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space oY where Y = {r,} w {®;] i e N by j i i
be homeomorphic to M .m ol e foal £,7 €N o casily seen to
Note that ¥* of ex: i
o o mmple 7.1 contains no subspace homeomorphic
- t};sz:aénple 1.11, .[6]., shows that the product of Fréchet spaces need
S réchet. This is also an immediate consequence of 6.2 (see [3]
dr

page 7 or [7], footnote (3)). In each of these cases, the product is not

even sequential. The next ex: i
even sed example shows that this need not always be

7.4. EXAMPLE. The prod )
. . product of two H 2
sequential without being Frichet. / sadord] Fréchet spaces ean be
Pr == i
i Il _O(E(f). fet X == R/Z, Tl'le .real line with the integers identified
e t—- , 1] thfa closed wnit interval, I is first countable and hencé
ph j;: I(:‘r é l}‘he qu.otlenfc map ¢ R X is pseudo-open and hence by 2.3, [6]
e t“ilet. Since J is compact, by Boehme’s Theorem 1, [3] Xx’I i;
AqLGJ?A. | ForNea(‘h nwelN let Ap={(n—-1/k, 1n)| & e’N} ’ and let
= al neN}. Then (0,0)e¢cld but no se i
to (0, 0). Hence X x [ is nnb’ Irréchet. uence fn 4 converges
map: .Z.a;i.zhimm. 1‘1",“; product of two hereditarily quotient (pseudo-open)
v wotics ) 5 . . ;
] q it map without being hereditarily quotient (pseudo-
Proof. The natural identificati
at ntifications : X*
e nn : Px: -X and A §
Sl e}grz.‘h) are pseudo-open by 2.3, [6] but ¢x X ¢r is not, since ?"‘ xI?is
! chet space. However by 5.8 gx X ¢r is a quotient map
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On bundles over a sphere with fibre Euclidean space

by
C. T. C. Wall (Liverpool)

aper of 8. P. Novikov (17} on the

topological invariance of rational Pontrjagin classes. His paper gives
the first method (beyond mere homotopy theory) for preving topologiecal
invariance of certain properties. The object of this paper is to consider
the special case of (topological) bundles over a sphere with fibre Euelidean
space, and to compare the piecewise-linear (hereafter written as PL)
and topological classifications. Perhaps the most interesting of the results
obtained is that topological equivalence of two such bundles implies
(stable) piecewise linear equivalence; however, we go on to extract all
the information we can from the method.

I am indebted to Steve Gersten and Larry Siebenmann for pointing
out that results from the latter’s thesis can be used to fill an apparent
gap in the argument of [17): Novikov’s recently published detailed
proof [28] appears to use the same reasoning.

Our main result is the following

TueoREM. The natural homomorphism
j: m(@, PL)—>m(@, Top)
r i =2 or 4. Even in these

The origin for this work is a p

has a left inverse, for all i >0, except possibly fo
cases, j 18 injective.

In the first paragraph we establish our notation. The next is devoted
to the lemmas which are needed at the key place in the argument. We
then prove the main theorems. A final section is devoted to discussion
of special features of low dimensional cases, to which the proofs do not
apply without modification.

§ 1. Structure groups and classifying spaces. First it will
be convenient to establish our notation and reeall some known results.
By O» we denote the usual orthogonal group acting on R"™ PLy is the
group of piecewise linear homeomorphisms of R™ onto itself, leaving the
origin fixed. It is necessary to define PL, as a semi-simplicial group {141
Tops, will denote the group of all homeomorphisms of (R™, 0) onte

itself, with the compact-open topology.
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G is the monoid of homoto ; ; -
, oid Y self-equivalences of 8", again wit

compact-open topology. e " the

We affix a + if we wish to consider only orientation-preserving maps.

The above are selected from several possible definitions which differ
only up to ?10)110’?01)}' type [12]. In each case we clearly have an associative
;nultlphcamon with unit, so there exist classifying spaces, defined up to
romotopy: cf. [3], [14]. We also have n i
‘ Op) i . aly ave maps, representing natural trans-
formations of bundle functors, , iy e

BO,-~BPL,-+-B Top,—>BaG, .

For the first transformation, sec¢ [13]; the second is defined by ignoring
the PL'structure, and the third by deleting the zero cross—sg::tiin a;’ﬁ
pr’:f;eedm'% to .fibre homotopy  equivalence. The product structure
R = R" “R induces inclusion homomorphisms Op—-+0,,, and maps
If(),,—>B(),.+,, and similarly for 1, Top., and Gn. We write BO, BPIL
BTop and BG for the limit spaces as n-+co (which ean be deﬁ’ned ’
‘telescopes’ using o sequence of mapping cylinders). We thus obt in
spaces and maps, defined up to homotopy, ) L o

BO->BPL->BTop->B G;

BO, BPL and BG may be taken to be QW complexes

We next show that these spaces may all be rega:rded as weakl
lu.)motopy associative and weakly  homotopy-commutative H-s !
with unit, and the maps as maps of H-spaces. For example, the nil‘z?lie?
1»1:0ducts PrL, N PLp—PLyn arve homomorphisms and are’ aseoci‘afiva
\\‘n!l PL, as unit. Up to permutation of eoordinates, they are a:l .
p:xtlhle- with the inclusion maps Pli, —Ply, .y, an(,l eorslramuta,tisx(f)eco\r\l}—
lm»ve ll}duced maps BPL,, x BPLy~>BPL,,, with the corres onldi e'
properties. Now make the conventions on order of cbordinate:) Whinﬁ
are necessary also in the orthogonal case; then our maps are comp: t'b(i
\\‘11}1 .mclusions, and so induce a product BPL x BPL->BPL. I%’)&KI i:
:(Irf).ngi C\V goxn})lcfx, It is easy to cheek that the induced product on
f \ : PL] ?a assoclative, commutative, and with unit. Precisely the same
(.u;ruments work —as well as for BO — for BTop and essentiall (th
.\:m;g fg{lB g, Whe;'e we replace the formula R™ x R® — R™+® by §™! 27 Sn_?
== - dince these products are all i ) i
QUr maps are maps ()fpll-spuc«*:]. (Nh(iéngﬁ;:eiltl)};}?e 'Same conStruc'mO'n’
the oriented case. o # i eanally valid in
crmif::b;?‘]};i t]:[’.f) ls fa.xrly‘ well known; its homotopy groups were det-
e t[2), (md'for' its c(fhomology see e.g. [1]. B@ is less familiar:
S S’}'))yifgr()ll})? coincide with stable homotopy of spheres: (B G)
= - ,.s_tlud. : nl‘> i andpthe cohomology of B @ has only recently begun
| ted (Milnor [15] and Gitler and Stasheff [5]). Less Lfamitl,in‘r

AN g AN 5 0 SO . o
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still, but now accessible, is B PL. Some information on its cohomol:
is available (Williamson [26]). We also have a fairly complete knowle
of its homotopy, which we will discuss in a moment. The main obj.
of this paper is to study BTop.

‘ The first statement concerning homotopy of BPL is tJ
I'y = 7(PL, 0) >~ 7, (BPL, BO) [10], however, this will be of
use to us since the calculation of I, involves the simpler isomorphi
below. The simplest interpretation of #,(BPL) >~ a,_(PL) is by sta
framings of the trivial bundle over the combinatorial sphere S
the stable tubular neighbourhood theorem of [13], this can be identif:
with stable framings of the standard imbedding 8"~ C §**¥~!, Now ap,
the Cairns-Hirsch theorem to smooth these framed imbeddings: we obt:
stably framed manifolds, combinatorially equivalent to S*hLOA sligh
more complicated argument, using the Thom-Pontrjagin construction [2
shows that m, (BG, BPL) == n,(G, PL) can be identified with the cob.
dism group P, of framed smooth n-manifolds M", with boundary co
binatorially equivalent to 8"~'. Now this group has been computed
Kervaire and Milnor, and was to have appeared in the sequel to [1
it was published by Levine [29], also an exposition has been given
Haefliger [7]. The result is as follows:

LeMMA 1. 7, ((BG, BPL) = P, is zero if n is odd, is cyclic of orde,
if » = 2 (mod4), and is infinite cyclic if »n = 0 (mod4). If n == 2 (mod
the isomorphism on Z[2Z is given by the Kervaire-Arf invariant of
if n = 0 (mod4), we use the signature divided by 8 (or by 16 if n = 4)
give an isomorphism Py->Z.

§ 2. Technical preparation. The main preparation necess:
is to quote the relevant results from the thesis of L. C. Siebenma
(Princeton, 1965). We will do this in our own terminology.

Let W* be an open manifold — or indeed any locally compu
locally path-connected space, and let ¢ be an end of W (in the sense
Freudenthal [4]). We can regard ¢ as determined by a sequence P, D P, 5
of connected open noncompact subsets of W, with compact frontic
and such that any compact subset of W meets only a finite number
the P;. A subset of W is a neighbourhood of ¢ if it contains some P;. Sii
the P; are connected, hence path-connected, we can choose points 24 €
and paths a; in Py joining @; to x;4,, and thus inducing an isomorphi:

(Pt @) = m(Pry @i41)3
note that we have an inclusion map of =, (P;y1, #;11) to the latter.
We say that ¢ is tame if
(a) The sequence

P 2V AP, 2N [P v Ve
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has a subsequence, say
h ¥ b
Gh< Gy (<> ...

such that if Iy = fy(GQiyy), fi induces an isomorphism I, —Iq¢, for each i

We write m,(e) for the comumon A -
value. When (a is is i

dependent of all the choices made. (2) holdsy this s fn-

. (b) .Any n?iqhbourhood U of ¢ contains a neighbourhood V such that
iere exists a finite CW complex K and a homotopy commutative diagram

VCcu
AN g
N
K
- Ourfform of condition (b) is slightly more general than Siebenmann’s:
15 5o tramed as to permit us to observe that, almost trivially
Tameness is a ich is @ :
) property which is invariant .
pivaton under proper homotopy
i 0\1\9 recall that a map is proper if the preimage of each compact set
< . . p . . N
\ ft‘ nip:gft. the same notion applies to homotopies, so our terms are
3 l 3, "‘ >
«\ \« ned. u?benn?aznn s arguments are equally valid using our definition (b)
¢ 10w give his main theorem, (5.7). .

The':ltl;l:;);lfi :& Let W¥ bfz an_open PL-manifold, with a tame end .
P .6 0( zss: an obslr'uctwn o(e) in the projective class group Ifo(nl(e)).
! P]:»m (,mifel)dwn-zshes if and only if & has a neighbourhood M which is
ol aan 0 ‘I{Jtlh b.ou'ndary, closed in W, with compact frontier oM
nd such t a.t the inclusion 83 C I is a homotopy equivalence, and inclusi ,
induces an isomorphism of m,(e) on oy (M), ’ o

COROLLARY. M is PL-homeomorphic to 8M x R. (R.7)

St,m:‘}l}rxs ;vg.s shrown by 'Siebennmnn (loc. cit., (5.2)), using a theorem of
St gs [20]. We now give the special case of this result which we need.

o fff‘};f(;R;mi Tlv Let V° be a closed manifold, W*** g PL-manifold, v > 5,
a(e) in the proje (:y.p rop lcr homotopy f'qu'i'valence. Then there is an obstruction
there exist 1;) o, s grop Rofm(V)); ole) vanishes if and only if

st a closed PL-manifold V' and a PL-homeomorphism h: V' x R—W.

Pr 7
e mnl(;o;. Oﬁ:a,réy both ends of ¥ x R are tame; by the remark above,
e confp s to W. The fundamental group of an end of W is that
no apo! 1f}};ondlng end of V X R, which coincides with (V). We can
oy _—_yV' i;)retm A to define o(e) and, if it vanishes, to construct M
o o v'. {s)andard argument using the van Kampen theorem and
o 1[ A.}aeﬂrl— ;ftorls’sequen'ce on universal covers now shows that M’ = W—
— L th) gs' V' = E{M as deformation retract. Stallings’ result then
plies that M’, too, is PL-homeomorphic to V’ X Ry.

s s paw——

Bundles over a sphere 61

In the application below we will need an extra conclusion to the
theorem. This is provided by

LemMA 1. Suppose V and V' closed manifolds (or more generally,
compact Hausdorff spaces), G: VxR—>V'x R a proper map which does
not interchange the ends of R. Then there exist a map g: V>V’ and a proper
homotopy of G to g X 1g.

Proof. Denote by G;: VxR—-V' and Gy V x R—>R the component
maps of @. Note that since V' is compact, @ is proper if and only if G, is.
We define g by g(v) = Gy(v, 0) for v e V, and the first component of the

homotopy by
Hyv, u) = Gy(v, ut) .
The second component is provided by
LEmMA 2. Let V be a compact Hausdorff space. Then the space X of
proper maps V X R—R, which do mnot interchange the ends of R s con-
tractible.
Proof. We define a contraction H: X xI—+X by
H(f,t)(v, %) = A—1)f (v, u) +-ut.
Continuity of H follows by standard arguments; that H(f,?) is proper
since if f'[—mn,n]CV x[—m,m], with m=mn then H(f, 1) '[—n,n
CVx[—m,m].
We shall also need the following, which is due to A. Grothendieck
(see [27)).
PrOPOSITION. If m is a free abelian group, Ko(m) vanishes.
This will enable us to get the homeomorphisms we want.
Finally we shall need the relative versions of all these theorems
From (10.1) of Siebenmann’s thesis we find
TrEOREM A rel. Let W be a PL-manifold with a tame end &. Assum.
that ¢ defines an end d¢ of 9W which has a neighbourhood N such that 0N C 2
is a homotopy equivalence and 7,(9e) = m(N). Then o(e) is defined as before
If w > 6, it vanishes if and only if ¢ has a mneighbourhood M, wili
N = M ~ oW and the relative boundary V' of M compact, so that V' C 2.
is a homotopy equivalence, and m(e) = m(M).
We now deduce
TarorEM 1 rel. Let V° be a compact manifold, W™ a PL-manifol
v =5, and f: V x R—W a proper homotopy equivalence with f(9V x R) CoW
Suppose we are given a closed PL-manifold P, a PL-homeomorphis
h: Px R—>2W, a map g: 8V —~P, and a proper homotopy of Bt o floV x I
10 g X 1g. Then, if an obstruction in K’o(n,(V )) vanishes, there exist a compa:
PL-manifold V' with boundary P, an extension of h to a PL-homeomorphis
h: V' x R—W, an extension of g to g: Vv V', and an extension of I
promer homotany to ome of B of to q X 1g.
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, A'..I}IEOREM 2. Let M™ be a closed manifold with free abelian fundamen-
al group, m > 5. Let N be a PL-manifold, h: M xR >N a h w0
morphism. Then we can construct a PLi-manifold M, a PL-ho morphiom
G ‘J[o XR'>N, a map fo: M >3,, and a proper ,homoto "’:eomorgi}lngm
o fo o 1pq Py feol ook
’ Nuppose also that M bounds the compact marifold V with )
fundamental group, that N bounds the PL-manifold W, and t f:‘GZ Coton
to a homeomorphism H: V xR’ ~W. Then My bounds ’a PL e _e“'w"’;’l ;
do cxtends to a PL-homeomorphism Gy: Vyx RE—>W f T e
and Ly 10 a proper homotopy K, of Gy'c H ;’o Fox1 A
g oper . Fy < 1p,.
o iz (())I; ; f(\)}li v:\;}ll;x::;?aﬁo“?}l the details of the first part only, since
. e § essentlally the same argument, using Theor
in pl;fi,:i to{ '_tl‘h;orem 1. The proof proceeds by induction,gessentié:;?}1 inrzl
. :),‘ et T' be the boundary of the standard 2 -simplex, T® the produeé
| / (‘(.)])l( s of T. C?IOOSG a PL-embedding 7' x RC R%. N (;W the universal
](;n 01111.1%; T of T is PL-homeomorphic to R. We fix such a PL-homjf:-
torphism and choose the embedding so that the composite

ki R (T <Ry -T" " x R—>R®

~ the identity in a neighbourhood of the origin

L ot a _ ] -1,
nmrpl:isnfv of Hhx( ;[”: Tqu A R)\’ (;‘)md let (h)m denote the induced homeo-
, 4 “Ron NV, Let ¢ \ i ,
induced by the projection et M be the covering space of NV

l\?(l)a’ﬂl N/ i R Tq—l‘> Ti~1

W Y i-1 1

”\]\l?:‘:;m{ is the p:'gduct of the last (i—1) factors of 7"y from the
rsal cover of T°7°, and denote the homeomorphism lifting »*" bV’

KO ar i R' >N |
Induetion hy i i
, ypothesis. We lhave ; ;

| PLohomeomerphin Ehesis. e zai(c:.) @ closed PL-manifold M,_;,

; gi: Mg i xR —>N" a map for MxT" >M,

nd a proper homotopy of g7t o B ¢4 fi<1,; ) e

s
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Induction basis ¢=1. We apply Theorem 1, taking B for f.
By the Proposition the projective class group, hence also the obstruction
vanishes. The Theorem then provides M, . and g,; Lemma 1 gives us f,
and the required proper homotopy.
Induction step i—i-41. The covering space N of N® induces
a covering M, ; of My ;, a PL-homeomorphism gi: Mpix RE N,
and & map 7;: Mx T xR—-»ﬂq_;, which is a proper homotopy equiv-
alence since f¢ i3 a homotopy equivalence. Also, the proper homotopy
lifts to one of §i ' o B to fix 1.
We now apply Theorem 1 and Lemma 1 to

7;: MxT4 " R——)]"\l’q_,- .

We obtain a closed PL-manifold My_;.,aPL -homeomorphism eg: My_i-1x
X R»ﬂq_i, a map fiqi: M x T s M, ; 1, and a proper homotopy of
6" o Tt 0 fipr X 1r.

Define giv1 = §i o (€1 X 1) Multiplying the proper homotopy above
by 1. gives a proper homotopy of (e’ o F1) % 1 10 firs X Igi. Taking
the lift of the proper homotopy of the induction hypothesis, and com-
posing with e; tx 1, gives a proper homotopy of

~

(67 x L) oGt o RT D = gl o RVt (e o fo) X1
The desired proper homotopy is obtained by performing first this, then
the proper homotopy above. This completes the induction step.
Conclusion of proof. When i = ¢, the induction gives a closed
PL-manifold M,, a PL-homeomorphism gg: Mx R*->N9, a map
f;: M—M,, and a proper homotopy of g, Yo D £ f4 % 1,0 We set fo = fq!
note that if we had N, h in place of N7, k? we could also set go = gq
and the theorem would be established.
Consider the commutative diagram

M xRS N9
llMXk 17-
MxR' &N

We will construct a PL-homeomorphism u: N®- N which agrees with A
on a neighbourhood of A9(M x 0), and a proper homotopy of b to p o h®
which is constant near h9(M x 0). Then take go= st © gq. Compose the
proper homotopy with go ' to obtain one of go Vo htogetop o h® =g o K9,
and follow by the proper homotopy given by the induction. This defines k.,
and establishes the conclusion of the Theorem.

By hypothesis, k agrees with the identity near the origin: choose
an open dise E on which it does. E has one end (two if ¢ = 1) which is
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tame and has fundamental group trivial (free cyeclio if 'q = 2). Correspond-
ing statements are valid for J/ K and for KM x E) (which we can
identify with h(M x E)). By Theorem A and the Proposition, we can
find a closed PL-submanifold W of A(M x F), a neighbourhood of the
end (or disjoint union of neighbourhoods of both, if ¢ = 1) with compact
frontier W, and the inclusion oW C W a homotopy equivalence with
the usual condition on the fundamental group. Now M x ClE is a defor-
mation retract of M x R% and ¢F has a product neighbourhood so we
can deform slightly inside I too. Combining this with the above we
deduce that if V= h(M < E)-—Int W, then N~ IntV has oV =0oW as
deformation retract. It follows, as usual, by Stallings’ theorem that
there is a PL-homeomorphism ¢: ¢V x Ry— N—IntV. Similarly we have
m: 3V xRy »N@ —IntV. Now define u equal to the identity on V and
to e om™! outside it.

Finally, to construct a proper homotopy of k to u o h? it suffices
to construet one of the identity to A% o g o B? = », say. In fact we will
construet an isotopy. For 0 <t <1, Pe M, x ¢ R we set

»(P, tz) = (Q, &) -
For apy @ we have tx ¢ E for ¢ xmull enough, and then »(P, z) = (P, ),

0 Fhe homotopy remains continuous at t = 0 if we define », as the identity.
This completes the proof of the theorem.

w(P,»)=(@,y) where

§4. The main theorems. The following is (except in low di-
mensions, which will be discussed later) the most precise result we have
been able to deduce from the methods of § 3.

THEOREM 3. For i = 6, the natural homomorphism

j: :'Zi(G, PL) »:’lz(G, TOp)
has a left inverse.
. Rema,'rk. If 7 is odd, =(G, PL) vanishes and the result is trivial.
Che cases ¢ =2, 4 will be dealt with below.

Proof: The first step is the observation that a PL (resp. topological)
automorphism of the trivial bundle 877" x R® » 8", together with a proper
hmgotopy of it to the identity, represents an element of z;(G, PL) (resp
‘n( K i}‘op)); and that conversely, any such element can be so represented,
1(.11 suitable ¢g. Rather than prove this in detail we prove a result which
ft:ln (;s ;he same argument in somewhat simpler form, viz. the assertion

1t elements of x(G  repres i
R 7i(Gq) are represented by proper homotopy equivalences

Ig one direction this is clear: G, is a space of maps 82 87", and
by taking open cones with vertex the origin, and extending maps cone,wise
these con bs identified with propar maps R'™->R%. Thus a map S‘—»G’
has as adjoint a proper (fibrewise) map 8* x R?— 8 x R?, which is a propa;

-
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homotopy equivalence as G, has a homotopy inverse. Conversely, let
F: 8 % R%-> 8" x R? be proper. Then if D? is the unit disc in R, F Y8 xDY
is compact, hence contained in S' x A for a large enough dise 4 in R
Now the adjoint of

& x 0458 x (R~ Int DY) B3 R?— Tnt D7 8°*

(the last map is radial projection) defines a map S¢ - @,, whose homotopy
class is clearly not altered by taking 4 larger. It is easy to check that
these two constructions induce inverse maps of equivalence classes.

Now suppose given an element of 7@, Top): represent it by a topolo-
gical automorphism h of 8 x R 8 (for ¢ large enough) with a proper
homotopy to the identity. By Theorem 2 with M = 877, there exist
o PL-manifold M,, a PL-homeomorphism g,z M, xR 8t x R,
a map fo: 8 '—>M,, and a proper homotopy ke of goloh t0 foX1pg.
Now f, is a homotopy equivalence; by Smale’s solution of the Poincaré
conjecture [18], f, is homotopic to a PL-homeomorphism. (Note. This
is the only point where the argument breaks down in the C*-case.) We
may thus replace M, by S*! and f, by the identity. So we have
2 PL-homeomorphism g,: SR> 8" x R? and a proper homotopy of
gs* o b to the identity. Unfortunately, g, is not fibre-preserving. However,
it follows from [9] that if ¢ > ¢, g, is PL-isotopic to a fibre-preserving
map: the precise deduction goes as follows. The mayp ¢, determines an
element of 7241 (PLgyi—1,6-1)- By [9], injection gives an isomorphism of ;1 (PLyg)
on this group. By the Haefliger-Poenaru theorem [8] it follows that g,
is PL-regularly homotopic to a bundle automorphism ¢, with S0
fixed. Hence we have an isotopy of a neighbourhood of 871 0; this
extends to an isotopy of g, to a PL-homeomorphism which agrees with ¢
(hence is fibre preserving) near St % 0. A further PL-isotopy (cf. end
of proof of Theorem 2) now takes this map to g. The map g and sequence
of proper homotopies determine an element of =(G, PL).

A slightly more complicated argument which, however, introduces
no new idea, applying the second clause of Theorem 2 to the case where
V= 8"'%I and M= 8"'xaI, shows that we obtain a well-defined
map

r: (@, Top)—>m(@, PL) .

(For this argument, Smale’s theorem is replaced by the result of Gugen-
heim [6], that homotopic PL-homeomorphisms of 87! are PL-isotopic.)

In order to prove that r o j = 1, it will suffice to show that if h: §°7 x
% R9->8"! x R? above is a PL-map, then the constructed proper homotopy
of gg'o b to the identity is properly homotopic to a PL-isotopy. But in
the application of Theorem 2 we can now choose each f; equal to the
identity, ¢i== 1Y, and the proper homotopies constant. Then ¢,= h,
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{ go == o B9, and the proper homotopy of this to A which was constructed
was in fact a PL-isotopy.

Finally, we must argue that » is a homomorphism. In order to add
two elements of n;(G, Top), we first normalise them: the first element
50 that the map S"”»»Top is trivial on one hemisphere and the proper
homotopy constant there, the second similarly with the complementary
hemisphere. The sum is then defined by using one map on each hemisphere.
We now claim that if in the application of Theorem 2 & is trivial on a hemi-
sphere, we can choose g,, f, and the proper homotopy to be likewise.
This follows by using the velative form of Theorem 2. Additivity of r
is now immediate. This completes the proof of the Theorem.

COROLLARY 3.1. Facept (perhaps) in low dimensions, we have split
short exact sequences

0 —>7i(Gy PL) (G, Top) —»n;_(Top, PL) -0 ,
0>, (PL) ->2;_y(Top) ;1 (Top, PL)—0.

Theorem 3 implies that in the homotopy sequence of the triple
(G, Top, PL) the maps mx(Top, PL) »>ad(G, PL) are zero. It follows
that the sequence breaks up into short exact sequences as above; moreover,
the theorem provides a splitting of these. Similarly, the composite of
the map m;_y(Top, PL) (G, Top) which splits the first sequence with
the boundary map (@, Top)—»m;—,(Top) gives a homomorphism which
splits the homotopy sequence of the pair (Top, PL).

We note in particular that the maps 7i(PL)->m(Top) are injective,
s0 that topological equivalence of two bundles over §+! with euclidean
fibres implies (stable) PL-equivalence. This result could indeed have
been obtained more simply: it needs no reference to proper homotopy.
It seems likely that current work on the lines of this paper will soon
prove the same result with the base space replaced by an arbitrary finite
C\V-complex: the stronger result is more useful in striving for such
¢xtensions.

It has now (Aug. 1967) been shown independently by D. Sullivan
[31] and A. Casson that, for any finite CW-complex X with H,(X 3 Z)
free of 2-torsion, the mapping of sets of homotopy classes

[X: G/PL-[X: G/Top]
is injective. Both proofs use Novikov’s lemma.
. § 5. Low dimensions. Siecbenmann’s Theorem A is not known
if w<5. In the case w — 5, the place where the proof bhreaks down is

~the absence of an embedding theorem for D3 in W, since we cannot even
cisily embed 82 in a 4-manifold. We now show how this difficulty can be

e
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circumvented in some cases. Observe that the cases in which we are
interested are those in which W is properly homotopy equivalent to the
product of R, a sphere 8* (or, in the relative case, a disc D) and a number
of circles.

Before giving the proof in the general case, we first consider the
simplest special case.

PROPOSITION. Let W* be a PL-manifold, properly homotopy equivalent
fo 8*xR. Then W is PL-homeomorphic to S*x R.

Proof. Siebenmann’s argument is strong enough to show in this
case that W has a 1-connected closed PL-submanifold M* which separates
the ends: let V& be the closure of one of the parts into which W is divided.
The cohomology of ¥V “at infinity” is that of 8% and by treating V as
a cobordism of M* to §* we show (see Lemma 3 below) that M has zero
signature. In fact,

K = Ker (Hy( M) ~Hy(V))

is isotropic for the quadratic form of intersection numbers on Hy(M),
and if K is its integral dual, we can write H(M)=KPK. Now by
a result of [23], M bounds a manifold V’ which is simply-connected, and
has Ker(Hy(M)—HyV’)) = K. Attaching V'’ to V along M gives a con-
tractible manifold which is simply-connected at infinity and hence, by
a theorem of Stallings [19], PL-homeomorphic to R5. Now V' is a compact
subspace of this, hence contained in a disc, with boundary X4, say. Then
2¢CV CW, and separates the ends of W; one closed complementary
region is PL-homeomorphic to X xXR,, and [20] shows that the other
is also. _

We point out that the Poincaré conjecture in dimension 4 is still
unresolved. The above argument has the merit of by-passing this potential
difficulty.

For the case i=4 of Theorem 3, the best result we can achieve,
using the above ideas, is

THEOREM 3,. There i3 a subgroup A of index 1 or 2 in m(G, Top),
such that j factorises as

(@, PL)5 A C (6, Top),

and j' has a left inverse.

The only gap in the proof of Theorem 3 when ¢ = 4 was the appeal
to Theorem 2 for, in the absolute case 8% in the relative case, §3 ><.I
and I3, The only gap in the proof of Theorem 2 for these cases was in
applying Siebenmann’s theorem A. We first consider the cases where the
manifold M to be constructed has dimension 4 —thus we would like to
be able to construct 8§ x 8%, 82 x I, and D?*x 8. In each case we will

-



seck a manifold PL-homeomorphic (not merely homotopy equivalent)
to the desired manifold. The subsequent construction of 8* and D® will
then be trivial, and no reference will need to be made to unsolved cases
f’f the Poincaré conjecture. Note in each case that the boundary is given
in advance, so we have a problem of relative surgery; also that the only
two fundamental groups which we need to consider are {1} and Z.
o We‘ now consider the case v = 4 of Theorem 1. First suppose that V4
is a ]?01nc&re complex (see [25]: a topological manifold would do, but
we will anyway need a stronger hypothesis below), Ws a PL-man_,ifold
{md f: VX R—W a proper homotopy equivalence. If g is a homotop;y;
inverse to f, we may suppose p, o g: W—R regular at 0 ¢ R, with preimage
At C W. Also, surgery on I as for Theorem A shows that we may suppose
the inclusion map i: M —W 2-connected. Thus ¢ = p, o g oi: MV ig
2-connected and of degree 1. Note also that if » is the stable normal
bundle of W, then i*» gives that of M. As p, o ¢ is a homotopy equivalence
?his shows that there exists a bundle a (in fact (f*»)|V x 0) over V Which,
induces by ¢ the stable normal bundle of M. We observe that the i’nduced
map of Thom spaces

A= My

sh‘ows that V*isreducible, and hence the spherical fibration corresponding to
ais the ‘Spivak normal bundle’ [25][30] of the Poincaré complex V. Observe
finally that if g is another spherical fibration over V, with reducible Thom
space, and the same (large) fibre dimension r as a, then [25], Theorem 3.5
lshowsx that for some map of fibrations a—p, which is unique up to fib.r(;
é(;tzzfl(:;pzfeg:l:;al}ll%r.xee, the given element of m,,5(V®) goes into the given

THEOREM 4. Let V* be a compact PL-manifold, W a PL-manifold
and g: WV xR a proper homotopy equivalence inducing a PL-homeo3
mm:phzsm of 8W on 8V x R. Suppose g t-regular on Vx 0, with M = g=Y(V x 0);
define a as above. Assume that there is an isomorphism of a on the smbl;
normal PL-bundle of V which is the identity over oV and carries the element
of anss(V®,0V°) to the normal invariant of V as in [16].

Thf’.n if m(V) =1 or Z,, g is properly homotopic rel 8V to a PL-home-
omorphism. If m (V) >~ Z, and V is orientable, there is an obstruction in Z,
0 the validity fo this conclusion. :

. We are not yet in a posi'tion to give a result for general =, (V) since
the proc.)f depends on non simply-connected surgery. This part of the
proof will appear in [24]; the remainder is given below.

Pr.oof of Theorem 3,. We follow the proof of Theorem 3 up to
thg pomt‘ where we wish to construet 82x1I, §3x 8, or D*x S8!; denote
this ymmfold by V4 We will check below that Tlgeorem 4 a]g’)plies to
the situation; it follows that there is no obstruction to obtaining S2x I

(which shows that r, when defined, is well-defined), but we have an
obstruction in Z, in the other cases. Our uniqueness results show that
this depends only on the original element of n,(@, Top). Further, using
D* instead of S* we see as before that we have defined a homomorphism
7@, Top)—>Z,: clearly it vanishes on the image of m,(@, PL). The result
thus follows by defining A to be the kernel of this homomorphism.

Tt remains to check the hypothesis of Theorem 4 in the desired cases.
All i3 clear except for the normal bundle and normal invariant of V.
The remarks above show that the obstructions to these being as desired
lie in groups HYV,dV; =@, PL)), i.e. HXV, oV; Z,) and HYV,0V; Z).

In our case, the first of these groups vanishes; the second is infinite
eyclic. There is thus one obstruction € Z; it can (cf. [16]) be related tc
the signature of the manifold M’ obtained by glueing M to V by the
given PL-homeomorphism of the boundaries. We will now show that
under the hypotheses of Theogem 4, o(M') necessarily vanishes. As thi:
was used above also, we give it as a separate lemma.

LeMMA 3. Let M be a connected finite simplicial complex which is ai
oriented Poincaré 4-complex, N a PL 5-manifold properly homotopy equiv-
alent to M x R, and V a PL submanifold of N which is a neighbourhood o,
one of the ends and has 8V compact. Then oV and M have the same signature

Proof. Consider the diagram

HYV, V) — H(V) HYV)
NN /!
2V, V) HV)
N\ /

HYV, V) (V)
NS ¢ S
HYV)

HYV,aV)

HYoV)

Here, the suffix ¢ denotes compact cohomology, and two of the sequence
are cohomology exact sequences of (V,0V) with closed resp. compac
supports. The term H%V) can be defined most conveniently using ai
(infinite) triangulation of ¥V, and taking the homology groups of th
complex of chochains modulo finite cochains: it is then easy to chec!
exactness of the other two sequences. But now HYV) is invariant unde
proper homotopy equivalence, and is unaltered by changing a compac
subset, s0
AV) = HYM x Ry) = HY(M) .

We now consider V as playing the role of a cobordism of v to M
and use the argument of [21] which proves invariance of the signatw
under ordinary cobordism. Briefly summarised, we consider the Mayer
Vietoris sequence

(V) HoV) @ B@V)~H(V, &V);
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opserve that the two homomorphisms are dual to each other, and so
]uwezthre same rank; and then note that cup products vanish on tile image
of H¥V). The details offer no difficulty, so the lemma is proved *

Proof of Theorem 4. It follows (ef. i
:11)011t the normal invariants that there ex(ist. nEzlxi)]s) ffm]fr{ (OII)I'E.*'‘Zlyé‘I]);)'ﬂlﬁeslS
~-:(V’, av*®), homotopic rel 8D"°, t-regular on V. :v’itllx‘ f"(V)’— 14 )—(;
i (V‘ Y= M. Make the homotopy f-regular on V:’ then W((; obt—: e
bordism X of V to M which retracts on V, and has 9, X == aV x Ia’uIiT . CJCI)/Z"
m:pamtes W into two parts, say W_ and W,. %‘orm Y b. ;)1:2'
A- to W, along M. Then 2Y =1V, and Y retracts on V (thB; g.t'etrglg
tion on X was given above; on W, it is induced by -1 o
agree on AM). Y puolT these

7 .Now perform surgery on Y to make the retraction on V a homoto
('qmvale_nce, leaving Y fixed. It will be shown in [24] that under fll)ly
assumptions of the theorem, there ix an integer obstruction to perfor ing
surgery, a finite number of times, to obtain a manifold Z Wgsh 6Zn—1:nT§
and VCZ a homotopy equivalence. However, we will also see in 724
tlmtﬁ we can alter the obstruetion by any even integer by choo [' ;
a different eobordism X. The conclusion of the proof is nowyes t'81]111g
the same as for the proposition above. ey

First, we will show

. ‘I;EMMA 4. LetV be @ PL-manifold with one tame end ¢ and a compact
boundary 'ezuch that the inclusion ¢V CV is a homotopy equivalence and
mclusz‘on induces an isomorphism of m(¢) on 7 (V). Then V i8 PL-h

morphic to 3V x R, -

. PAroof. We follow the argument of [19], which is in two steps. In
; I-ltp 1(f ()1, we show that any compact subset C of ¥ is contained in (can be
IShgu e jby) a cc?Har neighbourhood of the houndary. The proof in [19]
;) oqws this, provided t.hat C lies in a compact D such that (V,V—D)
m.it-cor.mected. But Siebenmann (loc. cit., (3.10)) shows that s,has an
.fu)tl ;fmtb; snéall} (e.g. not meeting C) “1-neighbourhood” N: using the
act that o] ¥V ke : ‘i ‘.
o V_N?or D.ms degree 1, we see easily that we ean choose the
To conclude the -
200 e proof (step (B)), we can now use the results of Stallings
’,\l‘\lrle lr:ss of the proof of Theorem 4 is immediate
e last consider the case i=2 of The .
- ; b =2 orem 3. Here there i
argument due to Sullivan [31] which shows that meem

i (4, PL)Y—»a,(G, Top)

is injective; i :
..s 13e1ct1ve, indeed, the same argument can also be used for i=4 to give
@ much shorter proof of injectivity than the above

Duwnglies orer o Spreit
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The hypothesis 2% <x, and ambiguous points
of planar functions
by
F. Bagemihl (Milwaukee, Wis.)

Let P Dbe the set of all points in the Euclidean plane provided with
a Cartesian coordinate system having a horizontal x-axis and a vertical
y-axis. By a line with direction § we shall mean a straight line in the
plane P whose angle of inclination is 6, where 0 < 6 < z. Suppose that n
is & matural number and that 0 << 0, < 0, < ... < Op < & (). We define
the relation

P == El(el; Kl) w Ez(eg; Kz) Vo U .En(@n; .Kn)

to mean that P is the union of n sets, F,, E,, ..., E,, where K;
(j=1,2,..,n) intersects every line with direction 6; in a subset of that
line satisfying the condition K;. In this paper, K; will take one of the
following forms: (i) < X, (ii) < 84, (iii) n.d., where E;(0;; K;) then means,
respectively, that F; intersects every line with direction 6; in a set of
power less than 8., in a set of power less than or equal to x,, in a linear
nowhere dense set of points.
We shall be concerned with the following specific propositions:

(Ha) 2% <t

(Qn) P = Ey(61; < 1) By 035 < %) w Ey( g5 < %) v oo v Enyp(Ons25 < %)
(Ba) P = Ey(0;; n.d.) v By 05 < %) Eg(0s; <8p) w oo ¥ Fpyo(Onso; <Ra) .

It is evident that (Qn)=(B,). I showed [1] that (B,)=(H,), and
Davies showed [4] that (H,)=(Q,). Subsequently Davies proved [5]
that (Hy) = (Qn) and (Qa)=>(Hy) for every n.

I shall prove that (B,)=(H,) for every m, and I shall then apply
this result to show that the existence of a function with a certain kind
of ambiguous behavior (this term will be defined in the next paragraph)
implies (T,) (whereas the result (Qn)=(H,) is insufficient to show this).

Let . ¢ P. By a segment A at [ we mean a rectilinear segment ex-
tending from a point ¢’ ¢ P, with {’ # £, to the point {; A is regarded

(1) What is essential here is not that the thetas be in this particular order, but
that they be distinct.



