
 Poincare complexes: I

 By C. T. C. WALL

 Recent developments in differential and PL-topology have succeeded in

 reducing a large number of problems (classification and embedding, for ex-

 ample) to problems in homotopy theory. The classical methods of homotopy

 theory are available for these problems, but are often not strong enough

 to give the results needed. In this paper we attempt to develop a branch of

 homotopy theory applicable to the classification problem for compact manifolds.

 A Poincare complex is (approximately) a finite cw-complex which satisfies

 the Poincare duality theorem. A precise definition is given in ? 1, together

 with a discussion of chain complexes. In Chapter 2, we give a cutting and

 gluing theorem, define connected sum, and give a theorem on product

 decompositions. Chapter 3 is devoted to an account of the tangential proper-

 ties first introduced by M. Spivak (Princeton thesis, 1964). We then start our

 classification theorems; in Chapter 4, for dimensions up to 3, where the

 dominant invariant is the fundamental group; and in Chapter 5, for dimension

 4, where we obtain a classification theorem when the fundamental group has
 prime order. It is complicated to use, but allows us to construct two inter-
 esting examples.

 In the second part of this paper, we intend to classify highly connected Poin-
 care complexes; to show how to perform surgery, and give some applications;
 by constructing handle decompositions and computing some cobordism groups.

 This paper was originally planned when the only known fact about

 topological manifolds (of dimension >3) was that they were Poincare com-

 plexes. Novikov's proof [301 of topological invariance of rational Pontrjagin
 classes and subsequent work in the same direction has changed this, but we

 can still easily summarize the basis of the relation of Poincare complexes to

 smooth and PL-manifolds. The first point of difference lies in the structure

 group of the normal bundle; G, 0, or PL in the three cases. If this group be

 appropriately reduced (from G to 0 or PL), surgery can be performed as in
 [13] to try to construct a manifold; certain algebraic obstructions arise in the

 middle dimension (see [13] for the simply-connected and [26] for the general

 case). These algebraic structures provide the second point of difference; one

 in which we are particularly interested. Chapter 5 was originally written for

 the purpose of constructing examples to illustrate these (5.4.1 and 5.4.2). A
 fuller discussion of these points is planned to appear as a sequel to [26].
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 214 C. T. C. WALL

 CHAPTER 1. Definitions and chain complexes

 Let X be a connected cw-complex, dominated by a finite complex.

 Suppose given

 (i ) a homomorphism w: w1(X) -{?1}, defining a A-module structure Zt

 on Z,

 (ii) an integer n and a class [X] C H,(X; Zt) such that

 (iii) for all integers r, cap product with [X] induces an isomorphism

 [X] -: Hr(X; A) > Hn.r(X; A 0 Zt) ,

 then we call X a connected Poincare' complex, [X] a fundamental class, and
 n the formal dimension.

 For the most part, we will use the notation of [25], but the twisted

 module structure on Zt leads us to make some modifications of the definitions

 there used, which will be more convenient when studying Poincare complexes.

 If C,, is (as in [25]) the chain complex of X, and B a left A-module, we retain
 the form of the definitions

 Hr(X; B) = Hr(C* 0A B) , HI(X; B) Hr(HomA (C*, B))

 but will reinterpret them. Both definitions refer to the given left module

 structure on B, and the second also refers to the natural left module structure

 on C,. However, the first uses a derived right module structure on C*, which
 we redefine, using the anti-automorphism of A in which

 Eger n(g)g > I9g, w(g)n(g)g-1
 Note that this differs from the obvious definition by insertion of the signs

 w(g). It is thus clear that the right module structure with this definition

 coincides with the right module structure on A ?& Zt with the old definition.
 To avoid overmuch confusion, we write Hrt(X; B) for the homology group

 under the new definition. Note however that Hr(X; A) = Hr(X; A). In fact

 this is just the homology of C*, as AQDA is equivalent to the identity functor.
 With w fixed, our definition now requires a fundamental class [X] e

 Ht(X; Z) and isomorphisms

 [X] -: Hr(X; A) - H.-r(X; A)

 The following result is due to Milnor, at least in the orientable case.

 LEMMA 1.1. Suppose X a connected Poincare complex. Then for any

 integer r and left A-module B,

 [X] ^: Hr(X; B) - Ht-r(X; B)

 is an isomorphism.
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 PROOF. We represent [X] by a cycle d eC ,qt. Now cap products can be
 defined at the chain level, by taking a cellular approximation d: X X x X
 to the diagonal map, and writing, for a chain x and cochain y,

 Zy-x -y\d*(x) ,

 where d*: C* C* 0&z C* is induced by d, and \ is Steenrod's slant product. (I
 am indebted to A. Dold for pointing this out to me.) Thus the choice of d and

 d defines a chain map d -: HomA (C*, A) > C* (of degree n). NOw this induces

 the homology map [X] , which is by hypothesis an isomorphism. But
 HomA (C*, A) and C* are both finitely generated and projective, so (by a result
 of J.H.C. Whitehead) d^ is a chain homotopy equivalence.

 Now take the tensor product over A with a A-module B, and use the iso-

 morphism (valid since C* is free) HomA (C*, A) 0 B HomA (C*, B). We
 deduce that

 i :HoMA (C*, B) >C* ifB

 is a homotopy equivalence, and so induces homology isomorphisms.

 COROLLARY 1.1.1. [X] is unique up to sign.

 For it is a generator of Ht(X; Z)- H(X; Z) -Z. In general, a Poincare

 complex is a finite disjoint union of connected Poincare complexes of the same

 formal dimension. We will sometimes use the notation adapted for the con-

 nected case. Then A is to be interpreted as the direct sum' of the integral

 group rings of the fundamental groups of the components, and Hr(X; A) as a

 direct sum likewise. [X] will denote the sum of fundamental classes of the

 components, and the above isomorphisms are then true without change. Note

 that the finiteness obstruction for such a disconnected space X continues to

 be represented by a projective A-module.

 The Poincare duality theorem (in a strong form) asserts that a closed

 topological manifold has the homotopy type of a Poincare complex. We next

 proceed to the homotopy analogue of a compact manifold with boundary.
 Let Y be a connected cw-complex dominated by a finite complex, X a

 subcomplex which is a Poincare complex. Write TC = 11,(Y), and A for the
 integral group ring of wr. We call (Y, X) a connected Poincare pair if we are

 given a homomorphism w: 11,(Y) - {+?1}, [inducing the given homomorphisms
 {+1} for the various components Xi of X], and a class

 [Y] C H.+1(Y. X; Z) [with a[ Y= [X] C Ht(X; Z)]

 such that

 1 The free product would be more appropriate in some respects, but is not altogether
 convenient to use.
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 216 C. T. C. WALL

 [Y]- Hr+l(Y; A) -- HL7(Y, X; A)

 is an isomorphism for all integers r.

 We conjecture that the two requirements enclosed in square brackets are

 redundant; however, we will have to impose them.

 LEMMA 1.2. For any integer r and A-module B, [Y]- induces iso-
 morphisms

 Hr+l(Y; B) > H.Lr(Y, X; B), Hr+l(Y, X; B) > Ht-r(Y; B)

 PROOF. The proof of the first is essentially the same as that of Lemma

 1.1. For the second, we use the following diagram, which has exact rows

 and squares commutative up to sign

 *. -* > HT(X; i*B) > Hr+,(Y, X; B) - Hr+,(Y; B) - ..

 {[X] {[YV {[YV

 ... * Ht-,(X; i*B) > H.L(Y; B) - H J(Y, X; B) -

 Here i*B denotes the induced module over w1(X) (or correspondingly if X is

 disconnected). The Five Lemma permits us to conclude that the middle map

 is an isomorphism, as asserted.

 Although we shall not study them in detail, we give here also the defi-

 nition of Poincare triad (cf. [26]). Suppose (Y; X+, X_) a cw-triad such that
 (Y, x+ U x ), (x+, x+ n~ X), and (X_, X+ n x) are Poincare pairs; the homo-
 morphism w: w1(Y) > { + 1} induces the corresponding homomorphisms for [the

 components of] X+ U X_, X+, X_, and X+ n X; and, finally, that

 M[Y] = [X+] - [X_].

 Then we call (Y; X+, X_) a Poincare triad. The comments made about the

 definition of Poincare pair are pertinent here also. Note in addition the

 special case X+ n x= 0, which has particular importance. In this case we

 call Y a cobordism of X_ to X+.
 Since this chapter is mainly concerned with chain complexes, we give

 here a duality theorem for our finiteness obstruction. This has been obtained

 independently by J. Milnor. In order to state it, we observe that the standard

 module operations tensor and Hom preserve projectives and lead to operations

 on K0(A). In particular, P - HomA (P, A) (where the latter has the module

 structure induced by the canonical anti-automorphism of A) defines an

 involution on K0(A), which we will denote by *.

 THEOREM 1.3. Suppose X a Poincare' complex of formal dimension n

 Then a(X) = (-l)ff(X)*
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 PROOF. The proof of Lemma 1.1 provides us with a chain homotopy

 equivalence of degree n

 [X] -: HOMes (C*, A) >C*

 We may assume by [25, Th. 6] that C*(X) has already been replaced by a
 homotopy equivalent finitely generated projective complex. But (as is there

 observed) the generalised Euler characteristic is an invariant of chain

 homotopy type. The result now follows immediately:

 u(X) = a(C) u(HomA (C*, A))

 = .fS. (-1)i{HomA (Pni1 A)}
 En- (-1) {Pi}n = EN ( 1) n{-i}p = (-1)n(a(X))*

 It is interesting to compare (1.3) with Milnor's duality theorem for

 Reidemeister torsion [16]. The two results correspond in the analogy between

 the functors K0 and K1; however, the result concerning K0 appears to be
 much weaker.

 Note that the statement and proof of (1.3) are valid when X is discon-

 nected, e.g., when X is the second member of a Poincare pair. We now rela-

 tivise our result. Let (Y, X) be a [connected] Poincare pair, Ay the integral

 group ring of 711(Y), and A, the corresponding ring for X (maybe summed
 over the components Xi). The inclusion X c Y induces homomorphisms

 Ai > Ay, hence K0(A,,) > K0(Ay), and hence i*: K0(A,) = (i K0(Azi) K0(Ay).
 THEOREM 1.4. Suppose (Y, X) a connected Poincare pair of formal

 dimension (n + 1). Then a(Y) - i*a(X) + (-1)n+l(U(Y))*.

 Note that since i* commutes with the involution *, if we apply * to the
 above equation, and subtract, the result follows from (1.3) by applying i*.

 PROOF. The argument already used provides us with a chain homotopy

 equivalence of degree (n + 1)

 [ Y] -: HomA (C*(Y), A) -> C*(Y. X; A) .
 We replace all chain complexes by homotopy equivalent finitely generated
 projective ones. Arguing as for (1.3), we see that the Euler characteristic of

 the above complexes is (_ 1)nf+(a(Y))*.

 Now the homomorphism K0(AX,) > KO(Ay) is induced by tensor products:
 P lAy 0A=. P, and i*(a(Xi)) is the Euler characteristic of C*(Xi; A), and
 i*a(X) of CQ(X; A). Now we have the short exact sequence

 O-> C*(X; A) - CQ(Y; A) - CQ(Y, X; A) - 0;

 using additivity of Euler characteristics (the sequence splits since all modules
 are projective), the result follows.

This content downloaded from 129.215.149.99 on Sun, 19 Feb 2017 16:53:10 UTC
All use subject to http://about.jstor.org/terms



 218 C. T. C. WALL

 It is not the case that the image of v(X) in the projective class group

 necessarily vanishes for Poincare complexes X. The following is a fairly com-

 prehensive counter-example (but can be somewhat improved). I am indebted

 to J. Milnor for an improvement on my original proof.

 THEOREM 1.5. Given n ? 4, a finite cw-complex K, and x e K?(71(K)),
 there exists a Poincare complex X", having the same (J n - 1)-type as K,

 and v(X) _ ic + (- 1)nK* (modulo free modules).

 PROOF. Let n = 2k or 2k + 1. We first replace K by its k-skeleton, embed

 this (or a homotopy equivalent finite simplicial complex) in RoI', and take the

 boundary of a smooth regular neighbourhood. This is a smooth n-manifold

 No (hence Poincare complex), with the same (k - 1)-type as K.

 Let P be a projective module over the integral group ring of w1(K) =

 w1,(N) = w, say, representing (-l)k 'K (modulo free modules). Let F be a free
 module of the form F = P 3 Q; let F have rank r. Form the connected sum

 of N with r copies of Sk x Sk or Sk x Sk+l. The effect on C*(N) is to add F

 to Ck and a further summand F', say, to Ck or to Ck.?1 We now intend to add
 further cells so as to reduce this F to P and F' to HomA (P, A). If we can do

 this so as to preserve Poincare duality, then we are done; the resulting

 complex satisfies all our requirements.

 Now cap product with the fundamental homology class of our manifold

 induces isomorphisms of HomA (F', A) on F and of HomA (F, A) on F'. Thus

 if we kill the summands Q of F and HomA (Q, A) of F', duality will hold as

 required.

 The argument concludes just as in the proof of [24, Th. F]. The only

 point that perhaps needs comment is that, in our previous paper, the spheres

 to be killed were attached as a wedge. Here the situation is essentially the

 same, only an n-cell is attached to our spheres. This does not affect the

 argument.

 We now consider the above result. Of course, any a of the form

 K + (- 1)ni* satisfies (- 1)na* = a. However, the converse is not the case,

 and we shall see in (5.4.2) that a need not be of the form K + (- 1)nc*. The

 best result is not yet known.

 As regards the modulo free modules condition, we write K'(A) = Z ] ko(A)
 in the usual way. Then * preserves the split and induces the identity on the

 first component. Thus if n is odd, only elements of K'(A) need be considered

 anyway. If n = 2k, we can add (-_)k .2 C Z to the class of a by taking the
 connected sum of the manifold with an extra Sk x Sk. Using Sk-l x Sk'1 will

 subtract this, but will of course alter the (k - 1)-type.
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 CHAPTER 2. Geometry and cell decompositions

 We first give an elementary result which is an analogue to cutting and

 gluing arguments on manifolds. Next we shall discuss dual cell decompo-
 sitions, and obtain some more exact results on the decompositions possible,

 particularly in top dimensions. This leads on to a study of the connected sum

 operation. Finally, we shall discuss product decompositions.

 For the first result, suppose Y U Y' = Z, Y n Y, = X are four cw-

 complexes dominated by finite complexes, with Y and Y' connected, and let

 w: 11(Z) {+1} define twistings for all four. Let [Z] X Ht (Z; Z) have image

 [Y] + [Y'] in Hn(Z, X; Z) _ H, (Y, X; Z) (D H,(Y', X; Z).

 THEOREM 2.1. (i) If (Y, X) and (Y' X) are Poincare pairs with fun-

 damental classes [Y] and [Y'], Z is a Poincare complex with fundamental

 class [Z].
 (ii) If Z is a Poincare complex with fundamental class [Z], and

 (Y, X) a Poincare pair with fundamental class [ Y], and if every coefficient
 bundle over Y' extends over Z, then (Y', X) is a Poincare pair with funda-

 mental class [Y'].

 PROOF. Use the exact commutative diagram (due to Browder (Cap prod-

 ucts and Poincare duality), mimeographed, Cambridge University, 1964).

 * Hq(Yq X) , Hq(Z) , Hq(Yf) ,Hq+l(Yg X) ,**

 [ Y]- 1Z]- 1Yt], 1Yj

 ) Hm-q(y) > Hm.g(Z) > HM_q(Ys X) > Hm.gql(y) *
 If two out of three vertical maps are isomorphisms, then so (by the Five

 Lemma) is the third. We have omitted the coefficient bundle, but that this

 can be arbitrary is evident in (i), and true by hypothesis in (ii).

 REMARK. As it is sufficient to prove the case when the group ring is used

 to define the coefficient bundle, the extra hypothesis in (ii) can be weakened to:

 The right action of wc1(Y') on its integer group ring can be extended to

 an action of wc1(Z).

 It is sufficient, for example, that wr1(Y') be a retract of 7r1(Z), but this

 is not necessary; another example is with w11(Z) the symmetric group on 3

 symbols, and w11(Y') the alternating group.

 There are several variants of the above theorem. For example, we can

 extend it to Poincare triads as follows.

 THEOREM 2.1, ADDENDUM. If (Y}f; X0, X1) and (Y1; X1, X2) are Poincare

 triads, with Y, n Y. = X1, then (Y1f U Y1; X0, X2) is a Poincare triad.
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 220 C. T. C. WALL

 The proof of this involves no new arguments. We leave it (and any other

 case we may need) to the reader.

 The next result is a consequence of [25, Th. 51.

 THEOREM 2.2. Suppose X a Poincare complex of formal dimension

 n # 2. Then X is homotopy equivalent to an n-dimensional complex, which

 can be chosen finite if u(X) C Z. Suppose (Y, X) a connected Poincare pair

 of formal dimension (n + 1) > 4, with X # 0. Then Y has the homotopy
 type of an n-dimensional complex.

 PROOF. By hypothesis, X (resp. Y) is dominated by a finite cw-complex,
 so by [24, Th. E] we can suppose it of finite dimension. Now, by duality, we

 have

 Hi(X; A) Ht(z-.)(X; A) = 0 if i > n,
 Hi(Y; A) H'+1i(Y,X; A) = 0 if i > n + 1

 and in the second case i n + 1 gives H,(Y, X; A) which vanishes since Y is
 connected and X non-empty. The result now follows (if n > 3) by appealing

 to [25, Cor. 5.1]. The case n ?1 will be dealt with in Chapter 4.

 We next seek an analogue of the dual cell decompositions of combinatorial

 manifolds which provided the original proof of the Poincare duality theorem.

 Let X be a Poincare n-complex (from now on we shall often not use the term

 formal dimension) with chain complex C*. This is, we know, chain homotopy-

 equivalent to HomA(C*, A) shifted by n-dimensions; call the latter complex D*.
 We seek a cell decomposition of a space homotopy equivalent to X, with chain

 complex D*. Such decompositions are provided by [25, Th. 4].

 THEOREM 2.3. Let X be a Poincare' n-complex, of dimension n > 3, C

 the chain complex of X, and C the dual chain complex. Then we can find Y,

 homotopy equivalent to X, such that C(Y) is the same as C in dimensions

 >3; also in dimension 3, modulo a subcomplex Y0 satisfying (D2).

 We have already discussed this application. Now for some special cases.

 COROLLARY 2.3.1. With the hypotheses above, we can suppose for n > 3

 that Y has only one n-cell, and for n = 3 that Y is obtained by attaching a

 3-cell to a complex satisfying (D2).

 For as X is connected, we can always suppose that X has only one 0-cell.

 COROLLARY 2.3.2. If n > 4, we can suppose that Y is obtained from Z

 (of dimension n - 2, or satisfying (D2)) by attaching along its boundary a

 smooth manifold H, obtained from DI by adding 1-handles.

 PROOF. The 1-skeleton of X consists of a collection of loops, each with
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 both ends at the single vertex. Thus each (n - 1)-cell of Y is incident just

 twice with the n-cell. We can normalize the attaching map of SI`1 (for the

 n-cell) so that a collection of disjoint (n - 1)-discs are mapped on the (n - 1)-

 cells (two on each); the remainder into the (n - 2)-skeleton. The complex Y

 is then as described above.

 This result is of crucial importance for performing low dimensional sur-

 gery on Poincare complexes. We can improve it somewhat as follows. First,

 replace Z by the mapping cylinder Z' of the attaching map aH - Z. This

 has the same homotopy type (thus still satisfies D(n - 2)). We now have

 Y = Z' U H, AH =Z' n H. As Z' contains the (n - 2) ? 2-skeleton of Y, we
 have w1(Z') = w1(Y). It follows at once from Theorem 2.1 (ii) that (Z', AH)

 is a Poincare pair. Now note that, as n > 4 and H is a handlebody, r1(DH)

 w1(H). The following additional result is less obvious, but very useful.

 ADDENDUM 2.3.3. The map 71(H) 7,1( Y) induced by inclusion is sur-
 jective.

 PROOF. We use the construction of Z and H via dual cell decomposition.

 In the original complex, there was one 0-cell e0, and the 1-cells e' satisfying

 aei - gie, - e0, where the elements gi of 71(Y) generate it (see e.g., [25, dis-
 cussion preceding Th. 5]). In the dual complex, then, we have one n-cell en and

 (n - 1)-cells ei-1 with aen = . (?gienL - ei_1), where the sign is w(gi). It
 follows that the loop round the ith handle of the handlebody H has homotopy

 class gi. These generate r1(Y), so w1(H)-*w1(Y) is surjective as asserted.
 It seems that X is also manifold-like in codimension 2, but not in codi-

 mension 3. We will return to this below when we come to consider tangential

 properties.

 It is also interesting to observe that as we can always suppose X finite

 except in dimensions (n - 1) and n, in (2.3) Y mod Y. is finite, but Y, may
 need an infinite number of cells added to X2.

 Corollary (2.3.1) can be sharpened, to give a sort of disc theorem for

 Poincare complexes.

 THEOREM 2.4. Let X be a Poincare' complex, dim [X] = n > 3. Then

 there exists a complex K satisfying D(n -1), a map f: S1-1 > K, and a

 homotopy equivalence Y = K U a en - X. The pair (K, f) is unique up to
 homotopy and orientation. If we replace f by an inclusion, (K, SI1) is a

 Poincare pair.

 PROOF. The first sentence follows from (2.3.1). If f is an inclusion, we

 have Y =K U D, Sn- = K n Dn, and (2.1) (ii) applies to show that (K, Sn-1)

 is a Poincare pair.
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 It remains to prove uniqueness. Suppose h: K1 U fp en K2 U f en a
 homotopy equivalence between two such, where each Ki satisfies D(n - 1).

 We suppose h a cellular map; write Xi = Ki U f. en. Then we have a diagrum

 Hn--(K2) > Hn(X2, K2) > Hn(X2) - Hn(K2) = 0

 {h* h* h*

 H -l(KI) Hn(X1, K1) > Hn(X1) > Hn(K1) = 0

 (with coefficients A throughout), and Hn(Xi; A) H,(Xi; A) = HO(Xi; A) Z,
 Hn(Xi, Kj; A) -A. The induced map of Z can only be the identity up to sign.
 Since Hn(X2, K2) is free, there is a map

 6: Hn(X2, K2) - H-l(K*)

 such that (3*6 + h*): Hn(X2, K2) > H&(X1, K1) induces the identity map of A.

 The image of 1 e A defines a cohomology class in K1; pick a representative

 cocycle z: Cn,1(Kl) - A.
 Now we use z to define a homotopy of h. We keep the (n - 2)-skeleton

 of K1 fixed, and move each (n - 1)-cell 6 by a cellular homotopy defining the
 chain {z(O)}en. (Such a homotopy is easy to construct, starting from the
 homotopy represented by a homeomorphism InI x I In.) Extend the
 homotopy over K1. Now the chain map of the homotopy is a chain homotopy
 between the initial and final induced chain maps. It follows from the choice
 of z that the final map H"(X2, K2) > Hn(X1, K1) corresponds to the identity
 map of A. Thus the induced map of the dual module

 wn(X1, K1) -Hn(X, K1; A) > Hn(X2, K2; A) -- (X2, K2)

 is also the identity. Hence the image of the homotopy class of f1 is that of
 f2. So we have a map of Poincare pairs (K1, f1S"-1) - (K2, f2S"-), which has
 degree 1 since the original map had. Our map is evidently a homotopy equiva-
 lence in dimensions < (n - 2). It follows that we have a homotopy equivalence
 of K1 on K2. For by Whitehead's theorem, it suffices to check that the induced

 maps Hr(Ki; A) - Hr(K2; A) are isomorphisms. We have already proved this
 for r + n - 1, and since our map has degree 1, the remaining case follows
 from the commutative diagram

 H 1(K1; A) < H '(K2; A)

 Ht(K1, f1Sn-1; A) IL(K2, f2Sn-; ;A)

 We can now define the connected sum of Poincare complexes of dimension
 >3: write X1 = K1 U f{ en, X9 K2 Uf2 en, and define X1i#X2= (K1V K2) Ugen,
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 where the homotopy class of g is the sum of those of f, and f2.

 COROLLARY 2.4.1. The operation i is well determined on homotopy types

 (with the usual reservations about orientation).

 Note that the uniqueness of (2.4) includes a statement that changing the

 element of wrn-(K) by an operation of an element of wr,(K) gives a result
 equivalent to the first by a base-point-preserving equivalence.

 Of course, # is a special case of surgery; other cases will be considered
 below.

 THEOREM 2.5. (i) If (IY1, X1) and (IY2, X2) are Poincare pairs, then so

 is (Y1 x Y2, X1 x Y2 U Y1 X X2).

 (ii) If X = A x B is a Poincare complex, then so are A and B.

 PROOF. We have C* (Y1 x Y2) = C*( Y1) ? C*(Y2), and similarly in the

 relative case. Set [Y1 x Y2] = [Y1] 0 [Y2]. The result (i) is now trivial.

 For (ii) we may suppose X connected. We have

 7r,(A) x 7r,(B) = 7r,(X) >{+1

 defining twistings on X, A, and B which are compatible for what follows.

 Let n be the formal dimension of X. By the Kiinneth theorem (over Z) we

 have a split short exact sequence

 (2.6) 0 r~s-n Hr(A; Z) ?$Hz Ht(B; Z) - H.(X; Z)
 ()+j=n-l Torz (Hil(A; Z), H-(B; Z)) - 0

 But the central term is infinite cyclic, generated by [XI. Since an infinite
 cyclic group is torsion-free and indecomposable, there is a unique pair of

 values (r, s), with r + s = n, such that

 H,'(A; Z) &z H.'(B; Z) Z .

 Thus Ht(B; Z) has torsion-free rank 1, and torsion-free quotient isomorphic

 to Z, hence also a direct summand isomorphic to Z. So H,(A; Z) is a direct
 summand of HI(A; Z) ?& Ht(B; Z)- Z, hence is infinite cyclic. Now, by the
 Kiinneth theorem again, since H,+j(X; Z) 0 O for r + j > n, we deduce

 0 = H,(A; Z) z Hjl(B; Z) -Hjt(B; Z) for j > s .

 The same considerations apply with A and B interchanged. But now the last

 term in (2.6) vanishes, since if Hil(A; Z) and Hj(B; Z) are both non-zero, one
 of them is isomorphic to Z. Thus (2.6) reduces to an isomorphism

 HW[(A; Z) tha Ht(B; Z)[-0HB(X; Z)

 We choose [A] and [B] so that [A] (& [B] = [X]~.
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 Write A1, A2 for the integral group rings of the fundamental groups of A

 and B. Then A1 Oz A, = A, and similarly for the chain and cochain complexes,
 Now consider

 Hri-(A; A1) z Hs-'(B; A2) - Hn- j(X; A)

 (2.7) {[A]- [B] {[XI

 Hil(A; A1) 0z H(B; A2) - ' Hi+j(X; A)

 which commutes since [A] 0 [B] = [X]. Also, the right hand map is an
 isomorphism. We wish to deduce that the left hand maps are isomorphisms.

 Now if i < 0 or j < 0, the lower left term vanishes, hence also the map across
 the top. But the Kiinneth theorem gives a split short exact sequence

 0 E-+j:=H (A; A1) ?Oz Hj(B; A2) - H4(X; A)
 > t~j~ff~Torz (H'(A; A1), Hj(B; A2)) - 0

 The central term being infinite cyclic, we deduce that Hr(A; A1) ?& H8(B; A2)
 also is, and hence (as above) that Hr(A; A1) and H8(B; A2) are infinite cyclic,

 Hi(A; A1) vanishes for i > r, Hj(B; A2) vanishes for j > s, and, finally, that
 we have an isomorphism

 H7(A; A1) 0 H8(B; A2) - H-(X; A).

 Now take tensor products over Z with a field k. Then the Kiinneth
 formula gives isomorphisms

 Ei+j=h Hi(A; A1 0Z k) 0k H'(B; A2 Z ik) - Hh(X; A Oz k), Ei~j=^ Ht(A; A1 0z k) 0k H(B; A2 ?Z k) HI(X; A Oz k).
 Using the commutativity of (2.7), we infer that the maps

 Hi(A; A1 Qz kI) 0k H (B; A2 ?z k)[A]O[B] HLi (A; AOz ck)0k H._j(B; &IOzk)

 are all isomorphisms. Now in the case i = 0, we have H,(A; A1) _ Z; we have
 seen that H7(A; A1)- Z, and that [A] induces an isomorphism. Tensoring
 with k we still have an isomorphism, as both groups are isomorphic to k.

 Substituting in the above, we obtain isomorphisms

 Hj(B; A2 ?Z k) - H -j(B; A2 ,Z k)

 for all j and fields k; similarly if A and B are interchanged.
 Now write K for the cokernel of the map

 (2.8) ~~~~[A>- For pprimeconsiderthecomHm(A; At) i Hati(At Ag)r .

 For p prime, consider the commutative exact diagram
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 H$-'(A; A1DZ Zi) Hi(A;A) 1) PHi(A;Ai) Hi(A;A1Oz Zp) )Hi+'(A;Al)

 Hr-?+1(A; A1 0z Zp) Hr-i(A; A1) Hr i(A;A1) Hri(A; A10z Zp) Hrii(A; A1)

 where the vertical maps are induced by cap product with [A]. A short diagram

 chase shows that the induced map K P K is monomorphic. Since this holds
 for all primes p, K is torsion-free. However, we now take k = Q in the above,

 and deduce that (2.8) is an isomorphism modulo torsion groups, hence that K

 is a torsion group. Thus K vanishes, and (2.8) is epimorphic.

 Now consider the diagram

 0 Ei+j=1 H'(A; Al) ?z H'(B; A) Hk(X; A) - E Torz(Hi(A' A1), H'(B; A2)) ) 0
 1EA]XB] ][xIw- {Torz([A]-, [BI-)

 0 S HI-i(A; Al) 0z H.Li(B; A.) -- Htk(X; A) - T Torz(HIA(A; Al), Hj(B; A2)) - 0

 in which [X]- is an isomorphism, and we have just proved [A]-- 0 [B]2- sur-

 jective. It follows that [A]-^ 0 [B]-- is bijective, hence so is each component
 map

 H'(A; A,1) &t Hj(B; A,) [A] (2[ Hrti(A; Al) )&z Ht_j(B; A,) .
 Taking i = r, and using the known isomorphism

 H (A; A1) Z Ho(A; A1) = Z

 we deduce that the map

 Hi(B; A2) H'_ (B; A2)

 is an isomorphism for all j. Thus B is a Poincare complex; similarly for A.

 This completes the proof.

 CHAPTER 3. Tangential properties

 Since we are effectively only considering spaces up to homotopy equiva-

 lence, the reader may well wonder how there can possibly be any tangential

 properties to consider. We must admit that we use (or rather, abuse) the

 word for properties, due mostly to M. Spivak (Princeton thesis, 1964),* which

 bear a close formal relation to tangential properties of smooth manifolds, but

 whose genesis is somewhat different.

 The vector bundles arising in the study of smooth manifolds are replaced

 here by spherical fibrations. We will begin with a general discussion of these.

 A map wr: E- B will be called an (n - 1)-spherical fibration if it is a fibration
 in the sense of Dold [3] (i.e., satisfies his W.C.H.P.), and if the fibres are

 * Added in proof: See Topology, 6 (1967), pp. 77-102.
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 homotopy equivalent to S-1. By a result of Stasheff [21], these fibrations

 have a structural monoid, the monoid G,, of all self-homotopy equivalences of
 Sn-l (i.e., maps of degree + 1; we will write SG, for the set of those of degree
 + 1). Moreover, there exists a classifying space BGn, so that G,, is homotopy
 equivalent (as H-space) to &2BGn, and such that spherical fibrations over B

 are classified by maps B > BGn, at least if B has the homotopy type of a cw-

 complex; or, more generally, if B has a numerable covering over each set of

 which w is fibre homotopically equivalent to the projection of a product.

 It is convenient to consider, in conjunction with the G., the submonoids
 F,, of G,,1 consisting of base-point preserving maps. Clearly, F,, can be iden-
 tified with the loop space f2lS" (the multiplication, however, is inequivalent to

 loop multiplication, see [17]). We have F,, c G,,+, and suspension (or reduced
 suspension) gives an inclusion G, c Fn, both inclusions being H-maps. It is
 easy to deduce from the definitions that there is a fibration G,, -* So with fibre

 F,, so 7r(Gn.i, F.) 7r(S"). The homotopy properties of the other inclusion
 are less perspicuous, but it is known (James [9]) that (F,, GJ) is (2n - 4)-
 connected. All we shall use of this is the deduction that, if n > dim B, the

 suspension map from (fibre homotopy equivalence classes of) (n - 1)-spherical

 fibrations over B to n-spherical fibrations is surjective; if n > dim B, it is

 bijective. We will write G for the limit of the G,, under inclusion.

 There is also a construction for the join of two fibrations w1: E1 B and
 7W2: E2 ' B. Let E be the subspace of E1 * E2 consisting of segments whose

 ends both lie over the same point of B, 7: Ed B the projection. Then if w1

 (resp. 7w2) is (mr-1)-(resp. (n-1) -) spherical, w is known to be an (m + n - 1)-

 spherical fibration, which we call the sum of the others. Suspension consists
 in adding the trivial O-spherical fibration. Addition is commutative and associ-

 ative. If we write BG for the limit of the BG,, BG acquires the structure of
 homotopy-commutative and homotopy-associative H-space [17]. Using these
 notions instead of vector bundles, we now construct the universal group of the

 semi-group of fibre homotopy equivalence classes of spherical fibrations over

 B under addition, and denote it by KG(B). The usual arguments show that

 KG(B) splits as Z ? KG(B), and that if n > dim B, each element of KG(B) is

 represented by an (n - 1)-spherical fibration over B, unique up to fibre homotopy

 equivalence. We will call such fibrations stable.

 Let r: E d B be an (n - 1)-spherical fibration over a cw-complex B. The

 mapping cone of wr, B U r CE is also called the Thom complex of w, and

 denoted B",.

 LEMMA 3.1. B", is homotopy equivalent to a complex which, apart from a
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 base point, has just one cell (of dimension n + r) for each cell (of dimension

 r) of B.

 PROOF. We will give the proof when B is finite, by induction on the

 number of cells of B. The infinite case then follows by taking a direct limit

 over finite subcomplexes.

 Suppose then B C U er, and the result established for C. (The induction

 basis: B a point p is trivial, for as E - S-', we have B" - Sn). The fibration
 is fibre homotopically trivial over a contractible set, so E is homotopy equiva-

 lent to w-1(C), with Dr x S-1 attached along Sr-l x Sn-1, and we can choose

 the equivalence to preserve fibres. This gives a homotopy equivalence of B"

 on Cr, with Dr X Sn attached along Sr-1 x Sn, and Dr x {1} shrunk to a point.

 The result now follows.

 Next assume B of dimension b, and with only one 0-cell and b-cell. Then

 B7 has dimension (b + n); the O-cell of B gives an inclusion i: Sn C B", and

 shrinking all but the top cell to a point a projection j: B" > Sb+n. We call B"

 reducible if j has a right (homotopy) inverse, coreducible if i has a left inverse.

 In fact, since i resp. j is induced by the inclusion of the base point in B, resp.

 the shrinking map B > Sb, we do not need such stringent hypotheses to define

 these terms, which make sense (in particular) if B is a Poincare complex.

 The relevance of spherical fibrations to the study of Poincare complexes

 lies in the following result, due to M. Spivak.

 THEOREM 3.2. Let Mm be a Poincare complex. Then there exists an

 element v of kG(M) such that a corresponding fibration over M has reducible
 Thom complex M". Similarly, if (M, AM) is a Poincare' pair, there is a

 c e kG(M) such that Ml/(aM)v is reducible; (DM)v is then also reducible.

 Spivak's proof of this result assumes that M is finite. The general case

 follows, however, on noting that, by a result of M. Mather [29], M x S1 is
 homotopy equivalent to a finite complex N, also a Poincare complex. Then there

 exists a spherical fibration V', say, over M x S1 with reducible Thom space.

 Let v be the induced fibration over M x {1}. If the fibres over M x { - 1} are

 shrunk to a point in (M x S1)v', we obtain the suspension of M" (cf. proof of

 (3.7) below). Hence M"+8 is reducible. An analogous argument is valid in the

 case of Poincare pairs.

 The uniqueness is also due to Spivak, but we will repeat the proof, since

 it is closely related to some of the arguments to appear later. We shall only

 be concerned with stable properties for a while, so will omit reference to the

 fibre dimension of spherical fibrations, and will even confound these with

 elements of kG(M).
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 Suppose v as above, and let f1: Sm+N - M' be the homotopy right inverse

 to j. Such maps f are called of degree 1. Let a E KG(M); consider the product

 fibration a x (v - a) over M x M. The diagonal A induces v over M. Now

 consider the map induced on Thom spaces by A. We have

 M (M x M)aX' -a) = Ma A Mv>a

 Composing with f gives a map F: Sm+N- Ma A M -.

 Similarly, if (M, AM) is a Poincare pair, note that A above carries AM

 into M x AM. We obtain eventually

 F: Sm+N > Ma A ML-al(aM)L-a

 THEOREM 3.3. The maps F above are duality maps in the sense of

 Spanier [20]. Hence if M is a Poincare complex and Mv reducible, Ma and
 M"-a are S-dual. Similarly if (M, AM) is a Poincare pair and MI/(aM)"
 reducible, Ma is S-dual to M,-a1/(M)v-a for a E KG(M).

 PROOF. Let us first recall some homological algebra [2, IV. 6]. Given
 chain-complexes A, B there is an external product

 a' : H(Hom (A, B)) > Hom (H(A), H(B)) .

 Suppose X and Y finite cw-complexes. We take

 A = C*(X; Z) B C*(Y; Z) .

 (In any case we know that there exist equivalent chain complexes of finite
 type, and use these). Then Hom (A, B) = C(X x Y; Z). Thus we have

 a': H*(X x Y; Z) - Hom (H*(X; Z), H*(Y; Z)) .

 Similarly with base points and reduced homology we have

 a(': H*(X A Y; Z) - Hom (fl*(X; Z), H*(Y; Z)) v

 Now according to Spanier, a map F: SN - X A Y determines an S-duality
 between X and Y if its homology class [F] is such that

 a'[F] : Hr(X; Z) - Hylr(Y; Z)

 is an isomorphism for all r.

 We will now use the Thom isomorphism. Let Za, Z6 and Za 0D Z6 = Zc be
 the twisted integer coefficient bundles determined by a, ; - a, and v. The
 Thom isomorphism gives a diagram (when M is a Poincare complex)

 H*(M x M; Zc) - Hom (H*(M; Zan), H*(M; Zb))
 1 {Hom (as $)

 H*(Ma A Mp-a; Z) -)-* Hom (fH*(Ma; Z), H*(Mva ; Z))
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 The diagram is commutative since all maps are induced by cup products. Now

 by assumption, )-4[F] = D is the homology class of the diagonal. But a'(D)
 is an isomorphism since M is a Poincare complex. The first result follows.

 The proof of the second is precisely similar.

 COROLLARY 3.4. The v in Theorem 3.2 is unique.

 PROOF. Suppose that a is such that Ma/(DM)y is reducible. By Theorem
 3.3, M>- is S-dual to it, hence is co-reducible. Take a particular spherical

 fibration representing > - a, and suspend each fibre to obtain E. Then M'-o
 is obtained by identifying all the suspension points in E. Since M>-a is co-

 reducible, E retracts onto a fibre. By a theorem of Dold [3] it is fibre homo-
 topically trivial. Hence a = v.

 The above argument is essentially due to Atiyah [1]; it was adapted by

 Spivak to prove the above. The following result, however is (as far as I

 know) new.

 THEOREM 3.5. Let (M, AM) be a Poincare pair, v a stable spherical

 fibration over M, f: Sm+N - MP/3(M)P of degree 1. Then h - h o f induces a
 bijective correspondence between the set of fibre homotopy classes of automor-

 phisms of v over the identity of M, and the set of elements of 7rm+Af(MVj(aM)")
 of degree 1.

 PROOF. We denote the set of homotopy classes of maps ARAB by [A: B],

 and of S-homotopy classes of S-maps by {A : B}. Then for any A,

 [A: G] = limiN- [A.: t S ] = limiNg [SA A: S]= {A: S'}

 and by S-duality, {M?: S0} -{5mIN: MI(&M)y}, where maps of degree 1 on
 the right correspond to maps of co-degree 1 on the left; i.e., to classes of

 maps SNM V SI' Sy which are the identity on SN, hence (omitting SN as
 irrelevant) to [SNM: SN] [M: GJ. Now by definition, [M: G] determines

 the homotopy classes of fibre homotopy automorphisms of a trivial stable

 spherical fibration over M. It is now easy to see that the triviality condition

 is unnecessary. For if the fibration is stable, the automorphisms will (by

 stability) depend only on the stable equivalence class in KG(M). Also, an
 inclusion as a Whitney summand induces (taking the sum with the identity) a

 map of automorphisms. The rest is formal: If A(!) is the group of automorphism

 classes of v?, inclusions as summands give maps (if !Y (D = sN is trivial)

 A(Q) - A(eN) - A(y & 1) - A(e2f).
 The composite of two is bijective, hence so is the central map, and thus also

 the others.
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 We have obtained a bijection; it remains to show that there is one induced

 by h - h o f. We claim that the above is induced by h > h-- o f, which is good
 enough. For consider v x &'N over M x M, and subject the factors to h-1, h

 respectively. The result gives a map over A(M) homotopic to the identity, and
 h

 hence compatible with the fixed S-duality defined before. Thus SNM ) SVM

 is S-dual to M>/(&M)> h- MPj(aM)>. It is clear that the bijection of [M: G]
 on {M: SI} is induced by composition with h; our claim (and the Theorem)

 now follows by S-duality.

 COROLLARY 3.6. Given a Poincare' pair (M, AM), there exist a spherical

 fibration v over M and a map f: Smn-N M>/3(M)> of degree 1. (V, f) is
 unique up to suspension and equivalence.

 The remainder of this chapter prepares for our work on highly connected

 Poincare complexes (and pairs). For much of this, the hypothesis Mm = SK U em

 is adequate. Note that this is automatically satisfied if M is (r - 1)-connected,

 with m < 3r. We now study the homotopy type of the Thom space.

 PROPOSITION 3.7. Let a be a spherical fibration over SK, with fibre
 dimension r. Then the reduced Thom space (SK)a/*a can be identified with

 Sr+lK If X: K > G is the characteristic map of a, the corresponding S-map
 K-y S, or rather SrK Sr, is the attaching map in (SK)a.

 PROOF. Write SK as the union of cones CK and C+K. Then a is fibre

 homotopically trivial over each. The first assertion now follows from

 (SK)a1*01 (SK)01(C_K)a = (C+K)alKa
 C K X Sr K X S- C+K ASt = Sr+K
 C+Kx* Kx* K

 As to the second, we have (C-K)a S; SKa is obtained by attaching

 (C+K)a along Ke. We identify Ka with the suspension of K x Sr i/(K x *);
 then inclusions in (CK)a, (C+K)a correspond to projections K x Sr1 Sr-1
 These differ by a twisting of K x Sr-1i, which is defined precisely by X. The
 corresponding S-map Sr x K - SrK > Sr is obtained by precisely the con-

 struction above. The Proposition follows.

 COROLLARY 3.8. Let M = SK U f em be a Poincare complex, with normal
 fibration v. Then K is S-dual to itself, and the S-dual to f is associated to
 the characteristic map of v SK.

 PROOF. MI is S-dual to Ml. Removing the 0-cell and the m-cell, and
 applying the Proposition now gives our first assertion. The S-dual to f is the
 attaching map of the bottom cell of M>; the second assertion now also follows

 from (3.7).
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 Remark. Corollary (3.8) clears up a point which has caused the author

 trouble for some time. On [23, p. 182] we refer to a result of Milnor [25]. In
 fact, the reference contains only the statement of the result, and refers to yet

 another paper (which was never published) for the proof. This proof, then, as

 also the generalised form of it used in [23], appears here for the first time.

 The connection between these two problems will be treated more fully in

 Chapter 6 below.

 CHAPTER 4. Low dimensional classifications

 We now start our series of classifications up to homotopy type of Poincare

 complexes of various kinds. These are useful in acquiring familiarity, and

 also as sources of counter-examples. We will find several different reasons

 why Poincare complexes differ from manifolds, for example.

 It will be convenient to argue with homology and cohomology of the

 universal cover K of K. Now we have Hi(K; Z) = Hi(K; A). But Hi(K; A)
 is calculated with finite cochains: If K is compact, this gives the cohomology

 of K with compact supports, Xi(K; Z). As we can always replace K by a

 homotopy equivalent complex with finite skeletons, and argue on these, it is

 safe for us to identify H'(K; A) = iCi(K; Z). The coefficient group Z is

 understood from here on.

 The results we need are, first, that 7JC(K) # 0 if and only if K is compact;

 i.e., w1(K) finite. If this is not the case, there is an exact sequence

 0 H?(k) H, H(k) , S(K) 0 O

 where H?(K) is a free abelian group, whose rank is the number of ends of

 w1(K). This number of ends is 1, 2, or co; it is 1 for a direct product of

 infinite groups, oX for a free product other than Z2*Z2, and 2 if and only if
 w1(K) has an infinite cyclic subgroup of finite index. These results are due to

 Freudenthal. A convenient reference is Epstein [6]. We sharpen the last of
 them as follows.

 LEMMA 4.1. Suppose that w has 2 ends. Then there is a finite normal

 subgroup F of w, such that the quotient group is isomorphic to Z or to Z2*Z2.

 PROOF. We know that w has an infinite cyclic subgroup of finite index.
 The intersection A of its conjugates has the same properties and is, moreover,

 normal. Let H be the centraliser of A. Since A is normal, and has only two

 automorphisms, the index of H in w is at most 2.

 The centre of H contains A, so has finite index in H. By a result of

 Schur, (see e.g., W.R. Scott, Group Theory, Prentice-Hall, 1964, ?15.1.13), it
 follows that the commutator subgroup H' is finite (hence disjoint from A).
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 The abelian group H/H' has A/A n H' -A as a subgroup of finite index,

 hence as a finitely generated abelian group it must be the direct sum of a

 finite subgroup T and an infinite cyclic group.

 The inverse image F of T in H is now a finite normal subgroup, with

 H/F -Z. So F is even fully invariant in H, as the set of all elements of

 finite order.

 In the case H = w, the proof is complete. Otherwise H has index 2, hence

 is normal in w; as F is characteristic in H, it too is normal in w. The quotient
 ic/F has a subgroup of index 2 isomorphic to Z; the quotient group induces the

 non-trivial automorphism of it (for the projection A -m Z is monomorphic), so

 the square of any element of the coset (7r/F) - Z both commutes with that

 element and is transformed into its inverse, hence is the identity. This is

 enough to characterise ic/F as isomorphic to Z2 * Z2.

 THEOREM 4.2. Suppose (Y, X) a connected Poincare pair, dim [ Y] = n.
 ( i) If n = O. then (Y, X)-(Dawn().

 (ii) If n = 1, then (Y, X) (D1, S0) or (S', p).

 (iii) If n = 2, ic is finite, and X # c, then (Y, X)- (D2, S').

 (iv) If n = 2, ic is finite, and X= p, then Yf- S2.
 (v) If n = 2, i is infinite, then X is a union of circles and Y a K(c, 1).

 (vi) If n = 3, i is finite, and X= A, then Y S8.

 PROOF. Y is connected and simply-connected in all cases. By duality,

 H2(Y) = H2(Y; A) -H -2(Y, X; A) which vanishes in all cases except (iv),

 when it is infinite cyclic. Similarly, H3( Y) vanishes except in case (vi), when

 it --Z. Thus Y is contractible, except in (iv), when it is a homotopy S2, and

 (vi), when it is a homotopy S3.

 If n < 0, all homology vanishes, so Y is the empty set. So if n = 0, X

 But then 3f?( Y) - H0(Y; A)- HO(Y; A) _ Ho(Y) -Z, so w is finite. If wr {1},

 it has non-zero homology in arbitrarily high dimensions [7]; or we may note,
 more simply, that the covering space of Y corresponding to a non-trivial cyclic

 subgroup of iv has such homology. Thus u = {1} and Y is contractible.

 In (ii), first suppose Y orientable. Let X have r components (which may

 be supposed points). We have H1(Y, X)- H(Y) - Z. If 7u is finite, as above

 it is trivial: Y is contractible, so X # 9. The sequence

 0 - H1(Y, X) - Ho(X) - Ho(Y) - 0

 shows r = 2. Thus (Y, X) -(D1, SO). If ic is infinite, 0 = H0(Y; A) =

 H1(Y. X; A). The sequence

 0 - HO(X; A)(--rA) HO(Y: A)(-Z)
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 shows that r = 0: X = p. The sequence

 X'C( Y)( = ) >H?( Y) > H? ( Y) > f'( Y) ,H1( Y)( =0)

 shows that H?(Yk) has rank 2, hence that Y. and so w1(Y), has 2 ends. Also
 w1(Y) has no element of finite order (else the covering space corresponding to

 a finite cyclic subgroup would provide a contradiction, as above). It follows

 from (4.1) that w1(Y) _ Z: As Yis contractible, Y- S1.

 If Y were non-orientable in (ii), its orientable double cover would have to

 be in one of the two cases above. In the first, this shows Y- K(Z2, 1), hence

 infinite dimensional, a contradiction. In the second, w has a subgroup Z of

 index 2 (hence normal), and the other coset reverses orientation in Y, and

 hence induces the non-trivial automorphism of Z. So Z2 * Z2 and has

 torsion, again a contradiction.

 It remains only to prove (iii). But Y is contractible and w finite, hence

 trivial. If X consists of r copies of S1, duality now shows that r = 1. This

 completes the proof of the theorem.

 Our result is very unsatisfactory. For example in case (v), if X #

 H2(Y; S) = 0 for all coefficient bundles S. We conjecture that this implies w

 free (cf. Eilenberg & Ganea [4]). Also in case (v), if X = , we can show
 that the cohomology (with simple coefficients) of Y is the same as for a

 unique closed 2-manifold, and even that the fundamental groups are similar

 to some extent (one can argue modulo the (o-term of the lower central series;

 also with associated profinite groups). But we cannot even prove in the case

 H1(Y) = 0 that w1(Y) must vanish. However, we can give a complete result

 for cases (iv) and (vi).

 THEOREM 4.3. Let Y be a Poincare n-complex, finitely covered by a

 homotopy Sn. If n is even, then Y- Sn or Y- PR(R). If n is odd, then Y

 is orientable and w = 71(Y) has period (n + 1); in fact, the first k-invariant

 of Y is a generator g e Hn+1(w; Z). Given 7u, and g c Hn+1(w; Z) of order i1, 1

 there exists a complex Y(g) as above, and Y(g,) and Y(g2) are homotopy equiva-
 lent if and only if there is an isomorphism e: w1 - w2 with e*(g2) = gl.

 PROOF. Let X be the minimal orientable covering of Y. By [2, p. 358],
 w1(X) has period (n + 1), and the first k-invariant of X is a generator of

 Hn+?'(w(X); Z). If n is even, this implies that 71(X) is trivial, so X- Sn, and
 Y is at most doubly covered by X; moreover, if w1( Y) - Z2, the first k-invariant

 of Y is the non-zero element of Hn+1 (w1(Y); Zt).

 Next we show that if n is odd, Y is orientable. Suppose not; then some

 covering X with cyclic fundamental group will also be non-orientable. We
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 compare X with a lens space L which has the same dimension and fundamental

 group. Since we can form a K(w1(X), 1) from either X or L by attaching cells

 of dimension > (n + 1), X and L have the same (n - 1)-type. Hence, using

 duality for both, and observing that L is orientable, we have isomorphisms

 HI (L; Z I) ) Hn-'(L; Zt) ) H"'-'(X; Zt) > HJ(X; Z) , H,(L; Z) .

 But in fact H1(L; Zt) = # # H1(L; Z), which provides the required contradiction.

 The construction of the examples is given in full by Swan [22]. We will

 repeat it here, using the results of our previous paper [25]; however, this is

 not a new proof, just a reformulation of the old one. By [22, Th. 4.1], w7 has a
 periodic projective resolution of period (n + 1). This gives us an exact sequence

 0 - Z - Pn ... ) P0 ) Z - 0

 defining an element g. of Extn+1(Z, Z) = Hn+1(w; Z), which is a generator. By
 [22, Lem. 7.4], if r is any integer prime to 1wr 1, we can modify the above reso-

 lution to replace g. by rg., so can obtain any generator g of H"+1(wu; Z). By
 splicing many copies of the sequence, we obtain a projective resolution of Z

 over w, which is thus chain-homotopy equivalent to the chain complex of a

 K(w, 1). By adding in elementary complexes 0 - F-> F 0 with F free of

 countable dimension, we can suppose the Pi free.
 Now apply [25, Th. 4]. Then there exists a K(r, 1)-space whose chain

 complex in dimensions >4 is the given one. The n-skeleton of this space

 (n > 4) has chain complex equivalent to the one above, hence is a space of the

 required type.

 As to the last clause of the theorem, the necessity of the condition is

 evident; its sufficiency follows from an argument of C.B. Thomas using ob-

 struction theory (Cambridge thesis, 1965). The same argument proves that

 in the non-orientable case, Y- Pn(R).

 We will not attempt to go further, and list all cases of the theorem,

 though even this appears not altogether impossible; the main difficulty in a

 detailed classification is the study of the operation on HI+1(w; Z) of the group
 of outer automorphisms of w.

 Part of the interest of the above classification stems from the fact, studied

 in detail by Swan (loc. cit.) that the complexes Y(g) do not automatically have

 the homotopy type of finite complexes (though no specific counter-example is

 at present known to the author). The finiteness obstruction X C K,(w) will, by
 the above, depend on g only. Swan showed that X(gr) = rx(g), and made a
 fairly detailed study of K0(w), showing eventually that the obstruction must
 vanish in certain cases.

 Another (probably related) observation is that according to a theorem of
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 Milnor [14], many groups with periodic cohomology can not operate fixed-point
 free on any (topological) manifold which is a homotopy sphere. For example,

 w contains at most one element of order 2, so the non-abelian group of order 6

 is excluded (here we can take n = 3). Thus some of the above Poincare com-

 plexes do not have the same homotopy type as any topological manifold.

 We now continue our study of Poincare 3-complexes Y. We write wc

 w1(Y), G = w2(Y), e = the number of ends of w. Then e = 0 is equivalent to

 w being finite: Theorems (4.2) (vi) and (4.3) give us the classification in this

 case. Otherwise, w is infinite, Y non-compact, and e - 1, 2, or cA0. We have

 Ho(Y) Z H1(Y) 0

 H2(Y) OX_ (Y) = G H(Y) -YC0(Y) 0 .

 Since G is 7K1 of a space, G is free abelian. The exact sequence

 SC(Y) ,H?(Y) H, H(Y) ,Si(y) ,H'(Y)
 11 11 11 11

 0 Z G 0

 shows, since H?( Y) is free abelian of rank e, that

 if e = 1, G = 0, so is contractible,

 if e =2, G _Z, soY

 if e = C, G is free abelian, of countably infinite rank.

 If e = 1, Y is a K(w, 1). We note that this occurs if w is a direct product

 of two infinite groups, w - A x B. In this case, Y - K(A, 1) x K(B, 1). By
 Theorem 2.5 (ii), we may say that K(A, 1) is a Poincare 1-complex, and K(B, 1)

 a Poincare 2-complex, so by Theorem 4.2 (ii), A - Z, and K(A, 1) - S1. This

 result is due to Epstein [51 in the case when Y is a 3-manifold.

 If e oo, we have the easy results

 (a) M = MI#M2 implies w1(M) a free product,

 ( b ) w1(M) a free product # Z2* Z2 implies e = oo.
 In the case of manifolds, the implication (a) can be reversed (Whitehead [271,
 [28]). Also, if M is orientable, the sphere theorem shows that (b) can be
 reversed [27]. It would be very interesting to decide whether either or both
 of these results carry over to Poincare complexes. We make no conjectures,

 but observe that the converse of (a) looks more probable than that of (b).

 We have complete results for the case e = 2. Write Pi for i-dimensional
 real projective space.

 THEOREM 4.4. Let Y be a Poincare' 3-complex such that w1(Y) has 2 ends.

 Then Y is homotopy equivalent to one of P3 P3, S' x P2, or the trivial or

 non-trivial S2-bundle over S1.
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 PROOF. Suppose x ze 1(Y) has finite order n. Let X be the covering

 space of Y corresponding to the subgroup generated by x. Then X is finite

 dimensional, w1(X)- Z, and X -YR S'. As in the proof of (4.3), it follows
 that n = 2 and X - P2; in particular, the covering transformation determined

 by x reverses the orientation of S2.

 Now suppose r1( Y) acts trivially on w2( Y) H2( Y). By the above, r1( Y)

 has no element of finite order. By (4.1), w1(Y) Z. Y is homotopy equivalent

 to a fibre space, with fibre Y S2 and base K(w1(Y), 1) - S'; moreover, wr(Sl)

 operates trivially on w2(S2). Hence Y ' SI x S2.

 Otherwise r1(Y) acts non-trivially. A subgroup of index 2 acts trivially:

 By the above, this is isomorphic to Z, and determines a double covering of Y
 homotopy equivalent to S1 x S2. By (4.1), r,( Y) is isomorphic to one of Z,

 Z x Z2, Z2 * Z2. If we have Z, then Y is again homotopy equivalent to a fibre
 space with fibre S2 and base SI, only this time r,(Sl) acts non-trivially on

 r2(S2), so we have the non-trivial fibering. If rA( Y) - Z x Z2, Y has a regular
 covering X (with group Z) with fundamental group Z2 and hence -P2. So Y

 is homotopic to a fibre space with fibre P2 and base S'; since every homotopy

 equivalence of P2 is homotopic to the identity, Y- S' x P2.

 Finally, suppose 1T w Z2 * Z2. Then Y is homotopy equivalent to a fibre

 space with fibre S2 and base K(Z2*Z2, 1) = K(Z2, 1) V K(Z2, 1). The inverse
 image of each K(Z2, 1) can only be 2_P2, and the inclusion of the base point

 in K(Z2, 1) is covered by a map homotopy equivalent to the double covering

 S2 - P2. Thus Y is homotopy equivalent to the space obtained by attaching

 to S2 two copies of the mapping cylinder of the double covering S2->P2. But

 this space is precisely P3 # P3.

 CHAPTER 5. Poincare 4-complexes with fundamental

 group of prime order

 We now turn to 4-complexes. Here we are interested less in the funda-
 mental group w (indeed, any finitely presented group is already the fundamental

 group of a smooth closed 4-manifold) than in duality phenomena in the middle
 dimension.

 We shall assume from now on that Y is a Poincare 4-complex, with funda-

 mental group w = r,(Y) of prime order p (hence cyclic; let T be a generator),
 and group ring A. We use the notations C = exp (27ri/p), A( = Z, Al = Z[C],
 and the ring homomorphism, a: A A, ) Al is defined by a(T) = (1, C). We
 have an exact sequence
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 where i3(r, Tos-2 s) = r- si (mod p). (This notation follows [26, Ch. 4]).
 We shall also need the classification [18] of torsion-free A-modules or,

 more precisely, of A-modules which are free as Z-modules. Any such module

 M can be written as a direct sum M. 0 M, E M2 where M. is a projective AO-
 module, M1 a projective Al-module, M2 a projective A-module. Write ri for
 the rank of Mi (over the appropriate ring). Then (ro, r1, r2) depends only on
 M, not on the splitting. If also r1 + r2 is finite, consider the class c of the

 projective A1-module Mad OA A_ M1 0 (M2 O A1) in the projective class group

 of A1 (= ideal class group of Q[C]); this too depends only on M.
 Then M and M' are isomorphic if and only if (ro, r1, r2) = (r', r', r') and, if

 rl + r, is finite, c = c'. The ri are clearly independent non-negative integers;
 if r1 + r2 = c. e is trivial; if 0 < (r1 + r2) < ao, c can take any value.

 LEMMA 5.1. Let 0 - A - C B - 0 be an exact sequence of (Z-free) A-

 modules, with C free. Then rO(A) = r1(B), r1(A) - r,(B).

 PROOF. If 0 Am Con By 0 and 0O A' C' By 0 are two exact

 sequence as above, then (by Schanuel's theorem [22, p. 270]) A D C' A' ( C,
 and so r,(A) = r,(A'), r1(A) = r1(A'). Thus it is enough to choose a convenient
 epimorphism of a projective module onto B, and compute its kernel. For this

 we split B (as above) into a direct sum. For M2 we take

 0 0 M,2 M- 0

 where the result is trivial. For M. take

 O Mo &zAl Mo zA >Mo O

 (where Z acts trivially on A); here, MO ?& A1 is a free Al-module, with the
 same rank as that of M. over Z. We write M1 as a direct sum of projective
 modules B of rank 1; now we know that for any such, there is a projective

 A-module C of rank 1 with B = C QDA A1. The kernel of the obvious map C-o B
 is isomorphic to AO, and the lemma now follows.

 LEMMA 5.2. Let Y be a Poincare' 4-complex, with w1(Y) as above; set

 G = H2(Y) -2(Y). If Y is orientable, ro(G) = 0, rl(G) = 2. If Y is non-

 orientable (and so p = 2), r,(G) = r1(G) = 1 or 0.

 (We observe that elementary duality for Y shows that G is torsion-free.)

 PROOF. Let

 0<- Co Cl C2 C3 C4 < 0

 be the chain complex of Y (which we may suppose 4-dimensional by (2.2));

 each Ci is a free A-module, perhaps infinitely generated. The only non-
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 vanishing homology groups are H,- AO, H, -A or, in the non-orientable
 case, H4 _ A,, and H, = G.

 A repeated use of (5.1) shows that Ker d, has (r,, r,) = (0, 1), and that
 Im d, has (rO, r,) = (1, 0); or, in the non-orientable case, = (0,1). Now consider
 the exact sequence

 0 - Imd3 - Ker d, H, 0.

 Here we need a slight refinement of (5.1). We can choose an exact sequence

 0 - AO- >C' - Ker d, - 0

 by the proof of that result. If J is the kernel of the composite epimorphism
 C' H,, we have an exact sequence

 ? > AO- > J Imd3 > .

 In the orientable case, Im d, has (rO rl) = (1, 0), and it is now easy to see that
 this sequence must split. Then J has (ro, r,) = (2, 0), and so H, has (r,, r,) -

 (0, 2) by (5.1).
 In the non-orientable case, the argument above shows that for G, (ro, rl)

 (1, 1) (if the sequence splits), or (0, 0) (otherwise). This proves the lemma.
 We now construct a cell complex having the same homotopy type as Y.

 This will give a normal form for Y. Let * be a point, and p, map * to a point
 of Y (the base point). Now attach a 1-cell, giving a circle K1, and extend 9,

 to p,: Ki' Y representing T c wr(Y). The group r,(p,) lies in the exact
 sequence

 0 w,(Y) -+> (r29l) -*w(K1) - w,(Y) -*0

 and so in an exact sequence of A-modules

 0 - G > w(9) >- A, - 0.

 We assert that 72(9,) has (r, , r,) = (O, 1), or in the non-orientable case, (1, 0).
 In fact, as we can regard 'p, as the inclusion of the 1-skeleton, this follows as
 above using (5.1).

 It follows that there is a free A-module F and a projective A,-module P

 (or take P = AO in the non-orientable case) such that w,2(9P) -Fe P. The
 easiest case now is when c(G) = 0, whence it follows that c(w,(9l)) - 0, and P
 is free. In this case, we use the construction of [24, ? 1] to kill ,2(9l), using
 an epimorphism F' - F@ P with kernel A0, (in the non-orientable case, c 0 0
 necessarily; the kernel here is A,). If c(G) # 0, we attach an infinite number
 of 2-cells, using an epimorphism F' F e P, F' free of countable rank, with
 kernel isomorphic to F' E AO.

 We are constructing inductively complexes Kn, and n-connected maps

This content downloaded from 129.215.149.99 on Sun, 19 Feb 2017 16:53:10 UTC
All use subject to http://about.jstor.org/terms



 POINCARE COMPLEXES 239

 q,: Knob Y, and will end with a homotopy equivalence K-n Y. Thus we can

 identify wr?,l(qn) with ?1:,l(K, K") and hence, for n > 1, with H.+1(K, Kr),
 which is the quotient of the group of (n + 1)-chains by boundaries. We

 deduce an exact sequence

 0 > Hn+ly > Y wn+l(-(n) > Cn > rn(Tn-l) -* 9

 valid for n > 3, and for n = 2 if wr2(q1) is replaced by H2Q(1). Thus given

 nr(n-l) we choose a set of A-generators, defining an epimorphism to it of the
 free A-module C.; use these generators to attach n-cells, giving K7" and an
 extension qp. of qp, to K"; and then the above sequence shows how to com-
 pute w1(,+&1p).

 In our case, p2(q1) = H2(Q1), and the sequence is valid for n > 2. As
 H3( Y) = 0, we deduce that wr3(q2) is the kernel of the map C2 - w2(q1), which

 we chose above to be A. (in the non-orientable case A1) or F' E Ao. Choose C3
 correspondingly to be A or F' E A; the obvious epimorphism to w3(cP2) then has
 kernel A1 (in the non-orientable case A0). The choice of C3 determines K3 and

 q3: K3 - Y, up to homotopy. Now wr4(q3) lies in the exact sequence above,

 which reduces to

 0 -> AO - 4l3) A1 > 0
 (in the non-orientable case, AO and A1 are interchanged). But by [24, Lem. 2.1],

 wr4(qP3) is projective. As it clearly has rank 1, and c = 0 (tensoring with Al,
 we obtain A1), it follows that wr4(3) -A. We can then attach a single 4-cell,

 giving K4 and a homotopy equivalence q4: K4 - Y.

 Note that if c(Y) = 0, K has only one cell each of dimensions 0, 1, 3, 4

 (though we may need several 2-cells). Of course, if c(Y) # 0, we need infi-

 nitely many 2- and 3-cells, but still one 4-cell is enough, as we know already

 from (2.3.1).

 Next observe that the homotopy type of K3 can be described very simply.

 Indeed, in the easy case c( Y) = 0, the 1-skeleton is a circle; we then attach one

 2-cell by degree p, and further ones at the base point; and then attach a 3-cell.

 This last attachment is determined by an element of r2(K2) - w2(K2) H2(k2)9
 the group of 2-cycles of k, and hence by pure homology theory. In fact we

 had H2(K) = H2( Y) _rA + 2A1 by (5.1). (The non-orientable case is similar;

 we leave discussion to the reader). Then C2K was chosen as (r + 2)A, and the

 boundary d2 sent the first generator e2 to (1 + T + . + TP-1)el (where e1 is

 the 1-cell), and the others to 0. We had the exact sequence

 0 > - 3(92) - C2 - w2(&) > 0,

 with wr3(q2) isomorphic to A,. Thus we may choose the base eo, el, * .. , er, e. of C2
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 (determining the 2-cells) with de3 = (1 + T + ... + TP-1)e2. The complex

 K3 is now determined by the integer r; we have the bouquet of a standard

 complex K, with r copies of S2. In the non-orientable case, we have a wedge
 of a collection of 2-spheres with P3(R) or the 3-skeleton of S2 x P2(R).

 If c # 0, the result is analogous. First suppose G -- A2 E A, e P, for
 some projective A-module P. Then the cells el, el, el, el , e3 are fixed as before;

 we now take a bouquet of this with an infinite collection of 2-spheres, which

 replaces the second homotopy group by its direct sum with F'. But F'-

 F' ? P; we now add 3-cells to kill the first summand F'. Thus the 3-skeleton

 is determined by P. A similar (but slightly more complicated) description is

 valid if G does not have the above form, in which case we have necessarily

 G A-1 D P1, P1 an ideal (hence projective) in A1.

 LEMMA 5.3. Suppose Y as in (5.2). Then Y has the homotopy type of a

 cw-complex K, obtained from K2 by attaching a single 4-cell. The homotopy

 type of K3 is determined by G.

 Thus the classification will be determined by a study of attaching maps of

 the 4-cell. So we next consider w3(K3) w r3(Kk). Since K3 is a simply-connected
 3-complex, with H2(K3) = G a free abelian group, k3 has the homotopy type
 of a bouquet of 2-spheres and 3-spheres. This can be seen, for example, by

 repeating the above construction for K3. The details become trivial in the

 simply-connected case. We can count the numbers of spheres by looking at

 the homology groups: H2(K3)- G, and H3(K3) is the group of 3-cycles (or of

 3-boundaries) of K, hence isomorphic to A, (in the non-orientable case, A,).
 We compute the homotopy group 2(K3) using the simplest non-trivial case

 of the Hilton-Milnor theorem [8]. Suppose given a bouquet of 2-spheres S,

 and 3-spheres S3, then wr3(Vi S2 VA SI) can be expressed as a sum of components
 7r3(S?) Z (each i), w2(S2) (0 w2(S~) Z (all pairs i < j) injected by the Whitehead
 product, and w1(S3) Z (all a). We seek to algebraise this result.

 If we attach a 4-sphere to a bouquet of 2-spheres, we obtain a cup-product

 H2 0 H2 H4 Z for the result. In this case, we can interpret the above

 result as saying that wr(V, S2) is isomorphic to the group of symmetric bilinear

 forms on H2(Vi Sr). We have written H2 = G, and will now write G for the
 dual cohomology group, and SJ(G) for the group of symmetric bilinear forms
 (with integer values) on G. Then the computation yields a split short exact

 sequence

 0 > S2(G) > w3(K3) > H3(K3) > 0 .

 But we know the image in H3(K3) of the attaching map of e4 (this is determined

 by homology considerations). What remains to distinguish two such attaching
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 maps is an element of S2(G).

 In a sense, this gives our classification. Unfortunately, our element of

 S2(G) only represents the difference of two attaching maps, rather than

 determining one; and it is necessary to make a choice of a basis of G. The

 details of such algebra appear rather uninteresting. We shall ignore them.

 Also, not all elements of S2(G) will give Poincare complexes. This, we must

 investigate. Note that as K is a Poincare complex if and only if K satisfies

 duality; the only remaining condition here is that the cup product pairing

 G 0 G H4(K) (- Z be non-singular. Now K is obtained from K3 by attaching
 p 4-cells, which cover the single 4-cell of K. We can regard (p - 1) of these

 as killing the (p - 1) 3-spheres of K3 (corresponding to Z-generators of A1 =

 H3(k)), and the remaining one as attached to the 2-skeleton, giving the top

 class in k. More precisely, the multiple (1 + T + T2 + *-- + TP-1)e4 (or, in

 the non-orientable case, (1 - T)e') is attached by a map zero in homology,

 and hence is directly attached to the 2-skeleton. The attaching map of this

 linear combination of cells induces the cup product for k.

 To perform our calculation, we must determine the action of w on r3(K3).

 In our exact sequence, there are obvious actions of w on S2(G) (since w operates

 on G) and on H3(K3) - A, (or A0), but these do not determine the action of w

 on the extension. (It is a split extension of Z-modules; but not, as it turns

 out, of A-modules).

 Instead of examining the complex directly, we shall construct a corre-

 sponding Poincare 4-complex; in fact, a closed smooth manifold, and investi-

 gate cup products there. In the non-orientable cases, use S2 x P2(R) and P4(R).

 In the orientable case, start with the framed manifold M_ = S1 x S3 and perform

 framed surgery as in [13] or [26] to kill p times the generator of the funda-
 mental group. Write N for the cobordism, and M+ for the other component
 of aN. Then a short calculation shows that the sequence

 O - H3(N, aN) - H2(M+) - H2(N) - 0

 is exact, and each outside module isomorphic to A1; or dually, we have an

 exact sequence

 O - H2(N) - H2(M) -* H3(N, aN) > 0 .

 Cup products clearly vanish on H2(N). The sequence splits, since Extk(Al, Al1)
 vanishes, e.g., by the classification of modules, or since it lies in the exact

 sequence

 0 HomA(AO, A1) - Extk (A1, A1) - Extk(A, A1) = 0.
 Since cup products are non-singular, the induced pairing of H2(Nf) and
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 H3(N, AN) is a dual pairing. Thus if x is a free Al-generator of H2(N), we can
 choose a free generator y of H3(N, AN) such that

 6 1 t-ij (modp)

 xTi-yTi = 1 i _ j + 1 (mod p)

 0 O otherwise.

 Now lift y to an element (still denoted by y) of H2(M), and write

 a, = -yTi = yT-yTij.

 Let the suffixes i, j run over integers mod p. Then symmetry shows ai = a,
 and since E'- PT acts as zero on A1, we have E-aj = 0. Thus it is enough
 to consider a1, *., ar, where r = (p -1). Set z = y + x (LxiTi). Then

 for 1 < j < r, we have z - zT3= a, + Xj - X1+j (where X1+ = 0). Now choose
 xi - a. Then z-zTi = 0 for all j, so in terms of the free A1-basis
 {x, z} we have a precise description of cup products.

 We thus arrive at our final result.

 THEOREM 5.4. Suppose Y a Poincare' 4-complex, 7r(Y) cyclic of order p.

 Set G= wU2(Y); G is determined in (5.2). The homotopy type of Y is de-

 termined by G and by a symmetric, Z-bilinear map f: H2( Y) x H2( Y) - Z.
 Cup products in Y are given by the map fo + (1 + T + * * + TP-1)f = m [or,
 in the non-orientable case, fo + (1 - T)f] where fo is the multiplication in
 the example above. Any map f can be chosen such that the corresponding m

 is non-singular.

 To arrive at a precise classification, one should permit r1(Y) and r2(Y)

 to vary by automorphisms, and compute what happens to f. We are not at

 present able to do this except in very special cases. The above is, however,

 sufficiently precise to provide us with examples.

 COROLLARY 5.4.1. For any p, there exist orientable Poincare complexes

 Y. as above, with the signature a(Y) # pa(Y).

 PROOF. Set G = A,1 A1 q3 F, where F is a free A-module of rank 8. We
 choose f to vanish except on the summand F x F. Thus we must choose a

 symmetric Z-bilinear map f: F x F-Z, form m =(1 + T +* + TP-1)f, and
 calculate the signatures of the quadratic forms induced on F (for Y) and on

 F(?,, A0 (for Y). Note that the summand A1 6 A1 with fo contributes nothing.
 In fact we shall choose a A-map m, rather than choose f. Since F is

 free, m will automatically have the form required. Now recalling the exact

 sequence
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 and tensoring with F, we see that to define m it is equivalent to define forms

 on F?, A0 and on F?A A1, and check that the results agree mod p on F?AZP.
 On FQAA1 we choose a sum of four hyperbolic planes (one such is a sum of

 two isotropic copies of A1, dually paired to Z). The induced form on F QA Zp
 to ZP is then also a sum of hyperbolic planes. On F QA AO, we choose a positive
 definite unimodular even quadratic form (in rank 8, this exists, and is unique

 up to isomorphism). It is easily verified that the induced form on F 0 Zp is
 again a sum of hyperbolic planes, hence can be identified with the above (if

 we choose the right form on F ? Ao).

 The two now combine to give a form on F; the resulting Y is such that

 a(Y) = a(Y) = 8.

 In order to state the next corollary, we first observe that Ko(w) = KO(A)

 KO(A1) as already noted, and by a theorem of Rim [19], KJ(A1) can be identified
 with the group of ideal classes in the Dedekind ring A1. Let A2 be the subring

 of A1 left fixed by our involution C - C1; since this coincides with complex
 conjugation, A2 is the real subring of A1. The norm map from A1 to A2 (which

 it extends with degree 2) induces a homomorphism of projective class groups
 N-

 KO(A1) -*KO(A2). Denote the kernel of N by K,*(A1).
 A theorem of Kummer [10] states that N is always surjective. Denote

 the orders of K,*(A1) and KO(A2) by h1, h2 respectively; then KJ(A1) has order
 hlh2, and h1 and h2 are the so-called first and second factors of the class number

 of A1. It is known [11] [12] that h1 = 1 if p < 23 and h1 > 1 for 23 < p _ 163,
 and tends to infinity with p.

 COROLLARY 5.4.2. Let /C G K(Z) determine an element of K0*(A1). Then

 there exists a Poincare 4-complex Y with finiteness obstruction X(Y) = x.

 PROOF. Represent the image of Kc in ko(A1) by an ideal P in A1. Since
 N(P) is a principal ideal, PP is generated by a real number b. Define

 p: P x P )A1 by

 ,p(x, I) = Xy b) 1

 then qp is clearly hermitian and non-singular. Reducing q' mod C - 1 induces
 1p: PP x Pow Z, where PP has order p. Now qp(x, x) is either a residue or
 a non-residue. In the first case, cpP is isomorphic to the restriction mod p of
 the form over A0 Z with matrix (1). Choose an isomorphism, and denote by

 Q the kernel of the difference map P 0 A0 - ZP. There is an induced self-
 pairing of Q to A1 e A0. It follows from the definition of Q that the pairing
 actually takes values in A, and then is non-singular. The desired result now

 follows as in the preceding Corollary.
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 Next suppose qp(x, x) a non-residue. We will change it to a residue by

 multiplying b by an appropriate unit of A2. Since CErsi! ii) is such a unit
 (provided 2r + 1 4 0 mod p) and induces (2r + 1) which is an arbitrary element

 of ZP , this can be done.

 The last corollary suggests the conjecture that, for any Poincare 2k-

 complex with fundamental group w of order p, the finiteness obstruction lies

 in Ko*(A).
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