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On the Classification of Hermitian Forms
III. Complete Semilocal Rings

C.T.C. Wall (Liverpool)

Like [7], this paper was originally written as a tool for [8]. After a
year’s reflection, and some useful comments from Martin Kneser, I
succeeded in improving the results. Also, I noticed that a more systematic
use of ideas from algebraic K-theory led to a great gain in conceptual
simplicity, by treating the groups L,, L, on the same footing. Indeed, it
was in course of rewriting this paper for the sixth time that I was led to
sort out the foundations in [5], a paper which I now use as basic reference.

This paper is organised as follows. In § 1 we recall basic lifting theo-
rems for projective and quadratic modules over a ring R complete in the
I-adic topology for some ideal I. Then § 2 gives the reformulation of these
results in the terminology of algebraic L-theory. In §3 we study the
special case of orders in semisimple p-adic algebras; we first prove two
basic results about K, (R), which at once yield our main theorems for P
odd. The case p=2 is illustrated by giving the calculations in the unrami-
fied case. In §4 we mention related questions: we outline proofs of some
simple stability results, and discuss further calculation of K, (R).

Some results similar to ours have also been obtained by Bak and
Scharlau.

§ 1. Lifting Theorems

We suppose throughout that R is a ring (associative, with unit), and
I a 2-sided ideal in R such that R is conplete in the I-adic topology.
Write R for the quotient ring R/I; similarly for an R-module P, write
P =P/PI=P ®y R, etc. In this section we obtain the basic relations
between the algebraic K- and L-theory of R and R. We first discuss
objects (where the results are well known), then morphisms.

Lemma 1. The quotient functor 2(R)—2P(R) is full, and induces an
isomorphism k?(R)— kP(R). A morphism f in P(R) is surjective resp.
bijective if and only if f is.

For the proof, see Swan [4, Theorem 2.26] or Bass [2, I1.12].

Corollary. We have an isomorphism K,%(R)— K, #(R) and an epi-
morphism K, #(R)— K, #(R).
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Now let (R, a, u) be an antistructure, with «(I)=1. There is then an
induced antistructure on R. We suppress mention of these antistructures,
which will be the same throughout § 1.

Lemma 2. For M a finitely generated projective R-module, the natural
map Q(M)—Q(M), x—X say, is surjective; and x is nonsingular if and
only if X is. If x,€ Q(M,) (i=1, 2) are nonsingular, any isometry 1: M, —»M,
of X, on X, lifts to an isometry 1 of x, on x,.

The first assertion is contained in [6, Lemma 1]; the rest is a restate-
ment of [6, Theorem 2].

Corollary 1. We have isomorphisms k 2(R)— k 2(R), K, 2(R) — K, 2(R),
and an epimorphism K, 2(R)— K, 2(R).

Corollary 2. If X has an orthogonal base, or a hyperbolic summand, so
has x. If cancellation holds in 2(R)—e.g. if R is semisimple—it holds in
2(R).

For the first assertion, note that a set of elements of M, projecting to
a base of M, is a base by Lemma 1. The rest is clear. Since we have the
ability to lift bases, we obtain

Corollary 3. The map K, #2(R)— K,#2(R) is surjective.

We now turn to automorphisms: again we begin with the category
2(R). Since R is complete in the I-adic topology, an element reR is a

unit if and only if it is a unit modulo I; hence the additive coset (1+ 1) is
a multiplicative group.

Proposition 3. There is an exact sequence
(1+1)* > K, 2(R)— K, #(R)—0.
Proof. The first map is the composite
(1+)*<R*=GL,(R)cGL(R)— K, ?(R):

it is clear that the image maps to 0e K, ?(E). Conversely, let Ae GL(R)
determine 0 in K; 2(R). Then the image A € GL(R) belongs to the commu-
tator subgroup, and can be expressed as a product of elementary matrices:

A=ege,...¢e,.

As R— R is surjective, there exist elementary matrices e; over R covering
the &;. Now A represents the same element of K, 2(R) as does

B=e;'...ef'4, and B=1.

Since B is congruent (mod I) to the identity matrix, and elements of
1+1I are invertible, we can perform elementary column operations on B
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to reduce it to a diagonal matrix (i.e. multiply B on the right by elementary
matrices X, (1), AeI), with elements of 1+1I on the diagonal. The class
in K, Z(R) is thus the product of the classes of these elements.
Corollary. If (R)* — K, P(R) is surjective, so is R* — K, 2(R).
This is, in particular, the case when R is semisimple.

We will customarily write V for the image of (1+1)*, i.e. (by the
above),

V=Ker{K,?(R)— K, ?(R)}.
There is little one can say in general about the structure of V.

We come now to the quadratic case, which is the one of real interest to
us; we follow the pattern of the above proof.

Proposition 4. There is an exact sequence
V—E K, 2(R)— K, 2(R)—0.

Here, H denotes the hyperbolic functor.

Proof. Following the same argument as in the preceding proof, we
see that it suffices to consider an automorphism B of a hyperbolic space,
with B=1. The rest of the proof now follows that of [S, Theorem 4]: we
use the same notation.

B is an automorphism of H(R) @ (N, ), say; let
eB=ea+fb+x, xeN.
Then ael+1, so is a unit. Then
B'=BH(a"')&'(—x,ba%

leaves e fixed; composing with a suitable 2, we obtain a B” which also
leaves f'fixed, so can be regarded as an automorphism of (N, 6). It follows
by induction that B is a product of elementary transformations with
certain H(a), ac1+I; and this implies the result.

§ 2. L-Theory of Complete Rings

We retain the notation and assumptions of the preceding paragraph
and proceed to reformulate the main results in the terminology of [5].

Lemma 5. The natural map L% (R)— LX(R) is an isomorphism for all i.

Proof. We have L(R)=kerF: K,2(R)—K,#(R); but by the
corollaries to Lemmas 1and 2, K, #(R)~ K, 2 (R) and K, 2(R)= Ky 2(R).
Hence Lf (R)~ L% (R).
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Now Lf(R)=Coker H: K, P(R)— K, 2(R). It thus follows from the
exact sequences (Proposition 4)

0—V—K,?R)— K, 2(R)—0
V—E K, 2(R)— K, 2(R)—0

that L (R)— L (R) is an isomorphism. The result for L, for other values
of i now follows from the definition.
From now on, we abbreviate K; 2(R) to K,(R).

Theorem 6. Let X be an a-invariant subgroup of K,(R); let X be its
preimage in K{(R). Then we have isomorphisms

Li(R)— LI (R).

Proof. Since the map K,(R)/X —K,(R)/X is an isomorphism, the
result follows by applying the Five Lemma to the map of exact sequences
[5, Theorem 3]

s L (R)———> L (R)——— H'(K (R)/X) ——> -~

|

o —— LR ——L{(R) H(K, (R)/X)—— -

and using Lemma 5.

Corollary. There is an exact sequence
LR = LR~ H(V) - I (R) > ---.
For, by the theorem, I(R)= L’/ (R); we now refer to [5, Theorem 3].
It is also of interest to compute the “large” groups A,(R):
Ao(R)=K,B2(R) and A,(R)=K,2(R).

Here, there are two natural invariants: one in A,(R), and the discriminant
(i even) or determinant (i odd), which takes values in K, (R), and satisfies
a symmetry condition. We recall from [5] the exact sequences

Ap 1 (R) =2 K (R)—2— A,(R)— IX(R)—0
and that
diot;=14+(—1)'T.

Lemma 7. The following sequence is exact :
V—" s 4,(R)— A,(R)—0.

Proof. By Corollaries 1 and 3 to Lemma 2, A,;(R) maps onto A;(R).
Exactness for i odd is given by. Proposition 4, and for i even by observing
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that given based quadratic modules over R, and a based isomorphism
over R, we can lift this and obtain an isomorphism over R with deter-
minant in ¥. We can also deduce the result from Lemma 5 by diagram
chasing.

For X any module over a group of order 2, acting by T, write

S; X={xeX: Tx=(—1)x}
for the subgroup of “i-symmetric” elements of T. Then
Imé,=Kert;_, =Ker(d,_, 7,_,)=Ker(1—(—1) T)=S,K,(R).
We thus have a commutative diagram

A(R)— S, K, (R)

|

4,(R)—— S;K,(R),
which we regard as defining a map from A, (R) to the pullback P, of
A;(R)—>S; K, (R)«S;K,(R).
Proposition 8. There is an exact sequence
L} (R)— H™*' (V) > 4,(R)— B— H'(V) 0.

Proof. The first map is as in Theorem 6, corollary; the second is the
composite H'*!(V)— [5(R)< A,(R); the third is as above. Exactness at
H*Y(V) s clear.

By definition, Ker(4;(R)— S; K, (R))=L5(R). Hence

Ker(4,(R)— P)=Ker(L}(R)— L}(R)),

which equals the image of H'*!(V) by Theorem 6, corollary.

Given (@, b)e B< A,(R) @ S; K| (R), lift a to aeA,(R). Then §,(a) and b
have the same image in K, (R), so ¢=§,(a)— b is an (i-symmetric) element
of V. Any lift of @ has a form a+ 7,(v), ve V (by Lemma 7); this maps onto
b if and only if 6, 7;(v)= —c. Thus the class of ¢ in H'(V) is determined,
and vanishes if and only if (@, b)eIm 4,(R). Finally, 0&® S, V = P, maps
onto Hi(V).

Special Cases

(i) Suppose H!(V)=0 for all i. Then the corollary to Theorem 6 gives
isomorphisms L}(R)= L§(R). Proposition 8 gives an isomorphism

A,(R)=P.
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Thus we have a pullback diagram of epimorphisms

A(R)—— 5,K,(R)

|

Ai(ﬁ)—‘—’ S: K, (E)
(ii) Suppose I3(R)=0 for all i. Then our exact sequences yield isomor-
phisms
IX(R)~IX(R)=H'(K,(R) and L(R)=H*(V).
Also, the exaét sequence

0— 4,(R)—*> K, (R)—*=>4,_,(R)
shows that

A;(R)y=Kert,_, =Kerd,_, 7,_, =Ker(1+(—1y"'T)=S5,K,(R).

Thus the pullback P=S;K,(R). Finally, the map H'*'(V)— A,(R) of
Prop. 8 is induced by 7;: V— A,(R); since it is injective, it follows that
Kertj={x—(—1)'Tx: xeV}.

§ 3. p-Adic Rings

We now suppose that S is a finite semisimple algebra over the field @ »
of p-adic rationals, and R an order in it—i.e. that R is free (and finitely
generated) as module over the ring Zp of p-adic integers, and that

R®Q,=S.

We give these rings, and related modules, matrix rings etc., the p-adic
topology. Then R is a compact open subring of S. We first study K, (R).

Theorem 9. The kernel of K, (R)— K, (S) is finite.

Proof. By a theorem of Borel [3, p. 523] if G is an analytic group over
Qp with simple Lie algebra, any normal subgroup of an open subgroup
is open (or discrete): in particular, the commutator subgroup is open.
The corresponding result follows for the semisimple case.

Now for n=2, SL,(S) is a semisimple analytic group, and
W,=GL,(R)5L,(S)

an open subgroup of it. Hence the commutator subgroup of W, is open.
Since also W, is compact (since closed and bounded in the matrix ring),
its commutator quotient group is finite.




On the Classification of Hermitian Forms. I11 65

Now SL,(S)=Ker(GL,(S)— K,(S)) by the definition of SL,(S) and
the computation of K, (S) (see e.g. [7]), so

W,=Ker(GL,(R)— K, (S)).

By Corollary 1 to Lemma 3, GL,(R) maps onto K,(R) for n>1, so the
theorem follows from the preceding paragraph. 3

We write J=J(R) for the (Jacobson) radical of R, R=R/J. Clearly
peJ, so pRcJ. Conversely, since R/pR is finite, its radical J/pR is nil-
potent. Thus for some positive integer N, (J/pR)¥ =0, i.e. J¥ cpR. Hence
the J-adic and p-adic topologies on R coincide; in particular, R is
complete in the J-adic topology. Thus the results of the preceding
sections (with J in place of I) are applicable.

Theorem 10. The kernel V of K, (R)— K, (R) is a pro-p-group.

Proof. By Proposition 3, V is a quotient of (1+J)*. Now (1+J)* isa
pro-p-group, for the topology is defined by the subgroups (14J7)*, and
(1+Jr)x/(l+Jr+1)x ;Jr/‘]r+l,
an additive group of exponent p. But the proof of the preceding theorem

shows (for any n) that
Ker(GL,(R)— K, (R))=Ker(W,— K, (R))

is open (hence closed) in W,, hence closed in GL,(R); thus the quotient
inherits the topology. The theorem follows.

Corollary 1. K, (R)=V@® K, (R).

For R is a semisimple finite ring of characteristic p, hence isomorphic
to a direct sum of matrix rings over fields F(p®). Thus K, (R) is a sum of
cyclic groups of orders (p'— 1), hence is a finite group of order prime to p.
Any extension of the pro-p-group V by K, (R) thus splits, uniquely.

It follows that S;K;(R)=S;V@®S,;K,(R), so the pullback P of §2
reduces to 4,(R)® S;(V).

Corollary 2. If p is odd, H'(V)=0 for all i. Hence

L(R)=L(R),
A R)=4,R) @ S,(V).

When p=2, things are less simple. The main step needed to obtain
calculations over R is to compute the maps
L3(R)— H(V).

The groups Lj(R) are known [7]: a summand of R of type GL or U
contributes zero; a summand of type SPOT contributes Z/2Z to each

5a Inventiones math., Vol. 19
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group. We can even drop the index S, for as K, (R) has odd order, all
L% (R) coincide. One can regard some of the difficulties here as due to the
fact that to compute K, 2 one needs spinor norms as well as determinants.

To illustrate that this really is a problem, we now give the calculation
for the case when p=2 and the order R is unramified —i.e. S is a direct
sum of matrix rings over fields (not division rings) and R is a maximal
order. Then the direct sum splitting of S induces one of R. If « interchanges
two components here, they contribute nothing to the L-theory (cf. [5]).
So it suffices to consider one component — i.e. suppose S simple.

Let S=M,(K) be the matrix ring over a field K; 4 be the ring of
integers in K. Then R is (conjugate to) M, (4). As in [7], we may now
reduce by Morita theory to the case R=A: now the anti-involution a
may or may not be trivial (on A4, as on K); if « is trivial, u= +1.

The case when o is not trivial was discussed fully in [6]: we have the
“wildly ramified ” case of that paper. Each group L;(4), H' (V) has order 2.
Two cases arise, depending on the class of u in H,(4*). [6, Theorem 3]
shows that the map L,(4)— H°(V) is an isomorphism in the good case;
zero in the bad, and [6, Theorem 4] that the same holds for L, (4)— H' (V).
For i=2,3 we must replace u by —u: whether u~ —u or not depends on
(K, a). Both cases can arise.

If a is trivial, u= 11, and A4 certainly has type SPOT: K has type 0
or Sp according as u=1 or u= — 1. For this case, H' (V)= H'(4*)={+ 1},
while H®(V)=H®(A*)=(A*)/(A*)% The latter can be regarded as a sub-
group (of index 2) of K* /(K *)2.

Theorem 11. Let A be the ring of integers in a 2-adic field K; o the
identity. Then - - )
Ly(A)—> H®(A*) is injective
L,(A)— H'(A%) is an isomorphism
L,(A)— H*(4*) s zero
Ly(A)— H*(A*) s zero.

Proof. The nonzero element of L;(A) (i even) is represented by a plane
with nonzero Arf invariant: we can regard this as the equivalence class
of the form with matrix L1

(0 E) ’

where beA is not of the form x2+ x. If be B maps to b, we lift this in the
obvious way to a form on A. Its bilinearisation has matrix

(2 e o B
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and so discriminant 1 (u= —1) resp. 1-4b (u=1). In the former case
(corresponding to i=2), our map is zero; in the latter (corresponding to
i=0) it is not, since 1-4b is not a square in K. For if it is the square of
1+2x, say, then x2+x=—b so x is integral, and taking its class in A
contradicts the choice of b.

For i odd, the nonzero class of L,(A) is represented by the auto-
morphism of a hyperbolic plane which interchanges the factors. We lift
this to the automorphism e — f— e u (u= + 1); this has determinant — u.
Since u= +1(—1) corresponds to i=1(3), this completes the proof.

Note that applying the same argument to [6, Theorem 4] shows that
our “general nonsense” here has replaced the lemma.

Corollary.
Y BW=0, By=arjary

L(A)=Z1202Z)2,
and there is an exact sequence
0>Z2—>A*(A")Y - 5(A)—>Z2—0.

Proof. The only result which does not follow at once by combining
the above with Theorem 6, Corollary is that L%, (A) is a trivial extension.
Now it suffices to choose a plane with nonzero Arf invariant, and show
that it has order 2 in L, (A4). Suppose then qp(e)=1,9,(f")=b,by(e, f)=1
and similarly for the (orthogonal) space spanned by e”, f”. Then
{e', f/'—f"} is easily seen to be a hyperbolic plane with standard basis
(after adjusting e’ suitably modulo (f'— f ")). Its orthogonal complement
has preferred basis ¢ =¢'+¢”, f” and 4s(€")=2, q4(f")=b. Now by
Hensel’s lemma we can find A with qo(e”'+ f"A)=0,s0 take e=e""+ " A.
Finally adjust /” modulo e (this is now easy) to make g, vanish here too.

§ 4. Complements

The preceding results can be sharpened in several ways, some of
which are clear. Lemma 2 shows that the actual (not merely stable)
classification of forms over R is the same as over R. Now we obtain a
corresponding classification of based forms over ¢, provided Aut ¢ maps
onto K, 2(R).

Lemma 12. Suppose R complete semilocal. Then
(i) R* =GL,(R)— K,(R) is surjective.
(i) Aut H(R) — K, 2(R) is surjective.
Proof. The first assertion follows from the Corollary to Proposition 3,
as R*— K, (R) is surjective since R is semisimple.

5b  Inventiones math.,, Vol. 19
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It follows that H(R *) maps onto
H(K,(R))=Ker(K, 2(R)— IX(R)).

Finally, IX(R)= LX(R) is a sum of groups of order 2, one for each of
certain summands of R. Clearly, the automorphism group of a hyper-
bolic plane maps onto this (it suffices to note this for simple summands).
The result follows since, by Lemma 2, we can lift automorphisms.

We thus obtain a classification of based forms over ¢ whenever ¢
has a hyperbolic summand. By Lemma 2, Corollary 2 this is equivalent
to ¢ having a hyperbolic summand; by the classification of forms over
finite fields, this holds whenever ¢ (or equivalently, ¢) has rank >3. If
we note also that any element of K,.2(R) of rank =2 corresponds to a
quadratic module unique up to isomorphism (and hence that the same
holds for K, 2(R)), we conclude

Corollary. Suppose further that R is finite. Then any element of
K,#2(R) of rank =3 corresponds to a based quadratic module, unique up
to isomorphism.

This allows a certain amount of cancellation, for example. Of course,
it is possible by the same methods but with more effort to obtain results
also for lower ranks, but these will be complicated and depend on cases.

These stability results for K, can be matched by some for K,. The
surjectivity is already noted in Lemma 12. An injectivity statement
should take the form: for all n>r,

EU,(R)=Ker(U,(R)—> K, 2(R)). (%)

We cannot give this in a sharp form due to our restricted list of generators
of EU, —for example, if R is a division ring, the kernel is always generated
by transvections when n=2 (see discussion in [7], for example), but the
arguments in [5] only work conveniently for n>3, and would indeed
prove () for n=3, R a division ring. Since a stronger result has already
been obtained by Bak [1]. I will confine myself to outlining an argument
that a corresponding result holds for R semilocal (it is essentially the
same argument as would apply for a division ring). B

Since we may assume the result for the semisimple ring R, it suffices
to consider automorphisms congruent modulo I to the identity. It
follows from our proof of Proposition 4 that we can reduce one of these
to a direct sum of hyperbolic automorphisms H(x), xel+1. Con-
jugating by the elementary automorphisms Zij of [5] permutes the
summands, so we may assume only one summand non-trivial. Then x
determines an element & of V < K, #(R) which maps to 0in K, 2(R, o, u),
hence is in the image of K,#2(R, o, —u). By the previous corollary, we
can find a corresponding form 6 of any rank n>4. Now by the arguments
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of [5, Lemma 6 and Prop.11] we can find a product of elementary
matrices of the form H(x'), where x' also has class . But then x x'~*
determines Oe K, (R), so is a product of elementary matrices in E,, and
H(x x'~') is thus also a product of elementary matrices.

For purposes of computation, it is easier (if possible) to replace
K, ?(R) by its image K; #(R)= K, 2(S). By Theorem 9, the kernel of
this projection is finite. If also this kernel is a p-group, an analogue to
Theorem 10 holds for K; 2 (R). We say in this case that R has good
reduction. Clearly if R is commutative, it has good reduction. More
generally, so does any Morita-equivalent ring. In particular, if R is
unramified (i.e. a maximal order in a sum of matrix rings over fields)
then R has good reduction.

An example of an R which does not have good reduction is a maximal
order in a quaternion division algebra—e.g.

R=1Z,[i,j/i*=3, /= —1, ji= —ij].

Here, J(R) is generated by 3 and i, and R is the field of order 9. We have
Nrd j=1, but the image of j in R is not 1, and equals its reduced norm.

An example (due to Kneser) of a ring R with good reduction, but
K, 2(R)#K;Z(R) is the subring Z,+pM,(Z,) of M,(Z,) for n prime
to p—1: the elementary matrix X, ,(p) has determinant 1, but is not 1
in K, 2(R).

Even K| 2 (R) is not so easy to compute: the image by the reduced
norm need not lie in the centre of R (though e.g. by Swan [4, 5.4] this is
the case if R is a maximal order). An example here is the ring of matrices

over Z, of shape a b 0
c d 0
0 0 e

with a—b=d—c=e (mod p). These remarks apply a fortiori to the
K, 2(R).

We conclude with one result which we shall need in extending our
calculations to adéles.

Lemma. Let F denote one of the functors L}, A;, LY, Ko, K. Let R be
a Z-order in a semisimple Q-algebra S. Write R,,=R®2,,, S,=R®Qp=
S®Q,. Then for almost all primes p, F(R,)— F(S,) is injective.

Proof. Each of the following assertions holds for all but a finite
number of primes p.

(i) pis odd
(ii) R, is a maximal order in §,
(iii) S, is unramified.
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Property (iii) implies that S is a direct sum of matrix rings over
fields K p> and property (ii) that we can identify R with the correspondlng
direct sum of matrix rings over the rings I of integers in K It thus
suffices to consider the case: R —Ip S Kp

We first consider K, K. Clearly K,(R)=Z for R= I or K the
result is trivial. Also for any commutatlve semilocal ring R, R X K 1(R)
is surjective by Prop 3, Corollary; since the determinant provides a left
inverse, this map is an isomorphism. Now I — K;‘ is clearly injective.

The remaining functors F depend on an mvolutlon o of K There
are two main cases, accordmg as « is the identity or not. If not, we call o
unramified (at p) if K is unramified over the field of «: for the above S
we require this condmon for each summand. This is equivalent to saymg
that « does not induce the identity on the finite residue field F, of I
Observe that for all but a finite number of primes p,

(iv) o is unramified at p.

We will prove the assertion for primes p satisfying (i)-(iv).
From the calculations in [7] (for example), we have the following:
Ifa=1 (and u=1),

Ao(Fp).%F,,*, A(F)={E 1} xFX(EX)?,  A(F)EF*, A4(F,)=0.
Ifosl, andfpis its fixed field on E,,
Ay(F)2 [, Ayiy(F)EKer N: Fr—f.

From Theorem 10, Corollary 2, we lift these to
Ifa=1,u=1,

AL, A= {1} X Ef P {1y < AT
A,(L)ELY,  A,(1)=0.
Ifa+1,and i, is its fixed subring on I,
Al L0, Ay, ()2 Ker N: Ix—ix.

Injectivity now follows since each invariant (determinant, discriminant,
spinor norm, Pfaffian) is already defined over K In fact, the results
of [7] yield also:

Ifa—l,u—l, A (K )-—")Kx

is surjective, with kernel Br,(K p) of order 2 (we can describe the ex-
tension using Clifford algebras)

AR )={£1}x R (R )P, 4,(R)ER),  44(R,)=0.
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If a1, and k, is its fixed subfield,
A(RDERY, Ay (R)EKer N: Ry —k;.
The cokernels in the 6 cases are thus:
ZxZ,,2,,2,0,Z,0.

Since L 4,, it follows at once that the result also holds for F=1I5.
Finally, we deduce from Lemma 5 that L¥(I,)= L% (F,), so

ifa=1,u=1,
LyI)=Iy (1x2, Kd)={+1}, IX (I)=1I%(1,)=0.
Ifas1, IX(1,)=0.
Since the only nonzero groups are detected by the global 8, the result
again follows. In fact,

embush R R AR

is surjective with kernel of order 2,
LX(R)={+1}, L5(K)=I5(K,)=0.
If a1, I§,(K )=k, /NK, (of order 2), L%, ,,(K,)=0.
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