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On the Classification of Hermitian Forms
IV. Adele Rings
C.T.C.Wall (Liverpool)

Although the algebraic K-theory of a product of two rings splits in a
natural way as a product, this need not hold for an infinite product. In
the first paragraph below we give sufficient conditions for such a result
to hold, generalised to the case of restricted direct products. In the next,
we verify these conditions for adele rings. Then § 3 checks corresponding
results for categories of quadratic modules, and in § 4 we consider based
quadratic modules, and then tabulate the L-groups of adele rings that
we have obtained. As well as computing L-groups, we obtain cancellation
and stability properties of these categories, which will be needed in the
next paper.

In a final section we compare L-groups of the semisimple ring S with
those of the adele ring S,=S ®(S®R). In general, L;(S)— L;(S,) is
injective —for i even, this is the classical Hasse principle for forms over
fields, which we merely quote. We also systematically compute the co-
kernel: this completes —and also checks — the results of [6].

§ 1. Projective Modules : General Theory

Suppose given an indexing set I and, for each a€l, a ring B, and a
subring C,. For each finite S<I we can form the direct product ring

As=[]B,x [] C,.
S I1-S

The union, or direct limit of the 44 over (increasing) finite subsets S of
1 is called the restricted direct product A=][](B,, C,). The same con-
I

struction yields the restricted direct product of groups, and of other
algebraic systems; moreover, it is not essential that the morphisms
C,— B, be injective. The notion includes direct sums [ | B,=]:[ (B,,0)
as well as direct products [ | B,=[] (B,, B, I 1
Clearly, a finitely generated projective A-module is induced from a
projective Ag¢-module for some S, and this determines projective modules
over C, for almost all « (i.e. for all but finitely many—in this case, S is
the finite exceptional set) and over B, for all o, where the B,-modules are
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almost all induced from C,-modules. Conversely, if we assign projective
C,-modules for x¢S and B,-modules for xeS we obtain a projective
Ag-module which in turn induces an A-module. Analogous remarks
hold also for morphisms. Unfortunately, it does not follow that if the
C,-modules are all finitely generated, so is the 4-module: to see this,
consider the case where I is the set of natural numbers, B,= C, for all ¢,
and we have the module I1(C,)".

For any ring A, we write #(A) for the category of finitely generated
projective A-modules. For any monoidal category .o/, we write k.oZ for
the monoid of isomorphism classes of objects of o7, and K,.<Z, K, .« for
the usual algebraic K-theoretic groups of .« [ 1, pp. 346, 348]. An element
of Ky</ is called positive if it is in the image of k.o/.

Theorem 1.1. Let A=[] (B,, C,).
1

(i) Suppose kP(C,)— kP(B,) injective for almost all o. Then
k2(A)—[] (kZ(B,), k ?(C,)) is injective. Hence if further k ?(B,) is a
I

cancellation semigroup for all a, so is k 2(A).

(i) Suppose K,2(C,)— K, P(B,) injective for almost all o, say for
a¢ R. Suppose also for some finite S<1 and some integer n (independent
of a) that whenever ac(I—S) and P, P’ are finitely generated projective
C,-modules with the same class in K,2(C,), there is an isomorphism
P ®C,— P’ ® Cj. Then the natural map

wo: Ko 2(4)—]] (Ko Z(B,), Ko 2(C))
is injective. !

(iii) Suppose, in addition to the hypotheses of (ii), that we have, for
almost all o (say for a¢ U ), a collection of homomorphisms r,, of k Z(B,)
into the additive semigroup of non-negative rational numbers withr,;(B,)= 1
for all B, and an integer n (independent of o, §) such that any x,e K, 2(C,)
with r,5(x,)Zn for all B is positive. Then the image of w is the subgroup
of x with sup, slr,s(x)|< .

Proof. (i) Write #’(A) for the restricted direct product category
[1(2(B,), Z(C,): more explicitly, we can write

Z(A)=[[2(B)x [[2(C),
s I-s

and 2'(A) for the limit of the 2 (Ag). Note that 2(A) is a full subcategory
of 2'(A), for it is clear that 2(Ay) is a full subcategory of 2'(A4y), and the
assertion follows on taking limits.

Clearly, we have a surjective homomorphism
k2 (A)—]] (k2(B,), k2(C,)).
I
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Now two objects of Z’(A) with the same image admit isomorphisms over
B, for all . Represent them as Ag-modules: then if the hypothesis of (i)
holds, and we enlarge S to include the exceptional set, we have isomor-
phisms over C, for a¢S. Hence we have an isomorphism in #'(4). Thus
the above map is bijective. Since k 2(A)=k #'(A), the assertions of (i)
follow.

(ii) It is again clear (e.g. by considering 2’ (4)) that we have a natural
homomorphism »,. Take any element & of the kernel, represented as the
difference of the Az-modules X and X', for some finite T<I. For
a¢(RuSuT), the C,-modules X, and X, must determine the same class
in K,2(C,), since by hypothesis this is a subgroup of K, #(B,). By our
other hypothesis, we have an isomorphism

X, ®C" > X, ®C".

If now Y, Y are the Az s -modules induced by X, X', we know for
aeRuUSU T that Y,, Y, determine the same class in K, %(B,), hence for
some n (o) we have an isomorphism

Y, B > Y, OB,

If N is the largest of n and the (finitely many) n(x), we thus have an
isomorphism
YG_)AIA(IUSUT‘.) Y/ @AguSuT‘

Hence £=0e K, 2(A).

(iii) Note that r,, induces homomorphisms of k 2(C,) and k #(A);
also homomorphisms into @* of the universal groups K,. We denote
all of these by the same letter. Now for any direct summand X of A",

0=rs(X)SN forall « f,

so the condition sup |, 4(x)| < oo is necessary.

Conversely, suppose this holds. Choose N, =0 so large that r, 4(x)+
Ny=n for all a, . Choose V so that x comes from an element

xe[]Ko2(B,)x [] Ko 2(C,).
v I-Vv

Then for a¢(U U V), x,+ N, is positive by hypothesis. Choose N, =N,
such that x,+ N, is positive for all «. We thus have a projective A4,-
module, hence an object X of #'(A) whose class is x'+ N;. Similarly we
find an object Y whose class is N, —x’, for some N,. Hence X @Y and
AM*N> have the same class in [](K,2(B,), Ko 2(C,)). But now the
argument given above under (ii) shows that for some Nj, there is an

17 Inventiones math., Vol. 23
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isomorphism
X @Y@AN3—>AN‘+N2+N3.

Hence X is finitely generated, and the result follows.

The discussion of K; runs into even more serious difficulties con-
cerning finiteness. Fortunately, the following rather crude result will
suffice for our purposes.

Theorem 1.2. (i) If A =]:[ (B,, C,), there is a natural homomorphism
1
w: K, 2(A)—[] (K, 2(B,). K, 2(C,)).
I

(i1) If for some integer n and finite subset SclI, GL,(C,) maps onto
K, 2(C,) foragsS, then v, is surjective. If also GL,(B,) maps onto K, 2(B,)
for all o, the induced map of GL,(A) is surjective.

(i) Suppose further that for a¢S, K\ 2(C,)— K, 2(B,) is injective,
and that for ¢S and m=n, any element of Ker(GL, (C,)— K, 2(C,))
can be expressed as a product of at most f(m) elementary matrices, where
J(m) is independent of o. Then w, is an isomorphism.

Proof. (1) For S finite, there is a natural map

K\ 2(45) — K, # (4 =] K, 2(B,) x [ K, 2(C,).
S I-§

Since GL, (A)=|) GL,(As), and the same holds for the commutator
subgroup, K, 2(A) is the limit of the K; #(Ag), and maps to the limit
on the right, viz. [ [ (K, Z(B,), K, 2(C,)).
(i) Let xe[] (K, 2(B,), K, #(C,)): we may suppose x the image of
I

xe[|K 2B, x [| KiZ(C,).
R I-R

For a¢ RU S, x/, is in the image of GL,(C,). For each xe R U S we can find
an element of GL,(B,), for some n(x), representing x,. Then if N=
max (n, n(2)), we have an element of GLy (A s)= GLy(A) whose class is
x. The last part follows by the same argument: we can take all n(a)=n.

(ii)) Let xeKer w,. Represent x by £e GL,, (4) for some m and finite
T < I: we may suppose Sc T and m=n. Then for a¢ T, since K; #(C,) —
K, 2(B,) is injective, & (o) represents 0 in K, 2(C,). Since & («) represents O
in K, #(B,) for ae T, and K, % preserves finite products, to show that ¢

represents 0 and hence that x=0, it is enough to consider [ | C,.
I-T

An elementary matrix has the form X;;(r), equal to the identity matrix
except in the (i, j) position, i=j, where we have r. By hypothesis, each
&(a) for a¢ T is the product of at most f(m) such matrices. Let F denote
the set of sequences of f(m) terms, each of which is a pair (i,j) with
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1<i,j<m, i#j. Then F is finite, and we can order F and by juxtaposition
obtain a single finite sequence (i,,j,) which contains each element of
F as a subsequence. Thus we can write

f(O()=X;‘jl(Ca_|)Xiz‘jz((‘a’z)...,

taking any superfluous c,,=0. But this gives an expression of
{&(): aeI —T} as a finite product of elementary matrices over || C,,
and so concludes the proof. I-T

Corollary 1.3. Under the conditions of the theorem, GL,(A) maps onto
K, 2(A).

This follows from the final assertions in (ii) and (iii) above.

§ 2. Projective Modules over Adele Rings

Let Z denote the ring of integers, Z its profinite completion —i.e. the
inverse limit of its finite cyclic quotients. This is also the direct product
of the pro-p-rings Z of p-adic integers. Write Q for the field of ration-
als, Q= Q@Z and Q Q@Z Then we have—as is easily seen—
Q= H Qp, Y/ ) The ring Q, of ade]es is the product @ x R. Now let R
be a ring whose additive group is finitely generated. We label its tensor
products (over Z) with the above rings systematically:

R(=R®Z) R=R®Z R,=R®Z, T=R®R
S=R®Q S=R®Q S$,=R®Q, S,=REQ,.

We assume throughout that S is semisimple. In this paper we will study
primarily S: since S,=S5 x T, results about it will follow. Observe that

R=[IR, $=[]G,.R,.

Now Sp is also semisimple since S is, hence is a finite sum of matrix
rings over division rings. The following facts are well known. For almost
all p, S is unramified, i.e. a direct sum of matrix rings over fields K ,.
For almost all p, R is a maximal order in S [1, pp. 149, 154] and hence
splits as a direct sum when S does. When both these conditions hold,
we call R unramified. There is then [1, p.162] an isomorphism
S — ®M, (K ».p) under which R corresponds  to the subring
@M,w,( . ,,) where Ip g is the ring of mtegers in Kp p- Write P for the
set of all primes, and B for the finite subset at which R is ramified. Then
we have

Theorem 2.1 With the above notation, all the hypotheses of (1.1) and
(1.2) hold for R and for S. Explicitly,
(1) Cancellation holds in kW(RP) and k,@(Sp).
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(1) If F denotes k 2 K, % or K, 2, then F(R,,)—» F(S,,) is injective for
pe(P—B).

(i) For peP—B, and M a finitely generated S -module, hence a
sum @®M »(B) conespondmg to the decomposition of S , set rp‘,(M )=
dim M (B /dlmS (B), where dimensions can be taken over Kp g (or (Q
Then any xe K, J’(R ), with r, ;(x)=0 for all f, is positive.

(iv) For all peP, GL,(R,)—K,?(R,) and GL,(S,)— K,2?(S,) are
surjective.

(v) For peP—B, and any n=2, we can express any element of
Ker(GL,(R,)— K, ?(R,)) as a product of at most $,(R) elementary
matrices.

Hence applying the results of the preceding section, we obtain at once

Corollary 2.2. (i) Cancellation holds in k 2 (R) and k 2 (S).

(i1) KQW(R) resp. K, & (S) is the subgroup of bounded elements in
[TKoZ(R,) resp. [] (Ko Z(S,) Ko ZR,)).

(iii) GL,(R)— K, 2(R), GL (S)— K, 2 (S) are surjective.

(iv) K, 9‘(R)—>HK p) K, Q(S)*»]—_'[ Klj’(S ), K, 2 (R o) are
isomorphtsms

Proof of (2.1). (i) Since S,, is semisimple cancellation surely holds in
the free abelian monoid k@(Sp) Asto R , write R, for the quotient by its
radical. Then e.g. by [1, p.90], kJ’(R )—»kf( p) is an isomorphism,
and we have cancellation for the semlslmple ring R,

(iv) This follows from [1, p. 266].

(ii) For peP—B, we have 2(S,)x n@(M (K, ), and by a
Morita equivalence [1, pp. 65, 681, this is equivalent to []2(K (K,.p)s
correspondingly,

2R)=[]2(d,,.

It thus suffices to consider the case where S'p:Kp is a field and szfp
the ring of mtegers in it. But here the rank induces isomorphisms of
kg’(l )=k Z(K,)=monoid of nonnegative integers. Also in this com-
mutative case, determmant yields a left inverse to GL, (I )—> K, 9 (I:,)
which is surjective by (iv), and similarly for K Thus

2(I)=1 -K; =K, 2(R,)

is clearly injective.

(iii) As above, this reduces to the case RP:TI,”S‘I,:IZF,, but with
r, g =rank divided by r(f) since rank is not invariant under equivalence
of categories. It now follows at once from the above description of
kP (R,).
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(v) We first establish the result in the case ﬁpzip and with ¢, =
(n+2)(n—1). It suffices to describe an elementary reduction to the
identity of an arbitrary unimodular matrix over a commutative local ring.

(a) Add some other column to the first to make a, ; a unit.

(b) Add (1—a,,)a, | times the first column to the last.

(c) Subtract a, ; times the last column from the i-th (1 <i<n).

(d) Subtract a; , times the last row from the j-th (1<j<n).

This reduces to an (n—1)x(n—1) matrix: continue by induction
till we reach the 1 x 1 matrix of determinant . We observe that if we
allow for all possibilities at (a), we achieve the result with $(n—1)(3n+2)
elementary matrices with the (i, ) in a fixed sequence.

The corresponding result also follows for the matrix ring M, (I ,)- For
there are obvious isomorphisms M, (M, (],))= ,,) An elementdry
matrix X,;(a) over T is also e ementary over M (] ) unless rt+1=
L, j<r(t+1) for some 0_<_t<n In this case, provided n>2 we can choose
1<k<rn not in this subset: then the relation X; (a)=[X;(a), X,”(l)]
expresses our matrix as the product of 4 elementary matrlces over M, (I ).
Thus here any element of the kernel is product of at most 4(n r+2)(nr—1)
elementary matrices.

It remains to give a bound on r. But
r?=dimg, M,(K ) <dimg, M,(K,)<dimg, (S,)=dimgS.

We conclude this paragraph by giving a more effective description
of K, 2(S). For any ring A, we denote its centre by Z(A). Then if 4 is
a semisimple algebra over some field, we have a reduced norm map which
induces Nrd: K, 2(A4) — Z(A)*. It is well known (references are given in
[6]) that for A=S »» this is an isomorphism.

Proposition 2.3. Reduced norm induces an isomorphism
Nrd: K, 2(S)— Z(5)~.
Proof. By (2.2).(iv), we have

K, 23)=[] (K, 2(,. K, Z(R,),
and clearly

ZS) =[1(Z(ES,). Z(R)").

It will thus suffice to show that for almost all p, Nrd induces an iso-
morphism KI?J(IA{I,)A»Z(I?,,)X.

Suppose p¢B. Now each of the above is compatible with products,
and invariant (in an obvious way) on taking matrix rings, so as before
we are reduced to the commutative case, 7,,. But here Nrd reduces to
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the ordinary determinant, and we have already noted that

is an i - (K, 2(1) -1
1s an isomorphism. det: K, 2 (1) — I,

§ 3. Quadratic Modules

The notions of antistructure (R, o, u)—essentially a ring with anti-
involution—and the category 2(R,a,u) of nonsingular quadratic
modules were defined in [6] or in [8], as were the forgetful and hyper-
bolic functors

F:2R,0,u)—»2?(R), H:2R)—2(R, o u):

see also the paper following this. Roughly speaking, 2 is the category of
nonsingular hermitian forms and isometries. In this paragraph we will
indicate the modifications necessary for replacing 2 by £ in the preceding
paragraphs.

Now suppose we have rings B, with subrings C,; the anti-auto-
morphisms s, of B, leaves C, invariant, and s? is the inner automor-
phism by u,eC, : moreover, s, inverts u,. Thus the s, induce an anti-
automorphismsof A=[] (B,, C,), and s* is induced by u= {u,}. Reference
to the s,,u,,s and u will be suppressed in the sequel, as they may be
supposed fixed.

Proposition 3.1. The results (1.1) and (1.2) remain true if we make the
Sollowing substitutions throughout: for P read 2; for Ci(as C,-module)
read H(C%); similarly for other rings: in particular, for GL,(C,)=Aut(LC")
read U,(C)=Aut(H(C}); for elementary matrices read elementary
unitary matrices.

Indeed the proofs, which do not depend deeply on the category £
remain valid also for 2. For example, [8, Lemma 4] shows that the
group of elementary unitary matrices over any ring R is generated (for
n=3) by subgroups (of matrices E;;(r) or F;;(r)) isomorphic to the additive
group R*.

Now turn to the context and notation of § 2 above: an antistructure
on R induces structures on all the Rp, Sp, T.R,S.S 4 Which will again be
suppressed in our notation, as we will not vary them.

Theorem 3.2. Theorem 2.1 remains true with the following substitutions,
in addition to those above: for r, ; read 51, ;o F; for O resp.2 in (iii) resp.
(v) read 1 resp. 3; and for B read B'.

Here, we define B’ —the set of primes p where (R »» ) s unramified —
as follows. If peB or if p=2, then pe B". Otherwise, we know that we
have to consider fields K, ; and a either leaves these invariant or inter-
changes them in pairs. We set pe B’ if for some f, « acts on K, ; which
ramifies over the fixed field of a.
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Proof of (3.2). (i) Cancellation certainly holds over division rings —see
e.g [2,43]— hence over semisimple rmgs such as S and R,. By [7,
Lemma 2, Corollary 2], it holds also for R

(iv) This was verified in [7, Lemma 12].

(11) This was explicitly verified in [7, Lemma 13] for K, 2 and for
Ker KoF: Ky 2—Ky2, and the result for K,2 follows. Now the
assertion for k 2 follows using cancellation.

(ii1) We are given xeKOQ(Rp), with r, ; F(x)>0 for all . By the
result for 2, F(x) is positive: indeed, as before, we can reduce to the
case R -I or (if « mterchanges two summands of S ») R —1 @I
But in the latter case, ,@(R )~7( ») and the result follows; in the former
F: K, ,Z(R )— Ko 2 (R,) is injective save in the orthogonal case, where
the kernel has order 2, and is detected by the determinant. Since, however,
for p¢ B’ the module 1 already admits forms with both possible values
of the determinant, so does any nonzero element of kd/’(l ), and the
desired result follows.

(v) As in the case of £ it suffices to prove the desired result for I
Let k be the residue class field ofI and write x — X for reduction modulo
the radical. We now consider the argument of [8, Theorem 5] applied
to k: again we shall try to reduce an arbitrary element x of U, (fp) to the
identity by elementary transformations'. The first step in reduction
for X is to make a=+0. Lifting the elementary transformation to fp, we
have made a invertible. The next steps of the argument are valid over
Ap, and reduce x to H(a)®x,_, with x,_,eU,_ (fp). In a bounded
number of steps, we reach some H ().

Now by the result for 2 we can reduce o to det @ I, _; by a bounded
number of elementary moves. Since [8] H (Xl-j(r)) is a product of 4
elementary automorphisms, it remains only to consider the case x = H(a),
ael).

Ii\low we may suppose x represents 0 in Klﬁ(fp). Then either by
[8, Prop. 11] with a stabilisation argument, or by inspection in this simple
case, it follows that

b(e,e)=a, qle)=3a

defines a nonsingular (¢, —u)-quadratic form on the free module efp:
or equivalently (as we know a is invertible) a*= —au. The proof of
[8, Prop. 11] now expresses H(a@® 1) as the product of 6 elementary
unitary matrices (the first 3 give X, : the reader of [8] will easily supply
the rest, but it does not seem worth developing the notation here).

Corollary 3.3. (2.2) remains true on substituting as in (2.1).

! The ¢, of [8, Lemma 6] are not strictly elementary, but each is (as there shown) the
product of a bounded number of elementary transformations.
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As in the preceding section, we can make these results more explicit
in the case of §. Write K, 2(R)=Ker F: K, 2(R)— K, 2 (R).

Corollary 3.4. K, 2(5)=]] (K, 2(5,), Ko 2(R)).

Now the discussion in [6,§ 1] showed how to reduce calculations
for arbitrary semisimple rings S to division rings D: the equivalences

remain good on tensoring rings by @. so it will suffice to study the K-
theory of 2(D): again, the cases which occur are listed in [6, § 1].

Theorem 3.5. If (D, o, u) has type Sp, then
K,2(D)=0, K,2(D)=0

If (D, o, u) has type U, E is the centre of D, and e the fixed field of « on E,
then 2(D)=Ker(N: Ex —¢é%),
Ko,2(D)y=é*/NE*.
If (D, o, u) has type 0, and E is the centre of D, then
K 2D)=E*(E*V? x[]{£1},
where the product is extended over those primes p of E for which Dp splits.

Proof. In each case, we know that both sides of the equation are re-
stricted direct products so it suffices to verify the isomorphism over
S for all p and over R for p¢ B'. But the calculations over S were listed
in [6, p. 130 and 135] and for the unramified (R o) in the proof of [7,
Lemma 13]. Note here that for type U, if lp, P denote the subrings of
integers in ¢, E then because the extension is unramified (p¢ B’), we
have N (I

§ 4. Based Quadratic Modules

We recall from [8] (or [6]) that a based quadratic module over any
ring R is a triple (M, g, v) where (M, g) is a quadratic module and where v
is an equivalence class of free R-bases on M, where bases {¢;} and
{fi=Z e;p;;} are equivalent if P=(p,;) represents 1 in K,(R). We denote
by # 2(R, a, u) the category of nonsingular based quadratic modules.

In the product situation envisaged in earlier sections, suppose (1.2)
holds, so that

KIW(A)ZD(KI'J}(Ba)a Kl,@(Ca)).
Then—as for 2(A)c %' (A) and 2(A)—the category #.2(A) is a full
subcategory of the restricted direct product [ [(# 2(B,), #2(C,)), so the
arguments of earlier paragraphs remain relevant. However, since by
[8, Prop. 10] for any ring A4,

K #2(A)=Ker F: K 2(A)— K, Z(A),
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there is no need for a special study of K; # 2(A). Also, the very definition
of # 2 provides a unique rank homomorphism r: K,% 2(A)— Z, given
by counting the number of elements in a basis. We denote its kernel by
K,%2(A). The result corresponding to (1.1) is now

Lemma 4.1. (i) Suppose k 8 2(C,)— k% 2(B,) injective for almost all
a Then kB 2(A) ] (kB 2(B,), kB 2(C,)) is injective. Hence if further
kB 2(B,) is a cancellation semigroup for all o, so is kB 2(A).

(i) Suppose Ko#2(C,)— K,%2(B,) injective for almost all a.
Suppose also for some integer n and finite subset S<1I that whenever
ae(l —S)and M, M’ are objects representing the same element of K, 82(C,),
there is an isomorphism M @H (C) — M’ @ H (C%). Then the map

o: Ko B2(4)—~[](K,#2(B,), Ko 22(C,)
is injective.
(iii) Suppose further that for some integer n,, every element

xeK,B2(C), oel-S,

with r(x)=ny, is positive. Then w is an isomorphism.

The extension of the arguments proving (1.1) to cover this case is
routine; we leave it to the reader.

Lemma 4.2. The hypotheses of (4.1) hold for  2(R) and 8 2(S). More
precisely,

(1) Cancellation holds in kJQ(S ) and, if peP—B, in k# 2R o) For
any p, if My and M are objects of 8 2(R ) with the same classin K, %J( o
there is an isomorphism M, ® H(R = M3 @H(R IfH(R )isa vummand
of M, then M,=M3.

(i) If F denotes kB2 or Ky % 2, then F(Rp) — F(§p) is injective for
peP—B'.

(iti) Any xeKoﬂ.@(Rl,) with rank =1 is positive.

Proof. (ii) again follows from [7, Lemma 13].

(1) First consider any antistructure (R, a, ) such that cancellation
holds in 2(R). Then given an isomorphism

w:M1®M2“‘)M1®M3 ln %Q,

it follows that there exists a 2-isomorphism ¢: M, — M;. Let ¢ have
determinant ¢ with respect to preferred bases of M, and M;. Then
Y~ 'o(1®¢) is an isometry of Ml(JaM2 with determinant J, hence
delm(K,; 2(R)—*> K, 2(R)). If there is an isometry y of M, with
determinant §, ¢po y ' gives the desired based isometry M, — Mj.
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To apply this to our case, first observe that by (3.2).(iv), in all cases
M, @ H (R) certainly admits such an isometry, so M, ® H(R)=~ M; @ H(R)
in 4 2. 1f M, admits H(R) as a summand, then M, has enough isometries,
so M, =M,;.

Next, we can reduce to the case when Sl, is a division ring, or when
pe(P—B’) and R, is the ring of integers in a field. Since if M, is the zero
module, it follows by cancellation for £ that M, =0, we may assume
that M, has rank =1. We now consider cases. For type GL or Sp, or for
type O when S‘p is not a field, Im(K; 2(R)— K; 2(R)) is zero, and there
is nothing to prove. For type 0 otherwise, the image is {41}, and a
representative automorphism is e; —» —e,, ¢;—e¢; for i>1, where {¢;}
is an orthogonal base (such exist in these cases—note [7, Lemma 2,
Corollary 2]). Finally for type U, S,, is necessarily a field, K, .”/’(Sp)z
S, , the image consists of elements a with aa*=1, and we consider
e,— e a, e;—e; for i>1 as above: the same argument goes for the ring
of integers ﬁp since p is odd.

(iii) Here we have an element of K, %Q(RP) whose image in Koﬂ(ﬁp)
is positive, by (3.2).(iii): say it is represented by M. Using cancellation
in kg’(RP),Awe see that M is frge; by hypothesis, its rank is >0. Now
since GL, (R,) maps onto K; Z(R ), we may vary the base by any element
of K; 2(R,). The result now follows from exactness of

K;?R,)—>KoB2(R,)—K,2(R,)
[8, Prop. 10].
Corollary 4.3.
() KoB2(R)=[]KoZ2(R,),
14

(i) KoB28)=[](Ko22(,), Ko B 2(R,)).
p
Again this yields explicit computations. Let D be a division ring
finite over @, E its centre, (D, o, 1) an antistructure and, if | E is nontrivial,
e its fixed field.
Proposition 4.4. For type Sp,
n: Ky BAD)=E".
Fortype U, 3
0: Ko#B2(D)=~ex.
For type 0, N R R
0. Ko#2(D)—E*
is surjective, with kernel isomorphic to

[T{£1},

the direct sum being extended over all primes of E.




On the Classification of Hermitian Forms. IV 253

Proof. This follows as for (3.5): only the final case needs comment.
Here, we know that - . ~
0: Ko#2(D,)— E;
}las lgernel of order 2, and if pg(P—B’), we reduce to the case where
R,=1, is the ring of integers in E,: here (cf. [7, Lemma 13])
5: KoB2(,)—1;
is an isomorphism. It now follows from (4.3) that § is surjective. Further,
Ker ¢ is also a restricted direct product, and since —as just noted — the
subgroups are almost all zero, this reduces to a direct sum.
We now recall the basic L-theory definitions of [8]. First, set

K;(R)=K;Z(R),
Ao(R, o, u)= KOQJ(R o, u),
A (R, o, u)=K; 2(R, o, u),

A2 (Ryo,u)=4,; (R o, —u) forall ieZ.

We have determinant maps J;: A;(R)— K, (R) (, is induced by F) and
twisting maps 7;: K, (R) — 4;(R) (t, is induced by H), and by [8, Lemma9]
d;ot;=1+(—1)'T, where T is the involution of K,(R) induced by .
Moreover, the sequence

A

is exact, for all i. We set

(R) 2> K, (R) i(R)

i+1

LX(R)=Ker §;,
IX(R)=Coker ;.

Apart from the obvious period 4, we noted in [6, p. 124] that over simple
rings (and the same now follows for adele rings) we have period 2 for
type U, and the interchange of +u interchanges typesO and Sp. The
groups can thus be tabulated as follows.

Corollary 4.5. Let (D, o, u) be an antistructure with D a division ring,
finite over Q, with centre E. If o|E is nontrivial, let e denote its fixed
field. Write J for the set of primes of E, J' for the subset (almost all) at
which D splits. Then the L-groups of (D, a, u) are as follows:

Type L A, IX L Ao X
U o Ker N: Ex — ¢~ 0 0 - [T{x1}
J
Sp 0 0 0 [T{x1} E* 0
J

0 E*/(E*)? EXNE* P @[]{£1} [T{£1} [I{£1} O surjective ?
J’ J J
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We tabulated A, in (3.5) and A, in (4.4) with sufficient precision to
determine the J; and t; except for 7, for type 0. The other results are
immediate consequences, except the IX for type U, where we have used
class field theory (for the extension E/e) to simplify the result.

The table indicates also the corresponding results over the f)p. It
should be augmented by information at real primes (in [6], there is also
a summary at the end of [8]) and the reminder that for type GL—1.e.
a ‘double ring’ R @ R°?, interchanged by « — we have A,(R ® R°*)= K, (R),
L=1X=0.

§ 5. Global Fields and Adele Rings

In our previous paper [6] we gave a list of calculations of L-groups
for the semisimple rings S,, T and S: summaries of these appeared as
follows :

p. 130 K, K, 2=4, p. 135 Ky 2 =IX
p.137 K, 82 =I5 p. 138 K, #2=4,
p. 140 K, =I5,

and the (easier) results for IX are given by [8, Theorem 5].

The details of some of these calculations are fairly complicated. In
this section we compare the K and L groups for the global algebra S
with those for the adele ring

S,=5®Q,=S®Q®R)=S@T, say.

The arguments below will not use the full results of [6], and it is of
interest to note what we really need: the following three items would
suffice.

(1) Determination of the groups K, K, 2 (the Kneser-Tits conjecture).
This is as well documented in [6] as anywhere.

(2) The Hasse principle for H' of the connected algebraic groups U,
SU, Sp, SO—or the Hasse principle for forms of type U or Sp and for
based forms of type 0. This is discussed in [4] and [5].

(3) The result that for G a simply connected algebraic group and K
a global field,

H'(K; G)=ITH'(K,; G),

where v runs through the real places of K. This also is discussed in [4]
and [5]: it really contains (2) above.

These are the deepest theorems: we deduce the rest, even the structure
of Ker (IX (S) — LX(S.)).

Lemma 5.1 (Hasse principle). Let F denote any of the functors K;,
L3, A, IX (i=0,1). Then F(S)— F(S,) is injective unless F=1I1X, some
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simple component of (S, o, u) has type OD, and the quaternion division
ring D is ramified at more than two spots.

Proof. This result is well-known in Galois cohomology. It also follows
from [6] as, with the exception named, we gave invariants to detect the
groups and all these can be locally detected. Indeed, this is obvious
except perhaps when the invariant is a class modulo squares or modulo
norms from a quadratic extension. However, it is known—see e.g.
[3, pp. 180, 185] —that a number which is locally a square resp. norm
from a quadratic extension is also one globally.

In the exceptional case, if S is a matrix ring over the division ring D
with centre E, the kernel can be identified with the quotient ® (D) of the
subgroup of Br, (E) of algebras split at places where D is by the class of D
itself. Thus if D is ramified at 2r spots, & (D) has 2-rank 2r—2. This
result is due to M. Kneser; a proof will be found in (5.6) below.

Our further efforts will be devoted to determining the cokernel CF(S)
of the natural map F(S)— F(S,), for the listed functors F. The group K|
being uninteresting, we begin with K,. We may suppose S simple, with
centre E. According to [6],

Nrd: K{(S)— E*
is injective, with corresponding results for Sp and T, and by (2.3) also
for S and S,. Further, the map is surjective for S, and S: for T the image
is the subset of (E® IR)* of elements whose components at places where
T ramifies are positive, and for S, S, it is defined by this same condition
on signs. Write E*, E* for the subgroups of E, E, defined by this condi-
tion. Since the signs at real spots of elements of E* are independent,
E* - E%X=E]. Hence
CK,(S)=FE%/E*~E}/E~,

the idele class group (not ideal class group) of E, which we will denote by
C. In particular, this depends only on the centre, E of S.

For the other cases, the exact sequence

0-0I

i+1

*»Ai+1—~>K1‘+A,.‘>L'f~»%O
of [8] will be useful. We have exact sequences for S and for S ,: what of
the cokernel?

Lemma 5.2. Let f,: A, — B, be a map of exact sequences: let f,: A,— B,
have kernel X, image Y, and cokernel Z,,. Then H,(Z)~H, _(Y)=H, ,(X).

Proof. We have exact sequences of chain complexes
0->X,—A,—>Y, —0
0-Y, —»B,—»Z, -0,
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which thus have exact homology sequences. Since A4,, B, have zero
homology groups, these yield the desired isomorphisms.

Corollary. The sequence
Fi(S): 0 CL}, {(S)— CA;,1(S)— CK(S)— CA;(S)— CIX(S)—0

is exact for S simple, unless (S, a, u) has type OD (resp.Sp D) and i=0
(resp. 2)(mod 4) when the only nonzero homology group is
Ker(LX (S)— LX(S,),

at the middle point.

This follows on applying the lemma as indicated, and using (5.1).

For the remaining discussion, we can split up (S, «, u) into its simple
components. We have effectively discussed type GL already. Types 0 and
Sp are interchanged by changing u to —u [6, p.124], hence by adding 2
to i—we have already referred to this. Next we discuss type U. Write,
as above, E for the centre of S. For any abelian group M on which Z/2Z
acts (by a), write

S*(M)={meM: m*=em} for e=+1.

Proposition 5.3. For S of type U. CAy(S)=S*(C), CA(S)=S" (C),
CL(S)= CI5(S)= CIX(5)=0, CIX(S)~Z)2Z.
Proof. From [6] by inspection, or by the Galois cohomology for SU,

CI5 (S)= CL5(S)=0.

Thus CA;(S)— CK,(S) is injective. Since the composite K; — A;— K| is
(14(—1) o), by exactness of F;_,(S),

CA,(S)=Ker(CK;(S)— CA;_(S))
—Ker(1+(—1)""a)=8"" CK,(S)=S"""C.

Now the cokernel

CIX(S)=H'(Z/2Z; C)
and by class field theory, this has order 2 for i even, 1 for i odd. In fact,
C1X(S)=0 by inspection.

Also by inspection, C A,(S) is the idele class group of the fixed field of
o on E. It is easy to identify this directly with S*(C). We will find the
cohomology of the idele class group coming up again later.

Before discussing the other cases, we describe an extension of the
Pfaffian invariant, discovered too late to be included in [6]. This is not
really needed for our results here, but helps in understanding the calcula-
tions in [6] of the relevant groups.
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Recall that for K a field, the antistructure (K, 1, 1) has A; =IK =0, so
7 K*=K,(K)— A,(K)

is an isomorphism: we defined the Pfaffian n to be the inverse isomor-
phism, and observed that this definition extended in part to some other
cases. We now discuss type Sp over a quaternion algebra D, with centre E.
Let ¢ be the canonical conjugation on D, so (D, ¢, 1) has type Sp: we study
this antistructure.

Proposition 5.4. There is a natural homomorphismn: K, 82(D, c,1)— E*
such that

1) mot=identity.
ii) The discriminant 6 =7>.
iii) If D=, and xe K, B2 has signature 2p, then (—1)° n(x)>0.

Proof. By standard arguments, any form admits a (preferred) ortho-
gonal base, and we can pass between two such bases by intermediate
steps in each of which only two basis vectors are changed.

If {e;} is an orthogonal base for a form 0, set a;=b,(¢;, ¢;). Then q;€ E,
and a;=+0 if 0 is nonsingular. Define n(0)=1ITa;. To check that this is
independent of choice of base it suffices (by the above) to consider the
2-dimensional case: this is a straightforward computation. It is then
clear that we have a naturally defined homomorphism.

For (i), note that if e, is replaced by e;d in a preferred base, this
describes 7(Nrdd), and a, is multiplied by c(d)d=Nrdd. For (ii), it
suffices to observe that §(0)=IT(Nrda,)=m(0)>. And (iii) follows as the
sign of () is (— 1)", where n is the number of negative a;; if p is the number
of positive ones, p+n is the rank and p—n the signature.

This proof does not exclude the case when D is split, when (i) shows
that we have the same invariant as before. But (iii) shows that otherwise
the image of w need not lie in Nrd D* = E*. From [6] with the above we see
that in the global case, A,(D, ¢, 1) is detected by m and the signatures,
and these are related only by (iii). This is a complete description, and
implies the result for L.

After this, we return to the problem of determining the CL}, C A; and
CILX for (S, o, u) simple of type 0.

Theorem 5.5. We have the following table, for (S, a, u) of type 0.

i(mod 4) 0 1 2 3
CL3(S) 27 C, ,C 0
CA;(S) ¢ C, ®X(D) c 0

CIX(S) X (D) 0 0
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where there are exact sequences
0-,C>C-*C—>C,—0
0->ZRZ—~C—>C—0
0—X(D)—,C— @ (D)0,

and ©'(D)=0 if D is commutative, and contains © (D) as a subgroup of
index 2 otherwise.

We determine CIX (S)in (5.6) below.
Observe the appearance of the cohomology groups C,,,C of C.

Proof. We have A; (S 4)=0, hence C A,(S)=0and CL%(S)= CIX(S)=0.

Next, by inspection of [6, p. 135] or by the Galois cohomology of Sp,
CI1%(S)=0. The exact sequence F,(S) thus reduces to an isomorphism
C=CK,(S)— CA,(S). But the composite CK,(S)— CA,(S)— CK,(S)
is multiplication by 2. Putting this in F,(S), we see that CL? (S)=,C, and
that

C,=Im(CK,(S)— CA,(S))=Ker(CA,(S)— CLL(S)).

Now again by inspection, we see for S and for S, hence for the co-

kernel, that
ernel tha A, =15 ®IX (naturally).

Thus CI5(S)=C,, and if we write CIX(S)=X(D) we have CA,(S)=
C, ®X(D).

For a division ring D over any field, X (D) has order 2 or 1 according
as D is commutative or not. Thus if S=E, IX(S,) is a sum of groups of
order 2, one for each place of E, which we can identify with , EJ. Factoring
out the diagonal I£(S)=,E* now gives ,C. For if the class of an idele x
has order 2, x> =y with ye E*, we see that y is locally, hence globally a
square; say y=z>, so our class contains the idele x/z of order 2. Suppose
on the other hand S=D=E. Then

X (D)= CIK(S)=~IX(S,)~IT {+1: D split at p}.

This maps injectively to,C, which is a direct product of { +1} at all p,
modulo the diagonal: the quotient ®'(D) is a sum of {+1} at primes
where D ramifies, modulo the diagonal. This contains an obvious
isomorph of O (D) as a subgroup of index 2.

Finally, CL%(S)=Z/2Z by the concluding result of [6], or by the
Galois cohomology of Spin. If we now define C = C4,(S), our remaining
exact sequence is given by F5(S).

We now investigate F,(S) which, in view of the splitting of CA,(S),
we can replace by

0 CIX(S)— CK,(S)—> CAy(S)— CIK(S)—0.
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Since the composite C=CK,(S)— CA,(S)— C is multiplication by 2,
7 induces a map
T0: ,C > Z2Z=CL}(S)=Ker(CA,(S)— C),

which we propose to determine. Now for any localisation S; of § (in-
cluding infinite primes) we have a commutative diagram

{1} =LE; —=1I5(5))

.

2 — CLAS()(S)Q

so it suffices to determine the 7, . But since the image of A,(S;) — K,(S,)
is isomorphic to IX(S,), hence nontrivial if and only if D splits L, we see
that t;, =0 if and only if D, is split.

Hence, (as it must) 7, annihilates the subgroup X(D) of classes of
elements =1 at spots where D ramifies. On the quotient ' (D), the kernel
is the set of classes with an even number of components — 1, viz @ (D).
This, with (5.2), Corollary, gives a computation of Ker (L% (S)— L% (S ).
Also, 1o=0<> D=E: in the other cases, the cokernel CIX of 7 is =~ C,,
but in the commutative case, we have an extension of Z/2Z by C,. We
can determine the extension by local considerations, as in the above
calculation of 7 (similarly we can determine C).

Addendum 5.6. Let (S, o, u) have type 0. There is an epimorphism
CIX (S)— C, with kernel of order 1 (type OD ) or 2 (type 0K ).

Our results are particularly neat for CIL(S): this is of exponent 2,
and depends only on the centre of S. The statements for CIX(S) could
probably be simplified by using relative groups: in the exact sequence

0 I5(S) — L (S4) —" L (S4, ) 2o L5 (S) - LS,

the image of a is X (D), the image of 8 is @ (D). Presumably IX(S,,S)
could be identified with

Kert: ,C— CI5(S).

It hardly seems worth doing this, however. There are no relative A
groups: the A; belong to KU theory, and the relative KU groups fit
in a rather different exact sequence.

To complete our results we should describe, with respect to the
invariants listed, the epimorphisms F(S,)— CF(S). This is not very
difficult, and we leave it to the reader: in most cases, it involves using
the discriminant (spinor norm, Pfaffian). The above is already more than
adequate for the applications we have in mind.

18 Inventiones math, Vol 23
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