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I't nas recently become apparent, from work of Milnor, Smale, Mazur and Novikov among
others, that the problem of diffcomorphism classification of manifolds, at least if those
manifolds are simply-connected and of dimension at least 5, is capable of a solution which
is not mcrcly theoretical, but susceptible of description by fairly casily computed and
standard invariants. The obect of this series of papers (about five are planned) is to perform
the relevant computations in some comparatively simple cases. Earlier work on these lines
can be found in [1], [8] and [11].

The other papers in this series will be:

I1: Diffeomorphisms of Handlebodies;

111: Applications to special cases;

Q: Quadratic forms on finite groups and related topics;

1V: Classification of (s — I)-connected (2s + 1)-manifolds.
The titles are fairly self-cxplanatory. In IT we classify diffeomorphisms up to an equivalence
relation somewhat stronger than diffcotopy. In 11T we compute the relevant homotopy
groups. We shall also consider the relation of a manifold Ne# (25 + 1,k,s) to a manifold
M obtained from &N by deleting the interior of a 2s-disc; we find Me#"(2s,2k,s), and
compare diffcomorphisms of M with those of N. The paper Q will contain a number
of preliminary results and notations, and in IV we attain our main objective. As in [11],
complete success is obtained only for the problem of classifying almost-closed manifolds.

In this paper we introduce certain diffcomorphism invariants %, 2 (which are not by
any mecans new) and examine exhaustively the relations they satisfy in favourable cases
(the so-called stable range). It then turns out that the classification of handlcbodies in the
said cases (duc essentially to Haelliger and Smale) can be conveniently expressed by our
invariants. Applications of the results are postponed till the third paper of the series.

§1. THE DIFFEONMORPHISM INVARIANTS

We shall use ‘manifold’ for compact, oriented, C”-differential manifold, which may
have boundary. Let M™ be an m-manifold. We write i (A/) for the set of equivalence classes
under diffcotopy of imbeddings [0 8% — M™ (where S* is the s-sphere). Of course, this is
itsell a diffcomorphism invariant. I we suppose M simply-connected, then a diffeotopy
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class of fmbeddings determines a homotopy class of maps. We write i, i(M) — m,(A) for
the projection of diffcotopy classes to romotopy classes.

PROPOSUTION b [ 21 22 3s 4+ 3, and M™ is (25 — m + D-connected, ng is onto.

If2m = 3s -4, and M™ is 25 - m -+ D-connected, yg is (1~ 1).
These results are due to Haclliger [2]. We shall nced a mild extension (whose proof we
defer for a few pages).

LentMa 1 Jf 2m = 35 4 2, and M™ is (25 — m + 2)-connected, two homotopic imbed-
dings of S* are regularly homotopic (m = s + 3).

Thus when 2m = 3s + 4, M™ (25 — m + 2)-connected, we can identify i(M) with
7 (M) and so, in particular, give it a group structure. The range of validity of this result
is called the stable range. We observe that in the stable range, the invariants i(M) admit
homotopy operations. For example, if en(S*), then composition with ¢ gives a map
(not in general a homomorphism, unless ¢ is a suspension) o & : (M) — n(M). Using the
identifications of Proposition 1, we deduce a map o & :if(M) —i,(M), defined in the stable
range.

Now cach imbedded (or immersed) sphere has a normal bundle, whose equivalence
class is determined by the class of the sphere under diffeotopy (or regular homotopy). We
recall the clasification (Steenrod [10]) of bundles over S*. Let D% , DL denote two hemi-
spheres; then any bundle over S* has trivial restrictions to these, and so is derived from
trivial bundles over D%, , D*. by identifying along the equator. In particular, for an (m — s)-
vector bundle over S, we have the trivial bundles D% x R™7%, D% x R™"* and a charac-
teristic map y:5° ! — S0,,_,; and a point (P,x) of S*7! x R"™* < D% x R"™"is identified
with (P, z(P)-x) on the lower half. Equivalence classes of bundles are in (I — 1) correspon-
dence with homotopy classes of maps y.

We denote the map which associates to cach sphere its normal bundle by o:i(M) —
7,-1(S0,,,). This is our sccond diffeomorphism invariant. Its sth suspension S i(M) —
7, ,(S0,,) associates to cach sphere the bundle induced from the tangent bundle of M (we
assume s < m), which depends only on the homotopy class of the sphere, and in fact defines
the homomorphism of n(M) to m,_,(S0,) = n, (B(S0,)) induced by a cldsslfymg map
M - B(S50,,) for the tangent bundle of M.

Now consider the behaviour of o under the operation » £ defined above in the stable
range. In fact for these purposcs, the stable range may be extended by a dimension, for
by Proposition I, cach homotopy class is represented by imbedded spheres, and as a corol-
lary of Lemma 1, these all have the same normal bundle, so that'if 2m = 35 4 3 and M"™
is (25 — m -+ 2)-connceted, % induces a map from w, (M) to 7, (S0, -,). Let S*be a sphere
in A, representing xe i (M), then x o & is represented by an imbedding of S™ homotopic in
M to the map defined by ¢ of S into S% Now a tubular neighbourhood of S*, is certainly
(s -~ D-connected, so by Pmposm(m [, provided s — 1= 2 —m 11, 8" can be imbedded
alieady in this neighbourhood. [Cin addition s = 12 2 — a4 2 and 2m = 3r 4 3, the im-
Bedding is unique up to regular homolopy, and so has aowell-defred normal bundle, oy .
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LEMMA 20 Suppose 20 2 3r - 70 w0220 s 43, and r s Then the abore cone
struction determines a map
Fom (SO, v 2dS%) - m, (SO,

We pose the problem, to give a 7w stopy-theoretic interpretation of this map. We
present below a number of propertiss
Lemma 5).

Lich may shed some light on the problem (in

We use the Thom construction to Zziine our next invariant. First suppose x«jfM)
has «(x) = 0, and is represented by a sp=-zre S° o M with normal bundle trivialised. Then
it has a tubular neighbourhood S* » L7 7%: project on the factor D%, and shrink the
boundary to a point (o), giving a spherz S77°% and finally extend the map of the tubular
neighbourhood to M by mapping the rz:t of M to co. We have defined a map Af - 5™7%;
this induces homomorphisms of homotczy groups m (M)~ m(S"7%).

The hypothesis a(x) = 0 may be ciszensed with. For express an imbedded sphere
D* . A tubular neighbourhood may be derived
from D% x D"7*and D% x D™7% by idz=:iMving along the equator as above. Now write £
for the interior of D% x D"7%  Then £ s an open mi-cell and if we remove fZ from M,
(M) and i (M) are unaltered, for r < 1z — 2. However, on the remainder of M, the Thom
construction may be performed just as bere, and now, since D*. is contractible, the triviali-
sation of the bundle is essentially uniguz. Hence the map is uniquely determined by x.
Thus for cach xei(M) and r < m — 2. w2 have a homomorphism of x (M) to 7,(5" 7).
This defines maps A, :i(M) x 7 (M) — =,i5" ™), linear in the second variable. It is clear
that 2,{x,30 &) = 2,{x,3) o & for £en, (5. since the map of homotopy groups is induced
by a map of spaces. We sometimes usz 2, also for the map of i (M) x i (M) defined by
first performing 7, on the second variable. znd then /

()

§2. RELATIONS BETWEEN THE INVARIANTS

We next find all the formal proper:iizs of o and A.

LemMa 3. For xei(M), 2,.(x,x) = S=z(x).

Here, n is induced by projection o S0,,_, on S™*7! and § is the Freudenthal
suspension. '

Proof. Let S* < M be a sphere rerrzsanting v, and form a tubular neighbourhooed
as in the definition of 2. We must find 2 sz:ond sphere representing v, but avoiding £ this

we do as follows. Let x be a base point in 2 D™7% Then, regarding the tubolir neightour-

hood as a bundle, we choose a cross-seciion ziven by D% X = over DY, Using the ideniifion-
tion, over PeS™ e DY, this gives (P. 2 2 %) The map P> y(17). » represents (by dotiad
tion) the homotopy class wx{x). This o e extended to a map of D% (o vive v o o of
ST 1o 877 pepresenting A (v,x): but exoo by hemispheres defines prociaely dhie

denthal suspension Sra(x).
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Linva 4. Suppose M7 (5 - s — i+ V-parallelisable.  Then for xeifM). yei(M),
ST = (- DS () (r,s <m - 2).

Proof. Tet /1 ST— M. g:S* > M represent vyy; w.lo.g. we suppose these transversal
to cach other. Then the images meet in a submanifold V of both, of dimension » 4- 5 - n.
Now 2, is represented by the map of $*to $” " induced by trivialising the normal bundle
of a hemisphere of 87 in Af—or cquivalently, by the restriction to V of that trivialisation
(now of the normal bundle of ¥ in §%). Now since r,s < m — 2, we can represent ., {S™)
by maps of §” x S* into §™. Hence the rth suspension of 4,4 is represented by the map of
ST x S%into S™ given by the submanifold 1 x ¥, whose normal bundle is trivialised first
in S*, then by adding the trivialisation deduced from a base of the tangent space of S"at 1.
Varying by a homotopy, we may suppose ¥V imbedded diagonally in S™ x S* (for we have
given imbeddings in cither factor), provided the above trivialisation is still used.

Similarly for $%2,,(3,%), except that reversal of the factors induces a sign (- 1), and
we have a different trivialisation so that if the trivialisations agree (up to homotopy) the
result will follow. Now the normal bundle of Vin $" x §* is canonically isomorphic to the
restriction to ¥ of the tangent bundle of M. For, if PeV and w=w + v, is a vector
tangent to 7 x S* at P, where w, is tangent to S, w, to $*, we may map w, to the corre-
sponding tangent vector to S™at P in M ; similarly w,, and subtract. This map takes tangent
vectors w to S” x S at P x P into tangent vectors to M at P; and if the image of wis 0,
wy is tangent to ¥ in 87, and w, represents the same vector tangent to Vin S*, 50 w = wy + w,
is tangent to ¥ in S".x S*. Hence normal vectors are mapped monomorphically.

Now the two trivialisations of the restriction to ¥ of the tangent bundle of M are
defined by taking ¥ < D'(D%), a hemisphere of S™ (or S*) and trivialising over the contrac-
tible space D7(D%). Hence they agree if and only if the tangent bundle of M is trivial over
D"w D, But, up to homotopy, )
Dru,D* D" DruCV
=T DU =

D? Vv D
so D"u D’ has the homotopy type of the suspension of ¥, which is (r + s — m + 1)-dimen-
sional, and the result now follows from the hypothesis that M is (v + s — m -+ 1)-parall-
clisable.

D'y D¥ SV,

COROLLARY. If 2m 2 3s + 3 and M™ is (25 — m + 2)-connected, 7, induces a (—1)°—

symmelric bilinear map
Jim (M) x (M) - n(S"7%).

Proof. Under the hypothesis, n,($" ") is a stable group, and so s-fold suspension
induces an isomorphism of it. Thus if 2m = 3s -+ 4 and M is (2s — m + 2)-connected, we
can identify £, (M) and 7 (M); the symmetry of A follows from that (proved above) of its
s-fold suspension, and 7 is lincar in the first variable since it is symmetric, and lincar in the
seeond.

(F 2= 3 13 we have only to observe in addition that if 5. (v) = i(x"), then
Aoy = 2,00 ) Torany yr this follows avain from the symmetry and the fact that 2 depends

by o the homotopy class of the second aroimment.
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We think of 2 as a gencralised intersection number: for mr-= 26 it s preciscly the vad
intersection number, as we sce at once.

Toeorem b0 Lef 2012 3s 4 3, 5 22 2, and suppose M"™ (s <~ -+ 2)-connected. e
we have maps 2o (M) -, (50, ); 2w (M) < n (M) = 5 (S such that 7 iv bilinear,
Ay = (= 1Y), Mvn) = Sua(y) and (x4 ) =« 2(x) 4 2(y) -+ ().

Here ¢ is the boundary in the homotopy exact sequence of the fi

hering SO, - 50, .,y

S™7E We have alrcady established all the results except for the addition formula for 7.
The idea of the proof is as follows. We represent x, y by spheres ST, S3 transverse to cach
other. These are joined by a small tube obtained by thickening an arc which joins S, to
S,. but is disjoint from them cxcept at the ends. We obtain an immersed sphere representing
x - 3 and with normal bundle «(x) 4 2(3). We must modify this to be an imbedding, and
sec how this changes the normal bundle,

Hivessatz. Let f1.8°— M™ be an immersion which crosses itself ingeneral position along
a submanifold V27" Then there is-a disc D™ in M™ which meets S* in a dise containing
q

sz_ m

Proof of Hilfssatz. We use results of combinatorial topology. Observe that the con-
ditions 2m z 3s 43, s =2 imply m > s+ 2. Morcover S* is (25 — m)-connected and
M™(2s — m + t)-connected. The result—in the combinatorial sense—now follows from a
lemma of Zeeman {12]. By a result of Hirsch [5], a small deformation will suffice to make
the dises differentiably imbedded. ’

Proof of Theorem. The desired modification is now simple: we remove the part of
J{S%) within D™, and replace by an imbedded s-disc spanuning D™ n f(S)—-that this is pos-
sible follows from Proposition 1, in a slightly generalised form [3]. Alternatively, we may
describe the old sphere as obtained from the new by taking the connected sum with an
immersion of S* in $™—-and the change in normal bundle will be just the normal bundle

~of this immersion.

Now the immersion has the property that S* can be divided into two hemispheres
(which correspond to the original spheres S, and S,) such that each is imbedded, and their
intersection invariant is z(v,y). The imbedding of one hemisphere may be regarded as
standard, and we have to describe the sccond. In fact, we suppose a neighbourhood of
D% to be imbedded flat; then we can ignore a neighbourhood $*7' x D" 5*L of its
boundary, and concentrate on the complementary D* x §77% In this. D% is mapped by

05
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D % 1, and near the boundary, D% by D' x —1. Morcover, the homotopy class (relative
to the boundary) of D% is just A(x.)en(S"%). Now using Proposition 1 or Lemma 1,
voe may replace by any homotopic imbedding: we choose a cross-section of the projection
of D" x $"~*on D. Then tangent vectors project isomorphically into D%; hence normal
vectors project isomaorphically into $”7% We trivialise the normal bundle of DY by lifting
the map DY — S"7° (which represents a) to a map D*. — S0, ;, and the characteristic
class of the normal bundle of $* is now obtained by looking at the restriction of this (o
the boundary $*71 — S0, .. But thisis just the process used to define the boundary operator
in the homotopy exact sequence, which proves our result.

We remark that most of the above considerations for spheres can be paralletled for
discs——at least if « is defined relative to a given trivialisation on the boundary. We shall
have use for such extensions in the sequel.

We can how give the proof of Lemma 1 (we do nor usc the result of Theorem 1, only
the method).

Proof of Lemma 1. Suppose given two homotopic imbeddings of S* in M”™, and a
homotopy, i.e. a map of 5% x I'into M™ x I. The singularity locus of this map (supposed
in “general position™) has dimension 2(s 4 1) — (m + 1) = 25 —m + 1 {since 2(m + 1) >
3(s + 1)—=see Haelliger {2]). Again apply Zeeman’s lemma to enclose this in a disc. Now
on the boundary of this disc we have an imbedding of §%in $™; by a result of Kervaire [6],
for 2m = 3s + 2 this is regularly homotopic to the standard imbedding, ic. spans an
immersed disc DY in D™*'. We have not actually obtained a regular homotopy, but the
existence of an immersed S* x I shows (using Hirsch’s obstruction theory [4]) that the given
spheres are in fact regularly homotopie.

[t has been pointed out to me by the referee that the combinatorial argument in the
above Hilfssatz can be by-passed by using recent (in part unpublished) imbedding theorcms
of Haefliger. For Theorem 1, we choose an imbedding of S* in $™ with each hemisphere
imbedded, with intersection number —2(x,)) (this is constructed as above), and take the
connected sum with (M™, $%). In the new pair (M™, $*), the two hemispheres arcimbedded,
with zero intersection invariant; now it can be deduced from the main thcorem of [3] that
such an immersion is regularly homotopic to an imbedding. The result now follows as
above, by calculating the normal bundle of (S”, $*). Lemuma 1 follows from Theorem (4.2 (b))
of Haefliger and Hirsch [Immersions in the stable range, Ann. Math., Princeton 15 (1962),
231-241] and from the version of Prop. (2.2(b)) of Hacfliger’s Bourbaki Seminar (BDecember
1962) for homotopy. :

We now apply Theorem 1 to deduce some properties of the map F of Lemma 2.

Limya 5. The map Fim_q (80,,.) x 1(S*) = m,_1(S0,, ), defined for 2m = 3r + 3,
moz2r s+ 3, and r = §, satisfles
(1) Fislincar is the first cariable, if the second is a suspension.
(2) If the first variable is a suspension, it is lincar in the second.
(3) F7(S9.8) = SIn,&) when the right hand side is defined.
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(4) nl(2,8) is the product of no,é i I "w stable homotopy ring.
(S) I, &y A &) o= Iy E) - Fla, 2o d(nn . &y ES)

(6) F(o, k) == ko - (l)() OSn(n)y where Den (S 22 7.

Proof. For (1), take D"~ *bundiz: sver S representing 74,75, and form the suin of
the corresponding manifolds. Take iz idin
by a tube in the sum. The homoter:

zs of 8" in the two parts, delining Fand join
55 of the result s 4y ¢

1

iy o8 which cauals

(iy -+ 1y) - Ewhen s asuspension (iy, i- 72
and the result follows.

ate the central cross-sections of the two bundles),

For (5) we apply Theorem 1: e to caleudate the intersection nvariant of two
spheres ST and S% representing & and ‘;. e shall use the fact that our homotopy group is

stable to ignore suspensions; then u:izz Lemma 4 and the last remark in §1 we huve
ST, 8% = AST, 870 8y) = (ST, S = (= D7AUS, S - &,

= (— 1)”/‘ SLSN ) ey = (= D)PAUSY, S nly ey G

(the sign may be ignored, as if s is od<. =z must have order 2). Now (5) fellows from the

Theorem:; (2) is an immediate corollzr.. zud (4) lollows also from the Theorem and the
above calculation (with &, = &,). We cziuze (6) by induction.

Finally (3) is trivial, since if the <= :aining manifold is multiplied by /, the normal

bundle of 7 is suspended once.

It must be confessed that these resilts are complicated and incompluie; they will,
however, suflice for our purposcs.

§3. CLASSIFICATION OF HANDLEBODIES
According to Smale [7], a handiz> Iy M e #(mn, k, 5) is a manifold which can be
obtained by gluing k s-handles to a disz. lore precisely, there is an imbedding
SrUb GO DYy - D
and M is formed from D™ U k., (DS » 2}
f and rounding the corners. The map 7 s

"% by identifying corresponding points under
yimng 2

called a presentation of M.

’

We scek to classify handlebodies *f 2 to diffcomorphism. We shall classify presenta-
tions up to diffeotopy; to deduce a classi” zition of manifolds from this, we must know how

many prescntations (in some sense) M Fzs. Clearly, M has the homotopy type of a bouquet
of k s-spheres. The rcduced homolozy zroups all vanish cxccpt the sth, which is free
abelian of rank k. Write H = H (M) = =. /) (by the Hurewicz theorem). Then a presenta-
tion determines a basis {e;} of /1 consisilnz of the images in /1 of

(DF, aD}y = (DI s o0 "D x 0) > (M, D") « (M, ).

ProrOSITION 2. M has a presen:. - corresponding to any buasis of 11,
This result is due to Smwle [9]).
Next we will classify imbeddings - Tet f be the restriction of fto UF | 7005 = o,

Thus fis an imbedding of a disjoint vriz= of & (s~ D-spheres in 77 a ik o the conse
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-

of Haetliger [’w\] Now (if m = 5 4 3) the complement of the ith $*7! has the homotopy
type of 8" 771 hence the map of the jth determines an element 7 em (8" 77 Y}. More-
over, as is k,d%ll) seen, A= (—1)'4;. The 4; are linking invariants, or (if m = 2s)

Hnking numbers in the classical sense, and have been used by Kervaire.,

PROPOSITION 3. If 2m = 3s 4 3, s = 2, diffcotopy classes of imbeddings fare in(1 — 1)
correpondence with sets of linking invariants 7;; € wg. (S" 7571 (i < j).

The proof is given in [3A].

Now, given [, to obtain fwe merely have to extend imbeddings from spheres to tubular
neighbourhoods. In fact, the mormal bundle of cach S$*71 admits a canonical trivialisation,
since by Proposition 1 (and Lemma 1), $*7' spans an imbedded disc D¥in D™, unique up
to diffeotopy (regular homotapy), and we trivialise the normal bundle of that. By the
tubular ncighbourhood theorem, given an imbedded S$*7! in $™7! with trivial normal
bundle, diffeotopy classes of extensions to an imbedding of $*7! x D™ * are in (I — 1)
correspondence with trivialisations of the normal bundle, i.c., with elements of n,_ (SO, _ )
This proves

Lemma 6. Diffeotopy clusses of imbeddings f are in (1 — 1) correspondence with sets
of invariants
Ajem_ (ST (1K i<j<k), gen,_y(SO,-) (1 <i<k).
(The hypotheses of the preceding Proposition are preserved here, as below),
Now we take an f with the given invariants and form a manifold M. Let {e;} be the
basis of (M) defined above.

LeMMA 7. ey, €)) = Siyy, ofe) = o,
Proof. Observe that sinoe M is (s — 1)-connected, and (s — 1) = (25 — m + 2) follows
from our hypotheses, we are indeed in a situation where Theorem 1 is applicable and 4,

arc defined on the homotopy group.

Represent e; by the sphere §; with D] x 0 as one hemisphere and a disc D; in D™ as
the other. Then Sy, S; meet only in D™. To compute their intersection, we deform Dj to lie
on ¢ D™, which is possible by Proposition 1. Thus it only meets S; on 0D x 0. If we now

am—s—1

perform the Thom construction, 8 D™ is mapped to , and D™ to onc complementary
hcm;sphcru The induced map on 0D} x 0 is just that used to define the linking invariant
Zij3 1t has to be extended to map the hcmxsphuus of §; into those of $™7% and thus yiclds

the suspension SA;;.

To compute z(e;) we aguin use the hemispheres D}, D, x 0, and trivialise the normal
bundles; that of D; x 0 is indeed already trivialised. The fitting together on the boundary
is given by f, and we defined »; above as the element of 7y (SO, ,) corresponding to the
identification.

Since 2;; belongs to a stable group, so is determined by its suspension, it follows that
7 and 2 sullice for the ditffeomorphism classification of f. Thus their values on the generators
ccare independonts aad determine the presentation.
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By Theorem 1, these values determine z and 7 uniquely on the whole of J/. Thus

there is a (1 — 1) correspondence between handizbodics with a presentation, and <truciures
(11, », 2) with a choscn basis for /1. Using Proposition 2, we now deduce

Tororusm 2. If s2=2,2m = 3s + 3, diffeomorphism  classes  of  handlehodices
Me A, k,s)are in (1 ~ 1) correspondence with isomorphisin classes of structures of the
Jollowing type on free abelian groups I of raink k@ maps o H->n, (SO, _), 711 < 1]
= 1 (S™7) satisfying the conditions of Theorem 1.

The case m = 25 of this thecorem was proved and cxploited in our paper [11].

Now let (Hy, «y, 4) and (H,, o5, 7,) be the systems of invariants for handlebodics
M, and M,. Definc /1 as the dircct sum H, D H,, and v /[ -, (SO, ), 72 [T« (]
- (5" 7*) by components:

a(xy, x2) = 7,(xp) + 25(x3),
)( (xls Xz), ()’1, yZ)) = ;'l('\"l’ yl) + ;'2(x2> yZ)-

Tt is immediate that (/7, o, 2) satisfies the conditions of Theorem 1. We remind the reader
that the sum of two bounded manifolds is defined by identifying discs imbedded in the boun-
daries of each, and rounding corners; this is well-defined if the boundaries are connected
and oriented and the discs have opposite orientations.

Corovrrary. The invariants of My + My are (H, 2, 2).

Clearly (M, +M,) = H(M)® H(\,). The normal bundle of a sphere in A/, and
the intersection of two such spheres, are clearly unaltered by regarding them as spheres in
M; + M,. The result follows.
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