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On the Classification of Hermitian Forms
V. Global Rings

C.T.C.Wall (Liverpool)

Introduction

The first half of this paper gives a reformulation of the standard
number-theoretic technique for classifying forms over rings of algebraic
integers (see [24] for the unitary case) to apply in the generality we require
for integer group rings of finite groups. This technique consists essentially
of using the strong approximation theorem for algebraic groups to pass
from the local classification to the global, thus reducing the problem to a
comparatively easy calculation over complete semilocal rings [26]. It
can be axiomatised, and a convenient form of the axioms (cf. Sullivan [21])
groups together the completions at finite primes, thus giving the square

Z—Q

|

Z ——— @ (=finite adeles)

Although we point out that our methods yield useful unstable results,
the main theorems are formulated in terms of groups K, and K, of
categories of hermitian forms, or more precisely in terms of algebraic
L-theory. The definitions are reproduced in [27] and again below, but
the reader may prefer to refer to [28], which gives an exposition of the
foundational concepts: the alternative account [19] uses a slightly
different notation.

Our main result (6.6) is as follows. Let (R, ,u) be an antistructure
(i.e. essentially a ring with anti-automorphism) such that R is finitely
generated as Z-module and S=R®Q@Q is semisimple. Write ﬁzR@i,
S=R®Q.

Use X to denote L groups with K, (5) as value group. Then we have
a long exact sequence

L (8) - EXR) - (R ®L(S) - L (S).....

The technique mentioned above ]e?ds to a proof of exactness of the part
of the sequence from L% (R) to L} (S): this may be regarded as a modified
version of the “Hasse principle”, which it replaces with advantage, since
18*
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the sequence is always exact: the principle holds when the map L!(S) -
L¥(R) is zero. The L-theoretic notation has the further advantage of
suggesting the extension to higher values of i, which is invaluable for
calculations.

These arguments admit some immediate generalisations. First, we
can consider the “function field” type of local ring, with Z replaced
throughout by IF, [¢], a polynomial ring over a finite field of odd charac-
teristic (some, but not all our results persist for p even). Second, we can
replace Z by any localisation, at primes pen. These primes can then be
omitted in forming the products R and S. One can also replace Z by the
ring I of integers in an algebraic number field: this does not increase the
class of rings R in the original version, but does in the localised case.
In all these cases, the arguments of this paper remain valid almost
without change. We shall not spell out the details of such alterations:
they would confuse the exposition, and the interested reader can supply
them for himself. Moreover, Mr. Ranicki has communicated to the author
a remarkable argument giving a sweeping generalisation of our main
exact sequence (though not of our unstable results): this depends on more
advanced algebraic L-theory.

Here is a more detailed description of the contents of the paper. We
begin with a discussion of pullback categories in abstracto, quote an
exact sequence of Bass [3], and formulate a list of seven axioms which
imply, as well as this, results of classification, stability and cancellation
of objects in the pullback category: results of standard type, but which
gain in clarity from this approach.

The next three sections are devoted to verifying these axioms for the
categories Z 2 and 42 of projective, quadratic and based quadratic
modules over R, S, R and S. In § 2, we recall definitions, and show that
various diagrams are pullbacks: this property holds rather generally. In
§ 3, we verify the axioms for categories # and 2, and it is here that the
strong approximation theorem is needed at a crucial point. In §4 we
consider based quadratic modules, and give the application to L-theory.

In all, several exact sequences are obtained knowledge of which, in
combination with the unstable results, implies the answers to such
questions as: which projective R-modules admit nonsingular forms?
Which forms are in the same genus as a form on a free module? Which
forms over S contain nonsingular forms over R? What are the dis-
criminants of nonsingular forms over R? How do different classifications
of types of nonsingular form compare? When does a form contain
another as direct summand?

To define the boundary map L% (S) - LX(R) and show that it fits into
the exact sequence needs new ideas, not found in the classical literature,
and here some acknowledgements are in order. Work of Petrie [17] and
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Passmann and Petrie [16] showed how to use effectively the linking form
method of [22] for odd dimensional surgery problems. Then Connolly [9]
and Gough [11] studied when one could do surgery to get a rational
homotopy equivalence (and thus reduce to a linking form problem).
According to [22], surgery is possible if one can construct an (integral)
skew-hermitian form with certain properties. It is natural to assume
this possible locally at each prime, and try and fit together. Now we can
change our local forms by adding something unimodular, and it is
sufficient to fit the forms rationally, as we then have a lattice in the result.
The obstruction is thus an element of the cokernel of

Ly(R)®L,(S)— L, (S),

represented by a (singular but nondegenerate) form over R. There is a
proof along these lines, using linking numbers, but the version below
using formations involves fewer new concepts. We recall basic results on
formationsin § 5 and prove a pullback theorem, giving a bijection between
S-split formations over R and S-split formations over R. The proof of
(6.6) is then completed in § 6.

Finally in § 7 we reformulate our main exact sequence, and show that
L¥(R)— 5(R®IR) has finite kernel and cokernel. The cokernel has
exponent 2, and the torsion subgroup of L¥(R) exponent dividing 8.
Corresponding results then also hold for surgery obstruction groups:
these will be discussed in another paper.

§ 1. Abstract Theory

Given categories and functors # - 25 %, the fibre product
(pullback) of F and G is [3, p. 358] the category ./ whose objects are
triples (B, C, ¢) with B, C objects of 4, € respectively and ¢: F(B) — G(C)
an isomorphism. A morphism (B, C, ¢)— (B, C', ¢) in ./ is a pair (p, )
where §: B— B', y: C— C’ are morphisms in 4, % respectively such that
¢’ o F(B)=G(y)o ¢, i.e. such that diagram (1) commutes

F(B)—2%-— G(C)

Gml (1)

F(B)—%— G(C)

We also say that the diagram
a9 P

F(B)

F

d 2)

¢ —5 g
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where F' and G’ are the obvious forgetful functors, and y the natural
equivalence FG'— GF’, is a fibre product diagram, or that it is Cartesian.
It is not essential that .o be set theoretically as above: any equivalent
category will do. In order to recognise such diagrams we have

Lemma 1.1. A homotopy commutative square (2) is a fibre product
diagram if and only if

(A1) Given objects B, C of #B,% and an isomorphism ¢: F(B)— G(C),
there exist an object A of </ and isomorphisms ff: G'(A)— B, y: F'(4)— C
such that ¢o F(B)=G(y)o iy (A).

(A2) Given objects A, A" of o/ and morphisms B: G'(4)— G'(4'),
y: F'(A)— F'(A") with y (A")oF (B)=G(y)ey (A), there is one and only one
morphism o: A— A’ with G' ()=, F'(2)=7.

Proof. Let & denote the fibre product of F and G as defined above.
We define a functor H: o/ —& by H(A)=(G'(A), F'(4),¥(A4)), H(x)=
(G'(@), F'()). Then (A1) above shows that for any object S of & there is
an object 4 of o/ and an isomorphism (f,y): H(4A)— S; and (A 2) shows
that if A, A’ are objects of .o/, then H induces a bijection Hom, (4, 4') —
Hom (H(A), H(4'). Hence H is an equivalence of categories.
From now on, we will assume that we have a fibre product diagram (2).
We define two equivalence relations on objects of oZ. Objects 4, A" are
said to be in the same (isomorphism) class if there is an .o/-isomorphism
A— A', and in the same genus if we just have a #-isomorphism G'(A4)—
G'(4’) and a ¥-isomorphism F'(4)— F'(A’). Clearly objects in the same
class are in the same genus; we next describe the classes in a genus.
Denote (for# =.o/, #,% or 2) by Aut(A4, %) the group of #-automor-
phisms of the image of 4 inZ (i.e. A, G'(4), F'(4) or GF'(4)), and write
Aut'(4, 4)=G(Aut(4,%)) and

Aut' (4, B)= (A)o F(Aut(A, B))oy (4)~"

for the image subgroups of Aut(4, 2).

Lemma 1.2. There is a natural bijection between the set of classes in the
genus of A and the set of double cosets in Aut(A4,2) of the images
Aut'(A, B), Aut'(4,%).

Proof. Let A, be in the genus of A. Then we have isomorphisms
Pr: G'(A)—>G'(4), i F(A)—F(Ay:
their images in 2 are isomorphisms. We let 4, correspond to

Y (A) F(B) ™" ¢ (4) ™" Glp)eAut(4, 2).
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Suppose A, (with similar notation) is in the class of A; let a: A, — A,
be an isomorphism. Then

B=p;"'G(a) pyeAut(4,28), y=y;'F(@)y,€Aut(4,%),
and so

Y(A) F(B) ™ (4D GO =Y (A F(B) ' FG' (@) 'Y(A,)"' GF (@) G(y)
=Y(A)FB) " F(B) " ¥(4)7'G(y,) G(2)

is in the same double coset as y(4) F(8,) ' (A4,)" ' G(y,). Thus we do
have a map of the sets indicated.

Conversely, given A, in the genus of A, if it does determine the same
double coset as 4, then (3) holds for suitable f and y. Hence

Y(A) FB BB =Gy vy DY (Ay).

By Lemma 1.1 (ii), there exists a: 4, — A, with G'(x)=p,887",
F'(x)=7v,77;". The same argument gives us an o~ ', and so shows that
o is an isomorphism. So our map is injective.

Finally, given any 6€ Aut(4, ), by Lemma 1.1(i) there exist an object
A, of .o/ and isomorphisms f,: G'(4)— G'(4,), y,: F'(A)— F'(4,) such
that 5=y (4) F(B,)~ 'y (A4,)” ' G(y,). Thus the correspondence is surjective.

It is inconvenient to compute double cosets: for practical computa-
tion one needs something simpler. Moreover, we do not want to have a
separate computation for each genus. Fortunately, the cases of interest
to us have more structure.

(€)

(A3) The categories in (2) are categories with product in the sense of
[3, Chapter VII, § 1], and the functors are product-preserving functors.

We are now aiming at the exact sequence of [3, Theorem 4.3]. How-
ever, our categories satisfy somewhat stronger stability conditions then
are necessary to obtain this sequence: as these are no harder to check
than Bass’ axioms, and have further consequences, we present a modified
version. We need some condition of cofinality: the following certainly
implies that (F, G) is a cofinal pair of functors [3, p. 360].

(A4) There is a cofinal sequence {A,} of objects of </ whose images in
B, €, D are cofinal in these categories.

Finally we must include some version of Bass’ “ E-surjectivity ”. This
is, indeed, the crux of the whole business as far as establishing the exact
sequence for computing K,(s/) is concerned, as can be seen from
Lemma 1.2.

For A4 an object of .o7 andF= .o/, B, € or 2 we have the natural map

p(A, F): Aut(4, F)— K,(F)
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with kernel E Aut(A, %), say. We call A stable if p(4, F) is surjective
for#=%,% and & (but not necessarily for .o7). It is clear that if 4 is
stable, so is 4 @A’ for any A". Also, if 4 is stable, so is anything in the
same genus.

(A5) of contains a stable object.
We call 4 good if

E Aut'(4, %) - E Aut (A, 6)=E Aut(4, 9),

and very good if A @A is good for all 4. Good objects are “usually”
very good, but the trivial object may also be good. If 4 is stable and A’
is very good, then A @A’ is both. Note that by the product X - Y of two
subsets of a group, we mean {x y: xe X and yeY}.

(A 6) o contains a very good object.

We recall that on [3, p. 360] Bass defines the concept of E-surjectivity.
The condition translates into our notation as follows: For any object 4
of o7 and element ¢ in the commutator subgroup of Aut(FG’ 4), we can
find an object A" of .7, and elements ¢,, ¢, in the commutator subgroups
of Aut G'(4 @A), Aut F' (4 @ A’) respectively with

e@=y(ADA)Fe, Yy (ADA) ' Ge,. (%)

The main difference of this from (A6) is the change in emphasis from
E Aut to commutator subgroups. However, by definition of K, #, we
see that for any object X of # and (e Aut X we have (€ E Aut X if and
only if, for some object X' of #, £ @1 lies in the commutator subgroup of
Aut(X ®X'). Here we can of course choose X' to belong to a preassigned
cofinal sequence of objects. Hence suppose A4, ¢ as above. If A" is very good,
we have (), but with ;e EAut’ (4 ®A', #), ¢,e EAut’ (4 ®A’, €). Thus
for n sufficiently large, ¢, belongs to the commutator subgroup of
Aut G'(4A @A’ @A,); similarly for ¢,. This proves E-surjectivity.
Hence by [3, Chapter VII, Theorem 4.3], we have

Theorem 1.3. If diagram (2) satisfies Axioms (A1)-(A6), there is a
canonical exact sequence

K, (Z) > K,(B) DK,(%) — K(Z)— Ko(£) > Ko(B) DK (%) — Ko (D).

We can, however, go further and classify certain objects up to iso-
morphism. For this we need one further axiom (restrictive enough in
principle, but true for our cases).

(A7) If F=A,%€ or D, cancellation holds in F —i.e. two objects of F
determining the same element of K ,(¥) are isomorphic.
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Throughout this paper, if & is a category with product, we shall
write k(&) for the additive semigroup of isomorphism classes of objects
of #. There is a natural homomorphism of k(%) to its universal group
Ky (F): (A7) states that this is injective if =4, % or 9. One cannot
expect it to be surjective. An element of K (%) is called positive if it is in
the image of k(). Write G=Im(K(2)— K,(«/))=Ker(K,(s)—
K (#) ®K (%)), and let k ,(/) denote the subset of k(.«7) corresponding
to objects in the genus of A. By subtracting the class of 4, we obtain a map
Pa k(L) G

Theorem 1.4. (i) An element of K,(<f) whose images in Ky(#) and
K, (¥) are positive differs by an element of G from a positive element.

(i) Two objects of .o are in the same genus iff their classes in K, (%)
and K (%) coincide, hence iff their classes in Ko (<) differ by an element
of G.

(1) If A is stable, ¢ 4 is surjective.

(iv) If A is good and stable, ¢ , is bijective.

Corollary (Cancellation). If A is good and stable and A @A, =A, D A,,
then A= A,.

For by (ii)) A and A4, are in the same genus; then by (iv) they are
isomorphic.

Corollary (Stability). Let A, A, be such that the image of A, in %
(resp. %) is a summand of the image of A. Then there is an object A, of </
with A; @A, in the genus of A. If A, is stable, and A is good we can choose
A BPA,=A.

The first statement follows from (i) and the characterisation of genus
in (ii). If 4, is stable, by (iii) we can find A}, so that A; @4, has the same
class as 4 in K, (/); the result then follows by (iv), since 4 is also stable
(by an earlier remark).

Proof of Theorem 1.4.(1)) The images in K (%) and K (%) are positive,
so we have objects B and C; their images in K,(Z) coincide so by (A7)
(for 2), B and C become isomorphic in . By (A1) we obtain an object
A whose image in K, (%) @K, (%) coincides with that of the given class.

(i) If A4, A’ are in the same genus then by definition their images in #
and in 4 are isomorphic. Conversely, if they determine the same element
of Ky (#) DK, (%) then by (A7) (for # and %), their images in 4 and in
% are isomorphic, i.e. they are in the same genus.

(iii) Clearly ¢, is closely related to the bijection of Lemma 1.2. If A
is stable, Aut(4, 2) maps onto K,(2) so the set k,(.27) of isomorphism
classes maps onto the image G of K,(2).
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(iv) By Lemma 1.2 classes in the genus of 4 correspond to double
cosets; if A is good, we can factor out EAut(4, 2) (and what is left is
abelian), so they correspond to elements of the cokernel of

Aut(A4, ) DAut(A, ¥)— K, (D).
If A is stable, this coincides with the cokernel of
K, (#) ®K,(¥) — K,(2),

i.e. with G.

These arguments yield fairly good stability results for objects, but
not for morphisms: such results appear to lie deeper. Nevertheless it is
interesting to ask whether from the above or similar axioms one can
conclude that for certain objects A of o7, Aut(4, .2/) maps onto K, (/)
or even that sometimes E Aut(A4, .«/) is the commutator subgroup of
Aut(4, ), or is perfect. An easier problem, perhaps, is to decide whether
good, stable objects are always very good.

§ 2. Pullback Categories of Projective and Quadratic Modules

We begin by introducing the rings in which we are interested, and
some appropriate notation. Let Z denote the ring of integers; Z its
profinite completion —i.e. the inverse limit of the finite cyclic quotients.
This is the direct product of the pro-p-rings Z of p-adic integers. Write
Q for the rationals, ® = Q ® Z and (Q =Q ®Z The ring @ is the “finite”
part of the ring @, of adéles: the mflmte part, i.e. R, the field of real
numbers, will be used later. Qp is the usual field of p-adic numbers.
@ is not the direct pIoduct of the Qp, but rather the local product with
respect to subrings Z,: only a finite number of components may have
non-trivial denominator Using the inverse limit topology, we can regard
Z and each Z as a compact topological ring, and z=[]z » topologically.
We also give Q resp. (Q the topology in which Z resp. Z is an open
subring.

R will be a ring whose underlying additive group is finitely generated.
We label its tensor products (over Z) with the above rings systematically:

R(=R®Z) R=R®Z R,=RQ®Z,
S=R®Q S=R®Q §,=R®Q,
and we will use corresgondingAnotatiAon forA modules; e.g. if L is an
R-module, we will write L= L®Z=]]L,, an R-module, and M=L®Q,
an S-module. Later on we will also need the real completion T=R® R.

Similar comments to those above apply here. S is of course an algebra
over Q. In the traditional terminology (at least if R is torsion free) R is
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an order in S, L a lattice in M. There are several obvious inclusion re-
lations among the above, and they acquire topologies with corresponding
properties. Our guiding philosophy is to reduce questions about R to
those about the other rings, which have simpler ring-theoretic properties
e.g. S, §p are algebras over fields; R,, is a complete semi-local ring.

For any ring P, we write .4 (P) for the category of finitely generated
right P-modules; 2 (P) for the full subcategory of projective modules.
These are categories-with-product. A ring morphism f: P — Q induces
a product-preserving functor 4 (P)— #(Q) by M+ M ®,Q: similarly
for 2. To simplify the statements of our next results, we will say that a
covariant functor % from rings to categories is Cartesian for (R, S; R, S)
if the diagram

F(R)—— F(S)

F((R)——F(S)
is a fibre product diagram.
Theorem 2.1. The functors M, P are Cartesian for (R, S: R, S).
Lemma 2.2. .# is Cartesian for (Z,Q:Z, Q).

Proof. We must check (A1) and (A2). Note for either that a finitely
generated abelian group (=Z-module) splits (not naturally) as direct
sum of the torsion subgroup T (which is finite) and a free abelian group F.
Tensoring with Z (=profinite completion) glves T@®F, and with Q
gives F®Q. So T can be recovered from .#(Z) already; similarly for
morphisms. We can thus assume T=0 from now on.

Now (A2) follows easily, for given finitely generated free Z-modules
L,L and morph1sms p: L®Q—+L’®Q v LQZ—->LKQZ—or equiv-
alently, Vp: L®Z — L ®Z such that for each p, f and y, coincide over
Ql,, the ex1stence of y, shows that the matrix of § expressed via bases
of L, L’ has denominators prime to p: this holds for all p, so we have an
integer matrix, and f induces a: L— L, clearly unique and inducing 7.

Now suppose given a finitely generated torsion free Z-module L, a
Q-module M, and an isomorphism

5 LeQ->MRQ.
M is free of rank n; the existence of 6 shows that L has constant rank,
hence is free. Now for any xeQ, we can find a non-zero integer k with

k xeZ. The same follows for matrices over @ It follows that if e, , ... ¢,
is a basis of M, spanning the Z-submodule L; of M ® Q), then for some

integer k, kL,co(Lyck '(L,).
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Thus L=4§(L)n M is commensurable with L, ~ M, and so is a free abelian
group which spans M. To complete the verification of (A1) it will suffice

to show that LoZ=50),
Clearly L®Z < (L), and by the above,
S(L)ck ™ (LOZ).
Let xeL, so kd(x)e LQZ. Choose ue L, ve LQZ such that

ko(x)=u+kvo.
Then
k~'u=0(x)—ve(L®Q)nS(L)=L,
o)
d(x)=k'u+veLQRZ.

This completes the proof.

Proof of Theorem 2.1. The first part of the Theorem follows by
regarding .#(R), .#(S) etc. as the category of objects of .# (Z), # (Q)
etc. with extra structure given by a ring homomorphism

R—End M.

For e.g. to verify (A1), suppose given an R-module L, an S-module M
and an S-isomorphism

LeQ=LeS->M®5=M®Q

then by Lemma 2.2 we obtain a group L, defined as the pullback of
L— M®® «— M, with LRZ=L, L® Q=M. But a pullback of R-module
maps is again an R-module map.

The second part now follows from the well-known result [3, I11, 6.6]
that a finitely generated (in fact, presented) R-module L is projective iff
all localisations iff all completions L®2p and M are.

Remarks. (i) One can reformulate the proof using the adjoint functors
constructed by Bass [3, p. 483]. This does not give any real simplification,
however.

(i) By passage to the limit, it is now easy to obtain a pullback theorem
for categories of arbitrary (not necessarily finitely generated) modules.
Compare Fakhruddin [10].

We next consider quadratic modules: our basic definitions here were
expounded in [23] and [28]. Let R be a ring, « an anti-automorphism
and u a unit of R such that u*=u~" and (x**=uxu~" for all xeR: we
call (R, o, u) an antistructure. If M, N are (right) R-modules, we write
S,(M, N) for the additive group of R-sesquilinear (with respect to «)
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maps M x N — R, S,(M)=S,(M, M). We define

1,: S,(M)—S,(M)
by
T, ¢ (m, n)=¢(n, mf u

and observe that T?=1. We then define the groups of reflexive and of
quadratic forms on M by

R, (M)=Ker (1 -T,),
0, .(M)=Coker(1—T,).
Note that multiplying by 1+ T, gives a “bilinearisation” map
b: Q,.M)—R, (M),

so that any quadratic form has an “underlying” reflexive (i.e., usually,
hermitian) form. A form ¢ is nonsingular if x> ¢ (x,.) induces an iso-
morphism

A¢: M —Hompg(M, R);

a quadratic form is called nonsingular if its underlying reflexive form is so.

As an example, for any M we can form the dual module M*=
Hompg (M, R) (with R-module structure induced using «) and define H (M)
to be H ®M* with quadratic form defined as the equivalence class of

d((m, ), (m', f1))=f(m).

If M is finitely generated projective, this is nonsingular.

We write #°(R, a, u) for the category whose objects are pairs (M, ¢)
with M a finitely generated R-module and ¢eR, ,(M). A morphism
(M, ¢1) — (M, ¢) isa homomorphism f: M, —» M, with f*¢,=¢,, 1.e.

b (f(m), f(n) =, (m,n) forall m,neM,.

Similarly write 2°(R,a,u) for the category of pairs (M, q) with M a
finitely generated R-module, qeQ, ,(M). Here, a morphism (M|, ¢;) —
(M,, q,) is a homomorphism f: M; — M, such that for some (hence any)
representatives ¢, €S,(M,) of ¢, ¢p,€S,(M,) of q,, there exists yeS,(M,)

ith
. I* ¢ —d=(1-T) 7.

The morphisms in either category will be referred to as isometries. An
object (M, q) of 2°(R, o, u) with M projective is called a quadratic module
over (R, a, u).

We shall be primarily concerned with the full subcategories #(R, o, u),
2(R, o, u) of the above whose objects are those pairs (M, ¢) resp. (M, q)
with M a finitely generated projective R-module and ¢ resp. g nonsingular.
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Objects of the latter are called nonsingular quadratic modules. When
there is no danger of confusion, we shall frequently omit reference to (o, u).

Given a morphism (R, o, u;) —%>(R,,,,u,)—i.c. a ring homo-
morphism ¢: R, — R, with ¢ooy=0a,0¢ and ¢(u)=u,—there are
natural induced functors of the categories #, 2. Further, these are cate-
gories with product (viz., orthogonal direct sum), and such functors
preserve the product.

We now return to the square considered above. Given an anti-
structure (R, o, u) then tensoring with Z etc. provides anti-automorphisms
and units for the rings R etc.; we will denote them indiscriminately by
o and u.

Lemma 2.3. The functors #°, 2°, # and 2 are Cartesian for (R, S; R,S).
Proof. Since by Theorem 2.1 we have a fibre product diagram of

categories ./, it suffices to consider structures on a given R-module L.
Now the exact sequence of additive groups

0-Z->ZOQ->Q—0

(here all the maps, except for a sign in @ — @, are the natural inclusions)
induces an exact sequence

0—3S,(L)—S,(L)®S,(M)—S,(M)—0

where L=L® R, etc. Exactness is easy to show since Lis finitely generated
as abelian group, hence so is S,(L): the rest are tensor products. Now
T, induces an endomorphism of this sequence. We can thus apply the
“snake lemma” (see e.g. [7, 1.4]) to the diagram

0 > S, (L) » S (L)® S, (M) ——— S, (M) ———0
‘1—‘& 1-Ta 1-T.
0 5. (L) S, (1) S, (M) — S, (}) ———0

and obtain an exact sequence

0— Ry(L)— Ry (L) @R,y (M) = Ry, (M)
e Q(a,u) (L) g Q(a,u) (L) @Q(a,u) (M) i Q(a,u) (M) —0.

It remains to show that §=0. But this is clear since R, ,,(M) is a rational
vector space, whereas Q, , (L) is a finitely generated group.

This completes the proof for 2° and 2°. It follows from Theorem 2.1
that we still have pullback diagrams if all modules are required to be
projective. Finally, the same goes for nonsingularity since this means
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that a certain map L — L* is an isomorphism, and again by Theorem 2.1
this holds over R if it does so over R and S.

In respect of this proof we observe, first that the exact sequence
represents the strong approximation theorem for the additive group;
and second, that this is where the notion in [24] of arithmetic functor is
subsumed in the present account.

§ 3. Verification of the Axioms

We now show that with suitable further restrictions, the pullback
diagrams constructed in § 2 satisfy the remaining axioms of § 1. In fact, we
now concentrate on the functors 2 and 2: even (A 4) fails for the others,
though one could also treat similarly # and the intermediate generalisa-
tions considered by Bak [1] and Bass [4]. Our result will be the following.

Theorem 3.1. Let R be a ring (resp. (R,o,u) an antistructure) with
additive group R* finitely generated. Write R=R®Z, S=R®Q®, S=
R® Q. Then the diagram

P(R) — P(S) 2(R)———> 2(S)
} |
“: l resp. j
@(R) —2(8) 2(R)—— 2(5)

satisfies (A1)~(A4) and (A7). The object R of ?(R) resp. H(R) of 2(R) is
stable, so (A5) holds.

If further S is semisimple (as algebra over Q), then the object R @R of
P(R) resp. H(R @R) of 2(R) is very good, so (A6) also holds.

One can give more precise statements about which objects are stable
or good —for example, our proof shows that any object of 2(R), of
rank =3, with a hyperbolic summand, is good — but it would clutter
up the exposition unnecessarily to discuss these here; besides, my
results are still not complete on this point.

Proof. Let us first deal with the easy points. Axioms (A1) and (A2)
were verified in the preceding paragraph. It is clear from the definitions
that we have categories with product and product-preserving functors,
so (A 3) holds. Now any projective module is a direct summand of a free
module, so (A4) holds for £ with 4,=R". And by [23, Theorem 3], for
any ring A any object of 2(A4) is a summand of a hyperbolic object H(P),
and hence of some H(A"). Hence (A 4) also holds for 2, taking 4,,= H(R").

Next, we discuss cancellation and stability. Cancellation is well-
known over division rings, hence over semisimple rings S, and was verified
for #(R) and 2(5) in [27, 2.2i] and for 2(R) and 2(S) in [27, 3.3i]; thus
(A7) holds. Also it is well known that for S semisimple, Aut S maps onto
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K, 2(S) and Aut H(S) onto K, 2(S)—for a direct proof of the latter see,
for example, [28, Theorem 5]. The corresponding results for 2(R) and
2(S) were shown in [27, 2.2iii] and for 2(R) and 2(5) in [27, 3.3iii].
Hence R is stable in 2(R) and H(R) in 2(R).

It remains to discuss goodness. In outline, the idea of the proof is to
show that if L is a suitable quadratic module over R, L=L®Z,M=L®Q
and M=L®®, then the image of E Aut(L) is an open subgroup of
E Aut(M), and E Aut(M) is dense, which will clearly imply the desired
result. We proceed to details. To save discussion of cases, observe that
the result for 2 is a special case of that for 2 —taking for R the sum of
anti-isomorphic rings interchanged by o. It will thus suffice to discuss 2.

Note that for arguments concerning S we can tolerate a finite number
of exceptional primes. Since R™ is finitely generated, it has p-torsion for
only finitely many p, which may be largerly ignored below.

The automorphism group Aut(M) of a quadratic module M over the
semisimple ring S is a product of algebraic groups of types GL, U,0 or
Sp. Assume that M has a hyperbolic summand isomorphic to H(R).
Then (e.g. by [28, Theorem 5]) this product maps onto K, 2(S) and —
by [25, § 2] —the kernel E Aut(M) is the corresponding product of groups
of types SL,SU,Q and Sp, where Q denotes the image of Spin — SO
(the kernel has order 2).

Now all of SL,SU, Spin and Sp are simple algebraic groups with
the following low-dimensional exceptions:

SL,, Spin, are trivial over a commutative field (but the latter is
excluded by the hypothesis of a hyperbolic summand),

Spin, over a commutative field, Spin, over a quaternion ring (with M
hyperbolic in each case) are products of two simple groups (this will not
affect our argument),

Spin, over a commutative field, Spin; over a quaternion ring are
abelian (the latter is again excluded by the hyperbolic summand: it is
mainly to exclude the former that we restricted the statement to the case:
H(R?) a summand).

Thus at least in each case we consider, £ Aut(M) is a product of
simple, simply-connected algebraic groups, modulo replacing some
components Spin by Q. The corresponding result now follows over
each §p.

Hence, as in [26, Theorem 9], the commutator subgroup of an open
subgroup of E APt(Mp) is open: in particular, the image of E Aut(ip) is
open in E Aut(M,). But by [26, Lemma 13], for almost all p the map
K, 2(R,)— K, 2(S,) is injective, so for L a lattice in M and almost all p,

E Aut'(L,)=Aut'(L,)nE Aut(M,).
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It now follows from the definition of restricted product topology that
E Aut'(L)=T], E Aut'(L,) is an open subgroup of E Aut(M).

For G a simple, simply-connected algebraic group over @, the strong
approximation theorem [13] assures us that G(Q) is dense in G(®Q),
provided that G(IR) is noncompact. Perhaps I should emphasise, since I
merely quote this, that this is the key technical point of the entire
argument: the strong approximation theorem is sophisticated, and quite
difficult to prove. Now the only compact group of type SL is SL,(H):
the group E Aut for a hyperbolic form is never compact, and only has a
compact factor for Spin, (IH). Thus we have already excluded the cases
where G is compact, so E Aut(M) is indeed dense in E Aut(M) in the
stated cases. This concludes the proof.

We will not reformulate the cancellation and stability results of § 1 in
this setting, since little is to be gained by doing so (the results are not
new, only the proofs) but the following seems worth explicit mention.

Corollary 3.2. Under the conditions of the theorem, there are exact
sequences

K,2(R)—K,2R)®K,?(S) > K,2?(5)— K,2(R)—
— Ko 2R)BK,2(S)— K, 2(5)
K, 2(R)—>K,;2(R)®K,2(S) > K,2(8) - K,2(R) -

Ko 2(R) ®K,2(S) — Ko 2(3).

Compare also Bak-Scharlau [2].

§ 4. Based Modules

We now extend the result to cover based modules. This extension may
appear trivial, but based quadratic modules fit the terminology of [28].
However, the real reason for introducing bases is that this seems to be
the only version of our method that leads to a classification of forms on
free (as opposed to projective) modules.

A based module is a free module with an equivalence class of free bases,
two bases being equivalent if the matrix representing change of basis has
determinant 1 in K, (S). Note that we use K, (S) as value group for each
of the rings R, S, R, S. More generally, following Milnor [15], we define
a stably based R-module to be a module L with, for some r, a class of
bases on L @R". Note that there is a bijection between stable bases on L
and oneson L ®R. Note also that though L must be projective, it need not
be free.

Write 2(R) (similarly R, S, S) for the category of stably based R-
modules and based isomorphisms.

19 Inventiones math., Vol 23
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Lemma 4.1. The functor 4 is Cartesian for (R, S; R, 8). Moreover, if
a stably based R-module is good for 2 the stable base is equivalent to a base.

Proof. Since cancellation holds in #(S), Z(R) and 2(5) any stably
based module is free and (if nontrivial) stable (for £), so any stable base
is equivalent to a base. Now for (A1) we know by Theorem 2.1 how to
construct L, but wish to find a stable base for L. Adding R if necessary,
we can suppose L good. But then the matrix in SL,(S) representing ¢ is
the product of such matrices over R, S; thus adjusting bases of L, M
within their equivalence classes we can suppose ¢ the identity. It is now
obvious that there is a base (not just a stable base) for L inducing the given
bases of L, M. For (A 2), by Theorem 2.1 we get an isomorphism in 2(R);
it is based (by definition) since it becomes so in 2(5).

Now—as in [28]—we write Z2(R, o, u) etc. for the category of
(stably) based nonsingular quadratic modules and based isometries, and
Z (R, a, u) for the full subcategory of forms (of even rank) with discrimi-
nant. Note that the discriminant of [28] is only defined for forms of
even rank: it is 1 for hyperbolic forms with the standard basis.

Theorem 4.2. With the hypotheses of Theorem 3.1, the conclusions apply
to # (for P) and B2, ¥ (for 2). axioms (A1)~(A6) hold. As to (A7), it
holds for % and cancellation holds for 22 and ¥ over S and S: over R,
if A, @A, =A, @A, and A, has a hyperbolic summand, then A,= A;.

Proof. We have verified the pullback axioms (A1) and (A2) for 2
and 4: they follow for 2 (each structure pulls back uniquely). (A 3)
holds: again we have categories with product. (A 4) holds by definition
for 4, taking A,= R" with the natural base. To obtain it for #.2, since the
H(R") are cofinal in 2(R) etc., it suffices to show that for any ring 4, H(A")
with the “wrong” base (say after base change with matrix M) is a sum-
mand of H(A%") with the right base. But if we add H(4") with basis
changed by M ™1, the result is as desired.

As to (AS), (A 6), it suffices to observe that being stable or good in #
resp. 42 is equivalent to (or weaker than) having the same property in 2
resp. 2, so we can use the same examples as before. The cancellation
axiom for # follows from the first sentence of the proof of (4.1). The
results concerning cancellation for 2 were obtained in [27, Lemma 4.2].

Finally, the result for . follows trivially from that for #2, for since
determinants were defined in K, (5), Z(R), £(S), #(R) are the full sub-
categories defined as mapping to #(3).

Corollary. We have an exact sequence

K, 2(R)—»K, LR ®K, £(S)—>K, Z(8)— K, L(R)—
— Ky L R)BKy 2L (S)— Ky Z(5).
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‘We now translate this into a sequence of L-groups. For A=R,R,S
or § we write X = X (4)=Ker(K,(4) — K, (S)) (for the sake of uniformity)
and study L*(4). Then we have

LX(A)=K,Z(A)=Ker(rk: Ko.Z(4)—Z)
and

L} (A)=Coker(H: X(4)— K, £ (4)).
Here, of course, rk denotes the rank homomorphism.

Theorem 4.3. With hypotheses as above, we have an exact sequence
L{(R)— L{(R) ®LX(S) - L} (8) > L§ (R)— L (R) DL (S) — L (3).

Proof. We begin with the exact sequence of the above corollary. It is
trivial to verify that exactness is not destroyed by replacing each K, £ (A4)
by the corresponding K,.Z(4)= LY (A).

Next, we have X(5)=0, by definition. Further, the exact sequence
(for 2) of (5.3) yields an exact sequence

X(R)— X(R)®X(S)—0.

Finally, diagram chasing in the following diagram, where the upper two
rows and all columns are exact, shows that the lower row is exact also.

X(R) XR)®X(S) 0

H H

|

K, Z(R)——— K, Z(R) ®K, #(S)——— K, 2(5)—— Ry Z(R)

LX(R)—— LX(R) @LX(S) IX(S) » L% (R)

0 0

This is still only an interim result. First since for any antistructure
(A, o, uy and ie Z we have by definition

Li+2(A’ a, u):L,-(A, &, _U)v

we have exact sequences as above with the suffix increased by any even
integer. We will then see in the next section how to splice these to obtain
a long exact sequence. I do not know whether the unmodified sequences
19*
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of (3.2) can be extended to long exact sequences: this is a much deeper
problem, and an affirmative answer would be very interesting.

§ 5. Formations

We begin by reviewing basic notions about formations. The term is
due to Ranicki [19, 20]: we also introduced it in [28]. A subkernel in a
quadratic module L over R is a subspace F whose identity map extends to
an isometry L— H(F). A formation is a triple (H; F, G) with F, G sub-
kernels in H. We are mainly concerned here with the based case, with
determinants in some value group V. Thus the definitions depend on the
choice of V: in this paper, we take V=K, (S). We regard F, G as objects of
#(R), H as one of #(R): the above isomorphism is to hold in #(R). We
call the formation split if H=F® G as modules, and simply split if this
holds in #(R): in the latter case, call F and G complementary. Thus a
simply split formation is isomorphic to

to (F)=(H(F); F, F¥)

for a suitable object F of #(R). To classify up to isomorphism split
formations in general, we need the determinant of this isomorphism
F @G — H with respect to the preferred bases, which we call the torsion
of the formation.

For any (R, o, —u)-quadratic module (L, §), we define its boundary
d(L, 0) to be the formation (H(L); L,I') constructed as follows. H(L) is
the (R, a, u)-quadratic hyperbolic module on L. If 6 has bilinearisation b,
with associated map f: L— L*, I' is the graph of . By [28, Lemma 2,
Corollary 1], these graphs give just the subkernels of H(L) complementary
to L*, so any subkernel (H; F, G) such that F, G have a common comple-
ment is of this shape. Observe that d(L, 0) is split if and only if 0 is non-
singular: when this is so, its torsion equals the discriminant of 0.

A formation @ = (H; F, G) defines an element of IX (R), which we can
regard (when F, G are free, hence isomorphic) as the class of an auto-
morphism of H taking F to G. We showed in [28, Lemma 8] that & ~0 if
and only if, stably, F and G have a common complement — or equivalently,
if and only if we can write

D D1y (P)=0(L, 0)

for a suitable based R-module P and based quadratic R-module (L, 0).
In particular, simply split formations and boundaries define the zero
class, and by [28, Theorem 4], L¥ (R) is isomorphic to the Grothendieck
group (under @) of formations modulo these: this is Ranicki’s definition.
Observe that a split formation need not represent 0, but its equivalence
class is determined by its torsion. Also, Ranicki shows [19] —or it follows
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at once from our definition above — that
(H; E,F)®(H; F,G)~(H; E, G).

Define the category & (R) of formations to have formations (as above)
as its objects; a morphism (H; F,G)—(H'; F',G') in & is to be an
isometry H — H' (in %) inducing isomorphisms (in #) F - F', G — G’

Lemma 5.1. With Ehe notations and hypotheses of §2, take If,(g) as
value group for R, S, R and S. Then & is Cartesian for (R, S; R, S).

Proof. We must verify (A1) and (A 2) for & For the former, suppose
given formations @, =(H,; F;, G,) over S and &,=(H,; F,, G,) over R,
and an isomorphism a: @, ®S— D, ®35. Since .# is Cartesian, (H,, H,; )
defines an object H of #(R); similarly as 4 is Cartesian we have objects
F, G of #(R) mapping into H.

Next, observe that we can pull back (H,/F,, H,/F,; o) to an object M
of 4(R) with a morphism ¢: H— M which is surjective, since it is so
locally. Thus H=Ker ¢ ©M: comparing with the above, we see that we
can identify F=Ker¢. Clearly this is an isotropic submodule, and
applying property (A2) for # shows that the induced map M — F* is an
isomorphism. Hence F (and similarly, G) is a (based) subkernel.

Finally, property (A2) for % follows at once on applying the cor-
responding property for # and for #.

It follows from this result and (1.2) that the formations in a genus
are classified by double cosets. In order to use this fact, we must compute
some automorphism groups of formations.

We begin with a split formation @ =(H; F, G). Any automorphism of
@ in # induces an automorphism o, say, of F in 4. The induced auto-
morphism of G2 F* is then «* ~1, and the effect on @ is determined. Thus

Autg (@)= Auty(F).

It follows, for example, that the formations in the genus of 7, (F) are the
7o (P) with P in the genus of F; similarly for other split formations.

Lemma 5.2. Let R=S: let ®=(H(F); F, G) be an S-split formation over
R (i.e. D®S splits). If A: (FRS)y*—(F®S) is the map whose graph is
G®S, then

Autz(P)={acAuty(F): 10: F*> Faloa* —1=0+0*u}.

Proof. Clearly Aut;(P)cAuty (@@ S)= Autyg(F®S) by the
above. To make this more explicit, if A" is the endomorphism of H(F ®S)
with 2 its only nonzero matrix component, then (1 +4’) is an isometry
fixing F®S and taking F*®S onto G®S. Hence aeAutys (F®S)
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corresponds to the automorphism (1+4) "' H(@)(1+1) of #®S, i.e.
(u, v) > (a(w)+ 2 A)—Aa* " (v), a* ' (v).

For this to preserve F, we need xe Autyg,(F). It preserves the R-sub-
module H if and only if, in addition, « A —1a*~' maps F* into F, or
equivalently, if a4 a*—4 does: it then preserves G=H N (G® S) (and is
simple on it, as it is on G® S). Finally, it induces an isometry of H, hence
an isomorphism of &, if and only if it satisfies the condition stated.

We can now prove

Proposition 5.3. Let R be as in § 3. Let @ be an S-split formation over
R, such that the torsion of ®® S is in the image of K,(S). Then there is an
S-split formation ® over R, unique up to isomorphism, with ® @ R~ .

Proof. é ®§ is split, hence isomorphic to (H (S"); s G) where G = (§’)*,
but with a different preferred base. Since the torsion is in the image of
K,(S), and GL,(S) maps onto K (S), there is a split formation ¥ = (H (5");
S, G) over S with Y¥@S~d®S. Now by (5.1) there is a pullback for-
mation @.

As to uniqueness, observe that the conditions determine the genus
of ¢, and formations in the genus are classified by double cosets
Aut P\ Aut(P®S)/Aut ¥. Further, as these formations are split,
Aut ¥=SL,(S) and Aut(®®S)=SL,(S). Now unless @, hence &, is
trivial, =2, so SL,(S) is dense in SL,(S) by the strong approximation
theorem, as in § 3. But by (5.2), if R is torsion free Aut@’ is an open
subgroup. Applying this result to R/torsion, we see that it holds generally.
For if the torsion has exponent N, a group containing all automorphisms
congruent to 1 mod K (mod torsion) contains all automorphisms
congruent to 1 mod NK. Hence there is only one class in the genus.

The above proof seems clumsy: I do not feel one should need to
invoke strong approximation here. But this is the crucial argument
which by-passes my use of linking forms in an earlier version of this
proof. Indeed, the underlying idea of the following arguments can be
regarded as follows. There is a relative group L,(S, R) which can be
computed by equivalence classes of S-split R-formations. The bijection
of (5.3) thus induces an “excision” isomorphism L, (S, R)— L, (S, R). It
now follows that there is an exact “Mayer-Vietoris” sequence. We do
not present arguments in this form, since this would involve some de-
velopment of the notion of relative group (which I prefer not just to do
ad hoc), and also there is some trouble with the equivalence relation
on S-split formations —the obvious procedure appears only to work if
R is a Frobenius algebra over Z. The reader may also prefer to regard
(5.3) as a form of E-surjectivity for the categories of formations.
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§ 6. Completion of the Proof

For any based quadratic module (M, 0) over S, we can find one, Lsay,
over R with L® S ~ M. It suffices to take any basis {e;} of M, and choose
keZ with each k0 (e;, e )eR then let L be the submodule with basis  {ke}.
If we take this as preferred basis, the induced 1somorphrsm L®S->M
is not simple, but has determinant J(k)~", where J(k) is the class of k
in K;(S) and r is the rank of M: this is at least in the image of K, (S).

We now describe our basic construction. Let (M, 0) be a based module
over § with discriminant in K,(S). Choose (L, 6) such that there is an
isometry (L, 0)®S—>(M 0) with torsion in K, (S) Take its boundary
formation 6L. Since L becomes nonsingular over S, oL is S-split, and its
torsion comes from K,(S). We then apply (5.3) to obtain a formation
@ over R: this determines an element of LX(R).

Lemma 6.1. The above construction gives a well-defined map : L (S) —
LX(R), which vanishes on the image of L% (S).

Proof. It will suffice to show that if (M, 0) comes from a form over S,
the resulting element of I} (R) vanishes. For as the construction is additive
for direct sums, if (M, 6) gave rise (by making different choices in the
construction) to x, x'e LX(R), then applying the result to (M, 0)® (M, —0),
which comes from a form over S, shows that for some y, x+y=x"+y
and so x=x". Thus ¢ is well-defined on K,.#(S), hence on K,.2(S)=
X (S).

Now as #2 is Cartesian by (4.2), if (M, 0) comes from a form over S,
then (L, 0) comes from a based form (L, 0) over R. But then (L, 0) itself
is an S-split formation with d(L, 0)Q@R=a(L,0), so ®=~d(L,0) by (5.3).
Since @ is a boundary, it represents 0 in IX (R).

Lemma 6.2. The sequence
LY (R)®LX(S) — L (8) —— L% (R) — LY (R) ®LY(S)

has order 2.

Proof. An element of L%(R) is represented as the difference of two
objects of #(R) of the same rank: say Ll,L2 We can take these in
turn for L in the basic construction. But 0L, is then simply split, and thus
pulls back to a simply split formation @;, so &; ~0.

Finally, for any @ arising from the basic construction, ?® R=~a(L,0),
so represents 0 in IX(R) and #®S is split, so its class in [X(S) depends
only on the torsion. But if we start from an element of I (S) represented
as the difference of two nonsingular quadratic modules of the same rank,
we can perform the construction with the same torsion for both, so the
resulting formations ¢ ® S are isomorphic, and have zero difference.
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The remaining two parts of exactness are more demanding. Indeed,
the next argument, a reformulation of results of Connolly [9] and Gough
[11], inspired this whole section.

Proposition 6.3. (i) Every element of Ker(L{(R)— LX(S)) can be
represented by an S-split formation .

(i) IX (8)— LX(R)— LX(R)®LX(S) is exact.

Proof. (i) Represent the element by a formation &=(H; F, G). Since
it represents 0 in LX(S), ®®S~0: thus stably, F®S and G®S have a
common complement. Adding 7, (R?") for n large enough to ®, we can
omit the “stably”.

Seek a subkernel C complementary to F with C® S complementary
(ignoring bases) to G® S. If we identify H with H(F), the complements
to F are the graphs of the ¢eQ, _,, (F*)=A4, say, and the complements
to F®S are the graphs of the ¢eQ, _,,(F*®S)=A® Q. The condition
of not being complementary (ignoring bases) to G ® S defines an algebraic
set X (over Q) in the vector space A® Q: since F® S and G® S do have
a common complement, X is a proper algebraic subset of 4A@@Q. It
follows that X cannot contain every point of the integer lattice (the
image of 4). Choose any ¢pe 4 with image not in X: then we can take
C=graph¢. But now (H; F, C) is simply split, so

b¢=(H;F,G)~H; F,C)®@(H;C,G)~(H; C,G),
which is S-split, as required.

(ii) Suppose & =(H; F, G) an S-split formation over R defining 0 in
L¥(R) ®LX(S). As before, by adding a suitable 7,(R?"), we can write
d®R=0(L,,0,), PRS=d(L,,0,). Now the (L;,0)®S=(M,, 0,) have
the same rank and the same discriminant, viz. the torsion of the split
formation ®®S=~d(M,,0,). Thus (M,, 0,)—(M,, 0,) represents an ele-
ment of I (S), whose image by ¢ is the class of @.

For the final part, we need a “glueing” theorem of Ranicki [20],
which holds over any ring.

Theorem 6.4. Suppose given quadratic modules (L, 0,), (L,,0,) and a
stable isomorphism 0(Ly, 0,)— 0(Ly, 0,). Then there exists a nonsingular
quadratic module (L, 0) such that

(i) there is an isometric embedding iy: (L, —0y) — (L, 0),

(ii) there is an isometric embedding i,: (L., 07) — (L,0), where 0} has
the same bilinearisation as 0,,

(iii) each i.(L,) is additively a direct summand, so the composite
L— L* — L} is a split epimorphism; its kernel is L, _,,

(iv) there is an isometry

(Lo, 00)®(L, 0)=H (Lo) D(Ly, 0y).
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The proof goes by expressing the hypothesis in matrix terms, writing
an explicit formula for 6 on L=L,®L¥, and then verifying each con-
clusion. The necessity of replacing 0, by 07 can be understood since
d(L,, 0,) depends only on the bilinearisation. The proof is repeated in
[29], with an example to show that replacement really is necessary.

Although the statement does not mention bases, the proof includes
the based version, and here the form (L, 0) has discriminant 1.

Lemma 6.5. The sequence
L5 (R)@ L (S) — I5(8) —— LX(R)
is exact.

Proof. Let (M,, 0,)—(M,. 0,) represent an element x of Ker §. Adding
(M,, —0,) to each if necessary, we may suppose (M, 0,) of the form
(M,,0,)®S, where 0, is defined over S. Adjusting both bases by the
same amount, we can also find quadratic modules (L, 0;) over R with
L;®S§=M,. Then as in (6.1), our construction performed on M, leads to
0 in X (R). Hence it also does on M, .

As usual, adding suitable hyperbolic modules throughout, we may
suppose the S-split formation @ over R defined by M, a boundary:
&=0(Ly,0,). But QR=09(L,,0,). Applying (64) to L,®R and L,,
we receive an object (L, 05) of #(R) and an isometry

(Lo, 00)®R@(LOs)EH(L0®R)@(Z1s 0).

Hence, tensoring with S where, as 2 is invertible, the difference between
0, and 0] disappears, an isometry

(Lo, 00)®SD(L,05)@S=H(L,®S)®(M,, 0,).
Thus x is also represented by

{L,03)—H(Ly®@R)}®@S+{(Lo, 00)®S—(M,,0,)}®S,

and here, the first term clearly comes from L% (R), the second —as the
forms have the same discriminant — from L% (S).
Assembling our results, we see that this completes the proof of

Theorem 6.6. Let (R, o, u) be an antistructure such that IheA additivg
group R is finitely generateq amj S=R®Q is semisimple. Write R=RQZ
Jfor the profinite completion, S = R® Q. Then there is a long exact sequence

L (S EN(R)— EX(R) BLY(S) - LX(S) ...,

of period 4 in i. Here, X signifies that determinants are all to be evaluated
in K(S),i.e. by Nrd.
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§ 7. Approximate Calculation

In this section we first put our results into a form more suitable for
calculation, and then make such deductions as are possible in the general
case, leaving more detailed and explicit calculation for a subsequent

paper.

We begin by recalling some results from [27]. We have the algebra S,
its completion S, T=S®R and the adele ring S,=S ®T. By [27, 2.3],
K,(S)— K,(S) is injective, so LX(S)=L3(S). We split S into simple
components or pairs of such, interchanged by o, whose types we label by
the algebraic groups of automorphisms of quadratic modules: GL, U, 0
or Sp. If S is simple with centre E, the cokernel of K,(S)— K(S,) is the
idele class group C of E. Define ,C, C, by the exact sequence

0-,C>C—2>C—C,—0.

Proposition 7.1. The map L5(S)— I5(S,) is injective. Its cokernel
CL(S) is described as follows, for S simple. For type GL or U, CL3(S)=0.
For type 0, we have i=0, Z)2Z; i=1,C,; i=2, ,C; i=3, 0; also for
CL5_,(S) of type Sp.

This is part of [27, Theorem 5.5].

Theorem 7.2. There is a long exact sequence
.CLE L (S)— LX(R) - LY (R)®L(T)— CL(S)....
Proof. We begin with the exact sequence of (6.6)
L (S) - EX(R) - X (R) ®LX(S)— LX(S) ...
where we have, as observed above,
S)=LG), LIS)=LO).
Now the natural maps
Li(R)— LY(S)=L}(S) — L(T)
induce a map of the above to the elementary exact sequence
0> B(T)=I(T)—0....
Hence the algebraic mapping cone is also exact. Since

LO)®LUT)=LES ®T)=L(S,),
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this can be written as
£, (S)— E(R)— E(R®L(S) ®L(T) — I3(S,)... .

Here the induced map L3 (S) — L3(S ) is the natural one; by [27, 5.1] it is
injective. Thus exactness is preserved if we delete I5(S), and replace
13(S,) by the cokernel, CL%(S). This gives the exact sequence of the
theorem.

In using this sequence to compute IX(R), we need to recall the
values of the other groups. CL}(S) is described in (7.1).

L3(T), for T simple, vanishes except in the following cases:

Type U: L3(€) =15 (C)x
Type0: [5(R)=4Z, [5(R)={+ 1}, IS(R)~ I5,(C)= { + 1}, I5, (H)~2Z.

L¥(R) is the direct product of the L’f(fip). We have an exact sequence
[28, Theorem 3]

LIX(R,) — IX(R,)— H'(K, (R,)/X (R,)) -

where K, (R,)/X(R,)=Im(K,R,— K,(S,)=Nrd(R}).

Further [26 Lemma 5], IX( R )= LK(R ), where R is the quotient of
R by its radical, hence is semlslmple Thus this last i 1s easily computed:
for a finite simple ring, IX and IX have order 1 resp. 2 for types GL, U, Sp
resp. 0, SPOT.

In the special case when p is odd and R,, has good reduction—and
we saw in the proof of [26, Lemma 13] that this holds for almost all p—
we can argue more simply that X(R ) is a p-group, so H' (X(R »))=0. The
exact sequence of [28, Theorem 3] "then shows L(R,)=L}(R,), and by
[26, Theorem 10, Corollary 2], L}(R,)~L}(R,). ThlS vamshes for
summands of types GL and U, and for those of type0, L{=1%=
L[5 =~15%=>~{+1}. The main difficulty in calculation thus concerns the
case p= 2, when we need information about Nrd(R%).

Theorem 7.3. L% (R) is finitely generated,; more precisely, Ker(L¥(R) —
Li(T)) is finite.

Proof. This result is essentially known. One proof goes as follows:
LY (even A,) is finitely generated, since by results of Bak [1], Us(R) maps
onto A,, and by a result of Borel and Harish-Chandra [6], U;(R) is
finitely generated. Similarly, it follows e.g. from Corollary2 to (1.4)
that a form which becomes hyperbolic over T is the sum of a hyperbolic
form and one of rank 4. But by classical reduction theory (e.g. [5, 6]) the
number of classes of such forms is finite.

However, we can also prove the result by the methods developed
above: we can simplify the calculations by ignoring finite groups. Thus
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we have (for a global field E) an exact sequence

unit ideles Ex

00— — —
units in E E*

— ideal class group — 0:

as the ideal class group is finite, we can replace C by the first group. As
we are only interested in C, and ,C, we can also ignore the (finitely
generated) unit group.

This reduces CL}(S): we next consider L¥(R). As each L(R,) is
finite, we can ignore a finite number of primes p. We now refer to the
proof of [26, Lemma 13]. For all but a finite number of primes p,

1) p is odd,

i1) RP is a maximal order in S‘p,

1i1) Sp is unramified, and

1v) o is unramified at p.

Split Sp up into simple components: by (ii), RAI, splits correspondingly.
Then we can reduce further to the case when §,=K,, is a field, R,=1,
the ring of integers in it. According to the calculations in [26, Lemma 13],
the map L;(R,)— L;(S,) can now be described as follows. For types
GL, U both groups are zero. For type 0,

[5:0-ZNZ L D1 > R Rx:
L5 {+1}—>{+1} L[%:0=0.

Thus the cases when L (R ») are nonzero are precisely those when CL3(S)
is non-trivial (and not of order 2); moreover, the image in C, resp. ,C
in these cases is just the image of(f,j‘ ), resp.z(fpx ). In view of the reduction
above, this completes the proof.

It follows from our exact sequences that since K, (R) and K,(R) are
finitely generated (same argument as first proof above), IX(R), A;(R),
I3(R) etc. are finitely generated. More generally, as Quillen has shown
[18] that all K;(R) are finitely generated, we see (in the “synthesis”
notation of [28]) that, modulo Karoubi’s conjecture, all KU, ,(R) and
hence all L, ,_, are finitely generated.

p,n—73

We conclude our approximate calculations by limiting this finite
group.

Theorem 7.4. The torsion subgroup of L¥(R) has exponent dividing 8
the cokernel of IX(R)— I3(T) has exponent 1 or 2.

Proof. In the exact sequence of (8.1), the terms CL}(S) have exponent
1 or 2. The resulAt follows by exactness, once we know that the torsion
subgroup of IX(R) @L3(T) has exponent dividing 4. But this follows at
once from the results quoted above.
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