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EQUIVARIANT DIFFERENTIAL TOPOLOGYt
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INTRODUCTION

THE AIM of this paper is to establish the basic propositions of differential topology (as
presented in Milnor [9], for example) for G-manifolds where G is a compact Lie group.

Mostow [11] and Palais [12] proved that any compact G-manifold can be imbedded in a
Euclidean G-space. In §1 a technique of de Rham’s [5] is used to prove an analogue of the
Whitney Imbedding Theorem, namely that any G-manifold M”, “ subordinate ™ to the repre-
sentation V, can be imbedded in V2"*1,

Section 2 concerns the classification of G-vector bundles. The precise statement is:
The equivalence classes of k-dimensional G-vector bundles over M" *“ subordinate” to ¥ are
in a natural one-to-one correspondence with the equivariant homotopy classes of maps of M
into G,(V), the grassmannian of k-planes in ¥, if ¢ > n + k. The existence of a classifying
map is proved via a transversality argument. The equivalence of bundles induced by homo-
topic maps can be shown to follow from the existence and uniqueness of solution curves of
vector fields. Atiyah [1] has proved a similar theorem for compact topological spaces.

Section 3 develops a cobordism theory for G-manifolds. Equivariant homotopy groups
are defined and it is shown that the unoriented cobordism group of G-manifolds of dimension
n, subordinate to V are isomorphic to the equivariant homotopy classes of maps of the
sphere in V"*3@R into the Thom space of the universal bundle over Gy(V>"** @ R)
where k + n = (2n + 3) dimension of ¥, if G is abelian or finite. There is a severe technical
difficulty in establishing even a weak transversality theorem for G-manifolds; hence, the
existence of the isomorphism for arbitrary compact Lie groups is still an open question.

Section 4 generalizes the results of R. Palais [14] on Morse Theory on Hilbert Manifolds
to the case of G-manifolds. It is shown that “ Morse functions” are dense in the set of
invariant real valued functions on M if M is finite dimensional. Also it is shown that passing
a critical value of a Morse function corresponds to adding on * handle-bundles ” over orbits
or more generally over non-degenerate critical submanifolds. Morse inequalities are then
deduced for the case of critical submanifolds. The results in this section were announced in
[15]. Some of the results in this section have been obtained independently by Meyer [6].

1 wish to thank Professor R. S. Palais for his advice and encouragement and for suggest-
ing this problem to me. I am also grateful for many helpful discussions with him.
1 Research for this paper was partially supported by DA31-124-ARO(D)128.
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§0. NOTATIONS AND DEFINITIONS

Let G be a compact Lie group and X a completely regular topological space. An action
of G on X is a continuous map ¥:G x X - X such that Y(e, x) = xand Y(g, g,, X) = ¥(g,,
¥(g,, x)) for all xe X and 91,92 €G. The pair (X, ) will be called a G-space. We will
denote by §: X — X the map given by g(x) = ¥(g, x) and y(g, x) will be shortened to gx.
X¢ will denote {xe X|gx = x for all 9€G}; G, is the isotropy group, {geGlgx =x}.If Y
is another G-space and J: X— Ythen fis equivariant if, for all 9€G, fog=gof and in-
variant if fo g = f. If (X, Y) is some set of maps of X into ¥ (differentiable, linear, etc.)
then G acts on (X, Y)bygf=g-f-g-1 Clearly #(X, Y) is the set of equivariant maps
in #(X, Y).If H< Gis a closed subgroup X|H will denote the pair (X, Y| X x H).

Let M be a C* Hilbert manifold [7] with or without boundary. M will be called a
G-manifold if the action y: G x M — M is a differentiable map. The tangent bundle T(M)
of a G-manifold M is also a G-manifold with the action gX = dg,(X) for Xe T(M),. More
generally, if 7:E— B is a fibre bundle and each §:E— E is a bundle map then = will be
called a G-bundle; if, in addition, x is a differentiable fibre bundle and E and B are G-
manifolds then = is a differentiable G-bundle. If the G-vector bundle 7: £ — B has a Rieman-
nian metric,{ , »,and g is an isometry for each g€ Gthenriscalled a Riemannian G-vector
bundle. If £ is a Riemannian G-vector bundle then [le|l = (e, e>'/2, E(r) = {ecE el <r},
E(r) = {ecE||le] < r} and E(r) = {e€E||le| = r}). We write £ = E(1) and E = E(1). Note
that T(M) — M is a differentiable G-vector bundle; if T(M) - M is a Riemannian G-vector
bundle then M is a Riemannian G-space. A Riemannian G-vector bundle V over a point is
an (orthogonal) representation. V* will denote the #-fold direct sum of ¥ with itself.

If M is a G-manifold and £ = M is a compact invariant submanifold then TvZ) -2
the normal bundle of T is a differentiable G-vector bundle; moreover, by a theorem of
Koszul [6]), there is an equivariant diffeomorphism v(Z) - U where U is an open neighbor-
hood of X in M. In particular, if xe M, B,(r) will denote the image of v(Gx)(r) under some
such diffeomorphism, S,(r) will denote the image of n™'(x)(r). We write B(x) = B.(1),
8(x) = S,(1). B.(r) is a tubular neighborhood of Gx and S,(r) is a slice at x.

If V'is a representation of G then G (V) will denote the grassmanian of k-planes in V.
G(V) may be thought of as orthogonal projections on V with nullity k; hence G acts on
Gy V)< #(V, V)and G( V) is a G-manifold with this action, Denote by p,(¥) the universal
bundle over G(¥); the fibre at Pe Gy(V) is the null space of P. The inner product on V
induces a metric on #(¥) and with this metric m(V) - G(V) is a Riemannian G-vector
bundle. Let W < ¥V be an invariant subspace of dimension k. For each PeG(V) we have a
representation of Gy on the null space of P; in particular, for Pe Gy(V)g we have a representa-
tion of G and if Q and P are in the same component of Gy(¥), the representations at P and o
are equivalent. Hence, we denote by Gy (V) the set of k-planes G,(V); which are equivalent

to W. Clearly Gy(V)is a component of Gi(¥),. We write (V) for p( MIGw(V).
Iff:X— Visany map into a Euclidean G-space then averaging f over the group means

an equivariant map f* defined by f *x) = fG 9"~ (gx)dg or the invariant map f defined by

Fx)= fa f(gx)dg as the context dictates.
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Let X be an equivariant vector field on M, i.e., X,, = gX,. If 6,(¢) denotes the maximal
solution curve to X with initial condition p then by the equivariance of X, go,(¢) and o,,(?)
are both solution curves with initial condition gp and, hence, by uniqueness of solution
curves go () = 6,,(t). Therefore the flow generated by X is equivariant. If f: M — R is an
invariant function on the Riemannian G-space M then f gives rise to the vector field gradient
of f, Vf, by (Vf,, X>=df(X). Note that {gVf,, XD = Vg ' XD =dfi (g7 X) =
d(f-g™9,,(X) = df,(X) = <Vf,,, X) for all XeT(M),, so gVf, =V Jyp and hence V/ is an
equivariant vector field. :

Cy(M, N)will denote the equivariant C,, maps between the finite dimensional G-mani-
folds M and N with the C* topology for some fixed k. If fe Co(M, N), & > 0 and y:R" — M,
@:R" — N are coordinate charts for M and N respectively then a sub-base for the neigh-
borhoods of £ in the C*topology is given by {he Co(M, N)|N(o ™ -f ¥ — o VhyY)x)< &

k

for ||x| < 1} where Ny(w)(x) = Y ld’w,], w:R"— R" and || || denotes the usual norm on
i=o

multilinear transformations. C4(M, N) is a space of the second category.

§1. GENERALIZED WHITNEY THEOREM

In this section we prove an analogue of the Whitney imbedding theorem for G-manifolds.
Let ¥ be a finite dimensional orthogonal representation of G.

PROPOSITION 1.1. If M™ can be immersed in V* then M can be immersed in V2,

Proof. Let f: M — V* be an immersion and let W be a k-dimensional irreducible repre-
sentation of G contained in V. It will be sufficient to show that if W occurs s times in ¥* and
s > 2n, then there is an equivariant projection P: ¥* — V* with null space isomorphic to W
such that P-fis an immersion. . .

To that end consider the diagram T(M)"—f> yre fw(V9 5 Gy(V') where z’ffJ(X) =
df(X)/|df (X)|, i(P, w) = w and (P, w) = P. The pair (P, w) represents a point in (V)
as a projection with null space isomorphic to W and a unit vector in that null space. Since W
is irreducible, i is a differentiable homeomorphism into. To show that i is an imbedding we
let X,p, ,, be any tangent vector at (P, w) and let A eV, y(t) e Gy(V*) be curves such that
#'(0), ¥Y(©) = Xp,,,. Then dip ,, X =24(0); but if 1(0)=0, ¥'(0) = drA'(0) = 0 since
9(t) = = o A(t). Hence di(X) = 0 implies X' =0 ancll__so i is an imbedding.

Since the dimension of T(M) = 2n — 1, dim df (T(M)) N i(fg(V?)) < 2n — 1 and since
i is an imbedding and = is differentiable the dim 7 o "YW @ (T OD) A i (V) < 2n — 1.
But the dim of Gw(V*) is (s — 1)/ where / is the dimension of the division algebra
Hom(W, W)¢ . Hence, if (s — 1)/ > 2n — 1, and in particular if s > 2 there is a projection P
such that P o’c?f(w) = 0ifand onlyif w = 0, i.., P o fis animmersion. Moreover, if Py € GV,
P can be chosen arbitrarily close to P, . '

Continuing in this fashion, we eventually find a projection 7, the composition P4+
P5 o P, o P,, such that T o f'is an immersion and the range of T is isomorphic to V2",

PROPOSITION 1.2. If M™ admits a 1-1 immersion in V", then M can be 1-1 immersed.in
V2"+1. E :
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Proof. Let f:M — V' be a 1-1 immersion and consider the diagram M x M - A%

V' iw(V") S Gy (V") where A%, y) =) = [/ Ff(x) = fB)]. Since dim(M x M) =

2n,dimm o i~ [a(M x M — A) A (w(V)] < 2n and hence if £ > 21 + 1 we can find a pro-

Jection P: V* - V* with null space isomorphic to W such that i(n~1(P)) is disjoint from the

image of df (so that P o S is an immersion) and from the image of «. If P(f x) = P(f(»)
then P o a(x, y) = 0 and hence a(x, y)ei(n~(P)); thus P o Sis 11,

COROLLARY 1.3. Suppose that M admits an immersion, f, in V*. Then any mapg: M — V3
can be C*-approximated by an immersion. The approximation is also uniform.

Proof. The approximation, g, will be of the form g(x) = 9(x) + Af(x) where 4 is a
bounded linear map: V' — V2" and 4] < & By a diffeomorphism of V* we may assume
/)l < 1 for all x and hence g will be a uniform approximation. To make § a C* approxi-
mation on some compact set C, we need only replace f (%) by 5f(x) where § = &fsup Ni(f(x))

xeC

(see §0). Let i; (resp. i,) denote the inclusion of V! (resp. V") in V' x V2" and let P, denote
the internal projection of V* x p2 onto the second factor. Applying Prop. 1.1 to the map
SXg:M—-Vtx p2n yields a projection P such that P o (fxg) is an immersion and
[P—Pyll <e. If E= P(V*x V"), then P o i, is an isomorphism onto E for & sufficiently
small and thus (P o /,)~1: E ~ V2" ig defined. Let g =(Po i)™ o Po(fx g). Note that g is an
immersion and g(x) = g(x) + (Poiz)™ o Po(f(%),0) = g(x) + (Poi)™ o Poiy(f(x)) = g(x)
+ Af(x).

COROLLARY 1.4. Suppose that M admits a one-to-one immersion, f, in V*. Then any map

g:M— V7 ooy be C*-approximated by a one-t0-one immersion. The approximation is also
uniform.

Proof. Essentially the same as above,

COROLLARY 1.5. If M admits a one-to-one immersion in V* then M can be imbedded as a
closed subset of V3+1,

Proof. Let g: M — V"1 pe g proper map and apply the previous corollary. To geta
proper map, let if; be a locally finite partition of unity with compact support and average
over the group to get \/,, an invariant partition of unity. Let f: M — 2"+ pe 5 one-to-one
immersion (Cor. 1.4). If J(») = 0 (there is at most one such point), let ¥, ..., ¢, denote
those functions with yesupport i, and let m; = inf ||f ()l i > r. Then define

vi(x)>0

o

9= Y Wix)f(x)/m;.

i=r+1
n
Since g~ ([0, n]) = { support y; = compact set for n > r, g is proper.
=1

Remark. If the origin is not in the image of f in Props .1.1, 1.2, 1.3, 1.4, 1.5, then the
new map can be chosen so as to avoid the origin also. If f: M — V' is defined by B(x)
=f(x)/ f(x)| then the dimension of the image of § is less than n, choose the projec-
tion, P, in Props. 1.1, 1.2 so as to avoid the n-dimensional set 7 o i "l(ﬂ(M)ni(ﬂW(V‘))).
With such a choice of P the conclusion follows in Cors. 1.3, 1.4, and 1.5.

il N
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Definition. Let V be a finite dimensional orthogonal representation of G. A G-manifold
M is said to be subordinate to V is for each xe M there exists an invariant neighborhood U
of x and an equivariant differentiable imbedding of U in V't — {0} for some ¢. 4(V) is the
category whose objects are G-manifolds subordinate to ¥ and whose maps are continuous
¢quivariant maps.

PROPOSITION 1.6. There are only a finite number of orbit types in (V).

Proof. Let Q be an orbit type in 4(V) and xeQ. By assumption there is a differentiable
imbedding of an invariant neighborhood of x in ¥ for some #. Hence there is a one-to-one
oquivariant immersion of Q in ¥?"*! where n = dim Q; in particular since Q is compact Q
cun be imbedded in 72 4imG+1 Byt 2 4im 6 +1 contains only a finite number of orbit types [13]

PrOPOSITION 1.7. M" if in 9(V') if and only if (i) for each me M, G/G,, is one of the orbit

types in 4(V) and (i) there is a G,, equivariant monomorphism
T(M),,/ T(Gm),, = V™.

Proof. Necessity is clear and sufficiency follows from 1.7.10 of [13].

COROLLARY 1.8. M" is in 9(V) if and only if M is locally imbeddable in V" +?4m+1 _ {0},

PROPOSITION 1.9. If M is in 9(V) then M can be imbedded in V" for some t.

Proof. By Cor. 1.8 we may cover M by the interiors of compact invariant sets U,
wuch that each U, admits an imbedding f,: U, - V* — {0} where s = 2dim G + dimM + 1.
Since M is paracompact and has dimension » there is a countable refinement of U, by
eompact invariant sets U;; i=0,1,..., n;jeZ*, such that Uyn Uy = if j#k [8]
Lot fy: Uy — V* — {0} be animbedding; let r; be a dlﬁ'eomorphlsm of the positive reals onto
(/,/+ i) and let :
fij(x)
1Al
L 'Thon cach f;; is an imbedding and the images of fi;, f3 are disjoint if j# k; hence the map
- JiUje U U;; - V* — {0} given by fi(x) = fi;(x), xe Uy, is an imbedding. Let f; imbed U,

i the umt sphere in V2 by Fi(x) = Ul LGN LGNAN, /1 = ro(l LD AN FGID.
f?inﬁlly, let h;: M — I be differentiable invarient functions with support k; = U; and such

- that U Int h; (1) covers M and define f: M — V2®+ D= by f(x) = (ho(x)fo(x) (%), f1(*),

1y h,,(x)]:,(x)) fis clearly equivariant and differentiable. If xeInt b *(1), 7; o df = df; and

heace f is an immersion; if f(x) = f(») then h(y) = 1 and fi(y) = f (x)andsox =y and f

{8 L=1, If {f(x,)}=f(x) then {h(x,)} - h(x) =1 and hence x,e U; for n large and since

L [x)) = 1, {Jilx)} - fix) but since f; is an imbedding {x,} - x and hence f is an
. imbedding.

~ CoROLLARY 1.10. (Generalized Whitney Theorem). If M is in 9(V) then any map f:M—
W van be approximated C* and uniformly by an equivariant immersion if t = 2n and by an
equivariant 1-1 immersion if t > 2n + 1. Moreover, if Cis a closed subset of M and f|C is an
mmersion (1-1 immersion), the approximation f may be chosen to agree with f on C.

fi j(x) = j("fi j(x)ll)
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Proof. The first statement follows from Prop. 1.9 and Cors. 1.3, 1.4. To prove the last
statement let g: M — V' be an imbedding with |jg(x)| = 1. Let h:M —1 be an invariant
function such that C < IntA™'(1) and f|support b is an immersion (1-1 immersion).
Then x — (f(%), (I — A(x))g(x)) is an immersion (1-1 immersion) of M in ¥* x V'. The
approximation of Cor. 1.3 (Cor. 1.4) has the desired properties.

Remark. If V is a representation of G in a Hilbert space then by the Peter-Weyl theorem,
L]

¥V can be decomposed V = V' where the V; are finite dimensional irreducible representa-
i=1

-]
tions of G, 0 < r; < oo and the direct sum is in the Hilbert sense. Let V'* = @ V;. Then by
i=1

Prop. 1.7 and the fact that closed subgroups of G obey the descending chain condition we
see that M is in %(V) if and only if M is in 9(V*). In addition, all propositions of this
section except 1.6 hold for 4(V*) and hence for (V). As a consequence of this remark we
have that any equivariant differentiable map M"— L*(G)*"** can be approximated by an
equivariant 1-1 immersion since L*(G) contains at least one copy of each irreducible
representation of G. In particular, if f: M —» R c L¥(G)***! is proper, say f(x) =Y.i/y(x)
where ; is an equivariant partition of unity, the approximation will be an imbedding.
Hence

COROLLARY 1.11. Any G-manifold M" can be imbedded as a closed subset of L*(G)*"*!
and hence has a complete invariant metric.

COROLLARY 1.12. If f: M — N™ is a continuous equivariant map then f can be approximated
by a differentiable map.

Proof. By Cor. 1.11, N may be considered as a retract of an open invariant neigh-
borhood U of N < L¥(G)*"*! with retraction r: U~ N. Let f;: M — U be a differentiable
approximation to f ([9]) and average f; over the group to get f/*. The approximation is
given by r o f*,

§2. CLASSIFICATION OF G-VECTOR BUNDLES

Definition. Let n:E— M be a G-vector bundle of fibre dimension k< co over the
G-manifold M. = is said to be subordinate to the representation V of G if, for each me M,
the representation of G,, on n~'(m) is equivalent to a subrepresentation of V*|G,. The
category #(V) will have as objects G-vector bundles subordinate to ¥ and bundle homo-
morphisms for maps.

Remark. B(V) and #(V'*) are the same category where ¥'* contains exactly one copy of
each irreducible representation occurring in V.

If 7:E— M is a G-vector bundle and f:N— M is equivariant then f*t1 < N x E
inherits a natural G-structure from the product which makes f*z — N a G-vector bundle.
Moreover, if 7 is in B(V) then so is f*z. In particular, m: u (V") > G(¥*) is in Z(V) and
hence so is f*n for any equivariant map f: N — G(V*). The next theorem due to R. Palais
shows that ‘all” bundles over G-manifolds are obtained in this way.
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THEOREM 2.1. Let n: E"** > M" be in B(V) and let f: E|C — w(V") be a bundle map where
C < M is a closed invariant subspace. If t > n + k, then f can be extended to a bundle map
h:E— (V).

Proof. Consider the G-vector bundle Hom(E, V) over M with fibre Hom(n™'(m), V)
at m. The action of G is given by gT = g-T-§~* where Te Hom(zn~'(m), V*) and gTe
Hom (r~Y(gm), V*). A section s of (Hom(E, V") is said to be non-singular if s(m) is a
non-singular linear transformation for each me M.

LeMMA 2.2. There is a natural equivalence 0:non-singular sections of Hom(E, V*) —
bundle maps of E into w(V*). Under this equivalence, equivariant sections correspond to
equivariant bundle maps.

Proof. Almost a tautology. If s is a non-singular section of Hom(E, V") then s(m)(n~ Y(m))
is a k-plane in ¥* and if een™'(m) then s(m)(e) is a point in that k-plane. Hence s defines a
bundle map 0(s): E - u(V*). Moreover, if s is equivariant, s(gm)(ge) = g -s(m)-g “1(ge) =
g-s(m)(e), hence 0(s) is equivariant. Similarly, if f:E— (V") is a bundle map then
x = fln~1(x) defines a non-singular section of Hom(E, ¥*) which is equivariant if f is
equivariant.

Let T'¢(E) denote the G equivariant sections of Hom(E, V") with the C° topology and
let A 4(4, M) = T4(E) denote those sections which are non-singular at points of 4 < M.
Note that I'4(E) is of the second category.

LEMMA 2.3. /' ¢(M, M) is dense in Tg(E) if t = n + k.

Proof. Note that A ¢(4, M) is open in T'4(E) if 4 is compact; hence, by Baire’s theorem,
it is sufficient to find a countable number of compact sets C; such that UC; = M and
N o(C;, M) is dense in Tg(E) and hence nA"6(C;, M) =N (¢VC;» M) is dense in [g(E).

By the induction metatheorem of [13], we may assume the lemma true for all proper
closed subgroups of G; in particular, if xe M — M we may assume that A7 (S, Sy) is
denseinT'g_(E|S,)where S, is a slice at x. Moreover, the restrictionmap p: I'(E) - T (EIS,)
is open and hence p~ (AN 6 (Sy, Sy)) = A ¢(GS,, M) is open and dense in I'¢(E).

Now let ye Mg, U a neighborhood of y in Mg, and let v, ..., vy be sections of E|U
such that v,(3), ..., v(y) spans 77 1(y) = F. Let T:U x F -z~ '(U) by T(u, ) a;0()) =
Ya;v(u); averaging over the group yields an equivariant homomorphism T*:U x F—
7~ }(U) which is an isomorphism at y and hence in some compact neighborhood B(y) of
y; i.e., E|B(y) is equivariantly isomorphic to B(y) x F. Thus I'c(E|B(y)) is homeomorphic
to C°(B(y), Homg(F, V). Let N; = {TeHomg(F, V)|rank T = j}; N;is a disjoint union of
submanifolds of Homg(F, V*) and each component has codimension at least # — j and hence
codimension greater than n for j < k. Since A" g(B(y), B(y)) consists of those sections which
are transverse regularto () N;, i.e., avoid |J N;, 4 6(B(»), B(»))is openand densein I'¢(E).

J<k i<k

Since the restriction map p:T'¢(E) - T'o(E|B(»)) is open 4 ¢(B(y), M) is open and dense in
T'¢(M). Covering Mg by a countable number of sets B(y;) and M — M, by a countable
number of sets GS,,, the lemma follows.
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Now let T'¢(E, so) < I'¢(E) denote those sections which extend s,. T4(E, so) is non-
empty since any extension of s, may be averaged over the group to get an equivariant
extension; moreover, I'(E, s,) is of the second category. If 4 « Mis compactand A n C =¥
then p:T'g (E, so) » I'(E|A4) is open hence A 4(4, M) NT4(E, so) is dense in T'g(E, sq).
Covering M — C by a countable number of compact sets B(y;), GS,, with B(y)nC =,
GS,, n C= & we have & (M, M) T &(E, 5,) is dense in T'g(E, s,).

Remark. See [1] for a quick proof of the following theorem when M is compact.

THEOREM 2.4. Let n:E— M x I be a differentiable G-vector bundle. Then there is an
equivariant bundle equivalence (E|M x 0) x I— E.

Proof. We may assume that the structural group of E has been reduced to O(k). Let
n: P —> M x I be the principal bundle of E. P is a G-bundle with compact fibre. It is clearly
sufficient to show that there is an equivariant bundle equivalence (P[{M x 0) x I— P. To
that end let X* be an invariant vector field on P projecting onto d/dt, i.e., X, o =gXy and
dn(X,) = d/dt|,,. We may obtain such a vector field directly using an equivariant partition
of unity or alternatively define X* = grad(p, o ) where p,: M x I — [isthe projection and the
gradient is defined with respect to some invariant Riemannian metric for T(P). Next let

X, = O(k)dy" X3, dy.

Since the actions of O(k) and G on P commute and since n(yp) = n(p) we have that Xisa G
equivariant and an O(k) equivariant vector field on P projecting onto d/dt. Let o,(¢) denote
the unique maximal solution curve to the vector field X with initial condition p. By the
G-equivariance of X we have that go (t) = 0,,(t). Let U < P|(M x 0) x I be the maximum
domain of the equivariant map 0:U - P given by 8(p, t) = 0,(t). We wish to show that
U= P|(M x 0) x I. But if peP|M x 0, no(f) = (m, t) and hence o ()en™'(m x ¢) for all
(m, t) e U since dn(X) = d/dt. Hence, to determine the domain of &, we need only consider
the bundle z~(m x I) > m x I But n~"(m x I) is compact and hence o, is defined for all
tel. Thus U= (P[M x 0) x I Since X is an O(k) invariant vector field, @ is a bundle map.
Hence 0 is an equivariant bundle equivalence.

COROLLARY 2.5. If n:E— M is a differentiable G-vector bundle and f, g:N - M are
homotopic then f*n is equivalent to g*n.

Proof. Let h:N x I - M be the homotopy. Let U @ M x M be an invariant neighbor-
hood of the diagonal such that if (x, y) € U then there exists a unique minimal geodesic Vxy
with 9,,(0) = x and y,,(1) =y. Let p: U x I> M by p(x,y, ) = p,(t). Let :NxI-M
be a differentiable approximation to A such that w(n,t) = (h(n,t), h(n,t))eU for all
(n,t)eN x I Then p§n isequivalent to p¥n by Theorem 2.4. Hence w*pin = (po o w)*n = h*n
is equivalent to w*p¥r = h*n. But h*x is a product by the theorem since & is differentiable,
hence A*n is a product, i.e., f*n ~ g*n.

COROLLARY 2.6. The equivalence classes of k-dimensional G-vector bundles over M"
subordinate to V are isomorphic to the equivariant homotopy classes of maps of M into G (V")
iftzn+k+1.

Proof. Follows formally as in [16].
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§3. COBORDISM AND EQUIVARIANT HOMOTOPY GROUPS

Let W be a finite dimensional orthogonal representation of G and let D(W) (resp S(W))
denote the unit ball (resp unit sphere) in W. If X is a G-space, let X" denote the space of
continuous equivariant maps of S(W) into X with the compact open topology. If f: X —» ¥
is equivariant there is an obvious induced map f%: X% — Y¥; the assignment X — X%,
f—fY is a covariant functor from the category of G-spaces and equivariant maps to the
category of topological spaces and continuous maps.

Definition. A G-homotopy triple (X, 4, a) is a G-space X, an invariant subspace A,
and a fixed point a (i.e. G, = G) in that subspace. If (X, 4, 4) is a homotopy triple and n > 1
we define the nth W-homotopy group of (X, 4, a) by nl¥(X, 4, a) = n(X", 47, a"). If
fi(X,4,a)— (Y, B,b) is an equivariant map of triples the induced homomorphism
fvimy (X, A, @) > =) (Y, B, b) is defined by f¥ :n,(X¥, 4%, a¥) - n(YY, BY, b7).

If A = {a} we denote n}/(X, A4, a) by n)/ (X, a); n§ (X, a) is defined to be no(X", a¥).

Remark. If G is the trivial group and W =R, then S(W) = S° and the above defini-
tion reduces to m) (X, 4, a) = (X", A¥, a") = (X x X, A x A4, (a,0) ~ n,(X, A, a)
® (X, A4, a).

ny (X, 4, @) may alternatively be defined as equivariant homotopy classes of maps
(D(W x R*™N), S(W xR, DR""*)) - (X, 4, a). In particular n¥(X, a) is the set of
homotopy classes of maps S(W x R) — X which carry both “north” and “south” poles
to a. )

If G, # G then (X|G,, 4|G,, a) is a G, homotopy triple m\qne can consider the G,
equivariant homotopy groups =) (X|G,, A|G,, ) where W' is any representation of G,
(not necessarily of the form W|G,). Note, however, that any G, equivariant map W' — X
extends uniquely to a G equivariant map W’ x g G — X where W’ x_ G is a G-vector bundle
over G/G,. Moreover, if n:E - G/G, is any G-vector bundle over G/G, such that the
representation of G, on n~'({e}) is equivalent of W, the equivalence W’— n~({e})
extends by equivariance to a G-bundle equivalence W’ x ¢ G — E. Thus, E is determined by
the representation of G, on n~*({e}). Hence we may define the groups 77 '(X, 4, a) as G-
equivariant homotopy classes of maps {D(E@® R""1), S(E® R"™Y), *} into X, 4, a where
n:E - G/G, is the unigue G-vector bundle with fibre equivalentto W', E @ R"~! denotes the
Whitney sum of E with a trivial bundle of dimensionn — land * = {xe E@ R" " !|x = (0, y)
and n(x) = {e} €G/G,}. Clearly #V'(X, 4, a) = =7 (X|G,, A|G,, a).

Let ¥ be a finite dimensional orthogonal representation of G. We wish to develop a
cobordism theory for %(V).

Definition. The compact G-manifolds M}, M} are said to be V-cobordant, M, ~ M,
(or cobordant, M, ~ M, if no confusion will result), if there exists a compact G-manifold
N"*1in g(V) with ON?*! equivariantly diffeomorphic to M, U M,,

ProposITION 3.0. + s an equivalence relation.

Proof. Symmetry and reflexivity are obvious and transitivity follows from the fact that
there is an equivariant diffeomorphism of dN x [0, 1) onto an open neighborhood of N
in N.
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Definition. m,(V) will denote the unoriented cobordism group of equivalence classes of
n-dimensional compact G-manifolds in %(¥). The group operationis given by [ M/, J+[M,]=
[M, U M,], i.e. disjoint union. Similarly one can consider the oriented cobordism groups
Q.(V).

Remark. Appropriate choices of G, Vyield the equivariant cobordism groups considered
by Conner and Floyd in [3] and [4].

Let T;(W) denote the Thom space of the bundle y (W) - G(W). T,(W) may be thought
of as u(W)(e)/fu(W)(e); G-acts on T;(W) in the obvious way and the fixed point {1 (W)(e)}
will be denoted by oo. We wish to define a homomorphism 0: n,(V) —» 2" "(T(¥"** @ R), o)
where k> n+ 3 and k + n = (n + h)dim V.

Let [M]en,(V) and i: M — V>"*! c y"** be an imbedding with 0¢i(M) (cor 1.10).
There is a bundle monomorphism v(M) — T(V***)|i(M) = MxV"** via the invariant metric
on ¥"**and hence a bundle map b: v(M) — (V") - p(V"** @ R). Let E: T(V"*h) — pn+h
be the end-point map; i.e. E(v, x) = v + x where xe V*** and v is a tangent vector at x.
Then E = E[w(M)(6) -» V"** is an equivariant diffeomorphism onto a neighborhood U of
i(M)for somed > 0; choose d smallenough so that 0¢ U. Let fy ;: V*** — T (V™*** @ R) be de-
fined by fy,|U=qobo E_l’fM,i(Vn+h — U) = oo, whereq: (V""" @ R) » (V" @ R)(¢)/
A(V"** @R) is the identification map and & < §. Extending Ju,: to the one point com-
pactification of V"** ie. to S(V*** @ R), we get, via the above Thom construction an
element O([(M])en """ (T,(V*** @ R), c0).

PROPOSITION 3.1. 8 is a well defined homomorphism.

Proof. Let 0"** be a compact manifold in %(V), 8Q = M, U M,, and let i M;—
y2tt — {0}j = 1,2 be imbeddings. We must show that f, ;, is equivariantly homotopic to
Jus,i, and hence that 8([M]) is independent of the choice of representative or imbedding.

If ¢ > 0 then ciy: M — V?"* is an imbedding and f,, ., is clearly homotopic to Stnig o
hence we may assume, by choosing ¢ large enough, that (M) niy(M,)= . Let
U;,j=1,2, be an equivariant collaring of M jin Q, i.e. U; is an invariant neighborhood
of M;, with equivariant diffeomorphism jM; % [0,2) > U; such that y;|M; x {0} is
the identity. Let i3: Uy U U, —» V™" x [0, 5] < V"** @ R by

13(‘1) - {(fl(x)’ t) lf q= ‘/’I(xa t)}

(%), 5-1) if g=y,(x,1)
and extend i; differentiably to iy: @ — V*** x [0, 5]so thatiy(Q — U, U U,) < V" x [2, 3]
If Q¢ # & we insist that i,|Q; be transverse regular to {0} x [0, 5} in V;“' x [0, 5], i.e.
is(Q¢) N {0} x [0, 5] = . Then i, may be averaged over G to get an equivariant differen-
tiable map is: Q — V"** x [0, 5]. Since & > n + 3, i; may be approximated by an equi-
variant 1-1 immersion (and hence an embedding) i: Q —» V**# x [0, 5] with /[U; U U, =i,
(Corollary 1:10). Note that i(Q) n {0} x [0, 5] = . [If x¢ Q, this follows since i is an
imbedding; for xe @, we note that is(Qy) N {0} x [0, 5] = & and hence for a sufficiently
close approximation £, i(Q,) N {0} x [0, 5] = &]. Then we apply the Thom construction
as before to get an equivariant homotopy f, ;: S(V"** @ R) x [0, 5] » T (V"*"* @ R) with

Mﬁ_—w.‘_r%»‘ e
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oSV * ®R) x {0} = fir,;, and fo JSV" ™ @ R) x {5} = fyy,:,- Note that for each
te[0, 5], /o dS(V""@R) x {t}:(S(V"*" D R), {0, 0}) = (T(V"*" @ R), ) if the neigh-
borhood U of i(Q) in ¥"*" x [0, 5] used in the Thom construction is chosen small enough
so that Un 0 x [0, 5] = &. Hence [ fy,:,]1 = [fi,, ] €7 T(V"** @ R), o0) and thus 6 is
well defined. Clearly 8 is a homomorphism.

If G is trivial, i.e. G = e, then it is well known that 0 is an isomorphism [9]. One defines
a map A:y" "(T(V"*" @ R), 00) - n,(v) by ALS1=F7(G(V"*" @ R)) where () £, is
homotopic to f, (ii) “ differentiable,” and (iii) transverse regular (TR) toG, (V"** @ R). If £,
is any other such map, then there exists a homotopy F: S(¥"** @ R) x [0,5] » T (V"** @ R)
such that Fy =f;, Fs=f, and F is TR to G(V"** @ R); hence F"Y(G (V""" @®R)) is a
cobordism between £ 7 (G (V**" @ R)) and £ 7 {(G(V**" @ R)) and A is well defined. Clearly
A0 = identity. One then shows that that A is a monomorphism by using the fact that
w(V*** @ R) is (n + 1) universal (since G = e, ¥V =R, and k = h).

Serious difficulties arise in trying to carry out this proof when G # e. First of all, if
f:M - N is a differentiable equivariant map and W < N a compact submanifold, it is not
true, in general, that f can be approximated by a map f,: M — N which is TR to W. For
example, let G=Z,, M = one point, N = R the real line with Z, acting by reflection,
W =0eR and f(x) =0, xe M. Clearly f is the only equivariant map M — N and is not
TR to W.

However, in the special case we are considering, M = S(V"** x R), N = T(V"** @ R),
W = G(V"** ® R) one can find in each equivariant homotopy class a map f which is TR
to Wif G is a “nice” group. However, if f; and f, are two such maps which are equivariantly
homotopic there will not, in general, be an equivariant homotopy 4 between them satisfying
(i) and (iii). For example,let G=2Z,, V=R® R, n=0, h = 3. Let M be a point, i: M —
(R + R)® and consider the maps fy,;, g Ju,; wWhere e # geZ,; both maps are transverse
regular to G,(V> @ R) and f,,; is equivariantly homotopic to §e fu,; but there is no TR
homotopy between them as can be shown by a simple determinant argument. In addition
(V" + R) = G(V*** @ R) is not necessarily (n + 1) universal. It turns out that the
notion of * consistent transverse regularity ”’ (CTR) is sufficient to overcome these difficulties.

The following lemmas are preparatory to proving the transversality theorem.

LemMA 3.2. Let M, N be G-manifolds and f:M — N a differentiable equivariant map.
If Cis a closed invariant subspace of M and h,: C — N is a differentiable equivariant homotopy
of f1C then h, can be extended to a differentiable equivariant homotopy of f. Moreover, if U
is an open neighborhood of C, the extension F, may be chosen so that F|\M — U =f|M — U.

Proof. By Proposition 1.66 of [13] and Corollary 1.11 of § 2, N is a G— ANR.
Hence, the map F: M x {0} uC x I - N given by FIM x 0 =f, F|C x I = h can be ex-
tended to a map also called F defined in an invariant neighborhood ¥ of M x {0}uC
x Iin M x I. V contains an open invariant set of the form U; x I where U; > C. Let
o: M — I be differentiable, invariant with support « < U; n U and «(C) = 1. Define F: M
x I— N by F(x, t) = F(x, a(x)?).



138 ARTHUR G. WASSERMAN

LEMMA 3.3. Let f: M — N be differentiable and equivariant and W = N a closed invariant
submanifold. Let C be a closed subset of Mg and suppose that f | My is transverse regular (TR)
to W in Ng at points of C. Then there exists a homotopy [ such that

@) fo =1,
@) fIC=f|Cand
(iii) f1|M¢ is TR to Wg in Ng.

Proof. By the standard transversality lemma (§1.35 of [9]) there exists a homotopy
h,: Mg — Ng such that hy = f|Mg, h|C=f|C and A, is TR to W in Ng. Since Mg is a
closed subset of M the homotopy #, may be extended to a differentiable equivariant homo-
topy f, of f by Lemma 1.

LEMMA 3.4. Let f:M — N be a differentiable equivariant map of G manifolds and let
C = U = M where C is closed and invariant and U is open in M. If h:U— N is a differentiable
equivariant map with f|C = h|C then there is an equivariant homotopy F, and an open set
V with Cc Ve Uand

@) Fo=f
(i) FIM-U=fIM-U
(iii) F4|V =hlV

Proof. Let 0 < Nx N be an invariant neighborhood of the diagonal in N x N
such that for all (x, )0 there is a unique minimal geodesic p,(x y) with pe(x, ¥) =
x, 9(x, y)=y. Define H: U — N x N by H@) = (f(n), h(m)). Let U’ = H™(0) and choose
an open set ¥ in M so that V< U’. Let A:M —[0, 1] be invariant and differentiable with
MM — U) = 0and A(V) =1 and define

_ rae(S@), b)) nel’
Fitn) = {f/1 (('1)) neM —-U’

Clearly F, has the desired properties.

Let 7: E — B be a Riemarnian G-vector bundle. Then there is a canonical decomposition
T(E)|B~ T(B)® E. If n':E'— B’ is another differentiable G-vector bundle and f:E— E

is a differentiable equivariant map preserving the zero-section, define 27:E—>E’ by the
composition E—»T(B)® E~ T(E)lei& TENB ~T(B)®E —~ E’,gjlr is a bundle homo-
morphism, the linearization of f. fis said to be linear on E(m) if f|E(m) =ch'IIE(m) .

LEMMA 3.5. Let f be as above with B compact and suppose f linear on (E|C)(n) where C
is closed in B. Then there is a differentiable equivariant homotopy F, of f such that

(@) Fo=f :
(ii) F, is linear on E(0) for some & >0
(iii) F,|E — E(28) =f|E — E(26)
(iv) FI(E|C)=SI(EIC)
Proof. Apply Lemma 3.4 with h = 2}”; U = E(26); (iv) follows by choosing 26 < 1.
Let ¥ = W be orthogonal representations of G and let M be a compact G-manifold
equivariantly imbedded in the representation space V with p:v(M) — M the normal bundle
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of this imbedding. Let n: G (W) — G,_(W) be the equivariant diffeomorphism defined by
D(y) = Id — y; here r = dimension W and a point ye G,(W) is regarded as an orthogonal
projection: W — W with nullity k, D(y) clearly is an orthogonal projection with nullity
r—k.

Definition. Let M = V and p:v(M) — M; an equivariant bundle epimorphism f:v(M) —
(W) s said to be consistent (with respect to the inclusion of ¥ in W) at x e M if the follow-
ing diagram is commutative:

D(s (le) W

U

p~ (%)% L ()8~
The symbol U denotes the orthogonal complement of the fixed point set in the representa-
tion space U of the group H, i.e. U¥ = (Uy)*. [ is said to be consistent on C < M if f is
consistent at each xe C.

PROPOSITION 3.6. Let N**1 < V*"** @ R and let f:v(N)|U - (V""" @R) (k +n+ 1=
dim(V"** @ R) be a consistent bundle map where U is a neighborhood of the closed in-
variant set C < U< N. Then f|(v(N)|C) may be extended to a consistent bundle map
V() = (V" @ R).

COROLLARY 3.7. Let M" < V"*% and let fi:v(M) - w (V""" @ R) i = 1, 2, be consistent
bundle maps. Then there is a homotopy F:v(M)x[0, 5] — p( V*tE @ R) such that

(‘i) Fo=/1
(i) Fs =/,
(iii) F, is a consistent bundle map for each t.

Proof. Apply the above theorem to M x [0, 5] V"*"@R, U=M x [0, 1),
UMx@45],C=Mx00Mx5andf:v(M) x [0,5]|U~ w(V"** @ R) defined by

w
U
v

-

1o, t)={£g’3 ;;11 pev(M)

Remark. The corrollary may be paraphrased, n:p(V"**@®R) - G(V***@R) is
(n + 1) universal for consistent bundle maps.

Proof of Proposition. By Lemma 2.2 we must find a non-singular equivariant section of
the G-vector bundle Hom(v(N), V"*** @ R) which extends the section, s, over C defined by f.
A section, s, is said to be consistent at x if

p—l(x)_si{)_) Vn+h @ R

(%) S p7 ()%
is commutative, i.e. if s(x)|p~1(x)%= is the identity. Note that a consistent non-singular sec-
tion defines a consistent bundle map and vice-versa. For A « Bc N, H < G, let T'y(B, A)
denote the consistent H equivariant sections of Hom(v(N), V*"*tE @ R) over Bu C which
extend the section s, and are non-singular on 4. Note that I'4(N, &) is a closed subset of the
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space of equivariant sections of Hom(v(N), V"** @ R) with the C — 0 topology) and hence
is a complete metric space. We shall prove

@ TNV, ) # &

(i) foreachxe N — C, thereis a compact invariant set C,suchthatxeC,,C,nC=
and there exists a countable number of C,, such that UC, uC=N

(ii) {:TeN, &) Te(C,, &) is open

(iv) T'e(Cy, C,) is open and dense in I'y(C,, x).

Then by (iii) and (iv) T'4(N, C,) is open and dense in I" (N, &); by (ii) and Baire’s
theorem N Ig(N, C,) = I'4(N, N) is open and dense in T'e(NV, &) and hence by (i) there
exists a non-singular equivariant consistent section and thus a consistent bundle map
V(N) = (V""" @ R) extending f.

(1) let s, be the section over U defined by fand let sy be the section over N defined by
VIN) cT(V" ™" @ R)IN = (V"** @ R)x N > V" ** @ R. Let A: N — I'be differentiable
and invariant with (N — U) = 0, (C) = 1. Then s(x) = Ax)sp(x) + (1 — A(x))sy(x)
is clearly consistent hence I'¢(N, ) # &.

(i) for each xe N — C, there is a slice S, in N such that S, C = J; then let C, =
G((Sxg,), i-e. C; = {yeGS,|G, is conjugate to G, }. IfP = V"** @ R is a submani-
fold (not necessarily compact) then P may be covered by a countable number of
Cy,- Note that if there is only one orbit type in P, i.e. all G,, xeP, are conjugate
then C, contains a neighborhood of x and hence a countable number of C,, will
cover P. If there are r orbit types in P, let (H) be the minimal orbit type, i.e.
H = G, for some xeP and there does not exist a yeP with G, > H; then Py=
{xeP|G, is conjugate to H} is a closed submanifold of P with only one orbit
type and hence can be covered by a countable number of C,, (it is immaterial
whether one chooses a slice in P, or a slice in P to define C,). Moreover, P — P,
has only r — 1 orbit types and hence by induction may be covered by a countable
number of C, ; therefore P may be so covered. ;

(iii) to show that {:T'4(N, &) - Te(C,, &) is open, it is sufficient to show that if
selg(N, &) and s'el4(C,, &) gwith s —s|C,.| <& then there exists a
s"el6(N, &) with {(s") =s"|C,=+s" and ||s" —s| < 3e/2. Suppose that s’ can
be extended to a consistent section s” in a neighborhood U of C,; then since
lIs”|Cx— sIC,|| < & there exists a neighborhood ¥ of C, with sV —s"|V{ < 3/2e.

Let A:N—1 be invariant and differentiable with A(N — V) =0, AC) =1 and let
§"(x) = Ax)s"(x) + (1 — A(x))s(x) then s” clearly has the desired property.

To establish the neighborhood extension property for consistent sections and the set C,
we first note that T'(C,, @) =T, 6.(Sx)¢,.» D) by equivariance. Moreover, S.(2) (the slice
of radius 2 at x) is equivariantly contractible and hence by Corollary 2.6 v(M)|S,(2)~ 5,(2)
X W x R? where W is a representation space of G, and k = a + dim W, Let 0:v(M)[S(2) »
S.(2) x W x R® be an equivalence. Via 6 an element selg (S4(2), &) may be regarded as a
pair of G, equivariant maps s, : §,(2) > Hom(W, V"** @ R), s, :5,(2) - Hom(R?, V"** @ R).
If s'€ g ((So)ex» &) then s55:(S,)6, — Hom(R?, V"t @ R) may clearly be extended to a
map s3:8(2) » Hom(R? V"*"@R) since (S,)¢, is a G, equivariant retract of S,(2). To
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show that s; may be extended so as to be consistent we note that s{ is defined on (S,)g,
by 81001y X W x 0 (S)s, X W x RE2WM[(S)s, = TV @ B)I(Ss, = (Sox X
yrtE R — V**h @R and hence 5§ may be extended to s}:S5,(2) » Hom(W, V"** @ R) by
S1:SU2) X W x O < Sy(2) x W x R* = v(M)|S,(2) = S(2) x V""" @R — V""" ® R. Hence
the section s"(y) = s7(y) + s5(y) defined by s7 and s5 clearly extends 5" and is consistent.
Thus ¢, (S:(2), @) - T, (S, » &) and hence T'g(GSH(2), &) - T'e(Cy, &) is onto:

(iv) to show that I'4(C,, C,) is open and dense in I'g(C,, &) or equivalently that
T6.((SJ6,» (5)c,) is open and dense in T'g,(S.)e,, @) let €T, (S, D)
=s,+5, as before where s :(Sy)e,—Hom(W,V"**®R), s5,:(S)e.—
Hom(R®, V*** @ R). Note that s,() is a monomorphism for each y by consistency,
hence it is sufficient to show that s, can be approximated by a map s5 with
55(») a monomorphism for each y. Since G, acts trivially on (S,)s, and s, is G,
equivariant, we may regard s, as a map into Hom(R?, (V"** @ R); ).

Letting F; = {TeHom(R?, (V"** @ R)g,Jrank T=j}j=0,1...,a~ 1, we see that codi-
mension F; <dim(S,)s, (Lemma 2.3) since dim(S))¢, + dim R*+ dim T(Gx)g, =
dim(V*** @ R)¢, and hence dim(S,)¢, + @ < dim(V"** @ R)¢, . Thus, s, may be approxi-
mated arbitrarily closely by a map transversal to FoU F; ... UF,_y, i.e. by a map s3 with
s5(¥) a monomorphism for each y. Then s” = s, + s5 is a non-singular approximation showing
that I'g(C,, C,) is dense in I'¢(C,, &). Clearly I'¢(C;, C,) is open.

Definition.Let W < V"** @ Randletf: W - u(V"** @ R) be a differentiable equivariant
map. Thenfis said to be consistently transverse regular (CTR) at 0e Wif f(0) ¢ G(V"** ® R)
or if f(0)eG(V"** ® R) then ‘

() fIWs:We— m(V"*" @ R)g is transverse regular to G(¥"*" @ R); at 0, and if
F=(fIWe) {Gu(V"*" @ R)g) then
(i) fis locally linear at F and
(i) f:v(F) - w(V"** @ R) is consistent.
fis said to be CTR at we W if f|S, is CTR as a G,, map where S,, is the slice at w
defined by the end point map. f'is said to be CTR on C < W if fis CTR at each xe C.

LemMma 3.8. If fis CTR on a neighborhood of We(1) in Wy then there is a neighborhood
of Ws(1) in W on which f is CTR.
Proof. Follows immediately from local linearity.

LeMMA 3.9. Let f: W — p(V*** @ R) be CTR in a neighborhood U of the closed set C.
If (V"** @ R)® < W then there is a homotopy Fy: W — w(V**" @ R) such that
(i) Fo =f
(ii) F|W — W(2)=f|W — W(2)
(iii) F,|C = f|C
(iv) F, is CTR on a neighborhood of C{ ) We(1).
Proof. By Lemma 3.3 we may assume that f| Wgis TR to G(V*** @ R)gin (V" " ® R)g
at points of W5(2). Let F = (f|We(2) " X(Gy(V*** @ R)¢). Then by Lemma 3.5 we may assume
that f|W4(2) is linear on v(F, Wg)(d) for some & > 0. There is at most one CTR map
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h:v(F)(O) U U— w (V""" @ R) such that h|U = f and h{v(F, W)(0) = f and, since Wo (V"+"
@ R)¢ exactly one; hence, by Lemma 3.4 there is a homotopy F, satisfying (i), (ii) and (iii)
with F,| v(F, W;)(8) = h, i.e. with F; satisfying (iv).

Let V" *#beidentified with S(V*** @ R) — {north pole} in some fixed way; it then makes
sense to talk of a map f:(S(V*** @ R)) - (TYV"** ® R), «0) being CTR.

LemMA 3.10. Let X =S(V"*"*®R) or SV""*@R) x I and let {:X>T(V""*®R)
be an equivariant differentiable map which is CTR on a neighborhood of the closed set C < X,
If G, acts trivially on T(G|G,), for each x € X, then f is homotopic to a map f which is CTR
on X. Moreover, f may be chosen so that f|C = f|C.

Proof. Note that if xe X, the G, space S, satisfies the hypothesis of Lemma 3.9,
8. (V"*"@ R)%~, since G, acts trivially on T(G/G,),; and S, + T(G|G,), = V""" @ R|G,.

If H is an isotropy group in X, define the level of H by level G =0; level H > s if
H i H' where H' is an isotropy group with level H' =5 — 1; level H = s if level H = s and
level H# s+ 1. Let X, = {xe X|level G, < r}. Then X_; = (¥ and X,, = X. Suppose that
X = X, and that £,: X -» T,(V"*" @ R) is defined so that

(i) f, is homotopic to f,

() f£IC=fIC,
(iii) £, is CTR on U, where U, is an open neighborhood of Cu X,.

If f_, = fthen (i), (ii), (iii) above are satisfied and hence we proceed by induction. Since
X..1 — (U.n X,,,) is compact we may choose a finite number of slices S, (3), i=1,...,m,
x;€X,41— (U, 0 X, ) such that O GSx;covers X, .1 — (U, n X, :)and GSx;3) n(CuL X, =
. Let £,.31 = f, and suppose irf(1=1;ctively that £, , has been defined so that

@) f!, is homotopic to f,
(i) ff+1C=fIC,
(iii) f!,;isCTR on U, — G(iQISxi(?))),

@iv) f!,,is CTR on G( [l‘)(Sxi)Gx ) :
i=1 i

1
Applying Lemma 3.9 to f, 13, (3) and the closed subset S, ,(3) G( -Ul(sxi)(;xi) we get

a map f'F} such that (i) to (iv) are satisfied with / + 1 replacing /. Finally let f,,, =% .

Then £, ,, is homotopic to f and f;,,|C = f|C by construction. Moreover, f,; is CTR on
U, - G( U Sx,(3)) o C.Since f,, is also CTR on X, ., by Lemma 3.8 there is a neighbor-
=1

hood U, of CuU X,,, on which f,,, is CTR. Hence, the inductive hypothesis is satisfied
and f = f, has the required properties.

Note that if G is finite or if G is abelian then G, acts trivially on T(G/G,), and hence
lemma 3.10 holds.

Turporem 3.11. If G is finite or abelian then 0: n,(V) - n{" " "(T(V"*"* @ R), ) is an
isomorphism.

s




EQUIVARIANT DIFFERENTIAL TOPOLOGY 143

Proof. @is onto : let [ flen!"""T(V"** @ R), ). By Lemma 3.10 there is a CTR map
Fwith [F] =[f]. Let 7 ~{G (V""" @ R)) = M. Then O([M]) =[ fu,:] =Lf]since the bundle
maps v(M) — (V""" @ R) defined by f and ), ; are consistent and, therefore, homotopic by
Corollary 3.7; the Thom construction applied to M x I < S(V"**@R) x I then yields a
homotopy between f and f;, ;. Hence @ is onto.

To show that 6 is a monomorphism suppose ([ M]) = 0, i.e. suppose f3,; is equivariantly
homotopic to [0]. If we knew that f;, ; was a CTR map Lemma 3.10 would imply that there
was a CTR homotopy F:S(V*"**@R) x I- T(V"**®R) with F,=fy,; and F; =[0]
and hence F~Y(G(V"*" @ R)) would provide a cobordism between M and (7, i.e. would.
show that [M] = 0. The only difficulty is that f ; need not be locally linear.

Let i: M < V"*" and let xe M. Then the G, space, T(M),, splits as the direct sum of
T(Gx),, the tangent space to the orbit and its orthogonal complement W (orthogonal with
respect to the metric on M induced by i). Recall that any slice S, is the image of a G,
equivariant diffeomorphism y:W(e) - M; Yy(W(e)) = S..

Definition. The imbedding i: M — V"*¥ is said to be straight at xe M if, for some slice
S, at x, S, = (W), there is a 6 >0 such that the map y': W(5) > V"** given by
W(d) = Wg (85)xW(5) Lyt (p,2) = iofi(y) + diy(2) fory e W (8); z€ W (0)defines
a slice at i(x) ei(M), i.e., Y'(W(8)) < i(M) and i "' oy’ : W(6) > M defines a slice at xe M.

Remark 1. 1t is clear that this condition is independent at the particular slice S, or
map .

Remark 2. If i is straight at x, then i is straight on a neighborhood of x, in fact, on.
G (W)(5))-

Remark 3. The map f,, ; is CTR in a neighborhood of x if and only if i is straight at xi

Hence to complete the proof of Theorem 3.11 we need only show there exists an imbedding
: M — V" such that i is straight at each xe M.

LEMMA 3.12. Let i: M — V"** be an imbedding which is straight on a neighborhood U
at the closed invariant set C. Let S(2) be a slice of radius 2 at xe M. Then there is an im-
bedding i: M — V"** such that i|C =1|C and i is straight on C U G((Sy)g,)-

Proof. Let y: W(e) — S,(2) be as above and define h:S,(2) — V"*" by the composition.
S, L5 W(e) © Wy (e) x Wo(E) & V" where /(3 2) = io () + diy () for ye W (8)
ze WS=(g) and extend 4 to GS,(2) by equivariance. Let A: M — [0, 1] be an invariant differ-
entiable map with A(C U M — GS,(2)) = 0, A(S,(1) — U) = 1. Let i, : M — V"*" be defined by
i(p) = (1 — Ap)i(p) + Mp)h(p). Note that i;|CUG(S)g, =ilCUG(S,)s, and di|C
U G(S,)g, = di|C U G(S,)s, and hence that i; is an imbedding of a closed neighborhood @
of Cu G(S,)g,. By construction #|Q is straight on CuU(S)g, . Let itM— V" be an
imbedding with i]Q = i|Q (Corrollary 1.10). Then i satisfies the stated conditions.

Remark. Note that the metric induced from V*** by i and that induced by 7 agree on
C U G(S,)e, and hence i is straight on C since i was straight on C.
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To show that M admits a straight imbedding in ¥™** one proceeds by induction on the
level sets M, = {xe M|level G, < r} as in Lemma 3.10. Lemma 3.12 justifies the inductive
step.

§4. EQUIVARIANT MORSE THEORY

In this section we extend the results of R. Palais in [14] to study an invariant C®
function f: M — R on a complete Riemannian G-space M.

Definition. At a critical point p of f, i.e., where Af, = 0, we have a bounded, self-adjoint
operator, the hessian operator, ¢(f), = T(M), - T(M), defined by {o(f),v, w) = H(f)p
(v, w) where H(f), is the hessian bilinear form [14, §7]. A closed invariant submanifold ¥
of M will be called a critical manifold of fif OV =&, VndM = (& and if each peVis a
critical point of f. It follows that 7(¥), < ker ¢(f), and so there is an induced bounded self-
adjoint operator §(f),: T(M),/T(V), — T(M),/[T(V),. If $(f), is an isomorphism for each
peV then Vis called a non-degenerate critical manifold of 1.

Recall that fis said to satisfy condition (C) [14, §10] if, for each closed subset S of M
on which f is bounded, [|Af| is bounded away from zero or there is a critical point peS.

Definition. The invariant C,, function f:M — R is called a Morse function for the
Riemannian G-manifold M if it satisfies condition (C) and if the critical locus of fis a union
of non-degenerate critical manifolds without interior. ’

The behavior of a function near a critical manifold is specified by the Morse Lemma.

LemMA 4.1. Let n:E— B be a Riemannian G-vector bundle and f a Morse function
on E having B (i.e., the zero section) as a non-degenerate critical manifold. If B is compact
there is an equivariant diffeomorphism 0:E(r)—E for some r >0 such that f(6(e))
= ||Pe||> — ||(1— P)elj* where P is an equivariant orthogonal bundle projection.

Proof. Let E, =n~'(x) and let i,: E, — E, p,: T(E), - T(E),/T(B) then from the com-
mutative diagram we see that

T(E.)o »—T(E),
L -
l T(E)./T(B).
#(f+i)0 az 4‘70‘):‘: 0(f)x
T(E),/T(B), _

~ N1

T(E,) T(E),

@(f ° i,)o is an isomorphism. Hence, in each fibre, 0 is a non-degenerate critical point of the
function f o i, and hence, by the results of [12], there is an origin preserving diffeomorphism
0,:E,— E, and a projection P, such that foi, o 0,(e) = |Pu(e)]|*> — [[(1 — P)(e)|? in a
neighborhood of the origin. To complete the proof, we must show that 0, and P, are smooth
functions of x and that the resulting maps 6:E — E, P:E - E are equivariant.
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Let Hom(E, E) denote the G-vector bundle over B with fibre Hom(E, , E,) at x where
Hom(E,, E,) denotes the bounded linear operators on E; and the action of G on Hom(E, E)

is given by gT=g -T~F where TeHom(E,, E) and gTeHom(E,, E,). We
regard B < E via the zero section. We shall define an equivariant fibre preserving map
A:E ->Hom(E, E) such that

(i) A(e) is a self-adjoint operator for each e€ E,
(i) f(e) = <4(e)e, e,
(iii) if xe B, G(f)x o Py © diy = 2, o di o A(x)
E, = T(E)o—"~ T(E),—" T(E),|T(B)x
2A(x)l l:p(f- ix)o J o j#n=
E. = T(E;) —"—— T(E),—"— T(E)/T(B)x

A is given by
o1
(@102 = | (1= 08 o ¥ Doqe P, )1,

where y:n~}(U) - U x Fis any bundle chart for E at n(e) and b; denotes the tangent vector
at te corresponding to v;€ E, i.e., §; = (di(e))ee(vs). Property (i) follows from the symmetry

.1
of d2(f-y~*) and (jii) follows from the fact that £x = x for x€ B and J {1 —tydt = 1]2.

)
Since f(B) =0 and df|B = 0 Taylor’s formula for f with n =1 yields the remainder

term
1
1@ = [ (1 =D o ¥~ Dy (@), () = (A )
and hence (ii). To show that A is well-defined we apply the chain rule to (fo ¢~ Ho(poy™H=
oyt where ¢:n~(U) - U x F is another bundle chart, noting that ¢ o ¢! is linear in
each fibre and hence d(¢ o ¥~ 1) (5, B,) = 0 for v;, v, € E. Then
dz(f° l/,_ 1)lﬁ(e)(d‘/’e(l—)l)s dl/’e(EZ)) = dz(f° (p—l)qx(e)(d(pe(ﬁl)n d(Pe(EZ))
+d(fo ‘P—l)(p(e)[dz(‘l’ ° l//—l)w(e)(d‘//e(ﬁl)a d'/’e(l-’z))]
= dz(f ° (P— 1)1;)(e)(d(pe(51)9 d(pe(62))
and hence A is well-defined. To demonstrate the equivariance of 4 we note that if  is a
bundle chart at n(e) then
@ x id) oy o 5 i Y (gU) Lo 1" (U)—— U x FESgU x F
is a bundle chart at n(ge). Then {A(ge)gvy, gv,) EEd*(fo g oyt o (§71 xid))@* W@
(d@ x id)d(v,), dG x id)d(5,) and by the invariance of f and the chain rule this equals
A o Y™ Ve AW e(By), AU o(52)) + d(f o Y™ Dy d* (@ x id)(dG(Dy), dG(D2)-

Since §~! x id is linear in each fibre d*(F ™' x id) =0 and hence {A(ge)gv;, gv;> =
{A(e)v,,v,) and thus A(ge) = g o A(e) » g~ ! since the metric is invariant. The maps 0, P are
limits of polynomials in 4 and hence are equivariant and differentiable. The rest of the
proof follows formally as in [14, §7].
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An important property of Morse functions is given by:

PROPOSITION 4.2. If f is a Morse function the critical locus of f in f*° = f ~[a, b] is the
union of a finite number of disjoint, compact, non-degenerate critical manifolds of f.

Proof. Let {a,} be a sequence at points in the critical set. Since, by assumption, &,
is in a non-degenerate critical manifold without interior we may choose points {b,} such
that

1
(i) the distance p(a,, b,) < T
(i)a—-1<fb)<b+1
' 1
(iii) 0 < [|Af, Il < -

Then by condition (C) there is a critical point p adherent to {b,} and hence {b,} has a
subsequence which converges to p. The corresponding subsequence of {«,} will also converge
to p, thus proving the compactness of the critical set in f*®,

We also have the Diffeomorphism Theorem.

THEOREM 4.3. Let f be a Morse function on M, M = (J, with no critical value in the
bounded interval [a, b]. If £¢~%**% is complete for some & >0 then f*=f"1(—o0,a] is
equivariantly diffeomorphic to f°.

Proof. Essentially, this theorem is Proposition 2, Section 10 of [ 14]. We need only verify
that the map defined there is equivariant. The map is given by p — o,(a(f(p))) where
o:R-Ris C,; hence

gp—0,,(U f(gp))) = 0, f(P))) = go,(a( £ (P)))-

COROLLARY 4.4. (Palais and Stewart [13]). Every di ﬁ’erentzable deformation Y, of a
G-manifold M is trivial.

Proof. Recall that a differentiable deformation is a one-parameter family of actions
V,:G x M— M such that the action Yy:Gx M xR—- M xR given by Y(g,m, )=
(Y (g, m), t) is differentiable. y, is trivial if there is a one-parameter family of diffeomorphisms
6, of M such that (g, m) = 0,¥(g, 07 *(m)). Let M x R have a complete invariant metric
with respect to ¥ and let f: M x R — R be the projection onto the second factor. Since f is
a Morse function and has no critical points the map 0,(p) = o,(z) has the required properties.

Definition. LetV, W be Riemannian G-vector bundles over B. The bundle V(1) @ W(1) =
{x, eV W|lx| <1, |y <1} (not a manifold) is called a handle-bundle of type
(V, W) with index = dimension of W. Let N, M be G-manifolds with boundary, Nc M
and F: V(1) ® W(1) » M a homeomorphism onto a closed subset H of M. Let F=
FlV(1)® W(1). We shall write M = N uUgH and say that M arises from N by attaching a
handle-bundle of type (V, W) if

i) M=NuUH
(ii) Fis an equivariant diffeomorphism onto H n N
(i) F|V(1) @(1)W is an equivariant diffeomorphism onto M — N.
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LemMMA 4.5 (Attaching Lemma). Let n:E — B be a Riemannian G-vector bundle and P
an orthogonal bundle projection. Let V = P(E), W = (1 — P)(E) and define f, g:E—~R by
f(e) = | Pe||® — ||(1 — P)e]|?, g(e) = f(e) — 3¢/2A(|| Pe||*[e) where & > 0 and 1 is a positive C*
function which is monotone decreasing, ([0, 1/2]) = 1 and J(1) = 0. Then {xeE(2¢)|g(x) <
—&} arises from {xeE(2¢)|f(x) < —e&} by attaching a handle-bundle of type (V, W).

Proof. Let o(s) be the unique solution of A(c)/1 + ¢ = 2/3(1 ~ s) for s€[0, 1]. Define
F:V() @ W(1) » E by F(x, ) = (ea(||x|)|y]? + &)/%x + (ea(lIx|*)*?p. It is shown in
Section 11 of [14] that F has the required properties.

Note that B is a non-degenerate critical manifold of f. By the Morse lemma we can
choose coordinates for m: E — B and a projection P such that f(e) = | Pelj? — |I(1 — P)e|?
in a neighborhood of B for any function f having B as a non-degenerate critical manifold.
Hence, by abuse of notation, we shall also refer to the handle-bundle of type (P(E), (1 — P)E)
as a handle-bundle of type (B, f).

THEOREM 4.6. Let f be a Morse function on the complete Riemannian G-space M. If f
has a single critical value a < ¢ < b in the bounded interval [a, b] then the critical locus of f
in [a, b] is the disjoint union of a finite number of compact submanifolds Ny, ..., N;. f b s
equivariantly diffeomorphic to f ° with s handle-bundles of type (N, f) disjointly attached.

Proof. Only the last statement remains. Let {U;},-,, .., be disjoint tubular neighbor-
hoods of the critical submanifolds {N,} given by the maps T;:v(N)(28) — U; where v(N))
is the normal bundle of N; in M with the induced Riemannian metric. We may assume
¢ = 0and by the Morse Lemma that fo T (x) = | P;x||> — ||(1 — P;)x|? where P, is an orthog-
onal bundle projection in v(NV,;). Choose & so that 0 < ¢ < 6% and @ < —3¢, 3¢ < b.

Let @ =f 2% and define g: Q —» R by

1) x¢§.=Q U,
FG) =322 P T W xeU;

g(x)=

where A is the function defined in the Attaching Lemma. It is shown in (14, §11) that g is
C* and ¢* = (f]Q)". Moreover, by the Attaching Lemma, g~ is equivariantly diffeomorphic
to (f]Q)~¢ U s handle-bundles of type (N, f). Since f has no critical value in {a, —¢&] or
[, b] it is sufficient to show that g~ = ¢°. To that end we apply the Diffeomorphism Theorem
to the manifold without boundary g~ '(—5e/4, 5¢/4) and the function g. We note that
g~ C2/82/8 js complete and hence we need only show that g is a Morse function, i.e., [ Vgl
is bounded away from zero forxeg™(—5¢/4, 5¢/4). Since g(N;) = —3¢/2, N;ng~'(—5¢/4,
5¢/4) = ¥. Hence there is an « > 0 such that Ty(W(N))(@)) N g~ '(—5¢/4, S¢/4) = &. More-
over, f(g~Y(—5¢/4, 5¢/4)) = [—5e/4, 5¢/4] and hence, since f has no critical points in
g~ 1[—5¢/4, 5¢/4], | Vf,|| must be bounded away from zero, say ||Vfi| =# > 0. But

910 — YU, =f1@ — |JU; and hence |[Vg,|=7n>0 for xeQ— () U..
i=1 i=1 i=1

Thus we need only show that |Vg|| |U; n g~ *(—5¢/4, 5¢/4) is bounded away from zero. To
compute || Vg we first construct a Riemannian metric {,>* for T(v(N) such that {¥;, v,) =
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{vy, v,) where v;ev(ND, (> denotes the metric in v(N;) and 7; denotes the tangent
vector at xev(N;) corresponding to v;. Then if xev(N), let w=Pyx)—( - P)x)e
TW(N)). We have d(g o T)(#) = 2[(Px, wy — (1 — Px, w)] — 32'(||Px|*/e){Px, W) since
g o T(x) = |Px||* — |1 — Px||* — 3¢/22(|Px|*fe). Since A(f) <0, d(g o T):(W)= 2lix)* —
32| Px|? = 2]1x]12. Butd(g o T)s(%) = dgrdT () = {VO1x, AT(®) < | Vgr) 1dT(W <
IVgrsll 14Tl 1] = IVgz:ll 14T Nx]l. Since lx]| = « we see that [|Vgr.l = 2¢/1dT,]-
We need only show that [|dT,[ is bounded. Since N, is compact [[dT|| is bounded on
N, < (N} and hence in a neighborhood v(N;)(B) of Ni. Hence since 6 was arbitrary we
assume 26 < fB. Finally, we have (f1O°= (f1Qy =g~ g~ °~ (f1Q)"¢us handle-
bundles of type (N;,f) and therefore firftus handle-bundles~ f* U s handle-bundles.
The homology implications of the above theorem are contained in

COROLLARY 4.7 (Bott [2]). Let Ny, ..., N, be those critical manifolds in f &b with index
(Ni’f) = ki < oo Then

t
H(f°f2)= 'ZlHn—ki(Ni; Z,).

Proof. By the above theorem f' b~ f4uUs handle-bundles of type (N;, f). Let H;=
V(1) ® W(1) denote the ith handle-bundle and let P;: V;® W;— V,@® W, denote the pro-
jection onto ¥;. Then by excising out the interior of f* we have

Hf 17 2% 3, Hy(H, Vi) @ W(D); Z2)

But H,(H, V(1) @ W(1); Z,) = H(W(1), W(l); Z,) since the fibre of H is convex and we
have an equivariant fibre preserving retraction, p, of H onto V()@ W(Huo® w(Q)
given by

p(h) = p(P(h), (1 — P)(h)) = p(x, )

2x . vl
- f 1— 222
(2 - IIJ’H’O) i =l = 2

X DAY _M.
(m: Qlxl + Iyl —2) llyll) if Jxl=1 >

Hence

B 175 2% Y, AW, Wi1); Z2)

AN AR CRORD

where the last isomorphism is the Thom isomorphism for i < £. It only remains to show that
H (W(1), W(1); Z,) =0 if dim = oo or even strong that 7, (W(1), W(1)) =0 for all m.
Let o: D", §"~1 — W(1), W(1) represent an element of 7, (W(1), W(1)). We may approximate
« by a map «’ which is homotopic to a, differentiable and transverse regular to N, the zero
section. Since codimension N = o0, &'(D)NN = & and we can deform o into W(1) and
hence [o’ =]0. Thus critical manifolds of infinite index do not affect the homology of

f% f9.
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Now let a, b be arbitary regular values of f, a < b, and again denote the critical mani-
folds of finite index k, by {N;},i=1,..., t. Let R(X) = dimension of H,(X; Z,) and x(X)
the Euler characteristic of X. Then we have the Morse inequalities.

@) 219 = (- DM
(i) R SIS 3 ReosND

(iii) éo(— D" 'R(fE ) < i; z‘io(_ 1" 'Ry (Ny).

The statements follow from the above corollary and the fact that y is additive, and
R,, Y (—=1)*""R,, are subadditive ([14], §15).

n<k
Remark. If every critical manifold of finite index in f*® has an orientable normal bundle
then equations (i), (i), (iii), are valid with integer coefficients. '

We now show that there exist Morse functions on any finite-dimensional G-manifold, M.
To that end let .#4(4, M) = C4(M, R) denote those functions whose critical locus in 4
is a union of non-degenerate critical orbits. Clearly .# (4, M) is open if 4 is compact.

DEeNsITY LEMMA 4.8. For any finite-dimensional G-manifold M, # (M, M) is dense in
Co(M, R).

Proof. Let xe M — M. By the induction metatheorem of [13] we may assume that
M ¢ (S(x), S(x)) is dense in Cg (S(x), R), where S(x) is a slice at x. Since the restriction map
p:Ce(M, R) - C; (S(x), R) is open, p N M Gw(S(x), S(x)) = M (B(x), M) is dense in
Co(M, R). Now let ye M; and let A = B,n M. We show that .#5(4, M) is dense in
Cs(M, R) and then complete the proof with Baire’s theorem. Let f: M — R. We must find a
C* approximation, f*, such that f’ has only non-degenerate critical points in 4. We note
that .#(4, M) is dense in C(Mg, R) (10, p. 37] and that the restriction map Cg(M, R) -
C(Mg, R) is open. Hence, we may assume that f|M; has only non-degenerate critical
points and by induction that y is the only critical point in 4 which is degenerate for f (y is
non-degenerate for f|Mg). This problem is local and is settled by the following.

LemMmA 4.9. Let W be an Euclidean G-space and f: W — R an invariant C® function such
that f|W¢ has only non-degenerate critical points and such that 0e W is the only degenerate
critical point of f in W(1). Then there exists a C® invariant function f': W — R such that

@ £1W - W) =1f1W — W)
(i) f' has only non-degenerate critical points in Wg(1)
(ii) f' is a C* approximation to f.

Proof. Let P: W — W denote the internal projection onto W . Define f* by f'(w) = f(w) +
eA(w/c| D1 — P)w||2, where &, ¢ are constants to be chosen and A is the function of
Lemma 4.5. We choose ¢ < 2 such that if xe Wy is a critical point of f, then [lx{ > ¢ or
x =0; this is clearly possible since /| W has only isolated critical points by the Morse
Lemma. Then note that f'|Wg = f|Wg and f'|W — W(c) = fIW — W(c) which proves (i)
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and shows that /” has at most 0 as a degenerate critical point. By definition of f*, @o(f")(¥)=
0o(/)®¥) + 2¢(1 — P)v or in matrix form

n _ | 0o(f1We) c
“’°(f)“{ D B+2€I]

where B, C, D are determined by f and ¢, is the Hessian operator. But ¢o(f|Ws) is non-
singular since f| W has only non-degenerate critical points and hence det @o(f”) is a non-
zero polynomial in & with roots &, ..., &,; (ili) can then be satisfied by choosing & small
enough and (ii) be demanding that & # ¢;.

Remark. Let fe M o(C, M) where C is closed and ¢: M — R a positive function. Let
Cs(f, C, 8) = {he Co(M)[A|C =£|C and |h(x) — f(x)| < &(x)}. Then Ce(f, C, g) is of the
second category and the same argument as above shows that /g(M, M)Yn Cye(f, C, 8)
is dense in Cy4(f, C, €).

COROLLARY 4.10. There exists a Morse function on M.

Proof. Let {i;} be a countable partition of unity with compact support. Then f(x) =

Z i, (x) is proper. Uniformly approximating f by a function in Ce(f, @, Dn .ﬂG(M, M)

i=1
yields a Morse function.

CoroLLARY 4.11. If M is compact then M is equivariantly diffeomorphic to
(N f) U(Nas ) oo U, (Ny, f) where the (N;,f) are handle-bundles over orbits. M
has the equivariant homotopy type of (Vi(1) X 5,G) U, (Va(1) X g, G) ... L (V,(1) X 7, @
where V(1) x g G is a disc bundle over G[H; and the g; are attaching maps.

Proof. Let fe M (M, M) and apply the main theorem to f and the interval [minf— 1,
max f + 1] to get the first statement. The second follows from the deformation defined in

Corollary 4.7.
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