is an absolutely irreducible variety of dimension
n -- a - 1 (i.e. a hyper8urface of the space 1 0), and a generic
point of r corresponds to a member of A cutting on W a section
with just one singularity.

3. The fibring of a variety defined over the complex
numbers

The notations of §2 will still be used, with the exception
that W will now be replaced by an irreducible non-singular
variety V defined over the complex numbers. Let V be of
dimension r, and for the moment assume that the dual of V
is of dimension n - 1. Let L be a linear (a --- 1)-dimensional
space, whose equations have complex coefficients, chosen in
one of the following ways. Either 8 = n - 1, and L is the
axis of a pencil H of hyperplanes satisfying Lemma c in
relation to V. Or n - r < 8 < n - 1, and the family of
s-spaces through L satisfies Theorem I in relation to V. Note
that in the first alternative Lo becomes a linear I-space, that
is, topologically speaking, a sphere, and I' becomes a finite
set of points.

Some terminology and notation will now be introduced. The
points of Lo not on I' will be called ordinary points, while
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those of r will be called special (these terms being used in
both cases, s = n - 1 and a < n --- 1). If P is any point of
Lo, ordinary or special, V(p) will denote the section out on
V by the member of A corresponding to p. Also if A is any
set of points on Lo, V(A) will denote the union of all the
V (p) for p e A. P will denote the intersection L n V. L can
be chosen, simply by ensuring that the coefficients of its .

equations do not satisfy certain polynomial equations, so that
P is non-singular. It will be assumed that this choice has
been made. Note that this implies that any singularities of
any of the V(p), p e IF, will certainly not lie on P.

The object of the present section is to examine V(K), where
K is a subset of L. consisting entirely of ordinary points. The
main result is that V(K) bears a close relation to a certain fibre
bundle, the sections V(p) for p e K corresponding to the fibres.

It will be convenient for this purpose to introduce a special
coordinate system in L". Complex homogeneous coordinates
(z1, z1, ... , z,t1) will be chosen in L" in such a way that the
equations of L are z1 = z$ = ... = z"_, = z,,+1 :__2 0. The
members of A not lying in the hyperplane z"+1 = 0 will then
have equations of the form z, = %jz"+1, i = It 2, , n - a.
Moreover, in discussing any particular member of A, corre-
sponding say top c- Lo, it can be assumed that the coordinates
are chosen in such a way that no member of A corresponding
to a point near p lies in z"+1 = 0. For discussing such s-spaces
through L, it can therefore be assumed that the homogeneous
coordinates are normalized with z.+1 -- 1. The members of A
will then have equations z, = Ci, i 1, 2, ... , n --- a.

With the arrangement of coordinates just made, z1,
zap ... , z"_, can be taken as affine coordinates on Lo, And so
the section of V by the s-space z{ _ Ci, i = 1, 2, ... , n -8,
can be written as V(C1, c_, ... , C"_.,) or more briefly as V(C);.
this is simply a modification of the notation already introduced
for such sections.

Now V, being a non-singular algebraic variety in complex
projective space, is a compact complex analytic manifold, and
so also a real analytic manifold. And since an analytic
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Riemann metric can be constructed on a complex projective
space it follows that the same is true of V. Assume then that
V is given a Riemann metric whose coefficients in terms of
any local coordinate system are real analytic functions of these
coordinates. Using this metric, geodesics can be constructed
on V.

The section V(C), for an ordinary point of Lo, is a
compact submanifold of V of dimension 2(r -- n + 8), and so
a sufficiently small neighbourhood B of V(f) may be entirely
filled by geodesic arcs orthogonal to V(4), in such a way that
the union of points of all the area through any point of V(C)
is an open (2n -- 2s)-oell, and through each point of B -- V(C)
passes exactly one such are. Modifying B if necessary it can
be arranged that all the geodesic arcs in question are of
length 6 say. B thus has the structure of a fibre bundle of
base V(C) and fibre a (2n - 28)-cell; the fibres in B are the
(2n - 28)-dimensional surface elements formed by geodesics
normal to V(C) at points of V(C). If attention is to be drawn
to the base of B and the radius of its fibres, it will be denoted
by 8), and will be called the normal bundle to V of
radius 6. (For further details concerning the normal bundle
of a submanifold in a given manifold see Cairns [2].)

Associated with the idea of the normal bundle to V(t) is
the idea of a normal neighbourhood of a point p on V(t).
Here V(C) may be a singular section of V, with e r, but p
must be a non-singular point on it. Let U be any neighbour-
hood of p on V(J) such that all points of U are non-singular
on V(C). Then a normal neighbourhood of p in V is the point-
set union of all the geodesic area of some fixed length. 6
normal to V (C) at points of U. 6 is called the radius of the
normal neighbourhood. If W is a normal neighbourhood of
p on V(C) constructed over the neighbourhood U in V(C), then
W is the topological product of U and an open (2n -- 2s)-cell.
In fact, if (e) denotes an admissible coordinate system around
p on V(C), then there is a set of admissible coordinates in W
of the form (E, u), where (u) = (ul, u2, ... , u2._$,) specify the
displacement from V(Q.

2
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K being a set of ordinary points on L0, the next step is to
construct a bundle d(C)) for each (C) e K. It will be
shown that, for (z) sufficiently near (C) on Lo, V(z) is an
analytic cross section of B(C, b(C)). This is to be done for
each (C) in K. K will thus have a covering {Nt} such that, for
(z) e N;, V(z) is an analytic cross-section of B(C, 6(4)). The
idea is then to regard V(NC) as obtained from V(Z) X N= by
compressing the subset P x NC into P. That is to say, for
each (t) a mapping will be constructed of
V(N,), and finally the sets Y (t) x NC will be put together to
form a fibre bundle %(K) over K as base in such a way that
the mappings just mentioned fit together to form a continuous
mapping V: %(K) - V (K). The essential property of yr will
be that it is a homeomorphism if P is removed from V(K)
and from each fibre of %(K). The details of the operation
just described will now be carried out in the following sequence
of lemmas and theorems.

L:mamA a. (1) Let p be a non-singular point of ((C) not
necessarily an ordinary point) not on P and not on z.+1 = 0, the
equations of the members of A being zt = 2{z91+11 19

2, . . . , n - a. Then complex local coordinates on V, regarded as
a complex analytic manifold, can be chosen around p to include
z1, zE, ... , z,,_.,; here is normalized to equal 1.

(2) Let p e P. Then complex local coordinates on V around
p can be taken to include z1, z2, ... , Z%-#, some coordinate
other than these being set equal to 1.

(3) In terms of the local coordinates of part (1) of this lemma,
V(C) has, locally around p, the equations zi = Z,; in terms of the
local coordinates of part (2) the corresponding local equations are
z{ = Czs+1, i running from 1 to n - a in each case.

PRooF. This is an immediate consequence of the condition
for a point to be simple on a variety along with the implicit
function theorem.

If p is a point not on P and if p is a simple point on V(C),
where (C) is any point of Lo, then, in the first place, the above
lemma implies that there is a system of real local coordinates
around p of t h e f o r m (x, y) = (x1, x=, ... , x1 . yl, y:, ... ,
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y1r-la+,,) where z, = x,1_1 + ixv, j = 1, 2, ... , n - s. In the
second place, it has already been seen that, in a normal
neighbourhood of p, there are local coordinates of the form
($, u) = (E, ul, u8, ... , Then:

LF b. If p c- V(C), p 0 P, and (x, y), (6, u) are the
coordinate 8y8teme just mentioned, then (t, x) i8 also an admissible
coordinate sy8tem around p.

PRooF. The values of x) for a point q near p are under-
stood to be calculated by noting on which section V (z) q lies,
this giving the values of the x,, and then taking as values of

the coordinates of the foot (on of the geodesic are
through q normal to V(t). The proof may be carried out by
writing down the differential equations of the geodesics in
terms of the local coordinates (x, y) and considering as initial
conditions orthogonality to at points near p on V(C). If
8 denotes geodesic arc-length, these conditions allow the dx,/d8
to be given arbitrary values ai, az, ... , aU_s, for 8 = 0. As
usual in the construction of normal coordinates, the a,s (i = 1,
2, ... , 2n - 28) are the coordinates u, and the equations of
the geodesics may be written down as power series in the u,
with coefficients depending on the initial point on V(C). If
this process is carried out explicitly, it turns out that the
condition of orthogonality to implies the non-vanishing at
p of the Jacobian of the coordinates ($, x) with respect to u),
and this gives the required result.

LEnmA c. Let p e P and let ($, u) be a normal coordinate
8y8tem in a normal neighbourhood of p over some neighbourhood
on V(t), (t) being any point of Lo. Then the linear Section V(z)
has locally the equations

u, i = 1, 2,. .., 2n -28,

where the f, are real analytic functions of their arguments when
( ) i8 -sufficiently near to p on V(t) and (z) i8 8ulciently near to

on La, the x{ being defined by zf = x$1_1 + ix,1, j = 1,
2, ,n-8.

PROOF. Let complex local coordinates be taken around p
on V as in part (2) of Lemma a (noting that the z, appearing
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there are not the same as those in the statement of this
lemma) and let yl, y21 ... , be the real and imaginary
parts of the z, named there. Then the y, belong to a system of
real analytic coordinates around p. Part (3) of Lemma a
implies that, in terms of these local coordinates, the equations
of V(z) are:

y2c-1 = x2i-1Y2*-2.+1 - x2'YIw-2,+2

yet = xn-1YU-2.+2 + x2{yU=2,+1

where i = 1, 2, ... , n -- a. Substitute for the y, in terms of
the coordinates ( , u); this is done by writing down the
analytical expressions for the geodesics normal to V(C), para-
metrized by arc-length 8, and introducing the u, as a,a in the
manner indicated in the proof of Lemma b. If the equations
for V(z) obtained from this substitution are u) = 0,
i = 1, 2, . , 2n - 2a, then the condition of orthogonality of
the geodesics to implies that, for (z) sufficiently near to

in Lo, the Jacobian au; is not zero at p. The equations

0 can therefore be solved for the uj to give the required
result.

LEMMA d. If (z) ii sufciently near on Lo, V(z) lies
entirely inside the normal bundle B(C, a) for preaaaigned a > 0,

being an ordinary point of Lo.
Poor. If the theorem were false there would be a sequence

(z")), (02)), . . . of points on Lo tending to (C) such that each
V(z(0) contains a point p, outside B(C, a). The p, will have a
limit point p, necessarily outside B(t, 6), and it may as well
be assumed that a subsequence has already been picked out
'so that p, tends to p as a limit. Take complex coordinates
around p including z1, z2, ... , z,a_, (cf. Lemma a, (1)); this
can be done since p 0 B(4, 6) and so p 0 P. Then for suf l-
ciently large i, the z1, z2,... , coordinates of p,, namely

zoo, will tend to the corresponding coordinates
of p, namely b1, hs, ... , C.-., as limits. This would imply
p e which is a contradiction.
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THEOREM 2. If (z) is 8ufciently near the ordinary point (C)
of Lo, V(z) is an analytic cro88-8ection of B(C, 6).

Raoor. To each p e V(C) assign a neighbourhood U,, in V,
as follows:

If p e P, U, is a normal neighbourhood of radius 6, in which
V(z) has, locally, the equations u; = x), i = 1, .2, ... `

2n -- 2s, the f (jp) being analytic in their arguments and the
point f (P), f (), ... , f 2nf_2s) lying in U, for ($) E U, rt V(s)
and the distance of (z) from less than k,, say. (cf. Lemma
o above.)

If p 0 P, let U, be a coordinate neighbourhood for local
coordinates (E, x) around p (cf. Lemma b above), defined by
making ($) lie in a neighbourhood of p on V(C), and making
the distance of (z) from (C) on Lo less than k,.

By the compactness of V(tC), the covering (U, r) V(C)} may
be assumed to be reduced to a finite covering. Let k be less
than all the k,, now finite in number, and also so small that
V(z) C B(C, 6) whenever the distance of (z) from is less
than k (Lemma d).

Now for (z) at distance less than k from (c), define the
mapping fig : V(C) --* V(z) by making fg(p) the point of
intersection of V (z) and the fibre of B(C, 6) through p. The
fact that fiz(p) is uniquely defined in this way (and this is
the main point of the theorem) can be seen at once by inspect-
ing a neighbourhood U. in which p lies, where U. is one of
the above constructed neighbourhoods. The analytic property
.of fg follows easily from local considerations in one of the

COROLLARY 1. It follows at once from the above proof that,
for (z) sufficiently near (c), fg depends analytically on xl,
xa, .:. , x2i_$ the real and imaginary parts of the coordinates of
(z) on Lo. -

COROLLARY 2. If and (c') are ordinary points of Lo, V(C)
and V(C') are analytically homeomorphic.

For (C) and (C') can be joined by a finite chain of neighbour-
hoods in each of which Theorem 2 can be applied.

Let Vo be a fixed non-singular section of V by a member
of A. By Corollary 2 of Theorem 2 there is an analytic
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homeomorphism V(C) --* V0, where (1') is any ordinary
point of L.. Let nr : B(C, a) -1- V(C) be the projection mapping .

in the bundle B(C, a). By Theorem 2, there is a neighbourhood
N; of (C) on L. such that f,r is defined and analytic for
(z) a N;. If (t') is a second ordinary point on L. define Nt,
similarly and suppose that Nr n Nr. 0 0. Take (z) e Nc n Nr.

-1
and define u (z) _ #Cvr f r.¢r,.

TH$o$BM 3. is an analytic homeomorphism of VQ onto
itself leaving P invariant, and Orr,(z, p), for p e V., depends
analytically on the real and imaginary parts of the coordinates
(z1, z,, ... , z.-.) of (z) in L..

P.aoo8. This result follows at once from the analyticity of
-1

fit, wr and from Theorem 2.and its first corollary.
Let G be the group of all analytic homeomorphisms of V.

onto itself leaving P invariant. G can be made in a natural
manner into a topological group acting continuously on V.
Theorem 3 moreover implies that Orr is a continuous mapping
of N; n Nr, into G. The functions Oct, for varying (C) and
(Z') are now to be used as transition functions of a fibre bundle
with fibre VA and group G.

Let K be a subset of Le consisting entirely of ordinary
points, and let K be contained in the union of a collection of
neighbourhoods of the type Nr, that is to say, such that f
is defined as in Theorem 2 for (z) e Nr. For each pair (1),
(i') such that N, n Nr. n K # 0, 04r, is a continuous mapping
of N{ n N;, n K into 0, and it is easy to see that the transi-
tivity condition required of transition functions is satisfied by
the err.. Hence there is a fibre bundle X(K) with base K,
fibre V0, group Q, defined by the covering {Nr n K} of K and
the transition functions Oct, (of. Steenrod [10]).

.In addition, since 0 acts as identity on P it follows that
each fibre of X(K) contains a subspace homeomorphic to P
and that the union of these subspaces is homeomorphic to
K X P. This subspace K X P of X(K) will be denoted by
X'(K). The main result already promised can now be proved:

TszoiBM 4. There is a continuous mapping tp : %(K) -+V(K)
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which acts as a homeomorphism on X(K) - %'(K), mapping
this set onto V(K) - P.

PROOF. Take p e %(K) and let V. x (NL n K) be a local
product representation of %(K), such that the projection (z)
of p is in N, n K. Then, using the maps f4 and
above let p = (po, z) a V. x (Nt n K) and define y(p)

-1
f,A(po). It is not hard to see that V is continuous and is
independent of the particular choice of local representation
of .(K), on account of the special choice of transition
functions in %(K).

-1
Now restrict ,p to %(K) - %'(K). 0c and f,, for fixed (z),

are both homeomorphisms and so if p 0 %'(K), V(p) 0 P.

Define ip as the mapping q -* (0,1rq, z) where q e V (z) C

It can again be checked that this definition of V in terms
of a local product representation of X(K) is actually a well
defined mapping of V(K) - P --* %(K) - %'(K), is continu-
ous, and is the inverse of V.

-1

COROLLARY. Since the restrictions of 0; and f; to P are both
the identity it follows from the above proof that the restriction of
'p to $'(K) = K x P is the natural projection on P.

Theorem 4 implies that a covering homotopy theorem holds
in V(K). The actual form in which this is to be used is the
following:

THEOREM 5. Let K and K' be subsets of Lo consisting entirely
of ordinary points. Let fo and f1 be homotopic mappings of K into
K', and let Fo : V(K) -- V(K') be a mapping which acts as the
identity on P, and is such that, for (z) a K, p e V(z), then
Fo(p) a V(fo(z)). Then there exists a mapping F1 : V(K) -->
V(K'), homotopic to Fo, and such that:

(1) If f': K x I -+ K' and F: V(K) x I -i. V(K') define
the homotopies of fo and P. to f1 and F1 respectively, then, for
(z) a K, the image under F' of V(z) x {t} is the sectionV(f'(z, t))
for allteI.

(2) Fbeing as in (1), F'(q, t) = q for all q e P and all t e I,
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P$OOF. The proof is a modification of the usual proof of the
covering homotopy theorem for fibre bundles. As in the proof
for bundles (of. Steenrod [10]) the idea is to construct the
homotopy F in stages over a sequence of subintervals of I,
each stage being broken down into the construction over a
sequence of neighbourhoods covering K. The object is, of
course, to break the theorem down to a sequence of operations
over coordinate neighbourhoods, that is to. say neighbour-
hoods on the base space over which the bundle is locally a
product. Here the Nt correspond to the coordinate neighbour-
hoods. It is clear that each of the stages in the construction
of F can be carried out if the following lemma. is true.

LEMMA. Let N, and N,. be two neighbourhoods on L. a8
described before Theorem 3. Let A, B, B' be aub8et8 of NC such
that B ia, a relatively clo8ed Bet of A and B' i8 a relatively open
set of A containing B and let .F be a given mapping of A x I
into NV. Also let Fo be a mapping of (V (B') x I) V (V (A) x {01)
-- V(N;,) with the property that FO(V(z) x (t)), when

defined, i8 the section V(F(z, t)). Then F' can be extended to
a mapping F : V (A) X I --* V (N;.) with the Same covering
property and with the property that Fagrees with Fa on V(B) x I.
In addition, given that FF(p, t) = p for all p in P and all t in
I, F has the same property.

The connection of this with the main theorem is that V, is
supposed to be one of a collection of such neighbourhoods
covering K, N. being one of a covering of K', A = K r) Nt
and B' is the intersection of K with members of the covering
over which the covering homotopy has already been defined.-'
Also it is assumed that there is a second covering {U} of K
with the property that 17t C Nt. B is to be the intersection
of K with the closures of those sets of this second covering
over which the covering homotopy has already been
defined.

PROOF OF LEMMA. Urysohn's Lemma implies the existence
of a continuous real valued function on A taking values
between 0 and 1 and equal to I on B and to 0 on A -- ii'.
Now to define F'(p, t) for a point (p, t) of V(A) x I, suppose
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first that p 0 P. Let p e V(z), and let F(z, t) _ (z'). Then get
F'(p, t) = fez'ir;,Fa(p, #(z)t); ,(z) is defined here since
p e V (A), and so (z) a A. The definition of F is completed by
setting F'(p, t) = p if p e P. The various requirements on
F stated in the lemma are trivially satisfied, except for the
continuity at points (p, t) where p c- P. The continuity at
such a point follows easily, however, from the fact that the
continuity of FF at a point (p, t) with p e P implies the
existence, corresponding to a preassigned neighbourhood U
of p, of a neighbourhood U. of p such that F'(p', t') e U for
all p' E U0 and all t' e I. This completes the proof of the
lemma, and so the sketch of the proof of Theorem 5.

4. Homology groups related to V(K)
The object of the present section is to compare certain

homology groups related to V(K), K consisting entirely of
ordinary points, with the corresponding groups related to the
bundle %(K). The following topological lemma will be useful
for this purpose, and also in later sections.

SRBJNXING LEMMA. Let A be apace and B a subspace, and
suppose that there is a family F of curves in A eatiafying the
following conditions:

(1) There i8 exactly one member of F through each point of
A B.

(2) The curves are all to be homeomorphic images of the
interval 0 < t < 1, and each curve is to have exactly one point
on B, namely that of parameter t = 0. Each point of B is to be
on at least one curve of F.

(3) The parameter value t(p) on the curve of F through p
(the curve may not be unique for p e B, but then t(p) = 0) is to
be a continuous function on A.

(4) For any p e A let U be a given neighbourhood of p and ie.t
q be a point Such that p, q lie on some curve of F with t(q) > t(p).
Then there is a neighbourhood W of q and a number a Such that
if p' is on a curve of F through W and if't(p') - t(p)) < h,
then p' a U.

Then under these conditions there is a homotopy of the identity
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mop of A on itself into a mapping which carries the set for which
t(p) < J onto B, while leaving those points for which t(p) = 1

The idea behind this lemma is, of course, that the part of
each curve of F from t = 0 to t = } is to be shrunk to the
point t = 0 on B while the portion t -= J to t = 1 is stretched
out. The proof consists of a straightforward verification that
such an operation can be carried out, and that it represents
a continuous mapping of A x I --i- A as required.

The Shrinking Lemma will now be used to show that a
neighbourhood. of P in V can be retracted onto P in such a
way that, if a point is on V(z) for some (z) a Le then through-
out the retraction it remains in that same section V(z). To
verify this, construct in each section V(z) geodesicarcs normal
to P in a neighbourhood of P, that is to say geodesic with
respect to the metric induced in V(z) by the metric already
selected on V. This is assumed to be done for each (z) E L.,
remembering that there are no singularities on any of the
V(z) in a small enough. neighbourhood of P. A compactness
argument shows that the family of arcs F so constructed of
length a, say, for sufficiently small a, entirely fills a neighbour-
hood P(a) of P. This is proved by noting that the equations
of the curves of F depend analytically, not only of the initial
conditions in each V(z), but also on the real and imaginary
parts of the coordinates of (z) on L.. This same point implies
by an easy deduction that the family F just defined can be
used for the Shrinking Lemma with A and B replaced by
P((Y) and P respectively. The curves F are, of course, para-
metrized by aro-length from P. Summing up the result just
obtained:

THgoB$x 6. There is a homatopy of the identity map of P(a)
onto itself into a mapping of P(a) onto itself carrying P(a/2)
into P, and leaving fixed the points at distance a from P. Also
if 0 : P(a) X I -- P(a) denotes the laomotopy, I being the
interval 0 < t < I, then p e v(z) implies #(p, t) a V(z) for all
tel.

The first application of this theorem is to the proof of an
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excision theorem for sets of the type Y (A) where A is a subset
of Ls. For the purpose of the following theorem it is not
assumed that all the points of A are ordinary.

Tmmimm 7. Let A, B, C be three sets on Le such that
A D B D C and Such that 0 is contained in the interior of Bin
the relative topology of A. Then the inclusion mapping
(V(A - C), V(B - C)) --> (V (A), V(B)) induces isomorphisms
of the corresponding homology groups.

Poop. Define A' = V(A), B' = V(B) V (A' n P(aj2)),
C' = V(C), where P(a j2) is as in Theorem 6. By the excision
theorem for singular homology groups,

HQ(A', B') = H,(A' - C", B' -- C')

for each q. But, using Theorem 6, it turns out that
the pair (V (A), V(B)) is a deformation retract of (A', B')
and (V (A -C), V(B - C)) is a deformation retract of
(A' - C', B' - C'), whence the required result follows.

A second application of Theorem 6 will now be given, of
immediate importance in comparing homology groups associ-
ated with V(K) and X(K), where K is a set on L, consisting
entirely of ordinary points. The mapping f of Theorem 4 is
a relative homeomorphism of the pair (1(K),'X'(K)) onto the
pair (V(K), P), that is to say induces a homeomorphism4 of
X(K) -- X'(K) onto V(K) -- P. Now, in general, the singular
homology groups are not invariant under relative hon*eo
morphisms. That is to say, it is not a priori evident that
II,(X (K), X'(K)) ti So(V (K), P) for all q. In this case, how-
ever, this isomorphism does hold, as will be shown by proving
that p is a relative homeomorphism of a special kind, to be
described in the following lemma.

LawyA. Let A, B, C, D be four spaces, B C A, D C C and
let f : A - C be a mapping which induces a homeomorphiim of
A - B onto C - D. Let U be a neighbourhood of B in A,
W f (U) a neighbourhood of D in C such that B C U, D C W.
Finally suppose there is a homotopy of the identity map of the
pair (A, U) onto itself into a mapping which carries U into B
and still acts as the identity on B, and a similar homotopy with
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A, B, U, replaced by C, D, W. Then f inducee an isomorphism
H,(A, B) ^ HQ(C, D) for all q.

P$oo,. This is a simple consequence of well known proper-
ties of homology groups, namely:

H,(A, B) !--e H,(A, U) (Homotopy theorem)

H,(A - B, U -- B) (Excision theorem)

H,(C - D, W - D) (isomorphism induced by f)

H,(C, D) (reasoning as before).

The.lemma just proved will now be applied to the com-
parison of X(K) and V(K).

THEOREM 8. Let K be a set of ordinary points of Lo. Then

H,(V (K), P) H,(X(K), X'(K)),
for all q.

PRooF. To prove this, replace A, B, C, D, f of the above
lemma by X(K), X'(K), V(K), P, y, respectively, ip being the
mapping of Theorem 4. The neighbourhood W of the above
lemma is to be replaced by P(a/2) in the notation of Theorem
6, for suitable a, while U is to be replaced by the full inverse
image under V of W. There are two homotopies just as
required in the lemma. That concerning W has been estab-
lished by Theorem 6 (the mappings of that theorem being
extended to act as the identity outside P(a)), while that
concerning U and X(K) is obtained in a similar way by
applying the Shrinking Lemma to the pair (V P(a), X'(K)),
noting that the family of curves constructed in P(a) for the
purpose of proving Theorem 6 is carried over into a suitable
family of curves in the neighbourhood of X'(K). Then the
required result follows at once from the lemma.

The result of Theorem 8 is not general enough for future use,
but will now be extended to a comparison of H9(V(K), V(hf))
and H,(X(K), X(M) U X'(E)) where Al is a subset of K.
It will be shown that, under suitable conditions, these groups
are isomorphic.
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THEOREM 9. Let M, U, K be three sets on L., K eonai8ting
of ordinary points, such that M.C U C K. Let M be closed in
-K, U a neighbourhood of M in K and suppose that M is a
deformation retract of U. Then

HQ(V(M), P) --- HQ(X(M) U X'(K), X'(K))

for all q.
Paoop. By the excision property of the relative homology

groups

Ha(X(M) U X"(K), X'(K)) HQ(X(M) U X'(U), X'(U))

for all q, the excised set being X'(K - U) = P x (K -- U).
By the hypotheses of the theorem there is a deformation
retraction of U onto M, which extends to a retraction of
X'(U) onto X'(M). Using Theorem 8 the result follows at
once.

And now the result indicated before Theorem 9 will be
obtained, by examining the diagrams I and II on p. 22, where
the pairs zo a M, ze a K, M C K all fulfil the conditions imposed
on the pair M C K in Theorem 9. The rows and columns are
all exact sequences and commutativity holds throughout both
diagrams. V. is written for V(z0).

THEOREM 10. The two diagrams 1, II are isomorphic under
mappings induced by the mapping ep of Theorem 4.

Pxooy. The three pairs zo e M, zo a K, M C K are all suit-
able for the application of Theorem 9, and so, by that theorem,

HH(X, X'(K)) Hat W, P)

for all q, where X can be V. U X'(K), X(M) U X'(K) or X(K)
and W is, respectively, ' VQ, V (M) or V(K). When all these
isomorphisms are set up, an application of the "five lemma"
(of. [4]) shows that the diagrams are isomorphic.

COROLLARY. In particular, under the conditions on M and K
in Theorem 9

IIQ(V(K), V(M)) HQ(X(K), X(M) U X'(K))

or all q.
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CHAPTER II

THE SINGULAR SECTIONS

1. Statement of the results
The object of this chapter is to study a set of the type

V(K), where K may now contain special points. V(K) will
be even less like a fibre bundle than in the case where K is
restricted to consist of ordinary points, and in fact the covering
homotopy theorem, Theorem 5, no longer holds. A special
form of covering homotopy theorem holds in the situation
now to be examined: namely, a retraction of K onto a subset
containing the special points of K can be lifted to a retraction
of V(K). This chapter will be occupied mainly by the proof
of this retraction theorem.

Let K then be a set on L. and let E be a subset of K such
that all the points of K - B are ordinary. Assume also that,
if (z) is a special point belonging to B, V (z) contains exactly
one singularity. The last condition could. be dispensed with,
but is included because it makes some of the proofs easier
and because this is the only case which will actually be used
later. Finally it will be assumed that a family F of curves
is given in K with the following properties:

(1) Each member of F is a homeomorphic image of the
unit interval 0 < i < 1 and the mapping of the interval into
K - B is real analytic for t > 0 (that is to say, real analytic
in the sense of the real analytic structure of Lo). Also each
curve of F is to have exactly one point on B, namely the
point of parameter t = 0. Each point of E is to be on at
least one curve of F.

(2) If p e K - E, there is a neighbourhood U of p in which
there is an admissible set of local coordinates (in the sense of the
r e a l analytic structure of LA) of t h e f o r m (t, x:, 'x8, ... ) xa%-s:),
where t is as in (1), and the curves of .F through U are,
locally, the loci xa = c:, x3 ; c3, ... , xE,_2, = where

23
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the t, are constants, a different set of constants belonging to'
each relevant curve.

Again stronger restrictions are being assumed than are
necessary; the assumption of analyticity for the curves of F,
rather than just differentiability is made to facilitate, the
proofs, and is in any case sufficient for later applications.

(3) The family F is to satisfy the conditions for the Shrink-
ing Lemma, the sets A and B of that lemma being replaced
by K and E.

It is clear, of course, that some of the Shrinking Lemma
conditions are already implied by (1) and (2) above; (3)
ensures that conditions (3) and (4) of the Shrinking Lemma
are satisfied for p e E.

The idea now is to show that the family F can be lifted
into a. similar family F in V(K) satisfying the conditions of
the Shrinking Lemma with A and B replaced by V(K) - P
and V (E) -- P. To construct the family F, consider any
curve y e F. Let (C) be the point on y of parameter t == 0,
and let C(C) denote the singularity on V(C) if (C) is special.
Then V(y) - P - is a real analytic manifold and the
V(z) for (z) E y form a family of submanifolda of which one
passes through each point. Construct, in V(y) - P - C(C),
the orthogonal trajectories of this family of submanifolds. If
this is carried out for each y E F, a family F of analytic curves
in V(K) is obtained. Certain members of F do not have
points defined on them for t = 0, on account of the removal
of singular points on sections for special. When this
defect has been remedied, as it will be in the course of the
proof of Lemma c of §2, F will satisfy the Shrinking Lemma
conditions as already indicated. More explicitly, the following
theorem will be proved:

THEoRBM 11. (1) The Shrinking Lemma holds for the family
F, with A, B replaced by V(K) - P, V (E) -. P, respect-
ively.

(2) If p c- F, and U i8 a given neighbourhood of p, there is a
neighbourhood U' of p such that any curve of F meeting U' lies
entirely in U.
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The proof of this will be postponed for a moment. In the
meantime, an immediate consequence of Theorem 11 is:

T moREM 12. Let K and E be as above; let Ke C K be the
subset for which t = 1 (t being the parameter on curves of F) and
let Kl be the set for which t < I. Then there is a homotopy of the

identity mapping of V(K) onto itself into a mapping which. acts
as identity on V (KO) and. carries V(K1) onto V (E). Points of
V(E) are fixed throughout the deformation.

Ruoop. By the first part of Theorem 11 along with the
Shrinking Lemma there is a mapping t : (V(K) - P) X I -
V(K) - P, where I is the unit interval 0 < a < 1, such. that
(p, 1) = p, all p, and 6(p, 0) = p for p e V(K0) - P, and
O(p, 0) e V(E) for p e V(K1) - P. Now extend 0 to points of
P x I by setting 0(p, 8) = p for all p e P ana a e I. Part (2)
of Theorem 11 implies at once that the extended mapping
0 is continuous on V(K) x 1, and so 0 effects the required
homotopy.

Theorem 12 is the main result of this chapter; roughly
speaking it says that Shrinking Lemma conditions in the
pair K, E can be lifted to similar conditions in V(K), V(E),
and this is the restricted form of the covering homotopy
theorem which holds when singular sections of V are involved.
The remainder of the chapter will be occupied with the
analytical details of the proof of Theorem 11.

2. Proof of Theorem 11
The proof of the second part of Theorem 11, which is a

rather elaborate computation, will be tackled first. To begin
with, some special coordinate systems will be set up. Let
q e P, and let () = (s,, o, ... , ;,r+s,-s,.) be a set of. local
coordinates on V(') around q, where the i vanish at q; here

is any point of La, ordinary or special. Next, set up co-
ordinates ($,u), normal coordinates in a normal neighbour-
hood of q over a neighbourhood of q in V(C). In addition (of.
Lemma b, §3, Chapter 1), around any point near q but not
on P there is a local coordinate system of the type x). By
Lemma c, §3, Chapter I, V(z) has locally the equations

3
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u, = f{(E, x), i = 1, 2, ... , 2n -- 2e, and these same equations
can be used to make the transition from the (E, u) system of
coordinates to the (t, x) system.

Now at a point p near q but not on P, if p e V (z) and
(z) E y, a curve belonging to the family F, the member of the
family F through p must be tangential to fly) and orthogonal
to V(z). This condition implies that, in terms of coordinates
(E, x) around p, the differential equations of the family F can
be written in the form:

(-T ()') G -(auITaJ1(d))(df

d ax dx

dx,Jdt = d¢, f dt, i = 1, 2, ... , 2n - 2s,

(1)

where partitioned matrix notation is used; is the

(2n - 28) X (2r - 2n + 28) matrix whose element is

and
`a ) is its transpose, a similar notation being used in

! ` J
d-f d dx

denote the columns of derivatives of the f, and x,

with respect to t; the matrix 0 has as elements the coefficients
gig of the Riemann metric on V with respect to the local
ooordinates u); and finally x, = o,(t), i = 1, 2, ..., 2n - 28
are the equations of the curve y of F.

Using the equations u{ = f,(f, x), the g,, can be written as
analytic functions of the f, and x,. The product of the first
three matrices in (1) can then be written as a matrix H whose
elements h,, are analytic functions of the-J, and x5. The values
of the h,, at q will now be calculated, the object being to show
that, at points near enough to q, the equations (1) can be
solved for the d ,jdt in terms of the dx jdt.

Now V(C) is defined by u, = 0, i = 1, 2, ... , 2n - 2s. And
so, setting C, = an-i + is&, it follows that theft vanish when
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the z, are set equal to the corresponding a,. On the other
hand, if the { are put equal to 0, for any values of the x,,
the u, will vanish. It follows that, when the f are written as
power series in the j and (x, - a,), every term must contain

as a factor (x, - for some i and j. The matrices
of , of
a ax

are therefore both zero when x, - a{ = 0 (i = 1, ... , 2n - 2s),
f, - 0 (j = 1, ... , 2r - 2n + 28), and so, for these values of
the variables, H reduces to (g i 0), in partitioned matrix
notation, where g is the submatrix of a consisting of the g{,
with i, j = 1, 2, ... , 2r - 2n + 2s, these elements being
evaluated at q. But since a is a positive definite matrix, this
submatrix, being symmetrically situated, is non-singular. It
follows at once that, when the and the x, - a, are sufficiently
small, H is of the form (Hi HE), in partitioned notation,
where H, is non-singular. Hence the equations (1) can be
solved, the solutions being of the form

d 2n-2i dx

dt= -' a{, ati ,
i - 1, 2, ... , 2r 2n + 2s, (2)

jsi

where the a,, are analytic functions of the e, and x,, these
solutions being valid for the 6, and (x, -- a,) sufficiently small.

Some further information on the a,, is available. For, when

the $, are all zero, the matrix az is zero, as has already been

pointed out. And when this happens, the last 2n - 2a
columns of H are zero. It follows that, when the E, are all
zero, the a4, vanish.

The phrase "sufficiently small" as applied to the , and
x, - a, requires explanation at this point. The starting point
of this working was a set of normal coordinates in a normal
neighbourhood over a neighbourhood in V(C). Points at which
equations (1) or their solutions (2) make sense must therefore
he in a neighbourhood UC of q, which can be assumed to be a
normal neighbourhood. Suitable selection of U, will make the
it sufficiently small for the solutions (2) to hold. In addition,
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the points in question can be represented in' a coordinate
system x), where a point with the coordinates (t, x) lies in
V (z), the x; being the real and imaginary parts of the z,. Thus
to make the x; - a, sufficiently small for (2) to hold, (z) must
lie in a sufficiently small neighbourhood, Wt of (Z) on L0.

Now when (z) E W,, the functions dx; f dt are bounded. And,
since the a;, are analytic for (t, x) e U,, and (z) a Wt, and
since these functions vanish for E; = 0, i = 1, . 2, ... ,
2r - 2n + 28, it follows that the a;, are bounded. multiples of

fr-2n+2.
whenever (, x) a U, and (z) e W. That is to say,

there is a constant k, such that, for (t, x) e U, and (z) c- WC,

(3)

The next step is to transform the inequality (3) into a
similar one, which however, does not depend on any particular
coordinate system. Let (y) = (yl, y2, ... , y,,) be normal. co-
ordinates 'on V around q. That is to say they are coordinates
in terms of which the geodesic arcs through. q have the
equations y, = As, where s is geodesic are length from q, and
the A; are fixed for each such are. In addition, in terms of the
y, the geodesic distance squared from q, namely s=, is a'
quadratic function of the y; with constant coefficients.

On the other hand, at points of a curve satisfying the
differential equations (1), 8 is a function of the parameter t.

An upper bound for 18 will now be obtained for pointsdt)near q.
In the first place, the y, can be written as power series in

the local coordinates u) around q, and since 82 i8 a, quadratic
function of the y;, it can be written as a power series in the

and u, all of whose terms are of degree at least two. It
follows that 28(d8/dt) is a linear combination of the dE;/dt
and the du,/dt with coefficients vanishing at q. When these
coefficients are expressed back in terms of the y; they will
therefore be bounded multiples of s in a neighbourhood of
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q. In other words, in a suitable neighbourhood U0 of q, def dt -
is a linear combination Ea;(d. { fdt) + Eb,(du;)dt) where the at-,
and b, are bounded.

Assume now that the neighbourhood Ut for which (3)
holds is in U0. Then lds/dtl < Elal Tib,l (du,Jdt) <
Ela,ikt + Zlb,l l(dui*Jdt)l. On the other hand (du{/dt)

ofj d1, df, dx, l of of dxs

a at + ax W ` a l kt + ax

But the Lf{- all vanish when the f, are put equal to zero, and

to in a neighbourhood of q they are bounded multiples of
J. Combining all the inequalities just established it follows
that, if (1, x) e U{ and (z) a Wt where Ut and Wt are suitable
neighbourhoods of q and respectively, then there is a
constant kk such that

lds/dti < k{E. (4)

Finally, the e; can be expressed as power series in the yj in
a.suffieiently small neighbourhood of q, and it can be assumed
that Ut is small enough for this purpose. Jt follows at once
that, in Ut, is less than, some constant multiple of a.
Combining this with (4) it follows that, for each (C) E Lo, there
are neighbourhoods Ut of q and Wt of (i;) and a constant k1
such that

jds f dtl < ki s,

where it is understood that a is expressed as a function of t
along some curve of the family F', that is, some curve
satisfying the differential equations (1).

But L. is compact, and so can be covered by a finite
number of neighbourhoods of the type W. Then taking U
as the intersection of the corresponding finite collection of U,
and k as the maximum of the corresponding finite collection
of ki, the following lemma sums up the result which has
been obtained.

LEMMA a. Let q be a point of P and let 8 denote geodesic arc
distance from q. Along a curve of F, 8 is to be expressed as a
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function of t. Then in a sufficiently small neighbourhood U of
q, there is a constant k such that ids/dg < ks.

The properties of the family F will now be deduced from
this lemma.

LxxxA b. (1) If U is a neighbourhood of a point q e P,
there is a neighbourhood W of q such that any curve of F meeting
W lies entirely in U.

(2) No curve of F has a limit point on P.
Poor. The first part is, of course, part (2) of Theorem 11.

To prove this result integrate the inequality of Lemma a,
namely, --k8 < ds/dt < ks, obtaining

8(t,) < (t<)

where t1 and t; are two values of the parameter t on some
curve of F', s(t1) and a(t,) being the corresponding values of
s, and where it is assumed that the whole arc tit= on the curve
in question lies in a sufficiently small neighbourhood Us of q
for Lemma a to apply. Assume for convenience that Us C U,
and that Us is a geodesic sphere about q of radius p. Let W
be the geodesic sphere about q of radius }pe--11. Then, since
it, - t1i < 1, the inequality (6) shows that, if the point of
parameter t1 on the curve of F in question lies in W, then
this curve cannot leave U,, and so lies entirely in U.

Part (2) of this lemma is an immediate corollary of the first
part. For suppose a curve 2 in the family F has the limit
point q e P. Let U be any neighbourhood of q. Then if W is
constructed as in part (1) of this lemma, A must have a point
in W, since q is a limit point of R, and so A must he in U. But
it is not possible for a curve to lie in every preassigned neigh-
bourhood of q, and so the lemma is proved.

This completes the proof of part (2) of Theorem 11, and it
remains now to prove part (1), namely that the family F
satisfies the Shrinking Lemma conditions with A, B replaced
by V (K') -- P, V (E) - P. Condition (1) obviously holds.
Condition (2) requires checking, the following lemma giving
the required result:

LEnsma c. Every member of F is either a homeomorphic
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image of the unit interval 0 < t < 1, or can be made ao by the

addition of the singular point on for some special point
of E. when this adjustment has been made condition (2)

of the Shrinking Lemma holds for Fuwith respell to V(K) -- P
and V(E) - P.

PsooF. Let C be the set of singular points on all the
sections V(z) for (z) E r in the notation of §2, Chapter I. It
has already been assumed that, for (z) E I' n K, V (z) has
exactly one singular point C(z). It is clear that the orthogonal
trajectory construction makes sense on V(K) -- P -- C. That
is to say, certain of the members of F, as already constructed,
meet V(E) at points not on C, and such curves are orthogonal
trajectories right up to t = 0. Call the set of such curves Fi
and 'let the remaining members of F be called F. The
curves of Fi are analytically homeomorphic images of the
interval 0 < t < 1. On the other hand, a curve y' of FE
must lie in a set V(y), where y is a curve of F ending (for t = 0)
at a point (t) E P r) K and it is clear that y' must have some
limit point on This limit point is not on P, by Lemma
b above, and is not on P - C(C), since then y' would
be in F. Hence as t tends to zero, the points of y' tend to
the unique point C(4). If C(C) is added toy' this curve becomes
a homeomorphic image (not necessarily analytic at t = 0) of
the interval 0 < t < 1. If all the curves of FE are treated in
this way, the required result is obtained, namely that every
curve of F' is a homeomorphic image of 0 < t < 1. The fact
that every curve of F has exactly one point on V (R) -- P
follows from the corresponding property of the family F. A
point p e V(C) for (C) in E is clearly the end point of a member
of F if is ordinary or if (C) is special and p is non-singular
on Suppose that, for (Q special, the point C(4) is not
the end point of any curve of F. It would then follow that
V(z) for (z) on a curve of F ending at (4) would be homeo-
morphio to V(C) - C(C), but this is impossible since V(z) is
compact and V(C) - C(C) is not. This completes the verifica-
tion of condition (2) of the Shrinking Lemma.

Condition (3) of the Shrinking Lemma for F follows e;oaily
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from the oorrespoz d ng Qoudition for F. Condition. (4) will
be shown to hold by means of the following,three lemmas.

LEA d. Let p be any point of V(K) - P -- C, where C is
as in the proof of the last lemma. Let q be a point such that p, q
lie on some curve of F with t(q) > t(p). Then for any. given
neighbourhood U of p there is a neighbourhood W of q and a
number 8 such that if p' is on a curve of F meeting W and
It(p') - t(p)I < a, then p' a U.

PRoor. This is simply a statement of the properties of the
integral curves of a set of ordinary differential equations of the
first order and degree.

This lemma checks condition (4) of the Shrinking Lemma
for F except when p e C. This case will now be dealt with in
two stages.

Lan1xA e. Define the mapping f : V(K) -- V (E) as follows:
J (p) = p if p E P; otherwise f (p) is the end point on V (R) of

any curve of F through p (this curve only fails to be unique if
p e C and then the definition gives f (p) = p unambiguously).
Then f is a continuous mapping.

PRooJ. Note first that Lemmas c and d imply the continuity
of f at any point p such that f(p) # C. Let f(p) = q e C; it is
required to prove that f is continuous at p. Let Q> be the
filter of neighbourhoods of p in V(K). f (O) is the basis of a
filter on V. (Bourbaki [1], p. 40.) V is compact and so f(O)
has an adherent point q'. If p e V(z), q E V(C) it is not hard
to see that, by projecting the family F onto the family F,
f induces a mapping fo : K -- F such that fo(z) = (a). On
account of the given .properties of F, the mapping fo is con-
tinuous. It is then not hard to see that q' E V(Z). The next
step is to show that q' = q = C(t), the singular point of V(C).
Suppose that q' # If q' E P there are neighbourhoods
Ui and U1 of p and q' such that U1 r1 Us = 0 (for p 0 P).
Then, by Lemma b of this section, there is a neighbourhood
U$ of q' such that every curve of F meeting Us lies entirely

-1
in U2. Hence f (U3) n U1= 0. If on the other hand q' $ P,
still assuming that q' C(f), the properties of the differential
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equations of F, depending analytically on the local coordi-

nates, imply that f (q') is, a compact set in V(K) not containing
p. And. a simple argument shows that there are neighbour-

-1
hoods U1 of p and U. of q' such. that f (U3) rt U1 = 0. But
U1 e 1 and so q' is adherent to f(U1) and so f (U1) r1 U3

1

contains a point q" = f (p'), p' E U1. Thus p' e f (U3) t1 U1.
This contradiction shows that q' # C(C) is impossible. Hence
f(1)) has a unique adherent point C(C) = q, and so f is con-
tinuous at p (Bourbaki [1], p. 92 and p. 52). This completes
the proof of the lemma.

LKMMA f. Let U be a neighbourhood of C(e) E 0 and let q be
some point on a curve of F ending at C(C). Then there is a
neighbourhood W of q and a number a > 0 such that if a point
p' Lies on a curve of F' through W and t(p') < d, then p' a U.

FBooP. Let U' be a second neighbourhood of C(C)-such that
17' C U. Then by the -last lemma, there is a neighbourhood
W of q such that all curves of Fmeeting W end in U'. Suppose
now that, for every number d, there is some curve of F
through W containing. a point of parameter <6 outside U;
that is, suppose that the present lemma is false. Then it may
be assumed, since the curve in question ends in. U', that for
each d there is a point p(8) of parameter <6 lying on the
frontier of U. As 6 tends to zero the points p(a) will have some
limit point po on the frontier of U, and so not in P if U has
been taken small enough to begin with. Of course po E V(E).
Take a neighbourhood U1 of po such that U1 n U' = = 0. Then
if U: is any neighbourhood of po, there are curves of F'
through U. and ending in U', namely curves containing points
p(d) for 6 small enough; whereas, by Lemma e above it should
be possible to choose U. so that all curves of F meeting it end
in U1. This contradiction proves Lemma f.

The verification of condition (4) of the Shrinking Lemma
for F is thus completed, and so Theorems 1 i and 12 are
completely proved.



CHAPTER III

A PENCIL OF
HYPERPLANE SECTIONS

1. The choice of a pencil
The present chapter will be concerned with preparing the

way for the inductive proof of the theorems whose statements
were indicated in the introduction. The idea will be to discuss
the homology of V modulo V0, where V. is a hyperplane
section of V, by taking Vo as a member of a pencil of hyper-
plane sections of V. The induction hypotheses will then be
applied to a pencil of hyperplane sections of V0, that is
sections of V by linear (n - 2)-spaces. The choice of a
hyperplane pencil for this purpose requires a little care to
ensure that the induction hypotheses which are to be made
carry over properly from one dimension to the next. The way
of making this choice will be the subject of this first section.

Let L be a generic (n - 3)-space in L". By Theorem 1, the
set of (n - 2)-spaces through L cutting singular sections on
the non-singular variety V in L' is a one-dimensional
algebraic family whose generic member cuts a section with
exactly one singular point. If Lo is a plane not meeting L,
the family A of (n - 2)-spaces through L can be para-
metrized by the points of L. (of. §2, Chapter 1). Those points
of Lo corresponding to (n - 2)-spaces cutting singular
sections form a curve r on Lo. Also if C is the set of all points
of V each of which occurs as a singular point on some section
of V by an (n - 2)-space through L, then C is a curve pro-
jecting on P from L.

The following lemmas can easily be verified by inspection
of V and of the section of its dual V' by the plane dual to
L. It will be assumed for the remainder of this section that
V' is of dimension n - 1, so that its section by the dual of
L is a curve.

34
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LE3[MA a. Through L there is just a finite number of
hyperplanes whose seasons with V have singularities at singular
points of C.

LEMMA b. There i8 at most a finite number of hyperplanes
through L having triple contacts with C.

LEMMA c. There is at most a finite number of points Q1,
Q2, ... , Q, on C such that the tangent to C at Qj meets L.

The above lemmas will now be applied to the operation of
choosing a pencil H of hyperplanes suitable for the purpose
of this monograph. Let a be the plane in L'" dual to L, and
let E be the finite set of points on a consisting of the
following:

(1) Points corresponding to hyperplanes of L" through L
and containing the tangent linear variety to V at some
singularity of C (Lemma a).

(2) Points corresponding to hyperplanes through L having
triple intersections with C (Lemma b).

(3) Points on 1r corresponding to hyperplanes of L" con-
taining the tangent linear variety to V at one of the points
Q1, Q=, ... , Q, of Lemma o. There can only be a finite number
of such points, since otherwise the section of V' by Tr would
have a line as component, which cannot happen since V' is
irreducible and is not a hyperplane.

(4) The intersections of it with the singular locus of V'.
There will only be a finite number of these since this locus has
dimension <n - 2.

Let L1 be a generic (n - 2)-space through L in L". Then
it does not meet C and the line l in it corresponding to it by
duality does not contain any of the points of E as listed above,
Let Il be the pencil of hyperplanes in L" with the axis L.
The hyperplanes of II are parametrized by a single complex
variable z, admitting the value oo, that is by the points of a
complex projective line (topologically the Riemann sphere of
complex variable theory) and the section of V by the hyper-
plane II(z) of parameter z will be called V(z). Note that this
is the notation of §2, Chapter I, with L, A, Lo replaced by
L1, H and a complex line. Then II has the following properties:
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THzo$$M 13. (a) The pencil `II has at most a finite number
of hyperplanes cutting singular sections on V, and each su h
section has exactly one singular point. The finite set of singular
points CI, 0s, ... , (J has no member on V n L1.

(b) If 11(z) is any hyperplante of 11 cutting a non-singular
section V(z) on V, then the set of linear (n -- 2)-spaces through
L in 11(z) cuts a pencil of sections on V (z) only a finite number
of which have singularities. For generic z, and so with only a ficnite
number of exceptions, each of these singular sections of V (z) will
have exactly one singular point, and this point will not lie on L.

(c) C{ being the singular point on the singular section V(z,)
by a hyperplane of 11, C, is a simple point of C and the tangent
to C at C, ties in 11(z,) and does not meet L.

(d) 11(z,) has a double intersection with C at C,.
(e) There exists through each Ci a hyperplane containing L

which cuts a non-singular section on V.
PROOF. Most of this theorem is a consequence of the fact

that the line l corresponding by duality to the axis of IT does
not pass through the points of E listed above under (1) . . . (4).
The inclusion of the set (4) in E- implies (a) in the present
theorem (of. proof of Lemma c, §1, Chapter I). (b) follows
from Theorem 1 and the fact that the (n -- 2)-spaces through
L and lying in a generic hyperplane through L correspond to
a generic line on Lo, which meets the curve r in a finite number
of points, each generic on P. (o) follows from the inclusion
of (1) and (3) in E, and (d) from the inclusion of (2) in E.
(e) can easily be verified directly.

A pencil 11 satisfying the conditions of Theorem 13 would
not be quite good enough for the subsequent working, ac an
inductive argument is to be carried .out. It is, however, a
matter of routine verifications to see the following:

THEOREM 14. Let H,, H2, ... , H".be n independent hyper-
planes in L". Then the pencil 11, of axis H, n H. satisfies the
requirements of Theorem 13, taking H, n H. n H. as L. In
any hgperplane of 11,, with a finite number of exceptions,
Theorem 13 holds for the pencil II2 of (n -- 2)-spaces with axis
H, n H. n H,, the U near space H, n H, n H3 n H4 being
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taken as L. In any member of II=, with a finite number of
exceptions, Theorem 13 holds for the pencil II$ of (n - 3)-Spaces
with axis H1 n HE n Hs n H,&, H1 r) H,_n H, C H* n H5
acting as L, and 8o--on step by step.

In addition H1, ... , H. may be specialized to hyperplanes
whose equations have complex coefficients, and, provided that
these coefficients fail to satisfy a finite number of polynomial
equations, Theorem 14 will still hold.

It. will be understood in future that the.pencil 11 has the
properties of a specialization of II1 of this type with L as the
(n -- 3)-space H1 n H2 n Hs. In Chapter VII a further con-
dition will -be imposed on 11, but it is more convenient to
postpone the statement of it until it is actually needed.

2. Notation
In this section some notational conventions will be set up

which will hold for the rest of the work.
As above, V will be a non-singular r-dimensional algebraic

variety over the complex numbers in ' the projective n-space
L". No assumption will, however, be made as to the dimension
of its dual V'. At various points in the subsequent arguments
the two cases dim V' = n - 1 and dim V' < n - 1 will have
to be discussed separately.

II will be a pencil of hyperplanes in L" as in Theorem 14
with axis L1, and L will be a linear (n - 3)-space in L1.
Members of H will be parametrized by points of a complex
projective line S (i.e. a 2-sphere). The notation of §3, Chapter
I, will be applied to the sections of V by members of H. That
is to say, V(z) is the section of V by the hyperplane in TI with
parameter z, and, if K is a set on S, V(K) will denote U V(z),
the union being taken over all z e K. In particular

. Vo =
V (zo) will denote some selected non-singular section of V. The
values of z for which V(z) has a singularity, namely the special
points on S, will be denoted by z1, z2, ... , zt.

On the other hand, the (n - 2)-spaces through L form a
family A as in §2, Chapter I, parametrized by the points of a
plane L9. It is not hard to see that affine coordinates (z, w) can
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be introduced on L. in such a way that z is the parameter of the
pencil II. When this is done, using the notation of §3, Chapter
I, the section of V by the member of A corresponding to the
point (z, w) of Lo will be denoted by V (z, w). Special points
on Lo, as seen in Chapter I, form a curve r. It should be
noted that the term "special point" generally needs the
qualification "on S" or "on La," but the meaning will usually
be clear in any given context.

A notation for sets of sections by members of A must be
introduced to avoid confusion with sets of sections by members
of H. If H is a set of values of z and K is a set of values
of to then V(H, K) will denote U V (z, w), the union being
taken over all z c- H and w e K. This notation will not,
of course, cover all possible sets in Lo, but it is sufficient
for all the sets actually to be used in what follows. One
particular section will be given a name of its own; namely
V n L, will be denoted by P (this is the notation of §3,
Chapter I, applied to the family II rather than to A).

As in §1, above, C will denote the set of all singular points
on all sections V(z, w) with (z, w) e- I'; C is a curve projecting
on P from L. Points of C will generally be denoted by the
letter C with subscripts, superscripts or primes attached, as
was done, for example, in Theorem 13, where C, denoted the
singularity on V(z,).

It will often be convenient to regard the coordinate to on
Lo as the parameter of a second hyperplane pencil 11'. in L".
When this is done, the section of V by the hyperplane of
parameter to in II' will be denoted by V'(w).

3. Reduction to local theorems
It will now be shown that one of the principal aims of this

work, namely to study the homology groups HQ(V, V O), can
be reduced to the consideration of neighbourhoods of the
singular points on the singular sections V (z ), i = 1, 2, ... , k,
of V by hyperplanes of the pencil H. The first stage in this
reduction is to apply the theory of Chapters I and II to the
fibring of V by the sections out by II. In this section it is
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assumed that the dual of V is of dimension n - 1, so that
there are singular sections by hyperplanes of H.

Let K be a set on S which is either the whole of S or is a
closed disc on S containing the special points z1, z=, ... , zk in
its interior and no special point on its circumference. Assume
also that the ordinary point zo is an interior point o£ K. Let
A, be an are in K joining zo and zf (i = 1, 2, .. ., h), A{ being
analytically homeomorphic to a closed line interval and no
two of the A, having any point except zo in common. Let K.
denote the point-set union of the A, Cover K by means of

closed sets U0 and U, where U. is a neighbourhood of Ko
d d K. n U = 0; a simple way to do this is to take U. as

the union of closed circles of some fixed radius with centres
at all points of K. and U as the complement of a similar union
of open circles of smaller radius. Applying Theorem 7 to the
present situation, the following result is at once obtained:

LjcMMA a. HQ(V (K), V(U0)) = HQ(V (U), V (U. n U)), for
all q.

An immediate consequence of this is:
LEMMA b. 11 !YQ_2(V o, r) t8 zero, taesa 12 r k ' o/l ie

zero.
PROOF. For, by the corollary to Theorem 10,

HQ(V(U), V(U0 n U)) ` HQ(%(U), %(U0 n U) v %'(U))

for all q. Now if K is not the whole sphere S, U is homeomorphic
to an annulus and U0 n U to a narrower annulus round the rim
of U, and a fairly trivial sequence of retraction operations shows
that HQ(%(U), %(U0 n U) v .X' (U)) is zero for all q. On the
other hand, if K = S, U is a circular disc with U. r1 U an
annulus running round its circumference. In this case it is
not hard to see that HQ(%(U), X(U0 n U) U %'(U)) gg
HQ_2(Vo, P), for one is essentially dealing here with a fibre
space which is a product Vo x U. Thus if it is known that
Hd_2(Vo, P) is zero, HQ(%(U), %(U0 r) U) V %'(U)) will be
zero. Combining these results with Lemma a, the present
lemma follows.
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The next lemma is derived from Lemma b by shrinking the
neighbourhood U. onto K0. In fact, if U1 is a neighbourhood
of K. similar to U0 but containing it, it is not hard to see that
a family of curves can be constructed in U1 having the pro-
perties of the family F introduced at the beginnipg of Chapter
II with the sets K and E of that section replaced here by U1
and K0. It follows at once (Theorem 12) that there is a
homotopy of the identity mapping of V(U1) on itself into a
mapping of V (U,) onto itself which carries V(U0) onto V (K0).
The points of V(K0) are fixed throughout the deformation.
Moreover it is easy to see that the homotopy may be extended
to the whole of V(K) by leaving all points of V(K) outside
V(U1) fixed. Combining this result with Lemma b, the
following result is obtained:

LEMMA e. If HQ--2(V, P) = 0, then H,(V(K), V(K0)) = 0..
The main result of this section is the following theorem:
THEOREM 15. If HQ-2(V0, P) = 0, Hq(V (K), V.) i8 generated

by the injection images of the group8 II,(V(). ), VO), i = 1,
2,.. ,h..

PROOF. By Lemma c and the exactness of the homology
sequence, H,_2(Vo, P) 0 implies that H,(V(K), VD) is
generated by the inje Lion image of H( V(K0), V 4). Write
A,' = A, 'J (W c K,,), where W is a small closed neighbour-
hood of z0. Then Theore n 7 along with the direct sum theorem
of relative homology (Eilenberg and Steenrod (4] p. 33)

yimplies H,(V(KD), fl V(,,;)) = Z, HQ(V(Aj'), fl V() )). Fin all
an application of Theorem 5 to the retraction of nAi onto
zo yields the reeui;, H,(V(E ), V0) = EHQ(V(11), V8), and this
oompletes the theorem.

Now, in studying any one of the groups It (V(A,), V0) or its
injection image, it is clear that zo may be assumed to be
arbitrarily close to z the corresponding A, being shrunk and
Theorem 5 being applied to obtain a corresponding shrinkage
of V(A,). In considering one of these groups it is convenient
to drop the suffix i. The notation used for such a situation
will be as follows:

Let z' be a special point on S and let C' be the. singular
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point on V(z'). ze is to be an ordinary point near z' and a
an analytic arc joining zo and z' on S.

It will now be shown that, in order to study the group
HH(V(A), VO), it is only necessary to examine relative cycles
on an arbitrarily small neighbourhood of C', provided that

n G. I

VU)

no. 2 Fla. a

zo is sufficiently near to z'. The idea involved here is illustraW
in the accompanying diagrams. Let y represent pictorially a
relative q-cycle of Y (A) modulo Vo, with boundary p, say.
In Fig. 1, y is drawn 2-dimensional, and the rectangular
slab denotes V(A), its left and right hand faces V(z') and Va
respectively. Constructing in V(A) orthogonal trajectories to
the V (z) for z E A, a family F of curves is obtained, one through
each point of Y (A) except C'. And so y can be pulled back
along the curves F except around the singular point C'. y
now takes the "broad-brimmed hat" shape of Fig. 2. Finally
an excision argument shows that the brim may be more or
less removed, so that y is reduced to a chain on a neighbour-
hood of C' (of. Fig. 3).

The argument just sketched will now be formulated
properly.

THEOREM 16. Let U be a preassigned neighbourhood of C'.
Then, if A is contained in a sufficiently small neighbourhood of
z' on S, ttere is a set W contained in U such teat the inclusion
mapping (W, W n VO) -- (V(A), VO) inducee isomorphisms onto
of the corresponding homology groups.

4
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PRoor. Let U1 and UE be two geodesic spheres about C' of
radii pl and p2 respectively with pi < p=. If F is the family
of orthogonal trajectories of the V(z) in V(A), define the set Wo
as follows: W. is the union of all points lying on curves of F
ending in U1 along with the points of parameter t satisfying
(s - p)/(p % -- p1) < t < 1 on curves of F ending at points of
V(z') at geodesic distance 8 from C' for all 8 such that p,
8 < p2. Lemma f, §2, Chapter II implies that, if U1, U$ are
small enough and A is contained in a small enough neighbour-
hood of z', then W. can be made to lie in the preassigned
neighbourhood U of C' (it is assumed that the parameter t
varies from 0 to 1 on curves of F). Next define W as the
union of Wo and a neighbourhood of Wo 0 Vo on V0; it may
be assumed that W C U. Then an application of the Shrinking
Lemma using the curves F contained in Y (A) - W o, along
with an excision, gives the required result.



CHAPTER IV

LEFSCHETZ'S FIRST AND
SECOND THEOREMS

1. Lefechetz's first main theorem
In this chapter the first two main theorems of the work

will be stated and some consequences will be deduced. The
proof of the first theorem will be given in detail, but that of
the second, which is rather complicated, will be postponed to
Chapter V. In the present chapter, however, a sketch of the
ideas involvedinprovingthe second main theoremwill be given.
And, in a similar way, the proof of the first theorem will be
preceded by a geometrical description of the idea behind it.

The statement of the first main theorem, indicated in the
introduction, is as follows:

Tn sOREM 17. Let V be a non-singular algebraic variety of
dimension r defined over the complex numbers and immersed in
a projective space, and let V e be a non-singular hyperplane
section. Then HQ(V, V O) = 0 for q < r - 1.

The first point to notice is that, if the theorem is true for
one non-singular section V0, it is true for any other V1. For
Vo and V1 can be taken as members of a pencil of hyperplane
sections containing only a finite number of singular sections.
The non-singular members of this pencil form a fibring of V
in the sense described in Chapter I, and so, by Theorem 5,
there is a homotopy of the identity mapping of V on itself
into a mapping of V onto itself which carries Vo onto V1,
and vice versa.

Then since Theorem 17 does not depend on the choice of
the section V., it can be assumed that it is a member V (ze)
of a pencil of sections out by a hyperplane pencil II with the
properties described in Theorems 13 and 14.

The proof of Theorem 17 will actually be carried out by
proving the following slightly more general theorem:

43
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THEOREM 18. Let V be a non-singular r-dimensional projec-

tive variety over the complex numbers, and fl a hyperplanepencil
as in Theorem 14, the members of TI being parametrized by the
points of the sphere (or complex projective line) S. Let K be a
closed circular disc on S not having any special points z' on its
boundary. Then Ha(V (K), V O) = O for q< r - 1. In particular
if K is taken as the whole sphere 8, this reduces to Theorem 17.

PROOF. This theorem will be proved by induction on r, and
so it is assumed to start with that II,(V e, P) = 0 for q < r - 2.
The theorem obviously holds for r = 1 which. gives a basis
for the induction.

The particular case in which there are no special points z,
on S (i.e. in which the dual of V is of dimension <n - 1)
will be treated first. In this case, if K ; S, the result is
trivial, for V. is a deformation retract of V(K) (by Theorem 5).
To dispose of the case K = S, note first that Theorem 9 holds
if the pair (K, B1) is taken to be (S, ze) and also that the con-
clusion of that theorem is trivial if K = M = zo. Thus
Theorem 10 holds if the triple (K, M, zo) is taken to, be
(S, zo, zo), and yields the result HQ(V, V O) - Ha(X, V0 LI I').
On the right of this isomorphism one is dealing with a fibre
bundle over S as base, and a simple argument (either using
the spectral sequence or by making a cellular decomposition
of S) shows that HQ(X, Ve U %') da_! (Ve, P) = 0, by the
induction. hypothesis, and so Ha(V, V O) = 0 for q < r - 1.

In the remainder of the proof of Theorem 18 it will be
assumed that there are special points on S.

The induction hypothesis along with Theorem 15... shows
that, for q < r - 1, Ha(V(K), Ve) is generated by the injec'-
tion images of the groups Ha(V(Aj), Ve), and so it simply has
to be shown that these injection images are zero. Attention
may therefore be confined to one of the Ha(V (A;), V O).

Changing notation as for Theorem 16, let z' be a special
point on S, let C' be the singular point on V(z') and let -A be
an analytic are joining z' to a nearby ordinary point ze. Then
it is sufficient, in order to complete the proof of Theorem 18,
to show that, under the induction hypothesis, the image of
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the injection mapping H,(V (A), VD) --- H,(V (K), V ®) is zero
forq<r-1.

The proof of this statement is based on the following
geometrical argument:

By Theorem 16, any element of H,(V(A), VA), if zp is suffi-
ciently near z', can be represented by a relative cycle y which
is a chain on an arbitrarily preassigned neighbourhood of C'.
The idea then is to show that y must be homologous to zero,
modulo VO, in V(K). To do this, introduce a second pencil 11'
such that the section Vo through C' cut by 11' is non-singular;
this can be done by Theorem 13(e). If q < r -- 1, then Et == dy
is a cycle of dimension <r - 2 on VO and so, by the induction
hypothesis, is homologous to a cycle, p' on Va n V,', and, if y
has been made small enough, this -homology can be carried
out in a normal bundle over V. Thus a = ,u' + da, and so
y - at is a relative cycle on V(A) modulo V0, homologous to y
modulo V0, lying in a normal bundle over Vo, and having its
boundary in V. n V. Using the projection in this normal
bundle, y -- at may be flattened out into a relative cyole in Vol
modulo V. I1 V. And finally a_"rotation" of V; about V. r) V'
pulls this flattened chain round into V0. Hence y is homologous
to zero in V modulo VO. It is finally shown by an excision
argument that this homology can be carried out in V(K).

The detailed proof of Theorem 18 will now be completed.
As remarked above, it is only necessary to prove the following
lemma.

LEMMA. Under the induction hypothesis, and in the no! tion
already introduced, the image of the injection horvvmorphism
H,(V(A), Vo) -i H1(V(K), V0) is zero for q < r - i.

PROOF. Choose a pencil of hyperplanes II' with the fa?.lowin..g
properties :

(1) The section Vo through C' cut by iI' is non-singu ls.r.
(2) If z is sufficiently close to z' the pencil II cuts on V (z)

only &.finite number of singular sections, each with one singular
point (not lying on the axis of n'). Also the axis of if u1e+ tki

V(z) in a non-singular variety. Thus IT' bears the same sort
of relation to V(z) as II bears to V.
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(3) (( is rt 'u-singular for r-z sufficiently near to z'.
`.i.' hut. rueh p(, it it oz iyta follows from Theorem 13. It is

C C

k C ik

p

E

z, w) in L0 can be chosen so that to
it tic pcnoil ft'. It will be convenient to
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write V'(w) for, the section of V by the hyperplani #.f p ara-

meter to in A'.
Having chosen H' with the stutex properties, the Following

sequence of Choices must be made:
(a) Construct a normal buncUe B t VV ias V.
(b) For any real number It., r to W(k) .for the I.niorn. ci.'the

V'(w) such that 1w - wo! < k, where too is the pare:nefcr of
VOL By Lemma d, §3, Chapter I, W(k) C B if k is small
enough. Choose the real numbers k;m such that vi < k and
W(m)CW(k)CB.

(c) Around C' on V a. set of local coordinates may be
chosen to include the real and imaginary parts of to, since
Va is non-singular, and so there is a, neighbourhood U of C'
such that U C W(tn).

(d) Construct W in Theorem 16 so that W C U.
(e) Choose a number p, m < p < k, such that no section

V'(w) n Vo with Iw -- tool p is singular.
In Diagram Ill all the maps except a are induced by the

appropriate inclusions, and a is the boundary homomorphiszn
of the exact homology sequence of the triple

(Vo n Val, V0 n W(p), V(A) n W(p)),

part of which forms the horizontal line in the middle of the
diagram.

It will now be shown that the image of i in Diagram. Ill is
zero. To prove this, note first that, by Theorem 16, M' is
onto and therefore so is h. Also, by the induction hypothesis
Ha-1 (Vo n W (p), V o n V ` 0, and so tho= exactness e'f the
homology sequence in the diagram impiiea that, is onto. It
then follows at once from the commutativity of the square in
the middle of the diagram that the image of i is contained in
the image of kk', and so in the image of k. On the other hand,
Va is a deformation retract of B, and so 1 is an isomorphism
onto, which implies that the image of k is the same as the
image of 1n. Thus the image of i is contained in that of tn.
But Vo, Vo' and Vo n are aB non-isin ular, and so the
hyperplanes cutting Vo and Vo determine a pencil 11" cutting,
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like fl., only a finite number of singular sections on V. The
sections of V by the hyperplanes of n" thus determine a
"fibring" of V as described in Chapter I, and in particular,
by Theorem 5, there is a homotopy of the inclusion
(Vo, Vn n YO) --+ (V, V 0) into a mapping whose image lies
entirely in Yo. It follows that the image of m and so that of
i is zero, as was to be shown.

What has just been proved is rather weaker than the state-
ment of the present lemma, namely that the image of the
injection H,(V (A), V0) --* (K), VO) is zero for q < r - 1,
under the induction hypothesis. This stronger result will now
be derived. Let K' be a disc on S smaller than K, contained
iii it, and still containing the special points z1, z2, . . . , zA in
its interior. Let M be the closure of S - K'. Consider the
following diagram:

HQ(V(A), VO) -Z HQ(V(K), Vo) 2' H(V, VO)

Ti
HQ(V(K n M), VO)

Ali the homomorphisms appearing are those induced by the
appropriate inclusions. It has already been shown that the
image of izii is zero. From the commutativity of'the square
a the diagram it follows that the image of jki1 is zero. But,

by Theorem 7, j is an isomorphism for all q, and so the image
of kit is zero. That is to say, the image of ii is in the kernel
of k which is the image of 1, since the vertical line is part of
an exact homology sequence, namely that of the triple.
(V(K), V(K n M), VO).

The proof willnow be completed by ahowing, that

HQ(V(K n M), V 0)

if! for all q < r - 1. An application of the corollary to
Th I")rent 10 gives

H,(V(K n M), VO) H,(X(K n M), X'(K n M) V VO)

H,(V(K), V(K n M)) I o HQ(V, V(M))

i

tk
i t
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Here one is dealing with a fibre bundle over an annulus as
base, and it is not hard to see, either by breaking K r1 M into
cells or by a spectral sequence argument, that

HQ(%(K n M), %'(K n M) U Vo)

^-' Hi(K n M, zo; HQ_1(Vo, P)),

where the semicolon denotes homology with the local coeffi-
cients HQ_1(Vo, P). This last group is zero, by the induction
hypothesis, for q < r - 1, and so the required result follows.

Although the homology groups are here assumed to have
integer coefficients, it is clear that all results up to this point
would hold for an arbitrary coefficient group.

2. Statement of Lefschetz's second main theorem
In the following statement of this theorem A, C', zo, and V.

have the meanings already introduced.
THEOREM 19. (1) Hr(V (A), V o) i8 infinite cyclic,' with a

generator to be denoted by b(').
(2) There is a continwou8 mapping f : (Er, Sr-1) --; (V(2), V0)

where Er i8 a solid r-sphere and 8r-1 its boundary, such that
air) is the image under the induced homomorphi8Pn f*:
Hr(Er, Sr-i) -+ H( V (' ), V O) of a generator b o of H,(Er, Sr_i).

Also zo can be chosen so that the image off is contained in a
preassigned neighbourhood of C'.

(3) Let U be a preae8igned neighbourhood of C'. Then there
is. a neighbourhood U' of C' such that, if f (Er) C U' and if f is
a second mapping of (Er, Sr-1) into (V(2) n L7', '%'o n U')
sati8fying (2), then f and f, regarded as mappings into
(V (R) n U, V. r1 U) are homotopic.

As in the case of Theorem 18 this will be proved by induction
on r, the result being clearly true for curves in relation to
sufficiently general hyperpla.:ie pencil; and until further notice
the term "induction hypothesis" will mean the assumption of
the above theorem for dimension less than r.

3. Sketch proof of Theorem 19
The proof of Theorem 19 is rather complicated, and so the

details will be left over td the next chapter, the present section
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being intended merely to give a geometrical picture of the
proof. The notation is to be as introduced in §2 of Chapter III.
In particular, w is to be taken as the parameter of a second
pencil II' the hyperplane of which through C' cuts V in a non-
singular section; this is possible by Theorem 13 (e). Let the
hyperplane of II' through C' have parameter w'. Then the
point C' projects from the linear space L into the point
(z', w') of the (z, w)-plane Lo. Part (c) of Theorem 13 ensures
that (z', w') is a simple point of the curve P. Thus in the
(z, w)-plane there is a neighbourhood N of (z', w') which is an
open 4-cell and is such that N n t is a 2-Dell. It may be
assumed that N is specified by inequalities of the type
Iz - z'I < k, Iw - w'I < k. V'(w) will denote the section of V
by the hyperplane of parameter w in the pencil W.

If z is sufficiently close to z', part (d) of Theorem 13 implies
that there are two values of w, say w1(z), ws(z), such that
V(z, wl(z)) and V(z, w2(z)) have singularities C1(z), C2(z) in a
preassigned neighbourhood of U. On the other hand, part (e)
of Theorem 13 implies that the line z = z' in the (z, w)-plane
is the tangent to r at the point (z', w'), and so, if w is suffi-
ciently close to w', there will be exactly one point (z(w), w) on
r such that z(w) is an analytic function of w, tending to z' as
w tends to w'.

As z traces out the arc A, the points w1(z), w2(z) in the
complex w-plane trace out two arcs which will be called Al
and A$. It is not hard to verify that wl(z), w,(z), are roots of
a quadratic equation whose coefficients are analytic in z, and
in fact can be written as a(z) ± b(z) V"z - z', where a(z) and
b(z) are analytic in z around z'. If t is the parameter on A
(equal to 0 at z') set t = 8a. It is then clear that the union of
Ai and A. can be parametrized analytically in terms of 8. This
union will be called A'. A' is thus an analytic image of the
interval -1/p < 8 < Vp, where A is bounded by 0 < t < p.

The construction of the element A0) of Theorem 19, and
the corresponding vanishing cycles, in Lefsohetz's terminology,
will now be described in diagrammatic fashion.

STEP I. In Fig. 1 the rectangle (drawn in perspective) on
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the right is to represent V(z2) for a suitable zi on A and the
vertical lines represent sections of V by (n - 2)-spaces through
L, as marked in the diagram. The curved are with C' marked
on it represents a portion of the curve C. The two hemispheres
embedded in V(zi) and marked and A -2) are relative
(r - L 1)-cycles of V(zi, A{) modulo V(zl, w,) for i = 1, 2, respec-
tively, where wi and w2 are points on A' near wi(zi), w=(zi)

Mo. 1

respectively and A; is the portion of A' joining to, to w{(zi),
for i = 1, 2. A('-2) and are to be as described in the
induction hypothesis, applied to V(zi), and are to be con-
structed in neighbourhoods of Cl(zi), CZ(z1), respectively. The
first step here is to construct a homotopy which will pull the
bases of the hemispheres A('-2) and back into V(zi,w').

This operation is marked in the diagram by the broken
lines with the arrows. The new positions of the bases of
these hemispheres will be called e-'), 82'-.2) respectively.
Eventually it will be shown that 1 -2) and e2r -2) can be
joined up by a cylinder so that the stretched Axr-2>, 4-2)
along with this cylinder form a sphere which will be the
vanishing cycle attached to C', and the base of the relative
cycle A(t) whose existence is to be proved.

STEP II. In Fig. 2 the "stretched" relative cycle Qlr-2) is
still called It is now a relative cycle of V(zi, Ai) modulo
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V(z1, w'). The application of the induction hypothesis' to
V(A, w') shows the existence of a relative (r - I) -cycle a3'-')
of V(A, w') modulo V(z1, w'). Now it can be assumed-(as will
be shown later) that all the operations being described can be
carried out in a preassigned neighbourhood of C', whose inter-
section with V'(w') can thus be assumed to be homologically

V(z"w')

V(2' , w2 (z1))

FIG 2

trivial. Thus 6(,1-2) is the boundary of a chain I('-11 on V'(w'),
and in fact a slight adjustment ensures that is in
V(A, w'). Applying the induction hypothesis, it follows that

is homolcgotis modulo V(z1, w') to kA('-') for some
integer k. Thus b(r-2) , U'-2) for some integer k where 83'-2}
= da3' It must be shown now that k = ±1. To do this a
homotopy similar to that used in Step I to stretch the 0;'-') is
applied to shrink 63(r-21 in V(z1, A1) down to the point C1(z1).
Thus 8''-2) is the boundary of a chain in V(zl, A1).
The induction hypothesis, applied in V(z1i A1) shows then
that C.`r ') is homologous modulo V(z1, w') to k'Ol'-" for
some integer k'. Taking boundaries, it follows that 83r-2>

k'83') 2. Thus (k1c' -- 1)83 -2) r.. 0 in V (z1, w'). When this is
done in detail it will turn out that all these operations can still
be math to work in a preassigned neighbourhood of C', and a
lemma will later be proved to show that, in a small enough
neighbourhood of C', 83r-2 is not rationally homologous to
zero on V(z1, w). Thus the homology (kk' - 1)83'-2? r , 0 implies
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k = ± 1. Part (3) of the induction hypothesis, applied in V'(w')
to the two mappings of a hemisphere into V'(w') giving rise to
Ar " and Aif'-"shows that &- I2) and &a(, -2> can be joined up
in V (zl, w') by a cylinder (product of an interval and a
(r - 2)-sphere); and similarly o2'-2) and Thus A(,r-" A -')
and the cylinder joining their bases form a spherical cycle 60-1)

in a neighbourhood of C'. This neighbourhood can be
preassigned as a geodesic sphere, and.so o(r-1) can be taken
as the base of an r-hemisphere AM embedded in V. A
further adjustment will enable W") to be compressed into
V(A). This completes the description of the construction of
AM. The second stage in the proof of Theorem 19 will
consist in showing that Am represents a homology class AM
of V(A) modulo V(zo) which satisfies the conditions of that
theorem. This will now be carried out in Step III.

STEP III. The outline to be given here, as in the previous
two steps, entirely glosses over the difficulties caused by
having to ensure that all operations are carried out in a
preassigned neighbourhood of C'. Some other refinements are
also left unmentioned until the actual details of the proof are
considered below.

It has to be shown first that a relative r-cycle y of V (A)
modulo V(zl) is homologous to a multiple of W'", in V modulo
V(z1). By Theorem 16, y may be assumed to be a singular
chain on a preassigned neighbourhood of C'. Let ,u be the
boundary of y. In Fig. 3, the oval shape in the middle
represents &(r-1), the irregular outline represents y ,and the
rectangle is V(zl). it may first be adjusted to lie in V(z1, A').
An application of the induction hypothesis in V(zl, A1) and
V(z1, A2) then shows that y is homologous to a cycle represented
diagrammatically by the irregular outline in Fig. 4. That is
µ is homologous to a chain consisting of multiples of the parts
of 6C'-1) near C1(z1) and C2(z2) (it will turn out in fact that
these multiples have the same coefficient c, say) and a chain
which does not meet the singular sections V(z1, w1(z1)) and
V(zl, w2(z1)). The homotopy already employed in Step I
compresses this last mentioned chain into V(z1, w'). Thus



54 HOMOLOGY THEORY ON ALGEBRAIC VARIETIES

µ - is homologous to a cycle in V(zl, w') represented
in Fig. 5 by the two small loops at the top and bottom.
Applying again the homotopy of Step I (or rather the situation
is more similar to the shrinkage of &-2) to a point in Step II)
it turns out that u - cb(r-1) is homologous to zero in V(zl, A').

Fia. 4

V(z,.w)

Fia. 5

Since a = dy and P'-1) = dA(r) it follows that y - c0(r)
added to some chain on V(zi) is a cycle on V, and, as will be
seen later, on an arbitrarily small neighbourhood of C', which
may be assumed to be homologically trivial. It follows at once
that y is homologous to c0(r) in V modulo V(z1), as required.

STEP IV. Having carried out Steps I, If, III it remains to
be shown that the various parts of Theorem 19 are satisfied.
In this verification the only hard part is part (3), the proof of
which is in effect a copy of the Hurewicz isomorphism
theorem, modifications being necessary only to ensure that
everything is carried out in a preassigned neighbourhood of C'.

It is desirable at this stage to insert a note on the proof
of Theorem 19 in the case where there are no special points
on S. The statement of the theorem reduces in this case
to Hr(V, Vo) = 0. This follows at once from the corollary
to Theorem 10. For Hr(V, VO) - H,(X(S), X'(S) U Vo), in
the notation of Theorem 10, and this is isomorphic to
Hr_2(Vo, P ) 0 H2(S, zo), which is.. zero by Theorem 17.

4. Some immediate consequences
The following theorem is obtained by combining Theorems

15 and 19. The fact that Hr_2(Vo, P) = 0 (required for the
application of Theorem 15) is now known by Theorem 17.
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THEOREM 20. zo and the zt and the paths At being as in
§3, Chapter III, there is a "hemispherical" relative cycle A, on
V (At) modulo V O

such that H,,(V, V O) is generated by the relative
homology classes of the z{. Moreover, if zo is taken sufficiently
close to zt, A, may be assumed to be a singular chain on a
preassigned neighbourhood of Ct, the singularity on V(z;).
(Lefschetz [9], p. 93, Theorem VI.)

Taking the boundaries of the A, and applying the exactness
of the homology sequences of the pair (V, V0) and of the triple
(V, VO, P) the following is obtained: -

THEoREM 21. The boundary of At is a "spherical" cycle 8{ on
Vo and the kernels of the two injection maps Hr-1(V0) H,-,(V)
and Hr-,(V0, P) --). Hr-1(V, P) are both generated by the homo-
logy classes, in the appropriate sense, of the 8t. And if z,) is
taken sufficiently near to zt, 8t may be taken as a chain on
a preassigned neighbourhood of Ci. (Lefschetz [9], p. 93,
Theorem V.)

In addition if A and 8{ are constructed in a sufficiently small
neighbourhood of Ct, they are defined up to a homotopy, in the
sense described more precisely in Theorem 19, part (3).

Let V Vr_1, V,_2, ... be a sequence of non-singular
algebraic varieties such that Vi is a hyperplane section of Vt+1
for each i. Then a simple inductive argument, starting from
Theorem 17 and making use of the exactness of the homology
sequence of a triple, establishes the following results:

THEOREM 22. HQ(V , V,) 0 for q < 8, and consequently
the injection map HQ(V Vg) --* HQ(VT, V,) is an isomorphism
onto for q < s - 1, and is onto for q = 8. Moreover the kernel
of the injection H,(V,, V t) - H,(V V,) is the same as that of
the injection H,(V,, V t) - - H,(Vs+1, V and is the image of the
boundary homomorphism H,+1(V,+1, V,) -' H,(V,, V J.

Note that in the last remark H,+1(V,+1, V,) is a group of the
type described by Theorem 19 and so the kernel of the
H,(V V t) -' H,(V,+1, V,) is expressed in terms of something
which is not altogether unfamiliar.



CHAPTER V

PROOF OF LEFSCHETZ'S
SECOND THEOREM

1. Deformation theorems
It is clear that the method sketched in the last chapter for

the proof of Theorem 19 depends on some mechanism which
will provide the necessary deformations and shrinkings, a
mechanism which, in addition, allows these operations to be
carried out in an arbitrary, neighbourhood of C', in the notation
already introduced in §3, Chapter III. In this section two
theorems will be proved which will enable the details of the
proof sketched in §3, Chapter IV to be carried out.

The two arcs Al and A2 in the complex w-plane have already
been introduced in §3, Chapter IV; they are the arcs traced
out by the two values of w(z) as z traces the are A in the z-plane.
Also if t is the parameter on A then Al U A2 = A' can be para-
metrized by 8 where s2 = t. For the point z on A with para-
meter t the two corresponding values of w(z), namely wl(z) and

w$(z), have parameter values +Vt and -1/t on A.
Consider now the following set 2, a subset of A X A', which

in its turn is a subset, namely a 2-cell, of the (z, w)-plane.
is to consist of the points (z, w) where z c- A, of parameter t,
say, and to e A' of parameter s such that - V t < 8 <
It is not hard to see that is a 2-cell which can be assumed,
by taking A small enough, to be contained in a neighbourhood
of (z', w'), a neighbourhood which can be assumed to be a
4-cell, and that the boundary of 2 is formed by the set of all
points (z, w(z)) on r for z c- A, along with points (z0, w) for
u'EA'.

Now since I is a 2-cell embedded differentiably (apart from
two corners on its boundary at (zo, wl(z0)) and (zo, wl(z0))) in
the (z, w)-plane, it is not hard to see that a neighbourhood of

56
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E can be taken as K and itself as E in the notation of §1,
Chapter II, and a shrinking family F of curves can be
constructed satisfying the conditions stated in that section. It
follows from Theorem 12 that, if N is a suitable neighbourhood
of I in the (z, w)-plane, then U V (z, w) is a deformation re-
tract of U V (z, w). (z.w)EE

(z.w)EN

Now let U be a preassigned neighbourhood of C'. In the
retraction just mentioned C' is fixed, and so, throughout the
deformation all points of a sufficiently small neighbourhood
U1 of C' remain within U. Suppose U1 projects from L onto
a set U. in the (z, w)-plane, and, by taking zo sufficiently near
to z', arrange that 2 C U1 (if zo is moved nearer to z' on A this
simply means slicing a piece off as already constructed).
Also, the neighbourhood N mentioned above can be assumed
to be contained in U1 and to consist of points (z, w) with
z c- N1, w e Ns, where N1 and N1 are neighbourhoods of z'
and w' respectively in the complex z- and w-planes. Having
made these arrangements, the following theorem sums up the
results obtained:

THEOREM 23. Let U be a given neighbourhood of C' in V.
Then if U1, N1, N2 are 8uf ciently small neighbourhoods of C' in
V, z' in the zplane, and w' in the wplane, respectively, and zo
i8 so chosen that I C N1 X N1, there is a homotopy of the
inclusion mapping V(N1, Ns) rti U1- U into a mapping whose
image is contained in U V (z, w), the union being taken over all
(z, w) E

The second deformation theorem to be proved here is con-
cerned with deformations carried out within a set of the type
V(z, A"), where z is some point on A and A is an are on A'
contained strictly between wl(z) and w$(z). The V(z, w) con-
tained in such a set V(z, A") are all non-singular, and so of
course Theorem 5 could be applied. The refinement needed
here is something to ensure that deformations can be carried
out in a given neighbourhood of C'.

The required theorem will be obtained with the aid of a
family F' of curves constructed as in §1, Chapter H. The set

6
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K of that section is to be replaced by _7, and E by -7 n r. The
curves F are to be those joining (z0, w) to (z(w), w), for each
w e A', obtained by letting z vary along A from za to z(w). If
t(w) is the parameter on). of z(w), for w e A', then the parameter
on the member of F corresponding to w E A' is to be t - t(w).
This ensures that a parameter is chosen for the curves of F
in such a way that the points on V(z(w), w), w e A', all have
parameter 0.

Next let Ao be the sub-arc of A' obtained by removing
the points w1(zo) and w2(zu). The points (z0, w) with to E 4
are all ordinary and so, removing the points of the linear
space L from V (zo, 4), a fibre bundle is obtained which
is clearly trivial. That is to say, V (zo, A;) - L is homeo-
morphic to (V (zo, w') - L) x A.'. Any point of V (zo, Ao) --- L
can thus be written as (p, s), where p E V (zo, w') and a is the
parameter of a point on A'.

The first step in obtaining the required deformation theorem
is to prove the following lemma:

LEMMA. Let U be a given neighbourhood of C' in V. Then
there are a neighbourhood U' of C' and numbers a and ij such
that, if a curve of F' passing through (p, e) e 'V(z0, 2) - L
meets U', all points of parameter leas than 8 on the curve of F'
through (p, s'), for any s' such that Is 81 < q, lie in U.

PROOF. Let U1 be a closed neighbourhood of C'. By
Lemma e, §2, Chapter IT, the mapping f : V(zo, A,) -* V, which
assigns to each point q c- V(zo, Ao) the point of parameter zero

-1
on the curve of .F' through q, is continuous. And so f (171) is
a closed compact set G on V(zo, A'). If U1 is small enough it
is clear that G C V(zo, A.) - L. Then, as noted above, any
point q e G can be written as a pair (p, s) with p e V(zo, w')
and a e'io. Assume 171 C U, so that, for q E 0, f(q) will lie in U.
Then, by the lemmas of §2, Chapter II, there is a neighbour-
hood U(q) of q in V (zo, Ao) - L and a number 6(q) such that
all points of parameter less than 8(q) on curves of F through
U(q) are contained in U. Now U(q) can be specified as
3onsisting of points (p', s') such that p' is in a neighbourhood
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of p on V(zo, w') and 18 - 8'I < ti(q) for some positive number
rt(q). In particular it follows that all points of parameter less
than d(q) on curves of F through points (p, 8') for 18 - s'1 <
t)(q) are in U. But G is compact and so can be covered by a
finite number of the U(q). Let S and q be the minima of the
corresponding finite collections of 3(q) and q(q). And, finally,
use Lemma e, §2, Chapter U to find a neighbourhood U'
such that any curve of F meeting it ends in U1. Then U', 8, tj
have the asserted properties.

Using the notations of this lemma, choose a point zl on A
such that the parameters on curves of F of all points of the
V(zl, w) with w on A' between w1(z1) and ws(zi) are <a, and
also so that the difference in parameters of w1(z1) and w2(zl)
on A' is less than n. Let A' denote any are on A' between but
not including w1(zl) and w2(z1). Then the following is the
deformation theorem required for the working of this
chapter:

THEOREM 24. Let U be a preassigned neighbourhood of C'.
Then there are a neighbourhood U' of C' and a point z1 on A with
the following properties: if c: % -+ U n V(z1, A") i8 a con-
tinuous mapping whose image i8 in U', and +p(p), for p e X, is
the point on A" such that 0(p) E V(z1,'p(p)), and if 0 i8 a mapping
of A' into itself homotopic to the identity, then there is a mapping

X -- U n V(zl, A") homotopic to (that i8 to Bay, homotopic
as mappings into U n V(zl, A") J each that 0'(p) E V(zl, 00 u(p)).

PROOF. U' is to be as in the above lemma, z1 and A" as
described just before the statement of this theorem. Now
introduce the following mappings. Given q e V (zl, A") there is
a unique curve of F through it intersecting V (zo, A") - L C
V(zs, Aa) - L in a point (p, s). Define the mapping g by
g(q) _ (p, s). Next, for a point (p, 8) E V(zo, A") - L, define
h(p, 8) = (p, 0(8)). Finally, noting that g is a homeomorphism,

its inverse g is defined, and so the mapping %
U n V (zl, A") can be defined as g,h,g,6(q) for q c- X.
To check that 0' has the required properties, suppose that
0 : A' x I --* A" is a mapping such that 0(w, 0) = w and
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0(w, 1) = 9(w). Define 1 on X x I by setting 4(q, t)
go H(g,c,(q), t), where H(p, 8, t) = (p, 0(8, t)). D clearly defines
a homotopy of 0 and 0', and the above lemma ensures that
its image is in U n V(z1, A') as required. Also the construction
of 0' ensures that ¢'(p) E V(z1, 00,p(p)).

There are many variations and generalizations of this
theorem. One variation in particular which will be needed in
the subsequent working is the following:

COROLLARY. Let U, U', z1, A' and 0 be as in the above theorem.
Then there is a mapping 0' : X -+ V(z1, w1(z1)) n U such that
0 and 0' are homotopic as mapping8 into V (z1, A') n U.

PROOF. The proof is as for the main theorem, the homotopy
0 being replaced by the operation of shrinking A" onto the
point w1(z1) on A'. It should be noted that g is still defined in
this situation for points on V(zo, w1(z1)).

Clearly a similar result would hold for w2(z1).

2. Some remarks on Theorem 19
Preliminary to giving the details of the proof of Theorem 19,

one or two results will be obtained, to be used not only in
proving this theorem, but also serving to strengthen it.

THFOR$M 25. Let U be a preassigned neighbourhood of C'.
Then the point zo on the are A ending at z' may be chosen, and a
neighbourhood U' of C' maybe found such that there i8 a mapping
j: (U', U' n V(zo)) -+ (U, U n V(za)) homotopic to the inclusion
mapping and such that j(U') C V(A).

PRooF. For if N is a small circular neighbourhood of z' on
8, a family of curves in N may be constructed with the
properties described in §1, Chapter II, K and .R being replaced
by N and A, respectively. Then by Theorem 12 there is a
deformation retraction of V(N) on V (A), C' being fixed
throughout the deformation. It follows at once that a
sufficiently small neighbourhood U' of C' will remain in U
throughout the deformation. It only remains to choose ze so
that V(zo) meets U'.

THEOREM 26. Let U be a given neighbourhood of C'. Then
there is a neighbourhood U' of C' Such that any cycle 1A, on
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V(zo) r1 U', zo being suitably chosen, is homologous to zero in
V(A) n U.

P$ooF. For U' may always be chosen to be homologically
trivial and also so that U, U', zo satisfy the conditions of
Theorem 25.

Tn o x] 27. Let Acre be the relative cycle whose existence is
asserted by Theorem 19, and write dA(r' ; 8ir-1'. If U is any
neighbourhood of C', Theorem 19 implies that 8(1-1) can be
constructed as a cycle on U n V0. Then U can be chosen so
that W-1) is not homologous to zero in U n V o for any integer c.

PaooF. For choose U to be, in the first place, homologically
trivial, and suppose that cb(r-1) = d8, where 0 is a singular chain
on U n Vo. Then c& - 0 is a cycle on U and so is homo-
logous to zero in U. That is to say, cA(r) is homologous to
zero modulo U n V o in the relative homology of U modulo
U n V0, or, more simply, homologous to zero modulo V. in
the relative homology of V(N) modulo V9, where N is a
neighbourhood of z' such that V (N) ) U. But U and N can
be chosen (Theorem 25) so that the pair (V(A), V0) is a defor-
mation retract of the pair (V(N), VO) and so the fact that
air' is a generator of the infinite cyclic group Hr(V(A), VO)
would be contradicted.

THRORRM 28. (1) Suppose that f : (lr, Sr-1) --> (V(A), VI)
has been constructed and f,,A = ta(r), To prove parts (1) and
(2) of Theorem 19 it is sufficient to show that, if U is a given
neighbourhood of C', there is a neighbourhood U' of C' such that,
if the image off is in U' and if y is a relative r-cycle of V (A) n U'
modulo V. n U', then y is homologous to a m u l t i p l e o f A in
U modulo U n V0, and that no multiple of i is homologous to
zero in V (A) modulo V O.

(2) If f and f' are as in the statement of Theorem 19, in order
to prove part (3) of that theorem it is sufficient to show that,
given any neighbourhood U of C', there is a neighbourhood U' of
C' such that, if the images of f and f' are in U' then f and f' are
homotopic as mappings into the pair (U, U n V O).

PROOF. (1) follows from Theorems 16 and 25, and (2) follows
from Theorem 25.
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3. Formal verification of Theorem 19; the vanishing
cycle

In this section Steps I and II (§3, Chapter IV) will be
checked in detail. Let zl be a point on A and let A" be the
subarc of A' joining w1(z1), w2(z1) (of. Chapter IV for notation).
If M1, M2 are respectively given neighbourhoods of CI(z1) and
Ca(z1) then there are maps

fs : (E'-1, Sr-2) -- (V(z1, A") n M,, V (z1, wj n Mj

for i = 1, 2, where w1, ws are on A' and sufficiently near its
ends (Induction Hypothesis (2)).

If U0 is a given neighbourhood of C', and z1, M1, M. are
suitably chosen, there are maps

f; (E'-1, S'-2) --, (V(z1, A") n U0, V (h, w1) n UO), i = 1, 2.

(Application of Theorem 24 to fi, f$ with the homotopy on A'
being that which shrinks the aro w1w, to the point w').

Let be a generator of 81-2), Do `1) a
representative relative cycle. Write L1,('-1) f 1* 4-1) for
i = 1, 2 and let A!"-1) be the representative of 1S,'-1? obtained
by applying f j' to I\'-1j. Write 6jf-2) = di'-10 for i = 1, 2.

There is a map

f3 : (E'-1, Sf-2) -* (V(A w') n U0, V(z1, W') (1 U0),

(Induction Hypothesis, part (2)), carrying into i'1,
say. Write d,,(3r-1) 3r-2)

The next part of the verification applies to Step If, the
setting up of homotopies between f i, fQ, fs.

If U1 is a given neighbourhood of C', U0 can be chosen so
that 8i*-2) is homologous to zero in V(A, w') n U1. (Theorem
26). Write 6(r-2) dA'(r-1), where A'(r-1) is a singular chain
onV(2,w')nU1.

U2 being a given neighbourhood of C', U1 can be chosen so
that kA3(r-1) in the relative homology of V(A, w') n Us
modulo V(z1, w') r' U2 (Induction Hypothesis). k is an integer,
to be proved = ± 1.
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3'-' is a cycle on V(zl, w') n U2. If Us is a given neigh-
bourhood of C', U2 may be chosen so that 4r-2) is homologous
in V(zl, A') n Us to a cycle 6 on V(zi, w1(z1)) n Us. (By the
corollary to Theorem 24, the homotopy on A' being one which
moves w' to wi(zi).) It may be assumed, by choosing Us
suitably, that V'(w) n Us is empty or homologically trivial for
each w e A', and so $ is homologous to zero in V'(w1(z1))n Us.
U4 being a given neighbourhood of C', Us may be chosen so
that $ is homologous to zero in V(zi, w1(z1)) n U4 (Theorem 12).

Thus $s'-2) is homologous to zero in V(z1, A') n U4
(assuming Uf+1 D Ui for each ti). Write $(,''2) = dA;('-2),
where A8('-') is a singular chain on V(z1, A') (1 U4. By the
argument which is given in detail below, at the beginning of
the verification of Step III, U4 can be chosen so that Vii'-1" r.,

k'O(,*-1) in the relative homology of V(z1, A') n U6 modulo
V(zi, w') n U6, where k' is an integer and U5 is a given
neighbourhood of C'.

Taking boundaries in the homologies L4-1)
and and still assuming U, C Uj+1 for each
i, it follows that 81('-2' r.. k&-2) and $(s-2) k'$1'-2 both
homologies in V(z1, w') n U6. Thus (1 - kk')$s'-2 0 in
V(z1, w') n U6. By Theorem 27, U6 can be chosen so that
this implies kk' - 1 = 0, i.e. k - 4-1.

And now the Induction Hypothesis, part (3), applied in
V(A, w'), implies that, if U is a given neighbourhood of C',
U6 can be chosen so that f' and fs, restricted to Sr-', are
homotopic as maps into V (z1, w') n U.

Thus, given the neighbourhood U of C', there is a neighbour-
hood U0 of C' such that, if fl' and f$ are constructed to have
images in U0, then, restricted to Sr-2, they are homotopic as
maps into V(z1, w') n U. A similar statement may be made
concerning ff. It is thus clear that a map f
V(zi, A') n U may be constructed such that, if pg*-i)

have the right signs, there is a singular chain v satisfying+ 4`1) + v, where P-1) is a representative
of the image under f of a generator of Hr_1(S'-1).

P--1) is the required vanishing cycle, constructed in a
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preassigned neighbourhood U of C'. In addition, U being
preassigned, say as an open cell, Theorem 25 shows that a
neighbourhood U' of C' may be chosen, such that, if
60-1) is constructed in U', then f can be extended to a map
of (E', S*-1) into (V(A) n: U, V(zl) n U). If A(') represents
the image under f* of a generator of H,,(E', S'-1), then
d(*-1) = dA(*). AM will be shown to satisfy the conditions of
Theorem 19.

4. Proof of Theorem 19, parts (1) and (2)
In this section Step III will be checked, and along with

it, the proof of the homology Asp*-13 k'A'") which was
left incomplete in §3.

Let y be a relative r-cycle of V (A) modulo V (zl), (V (z1) is
being used here in place of V(zo)) and assume, as already
mentioned in the summary of Step III, that y is a singular
chain on a neighbourhood U1 of C'.

Applying Theorem 23 it follows that, if U2 is preassigned,
U1 may be chosen so that y = y' + dal + fl, where a1 is a
singular chain on V(A) n Us, t'1 is a singular chain on
V(zl) n Us and y' is a relative cycle on V(A, A") n U. modulo
V(zl, A") r) U2, A* being the sub-arc of A joining w1(zl) and ws(z1).

Write dy' = µ'. If A' is a sub-arc of A" then µ' can be regarded
as a representative of an element of H,._1(V (z1, A"), V(zl, A')).
Applying around C1(z1) and C2(z1) the homotopy and
excision of Theorem 16, and noting that if the ends of
A" are sufficiently near those of A" then this can be done
within a preassigned neighbourhood U3 such that U3) U8,
it follows that ,u' = #1 + ,u 2 + µ3 + da s, where µl, F. are
relative cycles of V(zl, A') modulo V(zl, A'), and are, moreover,
singular chains on arbitrary small neighbourhoods M1, M2 of
Cl(z1), C2(z1), respectively, while ,u3 is a singular chain on
V(z1, A') n U3, and aE is a singular chain on V(zl, A") n U3.

Assume Ml and M2 to be as at the beginning of §3, and
let AZ (r-1) be the singular chains induced by fi, fs
acting on If Mi, M2 are preassigned neighbourhoods
of C1(z1), C2(z1), respectively, both contained in U3, then M1, Me
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may be chosen so that i' = ccAIc'-1) + CIIA: -" + u4 + k3
for integers cl, c2, where p4 is a singular chain on V(zl, A') n U.
and as is a singular chain on V(zi, A") n U3. (Induction
Hypothesis, and Theorem 16.)

Now the reasoning of §3 shows that, if U4 is a preassigned
neighbourhood of C' and U. is suitably chosen, then the
addition of suitable chains to A*(,-'), A2*0-1) yields Air-1',

A2''-1), both chains contained in U4. The chain v of §3 will
also be in U4. Thus i' = ci Ai'-1) + c$ AV-1) + v) + µ6 + dots,
where pb is a singular chain on V(zi, A') n U4.

At this stage the argument of §3 can be completed by showing
that A'("-1, is homologous to k'A(I'-i) in the relative homology
of V(zi, A') modulo V(zl, w'), in a given neighbourhood of C'.
To do this the argument of this section up to this point is to
be repeated, with p' replaced by Ar'), noting that only

A('-1) will be involved.
Returning now to the main argumentof this section, take boun-

daries in the relation µ' = c1Al'-1) + c2(d2'-" + v) + IA6 + daa,
noting that A('-1) + A2 1) +v is a cycle. Then (ci -c$)6i'-s) -d p6

0, i.e. (c1 - ca)61'-2) . 0 in a V(z1, A") r1 U4, and so, if U4
is suitably chosen, (ci - c2)6('-2) r., 0 in V (zi, w') n - U6
for a preassigned neighbourhood Us of C' (Theorem 24).
But, by Theorem 27 along with the fact that 61'-2>,"

±63
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in a preassigned neighbourhood of C' if Ub is small enough,
this implies c1 = c8. Hence pi = c6('-;" + yr, + dots for some
integer c.

Taking boundaries it follows that u5 is a cycle on V (zl, A'") n U5.
If Ub is small enough and Ug is a given neighbourhood of
C', pb will be homologous to a cycle µ6 in V(zi, w1(z1)) r Ua
(Corollary to Theorem 24, deforming A" so that A' is carried into
w1(z1)). It may be assumed that V'(wi(z1)) n U6 is homologically
trivial, and finally Theorem 12 may be applied to show that,
if U6 is small enough, then p6 N 0 in V(zi, wi(z1)) n U7 where
U7 is a preassigned neighbourhood of C'.

Hence 1u6 ~ 0 in V(z1) n U7, and so p' = c6('-1) + da4
where a4 is a singular chain on V(zi) n U7. µ' = c6('`1) + da4
can be written as d(y' - cA(') - a4) = 0. Thus y' - c AM - a4
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is a cycle on U7, which may be assumed to be homologically
trivial. It follows at once that cA(r) modulo V(zl), the
homology holding in U7.

As pointed out in Theorem 28, part (1), all that remains to
be done in order to verify parts (1) and (2) of Theorem 19 is to
show that a relation cA0) = 0 implies c = 0. Suppose then
that cb(*) = 0 for some integer c. It would follow (Theorem
16) that ca(') is homologous to zero in V(A) modulo V(zl) in a
preassigned neighbourhood of C', and so c8l'-1) would be
homologous to zero in V (h) n U, for a preassigned neighbour-
hood U of C'. If U' is a preassigned neighbourhood of C' and
U is small enough, this means c8(*-1) 0 in V(zl, A') n U'
(Theorem 23). Then since 6('-1) = A -1> + df-1) + v, and
Since (V (zl, A'); V (Z11 Al), V (zl, 22)) is a proper triad (Eilenberg
and Steenrod [4]), it would follow that cA('-1) and ct*-1) are
both homologous to zero modulo V(z1,w'), contrary to the
Induction Hypothesis.

To establish part (3) of Theorem 19 let f and f be two
mappings of (E', Sf-1) into (V(A), VO) such that f*ao') = &'>

and f ' &') = a' i') are both generators of Hf(V (A), V O).
Assume further that f, f' have their images in a neighbourhood
U' of C'. It is to be shown (cf. Theorem 28) that U'- can be
chosen so that the maps f, f' of Sr-1) into (U, V

O n U)
are homotopic, where U is a preassigned neighbourhood of
C'. It is not hard to see that this will follow if the restrictions
of f and f ' to S'`1 are homotopic maps into V. n U, for U
may be chosen to be an open cell. Now if A(*), IX'(*) are repre-
sentatives of A('), A'(r), respectively, obtained by applying
f, f to a representative 4) of A'), then, given U, U' can be
chosen so that A'0) and A"*) are homologous (with a suitable
choice of sign) in the relative homology of U modulo U n V.
(Part (1) of Theorem 19, along with Theorem 16). If &,-1) =
d4(r), a'(r-1) = dQ'(') this implies 8(' -1) O'('-1) in Vo n U.
Thus the required result will be obtained by a suitable
modification of the Hurewicz isomorphism theorem (of. Hu
[8]). As a number of auxiliary results are needed, a separate
section will be devoted to this task.
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5. Proof of Theorem 19, part (3)
In the first place, noting that the set W of Theorem 16 can

.be made arbitrarily small, and that, given W, a neighbourhood
U' of C' can be found contained in W (by Lemma e, §2,
Chapter II) it follows that (by Theorems 16 and 17):

Lama a. If U is a given neighbourhood of C', there exists a
neighbourhood U' of C' such that the image of the injection map
H,(V(A) n U', Vo n U') --> H,,(V(A) n U, Van U) is zero for
q < r - 1, zo being suitably chosen on A.

It follows at once from this result that:
LEMMA b. If U is a given neighbourhood of C', there is a

neighbourhood U' of C' such that the image of the injection viap
H,(V, n U') --> HQ(Vo n U) is zero for q < r - 2, z* being
suitably chosen on A.

The main result of this section is the following:
THEOREM 29. (a) If U i8 a given neighbourhood of C', there

a neighbourhood U' of C' and a point zo on A such that the image
of the injection map 7rQ(U' n VO) -)- QrQ(U n V0) is zero for
q<r-2.

(b) If U i8 a given neighbourhood of C', there i8 a neighbour.
hood of U' of C' and a point zo e A such that if f : S*-1---* U' n V*
has the property that the induced homomorphism f* : H,1(,`-1) --r
H,-,(U' n V0) has zero image, then f, as a mapping into U n V.,
is homotopic to zero.

PRooF. In part (a) of this theorem it is understood that the
base point for the homotopy groups is some point y e U' n Ve.
Part (b) is actually the result wanted, but part (a) is required
in its proof. The proof of Part (a) is to be inductive, and will
be preceded by a discussion of the lower dimensional oases.

In the first place, if r = 1, part (a) is meaningless, and part
(b) is obviously true; for Vo n U will consist of just two
points if U is small enough and f* has zero image if and only
if f maps the sphere $0 (two points) into a single point, which
makes f homotopic to zero trivially.

Secondly put r = 2. Vo is now a curve, and w1(zo), w$(zo)
are clearly two of its branch points over the plane of the
complex variable w, and C1(za) and C$(z0) are the two points of
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the curve at which the branching in question takes place.
V(za, w') consists of a finite set of points, exactly of two which,
say P, and P2 lie in U if U is small enough. Now there are
well defined area P{CJ(zo), (i, j = 1, 2) in Yo lying over A'
and so it follows that U n V(zo, A") is a homeomorph of a
circle, A' being the are on A' which joins (zo, w,(zo)) to
(zo, w2(zo)). Now let U be a given neighbourhood of C'; U
may as well be taken so that U n V(zo, A") is a homeomorph
of a circle. Then, by Theorem 23 there is a neighbourhood
U' of C' such that any point of U' n Vo can be joined by an
arc in U n V. to a point of U n V(zo, A"). Thus any pair of
points of U' n Vo may be joined by an are in U n V0, which
proves part (a) of the theorem for r = 2, q = 0.

To prove (b) for r 2, suppose f : S' --*. U' n Vo is given
so that the induced map f* : HI(S1) --* H,(V0 n U') has zero
image, for some choice of U' and z0. If U' and zo are suitably
chosen, Theorem 23 shows that f is homotopic in U n V. to a
map f ' : S' -- U n V (z0, A") such that the image under f ' of a
fundamental cycle of Sl is homologous to zero in U n V(zo, A")
This cannot happen unless f', as a map into the homeomorph
of a circle U n V( zo, A"), is homotopic to zero.

Part (a) will now be proved for all values of r > 3 and
q = 0 or 1. Let U be a given neighbourhood of C' and let U'
be as in Lemma b. Then if P and Q are two points of U' n V.
the zero dimensional cycle P - Q is homologous to zero in
U n V O; that is P and Q can be joined by an are in U n V0,
which establishes part (a) for r > 3, q = 0. To prove Part (a)
for q = 1 and r > 3, a sequence of neighbourhoods U;, with
U, C U;+, is to be constructed, in a manner similar to the
constructions of §§3, 4. Let f be a map of S1 into U,, n Vo
carrying a certain point x e Sl into a point y e V(zo, A") n U',
A" being the are on A' joining (zo, w,(z0)) and (zo, w2(zo)). Let
U, and U2 play the parts of U, and U in Theorem 23. Then
f : S' -* U2 n V o is homotopic to a map f which carries S'
entirely into V (zo, A") n U2. The continuity of f' implies that
-1
f acting on any closed set gives a closed, and so compact set
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on 81. Now let M{ C 1; C M; C M{ be neighbourhoods of
-1

Qzo) (i = 1, 2) in Va. The compactness of f'(M;) and the
-1

continuity of f ' imply that f '(A?) may be covered by a finite
number of intervals mapped by f' into M. It follows easily
that S' may be split into a finite number of arcs of three types.
Those of the first and second types are mapped by f' into if,'
and MQ respectively, while those of the third type are mapped
into sets not meeting Mi or RE. Let A be an are of the first
type, say, p, q its and points and P = f'(p), Q = f '(q) It is
clear that wl may be chosen on A' so close to w1(zo) that P and
Q may be joined in M; to points P', Q' respectively on V(;,, w1);
w1 may be chosen with respect to all the arcs of the first kind,
since there is only a finite number of them. Then since part
(a) of the present theorem holds for r > 2, q = 0, it follows
that, M, being preassigned, Mi can be assumed to be such
that P', Q' can be joined by an are a in V (zo, w1) n M1, and
likewise for all other arcs of the first kind. Assume in addition
that Ml C U2 and that Ml is an (r - 1)-cell. Then f'(A) is
homotopic to at, the homotopy being carried out entirely in
M1, and so in Vo n US. This process is to be carried out for
all the arcs of the first and the second kinds, the result being
that fis homotopio in Vo n U. to a map f " whose image does
not meet the M; . Then if U$ and U8 play the parts of U1
and U in Theorem 23 it may be assumed that the homotopy
from f ' to f " is carried out in V (ze, A") n U8. Let 178 C U4.
Then it may be assumed that wi, selected above, and a
similarly selected w= are also such that f" is homotopie in
Y(zo,A") r1 U4 to a map whose image is contained in
V(zo, A') n U4, where Am is the join of w1 and w= on A'. Now
apply Theorem 24, U4 and U5 playing the parts of U' and U,
and the relevant homotopy being that on A" which shrinks A'
to the point wl(zo).

Hence f' is homotopic on Vo r) Ub to a map whose image
lies in V(zo, w1(zo)) n U5. Assume further that V'(wl(zo)) n Us
is an open (r - 1)-cell, which is always possible, and finally
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shrink this cell by Theorem 12 (applied in V'(w1(z,))) onto
V(zo, wl(z,)) which can be done in U, if U, is suitably chosen.
The final result is that f', and so f, is homotopio to zero in
U, n V,. This homotopy is a free homotopy, but its existence
establishes the existence of a homotopy throughout which
x is mapped on the selected base point y. This completes the
proof of part (a) for all r > 3 and q = 1.

Part (a) will now be proved in general. In view of what
has been already proved, attention may be confined to the
cases r > 4, q > 2. The result will be proved by induction,
the basis of the induction being the already established result
for q = 1. Let U be a given neighbourhood of C', and
Ui C U, C U where U1, Us are neighbourhoods of C' to be
more fully specified presently. Let f : Sa --> V, n U, be a
map carrying the south pole of Sa into some point y e Vo n U11

to be fixed from now on. f carries a fundamental cycle of Sa
into a q-cycle, which, if Ul is chosen correctly with respect to
U,, is homologous to zero in V. n U, by Lemma b. Hence f
may be extended to a polyhedron Pa+' which has SP (suitably
triangulated) as its frontier, the extended f carrying Pa+1 into
Vo n U,. A step by step argument, using the hypothesis
that part (a) of the theorem holds for maps of 0-, 1-, 2-, ... ,
(q - 1)-spheres, shows that if U, is suitably chosen the
extended map f is homotopic to a map f ' which carries the
(q - 1)-skeleton of Pa+s into the point y, the homotopy
being carried out in U n VO. Now let T1, ... , T,, be the
q-simplices Qf 11a+'. The map f' and T, determines, for each
i, an element of Ira(U n V.), based on y; call this element
(f', Ti). And the mapping assigning to each integral chain
:Ea,T, on Pa+i the element >2a,(f ', Ti) is a homomorphism
µ : Ca(P'+') --i,. ira(U n V.), such that u carries bounding
chains into zero (cf. Hu (8J). In particular if a is the fundamen-
tal cycle of the triangulated So, µ(a) is the class of the map
f : Sa --i. U n VO, but a is a boundary and so f is homotopic
to zero in U n YO.

Part (a) is now completely proved. Part (b) is proved for
r > 3 by the same argument as has just been carried out,
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with q replaced by r -- 1. The essential point of making the
map f' carry the r - 2 skeleton into a pointy is established by
applying the already proved part (a) of the theorem.

Theorem 29 will now be applied to finish off the argument
of §4. U being a given neighbourhood of C' let Ul and U
play the parts of U' and U in Theorem 29, part (b). Let Us
and Ul play the parts of U' and U of Lemma b, and let U'
be a neighbourhood of C' such that any pair of points of
U' n V0 may be joined by an arc in Us n V0 (Theorem 29
part (a) for q = 0). Then if x is the south pole of S*-1, f (x)
and f'(x) may be joined to a point y e Us n V0 by arcs in
Us n V0, f and f being the maps introduced at the end of §4.
Then it follows that f and f are respectively homotopio to
maps fl and fl' of S'-1 into Vo n Us, carrying x into the
selected point y, the homotopy being carried out in V0 n Us.
fl and fl' represent elements of ir,_1(Vo n U) in the image
of the injection of irr_1(V0 n Us). The difference map fl -fl'
may be oonatruoted and is a map which, by Lemma b applied
to U1 and Us, carries a fundamental cycle of into a cycle
homologous to zero in Vo n U1. Then by Theorem 29 (b), fi
and fl, and so f and f are homotopio in U n V0.

This completes the verifications of the various parts of the
Theorem 19 for dimension r, and so completes the induction,
thus proving that theorem.



CHAPTER VI

THE POINCARE FORMULA

1. The automorphisms TT
As before let z1, ... , zx be the parameters of the singular

sections of V by the penoil 11, and let K denote the complex
sphere S with these points removed. As shown in §3, Chapter
I, there is a fibre bundle X with base K and some non-singular
section Vo of V as typical fibre, also that X contains a sub-
bundle X' equivalent to K x P each fibre of X' being contained
in the corresponding fibre of X. Moreover (Theorem 4) there
is a continuous mapping V: X --> V(K) which is homeomor-
phic on X - X', mapping this set onto V(K) - P. If V o is
the section of V of paramenter zo and X 0 is the fibre of X
over the base point zo, then , restricted to Xp induces a
homeomorphism V. of the pair (X0, X') = (X0, X 0 n X').
onto the pair (V0, P).

The covering homotopy theorem for fibre bundles and the
standard methods of discussing the homology of such spaces
may now be adapted to show that the fundamental group of
K acts as a group of automorphisms on HQ(Xo, XQ) for each q.
If S. is the automorphism corresponding to the element
a e irl(K) and Wa* : HQ(Xo, X') --> H2(Vo, P) is induced by
the homeomorphism Wa, then T. = V0* S -Vao* is a well defined
automorphism of Hq(V(,, P). Moreover the fibre bundle theory
gives a method of computing the effect of the operators S«,
and so T.. Namely, denote by a a representative path in the
class a e iri(K) and let a be a singular simplex of dimension q
on Va, that is to say a continuous mapping of a Euclidean
simplex A into V0. Then there is a homotopy F : A x I
--- 1- V(K) covering a such that F coincides with a on A x {0} and
F(A X {1}) C V0. F restricted to A x {1} is defined as Tja).
Ta is constructed for different singular simplexes in such a
way that cycles are carried into cycles, and boundaries into

72



THip POINCAR$ FORMULA 73

boundaries. Also simplexes on P are carried into simplexes
on P. It follows, at once that T. induces an automorphism on
HQ(V 0, P), as required.

This chapter will be occupied with the application of this
method to the computation of Ta(y) for certain basic at and
and forq=r-1.

Let the paths A, from an ordinary point ze on S to the
special points z1 be constructed as in §3, Chapter III. Let ai
be a path starting at zo, going along A, until close to zr, going
once round z{ counterclockwise (round a circle say, small
enough not to contain any z1 for j e i) and back to zo along A,.
Tri(g) is generated by the homotopy classes of the a,. Write
T, = Ta,. Then the T{(i = 1, 2, . . . , k) generate the group
of automorphisms on HQ(V0, P) induced by Tr1(K) for each P.

Attention will now be fixed on one particular value of i,
and the automorphism T{ will be examined in greater detail.
As usual it is convenient to change the notation, taking
V(z') as the singular section to be considered, A as a path
from z' to z0, C' the singular point on V(z) and T for the
corresponding automorphism on HQ(Vp, P). It is also con-
venient for the present purpose to take za close to z'; just
how close will be made more explicit presently.

THEOREM 30. T acts as the identity on HQ(Vo, P) for
q<r-2.

Paoo'. For if y E HQ(V0, P) then T(p) - p is in the kernel
of the injection HQ(V0, P) --> HQ(V, P), and so in the image
of the boundary homomorphism a : HQ+1(V, V O) --> HQ(V o, P).
But HQ+1(V, VO) = 0 for q < r --- 2 (Theorem 17) and so
T(p) = p.

THEoREM 31. Let p e H,-,(V,, P), 8 generate the kernel of
the injection H,,-1( V0, P) --> H,-,(V(A), P), y, a representatives of
p, J respectively, 8 being a 8ing'ular cycle on some neighbourhood
of C' not meeting P. Then there is an integer c (independent of
p) such that T(p) = p + c(y . &)J, where (y. 6) is the intersection
number of y and 8.

Before getting started on the proof note that E can be
constructed so as to lie in a set not meeting P (§3, Chapter V),

6
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and also that, being constructed in this way, 6 is a cycle not
meeting the boundary of y, and hence that the intersection
number (y. h) is well defined.

Next, Vo is a differentiable manifold, P a submanifold, and
so there exists a triangulation of V. making it into a simplicial
complex with P as a subcomplex. It follows that any element
of Hr_i (Vo, P) can always be represented by a simplicial
chain, and any homology can always be written as a simplicial
homology.

PROOF OF THEOREM 31. To prove the theorem T may be
supposed to be induced by an element of iri(K) represented
by a single counter-clockwise circuit of a small circle about z',
say the circumference D of a small circular neighbourhood N
of z' whose closure does not contain the parameter of any
other singular section of V. Then T (y) - y is clearly in the
kernel of the injection Hr_1(Vo, P) -+ Hr_I(V(N), P), and so,
since the pair (V (A), P) is a deformation retract of (V(N), P)
(Theorem 12) also in the kernel of the injection Hr_i(Vo, P) -i-
Hr_i(V (,l), P). Thus T (Y) - Y = . i(Y)& where fi is an integer
valued function of y. If J = 0 there is no more to be said.
Otherwise write fi(y) = fi(y) for any simplicial representative
y of y. The function fi so defined is now to be extended to
the whole group C,_1(V0) of simplicial (r - 1)-chains on V0.

Using now the notation of §1, Chapter II, let F be the
family of radii of N. The conditions on F stated there are
satisfied with K and E replaced by N and z' respectively.
Construct the family of curves F' as in Chapter II. Let U be
an open neighbourhood of C', and let Wi be the set of all
points on all curves of F' ending in U. Write W. = V(N) - W1.
Lemmas e and f, §2, Chapter II, show that W1 is open in
V(N ), and moreover can be made to lie in a preassigned
neighbourhood of C' if U is made small enough. Also it is
clear that V0 n W2 is a deformation retract of W2, and so,
if y E lr_1(Vo, P) has a representative y which is a simplieial
chain on W2 n V0, it follows that T(y) = y, and this, along
with the assumption that 3 -A 0, implies that fl(y) = 0.
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Define now the linear function f on 0,_I(V0):
(1) If y E C,_l(V o) is a relative cycle modulo P, set

f(Y) =fi(Y)
(2) If y e Cr-1(W $ n Vo), set f(Y) = 0.
By the remark just made above, if y e C,-,(W. n V.) and

also is a relative cycle modulo P, fl(y) = 0, and so (1) and
(2) agree. The linear function f is thus fully defined on the
subgroup Z,-1(V0, P) + C,_1(W2 n V.) of 0,--,(V,), Z
denoting the group of relative cycles. Let IT be the natural
homomorphism C,_2(Vo)-*C,_$(Vo, P) =C,_2(Vo)fC,_2(P),
and d the boundary operator d : C,_1(V o, P) --.j- C,_ $(V o, P).
Then Z1(V0, P) is the kernel of Trod. Since Z,-,(V0, W2 n Y.)
is a subgroup of Cr,.1(Vo) containing Zr_1(Vo, P), the map
irod carries Zr_i(V0, W$ n Vo) onto a subgroup of C,_s(V0, P)
and the restriction of trod to Zr-i(Vo, W 2 n V O) has kernel
Z,_1(Vo, P). Thus Z,-.1(Vo, W2 n Vo) f Z,_1(Vo, P) is isomor-
phic to a subgroup of the free group C,_2(V0, P) and so is free.
Thus Z,1(Vo, P) is a direct summand in Zr_1(V o, W2 n V O).

Write Z,_1(Vo, W= n Vo) = Z,.-,(V0, P) 4- 0, and extend f to
Z,._1(Vo, W2 n Vo) by setting it equal to zero on G. This
extension involves no contradiction. For f is already defined on

Z,-1(Vo, F) + Cr-1(W2 n V O)

= Z, .1(Vo, P) + C.-1(W 1 n V.) n Z,-,(V,, P)
+ C,._1(Wg n Vo) n G

= Zr-1(Vo, P) 4- Cr-1(W2 n Vo) n 0

(the last summation being direct) and the value so far given
for f on the subgroup Cy_i(W2 n Vo) n 0 of C is zero.
Continuing the argument, Z,._1(V0, W2 n Vo) is a direct
summand of C,._1(V0), since Cr_1(Vo)f Zr-1(Vo, W. n Vo) is
isomorphic to a subgroup of C,_2(Vo, W8 n V(,) and so is free.
Hence f may be extended to the whole group C,-. (V o) as
required.

Thus f is an integral valued simplicial cochain on VO. It is
also, however, a oooycle. For f (df), where P is an r-ohain on
VO, and d is the boundary operator, is given by the definition
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(1) above: f (d#) = fi(df ). But d# is homologous to zero on
Vo and so on V. modulo P, and so T(df) = d/ = 0, and so,
since 3 is assumed at present to be non-zero, f1(dfl) = 0. But
a simplicial cocycle can always be represented by means of a
cycle in the dual simplicial subdivision. That is to say, there
is a cycle yo of the dual subdivision such that for any simplicial
chain y, f(y) = (y . yo), the intersection number. Also f has
been so defined as to vanish on any simplex which does not
meet W1. Now W1 can be constructed to he in U. where U.
is a preassigned neighbourhood of C', (Lemma f, §2, Chapter
II) thud so if the triangulation of Vo, and the dual subdivision,
area made fine enough, yo will be composed of simplexes lying
entirely in U0. If U0 is chosen so as to be homologically
trivial it will follow that yo represents an element of the
kernel of the injection H,_1(V o, P) -* Ll,_1(V (N), P), and so is
homologous in Vo modulo P to an integral multiple of the
appropriate "vanishing cycle". That is to say, using the usual
convention for the intersection numbers of singular chains
f (y) = c(y . d) for some integer, c, where y need no longer be
simplicial, but may be any singular representative of y.

The formula T(y) = y + c(y , d)3 is thus established; the
next task is to show that c is in fact equal to -1. This will
be done by selecting a particular element to take the place of
y, an element for which T (p) may be calculated in a different
way. Also the intersection number (y. 6) will be computed
for this particular y, and the two different evaluations for
T(y) will be compared, The question of evaluating c only
arises, of course, when $ 0 0. And until further notice this
assumption, that c 0, will be made.

2. Explicit calculation of T
The integer c appearing in Theorem 31 must now be

calculated. The method will be to apply Theorem 31 to an
element y of H,_i(Vo, P) for which T (p) and the intersection
number (y. 6) can be calculated independently. As part of
this working is rather elaborate, the details of the proofs of
the theorems involved will be postponed till Chapter VII,
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and in the meantime a geometrical sketch . of the argument
will be given.

It will be remembered that, by Theorem 19 applied to V.,
a set of generators for H,_1(V o, P) can be obtained such that
one generator is associated with each singular section V (z,, w,)
of Vo by a hyperplane of II'; the understanding is that each
point w, involved is joined by an arc µ, to the point oo in the
complex w-plane, and the ith generator is represented by a
relative cycle of V (zo, µ,) modulo P. In particular, using the
notation of §3, Chapter IV, there are two values of w, namely
wj(z) and wt(z) for each z near z' such that V(z, wi(z)) and
Y (z, w=(z)) are singular sections of V (z). The effect of T will
now be studied on the generator of H,_1(V0, P) associated as
just indicated with V(zo, ta1(zo)). But first, suitable arcs
joining wi(zo) and w=(zo) to oo on the complex w-plane must
be constructed. The following is a convenient construction for
this purpose.

z-Plan.

w--
Fia. 1
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Apart from (z', w'), the line z = z' in the (z, w)-plane meets
the curve IF in a finite number of points with w-coordinates
ws, w4, ... , w,, say. These are all finite since, by the way
coordinates have been chosen, the axis of II corresponds to
W = CO.

Let No, N8, ... , N, be neighbourhoods of w', w3, ... , w;,
respectively, on the complex w-plane no two of which intersect.
Then, for zl sufficiently near z', the line z = zx will have 8
intersections with 1' two of which, (zl, wl(zl)), (zi,w2(zi)) have
their w-coordinates in No, while of the w coordinates of the
remaining intersections, one lies in each of N3, ... , N,.

Fix attention for a moment on wx(z), w2(z), for values of z
near z'. The two valued function w(z) with values wl(z), w$(z), is
given around z' by a quadratic equation

(w - w')2 + p(z)(w -w') + q(z) = 0,

where p(z), q(z) are analytic around z' and both vanish at
z'. The requirement that r should have a well defined
tangent at (z', w') implies that dqf dz 0 0 at z = z'. It
follows that w(z) may be expanded in a series of the form
w' + ci1/z - z' + c2(z - z') + . . . , where cl 0. That is to
say w(z) = w' + (c1 + 21) 1/z - z', where 1,11 < k I1/z - z'I, k
being a certain constant, provided Iz - z' j is sufficiently small.

Now assume that N is a circular neighbourhood of radius
p about z', such that kVp < jjcj, such that a circle about w'

in the w-plane of radius 1It j /p is contained in No, and such
that the points of r with coordinates (z, w), z e N, apart from
(z, wl(z)), (z, w2(z)) have their to coordinates lying one in each
of Ns, . . . , N,. Then as z traces the circumference y of N,
starting and finishing at zo, the two values wi*(z), w2*(z) of
the function w*(z) = w' + c11/z - z' trace out semicircles
about w' of radius Ici Vp in the w-plane. And the paths of
wl(z), wa(z) approximate these semicircles. More specifically
for i = 1, 2, the distance of w,(z) from wj*(z) is

Iti I,/z - z'I < kp < 11ellAlp.
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Starting with the value wi(z0) it thus follows that, as z(8) _
z' + pe{° traces out y from 0 = Bo to 0 = 2ir + 00, this
particular value of w(z) traces out an are y' from wi(z0) to
ws(z0), the moving point of y' being a function w(8) of 0 only.
Moreover, the arc y' will lie entirely within a circle y" about w'
of radius 11ci1 1/p, and hence, by the choice of N, entirely
within N. (cf. Fig. 1, p. 77).

Fix any point w0 on y" and let po be any path on the
w-plane from wo to co, lying entirely outside y", and not
meeting the closures of N3, ... , N. Let u(8) denote the
path from w(8) to co obtained by joining w(8) to a point of y"
along a radius of y" and then joining this point of y" to w0 by an
arc of the circumference of y' finally proceeding to oo along p0.

Then it is not hard to see that, as 0 varies from 00 (at z0)
to B0 + 21r, the path (z(8), y(O)) in the (z, w) -plane is deformed
continuously from its initial position (z0, µi) = (zo, u(00)) to
(z0, u2) = (z0,p(80 + 21r)). The idea is to lift this deforma-
tion into V, fibred by its sections with the (n - 2)-spaces
through L. This is not, however, a straightforward matter of
applying the modified covering homotopy theorem (Theorem
5) as the are (z(8), ,u(8)) always has the special point (z(8), w(8))
on it. But this difficulty may be got around with a little
care, and it will be shown that, as (z0, pi) is deformed into
(z0,

J
U2), a relative cycle Ai representing a generator of

H,_1(V (z0i 1h), P) is carried into a relative cycle A 3 represent-
ing a generator of H,_ x(V (z0, p 2), P). If ai, a$, are the relative
homology classes of A1, A2 in V. modulo P, this implies the
following result:

TnEOREM 32. T(ai) ; faE.
The proof of this theorem will be given in §3, Chapter VII.
The chains Di and A. just mentioned are to be chosen in

rather a special way. It will be noticed, by examining Fig. 1,
that A' = Ai U A. can be deformed into pi U ps, leaving wi(z0)
and wz(z0) fixed. It will be shown (Chapter VII) that this
deformation can be lifted into a deformation of the two
chains Ar'>, A'-i> of §3, Chapter IV or §3, Chapter V (which
are, geometrically speaking, hemispheres embedded in V) into
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two chains which are respectively relative cycles on V(zo, pi)
and V(zo, ps) modulo P. These two chains are to be taken as
Al and As.

Fre. 2

The formula T(a,) = ±A, will eventually be compared
with the formula T(3) , Al + c(A1 . 6)3, and, since it is
intended to find c in this way, attention will be confined to
the case 3 0 0. The first thing to notice is that $ = Ai + A2,
for in §3, Chapter V, the vanishing cycle 6 was constructed
as At-' + 4-1) -}- y where v is a chain on V(ze, w'). The
deformation of A(,? -%) and 4-1) into Ai and At then shows
that 6 is homologous to Ai + At modulo P, as asserted. On
the other hand, 41-11 + 4-1) + v can still be taken as a
representative of 6, and so it is not hard to see that (Ai . a) =
(Ai . A(,r-"), for the point C1(ze) is, geometrically speaking,
the only point in common of a and.A1; (see Fig. 2).

The next stage is to carry out the explicit calculation of an
intersection number of the type (A('-') . Ai). For this purpose
it is convenient to change the notation and to consider the
following situation (see Fig. 3, p. 81).

z' is a special point on the z-plane 8 (with the point oo)
and A and p are two piecewise analytic arcs ending at z'. A
represents.a generator of H,(V (A), V (ze)). A can be deformed
into p in two essentially different ways, namely clockwise
and anti-clockwise. By lifting these deformations into V it
will be shown that:
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TBORnM 33. There are two ispmorphisms Tµx and T,u of

H,(V(A), V(zo)) onto Hr(V(u), V(z'))
A fuller and more general statement of this theorem will be

proved in §1, Chapter VII (Theorem 38).

Fia. 3

The object now is to calculate the intersection number
(A. a,,l(0)). By Theorem 13, A and T"z(A) are images of a
relative cycle on El modulo S-1 under continuous mappings
ho and hl, say, into V It will be shown that the mappings
ho and h1 can be made differentiable and homeomorphic and
that the homotopy of h,, into h, which, in fact, defines the
operation T,,1, can also be made differentiable. It will follow
at once that the interesction number (A. Tµx(A)) can be
computed by examining the configuration of the tangent
linear varieties to ho(E') and hl(Er) at C'. This will be done
in §4, Chapter VII; the result is:

THEOREM 34. (A . T,,1(A)) - 1.

3. The formula T(y) = y - (y. b)8. (Poincare Formula)
Using the intersection formula obtained in Theorem 34,

the study of the automorphism T of §1 will be continued.
The first step is to find the effect of T on J, the result being:

THEOREM 35. T($) = (-1)1'3.
PROoF. A as usual is to be an arc joining za and z'. Let p

be a second arc obtained from A by an anticlockwise rotation.
By Theorem 33 the three homomorphisms Tam, Tx,,,' T:,
can be constructed, and they satisfy the relation T% == TA,,T0a
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(of. end of §1, Chapter VII). Let A represent a generator A

of H,.(V(2), V0)- By Theorem 34, (A . T'(A)) = 1. Applying
.Theorem 34 again to T4 (A), the result (T' (A)

= 1 is obtained; that is to say, (TNx(A) . Tu(A)) = 1. But
T7. is clearly an automorphism of IIr(V(A), V0) and so
7°u(A) = kA, where k = ±1. Hence k(T°x(A) . A) = 1.
But (T°,,x(A). A) Ta (A)) and so k =
(-I)". The theorem is then proved by noting that T(8) is
obtained by applying the boundary homomorphism to. the
formula T,u(A) _ (-1)"A which has just been proved (cf.
Theorem 38).

ThEoREM 36. T(A1) _ -A2
Pnooi!'. 1t will be remembered that A' and A2, elements of

Hr-,(V0, P), are represented by relative cycles Ai and Az in
V(z0, µ,) and V (zo, P2), respectively. Also 8 = Al + A2 (cf.
§2) and 8 may be represented by Al`-') + A('-') + v where
AlT-') and A2 -') are relative cycles on V(zo, A1) and V(zo,12),
respectively, modulo V(z0, w'), and v is a chain in V(zo, w').
Then, using the intersection formula of Theorem 34, it follows
that (A1 . b) = (A1 . = 1, since the deformation of ui
into Al (cf. Fig. 1, p. 77) is anticlockwise, working this time
entirely in V0, parametrizing the pencil of sections V (zo, w)
by w. Similarly (b . A2) = (A(2r-z) . A2) = 1.

The automorphism T, however, preserves intersection
numbers, and so (A1 . 6) = (T(A,). T(b)) = (-1)'k(A2 . b),
where k = ±1 by Theorem 32. Hence I = (-1)fk(A2 . b)

-k(b . A2) = --k, and so k - -1, as was to be proved.
TIIEOaEJ 37. For any element y e Hr-1(V0, F), T() _

(y . 6)8, where y, 6 are representatives of y and 8
respectively.

PROOF. It has already been shown that T(y) = y +c(y . 6)8
in Theorem 31. Applying this formula toy = Al it follows
that T(A1) -- Al + c(A1. 6)8 = Al + c(A .. Al + c8,
since (A, . 6) = (A1 . Alr-'}) = 1 by Theorem 34. But T(A1)
= -1&2 by Theorem 36, and so -- A 2 = Al + 05; that is to
say (c + 1)8 = 0 and so, since 8 = 0 has been excluded,
c -= -1, as required.



CHAPTER VII

THE POINCARE FORMULA;
DETAILS OF PROOF

1. Clockwise and anti-clockwise isomorphisms
It is convenient to start the verifications of the results

sketched in Chapter VI by proving Theorem 33, in a slightly
more general form.

Let K be a set on the complex z-plane homeomorphic to a
closed disc, and let all the points of K be ordinary except one,
namely z', to be contained in its interior. Let A, 1u be two
arcs in K having no point in common except z', which is to
be an end point of both. It will be assumed that A and µ
are both unions of arcs analytically homeomorphic to a closed
line segment and that these arcs are joined end to end, no
two of them having points in common other than endpoints.
Finally it will be assumed that A aril It have distinct tangents
at z'. Then the following is the theorem to be proved:

THEOS,EM 38. Associated with each homotopy class a of paths
from the end point zo of R to the end point zo of p, in the sense
of homotopy in K - z' with respect to fixed endpoints, there is an
isomorphism T;1 of Hr(V (2), V (zo)) onto Hr(V (,u), V (zo)) such
that, if T " : Hr-1(V(zo)) --> Hr_1(V(zi)) is the isomorphism
induced as in a fibre bundle (cf. also §1, Chapter VI) by the
operation of a path of class a in the base (in this case K - z'),
then the following diagram is commutative:

a

Hr(V(2), V(zo)) -- . HH(V(,u), V(zo))

Ia

Hr-1(V (zo)) T Hr-1l V(z )).

The proof of this theorem will be split up into the following
two lemmas.

83
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LEMMA a. Let a1 be a path joining zo to z' in K - z'. Then
there is a homotopy F : V(2) x I -; V(K) of the inclusion
mapping of V(A) into V(K) with the following properties:

(1) F restricted to F (A) x {0} is the inclusion mapping;
(2) F(V(1) x {1)) V(µ);
(3) F(V(zo) x {t}) = V(z(t)), where'z(t) is the point of para-

meter t on a1.
PROOF. Let N be a closed circular neighbourhood of z' such

that, in N, a family of curves can be constructed with the
properties of the family F in §1, Chapter II, K and E being
replaced here by N and z', respectively. Assume also that
this family of curves includes the parts of A and u in N; this
can be done if N is small enough because of the assumptions
made on A and ,u. Let N1 be a second circular neighbourhood
of z' whose radius is half that of N. Let D be the circumference
of Ni and let A and ,u meet D in z1 and z; respectively; these
points are uniquely defined if N, is small enough.

Now the fundamental group of K - z' is isomorphic to that
of D, under the inclusion mapping, and so the closed path
which starts at z1, goes along the path A to zo, along al to z'O,

along u from z,; to z; and fina!l4 ba.ek to z. along D (in either
direction) is homotopic in K -- z', and in fact in K - N1, to
a path lying entirely on D, the homotopy being with respect
to the fixed base-point z1. This statement may be reinter-
preted in the following way; namely that there is a deforma-
tion of the part of A joining z1 to zo into a path which consists
of a path on D from z1 to zi followed by the part of it from
zI to z', the point z1 being fixed throughout the deformation,
while zo moves along a1 to z'. This deformation can be lifted
into V by Theorem 5. Thus, if 1z' is the curve formed by the
part of A from z' to z1, followed by a certain path on D, and then
by the part of ,u from z' to zp, the statement of this lemma has
been proved with It replaced by µ'. The proof of the lemma is
completed by applying Theorem 12, which shows the existence
of a homotopy of the identity mapping of V(N) onto itself into
a mapping which carries V(N1) onto V(z'). In particular this
mapping carries V(µ') into V(u), and the lemma is proved.
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LEi1 t b. Continuing with the notation introduced above, let ocs
be a closed path based on zo and homotopic to a constant in K - z'.
Let F : V (A) x I -- V(K) be a mapping with the following
properties:

(1) F(V(A) x {0}) = F(V(2) x {1})) = V(A);
(2) F(V (za) x {t}) = V(z(t)), where z(t) is the point of para-

meter t on aco;

(3) F(V (A) X {t}) = V (A(t)), where A(t) i8 a path joining z' to
z(t), and for each z e A, F(V(z) x {t}) = V(f(z, t)), where
fl z' t) E A(t).

Then, defining F. and F1 as the restrictions of F to V (A) x {0}
and V(A) x {1} respectively, the two mappings F. and Fi of
(V(A), V(zo)) into itself are homotopic (that is as mappings into

(V(A), V(zo))
PROOF. Condition (3) above implies the existence of a

mapping f : A x I -). K such that f (A x {t}) = A(t). Taking
coordinates (s, t) on A x I, the side s = 0 is mapped by f into
z', the sides t = 0 and t = I into A, and the side s = 1 into
aco. Let N and NI be as in the proof of Lemma a, and in
addition chosen so small that the path aco does not meet N.
Then there is a number 8' such that the part of A x I defined

-1
by a > s' does not meet f (N).

Define the mapping g : A x I x I into K as follows:
(1) g(s, t, u) = f(a, t), for all 8 < a', u being the parameter

on the second copy of I;
(2) g(1, t, u) = h(t, u), where h is a mapping of I x I into

K -- N such that h(t, 0) = z(t), h(t,1) zo, h(0, u) = h(1, u) =
zo for all u. Such a mapping h exists since ao is homotopic
to a constant in K -- z', and so in K --- N if N is small enough.

(3) g(s, t, 0) = f (,q, t) for all (8, t) .c- A x I;
(4) g(s, 0, u) = f(8, 0), and g(s, 1, u) = f(8, 1) for all 8 e A.
These conditions define g on all of A x I x I except the

part where .s' < s < 1, 0 < t < 1, and u > 0. And it is now
a standard operation to extend g to this set, noting that the
extension will carry this set into K - N.
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Now g defines a homotopy of f into a new mapping f: A X I
K which agrees with f on all points of A x {0} and A x {1},

and carries {z0} x I into zo. Also all points mapped into N
by f are left fixed throughout the deformation. It follows at
once from Theorem 5 that this homotopy can be lifted into
V(K). (To apply Theorem 5, it is understood that A x I is
first identified with a set on S which plays the part of K in
that theorem.) And so there is a mapping F : V (A) x I--*
V(K) agreeing with Fo and Fl on V(A) x {0} and V(A) x {1},
respectively, and carrying V(zo) x I into V(zo).

But the point set union of A and N1 is a deformation retract
of K, from which it follows that F can be replaced by a
mapping 7" with similar properties but carrying V (A) x I
into V (A u N1) (Theorem 5). The proof of the lemma is then
completed by shrinking V(N1) onto V(z'), using Theorem 12
and noting that it has been arranged that such a Iiiik ge
carries V(A) into itself (see the beginning of the proof of
Lemma a).

The following is a variant of Lemma b which will be needed
at the end of this chapter:

L$MMA c. Let ao be a8 in Lemma b, and let a mapping
F : E' x I -- V (K) - L be given with the following propertie8:

(1) The restriction of F to E' x {0} and E' x {11 are
mappings F0 and F1 respectively of (E', S'-1) into (V (A), V0).

(2) F(S-IL x {t}) C V(z(t)), where z(t) i8 the point of para-
meter t on ae.

Then F. and F1 are homotopic, regarded ae mappings into
(V(A), VO).

PaooF. The proof is a modification of that of Lemma b.
r+1

Take E' as the set in (r + 1)-space defined by xx = 1,
{-i

-1 < xl < 0. Let IT be the projection of V(K) -- L onto K
defined by mapping each point of V(z) on the point z e K.
Then the mapping f ir0F is defined. f (S'-1 x {t}) = z(t). If N
is a sufficiently small neighbourhood of z' on K there is a
number xi such that- f carries the points of E' X I defined
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by x1 > xi into K - N. Now define g as in Lemma b,
replacing A by E*, 8 by x1 and 8' by xl. g can be lifted into
V (K) --- L using this time the ordinary covering homotopy
theorem of fibre bundles, and the proof is completed as before
by a retraction onto V(A).

PRooF OF THEOREM 38. Let a1 be a path from zo to zo in
K - z'. Lemma a implies the existence of a homomorphiem

H,(V(X), V (zo)) -o' Hr(V (µ), V(zo)) such that 8 T
a (i.e. the diagram in the statement of Theorem 38 with

a replaced by a1 is commutative). Let as now be a path from
zn to zo such that a,,ml is homotopic to a constant in K - z'.
Then Lemma b shows that TAµ T7 and n,, Tao are the
identity homomorphisms. The required result follows at
once.

There are two special cases of the above theorem to be used
in the subsequent working, namely where the homotopy class
a of the path from zo to zo corresponds respectively to a
clockwise or anticlockwise rotation of A into 1u. The isomor-
phisms of H,(V(A), V(zo)) onto H*(V(µ), V(zo)) obtained
corresponding to these two homotopy classes will be denoted
by T`,,t and T"x, respectively. These are the isomorphisms
whose existence was asserted in Theorem 33.

COROLLARY. It ie not hard to Bee that, if A, u, v are three arcs
radiating from z', appearing in the antsclocktoise order A, v, A,

then the compatibility relation T;1 = T;f, T" holds.

2. A special representative for -S
Referring back to §3, Chapter V, it will be seen that the

vanishing cycle 3 was constructed as the sum of a chain v on
V(zo, w') and two relative cycles Alf-if and 4-1) on V(zo, A,)
and V(zo, A.) modulo V (zo, w'), where A, and A. are paths in
the complex w-plane joining w' to w1(zo), respectively w2(zo).
And then referring to §2, Chapter VI, it appears that the paths
u1 and µ2 joining w1(z0) and uw.(z0) to co in the w-plane can be
obtained from Al and A2 by a clockwise and an anti-clock-
wise rotation, respectively. Let T' : Hr_i(V(zo, A1), V(za, w'))
--> H,.-1(V(zo, a1), P) be the clockwise isomorphism constructed
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as in the last section, and T the similar isomorphism
relative to A2 and µs.

Then writing i1 and is for the injection homomorphisms of
H,-1(V ((zo, ,ul), P) and H,_1(V ((z0. ,u2), P) into H,_1(V (z0),, P),
define ,&1 = i, 1)) and 2 4 where &'-1)

and 4-1) are the relative homology classes of L(*-1) and
A(r-1) in V(zo, A1) and V(z0, A2) ii.odu'_ V(zo, w'). Finallydefine

Ll and Lg to be representative relative cycles for A
and A2 respectively, obtained in the obvious way from A(,-1)

and 4'_I).

It is clear, then, that $ = v + /X('-1) + Lq-') is homologous
to 01 + 02, modulo P. That is to say A, + 4e is a representa-
tive of the element 5 of Hr_1(V (zo), P), or J = Al + A3. This
justifies the choice of A, and A. made in §2, Chapter VI.

3. Proof of Theorem 32
The object of this section is to compute T(a,), where T is

the automorphism of H,-,(V0, P) induced by a closed path,
say the circumference of a circle, going once round z' in
the anti-clockwise direction. This will be done by examining
first T", the isomorphism of Hr__1(V(z1), P) onto H,-,(V (z2), P)
induced by an open path a on the z-plane, going from z1 to
another ordinary point z2. Theorem 5 ensures the existence
of Ta (or alternatively an argument similar to that at the
beginning of Chapter VI), and also that T" depends only on
the homotopy class of a in the z-plane with all special points
removed, and with respect to the fixed end points z, and z2.

The idea is eventually to take a as an are on the circum-
ference y of a circle with centre z', and then, by dividing y
into a sequence of ? miall arcs, t,r c*lculate T(Q,)
step by step, the l,<!is iat T" is very ewoy to deal with
for a sufficiently shurr,

LEMMA. Let z he. the arc on y joining z1 z(81) and z2 =r
z ..), in the not.w,`.:r of X21, 'riapter VI. L;;t he the image of
a generator of Hi_1! r?);.. .(8)), P) 3611 in the notation of
Chapter V1, uniicr it e ion into Hr_..(V(z(8)), P). Then if

i,9 near enough ?; P '"R (n )) - ._
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PROOF. In the complex w-plane let U be a neighbourhood
of the path µ(O1) such that V(z(02), µ(9s)) is a deformation
retract of V(z(0s), U). Such a U certainly exists if 02 is
sufficiently near to 01, at least if 1e(O) is always piecewise
analytic, and this can be assumed to be so. Now, by Theorem
19, 3(01) is the image of a generator of S-') under
the homomorphism induced by a continuous mapping
f1 : (E*-3, B*-2) -* (V (z(01)), P), the image off, being contained
in V(z(01), p(01)). The construction of the homomorphism T"
involves the construction of a mapping g : (V (z1) x I, P x 1)
-* (V, P), which, restricted to V(z1) x {0}, coincides with
the inclusion mapping (V (z1), P) --* (V, P), and which
carries V(z1) x {1) into V(zt), Write g' for the restriction of
g to the set V(z1) x {1}. Then a simple argument from the
compactness of E*--1 shows that, if 02 is sufficiently near to 01,
the image of g'f1 == fs will be entirely contained in V(z(02), U).
It follows at once from this that T"(3L(O1)) can be represented
by a relative cycle of V(zg) modulo P which is in fact a chain
on V(z2, U). Since the last-mentioned set can be retracted
on V(z(92), µ(0g)), it follows from Theorem 12 (the retraction
of U on µ(0t) can be assumed to satisfy the necessary condition)
that T"(3 (01)) has a representative which is a relative cycle
on V(z(O2), µ(0,)) modulo P. Applying Theorem 19, it follows
that ?'(A(01)) = ca(02) for some integer c. It still has to be
checked that c ± 1.

Let a' be the path a taken in the opposite direction. Then,
of course aa' is homotopic to a constant on the circle y. Let
7' : H,^1(V(zt), P) -- H,_1(V(z1), P) be constructed corre-
sponding to a', as T corresponds to a. The composition of
7' and T", which is the ;d.entity isomorphism of H,_1(V (z1), P)
on itself, involves the eonstruction of a mapping h : V(z1) x I
-- V such that h, restricted to V(z1) x {0} is the identity,
and h(V(z1) x {l}) C V(zg), h(V(z1) x {1)) C V(z1). If h' is the
restriction of h to V(z1) x {1}, then h' is homotopic to the
identity, h' being here considered as a mapping of V(z1) into
itself; that is to say, it depends continuously on 02. It follows
at once that, if 02 is taken small enough, the images of g' f1

7-{12 pp.)
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(g' being the same as the restriction of h to V (zl) x {J}) and
heft will be contained in V(z2, U) and V(z1, U), respectively.
The above argument may then be repeated for T", the
inverse of T, to show that T"(A(92)) = c'a(81), for some
integer c'. Since kA(01) 0 for any integer k (of. Theorem
19) it follows from these results that cc' = 1, and so c = ±1,
as required.

4. Proof of Theorem 34
As already indicated in Chapter VI the proof of this theorem

will be carried out by constructing special models for repre-
sentatives of A and The construction will be carried
out with the aid of the following preliminary considerations
on hypersurfaces.

Let Wr be an algebraic (but not necessarily non-singular)
hypersurface in affine (z1, z2, ... , zr+1)-space A,+1, and let (C)
be a generic point of W,. Make a "parallel projection" (that
is, from a point at infinity) along any direction in the tangent
hyperplane to Wr at (f) onto a subspace A,. Let W,_1 denote
the branch locus in A. corresponding to this projection; that
is to say, (z') c- Wr_1 if and only if two or more points of W,
projecting on (z') are coincident. In particular, if projects
on (c,'), then for any (z') in A, - Wr_1 near (c'), there are just
two points of W, near projecting on (z'). Also it is not
hard to see that (c') is a generic point of Wr_1. And so a
similar projection of W,_1 onto a subspace Ar_1 of A, may be
made, this time along a direction parallel to the tangent
hyperplane to W,_1 at (c') in Ar. The branch locus in Ar_1
will be called W,_,. And so on step by step until a curve W1
is reached.

Now the condition that, in the first projection mentioned
above, more than two points near (C) should project on a point
near (c') is algebraic in the coordinates of (c), a similar state-
ment holding for each subsequent projection. It follows at
once that a point (c), no longer generic, can be taken as origin
0 of coordinates in Art1 and the coordinates (z1, zQ, ... , z,+1)

can be chosen so that the following condition holds:
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(A) For each i = 1, 2, ... , r, W, has, in a sufficiently small
neighbourhood of 0, the equation z 4.1 + a,z,+1 + b{ = 0 in the
space A,+1, where b, are analytic functions around 0 in
the variables z z2, ... , z,. Also a, and b, vanish at 0, and the
only linear term in the expansion of b, in powers of z1, z2, ... , z{

is a non-zero term c,z1.
Remembering that a generic hyperplane pencil contains at

most a finite number of tangent hyperplanes to Wr (using
here the dual W; of W. as in Chapter I; the possible existence
of singularities makes no difference to this argument) each of
which has a generic point of W, as point of contact, it is not
hard to see that a pencil can be selected containing at most a
finite number of tangent hyperplanes of W, such that, around
each point of contact, coordinates can be chosen so that (A)
holds. This is the context in which the results about to be
described will eventually be used. In the meantime, let the
origin 0 and the coordinates (Z1, z2, ... , z,+1) be such that (A)
holds.

A real analytic mapping of the solid r-sphere Er into W, is
now to be constructed, carrying 8-1, the boundary of E', into
the section of W, by the hyperplane z1 = c, where c is a
sufficiently small complex number. This mapping will actually
be a homeomorphism into, and will map the centre of Er on
0, and in addition will depend continuously on c, which will
be allowed to vary on a certain are on the z1-plane. The
mapping in question will be constructed inductively, starting
off with the curve WI. But first some notational conventions
must be introduced.

The are along which c is to vary will be an are of a small
circle about the origin in the z1 plane, of radius p, say. It will
be assumed that the are in question goes in the anticlockwise
direction from co = pe°% to c1 = pet°l. Any point on this are
will be written as c(t) = pe'i8(' , where 0(t) = (1 -- t)O p + t81.
Also the following notations will be used:

1+1

E' = the set Ix2, = 1, x1 < 0 in real (i + 1)-space;
1-1
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i+1

Si-1 = the set Ixj ' = 1, x1 = 0 in real (i + I)-space;
i-1

E'-1 and S1-2 are the subsets of E' and S1`1, respectively,
with xi+1 = 0;

i+1

H'+1 = the set :Exf < 1, x1 < 0 in (i + I)-space;
J-1

D' = the subset of H1+1 for which x1 = 0.

Consider now the curve W1 in At with the equation
zR + a1z2 + b1 = 0 around the origin. The function ai - 4b,
is zero at 0, and only at 0 in a sufficiently small neighbourhood
of 0, and db1 f dz1 0 0 at 0. Hence ai - 4b1 = z1i1, where 0,
is a function not zero in a neighbourhood of the origin. Define
fi(x1, xt, t) for (x1, x,) E H2 and 0 < t 1 by fl(x1, zt, t)

the point (z1, z2) in A 2 where z1 = p(1 - xi)e
zt = -(-a1(z1) + V px,eii°" 's/ 1(zl)). z1 is a complex valued
real analytic function of x1 and t, and zs of x1, x2, t (since 01
is not zero near z1 = 0). D' (given by x, = 0) is mapped into
z1 = Peie{" = c(t). And if (x1, xt) e E1, x$ = ± Vx1i and
so zt = J(- a1(z1) ± `' z101(z1)) = J(- a1 ± - 4b1).
Hence E1 is mapped into W1. Clearly the point (-1, 0) is
mapped on (0, 0). Finally, for any fixed 4, f1 is a homeo-
morphism on Ht, and only the points of E1 are mapped into W1.

The mapping f1 is thus fully defined on H2 X I. Assume
now that an analytic mapping f i_1 . H' X I - * Ai has been
constructed with the following properties:

(1) f{_I(D'-1 x {t}) C the set z1 = c(t);
(2) f;_1(E'-1 X I) C W'i_1, and only E;-1 x I is mapped into

Wi=1;
(3) for fixed t, fi_1 is an analytic homeomorphism, carrying

(-1, 0, 0, ... ) 0) into the origin;
(4) if fi-1(z1, x2, ... , xi, t} = {z1, z2, ... , z{) then z1

P(1 - xl)ei ')-
f1 has been constructed with these properties; it will now

be shown that the conditions stated enable a mapping fl
to be defined with similar properties.
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By condition (2) on fi_1, ai -- 4bi, when expressed by means
of fi_i in terms of x1, x2,

....

xi, t, vanishes only on the set

xQ = 1, and therefore contains 1 - as a factor, the other
1

factor being also real analytic in xi, x2, ... , xi, t. Write

x1+1= . Thenl - x; =2Z-Z2-2x;.
z

The only linear term in a - 4bi, when expanded in a power
series around the origin, is ciz1. That is to say a; - 4bi =
ciz1 + higher powers of the z1. By condition (4) above, *hen
the zi are expressed in terms of x1, x2, ... , xi, t by means of

fi_11 z1 = e)eo(t) = 2pe'O(1)Z + term in Z2, and near
(-1, 0, 0, ... , 0) the other z, are all power series with zero
constant terms in , x2, xs, ... , x, Hence a, - 4bi =
2cipe t)Z + higher powers of , x8, x3, ... , xi. It follows that

i i
aQ - 4bi contains the factor 1 - jxf = 2 - 2 - 7-x'. exactly

1 2

once. That is to say
i

aQ - 4bi = (1 - 7x2)0-, (i)
2

where 4, = c,pe'&t) + higher powers of , x., 2;,;..... x,, and.
0i:;6 0onH'.

Now for (xi, x2, ... , xi+1) a H1+1 and 0 < t < 1, define
fi(z1, xa, ... , xi+i, t) _ (z1, z2, ... , zi+i) by:

(z1, z2, . . . , zi) = fi-1(x1, x2, ... , xi, t),
zi+1 + xi+i;) (2)

0i =t- 0 on H', and so is real analytic on H'. Hence
,i is a real analytic mapping. zi is given by f{_t as p(1 -- xi)eiB(t);

and so fi(D' x {t}) C the set zi = c(t). If ( ; , x , , . .. , xi+1) E
i

E', then xi+1 = ±(1 - fix!)}, and (2) becomes the formula
1

for solving the quadratic equation z2+1 + aizi+l + bi = 0.
That is to say, f{(E' X I) C W. The converse, that fi(W4) =
E' X I, is easy to check, as is also the fa c t that f i. is a homeo-
morphism f o r any fixed t. Also f( -1, 0, 0, ... , 0, t)
(0,: 0, ... , 0) follows at once from the definition.
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The mapping f now simply to be called f, which has just
been constructed is the essential tool in the intersection
number calculation about to be carried out. The idea is to
project the r-dimensional variety V, which is embedded in
projective n-space, into an (r + 1)-dimensional space Ar+1, V
projecting thus onto a hypersurface Wr of that space. This
projection it can be made locally homeomorphic around the
singular point C' of the singular section V(z'), carrying this
point into the origin of suitably chosen affine coordinates in
Ar+1, and it can be assumed that the pencil R of hyperplanes
in projective n-space projects into the pencil in Ar+1 with the
equations z2 = constant. It must also be assumed for this
purpose that Ii has been chosen so that the condition (A) is
satisfied by W, at the origin in Ar+1. This simply means adding
yet another to the list of algebraic conditions mentioned in
§1, Chapter III, which 11 must not satisfy if it is to be
sufficiently general for the proofs of Lefschetz's theorems. (cf.
remark at end of §1, Chapter III).

Write go, gl for f restricted to Er x {0}, Er x {1}, respectively
and let ao be a relative cycle of Er modulo Sr--1 representing a
generator of i1r(Er, ;r-!)' ao can, in fact, ire taken as a
singular simplex or singular cell on Er. Then go(ao) and
gl(ao) are singular cells on W and it will turn out quite
easy to calculate their intersection number. On the other
hand, it will appear that they are projections, under IT, of
representatives of a generator A of Hr(V (A), VO) and of P(A),
respectively, where V. = V (zo) projects under IT into the
section of W, by z1 = co. The homeomorphio nature of IT

around C' will then give Theorem 34 at once.
THEOREM 39. The intersection number (go(ao) . go(al)) i. 1.
PROOF. The convention of orientation of a complex analytic

manifold will first be stated. If Sl, b2, 3, ... , ar, are local
coordinates on such a manifold and i = , + irtj, then the
standard orientation of the manifold is to be that correspond-
ing to the order $1, 2, s, . , fir, n1, - , r1, of real coordinates.

Then, in order to prove the theorem it is sufficient to show
that the r tangent vectors on E at (-1, 0, 0, . . . , 0) parallel
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to the x2, x8, ... , x,+, coordinate directions are carried by go
into vectors ui, u., ... , u, and by gi into vectors v1, v2, ... , v,

such that the vectors ui, u2, .. . , u v1, ... , v,, in that order,
define the standard orientation of the tangent hyperplane to
W, at the origin. (For this to be true it may be necessary to
restrict the size of the rotation from 00 to 01, or the simplex
having u1, u2, ... , u,, vi, ... , v, as edges will turn out-
side in.)

The theorem is true for r = 1, for the vectors ui, v1 in this
case are given by joining the origin in the z1 -plane to the values
of dz2/dx2 at (-1, 0) for t = 0 and t = 1, respectively,
the derivative being calculated from the formula z$ =

+ '%"'Px2eh8(t) ); it is clear that here the only
restriction which must be made is the natural one 01 --- 00
< 21r. Suppose, then, that it is true for r replaced by r - 1.
That is to say, suppose that f,_i, restricted to t = 0 and
t = 1, carries the tangent vectors to Er-1 at (--1, 0, 0, . . . , 0)

in the x2, x3, . . . , x, directions into two sets of vectors
u1, u2i ... , u,_1, v,, ... , v.._t such that the u; and vi, in that
order, define the stanaara orzenratioii on the tangent linear
variety to W,_1 at the origin. There is a subvariety W,'-, of
W transversal to the z,+,-axis, projecting on W,_1 under
the projection of W, on A, (given in fact by equation (2) with
i = r and with x,+1 = 0). The ui and v, lift into vectors
u, u2, ... , u,_1, v1, ... , v,_1 spanning the tangent linear
variety of W,'._1 at the origin, with the standard orientation.
The directions of the image of the tangent to Er at
(- 1, 0, 0, ... , 0) in the x,+1 direction under g0 and g1 are
given by the joins, in the z,+i-plane, of the origin to the values of
az,+1 f ax,+1 at (-1, 0, ... , 0) fort = 0 and for t = 1. By (2),
azri axr+1 = J r-- +rP ei") terms in , xE, , x,+ + r
Setting t = 0 and t = 1, it follows at once that the two
vectors u, and v, so obtained are such that v, lies anticlockwise
from u, in the z,+x plane. Hence u1, uE, ... , u v1, vs, ... , v,
define the standard orientation of the tangent linear variety
to W, at the origin, as was to be proved.
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THEOREM 40. Let IT be the projection of V into the (r ± 1)-
spaoe A,,+1, it being an analytic homeomorphi8m around the point
C'. Let 7r(V) = W 7r(C') = 0. Let coordinate8 in A,+1 be a8
described above in condition (A), and let the image of H under IT

be the pencil with the equations z1 = constant. Write ho = pogo,

: ='To91 and h = rrof, in the notation already introduced. Let
ao be a generator of H,(Er, S''-1) and let i and j be the inclusion

(V(A), VO)--+ (V, VO) and (V(u), V(zo))-* (V, V(zo)), in the
notation of §2, Chapter VI. Then a generator 3 of II,(V(A), Vo)
can be chosen so that h0*(Ao) = ci*b and hi*(bo) = cj*T,i1(E)
for some integer c.

PROOF. A and 'A(A) are generators of H,(V (A), V(zo)) and
H,(V(u), V(zo)), respectively. Also the images of Ae and hi
can be made arbitrarily small. Theorem 19 implies that
ho*(A0) = ci*A and h1*(A0) = c'j*Ta (A) for integers c and
c'. It must therefore be shown that c = c'.

Since a suitable neighbourhood of V(z) can be retracted
onto V(A), using Theorem 12, there is a. mapping ho :
(Er,Sr-1) -- (V, V0) homotopic to h0 such that ho(Er) C V(A).
Similarly there is a mapping hi homotopic to h1 and having
its image ir, i'1. t.0. Hence h', (a.) = ci,,A and h;,, t TX,) =

Now, hd and hi are homotopic, the set Sr-1 being
carried at stage t of the homotopy into V(z(t)). On the other
hand the construction of Lemma a, §1, induces a homotopy of
ho and a mapping hi : (E', Sr-1) -* (V, V (zo)) with its image
in V(µ) and such that h'y*(a) = cj*T7 (A). To complete the
proof it must be shown that hi and h;, as mappings into
(V(µ), V(z' )) are homotopic. That this is so follows at once
from Lemma c of §1.

The proof of Theorem 34 can now be carried out. For, by
Theorem 39, along with the fact that 7r is locally homeomorphie
around C', (h0(A0) hi(A0)) = 1, and so, by Theorem 40,
c2 (A . T(° AA)) = 1. c is an integer and so c2 = 1, whence
(A. `x(A) = 1, as required.



CHAPTER VIII

INVARIANT CYCLES AND
RELATIVE CYCLES

1. Summary of results assumed
An already explained in Chapter VI, the fundamental group

o f t h e c o m p l e x s p h e r e 8 w i t h t he special p o i n t s 2 1, . . . , zk
removed acts as a group a of automorphisms on H,(V, P).
For q - r -- I the form of the basic element of this auto-
morpldsm group has been established in Chapters VI and VII.
The term "invariant element of H,(V0, P)" will now be used
to denote an element which is invariant under G. If a E
Hj Ve, P) is an invariant element and a a relative cycle of
V, modulo P representing a, then at will be called an invariant
relative cycle.

Theorem 30 shows that every element of H.(V,, P) is
invariant for q S r - 2, and so interesting results will only
be obtained for q = r -- I. The first result to be obtained in
this chapter is essentially that HHi(V0, P), with coefficients
in the rational numbers instead of the integers, is the direct
sum of its subgroup of invariant elements and of the kernel of
the injection H,4i(V,, P) --b- Hi(V, P). Being a result on
homology with rational coefficients this lends itself readily to
s treatment involving the de Rham oohomology on V. The
following results will be used:

(a) A KBhier structure may be given to V, induced by a
Uhler structure of the ambient projective space in such a way
that, if 1 is the fundamental quadratic exterior form of the
Kihler structure, L is homologous in the de Rham sense to
the image under the injection map gs- s(V1) -' is,--:(V) of
a ,generator of the first of these groups.

(b) Let j be a differential form on V and write L¢ = Q A 4
and let A be the dual operator to L (Weil [12]). Then if # is

97
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of degree >r, A = 0 implies 0 = 0, and dually if 0 is of
degree <r, 14 = 0 implies 0 = 0.

(c) Every form of degree <r can be written as A#, and
dually, every form of degree >r can be written as 4.

(d) It follows from (b) and (c) that L effects a homo-
morphism L* of HQ(V) into H11+2(V ), where the upper indices
denote cohomology groups, which is onto for q > r -- 2 and
isomorphic for q <r.

(e) Every form 1 of degree <r can be written uniquely as
0o + L01 + L202 + ... , where A0, = 0 for each i. Using
(b) and (c) this unique decomposition can be extended to
forms of degree r + 1.

(f) The operator L and the induced homomorphism
L* : HQ(V) -- H4+2(V) give rise at once to a homomorphism in
homology. For, by Poineare duality on the manifold V
there are isomorphisms 9Q : HQ(V) ^- H2 (V) for each q.

Then writing L* = eQ+2L*6Q one obtains a homomorphism
L* : HQ(V) -> HQ_2(V) for each q, and by (d) above L* is onto
for q < r + 2 and is isomorphic for q > r.

The standard interpretation of L* is as an intersection of
a representative of an element of HQ(V) with a fundamental
cycle of V0. This interpretation will be discussed in greater
detail later in the chapter. In the meantime the following
lemma will be stated; it is essentially part of Hodge's classifi-
cation of the cycles on an algebraic variety (ef. Hodge [6],
[7]), and follows at once from the definition of L* and the
above stated properties of the operator L:

LEMMA. An element of HQ(V) for q > r is in the image of L*
if and only if it is in the image of the injection HQ(V0) HH(V).
An element of Hr_1(V) ie in the image of L* if and only if it is
in the image of the injection Hf_1(P) -* H,_1(V).

2. The intersection and locus operators
As in some of the earlier parts of this monograph, it is

convenient at this stage to sketch some of the results required
geometrically, in order not to delay too much the main
theorems. The details of these sketched proofs will then be
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completed in §5. In the first place some intersection operators,
of which L* is one, will be described (of. §5 for further details).

Let V. and V1 be two non-singular hyperplane sections of
V belonging to the pencil H. Then if a E HQ(V ), a has a
representative cycle a which is intersected by V1 in a cycle ft.
The homology class of ft in V is L*i.

Secondly if a e HH(V, Vo), & has a representative relative
cycle which intersects V. in a relative cycle ft of V1 modulo
P. The image of the relative homology class of ft in V1 modulo
P under a suitable isomorphism of H,-$(V1, P) onto Hq_a(Vo, P)
will be denoted by Loa. The relative homology class of i4 in V
modulo P will be denoted by L1a.

Finally if ac- Ha-1(V o), there is a representative cycle inter-
secting V1, that is to say intersecting P, in a cycle R. The
homology class of ft in P will be denoted by L.

The operators L*, Lo, L1, L. are all homomorphisms
between the appropriate homology groups, L* being the
homomorphism introduced in §1, and L*, L1, La fit together
to form the following commutative diagram, in which the two
rows are parts of the homology sequences of the pairs (V, Vo)
and (V, P).

HQ(V) Ha(V, Vo) Ha (Vo) --)- HQ-1(V)

HQ-2(V) Ha-$(V, P) -4- Ho-s(P) <-- Hv-a(V)

The operator L. starts from relative cycles of V modulo
V. and yields relative cycles of V. modulo P. A partial
inverse to this operation will now be constructed, namely,
an operation which starts from relative cycles of V. modulo
P and, under suitable conditions, gives relative cycles of
V modulo VO, with the dimension increased by two. As usual
let z1, z2, ... , zk be the special points on 8, and Al, 22, . . . , A*

a set of area from an ordinary point zo to the special points,
zo being the only common point of any two of the 2{. Let K.
be the point-set union of the Aj. Let a be a q-dimensional
relative cycle of V. = V(zo) modulo P. The idea now is to
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shift Z. into S Ko and then allow it to vary over the whole
of this set. As the section V(z), starting at V,, varies in this
way, it carries with it the relative cycle a, which thus 'traces
out a locus of dimension q + 2. This locus is a relative cycle
of V modulo V(K0). The operator whose definition is based
on this geometrical idea is thus a homomorphism of H,(V,, P)
into H,+:(V, V(Ke)); this homomorphism will be denoted by
loc.

Now the locus of a relative cycle of V, modulo P, constructed
as just described may not be a relative cycle modulo V,;
because, as z varies over the out complex sphere 8 - Ke, a
may, so to speak, tend to different limits as z approaches one
of the cuts from different sides. It is, however, reasonable
to hope that, if a represents an invariant element of H,,(V,, P),
then the limits as the A{ are approached from opposite aides
can be made the same, and the resulting locus will have its
boundary in Ve. That this conjecture is valid will be shown
by proving the following theorem:

THEOREM 41. For a E H,-,(Vg, P), loco is in the image of
the ho1nomorphism zr: R,. (V, Ve) - H1+,(V, V(Ke)), induced
by tht appropriate inclusion mapping, if and only if do is
invariant, in the sense introduced at the beginning of §1.

Note that, in accordance with the remark on invariant
elements made at the beginning of §1, attention is confined to
dimension r - 1. The proof of this theorem will be given in §5.

The next step is to establish a connection between the
homomorphisms L. and loc. It is not hard to conjecture that,
if one starts from an invariant relative oygle at of Ve modulo
P, forms its locus and then intersects this locus by V,, one
gets the relative cycle a back again. That is to say, the
composition Leboc, applied to invariant elements, is the
identity. This will not be proved in detail as it is not needed.
What is more important for the present purpose is to examine
the composition locL0. If a is a relative (r + 1)-cycle of V
modulo V,, the operation locL0 means geometrically inter-
secting a with Ve and then constructing the locus of this
intersection as z varies over S -- K0. Now if the intersection
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of a with V. turns out to be invariant, then its locus can be
represented as a relative cycle of V modulo V0 (Theorem 41),

and it will turn out that this relative cycle is homologous
to the original a. That is to say it will be shown that the
composition IooL0 coincides with the homomorphism v:
H,+1(V, VO) - H1+,(V, V(K)) induced by inclusion.

The consequence of the relation locL0 = it which is wanted
here is that the image of Lo is in the invariant sub-group of
H,_i(V0, P). The opposite inclusion relation will also be
obtained, and so the following result will be established:

THEOREM 42. The image of L0 : H1+1(V, V O) -,* Hr-1(V0, P)
con8i8t8 of the invariant elements of H,_i(V0, P).

3. Direct decomposition for H,-,(V0, P)
On the basis of the results whose proofs were sketched in

the last section, one of the main theorems of this chapter can
be derived. The proof will be carried out with the aid of the
following lemma:

LEMMA. The homomorphism Li : Hr+1(V, V O) -"' H,-,(V, P)
introduced in the last section (and for dimension r + 1) is an
isomorphiam.

PROop. Consider the following diagram:
i

r
i a

Hr+i(VO) ---- Hr+1(V) Hr+1(V, VO) Hr(V0)
i) IL. i, 1L; 1L' A

H,-1(P) -; H,_1(V) -* H1-1(V, P) --> Hr-,(.P) --- H,-2(V 0)

where L*, L1, L. are as in §2, a, a' are boundary homomor-
phisms and the other mappings are all induced by the
appropriate inclusions. It is to be shown that the kernel of
L1 is zero. Let a be an element of this kernel; that is to say
Lia = 0. Then a'La = 0 and so, by the eommutativity of the
diagram, LSaa = 0. Hence ILeaa = 0. Now AL. is a
mapping constructed for V0 in the same way as L* is con-
structed for V, and so, for dimension r, it is an isomorphism
(see (f) in §1). Thus as = 0 and so a = j# for some jl e H,, 1(V ).
The equation L1 j/3 = Lja = 0 becomes, by commutativity
of the diagram, j'L*j ` 0. Then L*# is in the image of V and

4
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so, by the lemma in §1, is in the image of L*. That is to say
I:# = L.,, for some y in Hr+s(V). But (see (f) in §1) L* is
an isomorphism for dimension r + 1, and so f3 = L*y. Then,
again. by the lemma of §1, P is in the image of i, and so
cr. ,; = 0, as required.

Tr 43. III-1k, V0, F) is the direct sum of the group
nJ' elements and the. kernel of the injection i

iir-1(V, P).
s'TT?rt'1'. Consider the diagram:

Hr+i(V, Vo)-;.Hr+r(V, P)

Hr-1(Vo, P)

Gy the definitions of Lo and L1 this diagram is commutative.
`r -ts l'ds, and. L1 have as image some subgroup G of Hr_1(V, P),

-1
and regarded as a map onto 0, L1 will have an inverse L1

(by the above lemma). Hence (Lli)L0 is the identity and so
F) is the direct sum of the image of Le and the
-i

kernel of L1i, which is the kernel of i. But the image of Lo
has been identified in Theorem 42 as the group of invariant
elements of Hr-1(V0, P).

4. decomposition of Hr-1(V0)
`I'-11c, result of §3 is to give a direct decomposition of

Hr--1(i'g, P), the homology groups being with real or rational
coefficients. A similar result will now be obtained for
H,.__1( Vo), and this will actually be Lefschetz's result (Lefsohetz
[9], Theorem I, p. 93). Returning to the notations of §1,
Chapter VI, the fundamental group of K acts as a group of
automorphisms on HQ(Xo), where X0 = Vo is the fibre of the

a?;,t+. X. If Sa is the automorphism corresponding to the
eieUtant ,x of rr(K), write T' = Vo*S' - * Then the T.' form
a sentat.ion of w1(K) as a group of automorphisms on
HQ(1'o; for each q, just as the T. of Chapter VI represented
w1(K) s,t; an automorpphism group on HQ(Vo, P).
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An element of H,(VO) invariant under the Ta will simply be
called an invariant element of H,(V 0). The analogue of
Theorem 30 is practically trivial:

ThEOREM 44. The entire group HQ(V0) i8 invariant for
q<r---2.

From now onwards attontion will be fixed on the value
r - 1 of q. Write Ti = Tat, where the a; are as in §1, Chapter
VI, and let S, denote the element of Hr-i(V0) represented by the
vanishing cycle 8i, while $, denotes the element of H,_1(V0, P)
represented by the same cycle, for each i = 1, 2, ... , k.

LEMMA. The homomorphism Hr-i(V 0) --- Hr-1(V0, P)
induced by inclusion carries the kernel of the injection H,_1(V 0) -->
H,_1(V) iaomorphically into that of the injection H,-,(V,, P)

Hr-1(V, P).
PRoop. The two kernels mentioned are already known to

consist of essentially the same elements, namely linear
combinations of the "vanishing cycles." It must therefore
be shown that if a is in the kernels of the mappings H,...i(V e) -->
Hr-1(V0, P) and Hr_1(V 0) - Hr_1(V ), induced by inclusions,
then a = 0. The proof is to be based on the following diagram:

k
Hrt$(V, V0) Hr+1(V0) ''' Hrtl(V )

I L, a, 1 L, k
Z,

H,(V, P)'- Hr-1(P) -* Hr-1(V) - Hr-1(V, P)
t /a hx 1s to

Hr(VO, P) Hr-1(V0) Hr-1(VO, P)

It is to be shown that j is an isomorphism between the kernels
of i and i'. Clearly j maps the first of these kernels onto the
second. Then let a be such that is =jot = 0; it is to be
shown that a = 0. By the exactness of the homology
sequence of (V0, P), jc = 0 implies that a is in the image of A.
Now hL$ corresponds to VO in the same way as L* corresponds
to V, and so the lemma at the end of §1 shows that a is in the
image of hL2. That is to say a --= hLz6 for some P e Hi-,(V0).
Then is = 0 becomes ihLfi = 0, in other words k'LO = 0,
or L*kI = 0, making use here of the commutativity of the
above diagram. But L* is an isomorphism for dimension
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r + 1 (see (f), §1), and so k/I = 0. Using the exactness of the
top line of the diagram, it follows that fi = ay for some
y E H1+2(V, VO). Hence at = hLaay = ha'Lly. But the
image of Ll is, by its definition, contained in that of i", and
so a'L,y is in the image of a'i' = a". Thus a is in the image
of ha" which is zero by the exactness of the homology
sequence of the pair (V0, P).

The Poincare formula for H1(V o) can now be proved :
THEOREM 45. For each a e Hr_i(V0), V(a) = a - (a .

the homology group being over integral coefficients.
PROOF. Denote by it the projection map Hr_1(V o)

H,_1(V0, P). Then ii _ J;. A repetition of the argument of
Theorem 31 yields at once that Ti'(a) = a + c(.. 8{)J;, where
c is an integer independent of a. Now it is clear from the
mode of construction of the T, and T{ that irT;(a) = T{(lra),
and so T{(ira) ira + c(a . 8,)Jt = Tra -- (a. 6j)${, by Theorem
37. Now if 5; is not a divisor of zero, that is if n${ 0 0 for all
integers n, the last equation implies that c(a . 8,) _ -(a . 8,),
and there will be at least one a such that the intersection
number is non-zero, whence c = -1 as required. On the
other hand if nJ1 = 0 for some. integer n, the above Lemma
implies that 5; is a divisor of zero and so (a . 0. The
formula T{(a) = a - (a . 8,)$;, with the second term on the
right vanishing, therefore still holds.

COROLLARY. a is invariant under all the T; if and only if Tra
is invariant under all the Ti, the coefficients for the homology
groups again being integers.

The coefficients for the homology groups will again be
assumed to be the rational or real numbers, as they have been
throughout this chapter apart from the last theorem. The
main result of this section is the following:

THEOREM 46. H,`1(V0) is the direct sum of the subgroup of
ele)nents invariant under the T,' aria the, kernel of the injection
Hr-1(V o) --.)- Hr-l(V)-

Lot a e Hr-1(V o) and let IT be as in Theorem 45. Then, by
Theorem 43, ira = al + ao where al is invariant under the
T{ and ao is in the kernel of the injection Hr-1(V0, P) --
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H,_1(V, P). But this kernel is generated by elements repre-
sented by the vanishing cycles, and so ao = aroco, for some
ao a H,_1(V 0). Thus al = ir(a - a fl) is invariant under the
T,, and so,. by the corollary of Theorem -15,. at - ao = all is
invariant under the T. And so a = ab + at', for ai invariant
and ao in the kernel of H,_1(V o) --> H,_1(V ). It must be
shown that this expression is unique; that is to say, that

= Oao +ai = 0 implies oc fl =0 and ai =0. But MO + ac'
implies that iraca + 7rai = 0, and so, since the summation is
direct in Theorem 43, ira0 = 0 and iral = 0. But by the
lemma preceding Theorem 45, irao = 0 implies ao = 0 and
so also cc' = 0, as required.

Now, it is not hard to see from the definition of L* sketched
in §2 that it can be written as iLo* where i is the injection
HQ-,(V0) -+ H.-2( V) and Lo* is the homomorphism HQ(V)--o-
H,-a(V o) represented by intersecting cycles of V with V. to
obtain cycles of Vo. The following is then an immediate
consequence of Theorem 46.

TsEoREM 47. The image in H,-1(VO) of Ls* coincides with
the group of invariant elements.

PBoo . iLo* = L* and L* is an isomorphism onto for
-1

dimension r (see (f), §1). Thus (L*i)Lo* is the identity, and.
so, by the usual argument applied to a homomorphism with
a one-sided inverse, H,_1(V p) is the direct sum of the image'

-1 .

of Lo* and.the kernel of L*i, that is, the kernel of i. Com-
parison with Theorem 46 then gives the result.

Finally, as a complement to Theorem 41, a result will be
obtained on the locus of an invariant element of H4-1(V0). In
the following diagram:

H,+1(V, V(Ho))

A/ tiot

H,+1(V, VO) /L'-H,-1(Vo, P)

I Y
.vH,+1(V) -4. H,-1( i'o)
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IT, Zr1, irs are induced by inclusions. For the verification of
commutativity, see §5.

TEmoREM 48. If «. E H,-1(V1), a is invariant if and only if
locirsa is in the image of mr1.

Fort = locIr2Lo* and so if locirsa = ir7r1f, f E H,+1(V)
it follows that loca$a = loc?r2Lo*$, and so, since be is an
isomorphism (see §5), Ir2(a -- Lo* fi) = 0. Since a - L0* ft is
in the kernel of '7r 21 the lemma of §1 implies at - Lo*p = L*y,
where L* is related to Vo as L* to V. But eommutativity
holds in the diagram:

L;

Hr+1(VO) --> H1+1(V)

H,-1(F) ) H,-,(YO)

I /
H,-l( V0)

where the unmarked maps are induced by inclusions, and so
L*y = Lo*y', for y' E H,+1(V), and so a is in the image of
Lo*, and so is invariant, by Theorem 47. Conversely if a is
invariant, at = L0* fl for some P e Ht±1(V), and so Trn1Y =
locIrsLo*P = loclra, as required.

5. Proofs of Theorems 41 and 42
In this section the details of the definitions and results of

§2 will be filled in. The first step is to give the full geometrical
definitions of the operators L*, L1, L2, L0. In order to do
this, let Vo and V1 be two non-singular sections of V by
hyperplanes of the pencil R. Let B1 be the normal bundle to
V1 in V, with respect to some Riemann metric on V, and let
B0 be the normal bundle of Vo n V1 in V0 with respect to the
induced metric. It is not hard to see that, if the radii of these
bundles are small enough, the fibres of B1 in a neighbourhood
of Vo n V1 can be modified so that B1 is refibred as a bundle
B having the property that the fibres of B through points of
Vo n V1 lie in V. and coincide with the corresponding fibres
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of Bo. Let B' and Bo denote the boundaries of B and Bo,
respectively. Thus, while B and Bo are fibred by 2-oells, B'
and Bo are fibred by circles.

Since V1 is an orientable submanifold of the orientable
manifold V, the fibres of B can be consistently oriented, from
which it follows that B and B' are trivial bundles and can be
represented as products V x E2 and V x 81, where E2 is a
2-cell and Sl its circumference. Similarly writing P = V O n V,
as usual, B. and Ba can be represented as products P x E'
and P x 81, respectively.

Consider now the diagram on page 108:
The vertical lines are all portions of the appropriate

homology sequences. The mappings in the left-hand half of
the diagram are induced by inclusion mappings, and so that
part of the diagram is certainly commutative. In particular,
the mappings between the second and third columns are
excisions, and so may, in fact, be reversed. The isomorphisms
marked in the middle of the diagram are obtained by identi-
fying B, Bo, B', Bo as products, as indicated above. The
way in which Bo and Bo have been arranged to be the
restrictions of B and B', corresponding to the restriction of the
base from V1 to P, ensures that commutativity holds between
the third and fourth columns of the diagram. The mappings
between the fourth and fifth columns are also isomorphisms,
obtained by identifying H2(E2, Sl) with the group of integers,
at the same time making use of some homeomorphism of the
pair (V1, P) onto (V0, P). The remaining mappings on the
right are induced by inclusions. Commutativity in the right-
hand half of the diagram is easily seen to hold.

The operators of §2 can now be defined:
L* is the composition of all the mappings from left to right

along the second row of the above diagram (remembering that
the second mapping is an isomorphism onto and is to be
reversed). It is a standard result, proved, say, by effecting a
simplicial subdivision of V so that V, is a subcomplex, that
this operator coincides with that obtained in §1 by way of
differential forms and the de Rham theorems.
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Lo is the composition of all the mappings from left to right
along the third row of the diagram, stopping at HQ_2(Vo, P).

L, is similar to Lo but goes right to the end of the third row
of the diagram.

L2 is the composition of all the mappings along the first
row of the diagram from left to right.

It will be seen now that the diagram on p. 99 is simply a
summary of the above diagram obtained by omitting every-
thing except the first and last columns, and also writing these
columns as rows. Thus the commutativity of the diagram of
§2 is established, and also that of the other diagrams in
§§2-4, is so far as they involve the operators L*, etc.

The operator Lo* which appears in Theorems 47 and 48 is
obtained by composing all the mappings of the second row of
the above diagram, stopping this time at H.-2(V,). The
lower part of the diagram of Theorem 47 is thus again merely
a summary of part of the above diagram, and so is com-
mutative.

The operation be will now be defined. KO is to be as
described in §2. Let z' be a point of S not in K0, and let K
be a closed circular neighbourhood of za not meeting K8. Let
K' be the circumference of K. It is not hard to see that there
is a homotopy of the identity mapping of S on itself into a
mapping which carries S -K into K0, and moreover that the
retraction of S-K on K. can be carried out along a family
of curves with the properties listed in Chapter II, §1. It
follows at once, using Theorems 5 and 12, that there is a
homotopy of the identity mapping of V on itself into a mapping
which carries V(S -K) into V(K0).

The result just obtained implies that HQ(V, V (K0))
H(V, V (S -K)) for all q. Next the excision result, Theorem
7, can be applied along with Theorem 5 to show that
HQ(V, V (S -K)) cte HQ(V (K), V(K')) for all q. Then from
the corollary to Theorem 10 it follows that HQ(V (K), V(K')) -
HQ(%(K),1(K') U %'(K)), using here the notations introduced
in Chapter I. But the bundle %(K) can be identified with the
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product V1 x K (writing V(zo) = V1) and the subset
X(K') U X'(K) with (P x K) v (V1 x K'). And so

HQ(X(K),X(K') Li X'(K)) = HQ--2(Vv P) ® Hs(K, K')

HQ-2(Vo, P)

the last isomorphism being obtained by identifying H2(K, K')
with the group of integers and using some isomorphism of
HQ-2(V1, P) onto HQ-2(V0, P) (for convenience this should be
the same as the isomorphism already used in going-from the
fourth to the fifth column of Diagram IV. The composition
of all these isomorphisms, taking the sequence in reverse, gives
an isomorphism of HQ_2(V0, P) onto HQ(V, V(K0)) which is
to be denoted by be. The fact that loc is an isomorphism
should be noted; it is used for example in the proof of
Theorem 48.

To obtain the connection, mentioned in §2, between loc and
Lo, consider the diagram on page 111.

Here the mapping at the extreme right is the isomorphism
referred to a moment ago. The mappings in the rectangle on
the right are induced by the following commutative diagram:

(B, B-V(K)) F- (V(K), V(K'))
T t

(B, B0 V B') F- (X(K), X(K') v X'(K))

where the mapping v is that introduced in Theorem 4, and
is induced by noting that B = E2 X Vi and X(K) = K x V1,
and by identifying F2 with K, while the remaining two
mappings are inclusions. It follows that the rectangle on
the right of Diagram (V) is commutative. The remaining
mappings of Diagram (V) are all induced by inclusions, and
so the whole diagram is commutative.

Comparison of the Diagrams (IV) and (V) shows that the
composition of all the mappings along the bottom of (V) from
left to right (reversing the excision isomorphism second on
the left) is Lo. (It will be noted that the identification of B
as a product, which was left unspecified in (IV) has now been
made just so that (IV) and (V) will be compatible).
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Also, by comparing Diagram (V) with the definition of
Joe which precedes it, it is easy to see that loo is the com-
position of all the mappings along the upper right-hand edge
of (V), zig-zagging from right to left, and reversing the arrows
which point the wrong way, these being in any case isomor-
phisms.

Now the inclusion H,(V, Vo) _- H,(V, V(K0)) on the left of
(V) is the mapping 'r introduced in §2, and so the remarks
just made, along with the commutativity of (2), imply that
locLo = ir, as was asserted in §2.

The proofs of Theorems 41 and 42 can now be carried out.
First, to prove Theorem 41, let a be an element of Hr_1(Vo, P),
and let a be the boundary homomorphism of Hr+1(V, V(Ko))-
H,(V(K0), Vo). Then it must be shown that aloes = 0 if
and only if a is invariant. To do this a formula for aloca
will be worked out. Write , (3i = 1 , 2, ... , k) for the genera-
tors of H,(V (Ko), V O), A. being represented, according to
Theorem 19, by a relative cycle on V (A,) modulo V0. Then
aloo a = where the c{ are to be determined. On the
other hand, let the T, (i = 1, 2, . . . , k) be as in § I of Chapter
VI, let the A, be numbered anticlockwise as they radiate
from zo, and write V) = T,_1T,_2 ... T1(a). Also let a' be
the boundary homomorphism of Hr( V (K0), V O) ---> H,-1(V0, P).
Then, noting that the definition of Joe depends effectively on
representing H,(V, V (Ko)) as a tensor product

H,-2(Vo, P) ® H2(S, KO)

it is clear that aloes = V,, where #, is an element of
the injection image of H,(V(A,), V0) in H,(V(K0), Vo) such
that a'f, = T, (ai:)) - V) = -(a(') . b,)J,, the last equality
following from Theorem 37. Remembering that H,(V (K0), V O)
is the direct sum of the injection images of the H,(V(A,), VO),
it follows that c,$, = -(a(i) . 8,)$, for each i.

If, now. for some i, J, 0 0, it follows at once that, for that
value of i, c; = --(at`t A). On the other hand, if J, = 0, it
will now be shown that c, can sti;l be taken >.a -(m(0. a,),
namely- zero; since by lemma of §4, p.I03, b, homologous
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zero if it is homologous to zero modulo P. To establish this to
point, write c'

=f()); then it follows that f{ is a linear
function on the (r -- 1)-cycles of Va. The argument of §1,
Chapter VI, may be repeated to show that f t can be extended
to a cooycle on Vo which is zero on all simplexes outside a
neighbourhood of the singular point on Y(z{), if ze is near
enough to z{ (a temporary adjustment which makes no
essential difference). And so as in §1 of Chapter VI, it follows
that ci = c(aM . 8{) = 0, as required. It should be noted that
assumption 8 # 0 which was introduced in §1 of Chapter VI,
was made because the f (y) of that.section appeared first as the
coefficient of J; here the values of f appear first as the
coefficients of as, which is known to be non-zero, thus making
any supplementary conditions unnecessary here.

The formula aloca = -7(c (° . o)3 has thus been estab-
lished. Then, remembering that the a{ are linearly inde-
pendent in H,(V(K0), Vo) and using Theorem 37, Theorem 41
follows at once.

It is worth noting at this point another consequence of the
formula just established for aloccc, which gives a means of
finding relations between the generators of H,(V, Vo), namely:

TREoBEM 49. Writing the a{ as the generators of H,(V (K0), V O)
and taking i to be the homomorphi8m of H,(V (K0), VO) into
H,(V, Vo) induced by inclac8ion, then i(JoiLi) = 0 if and only
if c{ = -(a<" . a{) for some « E H,-1(V0, P) and for a suitable
ordering of the zt.

Poop. For 0 if and only if jejAi is in the
:merge of the boundary homomorphism a : H,+1(V, V (K0)) -
H,(V(K0), Vo); that is to say, loe being an isomorphism onto,
if and only if it is of the form aloca for some rx e H,_1(Ve, P).
This is equivalent to the result wanted.

Theorem 42 will now be proved. Since, as has been shown
earlier in this section, IocL0 = ir, it follows that, for any
a E H1.,.1(V, Vo), locLoa is in the image of 7r; and so, by
Theorem 41, Loa is invariant. Thus the image of LO is
contained in the group of invariant elements in H,_1(Ve, P).
Conversely, let f be an invariant element of H,1(Vo, P). Then
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by Theorem 41, loop = iry, for some y e H,. +1(V, V o). Using
again the formula loeLo = v, it follows that, loop = looLy.,
and so, since loc is an isomorphism, fi = Loy. That is, to say
any invariant element of H,_1(V o, P) is in the image of Lo.
The proof of Theorem 42 is thus completed, and with it the
verifications of the details of results given in §2.
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