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THE THEORY of surgery on manifolds which are compact but not necessarily simply-connected, as 
described in [ 141, is relatively ineffective due to lack of knowledge about the obstruction groups 
Li (n). In another paper [ 151 we have given extensive calculations of these groups for n finite: the 
details are in general so complicated that the situation is not much improved (except in some 
simple cases, such as when ?r has odd order). A second disadvantage is that computing the actual 
obstructions is even less effective: it is necessary first to perform surgery below the middle 
dimension to obtain equivalences, then impose a complicated structure on the homology kernels 

of the map. 
A way round the second difficulty, proposed by the author in [14,§17Gl and developed 

incompletely by Miscenko, has now been established by Ranicki (Geometric L-theory, I and II, 
to appear). It is now possible, without performing preliminary surgeries, to define structures at 
the chain complex level, sufficiently fine to detect surgery obstructions: these are usually done on 
the homology kernels, but with suitable conditions on the tangent bundle (much weaker than 
framing) can be defined intrinsically. 

As to the calculation of surgery obstructions, it was observed by Sullivan that for maps 
between manifolds (as opposed to Poincare complexes), these have the property of bordism 
invariance, and may indeed be considered as maps A : R,(K(n-, 1) x G/Top) -+ L,(T), where R 
may be taken as topological bordism. The remarks above show that we may add-in a suitable 
sense-homology invariance. This is such a strong condition that we may hope to use it to obtain 
some computation of A. 

Although the above considerations motivated the paper, I proceed somewhat differently 
below, using numerous ideas and results from the recent paper[7] by Morgan and Sullivan (or 
equivalently, the corresponding paper[S] by Milgram): the key idea is, in fact, the introduction of 
so-called Z/n-manifolds. Using a product formula (implicit rather than explicit) we will obtain an 
analogue to Sullivan’s formula[8] for the Kervaire invariant of a map g: M --f G/Top 

c(M, g) = ~‘(Ws*k[Ml 

for a certain characteristic class k. 
We present our arguments in an axiomatic framework-this will clarify just what geometry 

we need; also, some of the axioms are easier to verify for some groups r than for the general 
case: finally, this has the useful side-effect of simplifying our notation. 

The first-and main-part of this paper will be devoted to this axiomatic development. We 
start with an introductory section, dealing with a simplified version of the problem. The next two 
sections expound respectively the notions of Bockstein functor and of Z/n-manifold. The main 
part of the paper studies (for a fixed space X) a Bockstein functor A: &(X x 
G/Top; Z/n) -+ F(Zln) with a product formula given by a commutative diagram 

%(X; Z/n)@ &(G/Top); Z/n) - 0,(X; Z/n) @ P*(Z/n) 

I 1 
f&(X x G/Top; Z/n) * F(Z/n). 

In 94 we study the case n = 2’, and obtain a cohomological formula for A, and in 95 we suppose n 
odd, and obtain a formula using K-theory. The formula holds for topological bordism, and the 
proof of this is much deeper than in the smooth case. In $6, we seek integral results: to obtain the 
neatest formulation here, it is necessary to impose finiteness conditions. 

189 
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Next we verify that the axioms are in fact satisfied by surgery obstructions. This is 
accomplished by a slight modification of the techniques of [ 14,891, in order to accommodate 
Z/n-manifolds. This shows that A is calculated by certain characteristic classes of 7~. These 
characteristic classes are natural. Applying this fact, we obtain a ‘transfer formula’ for surgery 
obstructions on closed manifolds which is extremely useful for applications. In the case when 7~ 
is finite, it follows that the calculation can be reduced to the Sylow 2-subgroup. 

In a final section it is shown how to utilise the fact that A is far from being surjective, and we 
make further comments about possible relations with a more algebraic theory. 

61. W-MANIFOLDS 

A W-manifold is a manifold whose orientation bundle is induced from the double covering 

bundle of S’: equivalently, the cohomology Bockstein (with integer coefficients) /3wl = 0. The 
map to S’ is not unique up to homotopy; it is, however, unique up to bordism. 

We write (following [12]) W, for the bordism theory defined by W-manifolds. Using group 
structure on S’, we see that this is a multiplicative theory. According to [12] for the smooth case, 
and [l] for the topological, there is a natural (if not canonical) isomorphism W,(X) = W* @ 
H,(X; Z/2). Thus the product induces an isomorphism W,(X) @ w. W,( Y) = W,(X X Y) for 
any X and Y. 

Suppose now given a homomorphism A: W,(X x G/Top)+Z/2. We write this as A(N;f, g) 
where f: N + X and g : N + G/Top. Composing with the natural product yields a bilinear map 
W*(X) x W*(G /Top) -+ Z/2: we write (N; f, g) = (M, f) x (P; g). If we think in terms of surgery 
problems, it is natural to perform surgery on the P-part leaving M fixed. 

Now a,(P) may vary with bordism, but since P is a W-manifold, we have a map P + S’ 
inducing T,(P) + Z. Thus the universal surgery obstruction groups for W-manifolds are the 
groups L,(Z-) for nonorientable manifolds with fundamental group Z. 

We are thus led to 

AXIOM 1. A{(M;f) x (P; g)} depends only on (M; f) and the surgery obstruction in L,(Z-) for 

(Pig). 
We will show that this axiom suffices for us to obtain a formula. 

THEOREM 1. Given a map A satisfying Axiom 1, there are uniquely determined cohomology 
classes (Y~ E H**(X; Z/2) (i = 0,2, and 3) such that 

A(N; f,g) = {v’(iV)Cf*az+ v,f*cw3)+ vSq’v(N)(f*Sq’ao+ v,f*ao)}g*k[N] 
+ v2(N)f*cYog*I[N]. (1.1) 

Here k and 1 are the characteristic classes of Sullivan and Morgan[7], v is the total Wu class of 
N, v, = w,, and [N] is the fundamental homology class. It is simpler to combine all terms into a 
total formula than to have separate formulae for manifolds of different dimensions, particularly 

as A need have no homogeneity. 

Proof. The surgery obstruction groups L,(Z-) = P,(Z/2) are of order 2 in dimensions n = 0,2, 

3 (mod 4) and trivial for n z 1 (mod 4). We denote the isomorphisms P, (Z/2) -+ Z/2 by 7, c and cP in 

the three cases. These are given by [5], [7] 

T(P;g) = {v’(P)g*I + v,vSq’v(P)g*k}[Pl, c(P; g) = v’(P)g*k[Pl, 

and cp(P; g) = u,v*(P)g*k[P] respectively. 
(1.2) 

They satisfy the product formulae 

(1.3) 

Here, x denotes the Euler characteristic, which satisfies x(Q) = v’(Q)[Ql, and 6 is the ‘de Rham 
invariant’, with S(Q) = oSq’u(Q)[N]. Throughout, p is to be interpreted as the ‘Bockstein’: 
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p(Q) is any submanifold dual to v,(Q). Thus S/3(Q)= uluSq’u(Q)]Ql, and x-3(Q)= 
o,v*(Q)[Q] = 0: note that though a(Q) - u(PQ) is not zero, it is divisible by ul, so the 
difference vanishes when multiplied by ul. 

Since I\ satisfies Axiom 1, it defines and is defined by a map W,(X)@ w.P,(Z/2) + Z/2, and 
by our remarks on W*, this tensor product is isomorphic to H,(X; Z/2)@ P&/2), or to a sum of 
3 copies of H.JX; Z/2). The map thus yields 3 cohomology classes as stated. It remains to make 
these isomorphisms explicit. 

Now the structure of P,(Z/2) as W,-module is given by (1.3). Regard P,(Z/2) as graded by 
Z/4, and write rO, L*, Lo for the nonzero elements of the indicated degrees. Then b. generates a 
W,-submodule, which is trivial in the sense that each element of W, acts through its Euler 
characteristic, and the quotient module is also trivial. We are thus led to seek a map 
8: W,(X)@ P,(Z/2) + H,(X; Z/2) @ P,(Z/2) of the form 

f3 ((M f) 0 La) = f* vZ(M) 0 60 

8((M, f) 0 L2) = f* vZ(M) 0 L2 + f* a(M) 0 Go 

@((M, f) 0 63) = f* u2(M) 0 L3 + f* b (M) 0 Lo 

for characteristic classes a and b yet to be determined. Here, and in the sequel, we identify the 
cohomology class a(M) with its dual a(M)h[M]. We must check whether, for any P and r, 
e((M,f) . P 0~~) = O((M,f)@ P . Lo). The coefficients of lr on both sides are equal to 
f* u’(M) * x(P). Equating coefficients of ba gives 

f*~(~xP)=f*0f)X(P)+f*~2(~)~P(P) 

f,b(M x P) = f*b(M)x(P)+f,u’(M)G(P). 
In view of the formula for 6(P), this suggests taking u(M) = u,uSq’u(M) and b(M) = 
oSq’u(M). Now as uSq’u(M x P) = uSq’u(M)u*(P)+ u*(M)uSq’u(P), the second formula 
holds. The first, unfortunately, does not: as well as the two desired terms on the right, we acquire 
two cross-terms. However, we also have 8p(P) = u,uSq’u[P] = Sq’(uSq’u)[P] = (Sq’u)*[P], 
and taking u(M) = (Sq’u)*(M), the formula checks. 

Now define a, by the homomorphism H*(X; Z/2) 0 x L, + Z/2 constructed from A. This gives a 
formula for A on product terms, viz. 

h((M f) x (P, g)) = u*(M)f*(YO[M]T(P, g) 

+ (OM)f*az + (Sqlu)Z(M)f*ao)[M]C(P, g) 

+ (uZ(M)f*a3 + uSq’u(M)f*cYo)[M]cp(P, g), 

or, evaluated on [A4 x P], the class 

nZ(M)f*00u2(P)g*l+ u*(M)j*a0u,uSq’u(P)u(P)g*k 

+ u2(M)f*w2(P)g*k +(sq’u)‘(M)f*Cxou’(P)g*k 

+ u2(M)f*cww*(P)g*k + uSq’u(M)f*aou,v*(P)g*k. 

We can rewrite this as 

u2(M x P)Cf*aog*I +f*a*g*k) + ul(P)uZ(M x P)f*a3g*k + terms inf*cu,,g*k. 

Now (Sq’u)*(M)f*dM] = u,(uSqlu(M)f*ao)[M] + uSq’u(M)f*Sq’~OIM], so we can rewrite 
the terms in f*aog*k as 

uluSq’u(M x P)f*aog*k + u,u*(M)f*aouSq’u(P)g*k 

+ uSq’u(M x P)f*Sq’aog*k + u*(M)f*Sq’aouSq’u(P)g*k. 

But v~u~(M)f*cr~[Ml= Sq’(u’(M)f*aO)[M] = u2(M)f*Sq’ao[M], so two terms here cancel out, 
and the others depend only on the characteristic classes of M x P. The only term which does not 
is now udP)u’(M X P)f*a3g*k. It can now be verified that if we redefine 0 on L* terms so that 

fV(M f) 0 ~a) = f* u’(M) 0 LO 

~((M,~)O~~)=~~U~(M)OL~+~~~~U~(M)O~~+~~(S~’~)~(M)O~~ (1.4) 
e((M,f)OL~)=f*u*(M)OLg+f*uSq’u(M)OLo 
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then ~9 still factors through the tensor product over We, but we now have an extra term 
v,uZ(M)f*a3c(P, g), corresponding to v,(M)v2(M x P)f*a,g*k. To summarise, we now have 

A((A4,f) x (P, g)) = {v2(M x P)(f*aog*I +f*azg*k) + u,u’(M x P)f*a3g*k 

+ ulvSq’v(M x P)f*crog*k + vSq’v(M x P)f*Sq’aog*k}[M x PI. 

Thus (1.1) holds on products, hence (by bordism invariance) in general. 
We discuss the formula (1.1) briefly before proceeding to generalisations. 

can rewrite it as 

{v*(N)Cf*aog*l + f*azg*k)+ vSq’v(N)f*(Sq’cuo)g*k}[N] 

First note that we 

+ (u’(PN)f*~3+ uSq’t@N)f*cz&*k[/3Nl. 

Next, observe that for A satisfying the conditions of the Theorem, so does Ac$: what are the 
corresponding cohomology classes here? Well, we have 

h/?(N;f,g) = {v’(@V)f*~~g*I + u’(PN)f*azg*k + vSq’u(PN)f*Sq’aog*k}[PNl 

and here 

u’(@‘0f*cuog*l[@Vl= v,u’(N)f*cuog*I[Nl 

= Sq’(u’(N)f*~~g*I>[Nl 

= u’(N)f*Sq’cy,g*I[Nl, 

since I is a class with Zc2,-coefficients. Hence 

1.5. of A COV~S~O~~S to ((Y~,(Y~,(;Y~), then AP corwonds to (sq'wo9 d 

82. BOCKSTEIN FUNCTORS 

We now introduce the notion of Bockstein functor. 
Let d be a class of abelian groups: we will not indicate precise axioms on Sp, but for the next 

two sections will need only finite cyclic groups. We identify SB with a full subcategory of the 
category db of all abelian groups. A Bockstein functor on d consists in an additive functor 
F: SB + db together with, for each short exact sequence S: 0 -+ A + I3 -+ C + 0 in d, a 

connecting homomorphism k&(S): F(C) -+ F(A) such that we have an exact triangle 

F(A)+ F(B) + F(C)+ F(A). This must be natural with respect to maps of short exact 

sequences S. 
We now derive some simple consequences of the axioms which hold when S includes finite 

cyclic groups. Here we denote F(Z/r) by F(r), the map F(rs) + F(s) induced by projection by 

p*; the map P(s)+ F(rs) induced by injection (multiplying by r) by i,; and the Bockstein 

corresponding to the exact sequence S,,, : 0 + Z/r G Z/r-s -% Z/s + 0 by /3*. 
Now consider the short exact sequences S,.,, S,.,, S,,, and S,,, where r = st : the exact 

sequence fit into a braid diagram as follows 

F(t) F(s) F(rs) F(s) 
y. P;r y ii” x. Pi” 

F(r) F(r) F(r) 
“./I y. “7 y* iy \“’ 

(2.1) 

Ws) F(t) F(s). 
P. 

This diagram commutes: the triangles p-p. = p., i-i, = i, and the diamond i,p. = p-i, since F 
is a functor, and the triangles p* = p*i*, p*p* = p* and the diamond i*p* = p*p* by naturality 
of p* for the morphisms of exact sequences 

O-Z/s A Z/r P- Z/t - 0 O--+Z/r-LZ/rs-QZ/s-0 

P3 II 
li Ii PI 1p lp II 

O-Z/tLZlr”-,Z/s-0 
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and 

O+ Z/r -L Zlrs P-Z/s --_, 0. 

We shall use these observations below; also the Mayer-Vietoris sequence[ 131 of the braid 
diagram which, sincep,i, = i,p,: F(r) * F(r) coincides with multiplication by s, reduces to 

F(r) b (8*‘--p*) F(s)@F(s) - F(r) & F(r). . . . (2.2) 

Note also that the composite of two Bocksteins always vanishes. This too follows by a 
standard argument. Given short exact sequences S:O-+A+B-+C+O and 
T: 0 --, C --) D + E -+ 0, choose a free abelian group F mapping into D. Let G be the kernel of 
F + E, and H the pullback of B --, C +- G. Then we have maps of short exact sequences 

Q:O-+A+H-+G*O R:O+G+F+E+O 

II 1 I- I-1 II 
S:O-+A+B-+C+O T:O+C4l~E+O, 

so /&OPT = pso%-*opR = poopI+ 
But G, a subgroup of F, is free so Q splits and PO = 0. (This follows since F(H) + F(G) is 

surjective, by exactness.) 
This argument needs modification if & does not contain free groups. If, for example, we only 

have finite cyclic groups, and IAl = a, ICI = c, [El = e, choose F or order ace. Then 7r is 
isomorphic to the map B + C, so fls 07~~ = 0 by the exact sequence for S (we do not use Q, 

which is not in the category). 
When we speak of a natural transformation of Bockstein functors, CL: F + G, we mean a 

transformation which is also natural with respect to Bockstein homomorphisms-i.e. for a short 
exact sequence S:O+A+B+C-,O, 

/L(A)o/~F(S) = &(Wp(C): F(C)+ G(A). 

For any space X, the (singular) homology or cohomology H*(X; A) provides an example of a 
Bockstein functor of A. The same also applies to generalised homology theories. We are 
particularly interested here in the case of bordism, and in the next section give a geometrical 
discussion of representatives following[7]; see also [2], [5]. 

We conclude this section by showing what is involved in verifying Axiom 2. 

THEOREM 2. To define a Bockstein functor on the category of cyclic groups Z/m (m 20) is 
equivalent to prescribing 

(i) Abelian groups A,,, (m SO) 
(ii) homomorphisms i,: A, -+ A,,, p.: A,, -+ A, such that 

(iiia) both i,p, and p*i, are multiplication by m 
(iiib) the composite of two maps p* is another 
(iiic) the composite of two maps i, is another, and i, = 0 if m = 0 
(iv) exact sequences 

(v) such that the following diagrams commute: 

A, L A,, A, % A,, 

(4 p, 
\ 

I %* 
(b) 1’ ir 

A0 A, 5 Ao. 

Proof. Certainly if F is a Bockstein functor, A, = F(Z/m) has these properties: we must work 
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to prove the converse. The proof is presented in outline only as the result is not really essential 
for our purposes: we use the properties above rather than any abstract results about Bockstein 
functors. 

First (iv), with r = 1, shows that A, is trivial. Now putting r = 1 in (iiia) shows that A, has 
exponent in. As any homomorphism Z/r + Z/s is a multiple of the composite 
Z/r 4 Z/(r, s) A Z/s we can define F on morphisms using p* and i*, but must work to establish 
the functor property for composites, Z/r + Z/s +Zlt. All cases in which one of s, t is zero are 
trivial. If r = 0, the morphisms must be up, bip for some integers a, b; then 

F(bip)o F(up) = abi, op* op* by definition 

= abi *OP* by (iiib) 

= F(bip 0 up) by definition. 

For other cases, suppose all groups I-primary and, since multiples cause no problem, that the 
morphisms to be composed are either i or p 

zIl’-+zlr= +ZIl’. 

There are six cases according to relative sizes of r, s, t : r z s > t is dealt with by (iiib), r 6 s s t 
by (iiic), and the rest by commutative diagrams 

rates sCrSt 

Next we consider the diagram 

Ao 2 AS 5 \ \ .___/ 

(2.3) 

Here (1) commutes by (va), (2) by (iiib), (3) by (vb), (4) trivially and (6) because of the 
commutative diagram 

Ao J A,,. 

Define the dotted arrow to make (5) commute. Now three of the sequences in (2.3) are exact, by 
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(iv). It follows (c.f. [13]) that the fourth sequence is exact, provided we check that the composite 

p * i, vanishes. 
First suppose r, s coprime. Then the composite clearly vanishes, so we have an exact 

sequence O-+ A, -+ A,, --, A, + 0 and A,, is a direct sum of A, and A,: we can either choose 

injections i, or projections p* (but not both simultaneously; they need modifying by an integer). 
It follows now that it is sufficient to check the functor property on I-primary parts, which was 
done above. (Without this device, I think a further axiom would be necessary: commutativity of 
diagrams 

i./Aabc\S. 

A& A,, . 

A, 

So we have a functor. Now for arbitrary r, s above we have p*i, = 0, = 0, and hence the 

sequence 
. . . A, iI, A,, _t&. A, e.P, A, . . . 

is exact. 
We must now define /I* for arbitrary short exact sequences S, and check naturality for 

morphisms of S. If S involves infinite groups, we have an isomorphism 

s:o-+z~z_se,Z/r-+O 

-T 11 T-Q &:0---tZ--‘-,Z~Z/t--+O 
where E = 21 and (a, t) = 1. We must thus define p(S) = ea’/3(So), where aa’ = 1 mod t. 
Otherwise, S is of the form S: O- Z/r *Z/rs-%Z/s-Owith(a,r)=land(b,s)=l. 
Choosing a suitable representative of a, we may suppose further (a, rs) = 1. Then (1, a, ab) give 
an isomorphism onto S of S,: O-, Z/r 4 Zlrs ~3 Z/s + 0 so we define p(S) = c/?(S,) where 
abc = 1 (mod s). From now on, it suffices to consider the sequences Sa, S,. 

Next observe that morphisms of sequences So, S, are composites of a few ‘elementary’ 
morphisms. There are no nonzero morphisms S, + So, and any morphism So+ S, factors 

So+ Sba S, where q1 is the canonical projection 

41 1 P P 1 II 
0 --+ Z/r L Zlrs A Z/s --+ 0. 

For a morphism between two sequences So 

O---+Z--kZP-Z/r-O 

o--+z~z_4,z/s-O 

br = as, so if r = r’(r, s) and s = s’(r, s) we can write a = cr’, b = cs’ for some c, and our 
morphism is a composite as follows: 

O--+Z~Z--LZlr-0 

40 

42 

q3 
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A similar but more complicated argument shows that any morphism between two sequences S, is 
a composite of one of four further types: multiplication through (pO) by an integer, and the p,, pz, 
p3 earlier in this section. 

However, we do not need this. Given any morphism f: cfl,f2,f3): S, -+ SI, consider 
f 0 ql: So + SI. Suppose naturality of Bocksteins proved for f 0 q,: then it follows for $ For since 

P(SJ = p* op(S,,) we then have f,, 0 p(S,) = cf, op)* o/3(&) = p(S:)of* as required. By the 
above, f 0 4, can be factorised as a composite of morphisms qi. But naturality for q. is trivial, for 
4, holds by definition, and for q2 and q3 is given by (vb) and (va) respectively. 

This concludes the proof. We could discuss natural transformations similarly, but will be 
content with observing that it follows by the above analysis that if a transformation is natural on 
morphisms, then it commutes with all Bocksteins if it commutes with those for the sequences S,. 

53. GEOMETRY OF Z/n-MANIFOLDS 

As it will be central to the arguments in this paper, we now recall the geometrical treatment [7] 
of bordism with Z/n coefficients. A Z/n-manifold is defined by a pair (N, /3N) of oriented 
manifolds, a partition aN = U (88: 1 c s n} of the boundary of N into disjoint open i 
submanifolds, and orientation-preserving homeomorphisms hi : /3N + 88. It is customary to 
identify PN with &N by hi, obtaining a quotient space N > /3N of N. We call /3N the Bockstein 
of N. The identification is compatible with tangent bundles, so we obtain an oriented tangent 

bundle to N. We visualise a neighbourhood of PN in N as a product with n mutually tangent 
rays. 

A Z/n-manifold with boundary is defined in the obvious way: we have a pair (M, PM) of 
oriented manifolds, PM with boundary and M with a corner separating aM into submanifolds 

with closures a,,& and aExtfi, say; and a partition &,,M = /J &M and homeomorphisms 
hi: /3M + a&f as before. We can now extend the usual notions of cobordism (with extra 
structure as relevant). 

It is important to observe that 

3.1. The bordism class of N does not depend on the ordering of a,#. . . , a,K 
It suffices to show the class unaltered by interchanging a, and a*. Choose collar neighbourhoods 

aiN x [0,2] of a,N (i = 1,2) in N, with &N x 0 = a,N. The desired cobordism is now constructed 

from Nx I by deleting (a,N U a2#) XII, 2[ + Z and glueing in its place, along (a,N U d,N) X 
{1,2} x Z, the product of PN with the octagon (c.f. [ 161). The modified manifold, which may be 

regarded as N x 1 with a copy of a, 13 x Z x Z attached, gives a cobordism of I? to N’ say; and there 
is an obvious homeomorphism N + N’ which interchanges a, and a,. 

We next consider the coefficient homomorphisms i: Z/r + Z/mr, p : Z/mr + Z/r. Geometri- 
cally, we represent i by taking m copies of the manifold identified along the Bockstein. 
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We represent p by splitting the mr sheets which meet along the Bockstein into m groups, 
each of r sheets-so the Bockstein is replaced by r copies of itself. 

" Partvd splitting ” 

Notice that by the observation (3.1) that the ordering of the sheets is unimportant, we see that 
the partition into m sets of r is likewise unimportant. 

PROPOSITION 3.2. Z/m-bordism, as defined above, is a Bockstein functor. 

Proof. We consider here the simple bordism of a space X, though the argument extends 
without difficulty to more general situations, and one such extension will be needed later in the 
paper. Write 0,(X; Z/m) for the bordism groups of X defined by Z/m -manifolds. 

It suffices to verify the conditions of Theorem 2. We have just defined i, and p*: properties 
(iiib) and (iiic) are clear. For (iiia), we can choose the partial splitting so that p*i, just yields m 
copies, so represents multiplication by m. But i,p, is also a partial splitting of i,N, where 

i: Zlmr + Z/m’r, so is cobordant to the other partial splitting p*i*fl = mN. 
We obtain the exact sequence (iv) by defining p, to be represented by the Bockstein. Since N 

is nothing more nor less than a null-cobordism of r copies of PN, exactness follows by the 
standard cobordism argument. Finally, commutativity of (va) and (vb) follows at once from our 
geometrical definitions of i and p (and /I). 

To conclude our discussion of i and p, observe that the identification maps of degree 1 
mN + i(N), p(N) + N are compatible with tangent bundles. Thus for any f: N + X, class 
x E H*(X) and characteristic class u of the tangent bundle, 

f*xu (WNI = f*xu (PNHPNI (3.3) 

and correspondingly for iN. 
More troublesome is the study of products. Let N, P be Z/n-manifolds. The link of PN in N 

is a discrete set n of n points. Thus the link of PN x PP in N X P is the join n * n. But this is a 
Z/n l-manifold; since &(Z/n) vanishes, it bounds a Z/n 2-manifold T,, say. We resolve the 
singularity of N x P by deleting (the interior of) the neighbourhood PN x cone (n) x /3P x 

cone (n) of PN x /3P, and attaching in its place PN x BP x T,. The result is denoted N @ P. 
The product is well-defined up to bordism, for T. is so since CL(Z/n) = 0. It is also associative 

up to bordism since (it4 @ N) 0 P and M 0 (N @ P) agree except near PM x PN x BP, where 
each is a product with this as factor. Thus the obstruction to associativity is an element of 
&(Z/n) = 0. Similar arguments dispose of the expected commutative diagrams involving 
products with i, and p*. . we shall not attempt to list all such (those we need could be done ad 
hoc). 

The natural collapsing map p : N @ P + N x P is not compatible with tangent bundles. If we 
denote by 7~ the collapsing map N @ P +/3N x pP x T, /aT, then [7, 1.51 rNmp is stably 
equivalent to ~*(TP+ x ~~)@a*[, where c is a vector bundle over T,/aT,. The bundle 5 need not 
be trivial. However, as all are oriented bundles, v,(J) = 0. It follows that v’(l) = 1 and 
vSq’v(l) = 0. As these are the only characteristic classes which will enter our calculations, it will 
be possible to forget about 5. For example, for any x E H*(N x P; Z/n), 

v*(N)v*(P)x[N x P] = v’(N @ P)p*x[N @ P] (3.4) 

and similarly with v Sq’v or (c.f. [7, p. 48.51) I replacing v*. 
Now compare P(N BP) with the disjoint union of PN x P and N x pP (which is a 

Z/n-manifold). Again, these agree except near PN x PP, and using the vanishing of n,(Z/n) we 
see that they are cobordant: 

P(N@P)-(fiNxP)u(NxPP). (3.5) 

As a final topic in this section, we discuss the special case of Z/2-manifolds. A Z/2-manifold N 
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is already, as topological space, an unoriented manifold: the orientation cover consists of two 
sheets, cross-joined along PN. There is a natural collapsing map 4 of N to cone (2)/boundary, 

which can be identified with a circle, S’; the orientation cover of N is induced from the nontrivial 
double cover of S’. Thus we have a W-manifold. Conversely, given a W-manifold N 4 S’ we 
can (save in the topological case, with dim N = 4 or 5, and even then up to bordism of N) make 4 
transverse to a point whose preimage /3N then determines the orientation cover as above, so that 
(N, PN) is a Z/Zmanifold, determined up to bordism. 

We can thus identify W-manifolds with Z/2-manifolds. Note that one can take T, to be a 
square, so that M @ N = M x N in this case. It is easy to see [7,1.4] that the tangent bundles of N 
as manifold (7,) and as Z/2-manifold (TJ are related by ~@#J*E = T&$#J*~ where E, n are trivial 
and nontrivial line bundles over S’. Hence for the characteristic classes, if u,(n) = w,(v) = a, (so 
J=O) 

U(T,) = U(Tz)(l + $*a), ?XfV(T,) = sq’V(Tz)(1 + 4*cY), SO 

U,(T,) = c#J*CY, U2(T,) = II’ and Vsq’O(T,) = Vsq’U(T2). (3.6) 

Now the inclusion j: /?N C N has trivial normal bundle, so respects stable characteristic classes. 
With these two remarks, we can rewrite (1.1). The terms {(u’(N)f*a*+ 

uSq’v(N)f*Sq’a&*k + u2(N)f*cr0g*I}[N] are, by the above, unaltered if we use TV in place of 
TV. The others can be rewritten (as already noted) u,(N)(u*(N)f*a,+ uSq’v(N)f*aO)[N] = 
(u’(PN)f*aj+ uSq’v(/3N)j*a&?N] and again reference to TV has been omitted. We can now 
regard Theorem 1 as proved for Z/2-manifolds. 

$4. Z/2'-MANIFOLDS 

For the next two sections, we shall investigate the consequences of the following two axioms. 

AXIOM 2. A : fl,(X x G/Top; Z/n)+ F(Z/n) 

is a natural transformation of Bockstein functors defined on cyclic groups. 

Here, R, denotes oriented smooth or topological bordism. In particular, we have composite 
maps 

A’: fl,(X; Z/n) 0 n,(G/Top; Z/n) --$ F(Zln). 

Now surgery on Z/n-manifolds without fundamental groups leads also to a (Z/4-graded) 
Bockstein functor P*(Z/n) (and P,(Z/2) can be identified with L,(Z-)). In analogy with Axiom 1, 
we impose 

AXIOM 3. A’ factors through a homomorphism 

A ‘: 0,(X; Z/n) 0 P*(Z/n) + F(Zln). 

Here we restrict consideration to the 2-primary study of A, leaving the odd torsion for 35. 
We first apply the results of § 1 to A (Z/2). As F is additive, F(Z/2) has exponent 2 hence can be 

expressed as a sum of cyclic groups of order 2, with injections i, and projections px. We can 
apply Theorem 1 to px 0 A (Z/2): we obtain cohomology classes (Y~.~ E H**(X; Z/2). Define 
a, = CL,*(a,,) E H**(X; F(Z/2)). Note that the coefficients here really are the sum, not product, 
of copies of Z/2: repeating the proof of Theorem 1 shows that a, is defined by a homomorphism 
H,(X; Z/2) + F(Z/2), and there is no problem here. Now the formula (1.1) yields A (Z/2): note 
that Sq’cuO can be interpreted componentwise, or we can rewrite the terms so as not to involve it. 

Next we apply (1.5). Here, p is the Bockstein for the short exact sequence 
0 + Z/2 + Z/4 + Z/2 + 0. As A is a Bockstein functor, AP(N; f, g) = PA (N; f, g). Thus 
/3 *: F(Z/2) + F(Z/2), as coefficient homomorphism, must satisfy 

P*&l= Sq’ao, pea2 = 0, and /?*a3 = CY~. 

The formula (1.1) may now be written as 

u’(N)f*~~g*IlNl+{~~(N)f*(/LcY~)+ uSq’u(N)f*(p,ao)}g*k[Nl 

+{u’(PN)f*a,+ uSq’v(PN)f*(Ydg*k[PNl. 

(4.1) 



FORMULAE FOR SURGERY OBSTRUCTIONS 199 

Now write 

c(N;~, g) = (u’(~)f*a,+ uSq’v(N)f*cYo)g*k[Nl. 

Then we conclude 

A(Z/2)(iv; j,g) = v*(N)f*cYog*I[Nl+P*C(N;f,g)+C(PN;f,g). 

(4.2) 

(4.3) 

This form of the result is far more convenient for generalisation. 
We are now ready to obtain general formulae, and an appropriate one is suggested by (4.3). 

The object of this Section is to prove the following. 

THEOREM 3. Let A satisfy Axioms 2 and 3. Then there are unique classes 7’ E H**(X; F(Z/2’)) 
such that for any Z/2’-manifold N: 

A(Z/2’)(N;j,g)= 1(N)f*77’g*I[Nl+P,C(N;f,g)+l,C(PN;f,g). (4.4) 

Moreover, q, = a0 and p ,q, = qs for r > s. 

Here, in accord with our conventions, the precise groups involved for p*, i, and p* are 
determined from the context: the two former have source Z/2 and target Z/2’. 

Proof. We shall prove the result by induction on r: we saw in (4.3) that it is true for r = 1. We 

first consider A ‘: by Axiom 3, it suffices to consider A ‘I. Now Pi (Z/2’) = Z/2’, O,Z/2,2/2 for i = 0, 
1,2,3 (mod 4); the isomorphisms may again be denoted T, -, c and co. There are thus three cases 
to examine. We take them in the reverse order. 

The cp case. We will use the fact that * i,. P,(Z/2)+ P,(Z/2’) is an isomorphism. Now the 
commutative diagram 

Z/2’ 0 zi2 
,@i 

) Z/2’ @Z/2’ 

1 
PO1 

1 
m 

z/2 @ z/2 az/2L Z/2’ 

(where m denotes isomorphisms induced by multiplication) yields a commutative diagram 
IOi. 

R*(X; Z/2’)@ R*(Y; Z/2) ~n*(x;2/2’)@~*(Y;2/2’) 

1 
P.01 

1 

R*(X; Z/2)@ n*( Y; Z/2) - fl*(X x Y; Z/2)L R*(X x Y; Z/2’) 

and surgery obstructions and A map this diagram into 

R*(X;Z/2’)0P*(Z/2)- fl*(X; Z/2’) 0 P*(Z/2’) 

1 
P.01 

I 
*“GU*‘l 

h “@J*) 
fl*(X; Z/2)0 P*(Z/2) A F(Z/2) ‘f, F(Z/2’) 

which thus also commutes. 
Now if (P; g) has cp(P; g) = 1 (and c(P; g) = T(P; g) = 0), we can write (P; g) = i,(P’; g’) 

where P’, g’ has the same properties. Thus 

A”(Z/2’)((M; f) x (P; g)) = L{A”(Z/2)(p,(M; f) x (P’; 6))). 

If we write p*(M, j) = (M’, j’), then applying the result for r = 1 shows that the expression in 

braces equals 

(u*(M’)j’*(~~+ uSq’u(M’)j’*aO)[M’] = G(M’; j’), say. (4.5) 

But by (3.3), G(M’; j’) = C,(M; j). Thus when cp(P; g) = 1 and c(P; g) = T(P; g) = 0, we have 

A(Z/2’)((M;f)x(P;g))=i,Co(M;f). 

The c case. Here we suppose that c(P; g) = 1 and that cp(P; g) = T(P; g) = 0. As (P; g) may 
be replaced by any other with the same properties, we choose a Z/2’-manifold (P’; g’) with 
cp(P’; g’) = 1 and c(P’, g’) = T(P’; g’) = 0, and take (P; g) = /?(P’; g’). 
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Now the product (M;f) x (P’; g’) defines a class in fl,(X x G/Top; Z/2’) which is 
represented by 04 0 P';f", g") say. By the cp case, above, h(Z/2’)(M @ P’;f”, g”) = 
i*CO4,j). Since A is a Bockstein functor, and by (3.9, 

= A(Z/2’)((M;j) x (P; g))+ A(Z/2’)((/3M;j) x (P’; g’)) 

= A(Z/2’)((M; j) x (P; g)) + i,CoWf; f). 

Now since p*i* = p* by (2.1), we have 

The 7 case. Taking A” with P0(Z/2’) yields a homomorphism A’: R,(X; Z/2’) + &Z/2’), 
which is one of R,(Z/2’)-modules,where this ring operates on F(Z/2)‘) via the signature in Z/2’. 

Thus if f&(X; Z/2’)@ n.Cz,z’,Z/2’ = H*(X; Z/2’), the natural duality between homology and 

cohomology would yield the desired class. However, X may have torsion and we must be more 
circumspect. 

According to Browder, Liulevicius and Peterson [ 11, when rR, is localised at 2, it gives a sum 
of homology functors. Equivalently, there exists a homotopy equivalence e of the spectrum 
MS0 @ZCz, with Il{K(Z,,,, 4n): w a partition of n}. The inclusion of K(ZCz,, 0), composed with 

-‘, induces a right inverse j to the augmentation, or to the map Q+( ; Zd + H,( ; Zd 
ietined by signatures. Then j induces a map of Bockstein functors. Further, since &,(T; Z/2’) 
depends only on the chain complex of T, we can split this into elementary summands. For a 
summand Z or Z 3 Z with 2’ln we obtain a free R,(Z/2’)-module with 1 or 2 basis elements, and 

the corresponding map 

n*( ; Z/2’)@ n*w*‘~Z/2’ + H*( ; Z/2’) 

is an isomorphism. The other summands yield elements of orders dividing 2’-‘. 
Now A, 0 j: H*(X; Z/2’)+ F(Z/2’) determines by duality a class 7’ E H*(X; F(Z/2’)). And 

since j is a natural transformation, the diagram 

H*(X; Z/2’) % F(Z/2’) 

1 
PI 

1 
P. 

H*(X; Z/2’_‘) x P(Z/2’_‘) 

commutes, implying that p *n, = n’_, whence p*n’ = ns for all s < r. As j is right inverse to the 
natural map, we also deduce n, = (Ye. Moreover, if the image of (M, f) in C&(X; Z/2’) @ n.Cz,2’1Z/2’ 
is contained in that of H,(X; Z/2’) via j, we deduce that A’(M; f) = I(iV)f*n’[i%f]. 

But by the above analysis, the class of (M, f) is the sum of such a class and one of order 2” 
(s <r). By (2.2) a class of order 2” is in Im i, +Imp, where both i*,p* have source 
fl,(X; Z/2”). By our inductive hypothesis, the result holds on this group. We now compute 
A’i,(M’, j’) = i,A,(M’, j’) = i,(l(M’)j’*q [WI). By the analogue for i, of (3.3), 
2’~“(I(M’)j’*n’[M’]) = f(i,M’)j*n,[i,M’], as desired. Finally observe that j, hence A 0 j is a 
Bockstein functor. The diagram 

H*(X; Z/2”) *,i F(Z/2”) 

I 
P. 

I 
B. 

H*(X; Z/2’) 2 F(Z/2’) 

thus commutes. Now 

Thus 

A,(M’,f’) = I(M’)j’*n, [M’] = Asjjifl(l(M’) n [M’]). 

where 

A’P,(M’, f’) = P*A3(M’, f’) = P,A,jj;(l(M’) n [M’I) 

= MW;(W’) n WI) = kjf,(lW f-7 [MI) = ~Wf*~JMl, 

(K f) = P(M’, f’). 



FORMULAE FOR SURGERY OBSTRUCTIONS 201 

Conclusion of the proof. What we have shown so far amounts to this, that 

A’((M;f)x(P;g))=i,Co(M;f)cp(P;g)+(P,C,(M;f)+i,C,(PM;f))c(P;g) 

+ 1(M)f*V]Mlr(P; g). (4.6) 

We must first deduce from this that (4.4) holds on decomposable elements, and then prove the 

general case. 
Now 

C((M; f)x(P;g))= Ca(M;f)c(P;g)+ u’(M)f*%]Mld(P;g), (4.7) 

where d(P, g) = vSq’u(P)g*k[P] is not a surgery invariant. Thus taking (N; f, g) = (M; f)O 
(P, g), the right hand side of (4.4) yields, using (3.4) and (3.5), 

I(M)f*77~[MlI(P)g*I[Pl+P*Co(M;f)c(P;g) 

+~‘(M)f*(P*a~)[Mld(P;g)+i,Co(PM;f)c(P,g) 

+i,C0(M;f)cp(P;g)+u2(PM)f*(i*cy0)]PMld(P;g) 

+ v2(M)f*(i,ao)]Ml@(P; 8). (4.8) 

Here, the three terms involving Co are the same as the corresponding terms in (4.6). The two 
terms involving d(P ; g) cancel. For as cro = p*q’, i,cuO = 2’-‘7,. Thus the two terms are 
P,h,p,(M) and 2’-‘A’(/3M). Now 

P,AlP,(W = P*P*ww as A a Bockstein transformation 

= i,fi,A’(M) 

= i,p,P,A’(M) by properties (2.1) of Bockstein functors. 

Here the indicated groups are 2’4 2’3 2 -$ 2’, so i*p, = 2’-’ and we have 2’-‘P,A,(M) = 

2’-IA,( 
The final term of (4.8) equals I(M)2’~‘f*q[M]dp(P; g), so we can combine the first and last 

terms to give 

l(M)f*stMlU(P)g*~IPl+ i,dp(P, g)] = ~(Wf*vIMlQ, g>. 

Thus our formula (4.6) for A’ is indeed the same as that given by (4.4). 
We can now complete the proof along the same lines as for the T case above. For we see, just 

as there, that &,(X x G/Top; Z/2’) is the sum of the image of &,(X; Z/2’)@ SZ,(G/Top; Z/2’) 
and a group of lower exponent, which is thus in the image of i, + /3* from groups with coefficient 
2”, s < r, where the formula holds by inductive hypothesis. Now A is a Bockstein functor. Thus 
assuming (4.4) for (N; f, g), we have 

A(Z/2’)L(N;f,g)= i,A(Z/2”W;f,g) 

= i*Il(N)f*77~g*I[Nl+P*C(N;f,g)+i,C(PN;f,g)}. 

Now i*q, = 2’-‘?7’, but i,(N) is defined by 2’-‘-fold replication. Also, i,p* = 0, even for 

r = s f 1, by the natural exact sequence. As i, N has the same Bockstein as N, however, we see 
that this agrees with (4.4) applied to i,(N; f, g). Similarly, 

A(Z/2’)P,(N;f,g)=P,A(Z/2”)(N;f,g) 

Here the first term-arguing as in the r case above-yields !(/3N)f*n’g*l[pN]; the second 
vanishes as the composite of two Bocksteins is always zero, and for the third we note by (2.1) 
p*i* = /3*. Thus again the result is as given by (4.4) for f3N. This completes the proof of Theorem 

$5. Z/n-MANIFOLDS, n ODD 

The result in the odd case is analogous to that in the even case. 

THEOREM 4. Let A satisfy Axioms 2 and 3. Then for n odd, there is a unique class 
8, E KO *(X; F(Zln )) such that for any Z/n -manifold N, A (Z/n)(N; f, g) = f *&g *AINla, where 

TOP Vol. IS, No. 3-B 
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[Nla denotes Sullivan’s fundamental KO @ Z[;]-homology class, and A E KO*(G/Top) @ Z[$] is 
as defined in [lo]. Moreover, p*& = 19, for min. 

First we prove the formula in the case when N is smooth. 
Proof. We present this in outline only, as no new arguments are needed beyond those in the 

preceding section. First consider A’: by Axiom 3 this amounts to a homomorphism 
A, : R*(X; Z/n) --, F(n), since Pi(Z/n) = Z/n, for i = 0 (mod 4), 0 otherwise. Thus we only have 
the analogue of the T case to consider. Now in the case of smooth bordism, it follows from results 
of Milnor 161 and Conner and Floyd[4] (as was noted by Sullivan[lO]) that if we regard Z/n as 
Q+(Zln)-module via the signature, then R*(X; Z/n)@ n.cz,n,Z/n = KO*(X; Z/n), indeed; 
Sullivan proves the result for the odd localisation &(X)@Z[;]. As A, is an R,(Z/n)-module 
map, we have a homomorphism KO,(X;Z/n) + F(n), and hence by duality a class 
0. E KO*(X; F(Z/n)). The result p*& = 8, follows in the same way as the result for n. In view 
of the module structure used, we now see that A,(M; f) = f*& [Ml&. Hence A’((A4; f) x (P; g)) = 
f*& [M],T(P; g) and we can compute 7 using KO-theory as r(P; g) = g*A[P]* by [lo]. Thus if 
N = M @ P, A’(N; f, g) = f*&g*A[N]a. 

Perhaps we should emphasise what is implicit in the above, that for X an infinite complex we 
consider KO*(X) as defined by maps X + BO, not by vector bundles. 

I will now show how Theorem 4 can be extended to the case of topological bordism. The same 
argument will also show that Sullivan’s characterisation[lO] of his KO* @ Z[&]-orientation of 
topological bundles, via signatures of transverse preimages for maps from manifolds to the total 
space, is valid for topological as well as for smooth manifolds. 

The argument was developed in the course of conversations with Don Anderson, Peter May, 
Jim Milgram and Vie Snaith during a visit to the University of Chicago in August 1975: it is a 
pleasure to express my gratitude for this occasion. 

The proof is divided into three sections: recall of the splitting of B Top, calculations in 
K-theory, and their application to the problem. 

Most of the results on B Top are due to Sullivan[lO], but we will follow more closely the 
account of May [ 191. Throughout this section, we localise at a fixed odd prime p : this must be 
understood, so we omit it from our notation. Choose a number k generating the multiplicative 
group (Zlp’Z)“. 

According to Adams, [17, lecture 41, there is a canonical splitting (n,, 7r2): BSO-, V, X Vz, 
where rri(V,) # 0 + 3 i =O mod (2p - 2). Write (i,, i,) for its homotopy inverse. 

Write BT for the classifying space for KO @ Z[t]-oriented spherical fibrations. If U is the 
universal orientation of the Thorn space, @‘U/U defines a class on BT classified by a map 
s: BT+ BO, say. Write j: B Cok J+ BT for the mapping fibre of s. Write also ez: BO + ET 

for the fibre of the natural map f: BT + BG. Finally, the Atiyah-Bott-Shapiro orientation for 
vector bundles induces a map e,: BO + BT. The product of e,i,: VI + BT, e&: Vz--+ BT and 

j: B CokJ+BT, composed with (n,, nr~)X 1, induces a homotopy equivalence h: BO X 

B CokJ+BT. 
Observe that since ez is the fibre off, the spherical fibration induced by eliz is fibre homotopy 

trivial. The same holds also for e,iz, which factors through ez[19, 4.1 l]-this amounts to using the 
Adams conjecture, and checking Adams’ criterion for fibre homotopy triviality. Thus h]BO 
induces a fibration fibre homotopy equivalent to the universal bundle, which is induced by el. 
Hence we have a homotopy equivalence of Thorn spectra induced by h, fi : MO A M Cok J + MT. 

Finally, we recall that the Sullivan orientation induces a homotopy equivalence B Top + BT 
which we use to identify the two, hence also MT and M Top. I repeat that the above only holds 
without qualification after localisation at the fixed odd prime p. 

The key result for our argument is the following, due to Hodgkin and Snaith[l8, Theorem 
3.151: KO*(B Cok J)@ Z[$ = 0. Localising further at the prime p, we noted above that the 
universal spherical fibration over B CokJ is KO* @Z[&oriented. Hence by the Thorn 
isomorphism for K-theory, KO*(M Cok J, S) @ Z[i] = 0, where S denotes the sphere spectrum. 
In other words, the homotopy groups of the spectrum (M Cok J/S) A BO 0 Zltl all vanish. Hence 
this spectrum is contractible. Hence for any X, its smash product with X is again contractible. 

Thus KO*(M Cok J A X, S A X) @ Z[;] = 0. 
The proof of the smooth case of Theorem 4, and also Sullivan’s construction of his 

orientation, depend on the natural equivalence C&+(X; Z/n)@n,czl.,Z/n z KO*(X; Z/n) valid for 
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n odd-it is clearly sufficient to consider the case when n is a power of p. The extension to 
topological bordism is thus accomplished by 

PROPOSITION 5.1. For any X, and n odd, the inclusion of smooth in topological bordism induces 
an isomorphism 

0,(X; Z/n)@ n.cz,.,Zn 4 s1?(X; Z.) 0 a:o-Czln,Zln. 

Proof. Since Sullivan’s orientation is defined also for topological manifolds, the natural 
transformation n,(Y)+ KO,(Y)@Z[;] which it defines factors through fi$“P(Y). It thus 
suffices to show that this transformation induces an isomorphism from both domain and range of 
7 onto KO*(X; Z/n). 

The result is known for the domain, As to the range we have, computing and using the results 
cited above, 

fi~“(X; Z/n) = a,(M Top AX; Z/n) 

= a,(MOhMCokJAX;Z/n) 

=R,(MCokJhX;Z/n) 

and so 

fi?(X; Z/n) @ a.cx:zlnjZ/n = R.(M Cok J AX; Z/n) @ cICZ,n,Z/n 

= KO,(M Cok J AX; Z/n) = X0,(X; Z/n), 

where fip is regarded as a,-module using h, rather than e,. It follows that the map above does 
induce an isomorphism fl,‘o”(X; Z/n) @ n?PCzln,Z/n +KO*(X; Z/n), and the proposition is proved 
The two applications mentioned are immediate corollaries. 

$6. THE INTEGRAL CASE 

We are now ready to attempt integer formulae: after all the preparatory work of the previous 
sections, this will not now be so difficult. We work with the same Axioms 2 and 3, reinterpreted 
now to include infinite cyclic groups in & (we can write Z = Z/O). It will still be necessary to work 
separately at even and odd primes, with the localisations Z C2) and Z[i] respectively. However, 
since these are flat Z-modules (localisation is exact) we can introduce these by tensor product 
without needing further geometrical axioms. 

Our first concern is with formula for A : the following, though not altogether satisfactory, is 
general and effective. 

THEOREM 5. Let A satisfy Axioms 2 and 3. Then it determines homomorphisms 

r/o: H*(X; Z,,,) + F(Z)@ Zm 60: KO,(X)O Zt-:l -+ F(Z)@ Ztfl 

such that 

(i) we have commutative squares 

H*(X; Z,,,) Jf+ F(Z)@ 2~2) 

1 P. I P. 

H*(X; Z/2’) 2 F(Z/2’) 

KO,(X)@ Z[f] 3 F(Z)@ Z[f] 

1 P. 
1 

P. 

KO,(X; Z/n) -% F(Z/n) 

for r 2 1 and n odd, where q:, 8: are given by Kronecker product with I),, 8, respectively, 
(ii) if (N; f, g) determines a class in &(X x G/Top), then the even and odd localisations of 

A (N; f, g) respectively are given by 

~&f*{l(N)g*t n lNll)+ B,C(N; f, g) and %Cf,{s*A n tNl4). (6.1) 

Proof. It will suffice to describe the even case: the other is similar but simpler. Now A induces 
as usual a map h’:R,(X)@R,(G/Top) -+ F(Z) and hence by Axiom 3 another map 
A “: n,(X) @ P, + F(Z). Now PO = Z: taking tensor product with the generator yields a map 
n,(X)+ F(Z) and thus also Ao: s2,(X; Z,,,) + F(Z)@Z,z,. 

We may now simply define q. as ho0 j, where j is as before. Assertion (i) of the Theorem 
follows since we have Bockstein functors (the same argument gave ~~77~ = 7,). The proof of 
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assertion (ii) follows the same pattern as that of Theorem 3. First we show that 

Ao(M f) = %Cf*U(M) f-l [WH. (6.2) 

For, as before, we have &(X; Zd = P,(X; Z,,,) + T,(X; Z,,,) where P, is the R, submodule 
generated by j(H.(X; Z&, so the result holds here; and T. is a torsion submodule, the sum of 

the images of the Bockstein maps p*: R*(X; Z/2’)+ Q+(X; Z,,,). But 

h@,(M’;f’) = /?*A,(M’; f’) as we have a Bockstein functor 

= P*A,jf;U(M’) n [Ml 

= 17d d;u w n wll 

= m.f*U(W f-l [W 

for (M;f) = P(M’;f’). Thus (6.2) holds. 
Next we obtain the formula for A’ on Q,(X) @ P1. We can choose (P; g) = p(P’; g’) with 

c(P; g) = 1 and (P’; g’) a Z/2-manifold; then (M; f) x (P; g) = p{M; f) x (P’; g’)} so we obtain 

P*A(Z/2)((M;f)x(P’;g’))=P&(M;f). 

Thus for decomposable elements, 

A’((M;f)x (pig)) = &*{I(M)n [MI}T(P; g)+p,Co(M;f)c(P;g). 

We check that this agrees with (6.1). But this yields, using (4.7), 

nof*{I(M)fl [Ml. g*I[Pl)+ P*Co(M;.f)c(P; g)+ vZ(M)f*(P*cro)[Mld(P;g). 

Now T(P; g) = g*I[P], and p*cuO = 0 since (i) shows that (Y~ is in the image of H*(X; F(Z)@ 
Z&. Thus the formulae agree. Now, as above, 0,(X x G/Top; Z& is the sum of the images of 
n,(X; Z,,,)@R,(G/Top; Z,,,) and of the Bocksteins p* on &(X x G/Top; Z/2’), so it remains 

only to check the formulae on these. But 

AP(N;f,g) = P*A(Z/2’)(N;f, 8) 

=P*(I(N)f*17~g*I[Nl+P,C(N;f,g)+i,C(PN;f,g)) 

and, as before, the second term vanishes, the third gives P*C(PN;f, g) and the first is 
~~f,(i(pN)n [pN]) as we see by following the image of f,{l(N)g*I n [Nl} round the 
commutative diagram 

H,(X; Z/2’) 5+ F(Z/2’) 

I 
B. 

1 
P. 

H,(X; Z,,,) * F(Z) 0 Z,z,. 

This completes the proof of Theorem 5. 

The unsatisfactoriness of the above result lies in the fact that we have failed to obtain classes 
nm, 0, in H*(X; F(Z)@ Z& and KO*(X; F(Z)@ Z[i]) inducing the q,, 8, (r t 0). I do not see 
how to obtain such classes without imposing finiteness conditions. Let us begin with some further 
discussion of Bockstein functors. 

Suppose now that F is a Bockstein functor on the class of all abelian groups. For any group A, 
choose a resolution O+ R + G + A + 0 where G, hence also R is a free abelian group. Now 
F(G) = F(Z)@ G holds by additivity for G finitely generated free abelian. If we suppose that F 
preserves direct limits (which we consider rather as a definition of F on groups not of finite type 
than as an axiom), it follows that F(G) = F(Z) 0 G for any torsion free group G. In general, the 
exact triangle 

F(Z)@R -F(Z)OG 

II II 
F(R)------+ F(G) ---) F(A) - F(R) 

yields a short exact sequence 0 --) F(Z) 0 A --) F(A) + Tor (F(Z), A) -+ 0, showing that F is 

effectively determined by F(Z). 
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Now suppose F(Z) of finite exponent N, Then the maps 

Tor (FZ), ZINrZ) --, Tor (F(Z), ZlrZ) induced by p* 
ZlrZ = F(Z). 

vanish, so I@ F(ZlrZ) = 12 F(Z) 0 

THEOREM 6. Assume Axioms 2 and 3, and that F(Z) has finite exponent. Then there are unique 
classes p_ E H**(X; F(Z) @ Z,,,), Bm E KO *(X; F(Z) @ Z[$]) inducing the pr and 0.. They also 
induce p. and &. 

This follows from the above discussion, noting that H**(X; F(A)) is also a Bockstein functor 
having exponent N when A = Z, and localising at 2 or away from 2 appropriately. 

However, F(Z) will not have finite exponent in most cases, so further discussion is needed. 
Next, we consider the case F(Z) = Z and recall some ideas of Sullivan[7], [lo], [ll]. A 
transformation H*(X; Z/n) + Z/n of Bockstein functors induces, taking direct limit under i,, a 
map H.(X; Q/Z) + Q/Z. Now if each group H,(X; Z) is finitely generated, we can identify 

Horn (H&X; Q/Z), Q/Z) = H**(X; i), 

Horn (H,(X; Q), Q) = H**(X; Q) 

Hom (H&f; Q), Q/Z) = H**(X, 6) 

and 

where 2 = l@ Z/n is the product over primes p of the p-adic integers 2,, and Q = Q @ 2. Now 

the exact coefficient sequence 0 + Z + Q@ 2 -+ 6 --) 0 induces a cohomology exact sequence, 
and the Bockstein vanishes (on account of the finiteness hypothesis). Thus H**(X;Z) is 
isomorphic to the group of commutative diagrams 

H*(X;Q)-Q 

1 I 
H, W; Q/Z) - Q/Z. 

PROPOSITION 7. Let F be a Bockstein functor on the class of cyclic groups Z/n (n aO), X a 
space with each H,(X; Z) finitely generated and p: H,(X; Z/n) + F(Z/n) a Bockstein functor. 
Then if F(Z) is the sum of a finitely generated group and a group of finite exponent, there is a 
(unique) class 77 E H**(X; F(Z)) . d m ucing p via Kronecker product 

H,(X; Z/n) @ H**(X; F(Z)) + Z/n @ F(Z) -+ F(Z/n). 

It may be observed that any such 7 induces a Bockstein functor, with no need for finiteness 
conditions. 

Proof. Write F(Z) as a direct sum of copies of Z and of a group of finite exponent. Then F 
decomposes correspondingly as a sum of functors (by arguments sketched above, using 
additivity), so it suffices to consider the cases separately 

Now the result for F(Z) of finite exponent was observed above, and the construction of n for 
F(Z) = Z was described just before the statement of the Proposition: it suffices to note that the 
commutative diagrams 

H,(X; n-‘Z) -+ n-fZ 

1 1 
H,(X; C’ZIZ) - n-‘Z/Z 

given by the Bockstein functor yield the desired diagram on proceeding to direct limits. 

I do not see how to weaken substantially the hypotheses of the Proposition, and accordingly 
introduce 

AXIOM 4. F(Z) is the sum of a finitely generated group and a group of finite exponent. 

We have, however, obvious modifications of the Proposition in which we consider only 
certain primes (and then localise at them), or in which homology is replaced by K-theory. 
Applying these as appropriate to the Bockstein functors defined by the 7, and 8, (r 2 0, n 2 0) 
we obtain our final result. 

THEOREM 8. If A satisfies Axioms 2, 3 and 4, and if each Hi(X; Z) is finitely generated, then 
there are classes q_, 0, as in Theorem 6. 
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We observe, in conclusion, that G/Top defines a cohomology theory z* which is a mixture of 
KO* at odd primes and I-I** at even primes (with some coefficients Z/2 thrown in). One can 
thus-at least informally-interpret (Y,, n- and 0, as defining a single characteristic class 

x E 2*(X; F(Z)) which completely determines A. I leave the interested reader to pursue this: I 
see little prospect of such an interpretation simplifying any actual calculations. It may however 
suggest an alternative formulation: that the universal functor A satisfying our axioms takes 
values in F(A) = 2*(X; A). 

47. SURGERY OBSTRUCTIONS SATISFY THE AXIOMS 

In my book[l4] I introduced, for any finitely presented group ?T and homomorphism 
w : T +- (2 l}, surgery obstruction groups L”(~T, w); and (in 813B) I showed, following Sullivan, 
that surgery obstructions yield a map 8: R,(K(r, 1) x G/Top)-+ L,(n, w) which, moreover, 
vanishes on R,(K(n, 1)). I wish to apply the full results of the preceding chapters to this map. 
The crucial step is given by the following result. 

THEOREM 9. (i) Surgery on Z/m -manifolds leads to a Bockstein functor L,(r, w ; Z/n) 
(ii) 8 extends to a natural transformation of Bockstein functors. 

Thus our Axioms 1 and 2 hold for the geometrical problem. 

Proof. The essential point of the proof consists in observing that the technique of [14, 891 is 
sufficiently flexible to cover the present situation, after one minor modification. Namely, a 
(Z/m)-manifold can be regarded as an (m + I)-ad (X; X1,. . . , X,) such that aX = U Xi and the 
Xi are disjoint, together with preferred (orientation-preserving) homeomorphisms between the 
X,. Similarly, to any type T of manifold r - ad, we can define a “Z/m - T” to be an (m + r) - ad 
where the first m faces are as above, the others have the extra structure imposed by T. Now in 
[ 14, 991 I defined cobordism sets L,‘(K) of “objects”, groups L:(K) of “restricted objects”, and 
a natural map L,‘(K) + L,*(K) bijective for n 2 4. The identical reasoning, with the modification 
just indicated, (or rather, the proof of (9.5) lot. tit) yields a cobordism group L,*(K; Z/m) of 

Z/m-objects, well behaved for n 25. 
Next I assert that the arguments of [14, 9.61 yield an exact sequence 

. . . L,‘(K) 3 L.*(K) + L,*(K; Z/m) + L:-,(K). . . 

To the usual cutting and glueing arguments we need only add the remark that for X above, its 
boundary is a sum of m copies of X,. Now, again as in [14,§9], we deduce from the Five Lemma 

that for n z 6, L,‘(K; Z/m) depends only on r,(K), and we denote it by L,(P,(K), w ; Z/m). 
That this is a Bockstein functor now follows exactly as in 83, using Theorem 2. 

To extend 0 to a transformation R,(K(n, 1) x G/Top; Z/n) + L,(r, w ; Z/n) we must again 
proceed geometrically. Given a Z/n-manifold (X; XI, . . . ,X,) and maps f: X + K(r, I), 
g: X + G/Top (such that all f IX and all g]X coincide), we apply the Browder-Thorn 
transversality construction to g/X, to construct a normal map Y, -+ XI; we have n copies of this, 
and now apply the construction relative to c?X to obtain a normal map Y + X. 

This determines a class in L,(n, w; Z/n) as desired. The procedure is compatible with 
bordisms, so defines a map 13 ; also it is compatible with replication, with partial splitting and with 
taking Bocksteins, so 8 is compatible with all the induced maps above, and is thus a natural 
transformation of Bockstein functors. 

In order to apply to 0 the results of the preceding sections, we must now verify the product 
formula (Axiom 3). It is no harder to prove a more general result, which will be very useful for 
calculations. 

THEOREM 10. There is a commutative diagram 

&(K(r’, 1); Z/n)@R*(K(n”, 1) x G/Top; Z/n)% &(K(r’, 1); Z/n)@ L,(#; Z/n) 

1 1 
Q+z(K(+ x 7~“, 1) x G/Top; Z/n) 

I3 > L*(?r’ x 7r”; Z/n). 
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Axiom 3 is the case of this in which 7~” is trivial. The point of the theorem is, of course, the 
existence of the right hand arrow. 

Proof. Suppose given Z/n-manifolds N and P, and maps j,: N + K(~T’, l), j2: P + K(d’, l), 
g: P+ G/Top compatible with the identifications on the boundary. Form the product 
p: N 0 P + N x P. We must show that B(N 0 P, j, x ji, g) depends only on N, j, and B(P, fit g). 

Recall the definition of 13 for closed manifolds P. Using transversality we construct from 
(P, g) a normal map (4: Q + P; v; F: Q@~*v = E) and we define O(P, j,g) to be the 
equivalence class of the ‘object’ (4: (Q, 0) + (P, O), v, F, j). We can obtain a corresponding 
object for (N x P, j, x j2, g) by taking products throughout with N: choose a normal bundle Y, 
over N and a framing Fo: T~@v,, --) E and take 

(1N x 4: (N x Q, 0) + W x P, 01, v&v, F&F, f, x jd 

To prove the theorem in the case n = 0, it now suffices to observe that for any object 
(4: (R, Q) + (Y, X), v, F, j) or cobordism of objects, we can multiply by N in the same way, so 
that multiplication by (N, j,) (with vO, F,, fixed) maps bordism classes to bordism classes and 

defines a map of groups. 
But we can extend this argument to Z/n -objects. If we fix the bordism T,, the construction of 

N @ P from P is completely canonical. So a Z/n-object, or bordism of objects, can be multiplied 
by N in the same way as above. This proves the theorem. 

88. APPLICATIONS TO SURGERY THEORY 

We have now shown that the surgery obstruction map 0 verifies the hypothesis of Theorem 5. 
We conclude the existence (among others) of homomorphisms 

no: H*(n; Z,,,)+ L*(a’)O& 

00: KO*(K(7r, l))@Z[tl+ L*(7r+)Oz[fl 

and a class CQ E H**(n; L*(~T+; Z/2)) which determine surgery obstructions as in (5.1). 
It does not quite follow that we can cover the nonorientable case as well, since there the 

restriction on j: N + K(p, 1) is that “j is orientable” (i.e. j*w = w,(N)) rather than that N is. 
We can, however, include this by observing that if K(r) is the Thorn space of the orientation line 
bundle over K(r, l), we have a natural isomorphism (of degree 1) between (reduced) f-orientable 
bordism of K(r, 1) and oriented bordism of a(r). We can thus apply Theorem 5 taking 
X = k(:(?r) and observing a shift in dimensions. In the case of (Y~ this translates back to give a 
class as above; for Q we are led to homology of 7~, but with coefficients twisted by w. With these 
understandings, all holds in the nonorientable case also. 

To obtain the stronger results of Theorem 8, we need finiteness conditions. We say that 7~ (or 

more precisely, (7~, w)) satisfies (F) if L,(lr, w) is the sum of a finitely generated group and a 
group of finite exponent, and if each tl;(r ; Z) is finitely generated. Certainly finite groups satisfy 
(F) (see e.g. [ 151 for the L-theory). Next, if A, I3 and C satisfy (F) and we are given embeddings 
A t- C + B, then the amalgamated free product G = A *,= I3 satisfies (F). For there is a 
homology exact sequence 

. . . H(C)-+ Hi(A)@Hi(B)+ Hi(G)+ Hi-,(C). . . 

and for the L-theory a similar sequence which “fails to be exact only by a group of exponent 2”: 
for a precise statement, see Cappell[3]. A similar conclusion holds for HNN groups. Thus any 
group which can be built up from finite groups by these constructions satisfies (F). This is a 
satisfyingly wide (though not characterisable) class. It can be extended a little by sharper 
arguments, e.g. to include fundamental groups of closed surfaces. For groups satisfying (F), we 
have classes 

Pm E H**(r; L*(P) 0 &*A 8,E KO*(K(T, 1); L*(a)@Z[t]) 

which, with (Ye, determine all surgery obstructions. 
We turn to the question of computing these classes. Although I will not discuss this 

numerically in this paper, calculations will surely depend heavily on natural properties of the 
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classes, especially ones relating different groups. Theorem 10 is useful for this; even more so is 
straightforward naturality. 

PROPOSITION 11. All the characteristic classes above are natural for morphisms of groups. 

For example, let 4: r + 7~‘. Then H**(~$)(cu~(n’)) = (L,(4)),(~3(7~) (8.1) 

and we have a commutative diagram 

H.(d) I L.(4) 

H*(7r’; z,*,p=+ L*(?r’)@Z,*,. 

The assertion follows immediately from commutativity of the diagram 

(8.2) 

fi,(K(p, 1) x G/Top) 

I 

‘(*) ) L*(r) 

+. 

I 
L.C.+) 

&(K(a’, 1) x G/Top) e(w’) * L,(r’) 

which follows e.g. from the “naturality for inclusion maps” in the Main Theorem of [ 141; together 
with the corresponding diagrams with coefficients Z/n. 

Now consider the case of a finite group 7~, with Sylow 2-subgroup U, and 4 : u -+ 7~ the 
inclusion. We know that apart from the signature (untwisted), the image of 0(r) is all 2-torsion. 
But H*(4) is injective on 2-torsion, so (Ye and p-(n) are determined by the values of (Ye and p- 
for (T. We can formulate this conclusion explicitly as follows. 

THEOREM 12. Let M + V be a normal map between closed manifolds with finite 
fundamental group 7~. Then surgery on this map to obtain a [simple] homotopy equivalence is 
possible if and only if surgery is possible for the covering spaces i@ + v with fundamental group u 
the Sylow 2-subgroup of 7~. 

More generally, we will show that if i : u CT denotes the inclusion of any subgroup, then 

(L,(i)),O( Q) = 177: alO( V). (8.3) 

This implies the theorem, since then the index of (+ is odd. The proof proceeds by direct 
calculation: it suffices to illustrate the case of a single term, say v2(N)f*a2g*k[N] = B’(N; f, g). 
Now i is classified by a covering map Bi, inducing v as a pullback: 

et’, K(C7, 1) 

lp 1Bi 

v r, K(7r, 1) 

and the normal map fi + v is induced by 2 = g 0 p. Also, p is a submersion, hence covered by a 
map of tangent bundles, so p *v’( V) = v2( v). Hence 

e’(v’;f,s)= v”(~)~~z((+)g*k[~]=p*v2(V)j*az(cr)p*g*k[~l. 

Now applying (L,i),, we replace the second term by f*(L*i)*az(a)=f*(Bi)*cY2(~) by 

Proposition 11, (8. I). Hence 

and since p*[ v] = 17~: a/[ V], (8.3) follows. 
Versions of this have been conjectured for some years. Observe that it is not the case that 

L*r = L,u. If, for example, u has a normal complement p (e.g. if 7~ is 2-hyperelementary), then 
L,u is a summand of L*n and the theorem asserts that surgery obstructions for closed 
manifolds always lie in this summand. It is thus analogous to Atiyah’s result that the equivariant 
signature of a closed manifold is always a multiple of the regular representation. 

The theorem focusses attention on the L,(u) with u a finite 2-group. It is worth noting that 
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according to [15, (5.2)] these are substantially easier to compute than L-groups of other finite 

groups. 

59. FURTHER COMMENTS 

Although we will not enter here into any explicit calculations of the classes qo, & and (Y~ (or 
even less, of +, 8, and (Ye), we now make a few observations which follow from the very 

existence of such classes. 
First observe that f&: KO,(K(r, 1)) + L,(a, w) @ Z[i] (which always exists) is none other 

than the homomorphism I, defined in [14, §17H], by considering smooth bordism: indeed, the 
construction above is essentially the same as our former one. 

Next, we note that no mention has been made of precisely which L-groups are in question. 
The above is valid not only for the L”-groups of [14] but also for the Lh-groups of [9] and for 
Cappell’s intermediate L-groups[3], in particular, those computed for finite groups in [151. We 
may thus calculate with whichever are the most convenient. 

Now observe that in general not every element of L,(T, w) can appear as a surgery 
obstruction. For example [14, §13B], if 7~ is finite and w trivial, an element which can so appear 
has as signature a multiple of the regular representation of 7~. The calculation of the & will 
determine a subgroup SL,(n-, w) C L,(n, w) consisting of the elements which can so appear. 
Thus for a manifold M, the surgery exact sequence [ 14, 0 101 can be amended to read 

This suggests that in general, the coset in L, (n)/SL, (7~) of the surgery obstruction does not 
depend on the choice of the normal invariant. I intend to publish the proof of this result 
subsequently: it depends on a discussion of composition of normal maps. It follows that for a 
PoincarC complex X with a normal invariant, the class in L,h(~)/SLmh(~) is a homotopy 
invariant of X. Since SL, (r) is frequently a relatively ‘small’ subgroup of L, (r)-for example, 
if r is finite we noted above that it maps injectively to L,(u), u a Sylow 2-subgroup-it follows 
that ‘most’ of the obstruction to having X a manifold can be defined (and perhaps computed) a 
priori, without reference to tangential structures. 

In conclusion, I remark that the ideas of Ranicki which motivated (but were not used in) this 
paper have now been developed to yield the following: 

(1) For any manifold or Poincart complex Mm a fundamental hypercohomology class 

[Ml E Hi;“&, CM’ 0 zX,I, 

where CM is the chain complex of fi. An algebraic notion of bordism of chain complexes with 
duality defined by such a class leads to a “symmetric L-group” L"(Zr). 

(2) A normal map M + X induces (using S-duality) a stable right inverse zkX + Z'M, which 
can be made equivariant, so that the induced chain map is “geometric”. We can then interpret CM 
as a direct sum C, @KM, and there is a fundamental hyperhomology class in H,,,z'z'zl(Z, 
K,' &JCM). An algebraic notion of bordism of chain complexes with duality defined by such 
a class leads to the usual L-groups L,(ZP), and the class represented by K, is the surgery 
obstruction for the normal map. 

(3) There are products such as, for example, L"'(A) x L,(B)+ L,+,(A x B) and the 
surgery obstruction of a normal map given by the product of a Poincart complex P and a normal 
map M + X is the product of the classes defined by these two. 

For a fuller statement of these results, see Ranicki’s recent preprint “An algebraic theory of 
surgery”. 

Comparing Ranicki’s results with ours, we see that ours are less general but more explicit in 
that, for example, we show that the class in L"'(Zr) of a manifold only contributes to product 
formulae via characteristic invariants such as f,(u'(M) n [MI). To obtain a fuller understanding, 
however, it is clear that what is needed next is more calculations for non-trivial examples. 
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PERcEPrtvE comments by John Morgan on the main results of this paper led to the discovery of 
a rather stupid error in the proof. In consequence, the results originally stated are probably 
incorrect. However, without much modification one can obtain correct statements sufficiently 
strong for the applications I had in mind. Morgan informs me that he has obtained equivalent 
results. I shall give the full statements of the corrected results, but only specify which 
modifications are needed to the proofs. 

No alterations are needed before Theorem 3. That result should read as follows: 

THEOREM 3. Let A satisfy Axioms 2 and 3. Then there is a natural transformation q: H,(X; 
Z/2’)+ F(Z/2’) of Bockstein functors such that for any Z/2’-manifold N, 

~(z/27(N;f,g) = ~f*(I(N)g*l n WI)+BJ(N;f, g)+ i,WWfY 8). (4.4) 

The initial comments, and sections on “the c/3 case” and “the c case” need no alteration. 
The fundamental mistake occurs in the discussion of “the 7 case”, viz. the sentence ‘Wow 
~\,j: H,(X; z/2’)-+ F(Z/2’) determines by duality a class ?r E H*(X; F(U2’))“. Since i 
and A are transformations of Bockstein functors, we replace this by “Now define n = A Q i.” 
The argument given before again shows that if the class of (M, f) in &(X; Z/2')@n,cz129Z/2' 

lies in j*H,(X; Z/2’), then 

A,(M, f I= 7f*(W) n [m. 

The rest of the proof holds good with only trivial modifications. 

THEOREM 4. Let A satisfy Axioms 2 and 3. Then there is a natural transformation 8: 
KOJX; Z/n)+ F(Z/n) of Bockstein functors (for n odd) such that for any Zln-manifold N, 

Again, the proof is as before, but eliminating the reference to duality between KO* and KO,. 
Now Theorem 5 is valid (essentially without alteration), but the remainder of 86 (including 

Theorem 6, Proposition 7 and Theorem 8) should be deleted. 
The remainder of the paper needs only trivial changes (e.g. we can delete the discussion of 

finiteness conditions for groups ?r). In view of its proven importance for applications, we give 
the required changes for the case of Theorem 12. 

By Proposition 11, if 4: T + d, the diagram 

H*(p) - H*(4) H*(n’) 

J 7lC-B J I)(W’) 

L’(9) 
L*(r)- L*(r’) 

of natural transformations is commutative. 

TH~EM 12. Let M+ V be a normal map between closed manifolds with fundamental group 
IT, i: u C v a subgroup of finite index, fi+ V the corresponding covering normal map. Write 
8(V) E L,(W), 8(V) E L,(a) for the surgery obstructions. Then L,(i)ft(fi = (lr:a]8(V). 

Hence if ?r is finite and a its Sylow 2-subgroup, 0(V) = 0 if and-only if t?(V) = 0. 
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Proof. We calculate the surgery 
commutative diagrams 
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obstructions in terms of the classifying maps, lying in 

BG 

The 2-localisation of t9( v) is given by 

q(a)f*(l(V)g*L f-l wl)+B*cuwi). 

The first term here is computed as 

and its image by L,(i) is therefore 

~(~)H*(i)f*(P*I(V)P*g*I U WI) by Proposition 11 

= Il(p)f*p*Cp*I(v)P*g*(f) n Vi) by the above diagram: H,(i) = (Bj), 

= ~h)f*(wg*u) n &I) naturality of cap product 

= deg p. q(7r)f*(1( Q?*(l) 17 [u). 

The argument for the other term is similar (half was written out in the paper), and so is that for 
the odd localisation. Since deg p = 1~: crl, this proves the first assertion. The second follows-as 
before, since L,(?r) has no odd torsion. 
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