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1. The theorem, which is due to Jordan,* that a regular closed curve
possesses an interior and an exterior, is well known and has far reaching
consequences in the theory of functions of a complex variable as de-
veloped by mathematicians on the lines first indicated by Cauchy.

It will be recalled that, when a regular closed curve is given, if Q is a
fixed point not on the curve, while P is a variable point of the curve, then -̂
if 9 be the angle between QP and the x-axis, Jordan's theorem is,
effectively, that 6 changes by 2TT or by zero as P describes the curve, and
that in the former case Q is called an interior point of the curve, while in
the latter case Q is called an exterior point of the curve.

In this paper, I propose to investigate a theorem somewhat similar to
Jordan's theorem, namely that, when a simple closed curve with a con-
tinuously turning tangentt is given, if \}s be the angle between the tan-
gent at a variable point P of the curve and the a;-axis, then \jr changes by
2TT as P describes the curve.

This theorem can be employed! in proving Macdonald's theorem con-
cerning a relation between the number of zeros of an analytic function
f(z), and the number of zeros of its derivate/'(z) in a prescribed region of
the plane of the complex variable z.

2. As the terminology of Analysis Situs is not fixed, and some of its

* Cours d'Analyse, t. i, pp. 96-103. The substance of a fairly simple proof (due to
Ames, American Journal, Vol. xxvu, pp. 343-380) is given in my tract, " Complex Integra-
tion and Cauchy's Theorem " (fiavib. Math. Tracts, No. 15).

t The precise meaning to be attributed to this phrase will be found below in § 3; the case
in which the tangent has a finite number of abrupt changes of direction is discussed in §§ 8,9.

J Whittaker and Watson, Modern Analysis, p. 121. Macdonald stated and proved his
theorem in the Proceedings, Vol. xxix, p. 576. His proof is of a different nature from that
given in the Modern Analysis, and hence it does not raise the question discussed in this
paper.
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theorems are little known, it will be convenient to give a summary of the
definitions and theorems* which are preliminary to the analysis employed
in this paper.

Let x — x{t), y = y(t),

where x{t), y{t) are real continuous one-valued functions of the real para-
meter t for all values of t such that t0 ^ t ̂  T. The functions are to be
such that they do not assume the same pair of values+ for different values
of t in the range tQ < t < T. Then the set of points (x, y) determined
by the values of t in the range tQ ^ t ̂  T is called a simple curve joining
the end points {x0, yQ) and (X, Y), where xQ, ... have been written for
x{t0), . . . . If the end points coincide, the curve is said to be closed.

A curve defined either by the equation y = f(x), (x0 ̂  x ^ xx), or ehe
by the equation x = <f>{y), {y0 ^ y ̂  yj, where / (or <f>) is a one-valued
continuous function of its argument is called an elementary curve.

A simple curve is said to be regular i if it can be divided into a finite
number of parts, each of which is an elementary curve.

If a simple closed curve is given, and if T—10 = w, then w is called
the primitive period associated with the pair of functions x(t), y(t) ; these
functions are then defined for all real values of t by the equations

x(t+na>) = x(t), y(t-\-na>) = y(t),

where n is any integer.
If Q(xv 7/i) is a point not on a given simple closed curve, it can be

shewn that it is possible to define a continuous function of t, 0(t) say, such
t h a t cos0(0 = {xM—xJIr, sin 6(t) = \y{t)-Ul\lr,

where r=+</[\xW-x1\*+{y(t)-yl]*].

It can then be shewn that, if the curve is regular,

where n is an integer depending only on (xv yx); this integer is called the
order of Q with respect to the regular closed curve.

Jordan's theorem obviously is that n = 0 or + 1 ; if n = 0, Q is said
to be a point exterior to the given curve, while if n = + 1, Q is said to be
a point of the interior of the curve.

• The reader is referred to Ames' memoir, or to my tract, for a complete account of the
theorems now quoted.

t This condition ensures that the curve has no double points.
J Ames uses this term in a more restricted sense.
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Since the values of t form an ordered set,* the points of a" simple
curve can be regarded as ordered, the order of points on the curve being
the order of the corresponding values of t. Such an ordered set of points
is called an oriented curve; two oriented curves Clf C.2 having a common
arc ar are said to have the same orientation if the points of cr are in the
same order, whether or is regarded as belonging to Cx or to C2. If the
points are not in the same order, Cx and C2 are said to have opposite
orientations.

If an oriented curve Gx is given by the equations

x=x(t), y = y(t), ( * „ < * < T),

and if we put t = — t', x{t) = x' (t'), y{t) = >/(?), then the point (x1, if)
traces out an oriented curve C2 as t' increases from —T to —t0; the
curves Gv C2 consist of the same set of points bat have opposite orienta-
tions. It is consequently easily seen that when a regular closed curve is
given it is possible to orient it (by suitable choice of parameter) in such a
way that the order of interior points is + 1 (not —1); such an oriented
curve is said to be described counter clockwise as its parameter increases
by the primitive period. It is invariably supposed that this choice of
parameter is made.

The following theorem, due to Ames, is of importance in our investi-
gation :—

AMES' THEOREM.
 +—Let Blf B2 be the sets of points formed by the

interiors of two regular closed curves Ct, C.2) respectively; and let an arc
o-j of Cl coincide in position with an arc cr2 of C2. Then (i) if Blt B% have
no common point, the orientations of <ru <T2 are opposite; but (ii) if every
point of Bt be a point of B.2, the orientations of <rx, <T2 are the same.

8. It is now possible to enunciate the theorem to be proved in this
paper.

Let «. simple closed curve T be defined bij the equations

x = x(t), y = y{t), (tQ^t^T),

and let the continuous functions x{t), y{t) be defined for all real values of t
outside the range (tQ, T) in the customary manner, so that they form a
pair of periodic functions which has primitive period T—t0 = to.

* They may be ordered in ascending order of magnitude.
t Loc. cit,, p. 362.



230 MR. G. N. WATSON [Jan. 13,

Further, let the functions x(t), y(t), thus defined for all real values of
t, have continuous differential coefficients* with regard to t for all such
values of t; it is to be assumed that these differential coefficients do not
simultaneously vanish} for any value of t.

Then (I) the curve is regular,, so that Jordan's theorem is applicable
to it :§ and (II) it is possible to df.fine a function of t, say \U(t), by the
equations

which is continuous for all real values of t, and is such that

-\U(t) = 2TT.

4. The method of investigation which will be adopted is substantially
" the method of subdividing regions into suitable regions " employed in
a well known proof of the Heine-Borel theorem and kindred theorems.

We first observe that, since x and ij never simultaneously vanish, and
since x and y are continuous functions of t for all real values of t. there
exists!! a function \}s(t), which may be regarded us a real, one-valued, con-
tinuousil function of t for all real values of t, and which satisfies the equa-
t l O n S cos \U{t) = x/VCr+i/2), sin \f,(t) = y

Further, since x and y, qua functions of t, have period to, it follows that
x and y also have period a>, and so

cos \fs{t+u)) = cos \fr{t), sin \jjr{t-\-w) = sin \js{t) :

* This is the analytical interpretation of the phrase '• continuously turning tangent"
employed in § 1; Ames finds it convenient to describe the curve as " smooth :> at a point at
which x (t) and y(t) have continuous differential coefficients. In future we shall denote
differential coefficients with regard to t by dots.

t The removal of this restriction is discussed in $ 8.
J This result is stated by Ames, who considered that the methods to be employed in a

formal proof were so obvious that a proof might be left to the reader ; the proof is given here
only because it follows in a very few lines from part of the analysis employed in proving (II).

§ Since the results stated in 8 2 are true for the curve under discussion, it will be tacitly
assumed after the end of § 4 (except in § 10), that the requisite change of parameter is made (if
necessary) to ensure that the curve r has the conventional orientation ; this change will not
affect the continuity of the differential coefficients of the coordinates with respect to the para-
meter ; in fact, it will merely change their signs.

|| Cf. Modem Analysis, pp. 538, 539.
IT The function \\i (t) may be rendered definite in any convenient manner, e.g., by choosing

$ (0) to satisfy the inequalities — w < ^(0) ^ T.
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and therefore /̂r #+<»)—\fs(t) = %nr,

where n is an integer.
Moreover n is constant, i.e., independent of t. For, as t varies con-

tinuously, so do \js(t) and \ / ^ - f a>), while n can vary only per saltus ; and
therefore n is constant.*

Let I" be any arc of F and let T~be the parameter of any point of P .
Then F' belongs to one of the four following classest according to the

values of ^ ( T ) on P :

(A) For one or more values of T, | cos \fr(r)\ ^cosT\j7r, and, for all
values of T, | COS \p-{r) | > sin J^TT.

(B) For one or more values of T, jcosx/r(T)| ^ sin ^TT, and, for all
values of T, | cos y\r (T) | < cos

(C) For all values of T, sin -^T- < |COS ^ ( T )

(D) For one or mo-re values of T, | COS \fs(r) \ ^ cos -j^ir, and for one or
more other values of r, 'cos Y'W | ^ sin

Arcs of these types will be denoted by the symbols TA, TJf, Tc, Tj} re-
spectively.

It is now easy to prove that F is a regular curve.
For yj/{t) is a continuous function of t, and, since continuity involves

uniformity of continuity (Heine's theorem), we can divide the range (£0, T)
into a finite number of (closed) subdivisions, such that if t, V are any
two values of the parameter which are both in any one subdivision, then
\yjs{t')—^(^)| is less than, say, x^- .

Corresponding to this subdivision of the range (£0, 70, F is divided into
a finite number of arcs, which are all of the types TA, TB, Tc [for, on an
arc of the type F^, \fs(t) must change by at least as much as -^TT > •fair].

It will now bo shewn that each of the arcs F^ and Tc is an elementary
curve of the type y =f(x); an exactly similar proof (which is left to the
reader) will then shew that each of the curves TB and Tc is an elementary
curve of the type x = <f>{y) : where / and <p denote continuous functions
of their respective arguments.

Take any one of the arcs TA or Tc, and let the parameters of its end
points be tlf t% (0 < h~tx < <o).

* Cf. Tract, p. 6, footnote.
t The angle -ĵ n- is introduced in the following statements for the sake of definiteness. It

could be replaced by any sufficiently small angle.
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Then, when tx ^ t ^ t2, we have

cos yfs(t)\ > sin J^TT,

and so x{t) is never zero and is therefore one-signed in the range (tv t2);
therefore x (t) is monotonic (in the strict sense) in this range, and it is also
continuous. Hence, writing xitj = xv x {t2) = x2, we see that, in the range
(xv x.2), t is a continuous function* of x ; and so, since y is a continuous
function of t, y is also a continuous function of x ; indeed the differential
coefficient of y with regard to x exists and is equal to y/x.

Consequently each of the arcs TA and Tc is an elementary curve of the
*yPe V =/(iC)» and» similarly, each of the arcs F» and Tc is an elementary
curve of the type x = <p{y). Since the number of arcs TA, TB, Tc is finite,
the curve T is regular; so theorem (I) is completely proved.

5. It is convenient to base the proof of theorem (II), namely that

yj,{t+w)—^{t) = 2TTS

on the following lemma :—

LEMMA.—Let Po be a point (which is not an end point) of the ele-
mentary curve y =/ (x) , which forms part of the given regular closed curve
F ; let P0T and P0U be the progressive and regressive tangents^ at Po to
T; also let P0Q be drawn parallel to that one of the directions of the//-axis
which makes all points of the line P0Q which are sufficiently near to Po

(except the end point Po) lie inside T.
A A

Then the principal values of the angles TP0Q, QP0U are both positive
and definitely less than 7r.

[The corresponding form of the lemma for the elementary curve
x = (p(y) merely involves the alteration that P0Q is to be drawn parallel
to one of the directions of the #-axis.]

Let Po have parameter t0 and coordinates (x0, y0).
Then it can be shewn that it is possible to choosej a positive number

r so small that no points of T except those on y =f(x) lie inside or on the
circle with centre Po and radius r.

With such a choice of r, let the point (x0, yo+
r) be called B, while

(*o« y0—r) is called Bx.

* See, e.g., Hardy, A Course of Pure Matiiematics, § 109.
t So that UP0T is a straight line inclined if (t) + 2rn [not if (t) + (2r + 1) *•] to the .r-axis.
X Ames' memoir, p. 356 ; or Tract, p. 10.
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Let P be any point of F, with parameter t, and let the angles which
BP and B^P make with the #-axis be* 6(t) and O^t); and let

Now it can be proved that,* if x(to-\-a) > x(t0) for sufficiently small
positive values of o, then integers nlt n2 exist such that

<f>{t0) = ( 2 ^ + DTT, <p(to+8) > (2

( 2 + l ) 7T,

is ??o£ em odd multijyle of ir when tQ-\-o < t < £0-f-w—o.
Hence »t2 > 7tlt and so the order of B exceeds the order of Bx; and

therefore B is inside the curve and above Po; therefore Q is above Pn

when lc{t0) is positive: similarly Q is below Po when x(^0) is negative.
A

The principal value of TPQQ is therefore the principal value of
—ifs{t0) or ij7r—V/-(̂ 0). according as rc(^0) > 0 or < 0.

Also, according as ;*r (̂ 0) < 0, we have
A

sin TP0Q = sin • ir + ^TT

= ± cos yfs (t0)

A

and consequently sin TPQQ is essential^ positive. Since the principal
A

value of TPQQ does not exceed -w numerically, it foliows that the principal
A

value of TP0Q is jwsitive and less than TT.
A

Similarly the principal value of QP0U is the principal value of

\ + ir\-W or of ]
A

according to the sign of a;(̂ 0), and hence the principal value of QPQU is
also positive and less than -K : and the lemma is proved.

[The proof for an elementary curve of the type x = <p(y) is left to the
reader.]

6. We shall now investigate the total change in \fs as the point of con-
tact of a tangent of a curve traverses the curve when the curve is of a
special type and has a disconti>it(ously turning tangent.

* The functional symbols 0 and q> are used in this sense only in this section of the paper.
t See note % on opposite page.
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Suppose that the curve F of the type specified in § 3 is given, and that
a rectangle R is given* which meets F in two points E, F only, the arct
EF of F which lies inside R being part (or the whole) of an arc of the
type I I \ i ; it is supposed that, if t, t' be the parameters of any two points
of the arc EF, then | \jr{t)—\fs(t')\ < y^x, that the sides of the rectangle
are parallel to the axes, and that E, F lie on the sides mlf m2 of the
rectangle parallel to the y-axis; let G be the end of m2 which is inside F,
and let H be the end of mx which is inside F.

Then Jordan's theorem is applicable to the curve EFGH, and by
Ames' theorem (see § 2) the curves EFGH and F have the same orienta-
tions^

Let tx and t2 be the parameters of E and F regarded as points of F. •
Let V be a parameter for the curve EFGH and <«>' the associated

period ; and let \fr'(t') be the angle between the tangent and the #-axis.
It is obviously legitimate to take t' = t when tx ^ t' ^ t2, and also

in this range.

FIG. 1.

Now define the changes of \fr' at E, F, G, H to be the principal values
of the respective angles. Let a2, A be the changes of \}/ at F and E ;
then a2 and fix are positive and less than IT, by § 5 ; also the changes of
\lr' at G and H are +271" (Qot —27r) by a proof similar to that of § 5.

* Methods of constructing such rectangles are given in § 7.
t It is supposed that this arc EF is given the same orientation as r.
X The investigation for an arc of the type Vj, is similar to that for r.i, and is conse-

quently left to the reader.
§ The proof that every point inside EFGH is also inside r is left to the reader.
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Now, as in § 4, y/ it' + </) —\j/ it') = 2/I'TT,

where n' is constant for values of t' in the range (tlt t2).
Now, if t'3, t[ be the parameter of G and H, we have

Make £' -»• ^ + 0 , and we get*

The expression on the right lies between ir—-^ir and 'STT^-^TT ; and 60
2/iV = 2-7T, i.e., n' = 1.

Therefore 2TT = fr+Tr+

That is to say ^(£2) -\/r(/x) = 2x-(/3X + «2+ir).

6a. Next suppose that the rectangle R (with sides parallel to the arcs)
meets T in two points E, F, only, as before, but that the arc EF of V
which lies inside B is part (or the whole) of one of the arcs Tc. If E and
F are on opposite sides of B, we get precisely the result of § 6. Accord-
ingly, we suppose that E and F are on adjacent sides of B; there are two
cases to be considered, according as one or three vertices of the rectangle
inside T. We shall investigate the former case (Fig. 2) in detail and
leave the latter (Fig. 3) to the reader.

Let G be the vertex of B which is inside F ; then since an arc Fc may
be represented by an equation of the form y = f(x), and also by an equa-
tion of the form x = (f>{y), it follows that if a2 be the principal value of
the change of \fr' at F while /31 is the principal value of the change of ty
at E, where i/r' is the angle between the tangent at a point of EFG and
the rc-axis, then a2 and /3t both lie between 0 and ir. Hence, as in § 6, we

where tlf t2 are the parameters of E and F on F.

• \f/' (f) is continuous in each of the ranges (h + O, £3 —0), (£j + 0, t^—0), (t't + Q, t\ + w'-0),
and is therefore constant in each of these ranges.

t Each corner of the rectangle inside f contributes |TT in the analysis of §6 ; hence the
difference between this result and that of § 6.
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In like manner, if there were three vertices of the rectangle inside T,
we should get

FIG. 2.

To sum up, we see that, if a rectangle B with sides parallel to the axes
meets T in two points E and F only, so that the oriented arc EF of T is
inside B, where all points of EF belong to not more than one of the arcs
TA, TJTJ, Fc, and E, F are on opposite sides of B (unless EF is part of an
arc Tc, in which case they may be on adjacent sides), and if tv t2

(0 < t2—tx < w) be the parameters of E and F, then

In this equation r is the number of vertices of the rectangle which are
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inside F, a2 is the principal value of A(^2)~Vr(^)> and ft is the principal
value of \^{tt)—\{t1)-j-7r, where A(£) denotes a value of the angle between
the side of the rectangle (drawn towards the interior of F) through the
point with parameter t and the sc-axis.

7. We shall now divide the interior of F into a number of smaller
regions. By the arguments of § 4, we can divide F into a finite number
of arcs, such that if t, t' be the parameters of any two points on the same
arc, then \\Js{t)— \jr{t') | < ^ x . Let these arcs (in order) be called

Let P be any point on F, and let Q be any other point on F, such that
P, Q are not on the same arc <r nor on consecutive arcs. Then the dis-
tance PQ has a positive lower bound, say 4<S. Cover the plane with a
network of squares with sides parallel to the axes, the side of each square
being of length S.

[If a vertex of any square lies on F, shift the network slightly until
this is no longer the case.]

The arcs <r are of the types (A), (B) and (C); not of type (D), also
portions of F which are in the same square, or in two consecutive squares,
must belong to the same arc <x or to consecutive arcs; also arcs <r of types
(A) and (B) cannot be consecutive, for they must be separated by at least
five arcs of type (C).

Now the arcs o- (taken in order) may be arranged in groups, each group
consisting of one or other of three types :

(1) The first type consists of a number of consecutive arcs of types (A)
and (C), each arc of type (C) being consecutive to at least one arc of type
(A); the number of arcs in the group should be the largest possible. It
therefore consists of arcs of types (A) and (C), those of the former type
which are not consecutive being separated by not more than two arcs of
type (C) ; and the group begins and ends with an arc of type (C).

(2). The second type consists of a number of consecutive arcs of types
(B) and (C), arranged according to same laws of arrangement as were
postulated for types (A) and (C) in (1).

(8) Each group of this type consists of a number of consecutive arcs
of type (C) which do not adjoin an arc of type (A) or type (B).

Any group of arcs of types (1), (2), (3) respectively, will be called a
curve of type (A'), (B'), (C) respectively. .

Then each arc of type (A') or type (C) is an elementary curve of
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the form y = f(x); and each arc of type (B') or type (C) is an ele-
mentary curve of the form x = $(?/).

Take any curve of type (A'), and let the lines of the network (parallel
to the y-axis) which it crosses be lx, l2, ..., lp; the points where it crosses
h and lp must be on the extreme arcs of type (C), because on these
extreme arcs |cos>/r(^)| ^ cos(T\j7r+^\j7r+u1o7r)» a n ^ s o ^ne difference of
the abscissae of the ends of one of these arcs ^ 4<S cos \TT > 8 ; and so
also the difference of the abscissae of the ends of the other of the arcs of
type (C) exceeds S.

Between Zj and Z2 the curve cannot cross more than one side of a square
parallel to the #-axis; for the difference of the ordinates at the points
where the curve crosses lx and l2 is less than S tan ^7r < S. Similar
reasoning applies to the sides of squares between l2 and l3, l3 and lA, and
80 on.

Obliterate all* the sides of squares which are parallel to the axis of x,
and which meet the curve between !L and lp.

Carry out this process of obliteration for all the curves (A'), and a
similar process of obliteration + of sides of squares parallel to the y-axis
for all the curves (B').

We then have the plane divided into a number of squares and rect-
angles, such that the curve T meets the perimeter of any square or rect-
angle either in no points or in two points (but not more).

Now obliterate the whole of the network outside T, and the surviving
part of the network gives (i) a number of squares inside T, and (ii) a
number of incomplete squares and rectangles of which the curvilinear
boundaries make up T ; each of these latter curves consists of an arc of T
and part of a rectangle inside T, making up a curve with discontinuously
turning tangent of the type considered in §§6, 6a.

Let v be the number of squares, and /* the number of other regions, so
that the number of points where surviving lines of the network meet F is
ix ; let tlt t2, ..., t^ be the parameters of these points, in order, and let

Add up the equations of the type

- ^ ) = 27r-(/31+a2+!r17r),

* The actual side of the square only is to be obliterated ; not the whole of the line of the
network on which it lies.

t This process is not carried out for the curves (C), since they do not intersect the peri-
meter of any square in more than two points.
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and we get

— 2

Now am, (3m are positive angles less than -K whose cosines are equal but
opposite in sign; and so a,,,.+/3TO = ir.

Also ii>+2rm is the total number of corners* inside F, while 2ju is
the number of corners on 1\ Consequently

Vr(A + a')-y'(*i) = 2IW—

where lY is the total number of regions into which the interior of T is
divided, and M is the total number of corners inside and on 1\

Now some lines of the network terminate on other lines of the network
and not on the curve. Produce these lines until they meet the curve but
no further.t Then the process of drawing each segment of these lines in-
creases + N by 1, and M by 4, since two additional corners at each end of
the segment are inserted.

Consequently 2N—p/ is unaffected by drawing these lines. Now
obliterate in turn each segment of the lines parallel to the ic-axis ; each
obliteration diminishes N by 1 and M by 4, and at the end of these
obliterations we are left with T and a number of lines parallel to the
y-axis and terminated by T. Obliterate these in turn, and (as before)
each obliteration diminishes N by 1 and M by 4, and so does not affect
22V-Pf. Therefore

where IV0 is the number of regions inside T and MQ the number of corners
when the whole network is obliterated.

]JUG, by Jordan's theorem, No = 1, and Mo is obviously zero. There-

which is the result stated in Theorem II.

8. We now consider what happens when x and ij both vanish for a
finite number of values of t in the range (£0, T).

* A corner is an angle less than or equal to ir formed by two intersecting arcs AP, Bl'
with tangents at P.

f Cf. Tract, note at end of p. 11.
J This is a slight extension of a theorem due to Ames, lac. dt., p. 356.
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Let r be such a value of t and let Q be the point with parameter T.
Then, if both ij\x and xjij are discontinuous at r, \}s(t) is discontinuous:
in this case we shall agree to define \fr(r-{-0) by the convention that
v/r(r-f-0)—x/r(i—0) is to have its principal value (which is not equal to 7r).

If either y/x or i//y (or both) is continuous, and if neither x nor y
changes sign at r, \fs{t) may be defined so as to be continuous at T, and
the proof of § 7 is valid.

If either ij/x or x/i/ (or both) is continuous, and* x or y changes sign,
^(T+0)—\fr{r—0) must be an odd multiple of TT.

In this case we define ^(T-fO) to be ^(T—0) + 7r or ^(T—0)— TT,
according as a line drawn through Q parallel to the ?/-axist has all
points on it (which are sufficiently near to Q) outside or inside the
curve.

It seems hardly necessary to write out all possible cases; that
shewn in Fig. 4, which is one of the most difficult, will be sufficient;
Q is a cusp, and ^(T+0)— \JS(T—0) = -\-TT.

FIG. 4.

Choose the points r to be end points of the arcs ar of § 7. Draw
the network as before, with the additional proviso that none of the
points Q are to be on the sides of the network. Obliterate temporarily
the interiors of all the squares containing the points Q and let 4(5X be
the lower bound of distances between surviving portions of consecutive
arcs o- which have portions obliterated. Cut up the squares of the net-
work into smaller squares whose sides are less than SL.

* In this case Q is a cusp.
t If I|/(T—0) is an odd multiple of 571-, we draw it parallel to the a>axis.
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Consider a square containing one of the points Q ; treating the part
of the curve inside this square after the manner of § 6, we find that there
is an integer n, such that

Now a2 and & lie between ^TT+^TT, and so 1nXTr lies between

and therefore nx = 1.

Consequently ^{Q—yJsitJ = 2TT—

an equation of the same form as those in §§ 6, 6a with r = 0.
The portions of the curve inside the smaller squares are now treated

after the manner of § 7, and the required result follows.

9. The case in which x and y have a finite number of finite discon-
tinuities is worth mention; at such a point (with parameter T), where
x or ij is discontinuous, \fs(t) is (in general) discontinuous, and the curve
has an abrupt change of direction. To define \{s(t) in such circumstances,
we suppose that yjs(t) varies continuously (except at the points T) as t in-
creases from £0to tQ-\-tt), and that the change in \fs(t) as t increases through
the value T is numerically less than TT, SO that T/T(T+0)—>/r(i—0) has its
principal value.* By the methods of § 8, it is now easy to shew that, as usual

and it seems unnecessary to write out the details of a proof. For instance,
if the cusp in Fig. 4 be replaced by an angle for which the discontinuity
in \fs is positive, the arguments of the case worked out in § 8 hold almost
verbatim.

A verbal statement in the case of a curve with a finite number of dis-
continuities in the direction of its tangent is as follows.

The sum of the changes in t/r along the continuously turning portions
of the curve plus the sum of the exterior angles (taken numerically less
than 7r) at the discontinuities is equal to %ir.

* These considerations shew that the case under discussion is, in reality, no more general
than the case worked out in § 8.
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10. In the case when x, y are continuous for all values of t, the result
of Theorem II can be put into a definitely arithmetical form, for we have

and hence the result:

Let x(t), y(t) be real functions with continuous second differential co-
efficients, such that they do not assume the same pair of values for different
values of t in the range to<.t<T, such that x and y do not simul-
taneously vanish, so that x and y have period to = T— tQ. Then it is

possible to find values of h and k, such that

does not vanish, and such that
u (x-h)y-(y-k)x

is not zero ; the value of this integral can then only be +2-7T or — 27r. And

r
is equal to +27r or —2TT according as the former integral was equal to

or — 2TT.

It does not seem to be possible to prove that the value of the last in-
tegral is + 27r by any obvious method more direct than that employed in
this paper.


