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FIXED SETS OF FRAMED G-MANIFOLDS 

STEFAN WANER 

ABSTRACT. This note describes restrictions on the framed bordism class 
of a framed manifold Y in order that it be the fixed set of some framed G- 
manifold M with G a finite group. These results follow from a recently proved 
generalization of the Segal conjecture, and imply, in particular, that if M is a 
framed G-manifold of sufficiently high dimension, and if G is a p-group, then 
the number of "noncancelling" fixed points is either zero or approaches infinity 
as the dimension of M goes to infinity. Conversely, we give sufficient conditions 
on the framed bordism class of a manifold Y that it be the fixed set of some 
framed G-manifold M of arbitrarily high dimension. 

Introduction and statement of results. In this note, we show how the 
recently proved Segal conjecture on the stable cohomotopy of the classifying space 
BG of a finite group G turns out to place severe restrictions on the fixed-sets of 
framed G-manifolds of large dimension. 

Conner and Floyd proved the following result in [CF, 40.1]. Let G = Z/p (p an 
odd prime), and let M be a smooth compact oriented G-manifold with fixed set 
Y of codimension n and framed in M. (That is, the normal bundle of Y in M is 
equivariantly framed.) Assume also that the local representation normal to Y is 
the same for all components of Y. Then, denoting oriented bordism by O., one has 
[Y] E pIS((n) 08, where s(n) -4 ox as n x-+ o. When Y is discrete, this means that 
the number of "noncancelling" fixed points is either zero or becomes large as the 
dimension of M increases. 

Here, we examine this phenomenon in the context of framed G-manifolds, and 
give a direct generalization for arbitrary finite groups G. As alluded to above, 
our proof makes extensive use of the Segal conjecture proved by Carlsson [Cl], 
or, more precisely, its generalization due to Adams, Haeberly, Jackowski, and May 
[Al]. This suggests that even the "stable" (high-dimensional) properties of fixed 
sets of G-manifolds are subtle, and that a generalization of the Conner-Floyd result 
to oriented G-manifold for arbitrary G might require some form of completion result 
for oriented bordism analogous to the Segal conjecture. 

If M is a (smooth) framed G-manifold, then there exists an orthogonal G-module 
V such that M is "modelled locally on V" in the sense of Pulikowski [P1] and 
Kosniowski [Ki]. This means that if x E M, then there is a neighborhood U of x 
which is GC-diffeomorphic with VIGC. 

Our result is the following. 

THEOREM A. Let G be a finite group, let V be an orthogonal G-module with 
VG = {0}, and let k > 0. Then there exists an integer j as well as a sequence (Sn) 
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422 STEFAN WANER 

with sn -- 00 as n -x oc, such that, if M is any framed G-manifold modelled locally 
on the representation Vn G Rk with G-fixed set Y, one has [Y] E jSn Qfr, where Qfr 

denotes nonequivariant framed bordism. 

The integer j is determined by the isotropy subgroups of points in V and the 
algebra of the Burnside ring of G, and will be described fully in ?1. When j > 1, 
the theorem implies that one cannot have a framed G-manifold modelled on V 
possessing a single fixed point (see-?2, Corollary 2). If G is a p-group, it will turn 
out that j is always a power of p. When G has odd order and V is so large as 
to contain arbitrary G-orbits, then j > 1. On the other hand, if, for example, 
G = Z/p x Z/q with p and q distinct primes, then there exist V's such that j = 1. 

Theorem A has the following converse. 

THEOREM B. Let G be a finite group, let V be an orthogonal G-module with 
VG = {O}, and let m, k > 0. Then, with j as in Theorem A and Y an arbitrary 
framed manifold of dimension k, there exists an integer n and a framed G-manifold 
M modelled locally on Vm G Rk with fixed set framed cobordant with jfY. 

The author is indebted to J. P. May for many stimulating conversations, and to 
Hofstra University for providing release time. 

1. A consequence of the Segal conjecture. Let G be a finite group and 
let U = Roo, where R denotes the real regular representation of G, endowed with 
its natural inner product. We shall write V < U to indicate that V is a finite- 
dimensional G-invariant subspace of U. The one-point compactification of V < U 
will be denoted by 5V and, if X is a based G-space, the smash product X A Sv 
will be denoted by EVX. The stable equivariant cohomotopy of X is given by 

WI (X) = colim[XW$UX, SVeUIG, 
G U<u 

where -y = [V - W] E RO(G) and where [-, -]G denotes G-homotopy classes of 
based G-maps. Dually, the -1yth stable equivariant homotopy group, WG,(X), is 
given by 

w G (X) = Colim[EW0U,WV(eUX]G. 
U<u 

We shall require the following result. 

LEMMA 1. 1. Let n > 0, m > 0X and V < U with VG = {O}. Then WGv+n is 
finite. 

PROOF. Consider first the case m = 0. One has, by a result of Hauschild [Hi], 

>n E(H)7r3(B(NH/H)+) 

for n > 0, where the sum is taken over a complete set of conjugacy classes (H) of 
subgroups of G. The subscript + denotes addition of a disjoint basepoint. If n > 0, 
then inr(B(NH/H)+) is finite. Now let m > 0. Then 

G , lln [smV X onQGSO]G, 

where QGSO is the equivariant loop space colimw<uW SW, OW5W denoting the 
G-space of self-maps of SW (see, for example, [HI or CW]). Since n > 0, all the 
homotopy groups of all fixed sets of oniQGSO are finite by the case n = 0 applied 
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to the subgroups H c G. It now follows by induction over the skeleta of Smv that 
w G is finite. El CdMV+n 1 

Let V < U be any G-module with VG = {0}. Define an associated family Y(V) 
of subgroups of V by 

i(V) = {H c G: VH 4 0}. 

One has a universal G-space ES(V) associated with i(V); ES(V) is the unique 
(up to G-homotopy) G-CW complex with EY(V)H contractible for each H E Y(V) 
and empty otherwise. There is then a G-cofiber sequence 

ES'(V)+ -4 So -4 EY(V) -4.. 

associated with the projection of EY(V) onto a point. Note that, with S(U) de- 
noting the unit sphere in U < LI, one has 

ES(V) z S(ooV) = colim S(nV), 
n 

while 
ES(V) z S?V = colim SnV, 

n 

both colimits being taken with respect to the natural inclusions. Passing to stable 
equivariant cohomotopy gives an exact sequence 

( 1) * .. *~ *w> (EY(V)) -G w (SO) -% (ES(V)+) > * 

in which a is the Segal map in the generalized context of [Al]. In this setting, the 
Segal conjecture takes the following form. Let A(G) denote the Burnside ring of 
G, and let, for H c G, 

dH: A(G) -4 Z 

be the homomorphism assigning to the virtual G-set a - t the integer IsHl - ItHl. 
Denote the ideal n(H)EY3(V) ker dH by I(V), and I(V)-adic completion of the A(G)- 

module M by M^ The conjecture as proved in [Al] then states that a induces an 
isomorphism 

wl^ (U(S?))'- w S (EY(V)+) 

for each -y E RO(G). (In particular, w"(EY(V)+) is I(V)-adically complete.) 
Let k E Z. The exact sequence (1) is closely related to the exact sequence 

G Wn) G ~(so c) G 
(2) W nGV+k(S?) _ W k () + nGV+k-l(S(nV)+) 

is stable G-homotopy induced by the cofiber sequence 

S(nV)+ -4 D(nV)+ _ SnV -4 ES(nV)+ 

The sequence (2) gives rise to short exact sequences 

(3) 0 -4 Wk/Im3n4 wnv+k_l(S(nV)+) -4 cokeral an 0, 

where wG = WG(SO). One has natural homomorphisms 

r* W(fn+l)V+k-l(S(n + 1)V+) - lnV+k-l(SnV+) 
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(omitting some parentheses), given as follows. Let v: S(n + 1)V+ Z EVSnV+ 
denote the natural quotient, obtained by collapsing about a tubular neighborhood 
of S(nV) in S((n + 1)V), and define -y. as the composite 

(n+l)Vwk(S( +(n)+k ( S n V) w+v+k-l(SnV+). 
It may be checked that, under Spanier Whitehead duality, the maps -y* agree with 
the inverse system maps 

y* :-k(S(n + 1)V+) _ wk (SnV+) 
induced by inclusion. One also has natural homomorphisms 

: nGl)V+k(? > nV+k(S ), 

given by the composites 

W(n+l)V+k(S0) W(n+l)V+k(S) nVk(S?) 

where the first map is induced by inclusion S0 Sv - EVS0. The maps -y* and 
,u* commute the maps in the sequence (2), giving commutative diagrams: 

G (_) G(O (an) G 
* * *gW(fn+l)V+k(SO) S k(s) W(n+l)V+k l(S(n + 1)V+) - * 

..WnGV+k(SO) () Wk (S?)) -- 
nV+k_l(SnV+) .......................................... 

Passing the sequences (3) to (inverse) limits gives an exact sequence 

(4) 0 -lk limw/Im3 nlim V+k-l(S(nV)+) -- limcokeran -- 0 
n n n 

since lim' 4G/Im On = 0, the bonding maps being surjections. The map al = 

limn an is reminiscent of the Segal map al^ Write the latter (dually) as 

aO- * lim wkG/II(V )nWG __4 lim UGV+k1((n)+). 
n k k n~ nV+k-lSn). 

(The target is w- k (E.T(V)+) by vanishing of the liml terms [Al].) Abbreviate 

limn wk/Im k as (w?) . One then has 

PROPOSITION 1.2. There exists a natural homomorphism 

t)(k ) k )O3 

making the diagram 

(k ) G (ES(V)+) 

(WG)3/ 

commute. It now follows from injectivity of a (in (4)) that both a and Vb are 
isomorphisms. 

PROOF. If k < 0, the conclusion is immediate since wG = 0. Thus assume k > 0. 
It suffices to show that, for each n > 0, there exists an integer r(n) with 



FIXED SETS OF FRAMED G-MANIFOLDS 425 

(This will then technically define a pro-map from the one inverse system to the 
other.) 

Let x ESk w. Then x is represented by a G-map SW+k ,- SW for some W < LI. 
Our object is now to extend a representative of px over SW+k+nV (stably) for 
arbitrary p E I(V)r(n) with r(n) independent of x. Regard the pair (SnV, S0) as a 
relative G-CW complex with relative G-cells of the form G/H x Dt for H E Y(V) 
(which one may assume by the orbit structure of SnV). 

We define r(n) as the number of relative G-cells in (SnV, S0). Assume, induc- 
tively over the skeleta of the pair, that for each p E I(V)s(P), with s(p) the number 
of relative G-cells in the p-skeleton ((SnV)P, SO), one has a stably G-homotopy 
commutative diagram: 

(SnV)P A SW+k 9P SW 

SW+k fp Sw 

Here, fp represents px and j is inclusion. The obstruction to extending gp stably 
over a typical (p + 1)-cell of the form G/H x DP+1 defines a stable H-equivariant 
map 

9: 5P A SW+k 
c 

(SnV)P A SW+k %P SW 

where c is adjoint to the attaching map for that cell. If k E I(V), one may represent 
k by a stable G-map k: SX > SX for suitable X < LI. Consider the diagram: 

(SnV)P A 5W?k A SX 9P SW A SX 

it 11 

SW+k ASX fpAk SWASX 

The obstruction to extending gp A k stably over this cell is now represented by 
0 A k, regarded as an H-equivariant map. Since k e I(V) and H E i(V), this 
is H-homotopy trivial. Thus one may extend gp A k stably over this cell. Note 
that fp A k represents kpx, so that one may continue this process over the relative 
(p + 1)-cells and obtain the inductive step, and hence the result. O 

One has the following converse to Proposition 1.2. 

PROPOSITION 1.3. Let k E Z. Then there exists a sequence s(n) -x oo as 
n -- oo such that Im on C i(V)s(n)WG for each n sufficiently large. 

PROOF. Define a preliminary sequence r(n) by 

r(n) = min{n,max{j E N: Imfon C gqjWGII. 

(Note that one must allow max{j E N: Im/3n C I(V)iwG} = oo.) Then, by 
definition, Im,Bn C I(V)r(n)WG. To prove the proposition, it suffices to show that 
there exists a subsequence q(n) of r(n) with q(n) -* oo as n -- oo. Assume that 
no such subsequence exists. Then there exists an integer j E N and a subsequence 
t(n) of the natural numbers with 

ImI3t(n) C I(V)mt and mt() I(V)j+ 

It follows that there is a sequence of stable G-maps 

Xt(n) SnV+W+k __ SW 
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with the composite 
Yt(n) SW+k + SnV+W+k + SW 

defining a class [Yt(n)] E I(V)ij -i(V)j+'j for each n. 

If k > 0, then, by Lemma 1.1, 4G and wG+nV are finite. Since the maps O3n 
define a map 3 into the constant system {wG}, it now follows that there exists an 
element z = ([Zn]) E limn 4k+nVX obtained from the [Xt(n)] by application of the 
bonding homomorphisms, with 

13n([Zn]) E I(V)jWG- I(V)i+ WG 

for each n > 0. However, /3n([Zn]) = /3(Z) is now independent of n, since it is in a 
constant system, and 3(z) E nn Im ,3n, by construction. Thus the completion 

aJk 
-- 

(wk ),a 

maps /(z) to zero. Thus, by Proposition 1.2, I(V)-adic completion 4G - (jG)^ 
maps /(z) to zero as well. It now follows that :(z) E nn I(V)nk, by definition of 
I(V)-adic completion. But /(z) E I(V)3 4k - I(V)i'4k, a contradiction. 

We now consider the case k = 0. Here, by definition of the xn, one has On (Xn) E 

I(V)WG = I(V), since wG A(G). However, I(V)/I(V)m is finite for each m > 1, 
so that there exists a sequence ([Zn]) with 

Zn: snV+W + sW 

such that /3n[zn] E I(V)i - I(V)j+l and such that ([zn]) maps under the natural 
quotient 

f G4 -- fl A(G)/I(V)n n n 

to an element a = ([an]) of limn A(G)/I(V)n = A(G)^ Thus if an E A(G) rep- 

resents [an], one has an - /n[zn] E I(V)n. Consider Vb(a) E A(G)3. By the 
construction of ?b, there is a sequence q(n) with q(n) < n and q(n) -* oX such that 

an -13n[Zn] E Im/3q(n). 

It now follows that ?)(a) = 0, whence a = 0. But an = On [Zn] E I(V)j - I(V)j+', 
which is again a contradiction. 

When k < 0, wG = 0, so the conclusion is automatic in this case. O 

2. Application to framed G-manifolds. Fix V < U, and let M be a smooth 
G-manifold. Then M is said to have equivariant dimension V (or to be a V- 
manifold) if, for each x E Int M, there is a smooth GC-equivariant diffeomorphism 
i: V -- M, taking 0 to x. More generally, M is a (V - W)-manifold for V and 
W < tl if M x D(W) is a V-manifold. This notion is due originally to Pulikowski 
[P1] and Kosniowski [Ki], but we shall not be requiring such generalizations here. 
We shall refer to a G-manifold of dimension Vn ? Rk (where Rk is given the trivial 
G-action) as an (nV ? k)-manifold, and all G-manifolds considered will be assumed 
compact. 

The normal bundle of a G-manifold with equivariant dimension V has fibers 
similarly modelled on a fixed representation W in the sense that the fiber over a 
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typical point x is GC-isomorphic with W. Such G-bundles are discussed in [Wl 
and W2]. M is equivariantly framed if its normal bundle p'M with respect to a 
smooth embedding in some (large) finite-dimensional G-module U is a product, 
11M -&M(W), where EM(W) is the product G-bundle M x W -4 M, and where 
V ED W U, as a G-module. 

REMARK 2.1. This last condition, that V DW -U, is necessary to obtain a well- 
defined homomorphism from framed G-bordism into equivariant stable homotopy. 
For example, if G = Z/p (p prime) and V is any nontrivial irreducible G-module, 
then the unit sphere S(V) is equivariantly framed, and may be viewed as either 
a (V - 1)-manifold or a (v - 1)-manifold, where v = dim V. However, it is not 
equivariantly framed, in the above sense, as a (v - 1)-manifold. 

LEMMA 2.2. Let V be such that VG = {O}, and let n be a nonnegative integer. 
Then there exists a nonnegative integer N = N(n, V) such that, if M is any framed 
(nV+k)-manifold with n > N, then the normal bundle -YG of MG in M is a product 
G-bundle. 

PROOF. Embed M equivariantly in the (large) G-module U and choose a trivi- 
alization, AmM 

- &M(W), of the normal bundle of M. Write 

U = d3V d Rn Uo ED Vr ED VndR U=W?DVnEDR UEVDVnRk, 

where Uo has no summands isomorphic with a summand of V. Then -yG E C (Vr) 
has fiber dimension (n+r)V, and is canonically a product G-bundle. The G-bundle 
-YG is classified by the space BOG(nV), where OGU(V) is the group of equivariant 
orthogonal isomorphisms of jV = VJ. The composite 

MG - BOG (nV) -4 colim BOG (V) 

of the natural inclusion with a classifying map is therefore null-homotopic. Since 
the second arrow is an n-equivalence for sufficiently large m (depending only on n 
and V), the result now follows. C1 

It follows from the lemma that the fixed-sets of framed G-manifolds admit stable 
framings, given sufficiently large "codimension" n. The above argument may easily 
be elaborated to show that, for each H C G, MH is equivariantly framed as an 
NH/H-manifold. 

Denote by Qfr* nonequivariant framed bordism (stable homotopy). If H c G, 
then let J(H) C Z be the ideal 

J(H) = ImdH: I(V) - Z. 

We reformulate Theorem A, including a description of the integer j. 

THEOREM A. Let G be a finite group, let V be any orthogonal G-module with 
VG = {0}, and let k > 0. Let H c G be such that VH = 0. Then there exists a 
sequence (Sn) with sn -4 xo as n -4 ox such that, if M is any framed (nV + k)- 
manifold with H-fixed set yk, one has [Y] E J(H)SnQfr 

COROLLARY 1. Let G be a p-group, let V be any orthogonal G-module with 
VG = {0}, and let k > 0. Let H c G be such that VH = {O}. Then there exists 
a sequence (8n) with sn -- oX as n -x4oo such that, if M is any framed (nV + k)- 
manifold with H-fixed set yk, one has [y] E p'nQfr. 

PROOF. This is now an immediate consequence of the fact that, for a p-group, 
J(H) C pZ. cl 
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COROLLARY 2. If G is any p-group, there does not exist any framed V-manifold 
possessing a single fixed point. 

PROOF. If M were a framed V-manifold with a single fixed point, then the 
sequence Mn = (M x M x ... x M) (n times) is a sequence of framed nV-manifolds 
each possessing a single fixed point, contradicting Corollary 1. O 

REMARK 2.3. Corollary 2 fails if G is not a p-group. For example, let G = 
Z/p x Z/q, with p and q distinct primes. Choose integers m and n with mp+nq = 1, 
and let V = p, any one-dimensional semifree irreducible complex Z/pq-module. 
The element a = [1 - mZ/p - nZ/q] E A(Z/pq) lies in I(V), since i(V) = {1} 
(where 1 is the trivial subgroup). By the proof of Proposition 1.1, there exists an 
integer r(n) with I(V)r(n) C Im/n for any n > 0. Choose any such n, and let 
fn: SnV+W - SW be such that O3n[fn] = an. One may G-homotope f to a G-map 
transverse to 0 E SW, so that fn-1(0) is a framed nV-manifold, M. The fixed-set 
of M corresponds to the class of fnG: (SW)G (SW)G E 1r8 Z. By definition of 
fn, however, one has 

degfnG = dG(an) = 1, 

so that M possesses only a single "essential" (noncancelling) fixed point in the 
sense of [K2]. One can thus attach copies of S(V) x I to M to obtain a framed 
G-manifold of dimension nV possessing a single fixed point. 

3. Proof of Theorems A and B. We first prove Theorem A. If Mn is a 
framed G-manifold of dimension nV + k, then the Pontryagin-Thom construction 
defines a G-map 

fn: SnV+k+W 3i SW 

for some W. Let s(n) be the sequence obtained in Proposition 1.2. Then the 
composite 

sk+W ,_ snV+k+W ,W Sw 

of fn with inclusion defines a class x E I(V)y(n)WG. Let H be such that VH = {0}. 
Then restriction of a G-map to the H-fixed subset defines a homomorphism W G 

1rk such that, if a E A(G), then p(ay) = dH(a)p(y), where p: A(G) -+ A(H) is 
the forgetful homomorphism. This may be seen directly from the definition of the 
A(G)-action on w G. Thus 

(x) = p(ay) = dH(a) p(y) 

for some a E I(V)n, where dH(I(V)n) C J(H)n. Since the H-fixed set of M 
corresponds to the class p(x), the result now follows. U 

REMARKS 3.1. If H E i(V), then all information on the H-fixed set is lost upon 
application of o3n, so no analogous resuslt can be drawn. 

Turning to the proof of Theorem B, and with j a generator of the ideal J(G), 
let [Y] E 1rk be the stable homotopy class determined by the framed manifold Y. 
Then, under the natural map 1rk -+ 4G, [Y] determines a stable homotopy class of 
G-maps ': SU+k U Su with U < UI. Following the proof of Proposition 1.2, one 
extends pn' (stably) to a G-map 

1': sU+mV+k 3, SU 

for suitable n and arbitrary p E I(V). Now G-homotope ?' to a G-map s transverse 
to 0 E Su, and let M be the framed G-manifold g-1(0). Then M has dimension 
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mV + k, and its G-fixed set Z is the preimage of (SU)G under the restriction 
S|(SU+mV+k)G = s|(SU+k)G, since VG = {O}. Since ' is stably G-homotopic to 
an extension of pna, restricting to the G-fixed set gives a framed cobordism of Z 
with dG(p)nY. The theorem now follows by choosing p E d-1(j). 0 
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