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On the Classification of Hermitian Forms

II. Semisimple Rings

C.T.C. Wall (Liverpool)

The object of this series of papers is to perform the classification in
question over integer group rings of finite groups, by the methods
illustrated in [21]: reduction to rings with better algebraic properties. In
writing out and lecturing on this reduction I became aware that the
classifications over semisimple rings were, although known and in the
literature, somewhat scattered and unfamiliar to potential readers, so
I decided to collect the results in a convenient form. This has proved a
difficult task (the version below is completely different from a draft I
wrote a year ago): the results in the literature are usually not stated in a
form convenient for my application, and although the results given are
usually more than strong enough to yield the desired calculations, some
effort on my part has been needed also. However, to keep the paper in the
form of an (I hope) readable summary of known results, I have suppressed
these calculations, and given only the results and key references. Indeed,
translating results from Galois cohomology into the results quoted here
is trivial for those familiar with the subject, and to explain things to
others one would need a full account of the subject. I recommend [16].

I believe that this survey will be of interest to the connoisseur as well
as to those unfamiliar with these matters: points which have caused me
particular trouble, and seem to have some novelty are commutator
quotients of unitary groups over division rings, classification of ortho-
gonal-type forms over quaternion rings, and virtually all of the last
chapter, on based modules, where I have tried (as elsewhere) to be as
explicit as possible. This distinguishes this paper from an otherwise
similar recent survery by Frohlich [10], which gives more proofs, but
less complete results in a more general situation. I am grateful to Ali Froh-
lich for constructive criticism of the first draft of this paper.

1. Categories of Quadratic Modules

We proceed by analogy with the simpler and more familiar case of
categories of projective modules, so first recall the relevant definitions
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here. For any ring R, consider finitely generated (right) R-modules M
such a module is projective if it is isomorphic to a direct summand of a
free module R". We define 2(R) to be the category whose objects are
the finitely generated projective R-modules, and morphisms their
isomorphisms. The notion of direct sum of modules defines a functor
®: 2(R)x 2(R)— P(R) giving P(R) the structure of “category-with-
product”: one sees easily that this product is commutative and associative
up to (coherent) natural equivalences.

Before defining quadratic modules, we introduce the notion of
anti-structure.

By antistructure we mean a triple (R, «, u) where o is an anti-auto-
morphism of the ring R, u a unit of R such that

and

1

X**=uxu~ for all xeR.

Such triples were introduced in our paper [20] to formalise a general
notion of quadratic form. Note the important special case when u=1:
is then an (anti-) involution of R.
For M a (right) R-module, write Sesq,(M) for the additive group of
maps
¢: MxM—R

satisfying the identities

¢(m,nyri+n, n)=¢(m,n)r +d(m, ny)r,
d(myry+myry, n)=ri p(my, n)+r5 ¢(my,n).
Define a transposition operator

T: Sesq,(M)— Sesq, (M)

b

g T (m, )= (n, ) u.
Then T2 =1 ; wedefine R, .M)=Ker(1-T),and Q,, (M)=Coker(1—T);
the elements of the latter group are called quadratic forms on M; a pair
M, 9),q€Q,, (M) is a quadratic module. Multiplication by 1+ T induces
a map (bilinearisation)

b: @, .(M)— R, (M)

which is an isomorphism when 2 is invertible in R —this is generally
the case in this paper, though it will not be in the sequel. A map ¢ e Sesq,(M)
will be called nonsingular if the associated homomorphism

A¢: M —Homg(M, R)
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defined by
A¢(m)(m)=¢(m,n)

is an isomorphism; a quadratic form is called nonsingular if its bilinearisa-
tion is. We define 2(R, a, u) to be the category whose objects are pairs
(M, $): M a finitely generated projective R-module, ¢ a nonsingular
quadratic form on M; and whose morphisms are isometries —module
isomorphisms which preserve the quadratic form. There is a natural
notion of (orthogonal) direct sum of forms, giving 2(R, «, u) the structure
of category-with-product, as for 2(R).

A role analogous to that of free modules in 2(R) is played here by
hyperbolic modules (see [20]). Generally, we define the hyperbolic
functor H: 2(R)— 2(R, a, u) as follows: for P an object of Z(R), define
P* as the dual module P*=Homg(P, R) with R-action given by g a(p)=
a*q(p) for acR, peP, ge P* and H(P)=P@P* with the form defined
as the equivalence class of h, where

h((p,q), (', 4)=4q ().

A map f: P—Q induces a dual f*: Q*— P* and hence, if f is an iso-
morphism, H(f)=f@® (f*)~", which is easily checked to be an isometry.
Now by [20, Theorem 3], for any quadratic module (M, 6) we have an
isometry (M,0)® (M, —0)=H(M): the functor H is cofinal (even
naturally cofinal in the sense of [12]). Further, since any projective
module is a direct summand of a free module, any object of 2(R, a, u)
is a direct summand of some H(R").

Conversely, an object with H(R") as a summand is said to be of
index =n. In discussions of stability in categories 2, large enough index
plays a role analogous to that of large enough rank in categories .

We now discuss equivalences of categories. Again we start with the
case of Z(R). If R is a direct sum of rings, e.g. R=R; ® R,, there is a
natural equivalence of 2(R) with the product category #(R;)x Z(R,);
thus problems about projective modules over R are reduced to the sim-
pler cases over R, and R, .

Next, suppose R, S two rings with an R —S-bimodule M such that
M is faithfully projective as R-module and S is the endomorphism ring
Endg(M). Then (“Morita theory”) there is an S — R-bimodule N so that

M®sN=R, N®zyM=S§

and so tensoring by M and N gives inverse equivalences between the
categories Z(R) and 2(S). The simplest case is M=R", S=Endg(R"),
i.e. the matrix ring R,,.

We apply this to the case of semisimple rings. A semisimple ring is
[5, 5.3] a direct sum of simple rings: by the first paragraph above, it
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suffices to consider these. If we restrict (it suffices for later applications)
to the case of algebras of finite dimension over a (commutative) field k,
then [5, 5.4] a simple ring S is a matrix ring over a division ring D, finite
over its centre K (which is of course a finite extension of k). By the second
paragraph above, we have an equivalence P(S)=2P(D), so have now
reduced to the case of division rings. This argument goes one stage
further. Consider all simple rings S with centre K : they form an abelian
monoid under ® . The submonoid of matrix rings K, is cofinal in this:
the quotient group is called the Brauer group Br(K). Two simple rings
determine the same element of Br(K) if and only if they are Morita
equivalent, if and only if they come from the same division ring, so we
have effectively one category #(s) for each s€ Br(K).

We now consider categories 2(R, o, u). Again if R splits as direct
sum of two rings, and each is invariant under o, R=R;®R, with
u=(uy, u,), we have

’@(R’ a, u)gQ(Rl’ alRla ul)®°@(R2’alR2’ uZ)'

If, however, o interchanges R, and R,, and thus induces an anti-iso-
morphism between them, then I claim

2R, 0, u)=PR,).

Note here that—whether 2 is invertible or not— the bilinearisation
map is an isomorphism. We will talk in terms of R, .(M). Also in this
case, we can write an R-module M as M; ® M, with M 1 an R;-module,
M, an R,-module; a sesquilinear map M x M — R amounts to a pair of
maps M, x M, — R, and M, x M, — R, ; the symmetry condition states
that either of these determines the other, and the nonsingularity condition
that we have dual pairings, so can identify M, with the dual of M,.
Conversely, given M,, we define M, as its dual and M, x M; —» R, as
the dual pairing, and can reconstruct the rest. It is easy now to see that
we have an equivalence of categories.

There is also a “Morita theory” in this case, which is due to F rohlich
and McEvett [11]. Suppose (M, ¢) a quadratic R-module, or indeed a
module supporting a nonsingular reflexive form: which is faithfully
projective as module, and we give S =Endg(M) an antistructure by
using the adjoint map for ¢, then we get, as above, an equivalence of
categories

2R, o, u)=9(S, B, v).
The simplest special case of this is

Q(R, o, u)g.-@(Rn’arnun)’
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where R, is the nx n matrix ring, o, conjugate (for a) transpose, and u,
the diagonal scalar matrix uI,. Another is “scaling” (see [20]); for any
unit ve R* we have

2R, o, u)=2(R, B,vv™"u),

where x#=vx*v~! for all xeR.

We now turn again to semisimple rings. If (R, «, u) is an antistructure,

with R semisimple of finite dimension over k, first write R= @ R; as sum

iel
of simple rings. Since o? is an inner automorphism, it preserves each
summand R;. So the summands are preserved by o or interchanged in
pairs; correspondingly, 2(R, a, u) is a product category with one factor
for each orbit of « on I. Moreover, if « interchanges R; and R;, we can
interpret the corresponding factor as #(R;). We are thus reduced to the
case when R is simple.

Consider antistructures (S, o, u), where S is simple and of finite
dimension over its centre K. We will fix not only K but also the restriction
(c, say) of « to K. Since K is the centre, c(K)=K, and ¢?=1,: we may or
may not have c¢ the identity. The isomorphism classes of such triples
(S, o, u) form an abelian monoid with a product induced by ®g, and
those Morita equivalent to (K, ¢, 1) a cofinal submonoid. The quotient
group is the Brauer group Br(K, c) of [19]: two triples define the same
element of it if and only if they are Morita equivalent. (For further
details, see Frohlich and Wall [13].)

Thus for each field K, involution ¢ of K (possibly c=1),and xe Br(K,c)
we have a category 2(x) of quadratic modules. We next describe the
determination of the groups Br(K, c). Sometimes here—and later —we
refer without comment to natural maps of these groups and to natural
product-preserving functors between the underlying categories induced
by change of base ring: these are defined as follows. Givenamap f: R—§
of commutative rings we have, for each central simple R-algebra 4, a
central simple S-algebra B=4 ®4S, and for each projective A-module
(and hence also R-module) L, a projective B-module L®g S.For quadratic
modules we have essentially the same, provided the involutions cg, Cs
of R, S satisfy focg=csof.

Unlike the general theory preceding, the structure of the Brauer
group depends critically on the particular field under consideration. We
shall be interested in this paper in four classes of fields, which we label as
follows:

Finite finite fields (including characteristic 2).

Real  real and complex fields.

Local (p-adic) local fields, and

Global algebraic number fields (finite extensions of Q).
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Corresponding results hold for the other local and global fields, but
this paper is long enough as it is. We first give results for the ordinary
Brauer group: the computation of such groups is not easy; we shall
merely quote the results.

Finite. Br(K)=0: every finite division ring is a field [5, 11.1].

Real.  Br(C)=0 [5, 7.4]. Br(R) has order2 [5, 11.2]: the division
rings are R and the ring IH of ordinary quaternions.

Local.  Here [16, p. 2007 [24, p. 222] [7, p. 130] there is an isomorphism

inv: Br(K)=Q/Z.

For K= one extends the notation, setting inv(IH)=1.
Global. If we let p run through the places of K, we obtain [24, p. 264]
[7, p. 188] an exact sequence

0— Br(K)— ®Br(K,)— Q/Z—0,

where the first map is induced by the inclusions of K in its localisations
K, and the second by adding up the local invariants.

We compute Br(K, c) by comparison with Br(K). Note that ¢ induces
an involution ¢, of Br(K). Since taking the opposite algebra gives
inverse in Br(K), and an algebra in Br(K,c) is c-isomorphic to its
opposite algebra, the image of the forgetful map Br(K, ¢)— Br(K) is
contained in the kernel Br(K)® of I+c,. Indeed, the general theory
of [13] gives for this case an exact sequence

0—H'Z,; K*)—% Br(K, ¢) > Br(KY — H*(Z,; K *), (%)

where the action of Z, on K* is that of c. Here, if aeK* satisfies
a‘a=1 and (4,a,u) is an antistructure, to add A(a) means replacing
u by au. Also, 0 is defined as follows: if A is an algebra representing
an element of Br(K)", choose a c-anti-automorphism o of 4 (i.e. a| K =c).
Then o is an automorphism of 4 over its centre K hence, by the Skolem-
Noether theorem [5, 10.1], inner. Choose ueA with x**=uxu-' for
all xe A. Then u* ueK, and is invariant by c: its class modulo elements
d*d (de K*) represents (A).

There are now several distinct cases. If ¢ acts trivially on K (“involu-
tions of the first kind”), Br(K) is the subgroup Br,(K) of elements
of order 2 in Br(K). By a result of Albert [1, p. 161], the map 0 is zero.
The group H(Z,; K*) consists essentially of the elements +1eK?*,
so has order 2 (unless K has characteristic 2, when it is trivial). Thus
adding an element of the kernel will interchange +u in (D, a, u). More-
over, the extension is split for if K is an algebraic (or separable) closure
of K, Br(K, 1) maps onto Br(K, 1) { £+ 1}. Antistructures corresponding
to +1 here are of orthogonal type, or type O; the others of symplectic
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type, or type Sp: this being the type of algebraic group of automorphisms
of objects of the category. In characteristic 2, we refer to type SPOT.

If ¢ acts non-trivially on K (“involutions of the second kind”), we
have antistructures of unitary type or type U. We always denote the
fixed field of ¢ acting on K by k. Here H*(Z,; K*) vanishes, but 6 need
not. For completeness, we also refer to linear type or type GL for the
categories Z(R).

We now consider the algebras in more detail. The proof of exactness
of (%) shows, in fact, that 6(A) is the obstruction to A itself supporting
an antistructure; thus if A does, so does any equivalent algebra, and
hence also the underlying division ring D: more precisely, any anti-
structure on A is equivalent to one on D. We can even normalise this
antistructure to some extent.

Lemma. Let (D, a,u) be an antistructure, D a division ring. Except
in the case (K, 1, —1), there exists v with u=v v~° so scaling by v takes
u to 1 and o to an (anti-)involution.

If u= —1, take v=1+4+u. If u=—1 and we are not in the excluded
case, we can first scale by any v=v* to make u= —1.

The analogous result follows with D replaced by any equivalent
simple algebra D,. In the excluded case A=K,, a=transposition,
u=—1 we seek a nonsingular skew-symmetric matrix v: this exists
if and only if n is even. Indeed even when R is not semisimple, any
antistructure (R, o, u) is equivalent to (R,,a,,u,) and we can reduce
u, to 1 by scaling. For the rest of this paper, we will always have u= +1:
this is the traditional notation.

It remains to compute 6. In the finite and real cases, there is nothing
to do. In the local case, 8 is an isomorphism: this follows from another
result of Albert [1, p. 16171 So in these cases, for type U, the under-
lying division ring is commutative.

For a number field we use the fact (true for quadratic extensions
by [7, p. 199]) that a number is a norm if it is everywhere locally. Thus
for £eBr(K), 0(£)=0 if and only if for each place p of K, either

¢ ()P and Ve, (@)= —inv,(%)
or
c,(p)=p and inv,(£)=0,
i.e. if and only if £ has the form c () —n.
Indeed, over any ring R, 0(c, n—n) is always trivial, for if 4 rep-
resents 1, A°? is the opposite algebra, and A* the same, but with the

! Since Br k maps onto Br K, ¢, =1, so the only nonzero element of (Br K)° has invariant 1,
and is represented by a quaternion algebra. If it came from a quaternion algebra over k,
it would have invariant 2 x $=0. See also [15, p. 40].
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embedding of K twisted by ¢. We can represent c, n—n by A*®A°P:
interchanging the factors here gives an anti-automorphism «, inducing
c on the centre, and with «?>=1.

Summary. Br(K, 1)=~{+1} x Br,(K), except if char* K=2, when we
just have Br, (K). For c#+ 1, Br(K, ¢)isa subgroup of Br(K) lying between
{csn—n: neBrK} and {{eBrK: ¢, &= —¢&}: it coincides with the
former in all cases of interest (possibly for any field).

2. Commutator Quotient Groups and K,

Given a category-with-product %, Bass [4, p- 348] defines a group
K,(%) as the commutator quotient group of a direct limit of groups
of automorphisms of the objects of the category. It is not always neces-
sary to proceed to a limit: if C is an object of ¥ such that, for any
object D, the inclusion

‘Aut CcAut Cx Aut Dc Aut(C@D)

induces an isomorphism of commutator quotients, then the commutator
quotient group of Aut C is already isomorphic to K,(%). As this will
be the case for all categories considered in this series of papers, we
will refer to such an object C as a superstable object of %.

For categories 2(R) in general, a stability theorem has been ob-
tained by Serre and Bass [4, Chapter V], but in the case when R is
a division ring D, the result goes back to Dieudonné [8]: every nonzero
object is superstable, and K, (%) is the commutator quotient group of D*.

If R=K is commutative—i.e. a field—this result K, 2(K)=K* is
simple enough, and the class of an automorphism of a module (neces-
sarily =~ K") is just the determinant of its matrix. In general, however,
one needs a more effective computation.

Suppose the division ring D has finite degree over its centre, K:
choose a finite Galois extension L of K which splits D and an L-iso-
morphism ¢: D®g L — L, (this is, of course, unique up to inner auto-
morphism). Now we have, for any matrix ring D,, over D, the diagram

Dm ———)Dm®K L"dj_’ Lmn
;Nrd det
¥

K L

where the image of D, lies in K since it is invariant under the Galois
group, so the “reduced norm” Nrd is defined; one can show it in-
dependent of all choices [24, p. 168]. So this gives an alternative deter-
minant map Nrd: GL,,(D)— K*. We can regard this as the composite
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of the Dieudonné determinant and the factor 6 in
Nrd: GL,(D)=D* - D*/[D*,D*]—%> K*.

For D a quaternion ring, it is easy to see that o is injective. The
argument was extended by Wang [23] to arbitrary division rings over
local or global fields; this covers all cases of interest to us, though it
is natural to speculate that & is always injective. We define SL,,(D)
to be the kernel of Nrd: when & is injective, this coincides with the
kernel of Dieudonné’s determinant. By results in [9, Chapter 2] we
can deduce when § is injective (except when m=2 and D has cardinality
2 or 3) that if m=2 this group is generated by transvections, it is perfect,
and its quotient PSL,,(D) by the centre (consisting of the intersection
of SL,,(D) with the group K* of scalar matrices) is simple. As similar
situations will arise again below, we will call a subgroup A4 of GL,,(D)
quasi-simple if A is perfect and the quotient PA of A by An K* is simple.
Clearly if 4 is normal in another group B, is perfect, and B/A is abelian,
then A is the commutator subgroup of B. It follows that (with sole
exception of GL,(F,)). SL,,(D) is the commutator subgroup of GL,,(D)
for all m=1 and the quotient is isomorphic to D*/[D*,D*]=Nrd D*.

It remains to describe the image of

Nrd: D* — K*.
Clearly the map is an isomorphism if D=K is commutative. It is also
surjective if K is a non-Archimedean local field (see e.g. [24, p. 195]).
If K=R and D=IH, then of course the image is just the set of positive
reals. Finally for K a number field it was shown by Eichler (see [24,
p.206]) that the image is the set of xeK such that for each embedding
(if any) f: K — IR where D ramifies (i.e. R® D is a matrix ring over IH,
not R), f(x)>0. But for K a Laurent series field k((x)), and D=d((x))
for d a quaternion division ring over k, the image of Nrd cannot be
described by orderings of K (I am indebted to M. Kneser for this example).

For categories 2(R,a,u) in general a stability result has been ob-
tained by Bak [3], but our case is much simpler. Here, the general
result is due to G.E.Wall [22]. Suppose R=D a division ring (with
centre K, and of finite degree over K), u= —1. Then for forms f of
index =1, if U(D, f) is the corresponding unitary group, T(D, f) the
subgroup generated by transvections, apart from one exception (see
below) U, fYT(D,f)=D*/£[D*, €] (%)
where 2 is the subgroup generated by the a-symmetric elements of D*,
and Q depends on f, but is certainly D* if f has index =2. Further
[9, Chapter 2], we usually have T(D, f) quasi-simple. Note that the
categories not equivalent to one of the above form are the 2(K, 1,1)
with K commutative.
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For a fuller discussion, it is necessary to separate types.

Type Sp. Here, Z=D* if D is commutative; it is also easy to check
this if D is a quaternion ring, and it is known [9] to hold in general.
Since D has order (at most) 2 in BrK, it is indeed a quaternion ring
in the cases considered in this paper. This does not always hold, how-
ever: see e.g. [ 1, Chapter XI]. Thus, provided f has index 21,5pD, f)=
T(D, f) is quasi-simple in all cases except rank 2, D of cardinality 2 or 3
(for Sp, K=SL,K for any commutative field K) and rank4, D of
cardinality 2 (Sp, F,~S¢ has a simple subgroup of index 2). Thus K,
is trivial for this type, and except for small fields, every form of index >1
(over commutative fields, every form is hyperbolic, so this includes
every non-trivial case) is superstable.

Type U. This is more like the case of type GL above: we are interested
inSU(D, f)=SL,,(D)n U(D, f) (where f has rank m), and need to suppose
that f has index > 1. We continue to write K for the centre of D; a|K is
now non-trivial; write k for its fixed field. First suppose D=K com-
mutative. Then it is immediate that the determinant, 4 of a unitary
matrix satisfies 4°4=1. Here, the right hand side of () reduces to
K*/k*,and if an element here is represented by xe K*, an easy calculation
shows that 4=x/x® But x> x/x* induces an isomorphism of K*/k*
on {A4: 4*4=1}, so SU(D, f)=T(D, f), as is noted on [9, p. 49]; there
is one exception (where (+*) also fails), the case of SU;(F,) (which is
soluble). Otherwise (loc. cit) SU(K, f) is then quasi-simple save (in view
of the isomorphism SU, (K)=SL,(k)) the usual two exceptions: it
follows in non-exceptional cases that SU is the commutator subgroup
of U, and K, (K, a, —1) isomorphic to the group of 4, i.e. to Ker N:
K*— k>,

When D is noncommutative, we combine this argument with the
results for type GL. Suppose
(i) 6:D*/[D*,D*]— K* isinjective,
(i) Nrd X=k* nNrd D*, and
(iii) U(D, f)/T(D, f) is abelian. Then

U, f)TD,f)=D*/X[D*,D*] by (xx)

=~Nrd D*/Nrd = by (i)

=Nrd D*/k* nNrd D* by (ii),
so the map x> x/x* maps this injectively to K*. Since the composite
U, f)— K* is the reduced norm, its kernel T(D, f) coincides with
SU(D, f). For us, this case only arises over global fields, and here
(i) holds and we can prove (ii) by the same method ([25], c.f. [15, 5.7]).
By [22] (see also [9, p.497), (iii) holds whenever n23 and index f>1.
Hence these forms f are all stable (except n=3, D of order 4), hence
also superstable.
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And K;(D,a, —1)={x/x*: xeNrd D*}
~{yeNrd D*: y* y=1},
as one easily verifies.

Type O (and SPOT ). This is the most difficult case: let us first describe
the situation when D=K is commutative: we will refer to this in future
as type OK. Then determinant takes values +1 on O(K, f), and we
denote the kernel by SO(K, f). In characteristic 2, the definition of SO
is a little different, but the result is the same: note here that n is even.
Now using the Clifford algebra of f one constructs another algebraic
group Spin(K, f) and an exact sequence

1 {+1} > Spin(K, /) - SO(K, f) > K*(K*)?,

where the last map is surjective if index f=1. Then it is Spin(K, f)
which one expects to be quasi-simple and the quotient of O(K, f) by
its image is { + 1} ®(K*/(K*)?).

If n=1, SO(K, f) is trivial and Spin(K, f), O(K, f)={+1}.

If n=2, SO(K, f) and Spin(K, f) are abelian; if index f=1, both
are isomorphic to K *.

If n=3 and index f=1, Spin(K, f)=~SL,(K), so is quasi-simple if
|K|=4.

If n=4, index f =1, f has discriminant 4 and L=K [1/2],
Spin(K, f)=~SL,(L) is quasi-simple
index f=2, Spin(K, f)=SL,(K) x SL,(K).

If n=5, index f =1, then Spin (K, f) is quasi-simple.

These isomorphisms are well-known: see e.g. [9, Chapter 2], which
contains all these results.

If D is non-commutative, we can consider D to be a quaternion ring
(discussion as for case Sp). We will call this type OD. Then first,
SOD, f)=0(D, f) [9, Chapter 2]. Next, we can apply (**): here it is
easy to see that Q=D> and 2 = K*, so the right hand side is isomorphic
(via Nrd) to the image of

Nrd D* cK* — K*/(K*)?,

and we can define a double covering Spin (D, f) of T(D, f).
Now if n=1, Spin(D, f) is abelian

if n=2, index f=1, Spin(D, f)=~SL,(D)x SL,(K)

if n=3, index f =1, Spin(D, f) is quasi-simple
Summary. Apart from a handful of exceptions over very small fields,
any form of index =1 and rank =3 is superstable (for 2, any module of
rank =1). The groups K, are:

9 Inventiones math., Vol. 18
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Type GL. K*, except for D=IH, only positive reals, and for D global,
the subgroup taking positive values at ramified Archimedean spots
(Nrd D*)

Type Sp. {1}

Type U. Ker N: K* — k> except for D global, the subgroup as above
Type OK. {+1}@®K*/(K*)?

Type OD. The image of Nrd D* in K*/(K *)2.

Further, for type GL any module of rank =1, in the other cases, any
form of index =1 has automorphism group mapping surjectively to this.

We have proved this for finite, local and global fields, but the
essential results only depend on

(@) o:D*/[D*,D*]— K* is injective (GL, U)
(b) NrdX=k*Nrd D* U)
(©) Any division ring of order 2 in Br(K) is quaternionic (0).

It appears that (a) and (b) have recently been proved by Platonov for
arbitrary fields: (c) does not hold in general, but this fact is unlikely
to affect our conclusion. These results are equivalent to the “Kneser-
Tits conjecture” for classical groups, that an isotropic simple simply-
connected algebraic group (over a field) is generated by its unipotent
subgroups.

3. Classification of Quadratic Modules and K 0

We now seek to classify the objects in the categories 2(R, a, u)
described above; by § 2, it is enough to consider the case R =D a division
ring, u= + 1. For any category-with-product &, we write k(%) for the
abelian monoid of isomorphism classes of objects of €, K,(%) for its
universal group; and say that cancellation holds in % if it holds in k(®),
i.e. if the natural map k(%) — K, (%) is injective. Now cancellation holds
for Z(R) by the theory of dimension, and for 2(D, a,u) by a mild ex-
tension of the theorem of Witt: see [6, 4.3]. Thus not much information
is lost by confining ourselves to computing Ky (®).

Any nonsingular form is a direct sum of forms on 1-dimensional
vector spaces—i.e. admits an orthogonal basis—except for type Sp or
SPOT over a commutative field. The easy proof is in [6, 6.1]. In these
cases we can instead choose a symplectic basis {e;, f;: 1<i =<r} such

that for ¢ =b(x),
Plei, )= (f,/)=0
Ple, [)=0(#+j) 1(i=)):

this is even easier to prove. For type Sp, over a commutative field,
this already gives a complete classification of forms. Note that for
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type GL we also have orthogonal bases: this really only amounts to
saying that a module over a division ring has a basis.

Bilinearisation b is an isomorphism, except for type SPOT. Let K
be the centre of D. The result is clear if K does not have characteristic 2,
since Sesq, (M) is a vector space over K, and if k is the fixed field of «|K,
Sesq, (M) splits over k as the direct sum of +1 and —1 eigenspaces
for T,. We have already noted the result for type GL: there remains
the case when k+ K has characteristic 2. For any ce K—k, ¢*+c is a
nonzero element of k; thus a=(c*+c)~! ¢ satisfies a®*+a=1. Now our
assertion is equivalent to showing that

Sesqa (M) Ji} sesqa (M) LT) Sesqa (M)

is exact (note: signs disappear in characteristic 2). But for any xe Sesq, (M)
with Tx=x, we have x=(1+T)(x a).
We now start constructing our invariants.

Rank. The most obvious invariant of a quadratic module is the dimen-
sion of the underlying vector space. This defines a homomorphism
rank: K, 2(D,a,u)—Z whose image (by the above remark about
orthogonal bases) is Z except for D=K, types Sp and SPOT, when it
is 2Z. If we restrict the rank to be even, this is split by considering
hyperbolic spaces H(D") (of rank 2n). We will be primarily interested
in the kernel K,2 of the above, and in the even-dimensional case,
will try to find invariants which respect the above splitting—i.e. are
trivial on hyperbolic forms. For example, we already know that K, 2=0
for type GL or type Sp over a commutative field.

Arf Invariant (Type SPOT). We clear this out of the way first, as it is
rather different from the other cases (though a posteriori one can see
an analogy to the discriminant). Consider type SPOT, with D=K com-
mutative (e.g. finite): take a symplectic base {e;, f;} of the quadratic
module defined by the equivalence class of §: V x V— K. The bilineari-
sation b=0+ T 0 does not determine the numbers g(x)=0(x, x) which
are, however, determined by the equivalence class of 8 (c.f. [20]). The

class of
c@=2:q()q(f)

modulo P K={y+y*: yeK} does not depend on the choice of sym-
plectic basis, and is zero on hyperbolic spaces [2]. Moreover, if K is
perfect (e.g. if it is finite), it is easily shown that c(q) determines the
quadratic module up to isomorphism. The Arf invariant ¢ is additive
for direct sums, so gives an isomorphism

c:Ko(K, 1, )=K*/PK+:

9%
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it is surjective since the g(e;), g(f;) can be chosen to have any desired
values. For K finite, the cokernel of B: K — K has the same order (2)
as the kernel. Let S: K —7Z/27Z have kernel B K. Then Sc(q)eZ2Z
is the most convenient form of the Arf invariant.

Signature (Real Fields). There are ten categories to be discussed for
real fields, but we have already dismissed 2(R), 2(C), Z(H), 2(R, 1, — 1)
and 2(C, 1, —1) (K,=0): there remain 2(R, 1,1) (type O(R)), 2(C, 1,1)
(type O(T)), 2(C, ¢, 1) (type U(CT)), 2(H, c, 1) (type Sp (H))and 2(H,c, — 1)
(type O(H)) where, in the last 3 cases, c is the standard conjugation
map. In these cases, each form has an orthogonal base: let us classify
1-dimensional forms. Suppose b is the reflexive form; e a basis vector:
then possible values of b(e, e)= B are in the 5 cases

R*, €C*,R*,R*, {xeH: x=—x,x+0}.

Writing e= f 4 has the effect of replacing B by 4 § . Hence the number
of equivalence classes is 1 for types O(C), O(IH) and 2 for the other
types. It follows for types O(C) and O(IH) that two forms of the same
rank are isomorphic, and K,2=0.

In the remaining 3 cases—types O(R), U(C) and Sp(IH)—any form
has an orthogonal base {e;} with each b(e;, e;)= + 1. Suppose + 1 occurs
p times and —1 g times, then 6=p—gq is called the signature of the
form. In the cases O(R), U(C), this is well-known to be independent
of the choice of orthogonal basis. We can see this also for type Sp(IH)
as follows: if V' is a vector space over IH, b: ¥V x V—IH then we can
write b=b,+b, j, where b;: V x V— C. Now b, is a hermitian form
(in the usual sense) on V, considered as complex vector space via the
inclusion €<, and its signature is twice that of b (note dimg V=
2dimy, V). In effect, we have constructed a functor 2(IH, c, 1) - 2(C, c, 1).
For a hyperbolic space H(D"), p=q=n, so ¢=0.

Summary. K,2=0, except for the cases O(R), U(C) and Sp (~1H). In these
cases, o induces an isomorphism of K(2) on 2Z (for on K,, p+¢=0,
S0 0=2p).

Discriminant. Let (V,b) be a quadratic module in 2(D, o, U), where b
is a reflexive form on V (the bilinearisation): choose a base {¢;} of V
over D, and form the matrix B={b(e;, ¢;)}. This is nonsingular as b is;
we define detb to be its reduced norm. If B* denotes the conjugate
(by o) transpose of B, then B=B*u, so detb=(detb)*(Nrdu)": in
particular, if u=1, det b is a-symmetric. If we make a change of basis
of ¥, with matrix 4, B is replaced by A*BA, so detb is multiplied by
¢* ¢, where c=Nrd A. In particular if A is the matrix of an automorphism,
A*BA=B so c*c=1: a fact already noted above, where we also dis-
cussed the converse.
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The hyperbolic form of rank 2 has determinant Nrd(—u). For a
quadratic module of rank 2n, we define the discriminant by

dis(q)=Nrd(—u)~" det(q)

to be trivial on hyperbolic forms. Since u*=u"", we find that (dis g =
dis q in all cases. Like det g, disq is only defined up to multiplying by
a factor ¢* ¢, ce Nrd D*.

Clifford Algebra. Consider type O, firstly over a commutative field K:
thus the category 2(K, 1,1). Given a quadratic module (V,q) there is
a standard way to construct from it an algebra C(V, q) called its Clifford
algebra [6, §9]. If dim V is even, this is central simple over K, so deter-
mines an element of Br(K), which can be shown to be of order 2. We
will follow rather [18], in which C(V; q) is regarded as a graded algebra
Co@®C,, and a further invariant (which can be recognised as the dis-
criminant) obtained by considering the centraliser of Co. (The Arf in-
variant, too, can be so defined.)

It is shown in [18] that (whether dim V is even or odd), C(V,q) is
graded central simple over K, and that classes of such algebras form
a group G Br(K): also this group has a series

G Br(K)> G Br* (K)o Br(K)>1

with successive quotients {+1}, K*/(K*)?, Br(K). Moreover, the ex-
tensions are computed by assigning to a class in G Br(K) a triple (¢, a, D)
of elements of these factor groups, and obtaining the product formulae

(+,a,D)-(+,d,D)=(+,aad,DD'<a,a’))
(+,a,D)-(—,a,D)=(—,aad,DD'<a, —a’))
(=,a,D)-(—,a,D)=(+, —aa,DD'{a,a’))

where <a,a’> denotes a quaternion algebra. It follows in particular that
if we restrict D to lie in the subgroup of Br(K) generated by quaternion
algebras (which is “usually” the subgroup Br,(K) of elements of order 2)
we obtain a subgroup Qr(K) of G Br(K) which contains all Clifford
algebras.

Now if we add quadratic modules, we multiply elements of Qr(K),
and a hyperbolic module determines the trivial class, so we have a
homomorphism C: Ky2(K,1,1)— Qr(K) which “contains” the dis-
criminant.

For type O over a quaternion division ring D, one would like a
similar invariant, but we will argue below that there is none. The best
that can be achieved by direct construction is an analogue of the even
Clifford algebra C,: see e.g. [17]. An alternative trick to find invariants
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is to choose an extension L of K which splits D: tensoring with L now
gives a functor

2(D,¢c, = 1) > 2(L®D,c, —1)=2(L,,c, -1)=2(L, 1,1),

and we can construct a Clifford algebra over L. This, too, we discuss
below.

Invariants and Category Equivalences. Given a category of quadratic
modules over a semisimple ring R, we saw above how to reduce its study
to that of a category 2(D, o, u) with D a division ring, and that we could
further suppose u= + 1, and have now seen in this case how to construct
invariants. There remains the question, what happens to the invariants
if we choose a different equivalence of categories? Clearly, the only
situation we need consider in detail is that of equivalences of 2(D, a, ¢)
with itself; and such equivalences all arise from scaling by some o,
central in D, with v*=v. We consider our invariants in turn.

The rank is clearly unaltered. For signature, we can choose ve R *
(each time), and the signature is multiplied by the sign of v. The deter-
minant of a form of rank m is multiplied by (Nrd v)"—this is true even
without restricting v to be central and satisfy v*=p—and discriminant
by (Nrd v Nrd v*)" if m=2n: thus its equivalence class is unchanged.
For Arf invariant, if {e,, f} is a symplectic base for q, then {e;, fiv='} is
a symplectic base for ¢'=q, so

c@)=Zq'(e)q(fiv™?")
=Zq(e)q(fiv ") v?
=24q(e)q(f)=c(q)

and the Arfinvariant is unaltered by scaling.

It remains to consider the Clifford algebra. It is fairly easy here to
see that the even Clifford algebra C, is unaffected by scaling (an iso-
morphism is given by multiplying a monomial of degree 2r in elements
of V' by v™"), but it turns out that this gives the only information unaltered
by scaling. Indeed, in the notation above, scaling acts on Clifford algebras

b
’ (= a4, Dy =(—,av, D)
. (+,a,D)’=(+,a,D<{a,v)):
see e.g. [10]. So for dimV odd, only the class of D (=that of C,) is
invariant; for dim V even, we have the class of a (and K[]/E] is the
centre of Cy) and that of D modulo the subgroup of Br(K) consisting

of quaternion algebras <{a, v>. But this is just the kernel of Br(K)—
Br(K [1/5}), and DK [1/5] is Brauer equivalent to C,. This, I think,
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is the essential reason why only C, can be defined for quadratic forms
over a quaternion algebra.

We are now ready to give the classification of quadratic modules—or
more precisely, the calculation of groups Ko2(R, o, u). In the case when
R=K is a field, these results are fairly well known: for proofs when
R=D is a division ring, one can argue in terms of Galois cohomology,
using the basic results of Kneser. See [14] for the local case and [15]
for a full exposition with references. The above calculations of groups K
allow us to pass between these and the desired classifications.

In listing the K,(2) we will list which invariants suffice to define a
monomorphism of the group; their values, and any relation between
them. We write S ¢ for Arf invariant,  for discrimininant, ¢ for signature,
C for Clifford algebra.

Type SPOT. (finite fields only): SceZ/2Z.

Type Sp. O for finite fields, local fields, and real fields except Sp(H),
where we have ge2Z. For global fields, over a division ring D, we have
0,€2Z for each real place p of K at which D is ramified.

Type U. Finite fields: O.

Real fields (type U(C)): 0€2Z, 6=(—1)".

Local fields: 6ek*/NK* =Z,.

Global fields: dek*/NK*, 0,€2Z for each real place p of k with
K®,R=xC. These are related by: (~—1)"P/2fp(5)>0 for each f,: k>R
as above f,(0)>0 for each f,: k — R where D ramifies.

Type OK. Finite fields: e K*/(K*)* =Z/2Z.

Real fields: O for O(C), se2Z for O(IR).

Local fields: CeQr*(K). We recall that this is a non-trivial extension
of Br,(K) (here of order 2) by K*/(K*)>—here C yields —which has
order 4 if p is odd. (Recall that ¢ takes the value +1 for even-dimensional
forms.)

Global fields: CeQr*(K), o,€2Z for each real place p of K. These are
related by having the ¢, determined mod 8Z by the image of C in
ort(K® R).

Type OD. Real fields: O.
Local fields: de K* /(K *)%.
Global fields: No effective classification is known.

We have invariants de K*/(K*)?, a,€2Z for each real place p of K
where D is not ramified. These are related only by (—1)°'? f,(6)>0
for such p. The subgroup of K,2 corresponding to trivial invariants is
isomorphic to the quotient by the class of D of the subgroup Br,o(K)
of Br,(K) corresponding to division rings unramified at all real places
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of K where D is unramified. Tits’ [17] invariant C,eBr,(K 1/5) is of no
use for detecting this. One can get closer by applying our other suggestion
to all p-adic completions K, which split D, but if there are s comple-
tions which do not, we still have as kernel an elementary 2-group of
rank (s—2). Local equivalence does not imply global here for s>3
[15, p. 138].

4. Categories of Based Modules

In order to have discriminants well-defined, to give a more effective
approach to the difficult case O(D) above, and to obviate the trouble
about scaling and Clifford algebras, we now refine the concept of
quadratic module to that of based quadratic module. This leads us to
reconsider all the preceding. Further, this step will be decisive for
obtaining explicit calculations in subsequent papers.

A based R-module is one with an equivalence class of free bases, two
bases being equivalent if the matrix of the basis change has determinant
(ie. Nrd) 1. A based isomorphism takes a preferred basis to another.
We write Z(R) for the category of based R-modules and based iso-
morphisms; #2(R, a, u) for the category of based quadratic modules
and based isometries.

We will not discuss equivalences of these categories in quite the
same detail as for the 2, 2; but we still do need equivalences. For example,
let R, denote the matrix ring over R: then in the standard equivalence
2(R,)— P(R), R, itself corresponds to R", and if we let the base I of R,
correspond to the standard base of R", and correspondingly for sums
and isomorphic modules, we get an embedding #(R,) — #(R) whose
image consists of the free modules with rank divisible by n. There are of
course other equivalences. If we change the base of a free R-module of
rank r by a matrix with determinant A" (for AeK, Z2(R)), this defines an
equivalence of #(R) with itself. Applying the same idea to R, as n varies
we find the group K; Z(R)®@ Q intervening (c.f. Bass [4, p. 519]). For-
tunately these equivalences will not affect elements of Ko 2(R).

We can regard a category 42 as pullback of a diagram
B2(R, o, u) —> B(R)
2(R, o, u) —— P(R):
properties of the 22 come from combining those of the other categories.

When we have equivalences of categories 2, since we are concerned only
with matrix rings over division rings in this paper, the above discussion of
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bases is adequate. In particular, there exist equivalences (or at least,
full embeddings) of categories #2 corresponding to those of the 2: the
bases are subject to some variation, but these choices will not affect
elements of K (%2). ‘

Morphisms in a category #2 are just those in 2 which preserve
preferred bases: automorphisms are those with Nrd=1 with respect to
a given base. Thus we can read off the groups K,(#2) for the cases of
interest to us from the calculations before, viz:

Calculation of Groups K,(#2). K,(%#) and K(#2) are zero for types
GL, U and Sp. For type O, the spinor norm gives an isomorphism of
K,(%2) on the image of Nrd D* in K* /(K*)*—thus if D=K or in the
local case, on K*/(K*)? itself.

For a based quadratic module the discriminant, defined using a
preferred basis, has a uniquely determined value. Moreover suppose
given two based quadratic modules, isomorphic as unbased modules,
and with the same discriminant. Then if the given isomorphism has
determinant 4eNrd D, we must have 4°4=1. If 4 is the determinant of
an automorphism of one of the modules then composing with the inverse
of this we get a based isomorphism. We can use this principle to compare
the classifications: it amounts to an exact sequence

K,2(D,a,u)— {4eNrd D: 4*A=1} — K, B2(D, o, u)
—Ky2(D, o, u)® {6eNrd D: §*=4}.

Here, the first map is the determinant. The second is defined by changing
the base by an automorphism with determinant 4. Exactness at K, 32
was proved above, and at the previous point follows (by stabilising)
from the remark that if a base change with determinant 4 leaves unaltered
the based isomorphism class of ¢, then ¢ has an automorphism with
determinant 4.

Now by results above, this first map is surjective for types GL and U
in the cases under consideration: thus no new invariant is needed in
these cases. The same holds for type O when D is commutative; but if D
is a quaternion ring here, or for type Sp, the group of A’sis { + 1} "Nrd D
and the image of K, 2 is trivial; thus we are liable to need a further
invariant for classification.

We will now give the classification of based quadratic modules.
This, too, is derived from Galois cohomology—roughly speaking, in
place of H'(U), H'(Sp) and H'(0) which we had to consider before,
we now have H'(SU), H'(Sp) and H'(SO)—and for based modules,
H'(SL) in place of H!(GL). One must, however, make two reservations.
First, if we interpret H'(SL) carefully, we find that it corresponds not
to based modules but to a slightly more general notion which we can call
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pseudo-based modules. One can define a pseudo-base of a D-vector
space V as a function which assigns to each D-base {e,} of V an element
¢{e}eK™ such that if ;=2 f, a;; then ¢ {e;} =¢{f;} 4, where 4 is the
reduced norm of the matrix (a;;). If ¢ {¢;}eNrd D* for some base, then
itis for all, and those with ¢ {e;} =1 give V the structure of based module.
Thus we must select based modules out of the pseudo-based ones given
by our Galois cohomology. The second point to watch is that for the
theory to apply, we need to know that forms (of given type and rank)
all become equivalent over the algebraic (or separable) closure. It
follows at once from the preceding paragraph that, provided we consider
forms of a fixed discriminant, this holds except for type Sp.

Thus we need a new invariant here. We define it as follows for type Sp
or SPOT over a field D=K: let n be the determinant of a change of
basis from the given base to a symplectic base. Since a symplectic auto-
morphism has determinant 1, this is uniquely defined. It coincides with
the Pfaffian of the skew-symmetric matrix representing our (reflexive)
form with respect to the given basis. Since, for a symplectic base, the
discriminant 6 =1 we have in general d =72. Of course 7 depends entirely
on the choice of base. The same is valid if D+ K but K is a p-adic local
field, for here again all unbased forms are hyperbolic.

We now list the groups Ky(#2) for the various cases. In each, we
specify the possible values of the relevant invariants & (discriminant),
o (signature), C (Clifford algebra), Sc (Arf invariant), = (Pfaffian); and
any relations between them.

Type SPOT, finite fields. SceZ/2Z, ne K *.

Type Sp. Local fields, and all cases when D=K: ne K* (6=n2).

Real fields, case D=IH: e R*, o2 Z.

Global fields. If there are no real places of K where D is ramified, all
unbased forms are hyperbolic, and we have e K* as before. If there are
some, —1¢Nrd D*, so the “invariants 0,€2Z (D ramifies at p), e
(K *)? suffice.

Type U. We have ek in all cases; 6€2Z for type U(C), and in the
global case 0,€2Z for real places p of k becoming complex for K.
Relations as for Ky(2).

Type OK. Finite fields: de K*.

Real fields: 6eK* and, for O(R), 6€2Z with (—1)"25>0.

Local fields: CeQr*(K), 5e K*. These determine the same class in
K* /(K x )2‘

Global fields: CeQr*(K), 6e K* and, for each real place p of K, o,€2Z.
C and 6 are related as above; the image of C in Qr+(K ®, R) is given
by ¢,(mod 8Z).
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Type OD. Real fields (type O(IH)): se R*. N

Global fields: As for K,(2), the kernel of the map of K(#2) given by
o and the g, can be identified with Br,o(K)/{D}. But now we have the
Hasse principle: if p runs through all places of K (including infinite ones)
and we write Kp for the p-adic completion, Dp =D®g Kp, the natural map

RoB2(D,c, —1)— MK, B2(D,,c, —1)

in injective. Discussion of the cokernel is best left till the result is reform-
ulated in adéle language. We thus see that for effective invariants, it
suffices to discuss in detail the one case remaining:

Local fields: As for type OK, we have an exact sequence
0->Z2Z —»K,B2—2>K*—{1}.

Now K* is isomorphic to the sum of the finite cyclic group u(K) of
units in K, Z, and a free module over the (usual) p-adic integers, hence

Ext(K*, Z/2Z)=~Ext(u(K), Z2Z)=Z/2Z,

and to decide whether the extension is trivial or not it suffices to choose
ueK,(#2) with discriminant —1 and decide whether or not 2u=0.
In fact 2u=0, so the extension does not split. Moreover, suppose one
can define a Clifford algebra invariant

C: Ko(#2)— Br(K)~Q/Z
with
C(x+y)=C(x)- C(y)-(disx, dis y).

Then for p=+2 if dis x, dis ye u(K) we have {dis x, dis y>=0, so C is a
homomorphism; thus if C is nontrivial on Z/2Z, and 2" divides |u(K)],
the image of C must have order at least 2"+!: it seems clear that no
such definition can be natural.

On the other hand, if we restrict to forms which are hyperbolic as
unbased forms we can, as in type Sp, define an invariant 7e K* with
d=mn?. Indeed, if — 1 is a square in K, this is enough to prove non-splitting
of the sequence. We can generalise this as follows to obtain an explicit
invariant for all forms. First, we must make an arbitrary choice of one,
say 0, of the two forms of rank 3 with discriminant 1: then 26=3H
where H is hyperbolic with discriminant 1; working modulo the sub-
group of Ky(#2) generated by H and 6, every form not of the above
type is equivalent to a unique 1-dimensional form. But for such a form g,
the value g(e) for e a preferred basis element has Nrd g(e)=04(q), so
g(e)>= —6(q). Changing to another preferred base replaces g(e) by
u~!q(e)u with Nrd u= 1. But there are exactly 2 classes of solutions of




140 C.T.C. Wall:

x?= —§ under this relation: fixing one of the two has given our desired
invariant,

The above is fairly explicit, and can be made more so. If, for example,
pis odd and —1 is square in K, each equivalence class above contains
just one representative of the form A, Ai, A jor Ak (AeK*). If i?=u and

j*=m, we can give explicit addition formulae: for example,

A+ {ui={wimipu};  (AD+{pjy={— 2 (m, 0 Auk);

where (a, b) denotes the Hilbert symbol, + 1 according as the quaternion
algebra <a, b) over K is or is not split.

The preceding discussion is to a large extent dominated by the
discriminant. We define Z(R, «, u) to be the full subcategory of #2(R, o, u)
of based forms with discriminant 1. This is cofinal in A2, so has the same
groups K. The groups K, here are given by:

Type SPOT: SceZ/2Z.

Type Sp (commutative D, local fields, or global fields with D unramified
at infinity): n= 4 1.

Real field, D=IH: g2 Z.

Other global fields: 6,€2Z for each real place p of K where D ramifies.
The o, are congruent to each other mod 4Z.

Type U (finite and local fields): O.

U(C): 0e4Z.

Global fields: o,€4Z for each real place p of k which becomes complex
for K.

Type OK. Finite fields: O.
Real fields: O if K=C. 0e4Z if K=R.
Local fields: C=0 or & Br,(K).
Global fields: CeBr,(K), 0,€4Z for each real place of K; the image
of Cin Br,(K ® R)is 6,/8 (mod 1) for such a place. In view of the calcula-
tion of Br,(K), we can reformulate this by noting that there is an exact
sequence
0Ky LK, 1)>@,KoZ(K,,1,1)>Z,—0.
Type OD
Real fields (OH): 0.
Local fields: n= +1.
Global fields: Again there is an exact sequence as above.

In conclusion, for each type the natural map from a global group
Ko(#) to the direct product of the localisations is injective, and the
cokernel has exponent 2. In subsequent papers, this will be the key
corollary from this whole paper, though it will be modified by considering
the group K, defined over the adéle ring of K.
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