FOUNDATIONS OF ALGEBRAIC L-THEORY

C.T.C. Wall

In my book E7] I introduced certain algebraic functors Ln which were
then used to express the obstruction to doing surgery. I did not give

a full account of the algebra, which at that time I did not yet have

in sufficiently good shape. This paper (intended as my definitive
account) is designed to fill this gap., A more immediate reason for
writing it was the need for adequate foundation material for the papers
[13] , and indeed it has enabled me to make my calculations much more
effective.

I have presented this work as a sequel to the short paper [}6].

I am grateful to Andrew Ranicki for sending a preprint to [1é] and
for showing me the proof of Lemma 7 below. The relation of this paper
to other foundation material on the subject is discussed in § 5 below.

§1 Preliminary definitions

For any category & with product (in the sense of Bass
(4, r. 344} we define ¥G to be the monoid of isomorphism
classes of objects of G, KO(@) its universal (Grothendieck)
group. Similarly, K1(6) is the universal group for functions
on the automorphisms of 6 to {(additive) abelian groups which
are additive for sums and composites, If Al’ A1 @*AZ,

A1@ A2 EaAj, ... defines a cofinal sequence in k(G), we

can define Aut G as the direct 1imit of

A C Lue
Aut@ A cAuté (Al@ 2)

and Kl(@) is then its commutator gquotient group.

’For any ring R, we write R) for the category of
finitely generated projective (right) R -modules. There
is a standard meaning for © here. The groups KO P(r),
KldD(R) are written simply as KO(R), Kl(R)' Any auto-
morphism of such a module thus has a *determinant' in

Kl(R)g in particular, so does any nonsingular matrix over R.
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Now let (R, @, u) be an antistructure in the sense of [18] =

s

i.ee a 1is an antisutomorphism and u € R a unit of R such that

a2 1
x uxu for all xe R,

a -]
u = u .

]

For an R -nodule If , the space Q(a,u)(ﬁ) of {a, u)- quadratic forms
on ! was defined in [1§, es wes the concept of nonsingular form, Ve will
write § for a guadratic form and (be, qe) for the corresponding

[ 16 Theorem 1] element of Quad(a’u)(m)o We define &\ (R, a, u) to be
thc category whose objects are pairs (P, 8) , P a finitely generated
projective R=- module, 6 € Q(a,u)(P) nonsingular ; and vhose morphisms
(P, 8) - (P*, 6') are the isomorphisms P — P' which carry 8 o 6'.
[A possible variant is to regard represcntatives ¢ € Sa(I‘) of 8 as
defining different objects, but still have morphisns as above.] An object

of this catogory is called a guadratic module, There is an obvious notion

of (orthogonal) direct sun. Forgetting the quadratic structure defines
a functor

F : R, a, u) > R .

e also have a hyperbolic functor
H=H, : F(r) » 2R, a, u) .

Thi, was defined on opjects on [16, p.249] : H(M) = ¥ @
as module; 8 1is the equivalence class of the pairing

(o, £).(aY, £') = £(a').
The definition on morphisms is obvicus: H(f) = f @ (fa)mlit is clear that
this does define a functor. It will bc important for us to recognise

hyperbolic modules; as a preliminary, if (N, 6) is a quadratic module,
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we define a submodule M CN to be a subkernel [17] (alias Lagrangian
subspace §1] [12) 4if the identity on ' extends to an isomorphism of
(¥, 8) on H(M) . Clearly a ncecessary condition for this is thet I1I be
isotropic, i.e. that qe(}f{) =0 and bG(M x %) = 0., DNote that M is
also a subkernel of M ., Indeed, the map

Me % = H(Y) - H®) = 1% o ¥°¢
given by Ix, £) 1= (f, A wI:’a(x)) is an isometry. For the sesquilinear
form in H(M%) is

AumM’a(x) (£*) = u mM’a(x)(f‘)

- u(e N - e )

which comes fronm the definirg form f(x') for H(¥) by applying Tu.
In general, two subkernels E,F >f N are complementary (a2lias
Hanil+torian complements” if there is an isomorphisn of (¥, 6) on H(E)
which is the identity on E and takes F 1o E%. We can weaken this
ccndition as follows,

Lemna 1 Let (N, 6) be a nonsinpular guadratic module, and B, F isotropil

subspaces with E + F =1, Then E and P are complenentary subkernels.

Proof Since ENT 1is orthogonal to E and to F , it is orthogonsl

to E+F =N, hence is zero by nonsingularity (it lies in

it

Ker (ab,) = {0}). Hence, additivity, N=E@®F , The isomorphism

Abe a a a
EeF=N—3N =E 5T
has zero componernts E — Ea, F - Fa, hence yields isomorphisms = - Fa,

-y ¢4 -
£ =+ E° , Identifying P with ol by the isomorphism yields
N=EeE" = H(E) , an adiitive isomorphisn which (we readily verify) is

also an isometry.
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Lenma 2 Let (N, 8#) be a nonsingular quadratic mciule, E CN an

isotropic projective submodule. Then E is o subkcrnel if and ~nly if

1
the map N/E 2" 5% induced by b, : N-— N* is an isomorphism,

Proof The condition is clesrly necessary: suppose it satisfied,
Then N/E is projective, so the extension N of E by it splits, and
we can find an additive complement, N say, to E , and identify E with
the dual 1%,

Then N is additively isonorphic to M @ Ma, and @ 1is given by =z
sesquilincar forn

(m, £).(at, £') = &(m, m') + £(m') .

(This can be seon from our description [ 16 , Pa246 ] of Q(a,u) of a
direct sum.) We now see thet if { € S (), and we embed Il in e n®
by the graph of { , the induced quadratic form comes from the sesquilinear
form &+ { ., Thus if we choogse { = ~&, we obtain an isotrcpic subspace,
complementary to M°,

This last argument also yields the

Corollary 1 The subkcrncls of H(1) complenentary to ® are the graphs

of the by ¢l - u* corresponding to the 6 Q(a’_u)(M).

For here, & = 0, and { determines O e Q(a u)(M) if and only if
H

= Im(l - Tu) = Im(1 + T__u)

is *he bilinearisation of an (a, =-u) guadratic form,

Corollary 2 Any sutomorphism of H(M) leaving ¥® pointwise rixed is

given by x € 1. m (x, Aba(x)) for some 8 € Q(a _u)(M).
¥
For if x b (p, g) we find p = x since (p, g) and x have the
same imner products with each element of u® . The conclusion now follows

from the preceding,
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We recall {16 Theorem 3]3 that if ¢ is nonsingular,

(N, 8) ® (W, —6) = H(Y). The simpl:st way to see this is now to use
Lemma 2 to show that the diagonal A(N) CN @ N is a subkernel, The
special case when (N, 8) = H(’") will be important below.

We will need to study based modules. 4 based module is a pair (M, v)
where M is a free R-module and v an eguivalence class of free (ordered)
bases of M, two bases being equivalent if the automorphism of M taking
one to the other has Getermimant 0 e Kl(R). Ve can regard v as a sort of
volure element on M , Now define B(R) as the category whose objects are

based modules (M, v) and morphisms are based isomorphisms (i.,e. preserving
preferred classes of bases), There is an obvious definition of sum in

B(R), but it is not commutative (permutacion metrices can have determinant
-1). Hence we restrict to the subcategory BO(R) of mcdules of even rank.

liore intercsting is the category 2 2L (R, @, u) of based guadratic

medules, i.e. triples (¥, v, 9) where (N, v) is a based rodule and

(n, 8) a quadratic modulc, A morphism here is an isomorphism class of
nodules respeciing both structures, A4gain we have a direct sum, which
bchaves well on tho subcategory B 2 (R, @, u) of modules of cvon iank,
There is an obvious forgeiful functor F : 8 (R, a, u) - B(R), but before
Wwe con define o hyperbolic functor, we must discuss duality in B(R):

this nsedssone care,

We recall from [16] that for o an antiautomorphism of
R and M 2 right R-module, the dual module M is HomR(M, R)

with module structure defined by

fr(m) = rqf(m);
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-1
a
that the natural pap of § to its double dual is @y, M- (%), where
)

A
mM’a(m)(f) = (@)%

and that if (R, a, u) is an antistructure, there is an isomorghisn
-]
Au: i T given by
-1
Au(f)(zn) =u o f£(n).
#*

*
I €)seeer € is a free basis of M, the 'dual basis? & reres € of

i'iomR (M. R) 1is defined by
*
;) = deltz).
ei(ea) 5ij (Kronecker )
-1
If vie identify this with u® and with Ma, however, the isomorphisn Au

does noct preservc the class of +thic basis. I thus declare thaot for n = 2k,

a prefeired base of H® shall be eI, e; u.l, cess eZk—l’ e;k uul ; and one
a . * * » * m
of U is ej U655 ooy e2k—l u, O Then Au preserves preferred

besss and so {up to equivalence) does w « For the case n odd, we do

,a

not define the concept of dual preferred base: ad hoc definitions can be
found in syecial cases, but are not invariant under lorita equivaliences
(cof. discussion in [18, II]).

We now define the hyperbolic functor H : BO(R) - B (n, a, u) ¢ it

suffices to describe the case of rank 2, If e is a base of M and

®1» ©5

e;, e; as above, we find
* * * *
‘ = = L =
be(el, e/ bG(EQ’ e2) u, be(el’ el) bO(EE’ e2) 1,

bO vanishes on other pairs of basis elements and gy on all basis elezents,

Te will usually use thc base f’l = e:t u"l ’ f‘2 = ez u“l s but owr preferred

base (for H%) is e;, eZuﬂl,

We now call (M, v) a based subkernel of H(H, v) and M* (with the

above base! n complenentary based subkernel (we see, 3s in the unbased case,
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that it is a based subkernel). 4s before, there is a recognition principle:
if B, P are complementary subkernels of (N, 0), bases for E, P are
complementary iff (i) they are dual in the above sense and (ii) they combine
to give & preferred base of M ,

Ir (M, 0) is an object of BO&(R, a, u), the homomorphism

Ab, 3 Mo M associnted to b, is now a rap of based modules, hence has

6 0
a well defined determinant in KI(R) we call this the discriminant of
(1, 8), 5 (3, 0), Ve write x(R, a, u) for the full subcategory of forms
with zero discriminant.
This completes our list ot mtegories and functors: the algebraic
X - theory of these categoriecs is (roughly) what I mean by algebraic L -theory.
Before establishing the basic relations betiwreen them, singling out the

laportant ones anl fixing notation, we next give some computations with

unitary automorphisns, which will be nceded for the proofs.

&2 _The elerentery unitary group

W& begin by recalling those results from the linear casc which we wish
to initate, and fixing notation, All modules will be finitcly generated
projective right R ~nodules; maps also ar: written on the right, For M &
rnocule, GL(lI) is the group of R =autcrerphisns of M , There are natural
injections

GL(M) < GL(I) x GL(N) c GL(M & N)
which we regard as inclusions. ™e write GL = for sL(z™), and GL = for
the union of the G-Ln, with inclusions defined by

B CRneRan+l .
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Similar notations will apply below for other groups defined as functors of M.
Since the R' are cofinal in (P(R), X (R) is the commutator quotient
group of GL , For any Ii, we write SL(M) for the kernel of the determin-
ant map so there 1s an exact sequence

1o SL(i) - cL(y) °8*

K (R).

Elements of SL{}) are called simple automorphisms of M .

Let Breeer € denote the standard base of Rn. For
reR, 1l<i, §sn, i#3j,
let Xi'j(r) be the automorphism which leaves each ek(k #£1i) fixed, and

takes e, to e + osT Te call the Xij(r) elementary transvections, and

write En for the subgroup of GLn which they generate, and an for the
~1 -1
union of the E . The Xij can be cxpressed as commutators [x,yl=xyx vy ;
in fact, if 1, j, k are distinct,
[Xij(r)’ Ajk(s)] = Xik(sr)-
Thus for n 2 3, En is contained in the commutator subgroup of GLn, and

a fortiori in SLn: indeed, it is perfect. Stably, the converse holds.

Lemmz 3 (Thitehead's lemma)

an is the commutator suvberoup of GLM.,

Proof We show, in fact, that the commutator subgroup of GLn lies in
E2n +» It is convenient to use matrix notation, with blocks of n x n

matrices, Then the notrices of the form
C 9
0 I

form a group, vhose product 1s given by addition of matrices A, If A has

only one nonzero element, we have an elementary transvection, Hence all such
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matrices belong to E end similarly if the positions of 0 and A are

2n}

interchanged, Now
A 0 _ (I ~A\/I 0y(I =-Ay(I I) I 0y /1 I
- = - H
(0 A 1) (0 A I)(D I’(o I}(MI I)‘o I)
and hence belongs to E(Ren) and, finally, so does
(ABA'l B 0 . o )(A’l oy °)
0 I o )M o Mo B
since each factor is of the above tyre.

There is, of course, more to be said, but the above seems the essential
basis for understanding ithe functor KI(R)' We now urdertake the corresponding
atudy in the unitary case; we work at a similar depth, but there is more t
do: the results are nuch richer, We supposed fixed an antistructure

(®, a, u) in what follows.

For (N, §) a quadratic module - i,e, object of 2 (R, a, u) - write
hut (N, 8) for its group of automorphisms in this category. However, we
write U(M) for Aut H(M). Write olso GI(M) for the subgroup of U(M)
of cutomorpbisms leaving the subkernel M of H(}M) invariant, The
subgroups of GI(M) where the restriction to M of the automorphism belongs

to SL(M), B(1) (when U = Rn) or is triviul are denoted respectively by
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SI(M), BI(M) and I(M)., PFor the corresponding subgroups leaving u®

N n .
invariant, we use J iIn place of I ; also if M =R we use a suffix n,

and[hava GIc>o etc. for the appropriate limits, The hyperbolic functor
induces & momomorphism GL(M) - GI(M) ; in fact GI(¥) is the semidirect
product of GL(M) with the normal subgroup I(M) ; and correspondingly
for SI, BI ,

The subgroup EU(YM) of elementary automorphisms of H(M) is that

generated by I(li) and J(M) . As in the linear case, we can also give

explieit generators, If 81r sies @ is (again) the standard base of Rn,
n -—

we extend by £15 «vey £ to a base of H(R™) such that ei'fj = Sij

(the b@ for s hyperbolic modnle is denctied by a dot ; we write g for qe)

and q(ei) = q(fi) =0, For 1 £3j,1<1i, j<n, reR, we define

En;j(r) to be the identity on all basis vectors except

e, =»e, +f.r - f @
i i. 3 ej — BJ, iI‘ u
and Fij(r) on all save for
. -1 a
f‘i f‘i + ejr f. = fj -eur

30 that Eij(r) €3, Fij(r) € I . Then for 1, j, k aistinct,

[Eij(r)’ ij(s)] = H(xik("sr))c

Since the Xij(-sr) geverate En s it follows that for n 3 3,
ET < EU .,
n n
We also write
-1
= I ™ H
Zij Bij(l)ﬂij(u )Eij(l) :
under Ei,j’

6, > T, 5 - e, and e, » - f,u—o - e
i § 4 3 i 3
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Next we observe that

[8(x,,(1)), Ej,(r)]
acts as the identity on all basis elements except

ey -8y + fl(r - r%),

Lewma 4 EU_ is generated (for n > 3) by the Eij(r) and Fij(r)

for 1 <i, j<n, rekr,

g

Proof It suffices (by symmetry) to show that Jn is contained in the
subgroup with these generators. By corollary 2 to lemma 2, each element

of Jn is of the form

Q

e, »e, + 5,17, (b, ~-b.,
4 1d Ji

1 i 3

for some matrix (bii)§ Since ecomposition in this group corraesponds to

w

u),fi_.f:,L

matrix addition, it is enough to consider matrices with only one nonzero
entry bi.. If i # 3, this is Eij(bij); the case 1 = j is dealt with
by the salculation preceding this lemua,

Corollary or n :x 3, EUn is perfect,

For, as with En, its gensrators are commutators :
E,.(r) = {H
Our next objective is to show that EUOO is the c-mmutator subgroup of U
(=]

Lemmz 5 If A e U(M) we can find A' e U(i') with Ae A' € EU(M e I').

Proof Since A @ AL

g B(I{) e H(¥)), it is enough to prove the result
under the extra hypothesis that A € E(H(M)) . By adding further modules,

we may suppose M free of even rank.
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- 12 -

Define A' to be the conjugate of A by the (non-unitary)
automerphism 1. which is 1 on M and -1 on Ma ¢ then also
At g U(M) N B(H(KM)), Now A @ A' leaves invariant the subkernel A
of H(M) o H(M) defined as the graph of 1, and the induced sutomorphism of 4
belongs to E(A), since A e E(H(M)). If we can find p e EU(M @ )
taking @ ¥ isomorphically onto 4 , it will fellow that

phe )t e BT e M) ,

shence A @ A' € EU(l @ M), as desired,

It suffices to find pu for I = R° (we can then take direct sums for

other cases, A suitable element of U, is, in fact,

i
= Iy H(le(l) X%(l)).

Theorem 1 E’Um is the commutator subgroup of Uoo
Proof Since each EUn is perfect, so is EUOO, 80 it is contained in the

cormautator subgroup, Conversely, let A, Be U : say A, B= Um. By the
lemma, there exist (for some r ) A!, B' e U, with Ae &', Be 3' e BU_ .

Hence EUm+2r contains A e A' @1, Be 1l & B' , hence their commutator
[4,B1.

It is interesting to note that, as on {17, p. 65] the crux of the
proof is the construction of g (but here we have avoided the matrix
identity). Note that g carrics eys Sy 83, el,, regpectively to
o) + eg5 0, k€, - (fz- f’lp) , (fl - f3)u which, by our definitions, is
indeed a preferred base of A&

Our second basic result is a sort of normal form, anslogous to the

Bruhat decomposition, for elements of E, . This result was first

mooted in {17, 6.6] and thc first formal proof is due to Sharpe [15].
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Lemma 6 Let x €U(M), Then

X € SI(M)SJ(M)SI(M)

if and only if M and Mx have a common based complement in H(NM),

Proof If x = uvw is of this form, M = Mw is based comple-
mentary to M w = ﬁivw, and so0 is Mx = Muvw - Mvw, Conversely,
if F is the common based complement, we can find u€ SI(M)

with Mauwl = qul, since SI(M) is transitive on based
complements to M (c.f, Lemma 2); and also w €SI{M) with

M = F. Then v = u~ “xw - preserves the based subkernel

Ma, sc lies in SJ(M).

Remark Our construction of TléEUZ was by such a product,
and 212 interchanges {el, ez} and the complementary

based subkernel {flu, fz}. We deduce the

2n)

Corollary In H(R ., two complementary based subkernels

always have a common based complement.

Lemma & (Ranicki) Suppose given based subkernels K,
i
(1 <i<k) in (N, 8 ) with Ki based complementary to K, +1

o
3'
complement in (N, 9 ) ® H(K3)~

(i =1,2,3). Then K1<9 K K4(9 K3 have a common based
Proof Up to based isomorphism, we can identify (N, 8 ) with
H(KB) and K?fi with K;‘L (by definition of based complements),
To avoid confusion, we then use primes to indicate the second
copy of H(Kj). We now claim that the twisted diagonal
A = A (H(KB))' defined as in the proof of Lemma 5, is a
common based complement.

For by that lemma, it is a based sbukernel, Hence it
suffices to show that it is additively a based complement
to K1 &)Ké. We change bases by a series of elementary moves.
First, change , = A(KB) @A(Kz) modulo KéCK]_ @ Ké to obtain

A (K K,. Next change K K' b
(3)63’2 é*laazy
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X, C a(xj) ® K, to obtain K, e K} . Fimlly, change A(KB) ® K by

3 2 2
K3 C K3 @ Ké to obtain Ké @ KZ‘ But by hypothesis, K3 ® Ké and
K‘3 @ K2 are based complements,

For based subkernels K, K, of (N, 6) we define K, ~K, if we
can find a based complementary pair (Ll, L2) such that K, & L,, X, 8L,

have a common based complement,

Lemma 8 ~ is an eguivalence relation.

Proof It is clearly reflexive and symmetric, Suppose, then, thet

~ ~ s N t
K K, K3 j that K e L and I, ® L, both have based complemen
Cl, and that 1{2 ] M2’ K3 ] H3 have baged complement 02. Applying lemma 7
to (1\1 @L el,, ¢ @ MB, X, @ L2 ® I, C, @ Ll), we f£ind a based
complementary pair (N, N2) such that Kl elel,eN,C el @ N,
have based complement 03 . By the corollary to lemma 6, Nl and N2 have
a common based complenent N3 » Now apply lemma 7 to

(hleaLleLz@Nl, 03, C,el eN, K

and we obtain the desired conclusion.

391.2@:13@N3),

Theorem 2 For all x ¢ EUn, we can find I g EUm interchanging the based

subkernels R°, ()%, cach that

xe Ze 8l SJ S1 .
m+n - min m4n

Proof By lerma 6, the conclusion holds if R0 and R x8 E™* nave
a common based complement; by definition, this holds if R ~r%x.
Now EUn is generated by I, ond J‘n +« The result holds for

n

. n . n n
X E In since R'x =R and for x € Jn since R and R x have common

based complement (R")*. If it holds for x and for y , then
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n n n
Rn-anx, 3o Rny~Rnxy, and Rn~Ry; so R ~ R xy., The result
in general now follows.

Corcllary We can improve the conclusion to

3 w - J *» I
xele H(bme) Ton *“min * Tmen °

This follews on using the equations

ST = H(SLI_).II_ =1 .H(SLr) .

&3 KO and 1(1 of categories of gquadratic modules

Tn §1 we defined the categories (R}, GCZ(R, a, u) and B AR, a, u).
We nu~ obtain some exact sequences relating their algebraic X —groups,

In addition to the naps induced by the functors F, H and the forgetful
functor G ¢ 38 &(R, o, u) > Q,(R, @, u), these involve two furthcr maps:
the discrininant map and one which we now define,

Suppose (N, 8, v) a based quadratic podule, an object of BQ\(R, Oy u)
with class y & Ky 83.(R, a, v) and a an automorphism of N (as R =-nodule),
with deterninant x & K (R}. Then applying a to a preferred base of M
gives another base, whose equivalence clags v' depends only on x and v,
I (N, 8, v') has cla.s y', we define 7(x) =y' -y, If we replace
(¥, 8, v) by its dircct sun with any (N2, 92, vz), then (N, 6, v') is
affected in the same way, so we obtain the same value for 7(x). Hence T
is well defined, It is defined for any x , since we can apply an
automorphisn of M to H(M), Honce we have

T2 KI(R) ~+ KOEQ\(R, a, u)
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Lemma 9 The composite

H

7
KR - K AR, e u) KR

is 1~ T ; the composite & O T =1 + T, where T is the involution of

Kl(R) induced by (a-)duality.

In matrix terms, T comes from thelanti-sutomorphism of 6L, which sends
A= (aij) to A% = (agi) : note thdt its asguere is an inner automorphism,

hence induces the identity on Kl(R).

Proof If x € Kl(R) is represented by the matrix A, H(x) has matrix
A 0

( *-l) , so the first assertion is clear. As to the second, given a

v A

(tased) quadratic form wi*h matrix B , and chenge of base with matrix P ,
the form with its new base has matrix P*BP, and this resnult also is
immediate,

Note Our description of T was perhaps vague as to sign: we can take

the above as normalising this (unimportant) choice,

Proposition 10 The following sequence is exact @

0—+K 8 A (R, o, ) (} X LR,y a, u)F"ﬁ KI(R) 5 K8 J (B, @, u) %f X, 2R, 2, u) .
Proof Wle first show that the sequence has order two., An autemorphism

in B8 2, must preserve preferred bases by definition, hence is mapped to O
by F, . If x is the determinant of an automorphism A of (™, 8), where
we may suppose M free since such aime cofinal, then we can assign N a
preferred base v , Changing this by A, though, gives an isomorphic object

of B2 (R, @, u) , so 7(x) =0, Finally, if we refer to the definition
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w(x) = y' - y of 7, we see at once that y, y' have the same
image in KokﬁR, o, u).

Conversely, let y EK(;&Q,(R, a, u) be in Ker G_, Letu
be the difference of the classes of (Nl' 91, Vl) and (N2,92V2)w
Then (Nl,el)and(Nz, 92) are stably isomorphic in J(R,a , u):
since the H(R™) are cofinal, we can suppose (adding this to
each of Ml’ Mz) that they are already isomorphic. If A is
an isomorphism, and has determinant x with respect to vl,
vz, it follows from the definition that T(x) = y.

Next let 7(x) = 0, Stabilising as before, we can
suppose (N, ®, v) and (N, 8, v') isomorphic. But then x is
the determinant of an automorphism in Z(R, o, u) of (N, 8 ).
Exactness at Kl;‘L(r, o, u) holds by definition of B .
Finally, G* is injective, since El is the commutator sub-
group of U_ and, being perfect, also of the subgroup with
determinant 0.

Writing Se(Kl(R)) ={;gGKl(R)z;{ = gxlfore = +, we have
Corollary There is an exact sequence

Klg\(RyQ,u) QS-(Kl(R)) ﬁ%@gRyayu) -}?O‘Q‘quv U.) @ S+(K1(R))'

This follows at once by diagram-chasing, taking due note of
Lemma 9, It is sometimes a more convenient form for calculations,
The above is reasonably straightforward and not unexpected.
The following exact sequence, though to some extent it plays
a symmetrical role below, appears to lie deeper, There is a
natural forgetful map
KO’&?‘«R,Q , u)"KOg(R)i%,
where ¢ counts the number of elements in a preferred basis,
We write KO B(R, o , u) for the kernel,
Proposition 11 The sequence

o
KEUR, o, -u) = K (R) B k AR, &, +u)
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is exact.

Note the change here here u to -u.

Proof We will describe Ker H., Let x be an automorphism

of a free module M ¢f even rank, representing;@eKl(R).

Then H(x) represents H(£), and so does H(x)y, if T interchanges
the based subkernels M and M%, Then H(£) = 0 if and only

if this is (stably) in EUs, so we can apply the corollary to
Theorem 2: replacing x (if necessary) by its direct sum

with an identity matrix, we get

H{x)?" = H(xo)uvw
with x € SL(M), u, we I(M) and ve J(M).

By Lemma 1 (c.f. lemma 4), there is a unique (@, =-u) -
guadratic form © on M such that for mav,

mv = m + Abg(m) M@ M,

Since also m = mu, w induces the identity on the submocdule
M and the quotient module M% and muvw M%, we deduce

muvw = Abg(m).

It follows that Aby is an isomorphism, hence ® nonsingular.
Next, we see by computing determinants thate = det(Abe) =
6 (9)., Thus Ker HCIm &,

We can prove the converse using the same identity as
for the Whitehead lemma. Alternatively, if v, are defined
as above, Mv is complementary (unbased) to M as well as to
M% = MY so we can find w € I(M) with Mvw = M% and then
x €J(M) such that vwx interchanges M and MG} Then vwx has
the form H(a)y , where
det a = det Ab(g) = &M,8 ) and “€EU(M). Hence Ha(M,s ) = 0.

We cbserve various simple corcllaries of the last three

results - most of which can easily be proved independently.
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Proof We will describe Ker H ., Let x be an automorphism of & free
module I} of even renk, representing £ € KI(R) Then H(x) represents
H(&), and so does H(x) £, if I interchanges the based subkernels

¥ and M® ., Then H(£) = 0 if and only if this is (stebly) in EU_,
so we can epply the corollary to Theorem 2 : replacing X (if necessary)
by its direct sum with an identity matrix, we get

H(x) I = H(xo} uvw

with x € SL(I), u, we I(#) and v e J(M) .

By Lemma 1 (c.f. lemma k), there is a unique (a, -u)- quadratic
form € on 1 such that for me i ,

ov = m + Abe(m) e e LY,
Since also m = pu, w induces the identity on ihe submodule M and the
guotiant module Ma, and murr e 1% , we deduce
muvw = Abe(m) .

It follows that Abe is an isomorphism, hence € nonsingular, Next, we
see by computing determinents that ¢ = det(Aba) = 5(6), Thus Xer HcIm 5 .

We can prove the converse using the same identity as for the
#hitehead lemma., Alternatively, if v, I are defined as gbove, Ev is
complementary (urbased) to 3 as well as to N* = MZ so we can find
we I(M) with Mvw =1" and then x & J(II) such that vwx interchanges
M and M°, Then vwx has the form H(a) Z, vhere
det a = det Ab(8) = 5 (¥, 8) and 2 e EU(M), Hence H& (M, 6) = O,

We observe various simple corollaries of the last three results -~

most of which can easily be proved independently.
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Coroliary
m(l = T) cRer 1 = In F, C XKer (L+7)

In(l +T) CRer H, =In 8 ¢Fer 1 -1T).
To conclude this section, we recell the category £(R, @, u) of based

forms of discriminant 0 , This is a full, cofinal subeategory of

8 2.(R, @, u) - as is clear from the sbove. Hence we have the easy

Temma 12 K1£(P, a, u) = KIB:‘L(R, a, u) .

ﬁbﬁ(R, @, u) = Ker & : ﬁbﬁngR, a, u) —»Ki(R).

&) Definitiors of the L - groups

We bave alrendy dr«wn attention to the symmetry between Propositions 10

and 1]. We now develop a notation to make the most of this. First, write

e

Ko 82.(2, « u)

Al(R, @, u) = oy (R, @, u)

AO (R: Uy u)

and, for ary i Z,

Ai+2(R, a, u) = Ai(R, a, -u)
so that Ai is periodic with period 4 in i . 8ince the transition from
u to =-u is now dealt with in our suffix, we can write Ai(R) for the
rest of this section without risk of confusion, Now we have cxact
sequences

®in i
4, R) ST KR R) S oA R),
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where 8i+1 neans F_ or & , and T, is H, or T , according t
the parity of i , and by Lemna 9 ,

i
siOTi—l'l'(-l) TQ

Let X be any subgroup of KI(R) such that T(X) = X . Then we define
X -1
1;(R) = L}i‘(R, a, W) = 8, (X)/7,(x) .

The most obvious (and important) examples are X = {0} : we will write

8 .
L:.L for these. We have

L(s)(R) =Xer 5 :¥,8 1) » K (2) = X 2(R)
Lf(R) =Ker F, 1 K| 9.(2) > K (R) = K 83 (R) = K £(R),

so these are essentially the X groups of the category #£(R). Next we
can teke X = Kl(R), and write L};_: for these groups:

X

Ly(R) = Coker 7 : K (R) -+ﬁ‘oa;>\ (R) =% 5 (»)
Coker H, ¢ Kl(R) ~X 2U(R) .

1l

()
Although these are the main exarples, we will have occasion in other
papers to consider : X = Ker(Kl(R) - I{l(S)) for a ring homomorphism
R -+ 8 (of antistructures) and, if R is the integer group ring Zw of
a group T alss X = the image in Kl(R) of the Ix1 matrices +g,
g € 7. The latter is the important case for topological applications
(cof. [173). The idea of defining all the L)iC was suggested by
S. Cappell,

These groups are related by exact sequences. If G is a group with
involution T of order 2 - e.z, Ki(It) or X above -~ we write Hl(G)
for the Tate cohomology groups of the action:

HZi(G) =fxe6:Mx=x}/ly + Ty:ye G},

Fe) s fxcoitx = xYly - Tyiye 6l .
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Theorem 3 If X <Y are T-imgveriant subgroups of Kl(R), there

is an exsct sequence

e t® 3 i@ S e S Al

Proof It will be convenient to use the temporary notation
XY -1
877 =85 (V) /7, (%),
Then Si induces a map
X,Y
t . s
8) + &7+ ¥/ 5,7 (X) > Y/

whose kernel is the set of equivalence classes of elements mepping by §
to X, i.e. is L}:.E(R). Similerly, 7, induces a map

X,Y
. v b s
LA Y/X - ‘r.l(A)/r.l(J;) - Ai

whose cokernel equals *hat of LA Y - 5;1()(), ie, is L;_{(R) .

Since T, 5 =0, 7f 5}, =0. Conversiy, if ‘r:{(y +X) =0,

i+l idl

ri(y) £ ‘ri(X) so for some X €X, y-xelerT, =In 3§ It follows

i+l°
that y + X € Im 85‘_.,.1'
Ve thus have exact sequences

3 &t Tt
X e 8 R P i XY Yy
0-)Li+l(R) ~ K Y 3 £ %sL Li(R) -+ 0.

also, the relation 6:{ oT! =14+ (-1)iT follows from the corresponding

1
i

resuit Jor Si o) LA The result thus follows formally from the following
elementary lemma, whose proof we leave to the reader.

Lemma 13 Given a sequence of exact seguences

. b.
-ty B A

i+l

¥rite Hi(B) for the homology of the complex

ai+lbi+l aibi AR

.Y
¢es Bi+l /Bi 2 i-1 ses o

Then there is an exact sequotce
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... Ker a, . —» Coker b, . » H (B) - Ker &, - Coker b, ...
i+l i+l i i i
Corollary There is an exact sequence

S X i S K
L;(R) = L (R) - H"‘(Kl(R)) -1 (R) =L (R) .
A specigl case of this is due to Rothenberg (see [14]); the general case

is also proved in [12].

The above definition makes the L? appear somewhat unnatural, We
conclude our discussion by giving 8 more directly geometrical definition
which is, moreover, one which we shall need to refer back to.

Let Kl(R) -+ V be a homomorphism with kernel X, equivariant with
respect to an action of Z/2 by a, We can, for example, take
V= Kl(R)/X, but it is sometimes more convenient to let V = Kl(s) with the
map induced by & ring map R ~ S. We use this map to calculate determinants
with velues in V . Now define the category B8(R) as in $1, but referring
to determinant in V ., With no further cheange, we obtain definitions of
82 (R, @, u) a forgetful functor F : 32 (R, @, u) » B(R), and & hyperbolic
functor H : BO(R) -8 2 (R, a, u), The discussion of based subkernels,
complementarity, end discriminant at the end of $1 is also unaltered, and we
have a category £(R, @, u), It is sometimes possible to define dual baszes
and hence H, on free modules of odd rank: for example, if we require (as is
often done) u = +1, and that the determinant (in V) of ~1lg RX is zero.
As we restrict ourselves to the case when the rank is formally zero, this
point is unimportant for us.

It is immediately clear that L}é(R, a, u) = Kof;(R, ¢, u): forms
representing objects in £(R, a, u) gdmit free bases: the discriminant in
our original sense is restricted to lie in X C Kl(R), and the basis is free

to change by (the image under 7 of) X
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More interesting is the case of Li . We refer to the proof of
Theorem 2 (starting with Lemma €): note that SI(M) now has a new meaning,
i.e, automorphisms of H(M) which leave M inveriant and induce an
automorphism of M with determinant O e V . To avoid confusion with our
earlier notation, let us write S'I(M) for this, E'U(M) for the group
generated by S'I(M) and §'J(M) (we make no bones here about listing
elementary matrices ), S8'U(M) for elements of U(M) with determinant
0 € V, and conventions as before when M = Rn. T claeim first that
Lg(R, o, u) = S'q”/E'qm: this is indeed simply a matter of referring back to
the definition, We seek, however, a more directly geometric form of the
def+ ‘on.

. e (as we see directly) S'I(M) acts transitively on the based
complements to M , the proof of Lemma & remains valid; so of oo urse does the
corollary (the new form is a weaker version than the 0ld). The proof of
Lemma 7 remsins valid without alteration, and if we define a relation ~ on
subkernels as there, we see as before that it is an equivalence relation.

Now S'Un acts (and it clearly acts transitively) on the based subkernels in
H(Rn). The given proof of Theorem 2 shows that for x € S'Un,

. I n
% E Eqﬁx impiies that R ~ R x and hence for T as before

xXé L€ SIm+n SJm+n SIm+n'

But this in turn implies x ® 1, x ® T € E.Um+n' The relation ~

between subkernels thus detects neatly the group we want, however,

as subkernels are abstractly isomorphic we seek a more intrinsic
invariant,

Following Ranicki we define a formation to consist of a triple
(H; F, G), where H is a nonsingular based (R, @, u) - quadratic module and
F, G are based subkernels in H. A formation is trivial (or split) if F and

G are based complements; we define stable equivalence = between formations

to mean that they can be made isomorphic by adding trivial pairs.
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Definition Two formetions (H, F, G), (H', F', G') are eguivalent

(~) if, after replacing if necessary by stebly equivalent formations, we
can find a based isomorphism H - H' taking F to F' and G to G" with
G" ~ G,

Theorem Eguivalence classes of formations form an sbelian group under &.

This group is isomorphic to L§(R, @, u), The isomorphism is induced by

taking the class of g based automorphism @ of H which takes F to G (as

based subkernel!.

Proof Any element of S'In defines O € Lﬁ(R, @, u), Tt follows

(transporting by an isomorphism) that so does any automorphism which preserves
a based subkernel. S8ince a is unique up to left and right composition with
such automorphisms, its class & ¢ L§(R, @, u) is determined by (H; F, G).
Clsarly, the sum of two fprmations has the sum of their invarients. It remains
to show that two formations with the seme invariant are equivalent.

Up to stable isomorphism, we can identify the formations with
(H(Rn), R", R"x) end (HIRn), R", R"y) where xy"l € E'U_. We seck to show
Rnx ~ Rny s or eguivalently, Rnxywl ~ Rn . But this was done above,

Note that - absorbing more in the stable equivalerice ~ we can modify -~
to require that G' and G" have & common complement. Also,

(H, F, 6) ~ O <=> F ~ G <=> stebly, F and G have & common complement.

The return from sutomorphisms to pairs of subkernels brings us closer to
the geometry in [17, Chapter 6]. It also now follows that the L -groups of
[17] can be described in our present terms as follows, Take V = Whw, so
X is the image in K (2Zm) of [ e (zn)*}. Then

L () = Lzw, a,c1)%)
2k 4 0 1

L2k+l(”) = Li(ZZﬂ,a, (—l)k)/class of ¢ = ((_1)k 0)‘

where @ is the anti~involution given by
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~1
a(g) = W(g) g for ge 7w

(w the orientation homomorphism). These identifications are now

immediate on comparing the definitions, Similarly, we obtain the surgery
. h X

obstruction groups L  for homotopy equivalence as above, but taking

X =§0}.

&5  TFurther remarks

Although I regerd the above as moreorless in finel form it is, in some
important respects, incomplete. In this section I discuss desirable
generalisations, and compare with the work of other authors.

First, there is the problem of dealing with reflexive bilinear, rather
then quadratic forms. The work of Bak [1] [2] has suggested that we should
generalise, and consider the concept of 'unitary ring' as formulated in
Bass [5]. For (A, @, u) an antistructure, we consider an additive subgroup
A of A satisfying
(i) S__u(A) =fa-a%zac Al cA ¢ Snu(A) =faghA: ac= ~a"u}

(ii) a’ra e A for all agh, reh ,

Then & (~u) -reflexive form over the unitary ring (A, @, u, A) is a

(~u) ~reflexive form ¢ over (A, @, u) with ¢(x, x) e A for all x,

The module of u~ quadratic forms is the quotient of the group of sesquilinear
forms by the subgroup of (~u) ~reflexives. Bass gives generalisations of all
our results up to Theorem 1 to quadratic forms in this sense. However, this
does not really sclve the problem of giving a good account of reflexives.

Nor does it seem possible to proceed to analogues of Theorem 2 and its
corollaries (which really constitute our main theme), as there is no natural

choice of 'dual category' (as we had 2 (A, a, u) and (A, @, -u)).
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It seems to me that if there is a common generalisation of our two
approeches, it sould go somewhat as follows. We choose AM@KS-U( A)) and
A+@CSu(A)) independently and then seek (e.g. using some modified version
of Witt vectors) a more general notion of form where ¢({x, x) can take any
vajue in A4, and is to be interpreted as y + yau where y 1is defined
mod A . Here, y cennot be assumed to take values in A : we need 2
larger group. A nontrivial example is Brown's notion of quadratic forms
over the field A of 2 elements, taking integers mod L as values.

Next, there is the question of higher (and lower!) K (or L) groups.
The most suggestive work here has been done by Karoubi, and the ideas can be
expressed as follows, We start with the forgetful and hyperbolic functors

F: (A a v~ PA) H: P @A)~ 24, a, u) .
Following Quillen and others, from the monoidal category we construct a
topological infinite loop space

S{ = (8| ¥ (&) =~ KO(A) x B(GL(A))ab ,
0B| 8 (A, e, u)| = K A (A, a; u) x B(UAY @, w))*;
and F, H induce maps between these; in fact, infinite loop maps. Write
WA, @, u), V4, @, u) for the mepping fibres of H, F respectively.
Main conjecture (Karoubi) There is a natural homotopy eguivalence
Q Ndi,(*% @, u) ~ ?}'(A, @, -u) .

It has been shown by Karoubi [ 8] that if Quillen's higher K~groups are

replaced by those of Karoubi-Villamayor type [ 9], the corresponding result

\
holds. Also, Sharpe [ 15] has shown that there is an isomorphism of .

We will now describe the perlodicity situation which would result from the

conjecture.

Write £0

£2

i

QBi(A: Q, u), £l = LQ(A, a, u) s

QBQ\(A; a, "'u)a £3 = Z@ (A, o, “'u):

H

and regerd the p in 2P as taking values integers mod 4. Then for each p,

we have a fibering (up to homotopy)
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£p—> ag<—> £p+l.

Define XU =K (A&, @, u) =7 _(££77). This hes period 4 in p, and we
pan p,n n

have exact sequences

«ee KU -+ K - K7 - KU -~ K 3 hee
p+l,n n psh 1,0~ n=~l
Now define L s = Im(XU - ). This can of course also be
b,n~% p.n psn~-1

defined as a kernel or as a cokernel,

Consequences The composite K - ICUp oK is 1+ (-2)Pa .
b 4

There are exact seguences
A M

LI L

1 s

1
- L n_%—’ H (Kn) — Lp-—l,n+2

p,n*";' Ps
The first should be a simple verification; the second will then follow from
Lemma 13, As in §4, we will then also be able to define intermediate L ~groups

between Lp,n--—% and Lp,n+—%~ for each @ ~invariant subgroup X of Kn'
To illustrate this pattern, here are two simple consequences. First,

for any (A, @, u), tensor all K and L groups by Z[%] . Then

'1',p = Lp,n_%@ Z[ 4] is independent of n, and we have canonical splittings

KUp’n e ZzZ[3] = s(“l)p(}a:n e Z[1]) e i‘_'.p .
Next suppose A the sum of two anti-isomorphic rings R, § interchanged by
@ . Then 9 (A, @, u) = F(R) , whence
KUp,n(A, ¢, u) = Kn(R) Lp’n“_%(A, ¢, u) =0 .

Although this development is still conjectural, the descriptionims
been justified for low values of n -~ e.g. the above exact sequence is
valid for n = 1 (Theorem 3) and n = 0 (this and the case n = 1 are in
Ranicki [12]), thus answering the problems raised in [17, $17D]. Ranicki has
also considered the case n < 0O where there is a definition analogous to that
of Bass [4] for K . One would hope here fora spectrum, as Gersten [7]
obtains for algebraic K theory.

The abkve notation illustrates well the difference between what I have

described as KU - theory and L ~theory. In the former (as studled by the Bass
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- 28 -

school) the natural spaces are £° (and, to lesser degree, other £i) and
the natural sequence of groups is ﬂnCCO). In the latter, the natural
sequences are the periodic sequences with n fixed, and Ranicki [13] has
succeeded in constructing (by simplicial sets) periodic spaces £ With

m €)= Lo (m==5 4 12).

I hope this paper will help explain the viewpoint of L - theory as
opposed to KU -~ theory.

Since we have spaces, relative groups can be defined as homotopy groups
of mapping fibres. Algebraic definitions of the relative XU groups in
low dimensions are alsoc given by Bass [5]. In general, the relative L groups
cannot be very closely related to the relative KU groups: the theory here
is clearly susceptible of improvement,

Products have been studied to some extent by Karoubi {8].1It seems, for
example, that if A is commutative, KUp,n(A, @, 1) should be a bigraded
ring, Again, the complete situation is obscure.

The development likely to be of most value for topological applications
would be a definition replacing modules by chain complexes throughout, For
the case when 2 1s invertible in A, this was achieved by Miscenko [10]. See
also the discussion in [17, $17¢],

To conclude, we give a dictionary of notations: I will compare others

with the systematic notation [8] of this paragraph,

L ~theorists

[11] [12] [13] U v, l v
A F B h | C E s D
17, $170] L ' L =L | 1 L° =1 L
(27, % P P PP » p P
This paper L A LS
P . 'Y P
(8] L KU L J KU L Im(L . .~L )
P""%’ p,0 P;Jé | 1l P’l‘% ( p,ljé" p,%‘
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The identifications are not quite precise: the notation of [17] was
provisional, but referred to determinants in Wh(#), not Kl( Zn); also,

the sutomorphism ¢ 1is factored out in the groups of the top two rows.

Karoubi
~ )
(8] [9] 1tn 2'n1 1Un lwn 1*n
[s] KUn,n KUn+1,n Ln,n-—% Ln,n+%

Changing the prefix from 1 to ~1 has the effect of changing the first suffix
in the lower row by 2 also., Karoubi also has 'homotopical' versions
~-n

L
1 ete.

KU ~ theorists

[3) |k (8 2, 8) | 1l (a) KO (A) | W (A,0,) W) wa,, (1)

n

(5] | xob(a, 8) KA, )| mfa, 5, (4)) Woa, 8) W (a5 () 0 (8,5, (8))

[s] KU, (8 a0) L, ngtoo)

where n = 0 or 1 (usuelly 0); o is understood.

&6 I ~theory of division rings

By way of a simple illustretion to the preceding, we now give one
calculation, It is not really original: see e.g. [6] . We begin by
introducing & new type of elementary matrix,

In H(R) ® (N, ) we define el(y, A) for yeN, Ace qe(y) by

erre ~TA+y f - £f
and for, xe N, x X ~:fbe (¥, x).
Then a simple calculation shows that

1 1 1
€y, A) € (2, u) = (v + 2, A+ u+Dy(y, z)).
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In the case (N, 8) = H(Rn), we have

1

€ (fir‘, 0) = Eli(r)

1 ~1

€ (eir, 0} = zji Elj(ur) Eji

1 @
€ (0, u-u u)

i

[fl(el’ 0)’ El(flU, 0)]

so for n > 2, all él(y, A) e EU . The same applies, similarly, to

1
2 .
€ (y, A) defined by

e e ftu;—e?ta+f+y
-1
and for xeN X ## X —-eu b8 {y,x}
Theorem + Let R be a division ring. Then Li(R, &, u) = 0 unless R

is commutative, @ is the jdentity and u = 1, in which case the group

has order 2,

Proof We consider a general automorphism of H(Rn), and seek to modify it
by elementary and hyperbolic transformations till we obtain a normal form.

The argument proceeds by inducétion on n . Let p be an automorphism of
H(R) & (N, 8), and write

ep = ea + fb + x a, b e R, xeN.

Suppose a # 0. Then as p is an isometry, O:q(el) = Q(el PH(abl)) =A +q(x),
50 el(-—x, baa) is defined, and p' :pH(a_l)el(-x, ba") leaves e fixed.
Write fp' = ec + fd + y. CSince p' preserves the inner product

ba(e,f), d =1, Then p" = p' 62(—y, c“—l) leaves e and f fixed, and
thus can be regarded as an automorphism of (N, 8).

Apart from the need for supposing a # O , the argument shows by
induction that p is the product of elementary and hyperbolic transformations,
which is what we are trying to prove. It thus remains to see whether we can
always multiply p by an elementary transformation to ensure & £ 0. Now

the coefficient of e 1n ep e2 (v, A) 1is minus

2 % + u“]“ne(y, x) .
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If b = 0, then x = ep # 0, so we can choose be(y, x) # 0 by nonsinguarity.
If b # 0, first try to choose y = 0, A = 4 =~ gu £ 0. This is possible
unless u =1 and y = ua for all u, so o = identity, an
antiautomorphism, and R is commutative: we are in the exceptional case.
Finally, in this case, A = qe(y) is determined by y . If now
qe(y)'b +'b6(y, x) vanishes for all y e N, the quadratic form % is
additive in y , hence
0= gy +2) - q,(y) - qg(z) =by(y, 2)

for all y, z. Since our form is nonsingular, it follows that N = 0 |

These resuits prove that L? = 0 save in the exceptional case, and
that in that case any nonzero element of L§ can be represented by an
automor phism of a hyperbolic plane

e - ea + b
f 1—» ec + fd
where, moreover, a = (., @8ince, moreover, we have an isometry of quadratic
forms over R it follows that d = 0 and ¢ = b T, Multiplying by a
hyperbolic automorphism, we reduce to the ‘'interchange' o :
ec = fT fo=e ,

It remains to show that o does not give O € Li(R, 1, 1).

If K does not have characteristic 2, this is easy: any elementary
or hyperbolic automorphism has determinant (in the nafve sense) + 1,
whereas det o = ~1, Another proof, which includes the characteristic 2
case, runs as follows, Form the Clifford algebra ¢ = C, L & C, of the

0 1
quadratic form; let Z be the centraliser in € of CO‘ Then Z is a
quadratic Galois extension of R : either R & R or a field, Any
automorphism of the form induces automorphisms of €, C0 and Z over R,
It is now easily shown that any elementary or hyperbolic automorphism
induces the identity on Z, whereas ¢ induces the nontrivial automorphism.

The above theorem follows from those gquoted in [1@11] , but this direct

proof seems in the spirit of L ~theory.
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Our argument also yields an unstable result, but since better results
are known [2], [5], itdves not seem worth pursuing this point. Other
L groups for fields were computed in [18,IT], and it seems appropriaste to
quote them here, except for global fields where a better formulation will
be given in [18,V] .

Suppose R a division ring with centre K . If a|X is not the
identity, but has fixed field x (type U), our groups L~ have period 2 in
n, and vanish for n odd. The exact sequence of Theorem 3, Corollary
thus reduces to

0~ (K ®) » 15®) - Li@) » B @) - 0.
For R finite, all groups are zero. For R local, the first two are
zero; the latter two isomorphic to kX/NKx, hence of order 2 . For R = §,
we have

0+ 0~ 4Z -»2Z - {+1} ~» O,

Next let & be trivial on K, which has characteristic 2 (type SPOT).
We suppose R finite (then R = K). Then Lf = L? has order 2 and
Hi(Kl(R)) =0 forall i,

Finally suppose @ trivial on K , of characteristic # 2 . We suppose
Ll(R) the commutator quotient of a group which (as algebraic group) is
orthogonal (not symplectic); otherwise replace u by ~-u. We give the

table of groups

8 X 3 ] X
L}—;L}—»H(}&)—»Lg—'Lz—’HZ(I&)
K 4]
- Li—)Lf—»}rl(Kl)—»L(S)—»LO—bH(Kl)

with the convention that 1 denotes a group of order 1, 2 a group of

x,2
order 2, G = Kx/(K )" and dZ is the subgroup of Z generated by 4.

298



R finite 1-1-2=22-1-20 R=R 1~-1=2322=1=2

(6 =2) Guew222el-G=0 2~ 252 «{B - 28 ~ 2

R local 1-1=2=22-1-06 R=2¢ 1-1w222-1~1

commutstive o, .,. 5. Lg— ¢ 1-2=22-1-1-1

R local 1~1w2=201-¢0 R=H 1-1-1~22=2%Z-1

nonNm _

commutative G- L1-2=2-G=6 1-21~1=1-1 =1
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