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PFAFFIAN SUBSCHEMES

CHARLES H. WALTER

Abstract. A subscheme X ⊂ P⋉+3 of codimension 3 is Pfaffian if it is the
degeneracy locus of a skew-symmetric map f : E∨(−⊔) −→ E with E a locally
free sheaf of odd rank on P⋉+3 . It is shown that a codimension 3 subscheme
X ⊂ P⋉+3 is Pfaffian if and only if it is locally Gorenstein, subcanonical (i.e.
ωX

∼= OX (l) for some integer l), and the following parity condition holds: if
n ≡ 0 (mod 4) and l is even, then χ(OX (l/∈)) is also even.

The paper includes a modern version of the Horrocks correspondence,
stated in the language of derived categories. A local analogue of the main

theorem is also proved.

One method of constructing a codimension 3 subschemeX ⊂ P⋉+3 is to consider
a Pfaffian subscheme. (This is discussed in a recent paper of Okonek [O].) That is,
one considers the degeneracy locus of a skew-symmetric map f : E∨(−⊔) −→ E such
that E is a locally free sheaf of odd rank 2p + 1 on P⋉+3, and f is generically of
rank 2p and degenerates to rank 2p−2 in the expected codimension 3. The scheme
X then has a locally free resolution of the form

0 −→ OP⋉+3(−⊔− ∈∫) 〈−→ E∨(−⊔− ∫) {−→ E(−∫) }−→ OP⋉+3 −→ OX (1)

where s = c1(E) + √⊔, and where g and h = g∨(−t − 2s) are given locally by

the Pfaffians of order 2p of f . This resolution is just a patching together of the
local version studied in [BE2]. The self-duality of the resolution (1) implies that
X is locally Gorenstein with canonical sheaf ωX ∼= OX (⊔ + ∈∫ − \ − △). Thus
Pfaffian subschemes are always locally Gorenstein of codimension 3 in P⋉+3 and
are subcanonical, i.e. they satisfy ωX ∼= OX (l) for some integer l.

It is now natural to consider the following question asked by Okonek [O]: Are
all locally Gorenstein subcanonical subschemes of codimension 3 in P⋉+3 Pfaffian?
Arithmetically Gorenstein subschemes of codimension 3 certainly are Pfaffian be-
cause of a structure theorem of Buchsbaum and Eisenbud ([BE2] Theorem 2.1). We
will show that in conjunction with a certain number of other ideas, their method
can be adapted to yield the following result:

Theorem 0.1. Let k be a field not of characteristic 2. Suppose X ⊂ P⋉+3

k
is a

locally Gorenstein subscheme of equidimension n > 0 such that ωX ∼= OX (l) for

some integer l. Then X is a Pfaffian subscheme if and only if the following parity

condition holds : if n ≡ 0 (mod 4) and l is even, then χ(OX (l/∈)) is also even.

As Okonek pointed out, the Barth-Lefschetz theorems imply that every smooth
subvariety of codimension 3 in P8 and P9 is subcanonical. Hence we have a
corollary:
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Corollary 0.2. Every smooth subvariety of codimension 3 in P8 and P9 is a

Pfaffian subscheme.

Of course the corollary holds for PN with N ≥ 10 as well (with certain conditions
if N ≡ 3 (mod 4)). But in this range all smooth subvarieties of codimension 3 in
PN are supposed to be complete intersections according to Hartshorne’s Conjecture.

The parity condition in Theorem 0.1 may be deduced as follows. Suppose X is
Pfaffian and n and l are both even. We may twist the resolution (1) by l/2 to get

0 −→ ωP(−l/2) −→ E∨ ⊗ ωP(∫ − l/∈) −→ E(l/∈− ∫) −→ OP(l/∈) −→ OX (l/∈) −→ ′.
From this sequence and Serre duality on P⋉+3, it now follows that:

χ(OX (l/∈)) = ∈χ(OP(l/∈)) − ∈χ(E(l/∈ − ∫)) ≡ ′ (mod ∈).

The main theorem has the following local analogue. Call an unmixed ideal I of
height 3 in a regular local ring (R,m, k) Pfaffian if R/I has a resolution of the form

0 −→ R
g∨−→ E∨ f−→ E

g−→ R −→ R/I

with E is a reflexive R-module of odd rank such that Ep is a free Rp-module for all
prime ideals p 6= m, and f skew-symmetric. The canonical module of any unmixed
ideal I of height 3 is by definition ωR/I = Ext3R(R/I,R). It is always saturated.
We prove the following:

Theorem 0.3. Let (R,m, k) be a regular local ring of dimension n > 4 with residue

field not of characteristic 2. Let I be an unmixed ideal of R of height 3. Then I is

Pfaffian if and only if the following three conditions hold :
(a) (R/I)p is Gorenstein for all prime ideals p 6= m,

(b) ωR/I ∼= (R/I)sat, and

(c) if n ≡ 0 (mod 4), then H
n/2
m (I) is of even length.

In both theorems we have stated the parity condition only for n ≡ 0 (mod 4)
rather than for all even n. This is because the graded commutativity built into
cohomology rings causes the perfect pairing of Serre duality

Hn/2(OX (l/∈)) ×H\/∈(OX (l/∈)) −→ H\(OX (l)) ∼= ‖ (2)

(or its analogue in local duality) to be (−1)n/2-symmetric. Hence if n ≡ 2 (mod 4),
then Hn/2(OX (l/∈)) admits a non-degenerate skew-symmetric bilinear form and
so is of even dimension. Thus subcanonical varieties with n ≡ 2 (mod 4) and l even
automatically have

χ(OX (l/∈)) ≡ 〈\/∈(OX (l/∈)) ≡ ′ (mod ∈).

In characteristic 2 the perfect pairing (2) and its local analogue apparently need
not be alternating even if n ≡ 2 (mod 4). Thus one cannot expect Theorem 0.1 or
0.3 to be valid in characteristic 2 unless the phrase “if n ≡ 0 (mod 4)” is replaced
by the phrase “if n is even.” However, we will show that with this modification,
both theorems are valid in characteristic 2.

Outline of the Paper. In the first section we review the proof of the local version
of Theorem 0.1 given by Buchsbaum and Eisenbud ([BE2] Theorem 2.1). We show
that their proof will work for us if we can replace their minimal projective resolution
by a locally free resolution of OX which satisfies two properties (Proposition 1.2).
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The rest of the paper is devoted to finding a locally free resolution of OX which
satisfies these properties.

Our main tool for constructing this locally free resolution is the Horrocks corre-
spondence of [Ho]. In the second section of the paper, we give a modern description
of this correspondence using derived categories. This point of view is not identical
to Horrocks’, so we have felt it prudent to include a full proof of Horrocks’ princi-
pal result (Theorem 2.4) from this point of view. However, the derived categories
viewpoint is useful because it permits us to further develop Horrocks’ ideas so as to
obtain a method for transfering a portion of the cohomology of the coherent sheaf
OX to a locally free sheaf in a controlled way (Proposition 2.8). This is critical for
our construction.

In the third section we apply the Horrocks correspondence to construct a par-
ticular locally free resolution of the form (1). The basic idea is to cut in half the
cohomology of the subscheme X by using truncations of RΓ∗(IX ). Our results
on the Horrocks correspondence then permit us to find a vector bundle F∞ whose
intermediate cohomology is one of the halves of the cohomology of OX . Moreover,
there is a natural morphism from this F∞ to IX . This more or less gives the right
half of the resolution, and the left half comes from the conventional methods of the
Serre correspondence. We then show that if the cohomology of OX was cut in half
properly (viz. if the subcomplex carries an “isotropic” half of the cohomology), then
the resolution is self-dual in a very strong way: i.e. any chain map from the reso-
lution to its dual which extends the identity on OX is necessarily an isomorphism
of complexes. This is one of the properties required of the locally free resolution in
order to make the Buchsbaum-Eisenbud proof work.

In the fourth section we show that our locally free resolution of OX can be
endowed with a commutative differential graded algebra structure. This is a matter
of calculating the obstruction to the lifting of a certain map. This is the second
property required of the locally free resolution in order for the Buchsbaum-Eisenbud
proof to work. This will complete the proof of Theorem 0.1.

In the fifth section we consider Theorem 0.1 in characteristic 2. Essentially,
certain lemmas in the fourth section fail in characteristic 2 and must be replaced
by analogues which are slightly different.

In the sixth section we consider the results for regular local rings. Theorem
0.1 concerning projective spaces has an obvious analogue (Theorem 6.1) for the
punctured spectrum of a regular local ring. We show that this analogue is equivalent
to Theorem 0.3.

Acknowledgment . The author would like to thank R. M. Mirò-Roig who brought
the problem to his attention and with whom he had several discussions concerning
it. The paper was written in the context of the Space Curves group of Europroj.

1. The Buchsbaum-Eisenbud Proof

In this section we review Buchsbaum and Eisenbud’s proof of the local version
of Theorem 0.1. In particular, we describe the two conditions that a locally free
resolution of OX must satisfy in order for their proof to show that a subcanonical
subscheme X ⊂ P⋉+3 is Pfaffian (Proposition 1.2).

Theorem 1.1 ([BE2] Theorem 2.1). Let R be a regular local ring and I an ideal of

R of height 3 such that R/I is a Gorenstein ring. Then I has a minimal projective
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resolution of the form

0 −→ R
g∨−→ F∨ f−→ F

g−→ R −→ R/I

such that F of odd rank 2p+ 1, the map f is skew-symmetric, and g is composed

of the Pfaffians of order 2p of f .

Sketch of Buchsbaum and Eisenbud’s proof of Theorem 1.1. One considers a mini-
mal projective resolution of R/I. Since R/I is Gorenstein, it is of the form

P∗ : 0 −→ R
d3−→ F2

d2−→ F1

d1−→ R

We now seek to find a way of identifying F2
∼= F∨

1 so that d2 becomes skew-
symmetric.

The first step is to endow P∗ with the structure of a commutative associative
differential graded algebra ([BE2] pp. 451–453). To define the multiplication, they
define S2(P

∗) = (P∗ ⊗ P∗)/M∗ where M∗ is the graded submodule of P∗ ⊗ P∗

generated by

{a⊗ b − (−1)(deg a)(deg b)b⊗ a | a, b homogeneous elements of P∗}.
Using universal properties of projective modules, they then construct a map of
complexes Φ : S2(P

∗) −→ P∗ which extends the multiplication R/I ⊗ R/I and
which is the identity on the subcomplex R ⊗ P∗ ⊂ S2(P∗). This makes P∗ into a
commutative differential graded algebra. The associativity of this algebra follows
from the fact that it of length 3, i.e. Pn = 0 for n ≥ 4.

The next step (p. 455) is to note that the multiplication Fi ⊗ F3−i −→ F3 = R
induces maps si : Fi −→ F∨

3−i and a commutative diagram:

P∗ : 0 −−−−→ R
d3−−−−→ F2

d2−−−−→ F1
d1−−−−→ R

∥∥∥
ys2

ys1
∥∥∥

(P∗)∨ : 0 −−−−→ R
d∨1−−−−→ F∨

1

−d∨2−−−−→ F∨
2

d∨3−−−−→ R

(3)

This map of complexes is an extension of the Gorenstein duality isomorphismR/I ∼=
ωR/I = Ext3R(R/I,R) to the minimal projective resolutions of R/I and ωR/I . Since
any map between minimal projective resolutions which extends an isomorphism in
degree 0 must be an isomorphism, it follows that the si are all isomorphisms.

We can therefore use the identification s2 : F2
∼= F∨

1 . A very simple computation
(p. 465) shows that with this identification, the commutativity and associativity of
the differential graded algebra structure on P∗ imply the skew-symmetry of d2. In
particular d2 must have even rank (say 2p), and F2 must have odd rank 2p + 1.
The identification of d1 and d3 with the vectors of Pfaffians of order 2p of d2 is a
lengthy but unproblematic computation (pp. 458–464).

Now let X be a locally Gorenstein subcanonical subscheme of codimension 3 in
P⋉+3 with ωX ∼= OX (l). We wish to repeat the proof we have just sketched only
with P∗ replaced by a locally free resolution of OX :

P∗ : ′ −→ L ⌈∋−→ F∈
⌈∈−→ F∞

⌈∞−→ OP⋉+3 (4)

where we will write L in place of ωP⋉+3(−l) in order to simplify our diagrams.
A careful reading yields only two places where the fact that P∗ is a minimal

projective resolution of R/I was used in a way that does not immediately carry over
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to the locally free resolution P∗. The first place was in the definition of the map
Φ : S2(P

∗) −→ P∗ which made P∗ into a commutative differential graded algebra.
Therefore we will need to show directly the existence of a map of complexes

S2(P∗) : · · · −→L⊕ [F∈ ⊗F∞]
σ−→F∈ ⊕ Λ∈F∞ −→F∞ −→OP⋉+3

yφ3

yφ2

∥∥∥
∥∥∥

P∗ : 0 −→ L d3−→ F∈
d2−→F∞

d1−→OP⋉+3

The critical problem in defining the morphism of complexes is the following. Let
ψ : Λ2F∞ −→ ker(⌈∞) be defined by ψ(a ∧ b) = d1(a)b − d1(b)a. We then must lift

Λ2F∞yψ

0 −−−−→ L −−−−→ F∈ −−−−→ ker(d1) −−−−→ 0

(5)

to a φ ∈ Hom(Λ2F∞,F∈). Once that is done, the rest of the chain map follows.
For one may define φ2 = (1F∈ , φ). Then

φ2 ◦ σ(L ⊕ [F∈ ⊗F∞]) ⊂ ker(⌈∈) = L.
So φ2 ◦ σ factors through L, allowing one to define φ3. Thus one can put a com-
mutative associative differential graded algebra structure on P∗ provided ψ can be
lifted. The obstruction to lifting ψ lies in Ext1(Λ2F∞,L) ∼= H\+∈(Λ∈F∞(l))∗.

Once we have the commutative differential graded algebra structure on P∗, we
may use it to define maps si : F〉 −→ F∨

∋−〉⊗L and a commutative diagram analogous

to (3):

P∗ : 0 −−−−→ L d3−−−−→ F∈
d2−−−−→ F∞

d1−−−−→ OP⋉+3

∥∥∥
ys2

ys1
∥∥∥

(P∗)∨ : 0 −−−−→ L d∨1−−−−→ F∨
∞ ⊗ L −d∨2−−−−→ F∨

∈ ⊗ L d∨3−−−−→ OP⋉+3

(6)

The vertical maps extend the isomorphism OX
∼= ωX (−l) = E§⊔∋(OX ,L). We

now run into the second problem with locally free resolutions. Namely, a morphism
of locally free resolutions which extends an isomorphism in degree 0 is not auto-
matically an isomorphism between the resolutions. But we reach the conclusion:

Proposition 1.2. Suppose X is a locally Gorenstein subcanonical subscheme of

codimension 3 in P⋉+3 with ωX ∼= OX (l). Then X will be a Pfaffian scheme if

OX has a locally free resolution P∗ as in (4) satisfying the following two conditions:

(a) Any morphism of complexes P∗ −→ (P∗)∨ as in (6) which extends the identity

of OX is an isomorphism of complexes, and

(b) The morphism ψ of (5) lifts to a map φ ∈ Hom(Λ2F∞,F∈).

We will now construct locally free resolutions P∗ satisfying the conditions of the
proposition. Our method involves the Horrocks correspondence.

2. The Horrocks Correspondence

In this section we give a modern description of the Horrocks correspondence of
[Ho] using derived categories. We include a full proof of the principal properties of
the correspondence from this point of view (Theorem 2.4). Taking advantage of the
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greater flexibility of the derived category viewpoint, we develop a technique which
allows us to transfer a prescribed portion of the cohomology of OX to prescribed
parts of a locally free resolution (Proposition 2.8).

Notation and Generalities. We first recall some generalities about complexes.
If A is an abelian category, let C(A) (resp. K(A), D(A)) denote the category
(resp. homotopy category, derived category) of complexes of objects of A, and let
Cb(A), C−(A), C+(A), etc., denote the corresponding complexes of bounded (resp.
bounded above, bounded below) complexes of objects of A. When speaking of com-
plexes, we will generally reserve the word “isomorphism” for isomorphisms in C(A).
Isomorphisms in K(A) (resp. D(A)) are referred to as homotopy equivalences (resp.
quasi-isomorphisms).

If r is an integer, then any complex C∗ of objects of A has two canonical trun-

cations at r and a naive truncation:

τ≤r(C
∗) : · · · → Cr−2 → Cr−1 → ker(δr) → 0 → 0 → · · · ,

τ>r(C
∗) : · · · → 0 → 0 → Cr/ ker(δr) → Cr+1 → Cr+2 → · · · .

σ≥r(C
∗) : · · · → 0 → 0 → Cr → Cr+1 → Cr+2 → · · · .

All the truncations are functorial in C(A). The canonical truncations are functorial
in K(A) and D(A) as well. We will often find it more convenient to write τ<r+1

instead of τ≤r.
Suppose now that A has enough projectives. Every bounded above complex C∗

of objects in A admits a projective resolution, i.e. a quasi-isomorphism P ∗ −→ C∗

with P ∗ a complex of projectives ([Ha] Proposition I.4.6). The projective resolution
of a complex is unique up to homotopy equivalence. If C∗ and E∗ are bounded
above complexes of objects in A, and if P ∗ −→ C∗ is a projective resolution of C∗,
then there is a natural isomorphism HomD−(A)(C

∗, E∗) ∼= HomK−(A)(P
∗, E∗). In

particular if P denotes the full subcategory of projective objects of A, then the
natural functor K−(P) −→ D−(A) is an equivalence of categories ([Ha] Proposition
I.4.7). This can be refined to the following statement:

Lemma 2.1. Let A be an abelian category with enough projectives, and let P be the

full subcategory of projective objects of A. Suppose A ⊂ D−(A) and P ⊂ K−(P) are

full subcategories such that ob(P ) ⊂ ob(A) and every object of A has a projective

resolution belonging to P . Then the natural functor P −→ A is an equivalence of

categories.

Let S = k[X0, . . . , XN ] be the homogeneous coordinate ring of PN, and let
m = (X0, . . . ,XN) be its irrelevant ideal. Let ModS,gr be the category of graded
S-modules. Then ModS,gr has enough projectives, namely the free modules. We
will call a complex P ∗ of projectives in ModS,gr a minimal if all its objects P i

are free of finite rank and its differential δ∗ satisfies δi(P i) ⊂ mPi+1 for all i. If
C∗ is a bounded above complex of objects in ModS,gr whose cohomology modules
Hi(C∗) are all finitely generated, then C∗ has a minimal projective resolution, i.e.
a projective resolution by a minimal complex of projectives. The next lemma,
which is a well known consequence of Nakayama’s lemma, says that minimal pro-
jective resolutions are unique up to isomorphism and not merely up to homotopy
equivalence:
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Lemma 2.2. Let φ : P ∗ −→ Q∗ be a homotopy equivalence between minimal com-

plexes of free graded S-modules of finite rank. Then φ is an isomorphism.

Let ModO be the category of sheaves of OPN-modules. For E a sheaf of OPN-
modules, let Γ∗(E) =

⊕
⊔∈Z

Γ(E(⊔)). Then Γ∗ defines a left exact functor from

ModO to ModS,gr. It has a right derived functor RΓ∗ : Db(ModO) −→ Db(ModS,gr)

whose cohomology functors we denote Hi
∗(E) =

⊕
⊔∈Z

H〉(E(⊔)). The functor Γ∗

has an exact left adjoint ˜, the functor of associated sheaves.
Let Γm : ModS,gr −→ ModS,gr be the functor associating to a graded S-module

M the maximal submodule Γm(M) ⊂ M supported at the origin 0 of AN+1. This
functor is also left exact and has a right derived functor RΓm : Db(ModS,gr) −→
Db(ModS,gr). Its cohomology functors are denoted Hi

m.

Lemma 2.3. Let P ∗ be a bounded complex of free graded S-modules of finite rank

where S = k[X0, . . . , XN ]. If P ∗ is minimal, then

max{i | P i 6= 0} =max{i | Hi(P ∗) 6= 0},
min{i | P i 6= 0} =min{i | Hi

m(P ∗) 6= 0} −N − 1.

Proof. The assertion about maxima is a simple and well-known application of the
minimality condition and Nakayama’s Lemma. The assertion about minima, which
is essentially the Auslander-Buchsbaum theorem, reduces to the assertion about
maxima by Serre duality.

The Horrocks Correspondence. We now begin to describe the components of
the Horrocks correspondence. Let B be the full subcategory of ModO of locally
free sheaves of finite rank, and let Z denote the full category of Db(ModS,gr) of
complexes C∗ such that Hi(C∗) is of finite length for 0 < i < N and Hi(C∗)
vanishes for all other i.

The Horrocks correspondence consists of a functor ζ : B −→ Z and a map H :
ob(Z) −→ ob(B) in the opposite direction. The functor ζ is simply τ>0τ<NRΓ∗.
For E a vector bundle on PN, the cohomology of ζ(E) is of course:

Hi(ζ(E)) =

{
Hi

∗(E) if 0 < i < N,

0 otherwise.

Since E is locally free of finite rank, Hi
∗(E) is of finite length for 0 < i < N . So

ζ(E) ∈ ob(Z).
We now define H. Any C∗ ∈ ob(Z) has a minimal projective resolution P ∗ −→ C∗.

We define H(C∗) to be the kernel of the differential δ̃0 : P̃ 0 −→ P̃ 1. Then H(C∗) is
a vector bundle because it fits into an exact complex of vector bundles

· · · −→ 0 −→ H(C∗) −→ P̃ ′ −→ P̃∞ −→ · · · −→ P̃N−∞ −→ ′ −→ · · · . (7)

Note that H(C∗) is well-defined up to isomorphism because the minimal projective
resolution P ∗ of C∗ is unique up to isomorphism because of Lemma 2.2. However,
H is not a functor.

The principal results of Horrocks’ paper [Ho] can be described in the following
way:

Theorem 2.4 (Horrocks). Let B be the category of locally free sheaves of finite

rank on PN, and let Z be the full subcategory of Db(ModS,gr) of complexes C∗ such

that Hi(C∗) is of finite length if 0 < i < N , and Hi(C∗) = 0 for all other i. Let
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ζ = τ>0τ<NRΓ∗ : B −→ Z, and let H : ob(Z) −→ ob(B) be the map defined as in (7)
above.

(a) If E ∈ ob(B), then E ∼= Hζ(E) ⊕ ⊕
〉 OPN(\〉) for some integers ni.

(b) If C∗ ∈ ob(Z), then ζH(C∗) ≃ C∗.

(c) If E ,F ∈ ob(B), then HomZ(ζ(E), ζ(F)) ∼= Hom(E ,F)/HomΦ(E ,F) where

HomΦ(E ,F) is the set of all morphisms which factor through a direct sum of line

bundles.

The theorem may be read as saying the following. Call two vector bundles E
and F stably equivalent if there exist sets of integers {ni} and {mj} such that
E ⊕ ⊕

〉 OPN(\〉) ∼= F ⊕ ⊕
| OPN(m|). Then the theorem says that ζ and H induce a

one-to-one correspondence between stable equivalence classes of vector bundles on
PN and quasi-isomorphism classes of complexes in Z.

For Horrocks’ proof of the theorem, see [Ho] Lemma 7.1 and Theorem 7.2 and
the discussion between them. However, Horrocks’ definition of the category Z and
the functor ζ are different from ours, and demonstrating the equivalence of the
definitions is somewhat tedious. So instead of referring the reader to Horrocks’
paper, we give a new proof. The first step is the following lemma:

Lemma 2.5. (a) Suppose

P ∗ : · · · −→ 0 −→ P 0 −→ P 1 −→ · · · −→ PN−1 −→ 0 −→ · · ·
is a complex of free graded S-modules of finite rank such that Hi(P ∗) is a module

of finite length for 0 < i < N . Let E = H′(P∗)∼. Then P ∗ is quasi-isomorphic to

τ<NRΓ∗(E).
(b) Conversely, if E is a vector bundle on PN, then the minimal projective reso-

lution of τ<NRΓ∗(E) is of the above form.

Proof. (a) Note that the complex P̃ ∗ of coherent sheaves on PN has vanishing

cohomology in degrees different from 0. So it is quasi-isomorphic to H0(P̃ ∗) = E .
Hence the triangle of functors of [W] Proposition 1.1:

RΓm −→ Id −→ RΓ∗◦∼ −→ RΓm[1],

when applied to P ∗, yields a triangle

RΓm(P∗) −→ P∗ β−→ RΓ∗(E) −→ RΓm(P∗)[1]. (8)

By Lemma 2.3, we have Hi
m(P ∗) = 0 for i ≤ N . So Hi(β) : Hi(P ∗) −→ Hi

∗(E) is
an isomorphism for i < N . Therefore β induces a quasi-isomorphism of P ∗ onto
τ<NRΓ∗(E).

(b) Conversely, if E is a vector bundle on PN, then Hi
∗(E) is finitely generated

for i < N . Hence τ<NRΓ∗(E) has a minimal projective resolution P ∗. For 0 <
i < N the module Hi(P ∗) = Hi

∗(E) is of finite length because E is locally free. By
construction Hi(P ∗) = Hi(τ<NRΓ∗(E)) = ′ for i ≥ N . So we have P i = 0 for
i ≥ N by Lemma 2.3. Looking again at the triangle (8), we see by the construction
of P ∗ that Hi(β) is an isomorphism for i < N and an injection for i = N . So
Hi

m(P ∗) = 0 for i ≤ N . So by Lemma 2.3 we see that P i = 0 for i ≤ −1. Thus P ∗

has the form asserted by the lemma.

We now wish to functorialize the previous lemma. Let B ⊂ Kb(ModS,gr) be the
full subcategory of complexes of the form

· · · −→ 0 −→ P 0 −→ P 1 −→ · · · −→ PN−1 −→ 0 −→ · · · (9)



PFAFFIAN SUBSCHEMES 9

such that the P i are free of finite rank for all i, the modules Hi(P ∗) are of finite
length for 0 < i < N and the differentials satisfy δi(P i) ⊂ mPi+1 for all i. For any
vector bundle E on PN we now define P ∗(E) as the minimal projective resolution of
τ<NRΓ∗(E). By Lemma 2.5, P ∗(E) is always an object of B.

Lemma 2.6. The functor P ∗ : B −→ B which associates to an E ∈ ob(B) the

minimal projective resolution of τ<NRΓ∗(E) is an equivalence of categories with

inverse given by C∗ 7→ H0(C∗)∼.

Proof. Since the functor τ<NRΓ∗ : B −→ D−(ModS,gr) has a left inverse H0(−)∼,
it induces an equivalence between B and the full subcategory A ⊂ D−(ModS,gr) of
complexes quasi-isomorphic to complexes in the image of τ<NRΓ∗. But by Lemma
2.5, the full subcategory B ⊂ K−(ModS,gr) has the properties that ob(B) ⊂ ob(A)
and that the minimal projective resolution of every object of A belongs to B. Hence
the natural functor B −→ A is also an equivalence of categories by Lemma 2.1. Since
P ∗ is exactly the composition of the equivalence τ<NRΓ∗ : B −→ A with the inverse
of the equivalence B −→ A, it is an equivalence. The inverse of P ∗ remains the same
as that of τ<NRΓ∗, namely H0(−)∼.

Now the graded module associated to a vector bundle E on PN has a minimal
projective resolution:

0 −→ Q−(N−1) −→ · · · −→ Q−1 −→ Q0 −→ Γ∗(E)

For any E we now define the following complexes in addition to the P ∗(E) defined
above. First we set:

Q∗(E) : · · · −→ ′ −→ Q−(N−∞) −→ · · · −→ Q−∞ −→ Q′ −→ ′ −→ · · · .
We then let R∗(E) be the natural concatenation of Q∗(E) with P ∗(E) induced by
the composition Q0

։ Γ∗(E) →֒ P ′:

R∗(E) : · · · −→ ′ −→ Q−(N−∞) −→ · · · −→ Q′ −→ P ′ −→ · · · −→ PN−∞ −→ ′ −→ · · ·
Thus Ri(E) = P〉(E) for i ≥ 0, and Ri(E) = Q〉+∞(E) for i < 0. Note that although
the projective complexes P ∗(E) and Q∗(E) are minimal, R∗(E) may not be minimal,
because there may be a direct factor of Q0(E) which is mapped isomorphically onto
a direct factor of P 0(E). However, one may write R∗(E) as the direct sum of a
minimal complex of projectives R∗

min(E)

R∗
min(E) : · · · −→ Q−∈ −→ Q−∞ −→ Q′

min −→ P 0
min −→ P 1 −→ P 2 −→ · · ·

and of an exact complex of projectives

· · · −→ 0 −→ L
Id−→ L −→ 0 −→ · · · . (10)

The complexes Q∗(E), R∗(E), and R∗
min(E) are all functorial (in the homotopy

category) in E . Moreover, we may use the identification between the categories B

and B to define complexes Q∗(P ∗), R∗(P ∗), and R∗
min(P

∗) for P ∗ in B. Namely,
Q∗(P ∗) is the minimal projective resolution ofH0(P ∗), R∗(P ∗) is the concatenation
of Q∗(P ∗) with P ∗, etc.

We now define a homotopy category of complexes of type R∗
min. More formally,

let Z ⊂ Kb(ModS,gr) be the full subcategory of minimal complexes of projective
modules of finite rank of the form

· · · −→ 0 −→ R−N −→ · · · −→ R−1 −→ R0 −→ · · · −→ RN−1 −→ 0 −→ · · · (11)
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such that the cohomology modules Hi(R∗) are of finite length for 0 < i < N and
vanish for all other i.

We need one more lemma before proving Theorem 2.4.

Lemma 2.7. The natural functor Z −→ Z is an equivalence of categories.

Proof. Let R∗ be the minimal projective resolution of an object C∗ of Z. Since
Hi(R∗) = Hi(C∗) = 0 for i ≥ N , we have Ri = 0 for i ≥ N by Lemma 2.3.
Moreover, all the Hi(C∗) are of finite length, so Hi

m(C∗) = Hi(C∗) for all i. In
particular, Hi

m(R∗) = Hi
m(C∗) = 0 for i ≤ 0. So Ri = 0 for i ≤ −N − 1 by Lemma

2.3. Thus the minimal projective resolution of any object of Z is in Z. The lemma
now follows from Lemma 2.1.

Proof of Theorem 2.4. Lemma 2.6 permits us to identify a vector bundle E with
the complex P ∗(E) of B. Since P ∗(E) is already quasi-isomorphic to τ<NRΓ∗(E),
the complex ζ(E) = τ>′τ<NRΓ∗(E) is quasi-isomorphic to the complex

· · · −→ 0 −→ Γ∗(E) −→ P ′ −→ P∞ −→ · · · −→ PN−∞ −→ ′ −→ · · ·
and hence to the complexes R∗(E) and R∗

min(E). Hence the object ζ(E) in Z is
quasi-isomorphic to the object R∗

min(E) of Z. Hence after identifying B and Z with
B and Z by Lemmas 2.6 and 2.7, the functor ζ may be identified with the functor
from B to Z which associates to any complex P ∗ in B the corresponding complex
R∗

min as described earlier.
Similarly, given any object C∗ of Z with minimal projective resolution R∗, the

definitions say that P ∗(H(C∗)) = σ≥′(R∗), the naive truncation. Thus the map
H : ob(Z) −→ ob(B) may be identified with σ≥0 : ob(Z) −→ ob(B). Note that since
all objects of Z and B are minimal complexes of projective modules, homotopy
equivalence classes of objects of Z and B coincide with isomorphism classes. Hence
the map σ≥0 : ob(Z) −→ ob(B) preserves homotopy equivalence. Since Z and B
are subcategories of the homotopy category, this means that σ≥0 is well-defined on
objects of Z. However, σ≥0 and hence H are not well-defined on morphisms of Z.

(a) The above identifications now say if E ∈ ob(B), then Hζ(E) is the object of
B corresponding to the complex σ≥0(R

∗
min(E)):

σ≥0(R
∗
min(E)) : · · · −→ ′ −→ P ′

min
µ−→ P∞ −→ · · · −→ PN−∞ −→ ′ −→ · · · .

By Lemma 2.6, the sheaf Hζ(E) is ker(µ)∼. So E = Hζ(E) ⊕ L̃ where L is the

projective module of (10). Since L̃ is now a direct sum of line bundles, (a) follows.
(b) If C∗ is an object of Z with minimal projective resolution R∗ in Z of the form

(11), then the above computations identify H(C∗) in B with P ∗(H(C∗)) = σ≥′(R∗)
in B. Thus ζH(C∗) becomes identified with R∗

min(H(C∗)) which is just R∗ again.
Since R∗ is quasi-isomorphic to C∗, we have ζH(C∗) ≃ C∗ as desired.

(c) After identifying B withB and Z with Z, assertion (c) becomes the statement:
For any pair of objects E∗ and F ∗ in B, the natural map

HomB(E∗, F ∗) −→ HomZ(R∗
min(E

∗), R∗
min(F

∗)) (12)

is surjective and its kernel is the subspace of morphisms which factor through an
object of B of the form

· · · −→ 0 −→ L −→ 0 −→ · · · (13)

with L a free graded S-module of finite rank appearing in degree 0.
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We first prove surjectivity. Suppose φ ∈ HomZ(R∗
min(E

∗), R∗
min(F

∗)). Since
Z is a homotopy category, φ is actually a homotopy equivalence class of maps in
C(ModS,gr). So we may choose a chain map f in the class φ. Then f may be

extended to a chain map f : R∗(E∗) −→ R∗(F ∗) by defining it to be 0 on the exact
factor of the type (10). Then σ≥0f maps E∗ to F ∗, and its homotopy class in B
has image φ in Z. This proves surjectivity.

We now compute the kernel of (12). First if α ∈ HomB(E∗, F ∗) factors through
a complex L∗ of the form (13), then R∗

min(α) factors through R∗
min(L∗) = 0 and

so vanishes. So the kernel of (12) contains all morphisms which factor through
complexes of the form (13).

Conversely, suppose α is in the kernel of (12). Since α is a morphism in B, it is
a homotopy class of chain maps from which we may choose a member β. We may
complete β to a chain map ρ : R∗(E∗) −→ R∗(F ∗).

R∗(E∗) · · · → 0 →E
−N → · · · → E

−1 → E0 → · · · → EN−1 → 0 → · · ·
yρ

y
y

y
yβ

yβ
y

R∗(F ∗) · · · → 0 → F
−N → · · · → F

−1 → F 0 → · · · → FN−1 → 0 → · · ·

The homotopy class of ρ is the image of α under R∗ and so must vanish by hypoth-
esis. (Note that R∗ and R∗

min are homotopy equivalent.) Thus ρ is homotopic to
0. Thus if we write δi for the differentials of R∗(E∗), and ǫi for the differentials of
R∗(F ∗), then there is a chain homotopy h = (hi) such that ρi = hi+1δi+ ǫi−1hi for

all i. Now restrict h to a chain homotopy ĥ = (ĥi) with ĥi : Ei −→ F i−1 defined by

defined by ĥi = hi for all i ≥ 1, and ĥi = 0 for all i ≤ 0. Then β is homotopic to a
morphism whose components are

βi − (ĥi+1δi + ǫi−1ĥi) =






ρi − (hi+1δi + ǫi−1hi) = 0 if i ≥ 1,

ρ0 − h1δ0 = ǫ−1h0 if i = 0,

0 if i ≤ −1.

Hence the homotopy class α of β factors through the complex

· · · −→ 0 −→ F
−1 −→ 0 −→ · · ·

of type (13). So the kernel of (12) is as asserted. This completes the proof of the
theorem.

We will use three further results concerning the Horrocks correspondence. The
first will permit us to use the Horrocks correspondence to constuct locally free
resolutions of coherent sheaves.

Proposition 2.8. Let Q be a quasi-coherent sheaf on PN, let C∗ ∈ ob(Z), and let

β : C∗ −→ τ>0τ<NRΓ∗(Q) be a morphism in Db(ModS,gr). Then there exists a

morphism of quasi-coherent sheaves β̃ : H(C∗) −→ Q such that β = τ>0τ<NRΓ∗(β̃).

In particular, the induced morphisms Hi
∗(H(C∗)) −→ H〉

∗(Q) are the same as Hi(β)
for 1 ≤ i ≤ N − 1.
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Proof. Let R∗ be a minimal projective resolution of C∗, and let I∗ be an injective
resolution of Q. Then β may be identified with an actual chain map

· · · →R−2 → R−1 → R0 λ−→ R1 → · · · → RN−2 → RN−1 → 0
y

y
y

y
y

y

· · · → 0 → Γ∗(Q) → Γ∗(I ′)
µ−→ Γ∗(I∞) → · · · → Γ∗(IN−∈) → ker(δN−1) → 0

Thus β induces a morphism β̃ from H(C∗) = ker(λ)∼ to Q = ker(µ)∼.

We now need to calculate RΓ∗(β̃). Consider the complex

P ∗ : · · · −→ 0 −→ R0 −→ R1 −→ · · · −→ RN−1 −→ 0 −→ · · · .
The previous diagram induces a new commutative diagram

P̃ ∗: · · · → 0 → R̃0 → R̃1 → · · · → R̃N−2 → R̃N−1 → 0 → 0 → · · ·
yβ

y
y

y
y

y
y

y

I∗ : · · · → 0 → I ′ →I∞ → · · · → IN−∈ →IN−∞ →IN → 0 → · · ·
between resolutions of H(C∗) and Q extending β̃. Let γ : P ∗ −→ J∗ be an injective

resolution of P ∗. Then β factors through γ̃ as P̃ ∗ −→ J̃∗ −→ I∗. Applying Γ∗ now
gives a factorization

P ∗ −→ Γ∗(J̃
∗) −→ Γ∗(I∗). (14)

Now β is a map between resolutions of H(C∗) and Q, respectively, which extends

β̃ : H(C∗) −→ Q, while γ̃ is a quasi-isomorphism. So the map J̃∗ −→ I∗ is a map

between injective resolutions of H(C∗) and Q extending β̃. So by definition, the

second arrow of (14) is RΓ∗(β̃) : RΓ∗(H(C∗)) −→ RΓ∗(Q). On the other hand,
the proof of Lemma 2.5(a) shows that the first arrow of (14) can be identified with
the truncation τ<N (RΓ∗(H(C∗))) −→ RΓ∗(H(C∗)) because it induces isomorphisms

Hi(P ∗) ∼= Hi(Γ∗(J̃
∗)) = Hi

∗(H(C∗)) for i < N . Hence Γ∗(β) : P ∗ −→ Γ∗(I∗) can be
identified with the composition of the truncation τ<N (RΓ∗(H(C∗))) −→ RΓ∗(H(C∗))

with RΓ∗(β̃). Thus τ<NRΓ∗(β̃) may be identified with the diagram

· · · → 0 → R0 → R1 → · · · → RN−2 → RN−1 → 0 → · · ·
y

y
y

y
y

y

· · · → 0 → Γ∗(I ′) → Γ∗(I∞) → · · · → Γ∗(IN−∈) → ker(δN−1) → 0 → · · ·
induced by β. Truncating on the left, we reach a diagram equivalent to the first

diagram of the proof of the proposition. So β = τ>0τ<NRΓ∗(β̃).

We now need two homological criteria for maps of vector bundles to be isomor-
phisms.

Lemma 2.9. Let E and F be vector bundles on PN with neither containing a line

bundle as a direct factor. If α : E −→ F is a map such that Hi
∗(α) : Hi

∗(E) −→ H〉
∗(F)

is an isomorphism for 0 < i < N , then α is an isomorphism.

Proof. We use the notation of the proof of Theorem 2.4. Let E∗ = P ∗(E) and
F ∗ = P ∗(F), and let α : E∗ −→ F ∗ be the map induced by α. The hypothesis E =
Hζ(E) implies that E∗ is homotopy equivalent to σ≥0R

∗
min(E∗), or equivalently that
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R∗(E∗) is a minimal complex of projectives. Similarly, R∗(F ∗) is a minimal complex
of projectives. The hypothesis on α implies that ζ(α) : ζ(E) −→ ζ(F) is a quasi-
isomorphism. This in turn translates into R∗

min(α) being a homotopy equivalence.
But because of the earlier hypotheses, this means that R∗(α) : R∗(E∗) −→ R∗(F ∗)
is a homotopy equivalence between the minimal complexes of projectives. Hence by
Lemma 2.2 R∗(α) is actually an isomorphism of complexes. So its naive truncation
σ≥0R

∗(α) = α is also an isomorphism. Therefore α is an isomorphism.

We will also need a slight generalization of the previous lemma.

Lemma 2.10. Let E = Hζ(E) ⊕ ⊕OPN(\〉) and F be vector bundles on PN, and

let Q be a coherent sheaf on PN. Suppose that there exist morphisms α : E −→ F
and β : F −→ Q such that

(i) Hi
∗(α) : Hi

∗(E) −→ H〉
∗(F) is an isomorphism for 0 < i < N ,

(ii) βα takes the generators of the factors S(ni) of Γ∗(E) onto a minimal set of

generators of the module Q := Γ∗(Q)/βα(Γ∗(Hζ(E))),
(iii) E and F have the same rank.

Then α is an isomorphism.

Proof. Write F = Hζ(F) ⊕ ⊕OPN(m|). The splittings of E and of F into direct
factors are not canonical. But choosing such splittings gives an injection Hζ(E) →֒ E
and a projection F ։ Hζ(F). Then the composition

α : Hζ(E) −→ E α−→ F −→ Hζ(F)

is, like α, an isomorphism on Hi
∗ for 0 < i < N . So α is an isomorphism by Lemma

2.9. Hence by identifying Hζ(F) with α(Hζ(E)) ⊂ F , we see that α induces a
morphism of diagrams

0 −−−−→ Hζ(E) −−−−→ E −−−−→ ⊕OPN(\〉) −−−−→ 0
∥∥∥

yα
yα1

0 −−−−→ Hζ(F) −−−−→ F −−−−→ ⊕OPN(m|) −−−−→ 0

(15)

The morphisms α and β therefore induce maps
⊕

S(ni)
Γ∗(α1)−−−−→

⊕
S(mj)

β−→ Q = Γ∗(Q)/βα(Γ∗(Hζ(E))).

The composition is a surjection corresponding to a minimal set of generators of Q
by hypothesis (ii). Hence the righthand map β must be a surjection corresponding
to a set of generators of Q. However, the two free modules have the same rank
by hypothesis (iii). Hence β also corresponds to a minimal set of generators, and
Γ∗(α1) must be an isomorphism. So returning to diagram (15), α1 and hence α are
isomorphisms.

3. The Self-Dual Resolution

Let X ⊂ P⋉+3 be a locally Gorenstein subcanonical subscheme of equicodi-
mension 3 satisfying the parity condition. In this section we use the Horrocks
correspondence and especially Proposition 2.8 to construct a locally free resolution
of OX . We then use Lemma 2.10 to show that the resolution satisfies condition (a)
of Proposition 1.2.

In the course of the construction we will need a more refined variant of the
canonical truncation. Namely, suppose D∗ is a complex of objects in an abelian
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category with differentials δi : Di −→ Di+1. Suppose r is an integer, and W ⊂
Hr(D∗) a subobject. Then W may be pulled back to a W satisfying

im(δr−1) ⊂W ⊂ ker(δr) ⊂ Dr

We then define:

τ≤r,W (D∗) : · · · −→ Dr−2 −→ Dr−1 −→W −→ 0 −→ 0 −→ · · · .

The cohomology of this complex is given by

Hi(τ≤r,W (D∗)) =





Hi(D∗) if i < r,

W if i = r,

0 if i > r.

We will also use the following conventions. If E is a coherent sheaf on PN and
α, β ∈ Q are not both integers, then we define Hα(E(β)) = ′. Also if D∗ is a
complex and α ∈ Q, we define τ≤α(D∗) = τ≤[α](D

∗).

Definition of the Locally Free Resolution. Suppose X ⊂ P⋉+3 is a locally
Gorenstein subscheme of equidimension n > 0 such that ωX ∼= OX (l) for some
integer l and such that hn/2(OX (l/∈)) is even.

Let ν = n/2 and l′ = l/2. By hypothesis Hν(OX (l′)) is an even-dimensional
vector space (zero if n or l is odd) equipped with a nondegenerate (−1)ν-symmetric
bilinear form

Hν(OX (l′)) ×Hν(OX (l′)) −→ H\(OX (l)) ∼= ‖.
Let U ⊂ Hν(OX (l′)) be an isotropic subspace of maximal dimension hν(OX (l′))/∈.
Let

W = U ⊕
⊕

t>l′

Hν(OX (⊔)) ⊂ Hν
∗(OX ) (16)

We begin the construction of the locally free resolution with the short exact
sequence

0 −→ IX −→ OP⋉+3 −→ OX −→ ′. (17)

Since Hi
∗(OX ) ∼= H〉+∞

∗ (IX ) for 0 < i < n+ 2, we have W ⊂ Hν+1
∗ (IX ).

Now since X is locally Cohen-Macaulay of equidimension n, the modules Hi
∗(IX )

are of finite length for 0 < i < n + 1. Hence the truncated complex C∗
X =

τ>0τ≤ν+1,WRΓ∗(IX ) has cohomology modules Hi(C∗
X) of finite length for 0 <

i ≤ ν + 1, while Hi(C∗
X) = 0 for all other i. Hence C∗

X is in Z.
The definition of C∗

X as a truncation means that it is endowed with a natural map
β : C∗

X −→ τ>0τ<n+3RΓ∗(IX ). By Proposition 2.8 this map induces a morphism

β̃ : H(C∗
X ) −→ IX . Let Q be the cokernel

H0
∗ (H(C∗

X ))
H′

∗(β̃)−−−−→ H′
∗(IX ) −→ Q −→ ′.

Let d1, . . . , dr be the degrees of a minimal set of generators of Q. These generators
lift to H0

∗ (IX ), allowing us to define a surjection

γ : F∞ := H(C∗
X ) ⊕

⊕
OP⋉+3(−⌈〉) ։ IX . (18)

By construction, F∞ is locally free.
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Let K = ker(γ). We may then attach the short exact sequence 0 −→ K −→ F∞ −→
IX −→ ′ to the short exact sequence (17) to get an exact sequence

0 −→ K −→ F∞ −→ OP⋉+3 −→ OX −→ ′. (19)

The construction described above leads immediately to the following conclusions
about the cohomology of F∞ and about the induced morphismsHi

∗(γ) : Hi
∗(F∞) −→

H〉
∗(IX ) (cf. Proposition 2.8).

• Hi
∗(γ) is surjective (resp. an isomorphism) for i = 0 (resp. 0 < i < ν + 1).

• Hν+1
∗ (γ) : Hν+1

∗ (F∞) ∼= W →֒ Hν+∞
∗ (IX ) is injective.

• Hi
∗(F∞) = ′ for ν + 1 < i < n+ 3.

One may now draw the following conclusions about the cohomology of K.

• Hi
∗(K) = ′ for 0 < i < ν + 2.

• Hν+2
∗ (K) ∼= Hν

∗(OX )/W .

• Hi
∗(K) ∼= H〉−∈

∗ (OX ) for ν + 2 < i < n+ 3.

To finish the definition of the locally free resolution, consider the isomorphisms

Ext1(K, ωP⋉+3(−l)) ∼= H\+∈(K(l))∗ ∼= H\(OX (l))∗ ∼= H′(OX ).

The extension class corresponding to 1 ∈ H0(OX ) gives a short exact sequence

0 −→ ωP⋉+3(−l) −→ F∈ −→ K −→ ′ (20)

which we may attach to (19) to get a complex of the type (4) resolving OX

P∗ : ′ −→ ωP⋉+3(−l) −→ F∈ −→ F∞ −→ OP⋉+3 . (21)

Lemma 3.1. The sheaves F∞ and F∈ in the resolution (21) satisfy Hi
∗(F∈) ∼=(

H\+∋−〉
∗ (F∞)

)∗

(l) for 0 < i < n+ 3.

Proof. If 0 < i < ν + 2, then Hi
∗(F∈) ∼= H〉

∗(K) = ′ and Hn+3−i
∗ (F∞) = ′. So the

lemma holds for these values of i.
If i = ν + 2, then Hν+2

∗ (F∈) ∼= Hν+∈
∗ (K) ∼= Hν

∗(OX )/W , while Hν+1
∗ (F∞) ∼=

W . However, the submodule W ⊂ Hν
∗ (OX ) has been constructed so that it is an

isotropic submodule with respect to the perfect pairing of Serre duality

Hν
∗ (OX ) ×Hν

∗(OX ) −→ H\
∗(OX )

tr−→ ‖(−l).
Moreover the length of W is half the length of Hν

∗ (OX ). Hence W = W⊥, and
the duality isomorphism Hν

∗ (OX ) ∼= (Hν
∗(OX ))

∗
(l) carries the submodule W onto

(Hν
∗ (OX )/W)∗ (l).

If ν + 2 < i < n+ 2, then Hi
∗(F∈) ∼= H〉

∗(K) ∼= H〉−∈
∗ (OX ), while Hn+3−i

∗ (F∞) ∼=
H\+∋−〉

∗ (IX ) ∼= H\+∈−〉
∗ (OX ). The asserted duality is then simply the Serre duality

pairing

Hi−2
∗ (OX ) ×H\+∈−〉

∗ (OX ) −→ H\
∗(OX )

tr−→ ‖(−l).
Finally if i = n+ 2, we have an exact sequence

0 −→ Hn+2
∗ (F∈) −→ H\+∈

∗ (K) −→ H\+∋
∗ (ωP⋉+3(−l)).

Now Hn+2
∗ (K) ∼= H\

∗(OX ). Moreover, the fact that the extension class defin-
ing F∈ corresponded under the Serre duality identifications to 1 ∈ H0

∗ (OX ) ∼=
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(
H\+∈

∗ (K)
)∗

(l) implies that the last exact sequence dualizes to

H0
∗ (OP⋉+3)

∞−→ H′
∗(OX ) −→

(
H\+∈

∗ (F∈)
)∗

(l) −→ ′.

Hence
(
Hn+2

∗ (F∈)
)∗

(l) ∼= H1
∗ (IX ) ∼= H∞

∗ (F∞). Dualizing now gives the last of the
asserted isomorphisms.

Corollary 3.2. The coherent sheaf F∈ in the resolution (21) is locally free.

Proof. Since F∞ is locally free, Hi
∗(F∞) is of finite length for 0 < i < n+ 3. So by

the lemma, Hi
∗(F∈) is also of finite length for 0 < i < n+ 3. But this implies that

F∈ is locally free.

Proposition 3.3. The locally free resolution (21) satisfies condition (a) of Propo-

sition 1.2.

Proof. We write L = ωP⋉+3(−l). We have to show that if there is a commutative
diagram

0 −−−−→ L d3−−−−→ F∈
d2−−−−→ F∞

d1−−−−→ OP⋉+3

∥∥∥
ys2

ys1
∥∥∥

0 −−−−→ L d∨1−−−−→ F∨
∞ ⊗ L −d∨2−−−−→ F∨

∈ ⊗ L d∨3−−−−→ OP⋉+3

(22)

such that the vertical maps extend the identity on OX , then s1 and s2 are isomor-
phisms.

By exactness, the image of d∨3 is IX . We will show that s1 is an isomorphism by
applying Lemma 2.10 to the composition

F∞
∫∞−→ F∨

∈ ⊗ L ։ IX .
Note that this composition is exactly the surjection γ : F∈ ։ IX of (18). Hence
the composition

Hi
∗(F∞)

H
〉
∗(∫∞)−−−−→ H〉

∗(F∨
∈ ⊗ L) −→ H〉

∗(IX )

is injective for 0 < i < n+ 3. A fortiori, Hi
∗(s1) is also injective for 0 < i < n+ 3.

However, by Serre duality Hi
∗(F∨

∈ ⊗ L) ∼=
(
H\+∋−〉

∗ (F∈)
)∗

(l) for all i. So by

Lemma 3.1, we have Hi
∗(F∨

∈ ⊗ L) ∼= H〉
∗(F∞) for 0 < i < n + 3. Hence for each

0 < i < n + 3, the morphism Hi
∗(s1) is an injection of modules of the same finite

length. Hence Hi
∗(s1) is an isomorphism for 0 < i < n + 3. Thus condition (i) of

Lemma 2.10 holds.
Condition (ii) of Lemma 2.10 holds because of the method of construction of

F∞ and of the surjection γ in (18). Finally exactness in the resolution implies that
F∞ and F∈ have the same rank. Hence F∞ and F∨

∈ ⊗ L also have the same rank,
which is condition (iii) of Lemma 2.10. Hence all three conditions of Lemma 2.10
hold, and we may conclude that s1 is an isomorphism.

The map s2 must now also be an isomorphism by the five-lemma. This completes
the proof of the proposition.
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4. The Differential Graded Algebra Structure

In this section we finish the proof of Theorem 0.1 by showing that the locally
free resolution (21) defined in the previous section satisfies condition (b) of Propo-
sition 1.2. That is to say, we show that the locally free resolution (21) admits a
commutative, associative differential graded algebra structure.

Throughout this section we assume that the characteristic is not 2.
We recall what needs to be proven. In the previous section we defined a locally

free resolution (21) of OX

0 −→ L ⌈∋−→ F∈
⌈∈−→ F∞

⌈∞−→ OP⋉+3 −→ OX .

Let K = ker(⌈∞). We then had a morphism ψ : Λ2F∞ −→ K defined by ψ(a ∧ b) =
d1(a)b − d1(b)a. We also have a long exact sequence

· · · −→ Hom(Λ2F∞,F∈) −→ Hom(Λ∈F∞,K) −→ Ext∞(Λ∈F∞,L) −→ · · · .
According to diagram (5), the problem is to lift ψ ∈ Hom(Λ2F∞,K) to a φ ∈
Hom(Λ2F∞,F∈). The obstruction to doing this is simply the image of ψ in

Ext1(Λ2F∞,L) = H\+∈(Λ∈F∞(l))∗.
Our first goal will therefore be to compute Hn+2(Λ2F∞(l)). We begin by con-

sidering a complex of locally free sheaves on PN.

G∗ : ′ −→ G′ −→ G∞ −→ · · · −→ G∇ −→ ′. (23)

There is an involution

T : G∗ ⊗ G∗ −→ G∗ ⊗ G∗

a⊗ b 7→ (−1)(deg a)(deg b)b⊗ a

interchanging the factors of G∗ ⊗G∗. Since the characteristic is not 2, the complex
G∗ ⊗G∗ splits into a direct sum of subcomplexes on which T acts as multiplication
by ±1, viz. G∗ ⊗ G∗ = S∈(G∗) ⊕ Λ∈(G∗). The complex Λ2(G∗) is of the form

Λ2(G∗) : ′ −→ H′ −→ H∞ −→ · · · −→ H∈∇ −→ ′ (24)

where (cf. [BE2] p. 452)

H〉 ∼=
⊕

∐<〉/∈

(
G∐ ⊗ G〉−∐

)
⊕





0 if i is odd,

Λ2(G〉/∈) if i ≡ 0 (mod 4),

S2(G〉/∈) if i ≡ 2 (mod 4).

(25)

Lemma 4.1. Suppose G∗ is a complex of locally free sheaves on PN as in (23) which

is exact except in degree 0. Let E = H′(G∗). Then Λ2(G∗) is an exact sequence of

locally free sheaves which is exact except in degree 0, and H0(Λ2(G∗)) = Λ∈E.

Proof. The standard spectral sequences of the double complex G∗⊗G∗ degenerate to
show that the simple complex G∗⊗G∗ is exact except in degree 0, andH0(G∗⊗G∗) =
E⊗E . Thus the augmented complex 0 −→ E⊗E −→ G∗⊗G∗ is exact, and consequently
its direct factor 0 −→ Λ2E −→ Λ∈(G∗) is also exact.
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Lemma 4.2. Suppose E is a locally free sheaf on PN. Let r < N/2 be an integer.

Suppose that Hi
∗(E) = ′ for r < i < N . Then

(a) Hi
∗(Λ

2E) = ′ for 2r < i < N ,

(b) H2r
∗ (Λ2E) ∼= S∈(H∇

∗ (E)) if r is odd, and H2r
∗ (Λ2E) ∼= Λ∈(H∇

∗ (E)) if r is

even.

(c) If Hr(E(⊔)) = ′ for t < q for some integer q, then H2r(Λ2E(⊔)) = ′ for

t < 2q, while H2r(Λ2E(∈∐)) ∼= S∈(H∇(E(∐))) if r is odd, and H2r(Λ2E(∈∐)) ∼=
Λ∈(H∇(E(∐))) if r is even.

Proof. By Lemma 2.5(b), the minimal projective resolution of P ∗ of the truncation
τ<NRΓ∗(E) is a complex of free graded S-modules such that P i = 0 unless 0 ≤ i ≤
N − 1. Indeed, since Hi(τ<NRΓ∗(E)) = ′ for all i > r, Lemma 2.3 indicates that
P i = 0 unless 0 ≤ i ≤ r, i.e. P ∗ is of the form

P ∗ : 0 −→ P 0 −→ · · · −→ P r−1 −→ P r −→ 0.

We now consider the complex of free graded S-modules

Λ2(P ∗) : 0 −→ Λ2P 0 −→ · · · −→ P r−1 ⊗ P r −→ T2(P
r) −→ 0.

where T2(P
r) = Λ2(P r) if r is even, and T2(P

r) = S2(P
r) if r is odd (cf. (24) and

(25)). According to Lemma 2.5, the complex of sheaves P̃ ∗ associated to P ∗ is
exact except in degree 0 where the homology is E . So Lemma 4.1 implies that the

complex of sheaves Λ2(P̃ ∗) is also exact except in degree 0 where the homology is
Λ2E . The complex Λ2(P ∗) of graded S-modules therefore has homology of finite
length except in degree 0. Moreover, the complex Λ2(P ∗) vanishes except in degrees
between 0 and 2r < N , and the coefficients of its differentials lie in m because it
those of P ∗ and therefore P ∗ ⊗ P ∗ do. It now follows from Lemma 2.5(a) that
Λ2(P ∗) is the minimal projective resolution of τ<NRΓ∗(Λ

2E).
Therefore Hi

∗(Λ
2E) ∼= H〉(Λ∈(P∗)) for all i < N . In particular, since Λ2(P ∗)

is concentrated in degrees between 0 and 2r by (24), we see that Hi
∗(Λ

2E) = ′ for
2r < i < N . This is part (a) of the lemma.

For (b) note that Hr
∗(E) and H2r

∗ (Λ2E) has respective presentations

P r−1 δ−→ P r → Hr
∗(E) → 0,

P r−1 ⊗ P r
δ1−→ T2(P

r) →H2r
∗ (Λ2E) → 0,

where δ1(e ⊗ f) = δ(e)f ∈ T2(P
r). But since the presentation of T2(H

r
∗ (E)) is of

exactly this form, we see that H2r
∗ (Λ2E) ∼= T∈(H∇

∗ (E)), as asserted by the lemma.
For (c) write H = Hr(E(∐)). The hypothesis that Hr(E(⊔)) = ′ for t < q

implies that P r = (H ⊗k S(−q)) ⊕ F with F =
⊕
S(−ni) for some ni > q. Then

T2(P
r) = (T2H ⊗k S(−2q)) ⊕G with G = (H ⊗k F (−q)) ⊕ T2F =

⊕
S(−mj) for

some mj > 2q. Since the presentation of H2r
∗ (Λ2E) given above has the property

that no direct factor of P r−1 ⊗ P r is mapped surjectively onto a factor of T2(P
r),

it now follows that H2r(Λ2E(⊔)) = ′ for t < 2q, and H2r(Λ2E(∈∐)) ∼= T∈H.

Corollary 4.3. Let n, l, and X ⊂ P⋉+3 be as in Theorem 0.1. Suppose that

U ⊂ Hn/2(OX (l/∈)) is the maximal isotropic subspace defined in (16), and that
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F∞ is the locally free sheaf defined in (18). Then

Hn+2(Λ2F∞(l)) ∼=






0 if n or l is odd,

S2U if l is even, and n ≡ 0 (mod 4),

Λ2U if l is even, and n ≡ 2 (mod 4).

Proof. If n is odd, then Hi
∗(F∞) = ′ for (n + 1)/2 < i < n+ 3. So Lemma 4.2(a)

applies with r = (n + 1)/2. Therefore Hi
∗(Λ

2F∞) = ′ for n + 1 < i < n + 3, i.e.
Hn+2(Λ2F∞(⊔)) = ′ for all t.

If n is even but l is odd, then Lemma 4.2(c) applies with r = (n + 2)/2 and
q = (l + 1)/2. Then Hn+2(Λ2F∞(⊔)) = ′ for all t < l + 1.

If l and n are even, then Lemma 4.2(c) applies with r = (n+ 2)/2 and q = l/2.
Since H(n+2)/2(F∞(l/∈)) ∼= U , it follows that Hn+2(Λ2F∞(l)) ∼= Λ∈U if r is even,
and Hn+2(Λ2F∞(l)) ∼= S∈U if r is odd. The corollary follows.

Lemma 4.4. If F∞ is the locally free sheaf defined in (18), then the image of the

map ψ of (5) in Ext1(Λ2F∞,L) ∼= H\+∈(Λ∈F∞(l))∗ vanishes.

Proof. If n or l is odd, then Hn+2(Λ2F∞(l)) = ′ according to Corollary 4.3, so the
image of ψ is evidently zero.

If n and l are even, then we claim that the image of ψ in Hn+1(Λ2F∞(l))∗ is
the map {

S2U or Λ2U
}
−→ k

which is the restriction to U of the pairing Hn/2(OX (l/∈))×H\/∈(OX (l/∈)) −→ ‖
of (2). Since U was chosen isotropic, this map vanishes.

In order to prove the claim, we consider the diagonal i : P⋉+3 = ∆ ⊂ P⋉+3 ×
P⋉+3. Then there is a natural inclusion i(X) ⊂ X × X which corresponds to a
restriction map

OX×X −→ 〉∗OX . (26)

This map is essentially the multiplication OX ⊗OX −→ OX . In any case applying
RΓ∗ to (26) gives the cup product map

RΓ∗(OX ) ⊗‖ RΓ∗(OX ) −→ RΓ∗(OX ). (27)

Now consider the “resolution” of OX given in (19)

K∗ : ′ −→ K −→ F∞
⌈∞−→ OP⋉+3 −→ ′.

The complex K∗ is quasi-isomorphic to OX . Hence the restriction to the diagonal
map (26) corresponds to a morphism in the derived category

p∗1K∗ ⊗√∗
∈K∗ −→ 〉∗K∗.

In fact this morphism in the derived category is represented by an actual map of
complexes of sheaves

· · · → p∗1K⊕ (√∗
∞F∞ ⊗√∗

∈F∞) ⊕√∗
∈K→ p∗1F∞ ⊕√∗

∈F∞ →OP×P → 0

y
y

y

0 → i∗K → i∗F∞ → i∗OP → 0
(28)
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All the vertical maps are straightforward restrictions to the diagonal except for the
component p∗1F∞ ⊗√∗

∈F∞ −→ 〉∗(K) which is defined (like ψ of (5)) by noting that

the composition

p∗1F∞ ⊗√∗
∈F∞ → p∗1F∞ ⊕√∗

∈F∞ → i∗F∞

p∗1(a) ⊗ p∗2(b) 7→ i∗ (d1(a)b − d1(b)a)
(29)

is contained in the kernel of i∗F∞ −→ 〉∗OP.
Now since K∗ is quasi-isomorphic to OX , if we apply RΓ∗ to (28) we get a

morphism RΓ∗(p
∗
1
K⊗√∗

∈K) −→ RΓ∗(i∗K∗) inDb
ModS⊗S,gr

which is quasi-isomorphic

to (27). In particular, the maps of hypercohomology are quasi-isomorphic to the
cup product

Hn
∗ (p∗1OX ⊗√∗

∈OX ) ∼=
⊕

〉

H〉
∗(OX ) ⊗‖ H\−〉

∗ (OX ) −→ H\
∗(OX ).

The hypercohomology Hn
∗ (K∗) ∼= H\

∗(OX ) is of course the same as the Hn of
the total complex of the double complex

0 −→ RΓ∗(K) −→ RΓ∗(F∞) −→ RΓ∗(OP) −→ ′.
According to the calculations at the beginning of the previous section, this Hn

∗

is all attributable to K, i.e. the truncation K∗ −→ K[∈] induces an isomorphism

Hn
∗ (OX ) ∼= H\

∗(K∗) ∼= H\+∈
∗ (K).

Similarly, the hypercohomology Hn
∗ (p∗1K∗ ⊗ √∗

∈K∗) is the same as the Hn of

the total complex of RΓ∗ of the first row of (28). The submodule W ⊗k W ⊂
Hn

∗ (p∗1OX ⊗ √∗
∈OX ) is attributable as the Hn+2

∗ of the factor p∗1F∞ ⊗ √∗
∈F∞ in

the first row of (28). Therefore Hn+2
∗ of the vertical map p∗1F∞ ⊗√∗

∈F∞ −→ K is

simply the cup product map W ⊗kW −→ Hn
∗ (OX ).

Now the fact that i∗(K) is supported on ∆, plus the symmetry of the product
map imply that the vertical map of (28) factors as

p∗1F∞ ⊗√∗
∈F∞ → i∗(F∞ ⊗F∞) → i∗(Λ

2F∞)
i∗(ψ)−→ i∗(K).

p∗1(a) ⊗ p∗2(b) 7→ i∗(a⊗ b) 7→ i∗(a ∧ b) 7→ d1(a)b− d1(b)a

(30)

We wish to calculate Hn+2
∗ of the above morphisms. Let

P ∗ : 0 −→ P 0 −→ · · · −→ P (n+2)/2 −→ 0

be a minimal projective resolution of τ<n+3RΓ∗(F∞) (cf. Lemma 2.5). Then if one
applies τ<n+3RΓ∗ to the first two morphisms of (30), one gets the natural maps

P ∗ ⊗k P ∗ −→ P ∗ ⊗S P ∗ −→ Λ2(P ∗)

(cf. the proof of Lemma 4.2). All three complexes are supported in degrees between
0 and n+ 2, and applying Hn+2 gives surjections

W ⊗k W ։ W ⊗S W ։

{
S2W or Λ2W

}
.

It therefore follows that Hn+2
∗ (ψ) : Hn+2

∗ (Λ2F∞) −→ H\+∈
∗ (K) is isomorphic to the

cup product map
{
S2U or Λ2U

}
−→ Hn

∗ (OX ). In particular, in degree l the mor-

phism Hn+2(F∞(l)) −→ H\+∈(K(l)) is the same as
{
S2U or Λ2U

}
−→ Hn(OX (l)).
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We now have to consider the extension of (20)

0 −→ ωP(−l) −→ F∈ −→ K −→ ′.
(Recall L = ωP(−l).) In the associated long exact sequence of cohomology

· · · −→ Hn+2(F∈(l)) −→ H\+∈(K(l)) tr−→ H\+∋(ωP⋉+3) ∼= ‖,
the differential is the element of Hn+2(K(l))∗ ∼= Ext∞(K(l), ωP⋉+3) correspond-
ing to the extension class. So by construction the differential is the trace map
tr ∈ Hn+2(K(l))∗ ∼= H\(OX (l))∗ which corresponds under Serre duality to 1 ∈
H0(OX ).

Now the image of ψ ∈ Ext1(Λ2F∞(l), ωP) ∼= H\+∈(Λ∈F∞(l))∗ is exactly the
composition

Hn+2(Λ2F∞(l)) H\+∈(ψ)−−−−−−→ H\+∈(K(l)) tr−→ H\+∋(ωP⋉+3) ∼= ‖.
By our previous calculations, this is the composition of the cup product map{
S2U or Λ2U

}
−→ Hn(OX (l)) with the trace map Hn(OX (l)) −→ ‖. Therefore

this composition is the restriction to S2U or Λ2U of the Serre duality pairing
Hn/2(OX (l/∈)) ⊗ H\/∈(OX (l/∈)) −→ ‖. This is what was claimed at the be-
ginning of the proof of the lemma. Since U was chosen isotropic, this composition
vanishes, i.e. the image of ψ in Ext1(K,L) vanishes.

Proof of Theorem 0.1. According to Proposition 1.2, in order to prove Theorem 0.1
it suffices to find a locally free resolution

0 −→ L −→ F∈ −→ F∞ −→ OP⋉+3 −→ OX

which satisfies two conditions. But the locally free resolution defined in (21) was
shown to satisfy the first of these conditions was shown in Proposition 3.3. More-
over, this resolution was just shown to satisfy the second condition in Lemma 4.4.
Hence Theorem 0.1 holds.

5. Characteristic 2 Computations

In the introduction, we asserted that Theorem 0.1 also holds in characteristic
2 provided the phrase “n ≡ 0 (mod 4)” in the parity condition is replaced by the
phrase “n is even.” In this section we justify that assertion by proving analogues of
Lemmas 4.1 and 4.2 and Corollary 4.3 in characteristic 2. These were the only steps
in the proof of Theorem 0.1 where we used the assumption that the characteristic
is not 2.

Throughout this section we assume that the characteristic is 2.
We recall certain simple facts from modular representation theory. Let R be a

commutative algebra over a field of characteristic 2, and let V be a free R-module.
Let t ∈ End(V ⊗V ) be the endomorphism t(a⊗b) = a⊗b−b⊗a. Set D2V = ker(t),
and Λ2V = im(t), and S2V = coker(t). Since t2 = 0 in characteristic 2, there are
inclusions

0 ⊂ Λ2V ⊂ D2V ⊂ V ⊗ V

and corresponding surjection of quotients of V ⊗ V

V ⊗ V ։ S2V ։ Λ2V −→ 0.

The subquotientD2V/Λ
2V is F (V ), the Frobenius pullback of V . It is a free module

of the same rank as V . This F (V ) is also the kernel of the surjection S2V ։ Λ2V .
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Note that the natural map from S2V to V ⊗V given by xy 7→ x⊗y+y⊗x is not
injective because any x2 7→ 0. The map is the composition S2V ։ Λ2V →֒ V ⊗ V
with kernel F (V ).

The operations D2, Λ2, S2, and F are all functorial. Therefore we may define
D2E , Λ2E , S2E , and F (E) for any locally free sheaf E on any scheme X over a field
of characteristic 2.

In some ways F has better properties than the others. If M = (mij) : Rn −→ Rm

is a morphism of free R-modules, then F (M) = (m2
ij) : Rn −→ Rm. One may use

this formula together with the Buchsbaum-Eisenbud exactness criterion [BE1] to
show that F of an exact sequence of locally free sheaves is exact. As a result of this
we get the following lemma.

Lemma 5.1. Let E be a locally free sheaf on PN. If for some integer r one has

Hi
∗(E) = ′ for r < i < N , then Hi

∗(F (E)) = ′ for r < i < N also.

Proof. Let P ∗ be the minimal projective resolution of τ<NRΓ∗(E). By Lemmas 2.5
and 2.3, P ∗ has the form

P ∗ : 0 −→ P 0 −→ P 1 −→ · · · −→ P r −→ 0.

Moreover, P ∗ is exact except in degree 0 away from the irrelevant ideal m ⊂ S,

and H0(P̃ ∗) = E .
The functoriality and exactness of F now imply that

F (P ∗) : 0 −→ F (P 0) −→ F (P 1) −→ · · · −→ F (P r) −→ 0

is exact except in degree in degree 0 away from the irrelevant ideal, and has

H0(F (P̃ ∗)) = F (E). Applying Lemma 2.5 again, we conclude that F (P ∗) is the
minimal projective resolution of τ<NRΓ∗(F(E)).

So if r < i < N , then Hi
∗(F (E)) = H〉(F(P∗)) = ′ since F (P ∗) vanishes in

degrees greater than r.

Corollary 5.2. Let E be a locally free sheaf on PN over a field of characteristic 2
such that HN−1

∗ (Λ2E) = ′. Suppose r < N is an integer such that Hi
∗(E) = ′ for

r < i < N . Then Hi
∗(S2E) ∼= H〉

∗(Λ
∈E) for r < i < N .

Proof. We consider the exact sequence 0 −→ F (E) −→ S∈E −→ Λ∈E −→ ′ and the
associated long exact sequence

· · · −→ Hi
∗(F (E)) −→ H〉

∗(S∈E) −→ H〉
∗(Λ

∈E) −→ H〉+∞
∗ (F(E)) −→ · · ·

The hypothesis Hi
∗(E) = ′ for r < i < N implies also Hi

∗(F (E)) = ′ for r < i < N

by Lemma 5.1. Hence the long exact sequence implies that Hi
∗(S2E) ∼= H〉

∗(Λ
∈E)

for r < i < N − 1 and that HN−1
∗ (S2E) →֒ HN−∞

∗ (Λ∈E) is injective. But by
hypothesis HN−1

∗ (Λ2E) = ′, so HN−1
∗ (S2E) = ′ as well.

We now prove the analogue of Lemma 4.2.

Lemma 5.3. Suppose E is a locally free sheaf on PN over a field of characteristic

2. Let 0 < r < N/2 be an integer such that Hi
∗(E) = ′ for r < i < N . Then

(a) Hi
∗(Λ

2E) = ′ for 2r < i < N ,

(b) H2r
∗ (Λ2E) ∼= S∈(H∇

∗ (E)).
(c) If Hr(E(⊔)) = ′ for t < q for some integer q, then H2r(Λ2E(⊔)) = ′ for

t < 2q, while H2r(Λ2E(∈∐)) ∼= S∈(H∇(E(∐))).



PFAFFIAN SUBSCHEMES 23

Proof. Let P ∗ be the minimal projective resolution of τ<NRΓ∗(E)

P ∗ : 0 −→ P 0 δ0−→ P 1 δ1−→ P 2 −→ · · · −→ P r −→ 0

Let P = P̃ ′, and let F = ˜ker(δ∞). Then we have an exact sequence 0 −→ E −→
P −→ F −→ ′ such that P is a direct sum of line bundles, Hi

∗(F) = H〉+∞
∗ (E) for

0 < i < N − 1, and HN−1
∗ (F) = ′.

It is easy to see that there is a natural exact complex

0 −→ Λ2E −→ Λ∈P −→ P ⊗F −→ S∈F −→ ′. (31)

We now prove parts (a) and (b) of the lemma by induction on r. If r = 1, then

F = P̃∞ is a direct sum of line bundles, and the complex (31) is just the augmented
complex

0 −→ Λ2E −→ Λ∈(P̃∗)

which is still exact in this case. So we may conclude just as in Lemma 4.2 that
Hi

∗(Λ
2E) = ′ for 2 < i < N , and that H2

∗ (Λ2E) = S∈(H∞
∗ (E)).

If r > 1, then Hi
∗(F) = ′ for r − 1 < i < N . So by induction Hi

∗(Λ
2F) = ′ for

2r − 2 < i < N , and also H2r−2
∗ (Λ2F)) ∼= S∈(H∇−∞

∗ (F)) ∼= S∈(H∇
∗ (E)). It now

follows from Corollary 5.2 that Hi
∗(S2F) ∼= H〉

∗(Λ
∈F) = ′ for r − 1 < i < N . So in

particular Hi
∗(S2F) = ′ for 2r − 2 < i < N and that H2r−2

∗ (S2F) ∼= S∈(H∇
∗ (E)).

Now since P is a direct sum of line bundles, we haveHi
∗(Λ

2P) = ′ for 0 < i < N , and
Hi

∗(P ⊗F) = ′ for r−1 < i < N . So if we break up (31) into short exact sequences

and take its graded cohomology, we can deduce that Hi
∗(Λ

2E)) ∼= H〉−∈
∗ (S∈F) for

r + 1 < i < N . Since r + 1 < 2r, this gives parts (a) and (b) of the lemma.
Part (c) of the lemma follows from part (b) by the same argument as in Lemma

4.2.

We have the following corollary in analogy with Corollary 4.3.

Corollary 5.4. Let n, l, and X ⊂ P⋉+3

k
be as in Theorem 0.1 with k a field

of characteristic 2. Suppose that U ⊂ Hn/2(OX (l/∈)) is the maximal isotropic

subspace defined in (16), and that F∞ is the locally free sheaf defined in (18). Then

Hn+2(Λ2F∞(l)) ∼=
{

0 if n or l is odd,

S2U if n and l are even.

The proof of Lemma 4.4 in characteristic 2 is essentially the same as in the
previous section, only with Lemma 5.3 and Corollary 5.4 replacing their analogues,
and with T2 = S2 always. Hence Theorem 0.1 also holds in characteristic 2 as long
as one treats all even n the same.

6. The Local Version of the Main Theorem

In this section we consider Theorem 0.3, the local version of our main result.
We state a variant version which is clearly a local analogue of Theorem 0.1 with an
identical proof, and then show that this variant version is equivalent to Theorem
0.3.

Let (R,m, k) be a regular local ring, and let U = Spec(R)−{m} be the punctured
spectrum of R. We say that a closed subscheme Y ⊂ U of pure codimension 3 is
Pfaffian if OX has a locally free resolution on U

0 −→ OU
〈−→ E∨ {−→ E }−→ OU −→ OX
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where E is a locally free OU -module of odd rank 2p+ 1, f is skew-symmetric, and
g and h = g∨ are given locally by the Pfaffians of order 2p of f . The following
theorem is the obvious local analogue of Theorem 0.1.

Theorem 6.1. Let (R,m, k) be a regular local ring of dimension n + 4 > 4 with

residue field not of characteristic 2, and let U = Spec(R) − {m}. Let X ⊂ U be

a closed subscheme of pure codimension 3. Then X is Pfaffian if and only if the

following three conditions hold:

(a) X is locally Gorenstein,

(b) ωX ∼= OX , and

(c) if n ≡ 0 (mod 4), then Hn/2(OX ) is of even length.

Theorem 6.1 may be proven in exactly the same manner as Theorem 0.1. All
results concerning the Buchsbaum-Eisenbud proof, the Horrocks correspondence,
Serre/local duality, the cohomology of Hn+2(Λ2F∞) work identically for graded
modules over polynomial rings over k and for modules over regular local k-algebras.
There is only one point which is in any way more subtle in the local case. Namely,
if n is even, then one has a Matlis duality pairing of R-modules of even finite length

Hn/2(OX ) ×H\/∈(OX ) −→ ‖.
This pairing is perfect in the sense that for any submodule M ⊂ Hn/2(OX ) one has

length(M) + length(M⊥) = length(Hn/2(OX )).

In order to be able to define C∗
X and F∞ as in (18) one must choose an isotropic

submodule W of length equal to half that of Hn/2(OX ). But it is not difficult to
show that this is possible.

We now compare Theorems 0.3 and 6.1. First of all, E = Γ(E) gives a bijective
correspondence between locally free sheaves E on U and reflexive R-modules E such
that Ep is a free Rp-module for all prime ideals p 6= m. There is also bijective cor-
respondence betweenclosed subschemes X ⊂ U of pure codimension 3 and unmixed
ideals I ⊂ R of height 3 given by I = Γ(IX ). Hence an ideal I is Pfaffian in the
sense of Theorem 0.3 if and only if the corresponding subscheme X ⊂ U is Pfaffian
in the sense of Theorem 6.1.

The three conditions (a), (b), and (c) of the two theorems also correspond. In
the case of (a) this is obvious. For (b) note that ωR/I ∼= Γ(ωX) since for all p ∈ U

one has ωR/I,p = Ext3Rp
((R/I)p, Rp) = ωX,p, and ωR/I is saturated. Similarly

(R/I)sat ∼= Γ(OX ). This gives the equivalence of the two conditions (b).
As for the conditions (c), first note that the dimension n in Theorem 0.3 corre-

sponds to n + 4 in Theorem 6.1. But if one uses n as in the latter theorem, one
has

Hn/2(U,OX ) ∼= H(\+∈)/∈(U , IX ) ∼= H(\+△)/∈
m (I).

Hence the two conditions (c) correspond.
Therefore the two theorems 0.3 and 6.1 are equivalent, as claimed.
In equicharacteristic 2 the computations of Section 5 remain true in the local

case. So Theorems 0.3 and 6.1 are true in equicharacteristic 2 provided one changes
the phrase “n ≡ 0 (mod 4)” in the parity condition to “n is even.” If R is a regular
local ring with residue field of characteristic 2 and quotient field of characteristic 0, a
different set of calculations is needed. These are unfortunately somewhat involved,
and we do not reproduce them here.
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