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Classification of hermitian forms. 
VI Group rings 

This paper contains the application of the techniques developed in the  
preceding papers of the series (listed separately in the references a t  the end) 
to calculate groups L,(Zn) for  finite groups n;  thus is completed a programme 
which has occupied the author for a decade. There is no simple formula for  
the answer, but results are obtained for satisfyingly general classes of 
groups: we have a reasonable picture for any x with abelian Sylow 2-sub- 
group, also for n a 2-group. 

The contents are listed below. In Chapter 1 we recapitulate definitions 
and results from earlier papers, and develop some illustrative calculations. 
Chapter 2 recounts representation theory in the form we need it. We give 
the calculation in Chapter 3 for abelian 2-groups; then in the long and 
difficult Chapter 4 for  2-hyperelementary groups with abelian Sylow 2-sub- 
groups. In Chapter 5 we discuss miscellaneous fur ther  calculations and 
problems. 

Here is a general summary of our results: First,  precise calculations. 

( 1 ) L1(n) can be computed from knowledge of L groups of hyperele- 
mentary subgroups of n ,  and their mappings (discussion in (2.1), example in 

(5.3)). 
( 2 ) If n is p-hyperelementary with p odd, then (2.4) the only torsion in 

L:(j?) is 212 if r = 2 (the usual 'Arf invariant' element) and, for j? of even 
order; (i) orientable case, 212 when r = 3, mapping isomorphically to L,(j?/n2), 
(ii) nonorientable case, w ( p )  = 1, 212 @ 212 when r = 3. 

For 2-hyperelementary groups, matters are  complicated. 

( 3 ) If n is abelian, the torsion in L,(j?) is unaltered on replacing j? by 
its Sylow 2-subgroup (2.4.2); it is computed explicitly in (3.3.2) (orientable 
case) and (3.4.5) and (3.5.1) (nonorientable case). If n merely has abelian 
Sylow 2-subgroup, the calculation is basically carried out in Section 4 and 
summarised in (4.7), but  we have no explicit formula. See (5.3) for an 
example, rectifying the announcement in [L]. If x is a dihedral or quaternion 
2-group, the L-groups are determined in (5.2). 

Next, we have more general results. 
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( 4 )  Lb(s?.) is finitely generated; the torsion subgroup has exponent 
dividing 8 [V] . I know of no example where 8 cannot be replaced by 4 . 

( 5 )  LLk+. (x) is finite [V]; we have a signature map from L.. (2) with 
kernel and cokernel finite 2-groups (combine [V] with (2.2.1)). See (5.1) for  
a precise discussion and conjectures about the image of the signature map . 

( 6 ) There are simplifications of the general theory for the case when x 
is a 2-group (5.2), but again we have no explicit formula . 

None of the calculations of Chapter 1 is claimed as original. and a few 
of the other results have already been obtained by other authors. particularly 
Bak [4] and Bass [6] . Some discussion of this is given in the final section . 
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1 . Algebraic L-theory 

The purpose of this chapter is to familiarise the reader with our notation 
and techniques: no really new results will be obtained . In (1.1) we recall 
f rom [F]. [17] the definitions and basic formal properties of the groups 
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L,(R, a ,  u). Then in (1.2) we recapitulate the main results from the preced- 
ing papers [11], [111], [IV], [V] viz. the calculations of L-groups of fields which 
a r e  finite or local, the comparison of L-groups of global fields and adele rings, 
and the corresponding results for semisimple rings; the theorem on reduction 
modulo the radical for complete semilocal rings, and the 'main exact sequence' 
fo r  global rings. 

The other sections of the chapter are devoted to some simple calculations, 
chosen to illustrate our techniques and to prepare the ground for later results. 
These groups are for the most part  already known and may be regarded as 
a check on the accuracy and efficiency of our method. In (1.3) we look a t  the 
coordinate ring of a nonsingular curve over a finite field of odd characteristic; 
strictly speaking, this makes sense only for affine curves, but the methods 
admit an obvious generalisation (not yet justified) to arbitrary algebraic 
curves. This case is fruitful as  it is simpler in many respects than our 
central problem, but presents the same key features. In (1.4) we consider 
the case R = Z, perhaps the most basic of all. We then generalise R to be 
the  ring of integers in any algebraic number field. The case of nontrivial 
involution is studied in (1.5)' following [I], and of trivial involution in (1.6). 

1.1. Recall of definitions 

We begin by recalling the basic definitions and terminology of algebraic 
L-theory. An antistructure is a triple (R, a ,  u) where R is a ring (with 
unity), u a unit and a an anti-automorphism such that  ua = u-' and x"" = 

uxu-' for all x E R. A sesquilinear form on a right R-module M is a map 

g : M x  M-R 

which is biadditive, R-linear in the second variable, and satisfies $(mx, n) = 

za$(m, n )  for all x E R and m, n E M. Write S,(M) for the additive group of 
such maps. Call $ nonsingular (on the right) if the map 

Ag: M- Hom, (M, R )  

defined by Ag(m)(n) = #(m, n) is an isomorphism. The transposed form T,$ 
is given by 

T,#(m, n) = $(n, m)"u ; 

then T,: Sa(M)--.S,(M) is a homomorphism with T,2 = 1. The group Q,,,,,(M) 
of quadratic forms is defined a s  the cokernel of (1 - T,). For such a form 
q, represented by $ E S,(M), we define its bilinearisation b, = $ + T,$; this 
does not depend on choice of representative. Call q nonsingular if b, is. 

We write 9 (R)  for the category of finitely generated projective (right) 
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R-modules. A quadratic module is a pair (M, q) with M in 9 ( R )  and q E 
Q,,,,,(M); it is nonsingular if q is. Write 9(R, a ,  u)  for the category whose 
objects are nonsingular quadratic modules, and morphisms (M, q) - (M', q') 
are isometries, i.e., isomorphisms f: M--+ M'  such that  if g, g' represent q, 
q' then 

olo(f x f )  - 0 = 71 + Tux 
for some x E S,(M). 

Next, call a module M based if we have an isomorphism f: M- R"  for 
some n: we regard f ,  f '  as defining the same class of bases (or volume ele- 
ment) v if f '  0 f -l has determinant 1 in K1(R) = K19(R). Write %(R) for the 
category of based modules (M, v) and isomorphisms preserving preferred 
bases, and !iJB(R, a ,  u) for the category of based quadratic modules (M, q, v) 
and based isometries. Write I?,%~(R, a ,  u) = Ker rank: K,%9(R, a, u )  - Z. 

There are [F] exact sequences 

where F is the forgetful map, r is induced by changing the preferred basis, 
6 is the discriminant and H induced by the hyperbolic map. We thus write 

A,(R, a ,  u) = &X2(R, a ,  u)  , 
A,(R, a ,  u)  = K,9(R, a ,  u) , and for any i E Z , 

Ait2(R, a ,  U) = A,(R, a ,  -u) . 
The above exact sequences then take the form 

-. 
Aitl(R) - Kl(R) - A&(R) . 

Moreover, 6,o ri = 1 + (- 1)W,  where a' is the automorphism of Kl(R) induced 
by a. Since a2 is inner, a" = 1. 

We now define, for any a'-invariant subgroup X of Kl(R),  

LF(R) = G;'(x)/~,(x) . 
Of particular interest are the case X = {0}, when we write L" so tha t  L8(R)= 
Ker at, and the case X = Kl(R),  when we write Lk, so tha t  LT = Coker ri. 
The groups for different values of X are related by exact sequences. If XC 
Y, and we write Hi(Y/X) for the Tate cohomology of a group of order 2 
acting on Y/X via a ' ,  we have an exact sequence: 

. . Lf(R) - L:.(R) --+ Hi(Y/X)  --+ Lfl,(R) - LLl(R) . . . 
One can also give more direct definitions of the groups Lf(R). For i 
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even, we generalise the notion of based quadratic module by using Kl(R)/X 
instead of Kl(R) as value group for the determinant function. For i odd, 
one can either spell out the above definition in words or discuss based forma- 
tions as  e.g. in [PI. 

1.2. Recall of calculations 

Next, we recall calculations of L groups from earlier papers of this 
series. From [11] we recall that  L,  is unchanged by Morita equivalence of 
antistructures where, in particular, (R, a ,  u)  - (R, a ' ,  u') if for some unit v 
in R, u' = vv-"u and x"' = vxCv-', and (R, a ,  u)  - (R,, a,, u,) where R, is 
the ring of (n  x n)  matrices over R, for a, wr. apply a to each element and 
transpose, and u, is the scalar matrix with u on the diagonal. Now if R is 
semisimple Artinian, we can split (R, a ,  u)  a s  a sum of simple components 
and L-groups split accordingly. In the case (type GL) when R is a sum of 
two simple components interchanged by a ,  all L groups vanish. Otherwise 
R is simple, and we may reduce by Morita equivalence to  the case when R is 
a division ring and may even take u = 1, or else R commutative and u = - 1. 
Assume now R simple, and of finite dimension n2  over its centre, 2. We say 
(a,  u)  has type U if a I Z is not the identity, and type 0 resp. type Sp if 
a I Z = 1, u = t l ,  and the dimension over Z of the fixed set of a is +(n2+un)  
resp. i ( n 2  - un): this is equivalent to extending the ground field and reducing 
by Morita equivalence to the commutative case. The type is tha t  of the 
algebraic group of automorphisms of a nonsingular quadratic (R, a ,  u)- 
module. Since replacing u by - u  interchanges types 0 and Sp and also 
interchanges L, and L,,,, we can frequently omit mention of type Sp, and 
assume u = 1. We have the following calculations [II]. 

Fini te  fields F. L"-groups vanish for type U. L$(F, 1, 1) has order 1 
for  p - 0 , 3  (mod 4) and 2 for p E 1, 2 (mod 4), except if char F = 2, when 
all have order 2 (and LS = LK). 

Continuous fields. Apart  from type GL, we have only 4 essentially 
distinct cases: (R, I ) ,  (C, I) ,  (C, c), (H, c) (u  = 1 in each case), where c denotes 
conjugation in C and H: these have respective types 0, 0, U, Sp. The signa- 
ture induces isomorphisms of L,S(H, c) on 22 (i.e., the group of even integers), 
and of L,S(R, I ) ,  L:(C, c) and LS(C, c) on 42. The groups LP(R, I ) ,  Lf(R, 1) 
and Lf(C, 1) have order 2. The others are trivial. 

Local fields (of characteristic # 2). LS-groups vanish for type U. If R 
is a division ring with centre K,  and (R, a ,  u)  has type 0 ,  Lg(R, a ,  u)  has 
order 2 for p - 0, 2 (mod 4), is trivial for p - 3 (mod 4), and Lf(R, a, u) z 
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K x / ( K y ) f  We shall make repeated use of these results, and of the naturality 
of the invariants inducing the isomorphisms-in all the cases above except 
fields of characteristic 2, discriminant for L,  and Pfaffian for  L,. 

For almost all of the paper, R will be a Z-order in a semisimple algebra 
S ,  finite over Q, R = R @ z its profinite completion, the direct product of 
the p-adic completions R,, Ŝ  = R @ Q (and Ŝ , = R, @ Q ) ,  and T = S @ R. 
We shall use determinants calculated in ~ ~ ( 9 ) .  Since K,(S^,), K,(S) inject in 
K,(S^) this means we study L;(S ,̂), Lk(S), LB(S^). Write X = Ker (K,(R) -+ 

Kl(S)); X is sometimes denoted SKl(R). We shall study LP(R); also (simi- 
larly) for R and R,. It will usually be the case that  Ker (K,(R,) -+ K,(#,)) is 
a finite p-group (we call this 'good reduction'). This implies, if p is odd, tha t  
L,Y(R,) = L;(R,). 

Recall from [111] tha t  if R, has radical J,, then the J-adic and p-adic 
topologies coincide, and R, is complete. So if .&!, = R,/J,, the projection R, --+ 

R, induces isomorphisms of groups L f  if p is odd, and of L$ in any case. 
Since R, is finite and semisimple, its L groups are  among those tabulated 
above. In case p = 2, we 'know' L:(R,) = L:(R,), and to  deduce L:(R,) will 
rely on the exact sequence of the preceding section-thus we need independent 
calculation of ~ " 1 m  (K,(R,) -- K1(g2))). 

We now have the "main exact sequence" from [V] 

Now S  ̂@ T is the adele ring, and we have the exact sequence (from [IV]) 

Combining these, we have ([V, 7.21) 

Here, L:(R) = 11, L:(R,) is a product over completions a t  different primes, 
which were discussed above. 

Finally, we have from [IV] that  CL:(S) vanishes for summands of (S, a,  
u) of type GL or U,  and that  for a summand of type 0 we have 

where C is the idele class group of S ,  and we have the exact sequence 

We shall also need to compute maps between several of the above groups. 
This will involve more detailed results from the earlier papers, but  we may 
note some salient points. For any commutative field K, 
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for the skew-symmetric form admits a symplectic base, with respect t o  
which i t  has determinant 1 ,  and any two such bases are  in the same class. 
The change of basis to our preferred basis thus has determinant x satisfying 
xZ = 1. Most of the nonzero L f  above are  computed by this method: maps 
between them can thus be deduced from the maps of the subgroup of units 
x with xZ = 1. A similar analysis applies to L;S: here the hyperbolic form 
H(R)  admits auto-isometries e 4 ex, e* - e*x-" for x a unit: the class of the 
isometry is zero if x is of the form y2. Here, then, i t  is the group of units 
modulo squares which is important. 

1.3. The case of curves over finite fields 

We now give examples of calculations which, while different from (and 
much simpler than) the case of group rings, illustrate some of the difficulties 
to be encountered, and may help the reader to familiarise himself with our 
methods. 

If the base ring Z is replaced by the polynomial ring A = Fp[t], p an odd 
prime, then [V, 6.61 still yields an exact sequence 

. . . L:(R) - L:(R) @ L;(s) - L:(& - . . . 
for R an A-order, R the product of its completions a t  primes of A; S and $ 
obtained by tensoring with the quotient field Fp(t) of A. However, the prime 
ideals of A yield all but  one prime of Fp(t), and i t  is unnatural to omit this 
one from the calculation. We must take the completion a t  the remaining 
prime to be R, = Ŝ , = R @, Fp((t-I)). For the rest of this section, the nota- 
tions R and S  ̂ will indicate that  all primes are  included. 

If we take R to be the maximal A-order in a finite extension field K of 
Fp(t), this is naturally considered the coordinate ring of a nonsingular affine 
curve. Again, i t  is more natural not to restrict to affine curves. We will 
assume here that  one can develop an L-theory for schemes (probably in terms 
of forms on locally free vector bundles}, and that  the natural extension of the 
above sequence remains exact: the point here is to show how to compute 
with it. 

Now let K be a finite extension of Fp(t). Suppose R to be defined locally 
by maximal orders, except a t  a finite set E of places where we take RP = & 
for p E E; this is considered geometrically as  a nonsingular projective curve 
r, with the points of E removed. 

First consider a nontrivial involution a. Now the primes p of K corres- 
pond to algebraic points of the curve I?, two such being identified if they 
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are  conjugate over I?. Geometrically, a is an involution of I?. It is now clear 
tha t  for an algebraic point P ,  with corresponding prime p, the involution on 
2, has type GL if and only if a ( P )  is not conjugate to P ;  type U if a ( P )  + P ,  
but is conjugate to it; and-for the antistructure (K, a ,  1)-type 0 if a ( P )  = 

P. If KO is the fixed field of a on K, the third case yields precisely the primes 
ramified for K/KO. 

Now as (K, a ,  1) has type U ,  CLS,(K) = 0. The main exact sequence 
thus  yields an isomorphism of the L-group sought with 

C, ,, L ~ R )  a3 C, c, LB(IZ;) 1 

where & is the completion a t  $, R, the corresponding valuation ring. But 
LS(&) = 0 for since a is nontrivial, we have type GL or U. Note that, 
strictly speaking, places p # a(p) must come paired in the summation (or we 
may sum over points of the orbit space I?/a). Also, a s  p is odd, L;(R,) = 

L@,) vanishes for type GL or U; i.e., for all save those in the finite set F 
of ramified primes. Thus 

PROPOSITION 1.3.1. I n  the uni tary  case, with the notations above, 

L W )  = Cpe ( F - E j  L@,) , 
and  we have the table 

i 0 1 2 3 

L;R, 0 ~ , " / ( ~ , " ) ' ( o r d e r 2 )  1 0 .  

Now consider the case of quadratic forms, i.e., with R as above, the 
antistructure (R, 1, 1). Observe first that  the map j :  fix Sx --. S^", in the 
case in which E is empty, has as  kernel the constants in S-for only these 
have no poles or zeros, so locally lie in R x .  Write k for the field of constants. 
The cokernel of j is the group of divisor classes. 

LEMMA 1.3.2. Cok j r Z @ J ,  where J i s  the group of k-rational points 
on the Jacobian curve of I?. 

For this result, see, e.g., [22]. 
Now LP(S) - L:($ is injective, a s  in the number field case, with the 

same cokernel CLP(S). We can tabulate these groups as  follows: 

i 0 1 2 3 

L PG E 0 R;/(R~)' { k 11 0 

L~(R, )  = LB(S^,) p E E 212 shp~/(S^,")~ {&I}  0 
CLf(S) z /2  S ^ x / s x .  ( 9 ~ ) ~  ( { l } ) / { l }  0 . 

Here we have interpreted the terms C,, ,C involving the idele class group in 
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explicit terms. We thus have, for the equivalent maps 

pL: LLS(R) @ LB(S) - LB(@ , pi: L:(R) - CL:(S) , 
Ker B3 = Cok P3 = 0 . 
Ker ,@, = {&I) , Cok P, = 0 . 
Ker Po is a sum of I E - 1 copies of Z/2 

(it vanishes for E = 0 )  . 
Cok Po z 212 ( E  = 0) or 0 ( E  # 0 )  . 

For Po, P, are the obvious maps, a s  Lo is given by the Hasse invariant in all 
cases, L, by the Pfaffian. 

We must consider pl more carefully. It is the natural map 

Rx/(R")" S^"/S.. (&)2 . 
Now an element of S is a square if it is so locally-i.e., Sx/(Sx)2 - S^"/(S^")qs 
injective. Thus Pl has the same kernel and cokernel a s  the more natural map 

RX/(RX)' @ SX/(SX)'  - S ^ " / ( ~ Y ) ~  . 
But now R"/(RY)' - @/(Shy)2 is clearly injective, and its cokernel is DJDZ 
where D, = S^"/R" is the group of divisors modulo E. By the same argu- 
ment, we have the same kernel and cokernel a s  for 

Sx/(Sx)" DE/Dl . 
If CE = D,/SY is the group of divisor classes (mod E ) ,  we see-as is clear 

anyway-that Cok PI = CE/Ci. Observe tha t  C, = Z @ J ,  and C, r J if 
IEi = l .  

Write S"' for the set of x E SX whose divisors (mod E )  are squares. Then 
Ker PI = S 2'/(Sr)2. More useful for computation is the exact sequence 

1 ---t R '/(R ")" S'"/(Sx)" 2CE - 1 . 
For if the divisor (x) = Q" Q defines an element of ,C,. Replacing x by xy2 
changes Q to Q(y) and leaves its class unaltered. And if Q does define an 
element of ,C,, Q q s  principal. So we have a surjection S'2)/(S')2 -+ If 
x defines an element of the kernel, (x) = Q2 with Q principal, Q = (y), then 
~ y - ~  has unit divisor and belongs to R x .  The rest of the proof is routine. 
One can argue alternatively using the exact sequences 1 - R' - S" - P - 1,  
1 - P- D,- C,-1 ( P  the group of principal divisors) and their cohomology 
exact sequences for a group of order 2 acting trivially. Note finally tha t  since 
S'2'/(Sx)2 has exponent 2, the exact sequence splits. 

Finally, LII(R) is an extension of Cok PI+, by Ker P,. Thus 

THEOREM 1.3.3. I n  the orthogonal case, 
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L,X(R) i s  a n  extension of CE/Ci by ( 1  E ( - 1)Z/2 , 
L;Y(R) i s  a spli t  extension of R x / ( R x ) 2  by ,CE , 
L f ( R )  E {tl} , 
L,X(R) E Z/2 ( E  = 0 )  or  0 ( E  + 0 )  . 

Here, L, (when nonzero) expresses reciprocity and L, is detected by the 
Pfaffian. For L,, one can consider Rx/ (Rx)2  as  a sort of spinor norm, but the 
full group is not easy to comprehend. The map of CE to L, is induced by 
applying the hyperbolic functor to  a projective (non-free) module, which 
certainly yields a free module, and by taking account of bases. 

Let us illustrate these results by considering some cases of particular 
interest. First take E = (a, so we have a projective curve. Then ,CE = ,J, 
and R x  = k x  so Rx/ (Rx)2  has order 2. Here, 

L,X(R) E J/J" $12 , L;Y(R) is a split extension of Z/2 by ,J , 
L )  E 1 , L f ( R )  E Z/2 . 

For example, if we take I? as the projective line, J = 0 and all four groups 
have order 2. 

Next take I? as an affine line. Then J = 0, J E J = 1, and C, = 0. Thus 

LW(Fp[t]) = 0 , L;Y(Fp[t]) E Z/2 , Lf(Fp[t]) E {+I} , Lf(Fp[t]) = O 

and we obtain groups naturally isomorphic to L"Fp), as was to be expected. 
Finally, take R = Fp[t, t-'1; I? is the projective line with two points 

deleted. Again J = 0, but now I E 1 = 2, CE = 0 and the units of R have the 
form ati (a E F,", i e Z). Thus 

Lf  E 212 , L f  E 212 + 212 , Lf  E {tl} , L:=o 

agreeing with Ranicki's ([18]) calculation (note a = identity) 

1.4. The case R = Z 

We now illustrate our methods by considering (R, a ,  u) = (Z, 1, 1). The 
technique appears cumbersome in this case, but the details are not hard to 
follow, and we will find that  most of the features of more general cases a re  
already present here. 

Since Z is a principal ideal domain, if I  is the group of ideals, Qx E I  @ 

{ t l } ,  Q" E Z" @ I  and R x  E R* @ {kl}. Thus the idele class group C is 
isomorphic to Z" @ R* E up Z: @ R*, and we have 

,c E np { t 11 , c, E g (Z;/(Z:)~) . 
Since, for p odd, LS(Z,, 1, 1) E 0, z,"/(z,")" { t l } ,  0 for i = 0, 1, 2, 3 (respec- 
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tively), we have the following table, in which denotes product over odd 
primes: 

i TI LS@,) a3 LB(R) - CLS(Q) 
3 0 0 0  

2 TI {+I) a3 {+I) - TI {+I) a3 {+I) 
1 II ( z / ~ z ) x / ( ( z / ~ z ) x ) 2  a3 {+I} - TI ( Z X Z 3 )  a3 Z:/(Z3 
0 0 42 - 212 . 

We now determine the maps. The calculation for CLf(Q) involved the 
Brauer group: 212 was essentially the cokernel of Br,(Q) - B~,(Q). Now 
Lf(R) E 42 maps onto Br,(R) E 2/22 as is well-known, hence onto CL,S(Q). 

A 

For i = 1, observe that  projection 2, - Z/p induces a (split) surjection 
2," - (Zip)" with kernel a pro-p-group; hence for p odd, an isomorphism, 

So the product over odd p maps isomorphically (by naturality of spinor 
norms, the map given by L-theory is the obvious one). Now in our decom- 
position of C, the image of - 1 E R' has - 1 in each position, for - 1 e Q maps 
to zero, and if we adjust by this to obtain a positive adele, the assertion be- 
comes clear. Thus our map for i = 1 is injective. 

For i = 2, a similar (but easier) argument shows that  the product 
term-and the whole group-map isomorphically. For i = 3 there is nothing 
to do. 

Now we must evaluate LB(z,). We have 

L~"(z,) N Li"(ZI2Z) N 2/22 , 
and since Z; N Z, 2/22 (with generators 5, -I) ,  H'(z,") has rank 2 for i 
even, 1 for i odd. The exact sequence to compute L~(z,)  was discussed as a 
special case of [111, Theorem 111; we have 

and L~(z,)  has order 4. In fact ,  this group is cyclic. Consider the automor- 
phism z of a hyperbolic plane over (z,, 1, -1) given by 

so that  z2 = -1. I claim that  the class of z has order 4 in the group. For z" 
is the image by the hyperbolic map of the class HO(Z,") represented by -1, 
and it suffices to show this is not in the image of L,~'(z,). But this group has 
order 2, with nonzero element represented by 
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with discriminant - 3. 
Since L ~ ( z )  @ Lf(R) - CLS(Q) is surjective for all i ,  L:'(Z) is the kernel. 

Thus 

LW(Z) E 82 , Lf(Z) E {+l} , L:(Z) E Z/2 @ Z/2 , L,Y(Z) r Z/4 . 
This slightly unexpected result is explained as follows. As Kl(Z) E {+l},  X 
is trivial, and i t  is more usual to consider LF(Z). In the exact sequence 
relating these, the boundary maps {+l} -+ Lf(Z) are computed as follows: 

i = 0 clearly trivial ; 

i = 3 computed above (essentially): the image is 2' in 

L,S(Z) E L ~ z , )  ; 

i = 2 H Z x )  E H Z )  , Ls(Z) E L;(Z,) are  isomorphisms 

induced by inclusion. The exact sequence for Z, is 

known: the map is injective . 
i = 1 Here, Ho(z,"} - LB(Z,) is an isomorphism and 

{+I.} = HO(Z") - HO(Z;) , LS(Z) - L ~ Z J  are 
injective. Thus {*I} - LP(Z) is injective, hence 

bijective . 
We deduce 

Lf(Z) E 82 , LP(Z) = z/2  , L?(Z) E z,'2 , Lf(Z) - z /2  . 
To obtain surgery obstruction groups (as defined in [SCM]) for trivial 
fundamental groups, it only remains to kill the classes in L,, L, of the auto- 
morphism a (or .=). This yields the familiar sequence 

s z ,  0 ,  z j z ,  0 .  

1.5. Integers in an algebraic number field: unitar?- case 

We now consider the more difficult example, when S = K is an algebraic 
number field and R = A the ring of integers in it. The reader will observe 
the similarities-and differences-with the case considered in (1.3). First we 
recapitulate [I] by considering type U: here, a is a nontrivial involution with 
fixed field KO and integers A,. We consider only the antistructure (R, a, 1). 
Since CLf'(S) = 0, the main exact sequence reduces to an isomorphism 

L:(A) E L:@) @ L:(K @JQ R) . 
Moreover, as SKl(A) = 0, L,Y(A) = L?(A). 

The second summand is easy: it vanishes for i odd, and has a summands 
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42 for i even. Here, if KO @ R z r,R @ r,C and K @ R r slR @ s,C (so 
s, + 28, = 2(r1 + 2rJ) , 

If p is a prime of A, unramified in A, then A, has type U (inert case) or 
GL (decomposed case), and in either case L?(& = L;(A,) = 0 for all i. If p 
is a ramified prime, A, has type 0. Thus if @ is odd, L:(A ,̂) has order 2 for 
i = 1, 2 and is trivial for i = 0, 3. 

Finally, suppose p even and ramified (or equivalently, wildly ramified). 
Then LP(A^,) has order 2 for all p. To compute H ~ A ; ) ,  we use the exact 
sequence 

I-A;-&;-z-I. 
Since HI(&;) = 0 (by Hilbert's Satz go), and HO(&;) r 212 by local class 
field theory, the cohomology exact sequence of the above is 

Here the middle map is 0 because, p being ramified, invariants have even 
values. Next we compute 

Z12 z L:(& - Hi(&) -v 212 . 
As we observed in [111], this is equivalent to Theorems 3 and 4 of [I]. We 
discuss the problem in our present terminology. As there is no fear of 
ambiguity, we drop the subscript p .  

For i even, say i = 2k, choose b E A^ with class p e A not of the form 

s' + e? Then the form over A with matrix (i-b) has nontrivial Arf invari- 

ant, so represents the nonzero element of LZ(A). We lift this to A, lifting 
to b; it has bilinearisation 

1 + (-1)" 

and thus discriminant 1 - ( - l )k ( l  + (-'l)k)(b + (-l)*b). If k = 1, this is 1. 
Also i t  is 1 if k = 0 and 6 = - b: now we can always choose 6 = b (since A = 

A,) and if K = &[7/d], with d  a unit, we can suppose d  - 1 e A and then 
d = -d  and we can choose bd for b above. Otherwise, k = 0, b = b and d  is 
prime. The discriminant is 1 - 4b, and as d is prime, (1 - 4b, d) = -1 so 
this is not a norm. 

For i odd, say i = 2k t 1,  consider the automorphism 
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of the hyperbolic plane. This has determinant (-l)k+' which is clearly trivial 
for k odd. For k even it is -1, hence of the form Gju (u  a unit) precisely 
when d (above) is a unit. 

Thus if I? = &[/dl, with d a unit, all four maps L,K(A^) -+ H"A^") are  
trivial, so each group Lf(A^) has order 4. Note here that  (A^, a ,  1)-(2,  a ,  -I) ,  
a Morita equivalence, so L, has period 2 in i. We now show tha t  the exten- 
sions are all split. First consider L,: the interchange z of factors in a 
hyperbolic plane maps onto L f ,  but  = 1. The only other case we need 
discuss is L,, and here we can use the argument of [111, Theorem 11, Corol- 
lary]. 

If,  however, d is a prime, the exact sequences show LB(A^) = 0, 
LS(A^)(E H2(Ax)),  and L:(~)(E LF(A^)) have order 2, and Lf(A^) has order 4. 
In  this case too, the extension is split, for HI@") = {+l} as we saw above, 
and we can again argue as in [111, Theorem 11, Corollary]. 

1.6. Integers in an algebraic number field: orthogonal case 

Retaining the notation of (1.5), we now turn to the orthogonal case, and 
consider the antistructure (A,  1, 1). First we compute Lf(A^,); here we con- 
sider the g, summands Â ,, corresponding to the primes p of K dividing 2, 
singly. By [111, Theorem 11, Corollary], 

L,s(A^,) = 0 , ( A )  E ( A )  , L~(A, )  --. 212 @ {+l} , 

and there is an exact sequence 

Here the usual interchange T of basis elements in a hyperbolic plane repre- 
sents the nonzero element of the final 212, and T' = -1. Since KP[/(1 - 4b)l 
is unramified and either - 1 is a square or ~ ~ [ / ( - l ) ]  is ramified, we see that  
if -1 is a square in g p ,  the extension splits, but  otherwise -1 and (1 - 4b) 
are independent in and it doesn't split. 

To compute the main exact sequence, we have now to consider the 
maps 

We first tabulate the calculations of the various types of summand that  
occur. Recall tha t  for any abelian group G, ,G = {x E G: x2 = I} and g(G) is 
the sum of g copies of G. 
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3 

2 

1 
0 

0 G'(A ,̂) 0 0 0 

423 *(Â ,") @ 92(z/2) {k 1) {+I} PC 

A^,"/(A^,")2 A^,"/(A,")2 { 11 0 c/c2 
0 0 42 0 z /2  

Here, three of the maps are easy. 0, = 0 as  the target is zero. If K is 
totally complex, p, = 0; otherwise, each summand 42 maps onto Z/2 (for the 
Hasse symbol of a form of signature 4 is -1). Write 2 for the free abelian 
group Ker Po. If x is an idele whose class has order 2, x2 is principal, say 
x2 = y e K".  But y is locally, hence globally, a square: y = x2, x E K x .  Thus 
xx-' has order 2, and the same class as  x. Hence ,C = ,K,"/,Kx, where KA = 

K @ ( K  OQ R), is the adele ring of K. Now p, is seen to be surjective; its 
kernel is ,Kx  @ g,(Z/2). Of course, , K X  = {+ 1). 

As to p,, we see, exactly as  in (1.3), that  it has cokernel I?/r2, where I? 
is the ideal class group of K,  and kernel K'2)/(Kx)2,  where K"' is the subgroup 
of K x  of elements generating square ideals, or equivalently, with all p-adic 
values even. Moreover, there is a short exact sequence 

1 - Ax/(Ax)2 - K'"/(Kx)" ,I? - 0 , 
necessarily split. 

Now LB(A) = L?(A) is an extension of Cok pi+, by Ker pi. Thus 

Lf(A) E I ? /P  @ 2 , 
LS(A) E K(2"/(Kx)2 E Ax/(Ax)" ,I? , 
Lf(A) r {+ l} @ g,(Z/2) , and 

L,S(A) = L,s(A^,) ( K  not totally complex) , 
L,S(A) is an extension of 212 by L?(A^,) if K is totally complex. An explicit 
description of L,S(A ,̂) is given above, but  I do not know how to determine the 
final extension in the totally complex case; in particular, whether the group 
has exponent 4 or 8 is an open question of some interest. 

Of course, (1.4) is contained as a special case in the considerations above. 
Another special case, which will be important in (3.3), is the ring of Gaussian 
integers A = Z[i] where (as usual) i2 = -1. Here we can read off, from the 
above, since I? = 0, 

i 0 1 2 3 

Lf(A) 0 A x / ( A x ) 9 / 2  @ {tl} order 8 
~ $ 2 , )  0 z /2  @ {tl} 212 @ 212 . 
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We shall be more interested below in the relative group which (see (3.1)) can 
be computed as the third term in an exact sequence including 

As there is just one 2-adic prime, this map is an isomorphism for i = 2, 3; 
for i = 0 it is injective, with cokernelZ/2 and for i = 1 we can see directly 
that  it is injective, with cokernel &/A" -(Â ,")" of rank 2. Indeed, Â ," is the 
direct sum of its torsion subgroup A x ,  which is cyclic of order 4, and the 
subgroup (1 + 2pA^Jx, isomorphic by the 2-adic logarithm to (2pA^,)+, the ideal 
generated by (2 + 2 9 ,  which we denote by L. Thus the relative groups a re  
z/2, L/2L, 0, 0. 

2. Representation theor? 

We described in the last chapter a general technique for computing L 
groups of orders. We are primarily interested in the case when these orders 
are group rings, and wish to make as explicit calculations as possible under 
rather general circumstances. This will depend on the exploitation of 
particular properties of group rings, and these properties depend on repres- 
entation theory. 

In (2.1) we summarise the induction theorems of Andreas Dress in the 
form in which we will apply them. This will permit us to restrict attention 
to the case of hyperelementary groups; and a t  the end of the chapter we 
perform the calculations for p-hyperelementary groups with p odd. In (2.2) 
we discuss real representation theory and signatures; and in (2.3) we apply 
modular representation theory. Finally in (2.4) we survey the application 
of representation theory techniques to our problem, and give a direct argu- 
ment for p-hyperelementary groups with p odd. 

2.1. Recall of induction theorems 

We assume known the concept of Green functor G, usually thought of 
([13]) as defined on subgroups of n ,  with rings as values, and with notions 
of restriction and induction satisfying the usual properties. A slicker formu- 
lation is given in [lo]: consider G as a functor on the category Q(n) of finite 
n-sets. We also have the notion of module Mover  a Green functor G. 

There exists a collection 9(G) of subgroups of n (which is closed under 
conjugacy) called the defect set of G and characterised by: 

(2.1.1) G(X) - G(.) i s  surjective if and  only if each subgroup o e 9 ( G )  
of n has a &xed point i n  X. 

When this surjectivity holds, for any G module M, there is an exact 
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sequence 

0 - M ( - )  - M(X) - M ( X  x X) . 
If we change to the other notation, where the functors are defined a t  sub- 
groups of n ,  then if {o,] runs through representatives of conjugacy classes 
in 9 ( G ) ,  the exact sequence appears as  

0 - M(n) - @, M(Q,) - @,,j,Z M(Q: n ISj) 

where x runs through representatives of double cosets of IS, and o,. Thus 
we can compute M(n) once we know the groups M(o) for all o in the defect 
set (and all the relevant maps between them). 

We shall need just two examples of Green functor, whose constructions 
are fairly similar. 

For S a finite n-set write S for the category with object set S and 
morphism set S x n ,  where 

(s, g): s - sg . 
For any category C, write [S, C] for the category whose objects are functors 
and morphisms natural transformations. In particular if R is a commutative 
ring and C = 9 ( R )  the category of finitely generated projective R-modules 
we write X-(R)(S) for the Grothendieck group of objects of [S, 9(R)1 modulo 
short exact sequences. We can regard X,(R) as contravariant functor using 
composition of functions, and as covariant functor using pullbacks: i t  is easy 
to verify that  we have a Mackey functor, and fur ther  (using 8, to define a 
product), a Green functor. 

Next we can take C = B(R), the category of pairs (P, g) where P is a 
finitely generated projective R-module and g: P x P--. R a nonsingular sym- 
metric bilinear form; morphisms are isomorphisms of such pairs. A sub- 
lagrangian is a direct summand Q of P (as module) with g(Q x Q) = 0. 
Write Q1 for the submodule orthogonal to Q; then Q1 3 Q, and g induces a 

) (forget nonsingular form [#IQ on QL/Q. There are functors F: B(R 
g) and H: 9 ( R )  - $(R) defined by 

H(Q) = (Q CE3 Horn, (Q, R) ,  #Q) , 
~Q((91, fJ1 (92, fJ) = f d 9 J  + fd9J . 

Given a sublagrangian Q of (P, g), there is an isomorphism of (P, g) on 
(Q1/Q, [g],) @ H(Q). We thus define U,(R)(S) to be the quotient of the 
Grothendieck group of [S, B(R)] by the relations, for each sublagrangian 
Q: S - 9 ( R )  of (P, g): S - B(R), 

(Q1/Q, [ ~ I Q )  + H(Q) - (P, @) . 
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Induced maps etc. are  defined as in the case of X,' 

THEOREM 2.1.2. F o r  a n y  commutative r i n g  R ,  X,(R) and  U,(R) a re  
Green functors on Q(n). The defect set of each i s  contained i n  the set of 
hyperelementary subgroups of n. F o r  X,(R) or Ur(R) localised a t  2, we need 
only 2-hyperelementary subgroups. 

Note that  by a result of Swan [5, p. 5901 

X,(R) O Q = X,(R O Q) O Q , 
so the results on X, follow from Artin's induction theorem. The assertions 
concerning U, follow from the main result of [ I l l .  

F, * 
Note that  F ,  H induce transformations U, H ,  X,, with F, a morphism 

C- 

of Green functors: thus any X, module is a ur-module. Note also tha t  the 
category of Ur-modules is an abelian category, hence closed under formation 
of kernels and images. We now list important examples of modules to which 
the theory applies. Here we adopt a different notation and consider M(n/o) 
as functor of a ;  since any finite n-set is a sum of orbits of this form, and M 
takes sums to products, this is enough to determine M. 

PROPOSITION 2.1.3. F o r  any  R-algebra A and  n = 0, 1 ,  K,9(Aa) i s  a n  
X,(R)-module and  K,9(Ao) a U,(R)-module. 

Presumably the result holds for all n ;  also, the relative groups of F ,  H 
should be U,(R)-modules and hence all the algebraic L-theory of Ao: certainly 
this holds in low dimensions, where the groups are  kernels and cokernels of 
F and H on KO and K,. We observe finally that  if X c K19(Ao) is an X,(A)- 
subfunctor, invariant under the involution a,  then L;I'(Ao) is a U,(A)-module. 
This follows a t  once from the definition and the remarks above. 

2.2. Characters, real representations and signatures 

Let K be a field of characteristic 0, n a finite group. To each Kn-module 
V one associates its character x,: n - K defined by taking the trace of the 
K-endomorphisms of V induced by elements of n. Clearly X, is constant on 
conjugacy classes. Write RKn for the Grothendieck group of such modules, 
and Map, (n, K )  for the group of class functions. Then the X, induce x,: 
RKn - Map, (n, K). Standard representation theory (see e.g. [21]) yields the 
following: 

If K = C (or any algebraically closed field), xC is injective, and induces 
an isomorphism Rcn @ C -+ Map, (n, C). For any K (of characteristic 0), xK 
is injective. Moreover, RKn is a subgroup of finite index in 

RKn = x;' (Mapc (n, K) )  . 
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The exponent of R ,n /~ ,n  is called the Schur index of Kn. 
If we consider K n  directly, i t  is a semisimple algebra, hence a sum of 

(n x n )  matrix rings over division rings D which contain K in the centre. 
The irreducible modules are  the Dm.  If D has degree r2 over its centre, i t  
contributes r to the Schur index. 

In the case K = R, the only division rings D which may occur are  R, C 
and H. Thus for each irreducible complex representation, with summand 
M,C and character X, either 

(i) x # X, and the summands of Cn corresponding to x and X yield a 
single summand M,C of Rn,  

(ii) x = X, and the corresponding summand of Rn  is M,R, 
(iii) x = X, n = 2m, and we have a summand M,H. 
For us, the group ring Rn  comes with the anti-involution a,: g - g-l. 

For any X = C a(g), g E Rn, ;t # 0, we have 

T r a ~ e ~ ~ , ~  X XnO = 1x1 a(g), > 0 , 
so a, is positive. Hence each simple summand of Rn  is preserved and (by 
the classification [26] of positive anti-involutions) the isomorphism onto a 
matrix ring over R, C, or H can be chosen so that  a, corresponds to  taking 
the conjugate transposed matrix. 

Now consider the antistructure (Rn, a,, 1). We can decompose this into 
simple summands each of which, by the above, is equivalent to (K, c, 1) with 
K = R, C or H and c the standard conjugation. Thus for Lo, the signature 
yields an isomorphism onto 42, 42 or 22 respectively; for L, we have { k l } ,  
42 or 0. 

This can be more invariantly formulated (cf. [2], [SCM]). Given a quad- 
ratic (Rn, a,, 1)-module (V, 0) we first contemplate the induced form 8, = 

Trace,,,, 0 over R. Write V as the sum U +  @ U -  of n-invariant positive 
definite and negative definite subspaces for this induced form. The signature 
is then the class of U+ minus tha t  of U -  in RRn. Under the category equiv- 
alences of the paragraph above, one sees a t  once that  the generator 1 of "Z" 
corresponds to the irreducible Rn-module. (For a detailed version of this see 
Lewis [14], [15].) Thus the values of the signature as  here defined are  the 
elements of RRn such that  the coefficients of the irreducible representations 
of the three types are divisible by 4, 4, 2 respectively. Or, in the notation 
above, 

L,S(Rn, a,, 1) = 4RRn , 
since precisely in the third case the Schur index is 2. 

A similar result holds for L,. Here, 8, is skew-symmetric and we extend 
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it to V C as a skew-hermitian form: dividing by i yields a hermitian 
form. Now again, split into positive and negative definite n-invariant sub- 
spaces U +  @ U-, and take the class of U+ minus that  of U- as the invariant. 
If the irreducible character X, (x, # X,) corresponds to a form of signature 
N,  then z, corresponds to  signature -N,  and our invariant is N(x, - To). 
Thus the torsion free par t  of L;(Rn, a,, 1) is 

the group of imaginary characters. 
To conclude our discussion of a, ,  observe that  if we extend to Cn as a 

conjugate linear map, it remains a positive anti-involution, and thus preserves 
each summand. Hence the C-linear extension interchanges the summands 
corresponding to x and Z. 

We now extend the argument to the nonorientable case. Let w: n - 
{k l} have kernel n+; choose T with w(T) = - 1. For an irreducible complex 
representation of n ,  with character x and corresponding Cn-module V, either 

( 1 ) ~ ( n  - n+)  = 0 or equivalently, ~ ( g )  = w(g)~(g)  for all g, and V is 
reducible over Cn' to V, @? VZl or 

( 2 ) ~ ( n  - n+)  # 0 and V is irreducible over Cnf. 
Now ~ " ( g )  = ~(g)w(g)  is another irreducible character, and the anti-involution 
a: g-w(g)g-I interchanges the summands of Cn corresponding to and to x". 

It is not difficult to make a list of all possibilities occurring in the real 
case. 

subtype 1 a l b  l c  I d  1 e 

Summand of R;i- C2, Rzn Hz, R2, H, 
Summand of Rn- C, + C, R, + R, H, + H, C, C, 
Real Lie group u2, O d R )  Sp2,(H) SPZ,(R) O m  

subtype 2a 2b 2c 2d 2e 

Summand of Rn  C, + C, R, + R, H, + H, C, C2, 
Summand of Rnf c, R, H, Rn  H, 

Real Lie group GL,(C) GLn(R) GLn(H) O,(C) Spzn(C) . 
Here R, denotes a ring of n x n matrices over R. The pair of algebras 

is a graded simple algebra in the sense of [25]: take I as the involution g -+ 

w(g)g. We have the positive anti-involution a,(g) = g-I commuting with I, 
and study a = Ia,. The Lie group is {X: a(X) = X-I}. 

It follows that  we need signatures for hermitian forms corresponding to  
types l a ,  lb ,  l c  and for skew-hermitian forms corresponding to types l a ,  Id ,  
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le .  The cases can (in part) be recognised from the characters as follows: 

X, X xw Xw all distinct 2a 
X = X # X " = = ~ "  2b, 2c 

x = x ~ # x = x ~  2d, 2e 

x = x w # ~ = = j w  1 a 
- 

X = y = X  - A Zw lb ,  lc,  Id, l e  . 
In particular, characters with signatures are of type 1; i.e., are those with 

x = xw. Characters of type 0 or Sp are those with x = Xw. 
We turn  to an invariant formulation. Given a form q on the Rn-module 

V, we consider V as an Rn'-module and assign a signature to it as above to 
yield a character X, on n'. Although the splitting V = U' @ U- can be 
taken n+-invariant, we may suppose that  each element T of n - ;;.+ inter- 
changes U+ and U-.  Hence for A € n + ,  x,(T-'AT) = - x,(A). 

Conversely, each character x of n' satisfying this condition vanishes a t  
each summand corresponding to a representation of n+ which extends to one 
of n -i.e., those of type 2, and subtypes I d  and l e  (whether the irreducible 
representation itself extends, or twice it, does not matter). At  summands 
of subtypes l a ,  l b  and l c ,  the situation is almost as before, save tha t  the 
two representations of n +  which are interchanged by T must occur with 
opposite signs. Thus if we write Map, (n+, K )  for the set of class functions 
X: nf  - K satisfying the fur ther  condition x(T-'AT) = -x(A) for all A E  n+, 
the torsion-free par t  of Ld(Rn, a ,  1) can be identified via the signature with 

4xc (Map, (n+, R)). 
Finally, we consider L, in the nonorientable case. Again we define the 

signature by restricting to n f ;  again it belongs to  Mzp,, and takes imaginary 
values only. Now for type 2, the irreducible complex character of n' extends 
to one of n ,  so cannot contribute to Map,. For subtypes l b  and l c ,  the char- 
acters are real. For subtypes I d  and l e  however, we have a representation 
of n with real character whose restriction to n' breaks up as x @? Z; the 
twisted characters are  generated by x - X. Now the least value of the 
signature corresponds (for types l a ,  Id,  le)  to the Rn-mdule  4C2", 4R2", 2H". 
These restrict to Rn+ -modules 4C" + 4Cn, 4C", 4Cn. Thus in each case, the 
twisted character is divisible precisely by 4. 

We summarise as follows. 

THEOREM 2.2.1. I n  the orientable case (w = I ) ,  we liave 

LZRn, a,, 1) 2: 4x-d (Map, (n, R)) , 
L:(Rn, a,, 1)ltorsion Z 4~; '  (Map, (n, iR)) 
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and  otherwise 
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L,S(Rn, a ,  1)ltorsion z 4~:' (Map, (nf,  R)) , 
Lf(Rn, a ,  1)ltorsion z 4~; '  (Map, (nf,  iR)) , 

where 

xc: Rcn - Map, (n, C) (similarly for n+) ; 

Map, denotes class functions, and  Map, denotes those satisfying 

x ( T - ' A T ) = - x ( A )  f o r A e n f ,  T E X - n ' .  

When looking for signatures, we can restrict to  summands of R n  corre- 
sponding to characters x satisfying x = x W ;  those summands of type 0 or Sp 
have x = Xw. 

2.3. Modular representations 

In order to compute the groups L,(z ,~)  we shall need some information 
on modular representations of n. First consider the (easy) case when p does 
not divide I n 1 .  Then ~ , n  modulo its radical is just the group ring F,n, which 
is already semisimple. We can improve somewhat on this by the following 
argument. 

Let B be a p-block of n ,  which we can consider as an algebraic direct 
summand of ~ , n .  We need not assume p % 1 n 1, but only that  B has trivial 
defect group (in the sense of Brauer: to conform to the terminology of Section 
1 we should introduce the Green functor as  in [13]). Then according to Green 
[13], B is projective as module over ~ , ( n  x n); or equivalently, over its 
enveloping ring BE = BOl' @i, B. But then B is a separable algebra over Z, 
in the sense of Auslander and Goldman [3]. It follows from [3] that  the 
centre C of B is the ring of integers in an unramified extension of Q,, and 
from [3], [6], [2] that  B is a matrix ring over C. 

In particular, if p % 1 n 1, a decomposition of ~ , n  as direct sum induces 
one of F,n. Moreover, given an antistructure (Zn, a ,  I ) ,  corresponding sum- 
mands have the same type. For as  is unramified over z,, if a is nontrivial 
on C, it also is on C. In the case when a is trivial on C, if (C, a, u,) is an 
antistructure then ua = 1,  u, = i l  and clearly if u, = i l  then both (B, a ,  u)  
and (C, 1, a,) have type 0; if u, = -1, both have type Sp, provided p is odd. 

In fact  the above (with a few tricks) will suffice for most of the calcula- 
tions in this paper, but we can give some results of a more general nature. 
For any modular representation of ;z, its Brauer character is an element x 
of Map, (n, C) satisfying the further condition that  for g e n with p-regular 
part  g,,,, ~ ( g )  = ~(g,,,). Equivalently, choose k such that  if I n I = pab with 
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p i; b, then k - 0 (mod pa) and k - 1 (mod b). Then g,,, = gk and ~(g.,,) = 

x(gk) = Tkx(g) where Tk is the Adams operation [I]. Our condition on can 
be rewritten Tkx = X. Note that  Tk is idempotent on Map, (n, C), hence on 
Rcn. 

We now introduce some notation. Write Rc(n, p) for the image of Tk 

(k as above) in Rc(n). For q = p', let F, be the finite field with q elements, 
Kq the (unramified) extension of Q, by (q - 1)" roots of unity, Â , the integers 
of &. Now for any K of characteristic 0 we may regard R,(n) c R,(n) c 
Rc(n). According to [Rat], we now have 

We now extend to the unitary case the argument of [Rat], to prove the 

THEOREM 2.3.1. F o r  p odd, LP(z ,~)  - L:(Q,~) i s  injective. 

The reader may omit this section as an alternative proof may be given using 
induction theorems and the arguments of (4.1). 

First, let S be a semisimple algebra with involution a over the field k. 
Write R ( S )  for the Grothendieck group of finite S-modules, and RO(S, a ) ,  
RSp(S, a )  for the subgroup generated by those which admit a-hermitian 
resp. skew-hermitian forms. We call S spli t  if it is a sum of matrix rings 
over k, and (S, a )  split if in addition, for each a-invariant summand of S ,  a 
induces the identity of its centre (i.e., no summand has type U). 

If S is split, there is a natural homomorphism 

which arises as follows. If s E S ,  and M is an S-module, then multiplication 
by s is a k-endomorphism of M, with determinant a,(s) E kx .  The map M- 
a,(~) induces a homomorphism a ( ~ ) :  R ( S )  - kx ,  and i t  is not now difficult to 
obtain the above description. 

Now assume (S, a )  split, and consider the homomorphism 

H*: Hom (RO(S), kx)  - Hom (R(S),  kx)" 

induced by the hyperbolic map H: R ( S )  - RO(S). Here a acts trivially on 
k4:  H(x) = H(xm) for x E R(S) ,  so the image of H* is indeed a-invariant. To 
describe H* in more detail, decompose (S, a )  into simple summands. 

Type GL. R ( S )  is free abelian on two generators, x and x". RO(S) is 
infinite cyclic, admitting a generator y with H(y) = x + x". Thus H* is an 
isomorphism. 

Type Sp. R(S)  is infinite cyclic. RO(S) is the subgroup of index 2. H i s  
an isomorphism, hence H* is also. 



24 C. T. C. WALL 

Type 0. RO(S) = R(S)  is infinite cyclic ( a  is trivial). H i s  multiplication 
2 

by 2. So H* can be identified with the squaring map kx - k". 
We define maps 

r,: Lf(S, a )  - Cok H* , 7,: G ( S ,  a )  - Ker H* 

by restricting to summands and taking spinor norm in the first case, Pfaffian 
in the second.. As for K,(S) above, one sees that  Y, and r, are natural for 
automorphisms of (S, a )  and for base field extensions. If k is a finite field, 
r, and r, are  isomorphisms (recall, (S, a)  is still split); if k is a (p-adic) local 
field, 7, is iso and r, injective (but summands of type Sp may also contribute 
to Lf).  

In  the non-split case, choose a Galois extension 1 of k, with group G, 
which is a splitting extension of S resp., of (S, a ) .  If k is finite or local, 
then 

Kl(S) r Z(S)" E (z(S 8, r Hom, ( R ( S  8, I), 1') . 
For the unitary case we have similarly (but again ignoring in the local case 
any Hasse invariant Z/2's in Lf), that  if So is the sum of the simple summands 
of S of type 0 ,  LP(S), Lf (S)  are naturally isomorphic to the cokernel and 
kernel of the squaring map on Z(S0)", i.e., of 

H*: Hom, (RO(S @, I), 1 ") - Hom, ( R ( S  8, I), I ")" . 
A 

We now begin the proof of the theorem. First suppose k = F,, K = K, 
are  splitting fields for n ,  so that  

K1(Kn) E Hom (R,n, K x )  , K,(kn) E Hom (R,n, k") . 
Then the composite 

d*:  Hom (R,n, kx)  r K,(kT) G ,,K,(An) ---+ ,,K1(Kn) r Hom (R,n, , ,KX) 

is ([Rat]) induced by the lifting isomorphism kx G ,,K" and the decomposi- 
tion map d: R,n - Rkn. Since d has a right inverse b induced (as above) by 
the Brauer character, d* has a left inverse, so is injective. 

Now in general we choose q so as to have splitting fields as above; then 
the commutative diagram 

where the verticals are injective, tells us tha t  the top map is injective, as 
desired. 
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For the unitary case, again choose r so that  k = F,, and K = K,,. are 
splitting fields for n ,  with A the integers in K. As p is odd, L:(A;r) G 
L:(G). Consider the diagram: 

0 - L@%) -- Hom (RO(G), k") - Hom (R(%), k")" -+ L;(kn) - 0 

I " I I I 
0 - LS1(Kr) - Hom (RO(Kjz), K') - Hom (R(Kjz), K ")" -+ LP(Kn) -+ 0 . 

Here the horizontal sequences were obtained above, and the vertical maps 
are defined by lifting to A in each case and then mapping into K. For a 
study of the decomposition map on RO to justify this, see Quillen [16]. As 
all our constructions were natural, the diagram commutes. Now replace K" 
by A" in the lower sequence. As A" n (Kx) '  = (A*)2, the map Ax/(A")2-+ 
Kx/ (K")Vs  injective, so the cokernel of the middle homomorphism is a sub- 
group A of Lf(Kjz). But now the obvious reduction homomorphism A" -+ k" 
is inverse to the inclusion described above. Again the Brauer lifting induces 
a one-sided inverse to the decomposition map. This induces a direct sum 
splitting of the diagram 

Hom ( ~ ~ ( k j r ) ,  k") - Hom (R(E), kx)" 

Hom (RO(K;r), A") - Hom (R(Kjz), A')" . 
If now G is the Galois group of k = Fp7. over Fp, which we may identify 

with the group of K = K ~ ,  over Q,, we have actions of G on k' and A" com- 
patible with all the maps above. Thus we have an induced diagram of G- 
invariants, Hom,. This induces embeddings of the kernel (resp. cokernel) of 
the upper horizontal map as a direct summand of the kernel (resp. cokernel) 

-- 
of the lower. But for the upper map, these are L:(F,n) r L,S(Z,X) and 
LB(=) E LP(Z,T); for the lower, we have a direct summand of L ; ( Q ~ )  
and-by the same remark as in the split case above-a subgroup of L S ( Q ~ ) .  

This proves the theorem for i = 1, 2; for i = 3, 0 the result follows by 
interchanging 0 and Sp throughout. The same proof deals also with the 
nonorientable case, provided we extend Quillen's theory to show that  b, d 
respect RO, when defined with respect to a in place of a,. 

2.4. L-theory of p-hyperelementary groups, p odd 

According to the main exact sequence, the localisation of Lz(Z;r) a t  odd 
primes coincides with that  of Li(Rr) ,  which is fully determined in (2.2). The 
localisation a t  2 (and, in particular, the %torsion subgroup) satisfies induction 
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with respect to 2-hyperelementary groups, by (2.1), so i t  suffices to do fur ther  
calculations for such groups. 

An alternative proof (i.e., not using the fact  that  the defect groups of 
the localisation a t  2 of UJZ) are 2-hyperelementary) can be given using a 
direct calculation of L%(Zn) where n is p-hyperelementary with p odd. As 
this seems of some interest, we now give it. 

We begin with a structure lemma. 

LEMMA 2.4.1. Let n be p-hyperelementary, p odd. Then n i s  the direct 
product of a cyclic 2-group and  a group of odd order. 

Proof. By definition, n is an extension of a cyclic group by a p-group. 
Hence i t  has a normal cyclic Sylow 2-subgroup o. Since o has no automor- 
phism of odd order, it is central; since its order is prime to its index the  
extension of a by n/o  splits. 

For our first arguments, we can generalise the hypothesis and consider 
any direct product o x p,  with p of odd order. We will study L-theory of 
A(o x p) = R relative to  the subring Ao = R,. 

Over C the irreducible representations of a x p are tensor products of 
ones of a and ones of p: the representation is self-conjugate if and only if 
each factor is. But, by a well known theorem of Burnside [8, 2221, the only 
self-conjugate representation of p is the trivial one. So all representations 
of o x p, other than those of a ,  have type U o r  GL. Hence 

CLP(S, So) = 0 .  

Thus from the main exact sequence follows 

L:(R, R ~ )  E L:(R, R0) @ L:(T, T ~ )  . 
It also follows, since modular representations can be 'embedded' in com- 

plex ones via the Brauer character (e.g., by (2.3) above), tha t  the correspond- 
ing assertions hold there also. Hence 

L:(R,, R,,) = LP(R,, R,,) = o (P odd) , 

so that  

L,S(R, Ro) = LF(& &) @ LP(T, To) . 
Further,  

L;(R~, Rz0) = L:(R~, Rz0) = o , 
by the same argument. 

We now restrict a to be an abelian 2-group. 

THEOREM 2.4.2. Let o be a n  abelian 2-group and  p have odd order. Then 
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L:(Z(a x p)) = Lf(Za) @ &R(a x p) and  similarly for Lr .  The last sum- 
mand i s  0 for i odd; for i even, i t  i s  free abelian, and  detected by signatures. 

Proof. If we can show L:(R,, R,,) = 0 (also Lf), then the relative group 
L$(R, R,) (resp. L f )  maps isomorphically to L,Y = LP(T, TO). The description 
of this latter follows from (1.2), and is a s  described: it suffices to  note tha t  
all these representations have type U or GL. Now since mapping each 
element of p to 1 gives a homomorphism Z(a x p) - Za compatible with the 
involution, the groups split as direct sums. 

Now we use the exact sequence 

. . . H~+~(K,(R,)Jx) - L~(R, )  - L;(R,) . . . 
and the isomorphism 

K,(R,)JX z Nrd ( ~ , ( a  x p)") . 
For Y we factor out also the image of F ( o  x p), but  since p has odd order, 
this is now seen to be equivalent to the case of X. We have reduced to a 
question on units in group rings, to see tha t  

Nrd (z,o)" c Nrd (z,(o x p))" 

induces a mod 2 cohomology isomorphism. 
But Z,(O x p) = Z,o @ z , ~ ,  and since p has odd order, z , ~  is unramified 

over z,, hence is a sum of matrix rings over finite unramified extensions A, 
of Z,. Also the involution g - g-' acts nontrivially on each A, save the trivial 
representation. Since taking matrix rings does not change K, (or Nrd), i t  
suffices to show that  (Ao)" is cohomologically trivial. But this follows from 
[UGR, (11.3)], as recalled in (3.2.3) below. 

COROLLARY 2.4.3. F o r  p of odd order, LP(p) = L,(l) @ E , ( R ~ )  i s  detected 
by signatures and  ( i  = 2) the classical Arf invar iant ;  i t  vanishes for i odd. 

An equally complete description for  L,(a x p) must wait on the calcula- 
tions of the next chapter. 

The same result was obtained also by Bak [4]. 

3. Abelian 2-groups 

Although the results obtained here are  in principle contained in those of 
Chapter 4, the details are considerably simpler and the results more explicit. 
The reader is strongly advised to read this chapter before attempting the 
next. 

In (3.1) we present a reformulation of our method which will be more 
convenient for the details of the calculation. Next, (3.2) is devoted to  a 
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description of the results of [UGR] which are needed for Chapters 3 and 4. 
Then in (3.3) we give the full calculation for the orientable case, following 
the pattern of (1.4)-(1.6), as modified in (3.1). The nonorientable case splits 
into two subcases which are treated respectively in (3.4) and (3.5): to com- 
plete the argument in (3.4) we also need an argument of L. R. Taylor [23]. 

3.1. Relative groups and notation for calculations 

We now present a technique to allow the simplification of many calcula- 
tions. This depends on the development of a relative L-theory by Ranicki 
[19]. We shall not need the details of this theory, just its existence. Given 
antistructures (R, a ,  u) and (R', a ' ,  u'), invariant subgroups X c  K,(R) and 
X' c K,(Rf), and a ring homomorphism f: R -- R '  with f (u) = u', f 0 a = 

a' 0 f and f,(X) c X' ,  we know there is a naturally induced map f,: LB(R, 
a ,  u) --+ L;'(Rf, a', u'). The relative theory yields groups Lp(f)  (depending 
on all the above) and an exact sequence 

. . Lp(R) - LP(Rf) - Lp( f )  ---t Lp-,(R) . . , 
natural for morphisms preserving all the structure. 

Denote our ring inclusions as follows: 

Then our main exact sequence should be interpreted as an excision isomor- 
phism L,(i) r L,(;) or equivalently, L,(i,) G L,(i,). We can also now 

identify CL,(S) = L,(~s).  We wish to study R-- R,. Denote the obvious 
3 

projections by 
A 

p n : ~ - ~ 2 ,  p S : s - s 2 ,  

and consider the exact sequence of the triple 

viz . 

(exactness follows from general principles; see e.g., [24]). Now our excision 
isomorphism shows tha t  
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and as (p,, 0) is the projection of a direct sum, 

(writing R,,, for Ker p,). Thus our exact sequence reduces to 

so the relative groups L,(p,i,) of R - R, are extensions of Cok Y by Ker Y 

(in appropriate dimensions); if, in particular, Ker Y is torsion-free (as i t  
normally is by (2.3.1)), hence free, we deduce 

L,(R - R,) r Cok Y, @ Ker 7,-, . 
A more real advantage is the following. Suppose R = Zn, and consider 

the diagram 

where X = SK,(R), X, = SK,(&) as usual and Y, p, are  the sums of these 
with the image of F z ,  isomorphic to {Fl} @ z/d (n' the commutator sub- 
group). Then both verticals lie in exact sequences with the same third term, 
H*({Fl} @ n/nf) ,  and so define the same relative groups. Therefore excision 
holds, and the horizontal maps also define the same relative groups. So 
L,(p,i,) above yields the relative group if we use X o r  if we use Y, and we 
can obtain LY(R)  directly, short-cutting the calculation via LX(R). Our 
procedure will thus involve computing Y,, hence L,(R --. k,), then computing 
L,(R,) and finally +,: L,@,) - L,(R --. 2,)  and hence L,(R). 

For our main calculations, we will determine L:(R - R,) by computing 
the homomorphisms Y,; determine L:(R,) from the exact sequence relating 
it to L:(R,); and then finally compute $r,: L;(R,) -- Lg(R - R,) in order to 
determine LZ(R), a t  least up to extensions. 

3.2. Recall of calculatioiis of 2-adic units 

We now need some of the calculations of units in 2-adic group rings, 
especially of abelian groups, made in [UGR]. It will be convenient to list 
here all the results of this kind which will be needed in later sections. 

First we quote some results on cohomology of unit groups. These are 
copied from [UGR, 5 111. Let n be an abelian 2-group, A an unramified 2- 
ring-i.e., Galois extension of z,, or equivalently, ring of units in an unramifi- 
ed extension of Q,. We have an involution a of An, which may be trivial o r  
nontrivial on A, and acts on elements of n by g - w(g)g-' for some homomor- 
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phism w: ;r - {kl}. Then we are interested in computing Hi(An)". Note 
that  here 

K,(A;r) r K[(An) r (Ax)" . 
Write p for the subgroup of elements of order 2 in x (sometimes also 

denoted ,x), F = A/2A for the finite residue field. Then F x  has odd order, 
so is cohomologically trivial. We first consider Hi(Fn)".  This vanishes if a 
acts nontrivially on F (or equivalently, on A), so assume trivial action. Now 
using the exact sequence 

1 -KO - (Fp)" A F" - 1 

( E  the augmentation), we find 

Hi(Fp)" G HYK,) r K, . 
To state the next result, write x as a sum of cyclic groups with gener- 

ators TI, . . ., T, where TI, . . . , T,-, have orders > 2 and the last s generators 
have order 2. For 1 2 i 5 r - s ,  let U, be a power of T, which has order 4. 
Finally observe tha t  since !Q: F - F defined by Vx = x + x2 is an additive 
homomorphism with kernel {0, I}, its cokernel also has order 2: choose /3 not 
in the image. 

PROPOSITION 3.2.1. (i) K, = Ho(Fp)' --. H0(Fn)"  i s  injective; a base for 
the cokernel i s  {I + P(T, + T;'): 1 5 i 5 r - s}. 

(ii) The kernel of K, = H1(Fp)" H1(Fn)" i s  p n x2; a base for the 
cokernel i s  {Ti, 1 + @(Us + U,-I): 1 S i S r - s}. 

Now if n contains an element T of order 2 with w(T)  = -1, we have 
n = n, @ n, where x, = Ker w and n, is generated by T. Then the composite 

T = l  
(Ax)" - (Ax,)" - (Fn,)' induces cohorno10,~y is3morphisms; so the calcula- 
tion follows from the above proposition. We excluds this exceptional case 
in what follows. 

PROPOSITION 3.2.2. If a A i s  nontrivial ,  H i ( l  + 2An)' = 0. If i t  i s  
tr ivial ,  H1( l  + 2An)" z {kl} and  H O ( l  + 2An)" i s  a (split) extension of 
H O ( l  + 2A)", of order 2, represented by (1 + 4P), by (Fp)+. 

PROPOSITION 3.2.3. If a A i s  nontrivial ,  Hi(Ax)' = 0. If i t  i s  t r iv ia l ,  
H1(An)" r { F l } @ K e r  w/n2 and  HO(An)" i s  a (split) extension of G (w trivial)  
or G / { i l }  (w nontrivial) by Ho(Fn)'.  

Here, G is a group of exponent 2 with basis represented by 1 + 4,@, 1 + 
2PT, ( r  - s < i I r ) ,  and 1 + 2a ,  where a runs through an additive basis 
of F .  
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In this last case, we may regard Hn(Ax)' as 'made up of': 

Hn(A') with basis 1 + 4P and the 1 + 2a ,  perhaps with 
the class of -1 factored out, Hn(Fp)" E K,, and n/n2, 

with basis {l + p(T, + T;'); 1 =( i 5 r} . 
For our further results we obtain a much fuller description of the units, 

but  under the extra condition that  n is elementary (x = p). Here we can 
relax the condition that  A be unramified: it can now denote the integers in 
any 2-adic field. 

Again write {T,, 1 =( i 5 r} for a basis of x ;  let A = Hom (x, { ~ l } )  be the 
dual group and {x,, 1 5 i =( r }  the dual basis. Then the product TI . . . T, 
induces the character E of A with E(x,) = -1 for each i. Now each x E A 
induces a ring homomorphism z: An - A, and the collection of all the z gives 
an  isomorphism of K x  with the product over A of copies of K; hence mono- 
morphisms of An and of (Ax)'. 

To describe the image, we change coordinates. For I c {I, . . ., r}, write 
j I i for the cardinality of I and let o, be the subgroup of A generated by the 
xz, i E I and define f,: (Ax)' --+AX by 

tz(u) = TI {%(u)~(T': X € a,} . 
There are also simple formulae expressing the z in terms of the E I :  these may 
be considered as new coordinates on the product (over A) of Ax .  

PROPOSITION 3.2.4. The image of (Ax)" i s  the subgroup given by a, - 1 
(mod 2 '  ) for al l  I c {I, . . ., r}. And the un i t  i s  - 1 (mod 2"Ax) if and  only 
if each a, - 1 (mod 2 '  '"). 

For A = z,, and generally if the square of any unit is = 1 (mod 2), we 
can omit E in the above. 

An application was also outlined in [UGR 5 121. Let n be any finite abelian 
2-group, 5 = x/x2. Consider (a-) symmetric units in x;  when w = 1, we have 
elements 

%47)s: s2 = 11 + C{b(g)(g + g-l)} 

whose images in AZ are the elements Za(h)h, where a (h )  is even unless h E 

Im(,n -+ Z) = o,  say. Such a unit of A5  is the product of a unit of Aa and 
a unit - 1 (mod 2A;;f). If we choose TI, .  . . , T, above to be a base of a ,  we have 

COROLLARY 3.2.5. The image i n  (AZ)" of symmetric uni ts  of An i s  
characterised by 

a, - 1 (mod 2l') for al l  I , 
a, r 1 (mod 2"8+') if I g {I, . . ., s} . 
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3.3. The orientable case 

Let n have 2-rank r .  Every irreducible complex representation of x has 
degree 1. Irreducible real representations have degree 1 or 2: those of degree 
2 have type U, those of degree 1 type 0. These form Hom (x, { k l } ) ,  of order 
2'. Thus S = Qn has 2' summands Q; the rest have type U. 

Now L P ( ~ )  = z'L~(Q), and LB(T) is a sum of 2' copies of Ls(R) and (for 
i even) a group C of signatures, corresponding to representations of type U. 
Also, CLP(S) is a sum of 2' copies of CL?(Q). 

For p an odd prime, ~ , n  is unramified, so breaks into a sum of 2' copies 
of Z, and summands of type U. Thus we can compute r , :  L~(R,,,) @ LP(T) - 
CLB(S): it is a sum of 2' copies of Y ,  for R = Z, together with C when i is 
even. So r,  is injective for i odd; its kernel is C for i = 2, and is C plus 2' 
copies of 82  for i = 0. And r ,  is surjective except for i = 1, when the 
cokernel is a sum of 2' copies of 212. 

A 

PROPOSITION 3.3.1. L;(R-+R,) = L;(R-+R,) = 0 (p  = 0, 2), C(p = 3), 
and a s u m  of 2 with 2' copies of (82 @ 212) if p = 1. 

Since n is a 2-group, R, = ZT = 212, so L:(R,) = L:(R,) Z/2 for all p. 

Now by (3.2.3), H~(K,(R,):Y) = 0, and so H~(K,(R,)IY) has rank 2'. We can 
now directly determine L;(R,) and L;(R,). I t  is easiest to observe that  (when 
x ---t 1) Z, is a retract of R,, so that  L;(R,) is the direct sum of L~(z , )  and a 
relative group, which is thus an  elementary 2-group of rank 0, resp. 2' - 1, 
for p even, resp. odd. Also, we recall from 1.4 that  L;(z,) Z 0, Z/2 + 212, 
212, 212 for p = 0, 1, 2, 3 (mod 4). 

Now we must compute the map +,: LY(R,) - LP(R - RJ.  We have the 
commutative diagram 

and the map L;s(S^,) - L t ( R  - R,) is computed as follows. Each group is a 
sum of 2' components corresponding to the irreducible representations of n 
of type 0. For each component, 

and the map is given on the subgroup of units by 

(i.e., u - k 1 mod 8 form the kernel). 
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Now the image of H X ~ ( R , )  = H@,)x, or equivalently of the symmetric 
units of R, = Z,Z, is described by (3.2.5). If the notation is changed from the 
- 
~ ( u )  to the ;I(U), the images of symmetric units are characterised by 

a, r 1 mod 2l' if I c s , 
a, - 1 mod 2' " otherwise . 

Thus the value mod 8 may be nontrivial only if I I I 5 1 or I I = 2 and I c s, 

yielding 1 + r + cases: this is the rank of the image of +,. The exact (3 
sequence now shows 

THEOREM 3.3.2. F o r  R = Zn, n a n  abelian 2-group of rank  r ,  orientable, 

The groups announced in [L] are obtained by cancelling the summands 212 
in L, and L, generated by .r (or coming from Z). 

Some of these results have been independently obtained by H. Bass 161; 
note that  n is elementary if and only if s = r. Observe in particular the 

COROLLARY 3.3.3. If n i s  cyclic of order 2" the surgery obstruction 
groups a r e  given (orientable case) by 

Lo E 2 @ 8 2  @ 82  , L, = 0 , L, r 2 @ 212 , L3 z z/2  

where C has (2"-' - 1) components, each isomorphic (via the signature) to 42. 

Combining this with the results of the preceding chapter, we see tha t  
for a p-hyperelementary group n (p  odd) of even order, L,(n+) and L,(xf) 
are torsion-free, the torsion subgroup of L,(n+) has order 2, and is detected 
by the classical Arf invariant, and L3(af)  E 212. 

3.4. The nonorientable case 

First observe that  we can write n = no @ x,, where w no is trivial, and 
n, is generated by T of order 2k, say, with w(T) = -1. For if n is expressed 
as a sum of cyclic groups with generators Ti, w(TJ = w(Tj) = -1, and T, 
has order a t  least that  of Ti, we replace Ti by T,' = T,T,; and so on by 
induction. 

Complex representations coincide with the homomorphisms X: s --. C y  
which are  their characters. By (2.2), characters of type 0 or Sp are those 
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with x = X w ,  i.e., ~ ( g )  = ~(w(g)g-I) ,  or equivalently x(g2) = w(g). Characters 
with signatures are those which vanish on n - x+; clearly there can be none 
such. If k = 1, then T2  = 1, x(T2) = 1,  and w(T)  = -1, so there can be no 
characters of type 0 or Sp. We defer this exceptional case to the next section, 
and now suppose k 2 2. 

For characters of type 0 or Sp, x 1 no is a homomorphism into { F l )  and 
x(T)  = +i. The corresponding summands of RX (or CX) all have type O- 
there are no skew-symmetric bilinear forms on a 1-dimensional vector space. 
Moreover, the corresponding summands of R n  (resp. Qn) are each isomorphic 
to C (resp. Q[i]), and we can fix the isomorphism uniquely by requiring 
X(T) = i. 

As in the orientable case, since RP is unramified for p odd, RP and 9, 
decompose following the decomposition of S, and the components not of type 
0 do not contribute to the L-theory. If n has rank r ,  we have 2'-I summands 
of type 0, each isomorphic to Q[i]. Thus following the calculation a t  the end 
of (1.6), 

PROPOSITION 3.4.1. L;(R --. R,) = L$(R -+ R,) i s  a sum of 2'-' copies of 
L i (A -+ 2,) (where A = Z[i]), which i s  isomorphic to 212, L/2L, 0, 0 for p = 

0, 1, 2, 3 respectively. 

As n is a 2-group, we again have R, z F,, so L,K(R,) G LpK(R2) G 212 for 
all p. Now by (3.2.3) (observe that  we have excluded the exceptional case), 
H 1 ( K 1 ( k 2 ) / ~ )  = 0 and H ~ ( K , ( ~ ~ , ) / Y )  has rank 2'. The map 

L,K,(&) - ~ ~ ( ~ , ( f i , ) l  Y) 

is, as usual, computed by lifting a form with nonzero Arf invariant form E, 
and evaluating the determinant: this is trivial for k odd, but  not for k even. 
To compute extensions, observe (again as usual) that  L,K,_,(R,) is represented 
by the interchange T of e and f in a hyperbolic plane. Now T" Fl represents 
in either case the trivial element of HO(K~(R,)IY) (here the result would be 
different if X replaced Y), so the extension splits. 

PROPOSITION 3.4.2. If r = 1, then L;(R,) 2: 0, 212 + 212 + 212, 212, 212 + 
212 for p = 0, 1, 2, 3. I n  general, this i s  correct for p even; for p odd we add 
a n  elementary 2-group of rank  (2' - 2). 

The final remark uses the splitting induced by the retraction of n = 

no @ n, on n,. 

Now the map 
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is zero for p + 1 since one of the groups is zero. The same commutative 
diagram as  in the orientable case shows that  the image of +, is the image of 
the symmetric units of R, via the map into Lf(9,). We may compute this 
image by working in the group ring 

z,[ T/ T2  = - l][no/n,2] = A^,[no/n,2] . 
The image of the symmetric elements of ~ , n  is the set of elements 

Z{(ah + ibh)h: h E no/n,2} , 
where b ,  is even, and ah is even unless h is the image of an element g of no 
of order 2. Thus the image of the symmetric units is the product of the 
group of units of A^,[no/n,"] which are - 1 (mod 2) and the group of units of 
A 

Z,o, where o = Im (,no - no/n,2). 
We now compute using (3.2.4). Take a base {xi: 1 5 i 5 r - I} of 

Hom (no, F 1 )  such tha t  {xi: s < i 5 r - I} form a basis for the subgroup 
annihilating ,no and define :, as  in [UGR, § 121. Then the image of the group 
of units r 1 (mod 2) is given by 

a, r 1mod2"lf1 for all I c { l ,  ..., r - I} .  

The image of the group of units of ~ , o  is given by 

a, = 1 for I@ {I, ..., s} ; 
A 

a, E Z,", a, - 1 mod 2!I! for I c {I, . . ., s} . 
The class of a, in L/2L is determined by its congruence class mod (4 + 

49 ,  hence by its class (mod 8). Checking cases, we find that  

the class is arbitrary only if I = 8 ; 

we obtain the classes of 1 ,  5 if I I1 = 1 or if 1 Ii = 2 ; 

Ic {1, . . ., s} ; 
the class is trivial otherwise . 

The image thus has rank 2 + ( r  - 1) + (i) = 1 + r + (i). 
We can now assemble our results, ,using the exact sequence 

~ . . . L;(R) -+ L;(R,) 2 L;(R - R,) - L;-,(R) . 
We have 

Lr (R)  E Cok +, , Lf(R)  E Ker +, , 
L;(R) E L;(RJ E z/2  , 

and LT(R) is an extension of LZ(R- R,) by L~(R,). 
In [23], Taylor makes a very useful observation. The result can be 

appreciably sharpened by reformulating the argument in terms of our L- 
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theory, as introduced in [F] (see also (1.1) above). 

THEOREM 3.4.3. Let (R, a ,  1) be a n  antistructure,  and  u a un i t  of R 
such that  u"u = E = F 1. Then inner  automorphism r, by u induces multi- 
plication by E on A,(R, a ,  1) and  hence on any  L?(R, a ,  1). 

Proof. For any based quadratic form (P, q, v) of rank n, there is an 
obvious isomorphism of r,(P, q) on (P, ~ q ) ,  whose determinant with respect 
to r,(v), v is (u)". Thus if (P, q) represents 6 E Ko%9(R, a ,  7) (here 7 = F I),  
r,(P, q) represents nz-(u) + E S S .  Since 

A,,(R, a ,  1) = Ao(R, a ,  ( -  l )k )  = z 0 3 9 ( ~ ,  a ,  (- l),) 

corresponds to n = 0, the result follows for i even. 
For the odd case, let X, be the element of GL,(R) given by multiplication 

by u. Then for any automorphism @ E U(Rn), one can easily verify r,(@) = 

H(X,)-'@,H(X,), where 0, = @ if E = 1, and if E = -1, @, = @' = iC1@i is 
obtained from @ as in [F, Lemma 51: here i is 1 on R" and -1 on (R")". The 
effect on the commutator quotient A,(R, a ,  7) of GL(R, a ,  7) is thus the 
identity if E = 1,  and @-.Or, or equivalently (loc. cit.), change of sign, if 
E = -1. 

The following immediate consequence will be referred to in the sequel as 
'Taylor's lemma'. 

COROLLARY 3.4.4. If R has a central un i t  u = -u-", L$(R, a, 1) has 
exponent 2. 

We can apply this to the above situation, taking u = T. It follows that  
the extension determining LT(R) splits, hence 

THEOREM 3.4.5. Let n be a n  abelian 2-group of rank  r with s summands 
of order 2, w: x - {Fl} nontrivial  but w / ,x tr ivial ;  R = Zx, a the involu- 
tion induced by g -+ w(g)g-', Y the subgroup of K,(R) generated by +n and  

SKl(R). Then L,Y(R) i s  a n  elementary 2-group, of r ank  2' - 1 - r - 
2' - r - (i), I., 2. + 2.-l for p = 0, I, 2, 3. 

The surgery obstruction groups are deduced by cancelling 212 (gener- 
ated by z) when p is odd. The most interesting case is when n is cyclic (so 
r = 1,  s = 0); the surgery obstruction groups are then 0, 0, 212, 212 + 212. 

3.5. The exceptional case 

We return to the case excluded above, when no = Ker w is a direct sum- 
mand of n. As we observed in (3.3), there are then no characters of type 0 
or  Sp, hence no such summands occur in S,  g,, or (for p odd) R,. Thus 
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CLS,(S) = 0 and by the main exact sequence, 

L$(R) r L-~(R)  @ LS,(T) . 
Further, L:(R,) = 0 for p odd and LS,(T) = 0 as there are,  moreover, no 
signatures. So L$(R) z LI(R,), and similarly for Y. 

Now R, z F, so, as above, L;(R,) E 212. To deduce L" and L Y ,  we recall 
that  by (3.2), the composite 

(z2n)" - (z2n0)' - (F,n0)" 

induces cohomology isomorphisms. Thus if n has 2-rank r ,  and s summands 
of order 2, Hi(z2n)' has rank 2'-I - 1 + r - s ,  by (3.2.1). 

First suppose n, trivial. Then H i ( ~ , n 1 ) "  = 0. Thus 

L;(R) = L,Y(R) = L;(R,) = L,Y(R,) E 212 . 
The groups for p even are detected by the Arf invariant. Those for p odd 
are  generated by the class of z: the corresponding surgery obstruction group 
vanishes. 

In general, the retraction of n on n, with kernel n, is compatible with w, 
hence the L-theory splits. Thus 

THEOREM 3.5.1. Let n be a n  abelian 2-group of rank  r with s summands 
of order 2, w: n - {Fl} such that  w(T) = - 1 for some T E n with T2  = 1. 
Then L;(Zn) E E@Z/2, where 212 i s  a s  above (for n,) and  E i s  a n  elementary 
2-group of rank  2" - 1 i- r - s. Also Li(Zn) z E' @ 212 similarly,  where 
rank  E' = 2'-' - s. 

F'or the last clause we observe (as usual) that  no - H1(F,n,)" has kernel 
n:, and that  k n l  maps to zero in H1(z2n)", so E' = H'(K,(z,~)/Y) has rank 
( r  - 1) less than that  of E = H1(K1(~,n)) .  A corresponding result must hold 
for Ho by a Herbrand quotient argument (one may also compute directly). 
The above statement corrects the result announced in [L]. 

4. 2-hj  perelenientarj groups 

In the first section of this chapter, we follow an idea from [UGR] to 
prove a 'splitting theorem' which splits the calculation into a sum of other 
groups, each simpler to compute. 

F'or the rest of the chapter we consider only the case where the Sylow 
2-subgroup is abelian, and slog through the full calculation step by step. At  
the very end, we are caught in tricky questions involving class groups, where 
no simple formulae can be given. 

More explicitly, in (4.2) we classify the types of summands that  arise. In 
(4.3) we compute L,(R,) in each case, and in (4.4) we compute L,(R - R,). 
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The map between these is discussed in (4.5); the technical part  of the discus- 
sion is amplified in (4.6) after some number-theoretic preliminaries; (4.7) is 
an attempt a t  a conclusion. However, the results are so complicated that  the 
reader who wishes to make effective use of them will need to understand the 
derivation, and not just a statement of results. 

4.1. Splitting theorems 

We have seen in the earlier chapters that  the calculations can be essen- 
tially reduced to the case when n is 2-hyperelementary: an extension (neces- 
sarily split) of a cyclic group p of odd prime order n by a 2-group a. The 
complexity of this case is alleviated by splitting theorems. 

Write p(n) for the set of prime divisors of n ,  and for P c p(n), write 
P' = p(n) - P. 

PROPOSITION 4.1.1. Let F be any functor from groups to abelian groups. 
Then F(n)  i s  a direct sum indexed by subsets P of p(n), whose P-summand 
depends only on the Hall (2, Pj-subgroup of x. 

Proof. Choose a Sylow 2-subgroup a of n. Let fp: n 4 n be the unique 
homomorphism which is the identity on a and on Sylow p-subgroups for 
p E P ,  and takes Sylow q-subgroups for q @ P to {I}. Then, clearly, f, 0 fQ = 

fprQ. Applying F yields a commutative algebra of endomorphisms F(fp) of 
F(n),  which induce the desired splitting. 

This can be seen explicitly as follows. For each p 1 n set A, = F(fpt) ,  
A, = 1 - A; and then for P c p(n) set 

A, HPBP 4 . a = nPep , 

Then the Ep are orthogonal idempotents with sum 1 and yield the desired 
splitting. Moreover, 

F(fp) = C {EQ: Q c PI 

so the image of Ep is contained in that  of the projection F(fp) of F(n)  on 
F(fpn), and depends only on the Hall subgroup fpn of n. 

Applying this to L-theory, where R = Zn, R = ZX, S = Qn, and T = 

Rn,  we obtain a splitting of the entire exact sequence 

. . . LI;(R) - ~ : ( f i )  @ Lf (T)  - CLf(S) - L,Y.,(R) . . . ; 
also of 

. . . LP(R) - LT(R) - Hi{Fn/n '}  . . . . 
However, the algebras S ,  3, T, and R, with q l; n split (following-as in 
[UGRI-the decomposition of Qp as sum of fields) into summands-e.g., S(d)- 
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labelled by divisors d of n: the L-theory splits correspondingly, and this 
refines the above splitting since one sees immediately that ,  for example, 
E,L,(S) = .Z{L,(S(d)): p(d) = P) .  We claim tha t  this more refined splitting 
extends to the rest of the L-theory. 

To illustrate the idea, consider the second sequence first. Since the 
functor Hi(+n/n')  takes the 'same' values for n and its Sylow 2-subgroup o ,  
the splitting concentrates this whole functor into the summand P = 0. In  
fact this summand of the sequence is just the same sequence but with n 
replaced by a. At  the other summands we obtain L" = L y ,  so i t  suffices to 
concentrate further study on L". Note that  our more refined splitting will 
not further affect the summand P = 0 (corresponding to d = 1). 

Now consider the summand of the first sequence corresponding to the 
set P of primes. By the last clause in the proposition, it suffices to consider 
the case when P consists of all prime divisors of n. Let p E P (so p is odd), 
and write p, for the Sylow p-subgroup of p (or of n). Then 

~ : ( k ~ )  = L?(Z,T) rr LS(=) rr Lf(Z,n/p,) rr L ? ( Z , ~ / ~ , )  , 
where the third isomorphism holds since the augmentation ideal of p, lies in 
the radical. But the composite isomorphism is precisely F(fpr), where F is 
the functor F(n)  = L?(z,~).  Thus E,L?(z,~) = 0 for p E P. This leads one 
to guess the following. 

THEOREM 4.1.2. F o r  n as  above, there i s  a na tu ra l  spli t t ing of LT(Zn) 
into summands L:(Zn)(d) labelled by divisors d of n .  If R(d) = Z [ T / P ~ ( T )  = 
O]o denotes the corresponding quotient r i n g  of R = Zn (and similarly for 
S(d) etc.), we have a n  exact sequence 

. . L:(Zn)(d) - IT,,, LP(&,(~)) @ Lf(T(d)) - CLf(S(d)) - . . . 
Proof. By the above, i t  suffices to show that  Ep,,,L,X(Z7i-) fur ther  splits 

into summands corresponding to those d I n with p(d) = p(n). Let &, be the 
maximal order containing k, (it is unique, since we must adjoin o to the 
unique maximal order containing Zp), and R '  the intersection of S with 8'. 
Since kb = &, for p i; n ,  the usual 'main' exact sequence shows tha t  

induces excision isomorphisms of relative L X  groups, hence also of the sum- 
mands EP,,,Lx. Thus 
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by the result immediately preceding the statement of the theorem, and thus 

E p d ? + l ( R '  - nplm 2;) 
= 63 {LL(R(d)  - npl, &dl): d I n ,  ~ ( 4  = ~ ( n ) }  

since R '  = @,,, R(d), and similarly for 2'. This yields the desired splitting; 
the exact sequence is now a formal consequence of the main exact sequence 
for R(d). 

4.2. Classification of t j  pes 

We return to the notation of (4.1), but  now further suppose the Sylow 
2-subgroup o abelian. By the splitting theorem (4.1), it is enough to study 
a single summand, and i t  thus suffices to consider the ring 

R = Z[T/pm(T) = O][o/gp'Tg = Tag)] , 
where p, is the nth  cyclotomic polynomial, for some homomorphism A: a - 
(Zln)'. We write i: for Ker X, and C for the subring of B = Z[T/p,(T) = 01 
invariant under ImX. Thus CC is the centre of R. Write P for the set of 
prime divisors of n ,  Q = P U {2}, and P' for the complementary set of primes. 
Recall that  we are interested in computing the modified L-groups LT(R)(n). 

Rings such as R were studied in [UGR, 8.21. We showed there that  the 
localisation Bpro  was Azumaya over its centre Cp,C. Thus we obtain Azumaya 
algebras, on tensoring with Q, Q, R and those Z, with p e P (i.e., p I; n),  and 
these are the only cases we need for the main exact sequence, split as in 
(4.1.2). We will be able to reduce the calculation of L-groups from the 
Azumaya algebra to its centre, and this reduces us to considering the ring 
CC, which is not very different from the problem solved in Chapter 3. 

There are, however, three main differences: 
is causes (i) Primes p E P a r e  omitted from the term ~ ( 2 )  = n L(R,). Th' 

no extra problem-rather the reverse. 
(ii) The base ring Z is replaced by C. This is no theoretical difficulty, 

but raises major problems (unit groups, class groups etc.) in numerical 
calculations, illustrated by the difference between (1.4) and (1.6) above. 

(iii) The L-groups of an Azumaya algebra cannot be naively identified 
with those of the ground ring. 

In this section we deal with (iii), and classify the cases arising. 

Case 0. - 1 e X(o). 
Since the standard involution takes T to T-' in B,  in this case i t  is non- 

trivial on C. But then i t  is nontrivial.on every summand of CC @ Q, CC @ Q, 
CC @ Z, (p  e P ) .  Thus all these summands have type GL or U. 

Otherwise we may choose an element go E o with X(go) = - 1; thus go G C, 
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g,2 E C. In order to analyse types of summands in this case, we need a lemma. 

PROPOSITION 4.2.1. Let L be a Galois extension of K with group z ,  E a 
crossed product of L and  z (i.e., a z-graded algebra with base r i n g  L and  
any  un i t  of grade T E  z induces T via inner  automorphism on L). 

If a i s  a n  anti-involution of E such. that  grade u = T implizs grade 
U" = T-I, then 

(i) if a 1 L e  z ,  (E,  a ,  1) has type U; 
(ii) if a I L = To, then T," = 1 E I- and  there exists E = F1 such that  for 

all x of grade To, x" = EX. (E,  a ,  1) has type 0 or Sp according to whether 
E = 1 or -1. 

Proof. Observe that  the hypothesis implies (see e.g., [UGR, $31 for 
references) that  E is central simple over K. By the definition of types of 
anti-involutions (1.1) or [11], i t  follows that  (E,  a ,  1) has type U if a I K is 
nontrivial, and has type 0 or Sp if a 1 K is trivial. As a I K is trivial - a I L E I- 

(for a is an automorphism of the field L), (i) follows. As to (ii), if dim, E = 

n2, and E + ,  E- as the F1-eigenspaces of a on E ,  we know that  

dim, E+ - dim, E- = n d  for E' = F1 , 
and that  (E, a ,  1) has type 0 or Sp according to whether E' = 1 or -1. 

It thus remains to prove E = E'. Now if g E I-, g2 # 1 then a interchanges 
the subspaces of grades g, g-I which thus contribute equally to E+ and E-. 
If T E  I-, T2  = 1,  choose a unit u E E of grade T. Then a general element of 
this grade is lu  (1 E L), so u" = 1,u for some 1, E L.  Now 

(lu)" = u"1" = 1,ul" = l,PTu . 
In particular, u = u"" = (1,u)" = l,l:Tu, so l,lET = 1. 

If T # To, a T  is a nontrivial involution of L ,  and (by the 'Hilbert Satz 
90') we can choose 1;'l;' = 1,. Write v = 1;'~; then v" = v and (lv)" = lmTv. 
But the i l  eigenspaces of a T on L clearly have equal dimensions over K. 

Finally, if T = To, a T  is the identity, so 1; = 1 and 1, = E = F1. Any 
element of grade T is of the form lu ,  and (lu)" = E ~ U .  Thus dim, E' - 
dim, E-" dim, L = n ,  so E = E' and the result follows. 

We apply this result to the Azumaya algebra Q @ Ba,  with centre Q @ 

CC. This centre decomposes as  a sum of fields, labelled by Q @ C-equivalence 
classes of characters X: C - Cx, and there is a corresponding decomposition 
of the algebra Q @ Ba. 

COROLLARY 4.2.2. (Q @ Ba, a ,  1) -- (Q @ CC, a 1 CC, w(g,)gi) i n  the sense 
that  corresponding summands have the same type. 

Recall that  a 1 B is the identity by hypothesis and for g E a ,  g" = w(g)gpl 
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for some homomorphism w: n -+ { k l } .  Also, go E a satisfies X(g,) = -1 E 

(Zln)". The corollary follows by applying the proposition to each summand 
in turn. Each (relevant, irreducible) character X of n gives a map of Q @ C1: 
to a field K; indeed, x vanishes on a - C, and i ts  restriction to C is a multiple 
of an irreducible character x'. The corresponding value of E is the image of 
g:/go (we take go for u in the proposition), and this is inverse to (hence 
equivalent to) w(go)g,2. 

Since Q @ C is unramified a t  2 and C is a 2-group, the Q @ C-equivalence 
classes of characters x are the same as  Q-equivalence classes of x'. Types 0 
and Sp correspond to self-conjugate characters 

By the above we have type 0 if w(g0)x1(g,2) = 1; of course, we always have 
w(g3 = 1. 

We deduce the behaviour a t  real places since in the orientable case 
(w = 1) only types O(R), U(C) and Sp(H) can appear ([15], [SCM]). Type U 
corresponds to x + Z; for the others, X' is a homomorphism C - { i l } ,  and 
the real ramified places (type H) are those with ~'(g:) = -1. This can also 
of course be seen directly. 

We now introduce notation for the cases that  arise; there are two inde- 
pendent principles of classification. First,  a s  in Chapter 3 and corresponding 
respectively to the  exceptional, regular nonorientable and orientable cases 
of that  chapter, we have 

Case I. w 1 ,C + 1, i.e., for  some T E C of order 2, w(T) = - 1. 
Thus C is the direct sum of C, = Ker w and C,, generated by T. 

Case 11. w / ,C = 1 but w / C # 1. 
Case 111. w 1 C = 1. 

As [ is in the centre of n ,  Taylor's lemma is applicable to Cases I and 11. 
Now, however, we have a fur ther  classification into subcases (which will 

be written as suffixes). 

Subcase 0. -1 & Im h as discussed above. 
Otherwise, choose go E a with k(go) = - 1. Then gi E Ker X = C. Observe that  
go is unique up  to  multiplication by an element of C, hence gi is unique 
modulo 82. 

Subcase a. gi E C2. Then go can be rechosen so tha t  g: = 1. In future ,  
we will always suppose this done. 

Subcase bc. g,2 # C. 
In our later and finer calculations, we will subdivide this fur ther ,  a s  
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Subcase b. gK E ,<. g" but  gi @ g". 
Subcase c. gK @ , r e g " .  

There is even a further dichotomy, depending on the sign of w(g,), which is 
important in Cases 11, and III,,,. It is, however, clear from the preceding 
tha t  a change of sign in w(go) (everything else being the same) corresponds 
to interchanging Li  and Li+, for each i. With this in mind, we assume 
henceforth that  w(g,) = 1. 

4.3. The 2-adic calculation 

Continuing the notation of (4.2), we will now compute the groups L:(R,). 
Now R, is Azumaya, and indeed [UGR] a matrix ring over its centre e,<. 
Thus the antistructure (R,, a ,  1) is equivalent to an antistructure ( e , ~ ,  ale,<, u)  
for some u E (e ,~ ) ' :  in fact  we have the exact sequence of [12] (mentioned 
also in [11]), 

where Pic is the Picard group-trivial in the case of &-and Bro(A, 212-) the 
Brauer group of antistructures which are trivial in the usual Brauer group. 
The same holds of course for Q@ e,<, so by the preceding section (Q@ R,, a ,  1) 
is equivalent to (Q @ e,<, a ,  w(go)gi). If H'(&)" - H1(Q @ e , ~ ) "  is injective, 
we deduce (R,, a ,  1) - (e,<, a ,  w(go)g$. This is t rue  (by results of [UGR] 
quoted in detail below), except in Case I. But the result can be shown here 
too. For let : be the subgroup generated by T with T 2  = 1 and w(T) = -1. 
Then T is central in n, so n = (Ker w) @ l .  We can now apply the result just 
obtained for Ker w, and tensor this Morita equivalence with the identity on 
Zl. This completes the proof of 

LEMMA 4.3.1. There i s  a Morita equivalence of antistructures 

We may now begin to compute. 

Now in subcase 0, a is a nontrivial Galois automorphism of C,, so Lf(C,) = 0. 
Otherwise, a is the identity. If C has g, prime divisors of 2, c, is a sum of g, 
fields so L;(C,) has rank g,. Indeed, Z', itself is the sum of g, isomorphic com- 
pletions e, of C, each unramified over z,. To proceed to compute L f ,  we next 
need the groups H~(Z',S)'. These are given by (3.2.1) (Case I) and (3.2.3) (Cases 
I1 and 111). 

In subcase 0, these groups also vanish, hence L ? ( ~ , T )  = 0. For the 
remaining cases, we must next compute the map LF -+ Hi+' in the exact 
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sequence for L:. 

PROPOSITION 4.3.2. L F ( ~ , < )  -+ H i ( e , 9 ) ~  i s  injective except i n  the follow- 
ing cases: 

Case I ,  i = 2k. g , 3 ~ , < . < ~ ,  i = 2k + 1,  g i ~ y .  
Case 11, 111, i = 2k or 2k + 1. w(go)gi = (-l)k" w(g)g2 for some g E 9. 

Proof. First suppose i = 2k. Then the nonzero element of L:((?,) is re- 
1 1  presented by ( O  ). Choose b E e, representing 6. Then this lifts to  the ele- P 

ment of L:(e,o,) represented by . Symmetrising yields 

where u = (-l)%u(go)g,$ This has determinant b(l + u)' - u and hence dis- 
criminant 6 = 1 - b(u + 2 + up'). Clearly this is 1 if u = - 1,  and is 1 (mod 2) 
if uZ = 1; as w(go)g,3 is only determined modulo elements w(g)g2, g e L, this 
proves the map zero in the cases stated. 

Conversely, in Case I we have one of the listed basis elements provided 
gi (mod T )  does not belong to ,t.z2; i.e., provided gi e ,9.p. In the other cases, 
either (1) gig p ,  and we can find characters x of C satisfying ~(g)" w(g) and 
~(g,3) taking both values _tl (recall that  w(gg) = 1); thus we may suppose 
~ ( u )  = 1. Or (2) gi E 92, and ~ ( u )  = +1 for all such X, by hypothesis. The 
image of 6 in the corresponding copy of 2, or e,[ i]  is 1 - 4b. This is not a 
square in e,: in fact  Q @ e,[/( l  - 4b)l is the unramified quadratic extension 
of Q @ e,. It is thus linearly disjoint from the ramified extension Q @ e,[i], 

and 1 - 4b is not a square here either. The projection of o" under H"~ ,c )"  A 
HO(e,") or  HO(e,[i]) '  is nontrivial, hence the class of 6 is already nontrivial. 

Now let i = 2k + 1. Here the nonzero element of L:(C,) is represented 
by interchange of two generators in a hyperbolic plane. This lifts to the 
corresponding automorphism of a plane over ( e , ~ ,  a ,  u), represented by the 

matrix i) with determinant u-l. In this case we see a t  once from (3.2.1), 

resp. (3.2.3), that  i t  represents the trivial class in ~ ' ( 8 , o ~ ) "  precisely in the 
cases listed. 

We now determine the groups L:(R?, a ,  1) = L:(&, a ,  w(g,)gb) (by (4.3.1)), 
treating the cases in turn. In each case, if C has g, even primes, the group 
decomposes as sum of g, isomorphic summands. In subcase 0, the groups 
vanish. 

In Case I, we have T E 9 of order 2 with w(T) = -1, and so T a  = - T = 

- T-'. I t  follows (since T" = - T )  that  scaling by T [Ax] induces isomor- 
phisms of L, on L,,, for all i. By Taylor's lemma (3.4.4), the groups have 



HERMITIAN FORMS. V I  GROUP RINGS 

exponent 2. We have subcases: 

In Case 11,, we assume gi = 1,  and w(g,) = 1. The map is injective for 
i = 2, 3 but  not for i = 0, 1. Taylor's lemma again applies. We thus have 

L, E g,(Ker(w 1 N52) , L1 E sz(~'YeVOx) , 
L, r g,(+Ker(w 15)/52 @ 212) , L, G g2(Hn(Cv5)xlIm Lf(C,) @ 212) . 

In Case 111,, the map is as in Case 11,, but  Taylor's lemma is not available. 
Again, suppose g," = 1 and w(g,) = 1. We may obtain the extensions by 
noting tha t  5-1 induces a retraction of antistructures (e,5, a, 1) -(e,, 1, 1). 
Thus 

L:(R,) rr L;(e2, 1, 1) @ K ~ ~ ( H ~ + ~ ( ~ , c ) x  - Hi+l(eZx)) . 
The second summand is (a sum of g, copies, each) given by (3.2.3); for i even, 
we have 5/P and for i odd, a group (unnaturally) isomorphic to K: @ 5/52, 
where z is the subgroup of i of exponent 2. The first summand is g, copies 
of L P ( ~ , ) ,  and by (1.6), 

~ ; ( e , )  = 0 , ~ t ~ ( e , )  e , ~ / ( e , ~ ) z  , ~ : ( e , )  @ 212 

and there is a non-split exact sequence 

This follows from (1.6), and the remark tha t  -1 is not a square in e,. 
Cases II,, and III,,. The map is always injective, hence 

L i  rr g , ( ~ ~ + + ' ( e , g ) ~ / I m  Lf' ,(C,)) 

in all cases. Thus if i = 2k is even, we have the quotient of 
{ & I  @ Ker w I 5}/{w(g)g2: g E 5) by the class of (- l)k"gi. 

A 

4.4. Calculation of 7% and L,(R -+ R,) 

We continue to suppose n is 2-hyperelementary with abelian Sylow 2- 
subgroup o ,  and w: o -+ { k l } ,  and continue the calculation of the summand 
of Lq(Zn) corresponding (in the splitting of (4.1)) to  n. In this section, we 
describe the homomorphism 

Here, R = Z[T/$,(T) = 010; the other notations are as usual. 
As the R, with p odd, p t n  are maximal orders, any splitting of S 
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induces splittings of all these, as of T. It thus suffices for this section to 
consider summands of S separately. Now a summand of type GL contributes 
zero throughout. For one of type U ,  the corresponding CLI(S) vanish. So 
do the L~(S^,), hence (as we have unramified orders, or by 'better reduction7 
(2.3i)) also the L,s(R,). All that  remains is LB(T), which is 0 for i odd and 
for i even is a free abelian group 2 defined, as usual, by signatures E 42 
corresponding to summands of T (if any) of type U. 

Now summands of S = Q[T/$,(T) = 010 correspond to those of its centre 
(Q @ C)5. As i: is a 2-group and C is unramified a t  2, these correspond to 
summands of Qi,  or to Q-equivalence classes of characters 2' of i. Their 
types are given by (4.2.2): 2 has type 0 or Sp if ~ ( g ) ~  = w(g) for g E 5 (type 
GL or U otherwise), and among these, type 0 corresponds to w(g,)~(g,3) = 1. 

Summands corresponding to signatures are  (by (2.2)) those corresponding 
to characters of n with x = xW, i.e., ~ ( g ) ( l  - w(g)) = 0. As the represen- 
tation is induced from p i ,  this condition is equivalent to the same condition 
on the corresponding character 2': 9- Cx of i. As 2' never vanishes, this is 
equivalent to triviality of w 15. Thus signatures appear for all in Case I11 
and for no in Cases I, 11. Observe how this fits Taylor's lemma, which 
tells us that  the groups have exponent 2 in Cases I, 11. 

In Case I and in subcase 0, as already noted in (4.2), there are no sum- 
mands of type 0 or Sp. In Cases 11, and 111,, all characters of i with 
~ ( g ) '  = w(g) for all g E 5 have type 0. In Cases IIb, and III,,, they have type 
0 or Sp according to whether ~(g:)  = +I. Over R ,  in Case I11 these have 
types O(R) or Sp(H). 

We now consider a single summand of type 0: the corresponding result 
for type Sp can be obtained by interchanging i and i + 2. We are thus in 
Cases I1 or 111. This summand corresponds to 2: 5- {hl} satisfying ~ ( g ) '  = 
w(g) for all g e 5. I ts  centre, K,  is Q @ C if w I i: = 1, i.e., in Case 111, and 
Q[i] @ C if w I 5 + 1-i.e., in Case 11. 

Write A for the ring of integers of K, C, for its idele class group. We 
have already observed that  the calculation of r,  boils down to doing i t  for 
each summand. Now as &, is a maximal order, it is a matrix ring over 
(hence is Morita equivalent to) A @ z,, and the equivalence is one of anti- 
structures. We saw above that  a corresponding equivalence holds for the 
real completion, except in Cases III,, when ~(g : )  = -1, when there is a 
matrix ring over H rather than one over R. The calculation thus coincides 
with that  of (1.6) except for this detail, and the fact that  prime divisors of 
2n are omitted. 

We begin by listing the calculations of source and target  for 7, in tabular 
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form. 

Here, Â , splits as sum of rings Â , corresponding to primes p of K over 
p (each is preserved by a). T also splits, and we have just listed the groups 
for each summand. 

The map r, is trivial. For i = 0, each summand 42 which occurs maps 
onto the Z/2 (as in the case A = Z). We denote the kernel by C. For i = 2, 
,C," is the product of groups {+I ) ,  one for each place of K ,  nlodulo the di- 
agonal +I. The mapping Y, is just the inclusion of the factors corresponding 
to 'good' finite and infinite places; also by [IV, 5.41 i t  induces surjections 
22 - {+l}. I t  is injective, except tha t  the kernel has a summand 42 cor- 
responding to each infinite prime of type H. The cokernel of r, is the product 
of copies of {+I} corresponding to places of K dividing 2n, modulo the di- 
agonal {+I}. 

As usual, 7, is more complicated, but may be computed following (1.3). 
Certainly it is the natural homomorphism 

III {Ah,"/(Ah,")': 0 good) - C,/Cg 

where Â , is defined to be & if 0 is an infinite place; the bad primes are  the 
finite divisors of 2n and the infinite places of type H, and other places a re  
good. Now since, by the global square theorem, there is an exact sequence 

r, has the same kernel and cokernel as 

K "/(K ")' @ {A^,"/(A^,")? p good} - K"/(K")~ . 
But here we can cancel the second, term from the source into the target. 

Observe, in fact, that  for p finite K;/A^~x is infinite cyclic, so tha t  K "  is a 
(split) extension of Â " by the group I of ideals. So r, has the same kernel 
and cokernel as 

Kx/(K") '  - n {A^,"/(A^,")': p bad} @ I/IZ . 
Now define K"' = Ker(Kx - I / IZ)  as  the group of elements whose 

values a t  all places of K are even. The cokernel is F/ r2 ,  where r is the ideal 
class group of K. So the kernel of Y, coincides with tha t  of 

7:: K(2)/(Kx)2 - {Ah;/(Ah;)': @ bad} , 



48 C. T. C. WALL 

and its cokernel is a (split) extension of Coker r: by r/P. Further,  as in (1.3), 
there is a split short exact sequence 

Observe that  we have now reduced to maps between finite groups, in con- 
t ras t  to the rather large groups above. 

We deduce, for the summand considered, 

PROPOSITION 4.4.1. F o r  a summand of S of type 0, with the above 
notations, the contribution LLX to Li(R R,) i s  

Lp = 212 (no places of type R), 0 (otherwise), 
L," = n {4Z: places of type H}, 

and  there i s  a n  exact sequence 

{Fl} - n {kl: p bad, finite} - L," - K(,)/(K ")' - II. {&I(&)~: p bad) - L: - r/r" 2 - o . 
Moreover, the extension determining L: i s  split.  

For convenience in the next section, we now integrate these into a com- 
plete statement, which is the formal result of this section. 

Case I. L,(R - R,) = 0. 
Case 11. In subcase 11,, L,(R - R,) = 0. Otherwise, write C = 5, @ C,, 

where w 1 5, is trivial and C, is generated by T. Each element of 9, = 
Horn(<,, + I )  extends to a character x of C by taking T to i. Then in subcase 

A 

11,, L,(R - R,) is a sum of copies of L f ,  indexed by 9,. In  subcase II,,, we 
partition 9,  = g t  u g; according to the sign of ~ ( g i ) ;  then 

L,(R -R,) E @ {Lf ,  indexed by [,t} @ {LC,, indexed by k}  . 
In both subcases, all infinite places have type C (so none are  bad) since 
K = Q[i] @ C; so L: = 212, Lf  = 0. By Taylor's lemma, everything has 
exponent 2; signatures are absent and sequences split. 

Case 111. In subcase 111,, L,,+,(R - R,) E @ (4Z), indexed by characters 
x of C, and L,,(R - R,) = 0. In subcase 111,, L,(R - R,) is a sum of copies 
of LT, indexed by % = Hom(C, *I), and of groups 42 ( i  odd), given by signa- 
tures a t  other characters. In subcase III,,, partition [ = [+ u %- according 
to the sign of ~(9:) .  Then 

L,(R - R,) r @ {L:, indexed by [+} @ {L,",", indexed by [-} @ 2' . 
Here, K = Q @ C; for L *  all infinite primes are of type R ,  hence good and 
for L** all are of type H, hence bad; 2' is a group of signatures, a s  above. 
Only L,(R - R,) has an infinite contribution other than from 2'. 
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4.5. Calculation of l;ri 

We retain the notation of the preceding section. Now as already ob- 
served in (3.3), q,: L,(R,) - L,(R -+ R,) factors through L,($). Let us first 
compute the homomorphism from L,(&). Here we can afford, a s  in (4.4), t o  
split S into its simple summands; and those not of type 0 or Sp can be ignored. 
For a single summand of S of type 0, such that  3, is a sum of gi simple sum- 
mands, 

LB(S^,) E d(Z/2), S^,"/(&)" ,;(*I), 0 

for i = 0, 1, 2, 3. Each Z/2 in dimension 0 maps isomorphically to CLf(S) 
(cf. (1.3)), and the maps in dimensions 1 and 2 to CLB(S) are  also the natural  
ones, as in (1.6) and the preceding section. However, by (1.6) even if R, is 
maximal L;(R,) does not map onto L,s(&). Thus this Z/2 is never in the 
image. 

If we look a t  the conclusion (4.4.1), and observe that  the image of LB(R,) 
is surely contained in &/(Â ,")', we see that  these components in dimensions 
1 and 2 are naturally identified with the products of copies of A^,"/(A^,")" resp. 
{ k l } ,  extended over even primes (which are all bad). Thus if we simply had 
an order whose 2-adic completion was maximal, the effect on (4.4.1) (at  least 
for summands of type 0 )  would just be to delete even primes from the list 
of bad primes. 

We turn  to the consideration of the map L,(R,) - L,(S^,). Here it is 
natural to use the splitting of (4.3) into components e,; indexed by the g, 
even primes p of C. Apart  from the trivial subcase 0 (where L,(R,) vanishes), 
each summand L:(~J has order 2, and thus the map H~ ' (K, (~ , ; ) )  - Lf(e,i') 
is nearly an isomorphism. Thus 'most' of the structure will be given b y  
computing the composite map ~""e , ; )"  - LB(e,,') - L,(Q @ e , ~ ) .  This can 
now be done, as in Chapter 3, by invoking the characterisation of symmetric 
units. 

Before starting all this, we clear the easy cases out the way. In Case I ,  
L,(R--R,)=o, so L,(R)= L,(R,). In subcase,O, L,(R,)= 0, so L,,,(R-R,)= 
L,(R). Thus 

THEOREM 4.5.1. We have the following results, for the summands of 

L,(R) (split by (4.1)) classified as  i n  (4.2): 
Case I,. L,(R) = 0. 
Case I,. L,(R) E g2(~i+1(e,,")x @ ~ 1 2 ) .  
Case I,. L,,(R) E g2(HZkA1((e,S)"/(g~) @ Z/2) 

L,,+,(R) s 2 ( ~ 2 k + 2 ( ~ , ; ) x )  
Case I,. L,(R) E g , ( ~ ~ + ' ( e , ~ ) ~ / ~ m  L?+,(eJ); 
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the image i s  generated by 1 + b(g; + 90,) ( i  odd), go2 ( i  even). 
Case 11,. L,(R) = 0. 
Case 111,. L,,(R) @ {4Z, indexed by characters x of C} 

L,,+l(R) = 0. 
We shall have no more to say about these cases in this section. There remain 
Cases I1 and 111; subcases a, b and c of each. 

We first consider +,. Now L,(R,) was computed in (4.3); we have 
{ F  Ker(w / C))/{w(g)g2: g E i:); to this, add 212 in subcase a,  but factor out {g:} 
in subcase bc; finally, we have a sum over the g, even primes $. As to 
L,(R - R,), the summands LB (or LBX) are irrelevant for Q,, so we have a 
sum of copies of Lf  indexed by & (Case 11) or  %+ (Case 111). Moreover, 9, 
maps into this sum of Lf  via its subgroup n: { F l } ,  the product over the g, 
even primes p .  Now we can identify {F Ker(w I 9))/{w(g)g2: g E 9) with +9,/9: 
(Case 11) or Fi:/C (Case 111). For each p we have, in subcase III,, the natural 
inclusion +C/C {+I over [}; similarly (with 9, for 9) in subcase 11,. 
Noting that  in subcases bc, P," (resp. c+) is precisely the subgroup which kills 
g:, we have corresponding injections in those cases also. It remains only to 
determine what happens to the summands Z/2 in subcase a. For III,, use 
the retraction of e,i: on e, to see that  it suffices to consider the case C trivial. 
But  then 4, reduces to g2 copies of {+I} @Z/2-{Fl}, with the {+I} mapping 
isomorphically. We may thus suppose 212 in the kernel. An analogous argu- 
ment holds in subcase 11,, reducing to the case where C, is trivial (i: = C,). 

We may deal similarly with 4,. By remarks above, this is zero in sub- 
case a. For subcase bc, however, we may treat  i t  exactly as above, but 
replacing gi by -gi, and see that  it is injective. To summarise, 

LEMMA 4.5.2. I n  Cases 11, and  III,, 9, i s  t r iv ia l  and  the kernel of 3, 
.is g2(Z/2). I n  Cases 11,, and  111,,, both 3, and  +, a r e  injective. 

Observe that  Ker 3 ,  = Im(L,R- L,RJ is precisely that  quotient of 
L,(R) which can be detected by reasonably simple invariants (apart from 
the signature). 

Much as above, we see that  4, = 0 in Cases 11, and III,, and in the other 
cases it can be determined similarly to 4, ;  so we now discuss The image 
of (or +,) is thus in all cases the same as that  of H"~,c)",  or equivalently, 
of the symmetric units of e ,~ .  As the only characters to be used, however, 
are those in 9; (Case 11) or  %+ (Case 111), we may as well first map e,i: to the 
quotient ring where 8; = 1,  T = i (Case 11) or C2 = 1 (Case 111) and moreover 
gi = 1. This is the group ring over 2, = e,[i] (Case 11) or e, (Case 111) of 
a n  elementary abelian group o of rank r', say. If the image w, of ,i: has 
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rank s', the image of the symmetric elements of 6,i: are those elements of 

A ,̂w such that  the coefficient of each element not in w, is even. More pre- 
cisely, the image of a symmetric unit is the product of a unit of C,w, and 
a unit of Â ,o congruent to 1 mod 2. 

The target  is a sum of copies of L: indexed by %,+ (Case 11) or %+ (Case 
111)-i.e., in either case, G. Moreover, the maps to L: factor through A^,"/(A^,")', 
and the induced map (A^,o)" - n: A^,", indexed by & is the natural one. It is 
thus determined by the results of (3.2). Following (3.2), we introduce new 
components s',, obtained by 'differencing' the X'S, to describe the image, 
which then becomes a direct product of subgroups of A^;/(A^,")< To determine 
the rank of g, we will need to compute the intersection (if any) of this image 
with that  of 

K("/(K x)2 - {A^,"I(A^,")~: @ bad) . 
Let us conclude this section by tabulating some of these conclusions. 

Let i: have rank r ,  and s summands of order 2. Then r' = rank w = r - 2 + 
6, + E,, and s' = rank o, = s - E,, where E, = 1 (Case a), 0 (otherwise), and 
similarly for E, and E, = 0 (Case 11), 1 (Case 111). Moreover the image sub- 
group in the I" copy of Ah,", where Ic {1, . . . , r'} has i elements, is: 

A 

If I qf {I, . . ., s'}, all units of A," - 1 (mod Zi+'). 
If I c {I, . ., s'}, the product of this group and the group of units of 

6, - 1 (mod 29. 
This yields Im $r,; $r, = 0 in Cases 11,, 1111,; in Case II,, +, is just like 3,; 

in Case III,, i t  is like +,, but with L: replaced by LT*; i.e., infinite primes 
are  bad. 

4.6. Recall of algebraic number theory 

It is clear from the preceding section that  to push the calculation further 
will involve using properties of the field K. Here we will recall sufficient 
number theory to enable us  to express our groups in terms of more-or-less 
standard number-theoretic invariants. Suitable general references are [7], 

191. 
Let K be any algebraic number field, A the integers in it. Let K have 

r, real and r, pairs of conjugate complex places; then [K: Q] = r, + 2r,. The 
Dirichlet unit theorem states that  Ax  is then the sum of a finite cyclic group 
(nontrivial, as i t  contains - 1) and a free abelian group of rank r ,  + r ,  - 1. 
Thus Ax/(Ax)%as 2-rank r, + r,. 

If & is a local p-adic field, with integers Â , and residue class field F,, 
then ~er(A^,' - F;) is a pro-p-group. Thus if p is odd, A ,̂'/(A ,̂')%as the same 
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2-rank as  F,"/(F,')"iz. 1. For p = 2 we argue differently: the subgroup - 1 
(mod 2$) is isomorphic by the 2-adic logarithm to (2$)+ (see e.g., [UGR]), so 
has rank equal to the degree [K: Q,]. Again, the torsion subgroup is cyclic 
of even order, so A ,̂"/(A ,̂")"as 2-rank equal to 1 + [K: Q,]. 

To compute, for K global, the 2-rank of &/(Â ,")" we must sum over 
prime divisors p of p. For the cases of interest to us here, K is a Galois (in 
fact  a cyclotomic) extension of Q. Then we can write 

where g, is the number of prime divisors $ of p,  and for each one, f, is the 
degree of the residue field (i.e., F, has order pfp) and e, is the ramification 

A 

index, i.e., the p-adic valuation Z," - Z+ extends to a surjection IZ,' - (e;'Z)+. 
Combining this with the preceding paragraph we see that  

2-rank = g, (p  odd) , 
2-rank = g, + [K: Q] . 

For K a cyclotomic field, one can compute the numbers e,, f,, g, using 
class field theory for Q. First, consider the case when K is the field of n th  
roots of unity, and let p I; n.  Then e, = 1,  and f, is the order of the class of 
p in (Zln)", g, the index of the subgroup i t  generates. If n = p'm with 
p I; m, then 

[K: Q] = $(n) = $(pV)4(m), and e, = $(pr) = p' - pr-I , 

f, and g, are the same as  those with n replaced by m. Now let K be the 
subfield of the above fixed by the automorphism group X(o) c Aut (Zln) Z 

(Zln)". The Galois group of K over Q is then Coker X, and for p I; n ,  f, and 
g, are again the order and index of the class of p in this group. I n  general, 
g, is the index in (Zln)" of the subgroup generated by X(o), p,  and numbers - 1 (mod m), f, is the index in this of its subgroup generated by X(o) and 
numbers - 1 (mod m), and e ,  is the index of A(@) in the latter. 

From units we proceed to  class groups, bu t  first we revise adelic nota- 
tion. As well a s  the completion K, we have the sum K, = K &R of comple- 
tions a t  infinite primes; the  adele ring K, = K @  K,. Write K 2  for the 
subgroup of K 2  of elements whose components in copies of R x  are  positive; 
thus  K:/K; E IT,, , {+ I}. Write A*, K *  for the correspondingly defined 
subgroups of Ax ,  K x .  The approximation theorem shows tha t  K x / K *  Z 

K;/K2. 
Now the ideal group I  of K can be defined as  the quotient K"/A^". The 

natural map K x  - I  has kernel A x ;  its cokernel I?, called t h e  class group, is 
finite. r is computable, but  not very easily. We shall also have occasion to 
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refer to the strict class group I?* = Coker ( K  * - I ) .  It is easy to obtain an 
exact sequence 

1- A*- Ax-npER{*l}-I '*-I ' -1 

which summarises the available information (such as i t  is) on the relation of 
r* to I?. Indeed, another way to define I?* is to define the w-enriched ideal 
group I "  = I @  n{+ I} and set r* = Coker(Kx - I*) .  

We also introduced in (1.6) and again above the subgroup K(') = 

Ker ( K x  - 1/12), and obtained a short exact sequence 

1 - Ax/(Ax)' - K("/(KX)' - 2r - 1 , 

where ,I' is the subgroup of elements of order 2 in I?. Thus if I', hence also 
,I?, has 2-rank r ,  the elementary 2-group K(2) / (Kx)2  has 2-rank r, + r, + r. 
We now turn to class field theory for quadratic extensions. The local Hilbert 
norm-residue symbol is defined by: 

Let x, y E K:; then (x, y), = 1 or - 1 according to whether %a2 + yb2 = 1 
has or has not solutions a, b E &. Equivalently, (x, y), = 1 if and only if y is 
a norm from &[l/x]. Observe tha t  this makes sense also for infinite com- 
pletions. The symbol yields a symmetric bilinear pairing 

IZ,"/(IZp')" ~ f / ( 1 2 , " ) ~  - {+ I} , 

which can be shown to be nonsingular. It is not hard to compute i t  explicitly; 
for example, the annihilator of Api is for p odd, Ah: itself and for  p even, the 
subgroup generated by 1 + 4P, where P E Â , has mod p reduction not of the 
form x + x2. 

Taking the symbols together, a s  we may since almost all Â ," are self- 
orthogonal, yields a product pairing 

KY(K1)2 x K;l(K.2)2 - {I I} . 
By the Hilbert reciprocity theorem, K x  is self-orthogonal under this pairing 
-i.e., for x, y~ K x ,  

r I , (x ,  y>P = 1 . 
Thus if C = K:/Kx is the idele class group, we have an induced pairing 

K "/(Kx)% C/C2 - {+ I} . 
Now according to class field theory, this is a dual pairing, if we regard K x  
as discrete and C as compact. There is thus a bijection between closed sub- 
groups of index 2 in C (or epimorphisms C- {* I}) and nontrivial classes 
x E K x  (mod squares), or equivalently with quadratic extensions K[1Jx]. 

We illustrate this by considering unramified extensions. On one hand, 
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K [ d x ]  is unramified if and only if each ~ J l / x ]  (p finite) is either decomposed 
or inert, or equivalently, the subgroup of norms is either IZ," or 2," .(12,")'. 
By the theorem, this is equivalent to saying that  the corresponding homo- 
morphism K; - C- {* I} contains A x  in its kernel. Thus it factors through 

This shows that  unramified extensions correspond bijectively to (nontrivial 
elements of) Hom(S*, {F I}). A slight modification shows that  strictly 
unramified extensions, where we exclude ramification a t  infinity (i.e., C/R) 
correspond to Hom(S, {+ I}). 

On the other hand, for p odd, &[/XI is unramified if and only if the p- 
adic value of x is even. For p even, this condition is necessary, but not 
sufficient; there are  many square classes of units, but  only one unramified 
extension, corresponding to (1 + 4P). Thus x E K"', and we have a map 

There is a subgroup G of rank g, on the right corresponding to unramified 
extensions. We conclude 

W1(G) z Hom(S*, {F I}) . 
For strictly unramifed extensions, we augment to 

0' 
K("/(Kx)' - &/(A,")" G @ no, {I 1) 

with kernel Hom (r, + 1) and hence rank r, + r,, since rank (K(2) / (Kx)"  = 

r ,  + r, + Y. As moreover, rank = r, + 2r2 + g,, we see tha t  Coker 
O' also has rank (r, + r,). Returning to cD, we observe tha t  its kernel corre- 
sponds to quadratic extensions which decompose a t  even primes. By the 
duality above, this corresponds to homomorphisms f: I?* - {+ 1} which 
annihilate (the classes of) even primes. 

We are now ready to  consider the homomorphism 

@: K("/(K " ) L  fl {A^p'/(A^,")? p bad} 

arising in (4.4). Here, all even primes are  bad; infinite primes are only so in 
one case. However, we see a t  once from the above considerations tha t  KerQ 
is isomorphic to the set of homomorphisms r* - {F I} which annihilate the 
classes of all bad primes. Thus 

(4.6.1) The rank  of K e r O  equals that  of the quotient of r*/(I'*)2 (OY, if 
infinite primes a re  bad, r / r 2 )  by the classes of the finite bad primes. 

This can also be interpreted as the 2-rank of the (strict) class group of the 
Dedekind domain obtained by localising A a t  the bad primes, viz. AL(2n)-'1. 
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We can also interpret i t  as the quotient of l?*/(I'*)"y the classes of all the 
bad primes. 

For (4.5) we must be more careful. We begin by analysing more closely 
the structure of Â ," in the relevant cases. 

First,  corresponding to Case 111, we have a subfield Q @ C of the field 
of nth roots of unity, with n, odd. Thus 2 is unramified in C, and in each 
e , ,  p even. We have [Q @ e,: Q,] = f2.  Write u i ( t , )  for the group of units 
of e, = 1 (mod pi). Note tha t  p = (2). Then 

uo(ep) /  ~ ' ( t , )  E F,", of odd order. 

u1(eP)/  ui+'(e,) E F; ( i  2 I) ,  

and the 2-adic logarithm gives an isomorphism of UTE,) onto (4e,)+. Now 
(1 + 2a)2 = 1 + 4(a + a2) ,  so the composite 

square 
F, ul (e , ) /  u 2 ( t , )  --+ u ,(tp)/  u3(ep) Fp 

is (Px = x + x". This has kernel {0, 1) corresponding to + 1 E e,", and 
cokernel {0, P}. A set of generators for (t,")~(e,")~ is thus {l + 2a: a repre- 
sents a base of F,t, 1 + 40); the group has rank f, + 1,  as stated earlier. 
~ ' ( e , )  maps onto the whole group, u2(e , )  onto the subgroup (1 + 4P), u3(e,)  
is killed. 

Now, corresponding to Case 11, we must consider also A = C[i]. The 
even primes of C (but no odd ones) ramify fur ther  in A, i.e., e, = 2 and 
(2) = p2. But f, is the same as before; we have the same F,; g, also is the 
same. Analogous to the above, is the following: 

UO(A^,)/U~(A^,) E F," 

u~(A^,)/u"I'(A^,) z F; for i 2 1 , 
and 

U3(Ap) r (p3Ay)L . 
Here, squaring gives an isomorphism of U1/ U%n U" U3, but induces a map 
U2/U3- U4/U5 described by (as above). Thus representatives of square 
classes can be chosen as  representatives of U1/U" of U3/U4, and (1 + 40). 
The group A^,"/(A^,")' has rank 1 + 2 f,; the image of the units (U,) = 1 (mod 2) 
has rank 1 + f,, and the image of those - 1 (mod 4) has rank 1. 

Consider finally the map e,"/(e,")24 A^,"I(A^,")~. As the element 1 + 4P is 
the same in both cases, i t  maps injectively. In  general, as Â , = e,[i], the 
kernel of the map is the subgroup generated by - 1; so the image has rank 
f,; clearly it is contained in the image of ~ ' ( e , ) ,  hence in u"A^,), and hence 
in the image of u3(A^,). 

Now by (4.5) we can analyse the calculation of I)-, into components. 
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For each component, the target  is the cokernel of 

0: K'q / (Kx)2  - n {A^,"I(A^,")~: p bad) 

and the image is the image in this cokernel of one of the above described 
subgroups of A^,"/(A^,")" p even; more precisely, the product G over all even 
p. Observe that  all groups now in question are elementary 2-groups. 

The 2-rank of the image of +, a t  this component equals l(W1(G)) - 
l(W1(0)). We considered I(W1(0)) in (4.6.1); we must now consider I(W1(G)), 
case by case. First, we need some notation. Write r ( V )  for the 2-rank of 
the finite abelian group V. Write r ( R )  for the ideal class group of the 
Dedekind domain R; r* for the strict group. Then by (4.6.1), 

I(W1(0)) = r(I?*(A[(2n)-'I)) resp. r(I?(A[(2n)-'I)) 

= Y*(A, 2n) resp. r(A, 2%) 

say, if infinite primes are good (resp. bad). This will not suffice below, 
however; we need to enrich the ideal group a t  even primes as well as a t  
infinite ones. Define I'2) = K {Ahp': p odd), and 

I" '"  = K;/n{A^, :p  odd) x K z  r I ' " @ n { k l : p  real} ; 

let I?'"', I?"'" be the corresponding class groups obtained by factoring out K'. 
We have natural exact sequences 

We shall wish to factor I?") or I?*'2) by the prime divisors of n ,  giving 
I""(A, n) say; and fur ther  by a specified subgroup U of A^,", giving a group 
I?(A, n, U). 

We proceed to cases. 

Case 111. K = Q @ C is totally real. G may be the whole group Â ," or 
the subgroup generated by the elements 1 + 4 ~ ;  infinite primes may be 
good or bad. The (1 + 4P) case simply corresponds to having extensions 
unramified a t  2, so here I(W1(G)) = r*(C, n) resp. r(C, n). In the other case, 
we have extensions Q @ C [ ~ / X ]  ramified a t  even primes, but with vp(x) even, 
or equivalently, (x, 1 + 4p), = 1. These correspond to homomorphisms 
I?*'" - {k l} which contain prime divisors of n in the kernel; also u 2 ( t 2 )  
(i.e., units = 1 (mod 4)). Thus 

I(W1(G)) = Y*(~ ' (C,  n ,  U2) resp. Y'~)(C, n, U2) . 
Case 11. K = Q[i] @ C. Here infinite primes are all complex, so the 

question of their 'goodness' does not arise. G is the (product of g, copies of 
the) image of u"A^,"), of rank 1 + f,; of the image of C,", of rank f,; or of 
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1 + 4P, of rank 1. As above, the latter case is the simplest, and we have 
simply I(W1(G)) = r(A, n). 

In the other cases, we have those homomorphisms - {k 1) which 
kill the subgroup of 2," dual (by the norm residue symbol) to G. Now 
K : / ( K ~ ) ~  has rank 2 + 2f, and the symbol is nonsingular; A ,̂"/(A ,̂')"of rank 
1 + 2f,) is dual to 1 + 4P. According to [20, p. 2371, the image of u"(A), 
of rank 1 + f,, is self-orthogonal and hence self-dual. And by class field 
theory, the dual of Im i,: 6; - A ,̂" is Ker N: Â ," --+ 6; containing as well a s  
u"(A^,"), the class of i. Write T for the torsion subgroup of Â ,". Then in 
the first two cases, 

1(W1(S)) = Y(~)(A,  n, U2) resp. Y ' ~ ~ ( A ,  n, T .  U" . 
4.7. Final calculations 

Let us summarise the results of this chapter so far .  In (4.1), we showed 
that  the L-groups in question split a s  a sum, with a contribution from each 
divisor of : ,o j .  In (4.2) we classified the situations arising into three cases, 
each divided into four subcases. Complete results for six of the subcases 
were listed in (4.5.1); there remain Cases I1 and 111, subcases a ,  b and c of 
each. Now in Case I1 we know by Taylor's lemma that  the L groups have 
exponent 2, so to complete the calculation i t  will suffice to compute the ranks. 
In Case I11 we succeeded in determining the extensions involved in (4.3), and 
many of those in (4.4)-if, as I suspect, L$ has exponent 2, this would com- 
plete the results in that  case-but I see no method of determining the final 
extensions needed to describe L,(R). Indeed, this difficulty occurred already 
in (1.6). Thus here too we will have to content ourselves with computing 
the order of the torsion subgroup, and describing the values taken by the 
signature. To complete the picture, we will compute this order in all cases. 
Subcase 0 may, however, be omitted since L,(R) is then free. 

All the torsion subgroups in question are finite 2-groups; most, but  not 
all, have exponent 2. To simplify descriptions, we write I(G) = a,  if the 
torsion subgroup of G has order 2". First, we compute the ranks involved in 
(4.3). Denote (as usual) 

r = Z(C/T") , s = Z(Im (,5 --. 5/59)) . 
Since 2 does not ramify in C, we have deg (Q @ C/Q) = f,g,, where f, is the 
degree of the residue field extension F = C, over F,, and g, is the number of 
even primes p of C. We shall also use the parameters introduced in (4.5): 
E, = 1 (Case a), 0 (Case bc) and E, ,  E ,  similarly-as we exclude subcase 0, we 
have in fact  E, + E ,  + E ,  = 1. Define also E ,  = 0 (Case 11), 1 (Case 111). 
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First recall (3.2), with A replaced by e, and n by C. 

l (K) = Z(F(~[)) - l(F) = f*(ZT- 1 ) .  

By (3.2.1), 

I(Hi(F[)") = f,(2' - 1) + r - s . 
In Case I ,  

1(Hi(e,<)") = I(Hi(F Ker w)") = f,(2'-' - 1) + r - s . 
Otherwise, we have 

I (Ho( (~ ,c )~)  = co + r , I ( H ~ ( ~ , c ) ~ )  = iO + Y + 2 y 2  . 
Now by (4.3) we have in Case I ,  

Otherwise, we see by checking each subcase that  

From now on, we can exclude Case I as well as subcase 0. To express 
the results of (4.4), let us write 17 = I(L,"), 1:" = I(L,"*). Recall from (4.5) 
that  r' = rank o = r - 2 + E, + E,. Again one can check tha t  the formula 

covers all cases, where of course I:" = I," in Case 11. Here, we have.O= 
It = I:*, IS = 1 - E,, I?* = 1 (or more properly 1,"" = 1 - E,E,, which gives 
the same result). The rest are to  be computed from the exact sequence 

where the bad p are the divisors of 2n and, for L**, the infinite @. 
Now by results in (4.6), and the notation introduced there, the ranks 

of the successive terms in the sequence are: 

a t  least when infinite primes are good. Let us write G = C{gp: p [2n},  and 
m = fzgz. In Case 11, r, = 0, r, = m and [K: Q] = 2m; infinite primes have 
type C, so cannot be bad. In Case 111, r, = m,  r, = 0 and [K. Q] = m; in 
the case of I**, bad primes contribute m to the fifth term. We conclude in 
both cases 
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Case 111: 
1:" = G - 1 + r k K e r 0 .  

I: = G + r k  Ker 0 , 
I," = G - l + r k K e r Q .  

As m and G are easily computable, the only awkward term here is r k  Ker 0 ,  
which must be calculated either directly or by using (4.6.1). 

This completes our interpretation of (4.4); we now turn  to (4.5). First 
we claim that  the torsion-free quotients of L,R and of L,+,(R - R,) are the 
same, so that  we may consider the torsion par t  independently too. To see 
this, it is enough to  note that  the calculation of the 'signature group' in (4.4) 
would be unaltered if we included L& there. It suffices to look a t  a single 
place of type 0. Here we need to know that  L$(& -+ CL,S(K~) vanishes- 
which is true by (1.6)-and that  L f ( 2 )  -+ CL:(KJ does not contain the image 
of L:(H) which is clear since this group is the product over places 8 of {+ I}, 
modulo the diagonal, but  all places p I n are  omitted. (The case n = 1, where 
this argument fails is precisely the case already studied fully in Chapter 3; 
anyway there are then no summands of type H.) 

Now the image of +, is an elementary 2-group. Let us write qt = 

I(Im +,). Then we have 

l(Lt(R)) = ~ ( L t + l ( R - + R ) )  + l ( ~ d R ) )  - +t - , 
so the calculation of qi will complete our task. 

When i is even, the result is given by (4.5.2): it does not seem worth 
while seeking a complicated formula to express so simple a conclusion. 

For i odd, recall the notation a t  the end of (4.6): e.g., r(C, n) is the 2- 
rank of the quotient of the class group of C by the prime divisors of n .  
Write also, as before, 

r ' = r - 2 + ~ ~ + ~ , ,  s ' = s - c b .  

Then in Case 11: 

in Case 11,, +, = 0 and in Case II,,, +, = +,. In Case I11 similarly, 
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In Case 111,, +, = 0 and in Case 111,,, +, is like +, but with the asterisks 
omitted. 

These numbers are  not easy t o  compute; let us finally see which (if any) 
of our groups are. In subcases b and c, all +,,, are  complicated, hence all 
l(L,). In subcase a,  only +, is awkward, so we may expect simpler formulae 
for L, and L,. We see in fact that  

L,(R) r g,(Z/2) in both 11, and 111, ; 

L,(R) is an elementary abelian 2-group of rank 

g2(2'f2 i- r )  + 2'-' in case 11, , g,(2'f2 + r + 1) in case 111, . 
Of particular interest, since it is related to explicit invariants, is to 

know the image of LP(R) - L,K(R,). Now L,K(R,) = L,K(R,), and the image 
of L ~ R , )  is given by (4.3.2) viz., surjective in Cases I, (all i),  I, (i even), 11,, 
and 111, ( i  = 2 or 3), and zero otherwise. Now in Case I ,  L;'(R) = L:(R,). 
In Cases 11, and 111,, by (4.5.2) Lf(R)  maps isomorphically to LP(&), and 
Lf(R)  maps onto L~(R,)  since the relative group vanishes. Thus 

A 

Im (LP(R) - L;(&)) = Im (LP(R,) - Lt((R,)) 

in all cases. It would be interesting to know whether this is a general 
result. 

If it were not for Case I,, we could summarise the above list of cases by 
noting that  the following are equivalent: 

(i) L&(R) - Lfk(&?,) is nonzero, or surjective. 
(ii) L&+,(R) - L$+, (~ , )  is nonzero, or surjective. 
(iii) There exists g, E a with X(g,) = - 1,  g,2 = 1, and w(g,) = - (- l )k .  

However, only (ii) and (iii) are equivalent in general. Observe that  this 
statement is corrected to be independent of the conventions introduced in 
(4.2). 

5. Further calculations 

5.1. Discussion of the general case 

We first take up some questions arising in the computation of L,(R- R,). 
In order to determine the extension arising, there is no problem if 

ri: n p o d d  ~ i ( ~ p )  @ Li(T) - CLi(S) 

has torsion-free (hence free) kernel, and i t  may be conjectured tha t  this 
holds in general. The result of (2.3), that  L,(R,) - L,(S^,) is injective, lends 
support to this conjecture. When we turn  to  (4.4) to check whether this 
holds, we see that  i t  does for r,, r,, and r,, but  Ker Y, is the kernel of 

K("/(K "), - n {A^,"/(A^,")2: p bad} . 
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By (4.6.1), this is zero if and only if the bad primes generate r*/(r*)'. 
However, this is not generally the case for  cyclotomic fields. (Note tha t  the 
bad primes are those ramified in the field of n th  roots of unity: they include 
those ramified in K, but we need have no more.) Indeed, we can still find 
counterexamples if L,(T) is omitted from the sum (so infinite primes count 
as bad). Although the method can be generalised (following (1.6); see also 
below), we must clearly find a better objective for it. 

Secondly, we may t r y  to give a computation of Y, in the general case. 
It suffices, as noted in (2.4), to consider the case where rc = pa is 2-hyper- 
elementary. Then the splitting Theorem (4.1.2) applies: we can replace Zp by 
a cyclotomic domain of dth roots of unity, and then the contribution from 
R, is taken as 0 if p I d. If ,  on the other hand, p 1; 2d then R, is a maximal 
order in an unramified algebra, and the calculation of L,(R,) - L,(S^,) is given 
by (1.5) and (1.6). Explicitly, for type U or GL both vanish and for type 0 
we have the natural  inclusion 

Incidentally, this gives an alternative proof of (2.3). The fur ther  calculation 
of L,(S^) @ L,(T) - CL,(S) now follows by using rational representation 
theory to describe the S which occur. 

Our splittings were not entirely natural, so it would be useful to have 
an alternative technique to the above. Write S as  a sum of simple algebras; 
let S' denote the sum of those of type 0 ,  and write R '  for the projection of 
R on S' (not R n S'). 

Conjecture 5.1.1. The image of L,(R,) - L,(S^,) i s  the image of K,(R;) 
i n  L,(S :̂) z z(S^b)"/(~(S^k)")~ ( i  = 1) and  of t,he subgroup of exponent 2 i?z 

K,(R;) if i = 2. 

I can only prove the conjecture under the hypothesis that  RL has good 
reduction in the sense of [111] and [Rat]. 

For our next topic, recall tha t  we have already seen in [V] that  for any 
Z-order R, T = R @ R, the kernel and cokernel of LY(R) - L,Y(T) are finite 
2-groups. We now further study LF(R) modulo torsion: we may suppose 
i = 2k, as LF(T) is finite for i odd. 

In view of the main exact sequence, the image of L$(R) - L&(T) (which 
carries the torsion free quotient) is the preimage of I ~ ( L & ( R ) -  CL,S,(S)). 
Now S splits into simple summands and T splits correspondingly. For a 
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summand S, of S of type GL, 

0 = L,S,(Tl) = CLfk(Sl) ; 

there is thus no contribution. 
For a summand S, of type U ,  we again have CL&(S2) = 0, but if T has 

any corresponding summands of type U ,  we have a signature taking values 
in 42 for each. These summands must be in the image of L&(R). 

It remains to consider summands S, of type 0. Then 

CL,S(S,) z 212. Also, L,S(R) E 42, L;(C) = L,S(H) = 0 . 
Each component 42 (if there are any) maps onto 212, as this is the sum of 
the local Hasse invariants. To complete this case, we need 

PROPOSITION 5.1.2. F o r  a n y  R a s  above, w i t h  S, a s i m p l e  s u m m a n d  of 
t y p e  0 of S ,  the  composite 

van ishes ,  except perhaps i f  S, i s  non-sp l i t  a t  some even  p r i m e .  

Proof .  Let R, be the projection of R on S,. This is an order, and the 
map factors through L:(R,). It thus suffices to prove the result with R 
replaced by R,, i.e., we can suppose S = S, simple. Similarly, we may 
suppose R a maximal order in S. 

We must show that  for each prime p of the centre, K of S ,  the composite 
L:(R,)- L,s(S^,) - CL,S(S) is zero. ~f S ,̂ is a matrix ring over IS, we can 
reduce (as in [11]) by Morita theory to the case sv = K,, R, the integers in 
it. The result then follows since the Clifford algebra of the form over R, is 
an Azumaya algebra over R,, which necessarily splits, so the Hasse invariant 
is trivial. Otherwise we reduce similarly to the case, S^, the  quaternion 
division ring with centre R, k?, the maximal order in it,  with centre the 
integers A^, of &. But then for p odd, 

since R, is a finite field with involution of type U. 
For p even, the same argument shows L:(R,) = 0. However, consider 

the commutative diagram 

A 

Since by [27, 5.71, K,(R,) r Â ,", K,(S,) r IZ," and H' = {Fl} in each case, 
we have here an isomorphism L,s(R,) - L;(S ,̂). 
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Now consider CLS(S) ( S  still being supposed simple, of type 0, with 
centre K) .  We know that  this is the multiplicative group of idele classes of 
order 2, or equivalently, ,K;/{f 1). For each real place p of S where T 
ramifies, we have a summand of L f ( T )  isomorphic to Lf(H) 2: 22. The 
generator of this maps onto ,K," = {Fl} by [IV, 5.41. Now if, for some 
other prime po of S ,  the completion R,, of [the projection on S of] R is such 
that  

is not surjective, we can identify CL,S(S) with {+I: p st p,) and deduce 
tha t  the image of L,Y(R) has as  torsion free part  a sum of components 42; 
otherwise, the signatures need not be divisible by 4; in the contrary case, 
each will be - 2 (mod 4). We conjecture that  in fact  the signatures are  
always divisible by 4. 

We now consider group rings. As no copies of H can occur in p-hyper- 
elementary groups with p odd, let n = pa be 2-hyperelementary, with I p 1 = n 
as usual. By (4.1), the L-theory splits corresponding to divisors d of n ,  and 
in computing the d-summand, we replace L~(R,)  by 0 for prime divisors p 
of d. Thus the above condition holds (taking $, to divide such a p). It remains 
only to consider the case d = 1,  which is the same as taking n = a as  a 2- 
group. 

Now suppose n a 2-group. As ~ , n  is a maximal order for p odd, the 
corresponding maps L:(& - L:(S ,̂) will be surjective. We must thus con- 
sider the 2-adic completion. Moreover, as our argument will be inconclusive 
anyway, we may as well restrict to the orientable case. 

We have 

For i = 2 we know if n is trivial that  this lifts to a summand of Lf(z,n) 
which maps to zero in L,s(Q,~). The same follows in general, since the 
groups split as direct sums, with the trivial case a summand. For i = 0, 
similarly, this is not in the image of L,Y(z,~) or L:(Z,~). 

The image of Lzk(z2n) -+ CL,S,(Qn) thus coincides with tha t  of 
H ~ ~ + ' ( K , ( z , ~ ) /  Y). Now by [UGR, Theorem 4.11, {F 1) @ n/nf is the 2-torsion 
subgroup of K:(z,~). Thus, factoring out a group of odd order which does 
not contribute to cohomology, we have H 2 k + ' ( ~ h f ( ~ 2 n ) ) .  Recall that  in [UGR, 
(11.4)] we conjectured that  this group is trivial: this was verified in tha t  
paper for n abelian (11.3), dihedral or quaternion (10.3). For reference below, 
we reiterate this: 
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Conjecture 5.1.3. 
F o r  n a 2 -group ,  in t h e  orientable case,  H1(  w~'(zJ))  = 0, 

When n satisfies this, the conjecture above also holds, in the orientable 
case. One can also argue similarly in the nonorientable case, but the situa- 
tion is considerably more complicated, and we have not formulated an appro- 
priate conjecture. 

We are led to formulate explicitly fur ther  conjectures. 

Conjecture 5.1.4. (i) S i g n a t u r e s  a t  s u m m a n d s  of T of  t y p e  U(C) a r e  
d iv i s ib le  by  4. 

(ii) S i g n a t u r e s  a t  s u m m a n d s  of T of t y p e  O(R) a r e  div is ib le  by  4, a n d  
t h e  s u m  of  all those correspond ing  to a s u m m a n d  of S i s  d iv i s ib le  by  8. 

(iii) S i g n a t u r e s  a t  s u m m a n d s  of  T of t y p e  Sp(H) a r e  d iv i s ib le  by  4. 
(iv) T h e r e  a r e  n o  f u r t h e r  relatio?zs a m o n g  t h e  s i g n a t u r e s .  

Indeed, we already know (i) and (iv). It follows from (5.1.2) that  (ii) holds 
unless, perhaps, some even localisation of one of the corresponding summands 
S is a matrix ring over a quaternion division ring. And we just proved (iii) 
in the orientable case subject to the 2-subgroups of n satisfying Conjecture 
(5.1.3). 

We leave the reader to formulate this in the representation-theoretic 
terminology of (2.2). 

Observe finally that  the essential difficulty of conjecture (5.1.3) is its 
non-abelian character. Otherwise, if J is the radical of ~ , n ,  we could use 
the 2-adic logarithm to deduce from Hi(J') = 0 that  H i ( l  f 2J)" = 0 (or 
perhaps H i ( l  + 4J)" = 01, and would then be within striking distance of a 
solution. 

When n has abelian Sylow Zsubgroup, all the conjectures hold as we 
saw in Chapter 4. This follows easily from the above. 

5.2. General calculation for n a 2-group 

Although we have seen in a sense that  the essential complication in 
computing L-groups comes from the Sylow 2-subgroup of n ,  Chapter 3 
above is considerably simpler than Chapter 4. In this section, we will see 
that  when n is a 2-group, striking simplifications can be made to the general 
calculation. We restrict to the orientable case, and will obtain L:(R,) and 
L$(R- R,) in full detail, and compute l;ri when n is dihedral or quaternionic. 
The section concludes with a few remarks about the nonorientable case. 

In a companion paper on computation of surgery obstructions we will 
see that  the problem essentially reduces to the case when n is a 2-group, so 
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the case studied here has general theoretical interest also. 
We first perform the 2-adic computation. As usual, 

LH(z,~) = ~ f ( m  = Lf(F,) z 212 

for all i. We will assume conjecture (5.1.3) for n: that  H'(K,(z,~)!Y) = 0 
-recall we are considering the orientable case. Now in [UGR, $21 we pro- 
duced, using the 2-adic logarithm, an isomorphism between subgroups of 
finite index in 

K,(z,~)/Y = K~(z,T) (by [UGR, 4.11) and Z(Z,T)+ . 
Thus if K is the number of self-inverse conjugacy classes of n (i.e., contain- 
ing with each element its inverse), then z(z ,~)+,  hence also K,(z,~)/Y, has 
Herbrand quotient 2". Thus H~(K, (Z ,~) /Y)  has rank K .  Now the sequence 
relating L,Y and LP for ~ , n  splits, with the sequence for Z, (which we know) 
as a summand. It follows that  

LEMMA 5.2.1. I f  n satisjies (5.1.3), ~f ( ~ , n )  h a s  exponent  2 a n d  r a n k  0, 
K + 1,  1, K for  i = 0, 1, 2, 3. 

Next, to obtain Lf(R- R,) we must compute ri: L;(R,,,) @ L;(T)- 
CLd(S). But as R, is a maximal order for p odd (n being a 2-group), i t  splits 
a s  a sum of rings corresponding to the decomposition of S. We may thus 
consider the summands of S separately (as usual). 

Now S = Qn is a sum of simple algebras E with centres K. But K is 
generated over Q by values of the corresponding character of n ,  which a re  
in turn  sums of eigenvalues each a (2r)th root of unity for some r .  Thus for  
some n, K is a subfield of the field L, of (2"+')" roots of unity. As, moreover, 
we are considering the orientable case, E has type U if K is totally complex, 
type 0 or type Sp if K is totally real (only these cases are possible). More- 
over, when K has type U, L~(R,,,) and CLP(S) vanish so the contribution 
L,',,(R- R,) = LS(T) is 0 for i odd, and a sum of copies of 42, one for each 
complex completion of K,  for i even. 

The major simplifications come in the remaining case. L, is abelian, and 
i t  is easy to list the real subfields: there is just one, K,-, of index 2 and any 
real subfield is a K, for some p. Let us write then K = K,. Now K, is a 
very nice field, in particular its strict class group r* has odd order (this is 
an old result, well-known to those who know these things, but too deep to 
be included in the textbooks. A suitable reference is [H. Hasse, Uber die 
Klassenzahl abelscher Zahlkorper]). Equivalently, the regular class group 
has odd order, and the map 

$0: AX!(AX)" rITI,,, 
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is surjective. Now in the terminology of (4.6), r, = 0 and r, = 2"; both the 
above groups have rank 2", and the map is an isomorphism. Thus A* = 
(AX),. 

We can reinterpret this after  (4.6): K, has no extensions unramified a t  
finite primes. We now consider extensions K,[-/x] ramified only a t  even 
primes. As the extension is unramified a t  infinity, x is totally positive (i.e., 
positive a t  each real prime). Now 2 is totally ramified in L,,,, hence in 
K, (e ,  = 2", f, = g, = I) ,  so there is only one even prime p. We may 
suppose (multiplying by an appropriate unit) tha t  p is generated by the 
totally positive number q. Then x equals 1 or q multiplied by a totally 
positive element of K'". But since ,r = 0 and A* = (Ax)', K(')* = (KX)'. Then 
K,[l/q] is the only extension ramified only a t  2; i t  must therefore be K,,,. 
Moreover, i t  follows tha t  I?') has order 2. But this is the cokernel of 

and these groups have respective ranks 2", 2" + 1. Hence #, is injective. 
The image of 4, cannot contain (-3), else we would have a quadratic exten- 
sion ramified a t  no finite prime. In fact  the image is the subgroup orthogonal 
(under the norm residue symbol) to q-so every unit of K, is a norm from 
K,,,. For if u is a global unit, 

(u, q)z = flp+ (u, Q)P 

by the product formula. Now (u, q), = 1 for p finite, since u and q are both 
units in &, and for p infinite, since q is positive. The product is thus 1. 

We can now compute ri a t  the summand E. First let E have type 0: 
then i t  is unramified a t  infinity. As i t  is also unramified a t  odd p, it follows 
by the product formula for Hasse invariants that  E is a matrix ring over 
K,; however, we do not need this explicitly. Comparing with (1.6), we see 

7,: 0 -+ 0 is an isomorphism. 
r, is also an isomorphism, since just one $ (the even one) is omitted from 

the domain. 
r ,  has the same kernel and cokernel as 

K'"/(K " ) L  AA ,̂"/(A^A ,̂")\ 

But  as I' has odd order, K") / (Kx)  = AX/(Ax)', so we have #,; this is injective, 
with cokernel of order 2, by the above. 

7,: @ {4Z: p real} - 212 

is surjective on each component; write 2, for the kernel. The contribution 
t o  L,(R- R,) is thus zero except for i = 1,  where we have C., @ 212. 

The sitution is similar if E has type Sp; here the real places of E have 
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type H, and are the only ramified ones (by the product formula again). 
Here, r, has the same kernel and cokernel a s  

A x / ( A x ) k  &/(Â ,")' @ {{&I): p real) 

so is injective, with cokernel &/(Â ,")', of rank 2" + 1. 
7,: 0 - Z/2 is the unique such homomorphism; so is 
7,: 0 - 0. 
Y, (like Y, in the previous case) is surjective; its kernel is now @ {4Z: Q 

real} = C.,, say. 

THEOREM 5.2.2. 
L ~ ( R -  R,) i s  a sum of  Â ,"/(&)', over  summands of  t y p e  Sp, 
L ~ ( R  -+ R,) i s  a sum of  212, over  summands of  t y p e  Sp, 
L:(R- R,) i s  a s u m  of  212, over  summands of t y p e  0 ,  

and t h e  kernel  2 o f  t h e  e p i m o r p h i s m  
@{4Z: summands of  Rn} - @ {Z/2: summands t y p e  0 o f  Qn}; 

L,X(R -- R,) = 0. 

We can write (5.2.1) and (5.2.2) in a form which makes i t  easier to 
compute ranks while obscuring somewhat the genesis of the respective 
groups. Let us denote by a, (resp. b,) the number of summands of Qn (resp. 
Rn  or Cn) of type 0 ;  a,, (resp b,,) for type Sp. Then the number K above 
equals b, + b,,. Apart from the term 2 ,  then, we have elementary 2-groups 
with ranks as  follows: 

i 0 1 2 3 

rank LP(R,) 0 b, + b,, + 1 1 b0 + bsP 

rank LP(R -- R,) 0 a, asp a>, + bsp . 
To complete the calculation, i t  remains mainly to determine +, and +,, for 
+o = 0 and +, = 0 also, since the generator of L:(z,T) is in the image of 
L:(Z) = L:(z,), hence also of Lg(Zn). This argument shows also that  L,Y(Zir) 
is a split extension of Coker +, by 212, so the only extension in doubt is tha t  
giving Lr(Zn). 

To illustrate the above, we first reconsider the abelian case. Here we 
know (5.1.3) so all the above applies. No representation has type Sp, so 
a,, = b,, = 0 and +, = 0. We have a, = b, = 2'. We need the calculation of 

rank +, = 1 + r + (i) as in Section 3.3; the rest can then be read off. 

Next we consider dihedral groups; here again (5.1.3) is known and no 
representation has type Sp. I claim tha t  the image of +, is the torsion sub- 
group. Certainly i t  is contained in this; we prove surjectivity by induction. 
Write 
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Dr+' = {x, y/x2' = y2 = 1, yP1xy = xP1} . 
In the case r = 1,  our assertion follows from the abelian result above. Now 
assume the result for Dr+'. We have 

QDrt2 = QDr+' @ Q{x, ylx" = - 1, y2 = 1, y-lxy = xP1} 

with the second summand a matrix ring M2(K,-,). We have to  show tha t  
units in Z,D'+~ map surjectively (via Nrd) to the product over these sum- 
mands of A^:/A"(&)? As (Z,D"'+"X - (Z~D'+')" is clearly surjective. for the 
kernel of z,D'+" Z~D,+' is contained in the radical so any lift of a unit is a 
unit, i t  suffices to find a unit mapping to 1 in z,D'+' and to a generator of 
A^,"/A"(A^;)~ a t  the last place. But consider 1 + (1 - x2')y: i t  has the first 
property, and maps to 1 + 2y in the matrix ring; and Nrd(1 + 2y) = 1 - 
4y2 = -3 does generate the quotient. 

Since for Dr+', a, = r + 3 and b, = 2'-' + 3, we have 

THEOREM 5.2.3. 

L;.(ZDr+') r 2 , 
L:'(ZDr+') r (2'-l - r + 1)(Z/2) , 
L;(ZDr+l) E Z/2 , 
L;(ZDr+l) r (2" + 3)(Z/2) 

with the notation above. 

Recall a s  usual that  the ranks of the odd groups must be diminished by 1 t o  
yield surgery obstruction groups. 

Now we look a t  quaternion groups 

Q r + 2  = {x, y/X2r+1 = 1, y2 = x2', y-'xy = z-'} . 
As for D"-"above, we observe that  

QQr-" QDr+' @ Q{x, y/xV = y2 = - 1,  y-lxy = X-'} 

and the last summand is a quaternion division ring over K,-,, ramified a t  
infinite primes only. It thus follows from the previous calculation tha t  the 
image of $PI is still the torsion subgroup. 

I now claim that  +, is surjective. This means that  we can find a 2-adic 
integer polynomial P(x) + yQ(x) whose norm P(x)P(x-') + Q(x)Q(x-') is an 
arbitrarily chosen 2-adic unit of KT-,. Now since powers of x form an inte- 
gral  base of L,, P(x) is an arbitrary 2-adic unit of L,. By local class field 
theory, NZ,,, has index 2 in K , ~ , , ,  and the corresponding assertion holds for 
units. 

For later reference, we determine this norm map more explicitly. Let 
x generate the torsion subgroup of L:, of order 2'+'; then 1 - x is a prime 
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and its norm is a totally positive prime of K+,, so may be labelled as q. If 
Ui is the group of units of K,+,,, congruent to 1 mod qi, then Ui/Uif1 has 
order 2 for i 2 1. For i = 2 j  + 1 ( j  2 1) we have 1 + qj(1 - x) with norm 

Thus the subgroup of norms of units contains, hence equals, U2. In parti- 
cular, if we cannot find a P(x) on taking Q(x) = 0 then we can if we take 
Q(x) = 1 - x: so 3, is surjective. 

We now count constants as before, and obtain 

THEOREM 5.2.4. L;(ZQrt2) r 2,  Lr(ZQr+') i s  a n  extension of Z/2 by 
(2' - r + 1)(Z/2), Lg(ZQrf2) r 212, L;(ZQrf2) 2: (2r+1 + 2)(Z/2). 

It would clearly :not be difficult to make more such calculations. The 
above is considerably more powerful than the author's previous attempts: 
observe that  I have not even used the messy calculations of [UGR, § 121 
which were included for this very purpose. 

We conclude by considering also dihedral and quaternion groups in the 
nonorientable case. These are  relatively simple since (as we have seen) the 
fields K, are the only ones which appear-whereas even for ir cyclic of order 
4 we had L, = Q[i] a s  a summand of type 0. 

We first determine the types of the various summands of Qn which 
appear. These are  given by 

for some value of r .  We thus have an additive basis {xi, xiy: 0 2 i < 2'). 
Now 

If w(x) = -1, we have the same number of xiy fixed as changing sign; 
x0 = 1 is fixed, but  x2"-' changes sign (unless r = I ) ,  so we have type U; if 
r = 1,  x is fixed too and we have type 0. If ,  however, w(x) = 1,  the contri- 
butions from x h n d  x2'-' always cancel but  those of the xiy mount up; we 
have type 0 or Sp according to whether cw(y) = +l or  -1. 

Collecting these observations, we see tha t  if 

n = {x, y/xZr = 1,  y2 = 1 or xzr-l, y-lxy = x-l] 

is of type Dr+' or Qr+'; then if w(x) = -1 there is only one self-conjugate 
representation, which corresponds to  x2 = - 1 and has type 0. The Herbrand 
quotient for z (z ,~ )+  is thus 2; hence also for K,(z,~~)/Y. I f ,  however, 
w(x) = 1, all the representations of degree 2 are  self-conjugate; as we are 
supposing ir nonorientable, w(y) = -1, and all have the opposite type to the 
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orientable case. 
We first consider the case w(x) = 1,  w(y) = -1; we begin with the 2- 

adic calculation. The torsion subgroup + 1 @ n/nl of K:(z,~) is "the same" 
(rank 3) in all cases, and if we define K:'(z2ir) to be the subgroup whose 
projections a t  the four degree 1 representations are =1 (mod 4), the projec- 
tion K:'(z,~) - K,(z ,~) /Y is an isomorphism. Now the projection on these 
four representations is 

{(a, b, c, d): a E b r c = d - 1 (mod 4)) . 
In all the nonorientable cases, these are permuted in pairs by a ,  so are  a11 
type GL; the projection is an induced module over the group c of order 2 
generated by a ,  hence cohomologically trivial. Thus if K:" is the kernel of 
this projection, H~(K, (z ,~) /Y)  = HYKI"). 

Now consider Dr+' and Qr+' in the case w(x) = 1,  w(y) = -1. It follows 
from the above that  c acts trivially on K:", so H1 = 0 and H0 has rank 
2'-I - 1. The usual calculation shows that  the map 

is zero, and indeed that ,  for all i ,  

(*) L:(Z,X) z L~(z,T) @ Hi+'(K:") . 
Also, L,(R- R,) is the same as  in the orientable case, but  with contributions 
of 1-dimensional representations missing, and all shifted by 2 dimensions. 
Thus in computing +i we must only use units which are trivial a t  the 1- 
dimensional places, i.e., a re  congruent to 1 modulo the ideal (1 - x2) = 

(1 - x2, 1 - y2). This does not affect our inductive proof tha t  in the dihedral 
case +, (corresponding to +, before) maps onto the torsion subgroup. In the 
quaternion case, however, we must have Q(x) divisible by 1 - x2, hence 
Q(x)Q(xP') by q2, SO the image is contained in U 2 ;  indeed our previous argu- 
ment now shows that  i t  coincides with U2, SO has index 2. We deduce 

THEOREM 5.2.5. I n  the case w(x) = 1,  w(y) = -1, 
L,(ZDr+') -212, Ll(ZDr+ l) r 2'-'(Z/2), L,(ZDr+') s C@Z/2 and  L3(ZDr+') r 

(2,-1 - r + l)(Z/2). 

Lo(ZQr+') has order 4, L1(ZQr+l) z ZrP2(Z/2), L2(ZQr+') E C @ Z/2 and  
L3(ZQr+') i s  a n  extension of Z/2 by (2" - r + 2)(Z/2). 

It remains to consider the case when w(x) = -1. 
Now if n is quaternion of order 8, there are automorphisms permuting 

x, y, and xy so we may assume w(x) = 1. In the remaining cases, there is 
just one self-conjugate representation, which corresponds to a quotient group 
of n which is dihedral of order 8. The other representations make zero 
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contributions. Thus the projection n -+ D3 induces an  isomorphism of 
L*(R -+ R J .  

PROPOSITION 5.2.6. I n  t h e  case  w ( x )  = -1, t h e  g r o u p s  LY(ZD3) a r e  i so -  

m o r p h i c  f o r  i = 0, 1, 2, 3 t o :  

z @ zjz ,  z jz ,  z jz ,  z j z  @ z jz  . 
F o r  o t h e r  d i h e d r a l  o r  q u a t e r n i o n  g r o u p s ,  p r o j e c t i o n  o n  D3 i n d u c e s  a s u r  jec-  

t i o n  of Lf(Zn). T h e  k e r n e l  i s  an e l e m e n t a r y  2 - g r o u p ,  w i t h  t h e  s a m e  o r d e r  

a s  H~(K~(ZJ)/  Y). 

I conjecture tha t  these kernels vanish; this is an example of a nonorien- 
table analogue of (5.1.3). It should not be too difficult to resolve this conjec- 
ture by a direct inductive calculation. 

P r o o f  (outline). For D3, we have already identified K,(Z,T)/Y with K:', 
and its cohomology with tha t  of K:", which is isomorphic to  z:. Thus H' 
vanishes here, and H0 has order 2. The usual calculation shows again that  
the map L E ( z ~ ~ )  - H" is zero and that  (*) holds for all i . We have just seen 
that  L,Y(Zn -- ~ , n )  is the same as for the trivial group, viz. zero, for i + 1, 
and isomorphic to Z @Z/2 for i = 1. Now the image of +, is the torsion 
subgroup as  we see directly or via the proof of (5.2.3) and the first assertion 
follows. 

For the second, the map of H ~ ( K ~ ( z , ~ ) /  Y) is clearly surjective; its kernel 
has the same order as  H' by a Herbrand quotient argument. Now (*) again 
holds, and the conclusion follows on applying the Five Lemma to the map 
of the exact sequences including +, induced by ir -+ D3. 

We conclude with two observations. The first is that  the calculations 
for the two nonorientable cases of D3 differ only by a dimension shift of 2; 
i t  would be interesting to see a direct proof that  the result differs only by 
such a shift. Secondly, we recall tha t  the surgery obstruction groups are  
obtained from these by factoring out a subgroup of order 2 in odd dimen- 
sions (1 in even!). The calculations extend those announced in [L] which 
were, I am sorry to admit, quite inaccurate in the quaternion case (though 
correct in the dihedral). 

5.3. Examples 

This section is included to illustrate the results obtained by examining 
some cases numerically, though I will not give much actual calculation. 

We begin with the dihedral groups D,, and D,,, and the quaternion group 
Q,,, where n is odd. These are  2-hyperelementary, and the L-groups are  
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direct sums indexed by divisors d of n ,  e.g., 

where E,(D,,; d) depends only on dl  not on n ,  so will be denoted from now 
on by E,(D,J. The decomposition was first obtained for LX,  but we have 
seen that  i t  remains valid for LY,  with the same E ;  again, the same holds 
for surgery obstruction groups-only the summand d = 1 needs modification. 

From Chapter 3, we can obtain these groups when d = 1: they are given 
by the table 

For the rest, we may suppose d = n > 1. First consider orientability. 
The homomorphism w: n -+ {+l} may be trivial, or i t  may have kernel the 
cyclic subgroup of index 2 in ir. Our calculations for these two cases differ 
only by a dimension shift of 2 (though I have no a pr io r i  proof of this), so 
we may ignore the second case. For D,, and Q,, these are the only cases; for 
D,, there are two more, which are equivalent under an outer automorphism 
of n. This last belongs to Case I, in the notation of (4.2); according to (4.4) 
we then have L,(R) = L,(&), and the value of this is given by (4.3). We 
will tabulate it with the others below. 

It remains, then, to consider the orientable case. Then D,,, D,,, and Q,, 
have types 11,, III,, 111, respectively. The group C has order 1, 2, 2. Write 

K = Q[exp (Znijn)] n R ; 

then the centre of the summand of the rational group ring is K ,  K @  K,  
K  @ K. Write A for the integers of K,  r for its class group, 2 for the sum 
of rn = &(n) = [K: R] copies of 42, one for each real place of K,  and 2' = 

Ker (X -+ 212). 
The group L,(R,) is again given by (4.3); the relative group L,(R-+ R,) 

is equal respectively to  L f  for D,,, Lf  @ L: for D,,, and L,* @ L,*$ for Q,,. 
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We have 

L $ = O ,  L Z * = Z / 2 ,  L 3 * = 0 ,  L 3 * * = 2 ,  

a n  exact sequence 

0-{Fl}  -@{+I :  p 12n} - L," 
cD - K'"/(Kx)2 --f @ @ 12%) - L: - r / F 2  @ 2' - 0 , 

and a similar one for L t * ,  L:* but with 2' omitted and @ {+I: p real} added 
t o  the target  of 0. 

To compute ranks, we introduce the decomposition numbers g,: if n, is 
the  largest factor of n prime to p,  this equals the index in (Zln,)" of the sub- 
group generated by p and -1. Write G = C{g,: p / 2n}. According to (4.7), 
the  orders of the torsion subgroups are  given by 

1: = G - l + r k K e r c D ,  l : = l + l t ,  
I t*  = G - 1 + rk  Ker cD* . 1:* = rn + 1 + l t *  . 

Now from (4.5) we find that  for D,, and D,,, +, = q3 = 0 and the image 
of $r2 is g,(Z/2); for Q,,, +, and +, are injective. For the rest, the images of 
l;rl (D,, or  Q,,) and q3 (Q,,) are the natural images of Â ," and since (A^,[,)" has 
odd index in Â ," @ Â ," and c acts trivially, the image of +, for D,, is the sum 
of two copies of that  of Â ," - L:. 

To pursue the general case a little fur ther ,  we conclude by observing 
tha t  although our methods do not determine group extensions in general, the 
orders of the torsion subgroups can now all be written down in terms of 
those of the cokernels of +, and $r:. 

From (4.3), L,Y(R,) is given by the table: 

THEOREM 5.3.1. F o r  n odd, i n  the exceptional case, 

E,(D,,> 2: g2(z/2) , 

a n d  i n  the orientable case, 
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Ez(~2,) z g,(Z/2> , EZ(D,,> -. 2gz(z/2> , 
E3(D2,) L,(& (m - g2)(Z/2) @ g2(Z/4) , 
E3(~4n) % ~3(Rz) z (2m)(Z/2) CB gz(Z/4) , 

and  El, E,, E, a r e  finite for D,,, D,,, and  Q,,, while 2, has free p a r t  2', 2' @ 
2' r e p .  2' . If the cokernels of +,, +,* have orders 2", 2"* then the torsion 
subgroups of the groups 2 have orders 2' with r given by the table 

This follows from the assertions above by chasing round exact sequences, 
which may be left to the reader. These also of course give some information 
about extensions-e.g., L: has exponent 2, hence so does the torsion sub- 
group of Lo for D,, and Q,,. Similarly if @ is injective Lg has exponent 2; 
and i t  always has exponent 2 or 4. 

Now the cokernel of ?;r, lies in the (split) exact sequence 

so we should compute rk  @' (by-passing separate calculations for ranks of @ 

and +,). By (4.6), Ker @' is dual to the quotient of the (m, 2)-enriched class 
group r"'2) by u2(A^,) and prime divisors of n .  However, we may also 
compute directly. For example, suppose n a power of a prime p. Then p is 
totally ramified in K, and g, = 1. There is thus only one @ n ,  and its residue 
field is F,. But if i: = exp 2ni/n, then (C'' - <-")/(; - <-I) is a unit, with 
residue r E F, ( p  I; r ) ,  so @' is surjective and g equals the 2-rank of r. This 
is 0, for example, if n = 3, 5, or  7. 

As to G*, I assert that  if I?* has odd order, then 

g* = G - g, = C{g,: p 1 n} . 
For when has odd order, we can simplify the sequence to 

Ax/(Ax)" @ {Â ,"/(&)" @ 1 n} @ {+I: @ real} - Coker yk: + 0 . 
But the two groups 

Ax/(Ax)+ @ {*I: p real} 

have the same 2-rank m; this map is surjective since r* is odd, hence bijective. 
The cokernel is thus as stated. In particular, for n = 3, 5, or  7, +* = 1. 
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Observe in conclusion that  the announcement [L] was somewhat prema- 
ture: ''$" there equals the g, above, so Lo and L, were correct; as to L,, $ + 
p - 1 was a misprint for g + ( p  - 1)/2 and the determination of the extension 
was wrong. The calculation of L, was more seriously in error; the subtleties 
above were discovered later. 

One primary source of motivation for  writing this paper was the desire 
to determine the surgery obstruction groups for groups with periodic 
cohomology. After (2.4), it suffices to consider 2-hyperelementary groups 
with cyclic or quaternionic Sylow 2-subgroup. The cyclic case is covered in 
principle in Chapter 4: fur ther  details can be computed as above. For the 
other case, if Ker h: a - (2l.n)" is abelian, then following [UGR] one sees tha t  
a t  least a method exists to attack the problem; i t  is likely to be even more 
complicated. For example, if 

a = {x, y/x4 = 1,  y2 = x2, y-lxy = X-lj  

acts on Q[o/o~ + o + 1 = O] by O' = O, wY = O-', then we will be reduced 
to studying the ring R whose Z-basis consists of 

1 ,  x2, OX + o~x- ' ,  w2x + OX-': R @ Q rv Q @ Q @ Q[1/3] . 
To be a little more specific, let us consider the interesting group SL,(q) = 

SL,(F,), of order q(q2 - l ) ,  with q odd. The conjugacy classes are either 
(i) + I ,  central; 
(ii) diagonal, with distinct eigenvalues X, X-I; 
(iii) semisimple; diagonalisable over F,z with eigenvalues X, X-' where 

XI-, = 1; 
(iv) i: T where T is upper unitriangular. 

A 2-hyperelementary subgroup normalises an element of odd order. For an 
element of type (ii), the normaliser is contained in extension with index 2 of 

( O l) For one of type (iii), it is the F,' @ F," (diagonal) generated by . 
product of F;, by an element of order 4 inducing the Frobenius automorphism 
x - xq. Note that  only - I has order 2. Finally, the normaliser of the cyclic 

(a 
) such tha t  aF2x is group generated by (i i) is the group of matrices a-l 

a multiple of x, i.e., a% FF,, where q is a power of p,  and hence a €  F,". The 
2-hyperelementary subgroups arising from cases (ii) and (iii) are quaternion 
groups, each contained in (a conjugate of) one maximal one, of order 2(q - 1) 
resp. 2(q + 1). For case (iv) we have an extension of Zlp by the Sylow 2- 
subgroup of F,", acting by the square of its natural action. This is abelian 
if p = 3 (mod 4), and quaternionic if p -- 5 (mod 8). All these groups are 
covered by Chapter 4, and most by the case Q,, detailed above. 
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We conclude with one simple example showing how to reconstruct L,(n) 
from the 2-hyperelementary subgroups of n. If n is the tetrahedral group 
(alias the alternating group A,), the maximal such subgroups are Z/2 @ Z/2 
and 213, and the inverse limit over the category of them is thus the pull- 
back of 

where the affix Z/3 indicates invariants under the automorphism induced by 
action of 213. Thus 

Similarly for the binary tetrahedral group SL,(3) the pullbacks of the above 
form a cofinal subcategory, so 

L,(sL,(~)) s (L,(&,))~ '~  @ L(z16)  , 
where E , ( z / ~ )  denotes (as above) Ker (L,(Z/6) - L,(Z/2)). 

We conclude by computing these groups in the orientable case. In each 
case there is a natural splitting into free and torsion parts  (e.g., Lo(&,) is 
free). As to the free part ,  Z/3 acts by permuting certain summands. We 
therefore have 

whereas by (2.4.2), 

EO(z/3) r" E,(z/3) r" 42 , 
EO(z/6) r E , ( z / ~ )  r 42 @ 42 , 

and these groups vanish in odd dimensions. 
For the torsion, we begin by observing that  if V is an elementary 2- 

group on which Z/3 acts, we can split V = Vo @ V1 where V, is the subgroup 
of invariants, and V, can be regarded as a vector space over F,, with Z/3 
acting as F:. Now L,(R) has order 2 so the action must be trivial. The 
action on the summand of L,,+,(R,) coming from the trivial group is trivial; 
what is left is 

Ker (HO(&/Y) - H~(Z; /{&~}) )  . 
This is a group V a s  above, and we see a t  once that  dimp, V, = 1 in each case. 
But for L,(R), Vl maps injectively to the relative group, so Z/3 acts trivially 
(in the quaternion case, we observe that  if L1(R) is a nontrivial extension, 
Z/3 cannot act nontrivially on it). For L,(R), on the other hand, its image 
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does contain V,. To summarise, we have 

THEOREM 5.3.2. I n  the orientable case, surgery obstruction groups a r e  
given by: 

L,(A,) E 82  @ 82  @ 42, Ll(A,) = 0, L,(A,) E 42 @ 212, L3(A4) = 0, 
L,(SL,(3)) G 82  @ 82 @ 82  @ 42 @ 42, L1(SL,(3)) has order 4, 
L,(SL,(~)) E 42 @ 42 @ 212, and  L,(SL,(~)) = 0. 

5.4. Variant forms of obstruction groups 

In (1.1) above we defined groups LX(R, a ,  u) for any a-invariant subgroup 
X of Kl(R), and agreed to write Ls  when X = 0 and Lf  when X = K1(R). 
For the case R = ZT of primary interest to us we have concentrated through- 
out on X = SK1(Zr) = Ker (Kl(Zn) - K,(&n)). Write also U for the subgroup 
of K1(Zn) generated by the images of k g  (g E T), and Y = X + U. Then 
our groups are related to the surgery obstruction groups of [SCM], [L] by 

and correspondingly in odd dimensions except that  we factor out the class 
0 1 of 7 = (il O). This was shown in [F]; the L' groups are intermediate in 

the sense of Cappell. 
The interrelations between these depend on an analysis of the group 

Kl(Zx). This is a finitely generated abeIian group (Bass [5,  X, 9 31) whose 
rank is given in the notation of (2.2) above by 

As to the torsion subgroup, by the main result of [UGR, 6.51 we have 

Tor Kl(Zx) = { t 1) @ nln' @ SKl(Zx) 

= U@SKl(Zx) . 
The Whitehead group Wh(n) is defined to be Kl(Zn)/U; we set also 

K:(Zx) = Kl(Zn)/SKl(Zx) and Wh'(n) = Wh(n)/SK,(Zn) , 
the torsion-free quotient. 

The variant forms of L-groups are related by exact sequences, as given 
in (1.1). We first compare L' with L <  The relative groups here are H*(Z/2; 
Wh'(n)), and they vanish if Kl(Zn) has zero rank-i.e., if all real-valued 
characters of T are rational-valued, or equivalently if for any x E n,  any 
power of x generating the same cyclic subgroup is conjugate to x or to x-'. 
This is the case, for example, if n is abelian of exponent 4 or  6, or if x is 
isomorphic to the symmetric group of n letters (any n)  or to the alternating 
group (n  = 3, 4, 7, 8, 9 or 12). In these cases, Lkx = L&n. In general, in 
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the orientable case Z/2 acts trivially on Wh'(n) and ([UGR, 7.41) we have an 
exact sequence 

ii 
0 - L:,(T) - L;,(n) - Whl(x) @ 212 - L:,_, (x) - L$,-,(T) - 0 . 

Now if n has odd order, L:,-,(n) = 0 (2.4.3), so 6 = 0 and L;,-,(n) = 0. More 
generally, suppose that  T is p-hyperelementary with p odd, with Sylow 2- 
subgroup a which we can also by (2.4.1) regard as a quotient. Then the 
composite x 3 a a/2o induces a commutative diagram 

Here, f, is an isomorphism by the calculation (3.3.2), and f, by the remarks 
above (applied to a/2a). Since f, is surjective, all four maps are isomorphisms. 
Hence 6 = 0. Recall from (3.3.3) that-assuming a nontrivial-the groups 
L,,_, have order 1 (k odd) or 2 (k even). 

More interesting, perhaps, is to compare L'  with L \  The relative groups 
here are H*(Z/2; SK,(Zx)). Now if x has odd order-and more generally 
[UGR, 9.21 if the order of n is not divisible by 4-SK,(Zn) has odd order, so 
these cohomology groups vanish and L:(n) = L&(n). The same conclusion 
holds [5] if n is abelian, and the Sylow 2-subgroup is either cyclic or elemen- 
tary ,  also (Keating) for dihedral 2-groups (but probably in few other cases). 
In the contrary case, Bak has observed ("The involution on Whitehead 
torsion", to appear; see also Bass [6]) that ,  a t  least if n has Schur index 1 (i.e., 
RQ(x) = RQ(x)), Z/2 acts trivially on SK,(Zn) so tha t  if this has even order, 
so has Hr(Z/2; SK,(Zn)), and L W i l l  no longer conicide with L'. 

We can now compare our calculations with those of other authors: we 
begin with those of H. Bass [6]. For n an elementary abelian 2-group, Wh(n) 
vanishes [5], so L" L' = L h .  In the orientable case, for x of rank r ,  (3.3.2) 

shows that  L,, L, are elementary abelian of respective ranks 2' - 1 - r - , (3 
2' - 1. This coincides with (1.5) and (1.3) of [6], on taking into account the 
calculation [UGR, 12.91 tha t  I?,(z~) (denoted Pic (ZT) by Bass) is a sum of (r) cyclic groups of order 2'-' for 3 j i _< r (confirming Bass' calculation [6, 

3.7.21 of its order). 
In general (for n abelian, orientable case), Bass' results are incomplete, 

depending on the determination of certain subgroups G,(x) c F , [ ~ / T ~ ]  and 
G,(T) c F,[,nIx. In view of the fact  that  L,(Zn) G L,(z,T), and H ~ ( Z , ~ ) "  -+ 

L,(z,~) is 'almost an isomorphism', i t  is tempting to identify Bass' sequence 



HERMITIAN FORMS. VI GROUP RINGS 79 

(where G,(n) = ,n for L-nd q ( ~ ( n ) " )  for L h )  with the sequences of (3.2): 

where the first group is a (split) extension of a group of order 2 by F,[,nIf, 
and the last is an extension of HO((F,[,n]") by a group of small order. Indeed, 
if any direct comparison can be made between these, it could lead to new 
information about K,(Zn). 

Next, we observe that  [4], dealing with groups of odd order obtains the 
same results as above; indeed, we have already observed tha t  in this case, 
L" = L' = Lh.  Finally, Bak has made fur ther  calculations for abelian groups 
(starting from his paper with Scharlau in Inventiones Math. 23 (1974) 
207-240). Unfortunately, I do not have the details available a t  the time of 
writing, but here too a careful comparison of results should be fruitful. 
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