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Tug: omirct of this paper is to apply the methods and results of paper 1 to the next harder
prolem—riz., classifying up to diffeotopy diffeomorphisms of handlcbodies. (Of course, other
classifications, particularly up to conjugacy, are of interest, but this scems to belong to
another realm of ideas). It turns out, however, that the problem as proposed is not quite
practicable, and we have to work with a stronger cquivalence relation. We obtain essen-
tially complete results for this simplified problem, which are best stated as an exact sequence.
Our numeration follows on from that of paper I.

§4. QUASI-DIFFEOTOPY

.

Recall that two diffeomorphisms hg, B, of a manifold M are said to be diffeotopic
if there is a diffcomorphism H of M x I of the form H(P, 0= (h(P),1) forPe M, tel

DerNITION. A quasi-diffeotopy Q of hg to hy is a diffeomorphism of M x I such that
O(P, 0) = (ho(P), O) and Q(P, 1) = (h(P), 1) for Pe M.

This concept is not cssentially new (sce, e.g., Brown and Gluck [15]; the term ‘weak
dilfeotopy” would however be unacceptable, since it has quite a different meaning already).

We write Diff (M) for the group of orientation-preserving diffcomorphisms of® A{;
this is to be thought of as a topological group with the C”-topology, but we shall not
need this. Thus mo(Diff (A)) is the group of diffeotopy classes of diffecomorphisms. We
shalt write 7,(Diff (M) for the sct of quasi-diffeotopy classes.

Remark. One can also define 7,(Difl (17)) as the group of diffeomorphisms of 5" x M
(say, keeping the axes fixed) modulo those which extend to a diffcomorphism of D77 % M.
It is then possible to obtain a classification similar to that below, in a similarly defined
stable range. We refrain from this since it is not clear that 7, (DIl (M) has any direet
relation to 7, (Difl (M)): however, it will be useful to bear these considerations inwiad

We also use relutive groups; DUT (M, V) and DIt (M el 1) witl be dhe sabe
groups of Difl (/) which keep [ invariant, resp. pointwise fixedrand go g o
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264 C. T. C. WALL

Ao(DUT M rel 1)) their quotients by the corresponding equivalence relations that O (as above)
must keep V7 x [ invariant resp. pointwise fixed.

We first list the trivial properties of the relation.

Leapia 8. Let g, hy, By be diffeomorphisms of M.

(i) If hy, hy are diffeotopic, they are quasi-diffeotopic.

(i) If hg, hy are quasi-diffeotopic, so are iheir restrictions to éM.

(i) f ho, hy and hiy, by wre quasi-diffeotopic, so are hgo by, hy o by

(iv) Let h be a diffeomorphism of M x I agreeing with 1 on M x 1. Then h is quasi-
diffeotopic to 1.

Proof. (i) Any diffeotopy is, by definition, a quasi-diffcotopy.

(i) If Q is a quasi-diffcotopy from h, to h;, we may take Q|OM x I.

(iti) Let Q, Q' be quasi-diffeotopies; then we take Q,Q'.

(iv) 1s less trivial, and is indeed the property which distinguishes quasi-diffeotopy
from diffeotopy. Note that first by the usual ‘normalisation’ process—a transformation of
I—we replace i by a diffeomorphism ‘constant’ near M x 0 and near M x 1—i.c. having
there the form (P, u) = (k(P), u). This only alters /i by a diffeotopy, hence by (i) by a quasi-
diffeotopy; and now we may suppose that /1 agrees with 1 near M x 1.

Write A(P, r) = (P’, Jr), then define

O(P, u; I) = (P, Ju; 1) =0 ru?<t
= (P, u;1) S LN
Then Q(P, u; 0) = (h(P, u); 0) and Q(P, u; 1) =(P, u; 1). Morcover our conditions on /i
cnsure that @ is indeed a diffcomorphism.

Note that (iii) shows that #,(Diff (M)) is in fact a group. We shall now apply (iv);
the pattern of the application is as follows. For any manifold M’, we know that the boun-
dary admits a product neighbourhood. It follows that if a ‘collar’ M’ x I is attached along
¢M* x 0, the resulting manifold M is diffeomorphic to M’.

Lesva 9. (i) If by, hy are quasi-diffeotopic diffeomorphisms of éM, and ho extends to
a diffeomorphism of M, then so does hy ; .

(i) If hg, hy are diffeomorphisms of M whose restrictions to M are quasi-diffeotopic,
then so are hy, hy;

(i) Ao(DUT D"y == 1;

(iv) (DI S" 7Ty == DI S™ 1 i(Dift (D).

Proof. (i) We know M s diffcomorphic to M5 now let /1, be the diffeomorphism
ol M extending oy on CMYand O (on @M x 1) the quasi-diffeotopy of i, to hyothese (it
torcther enthe common boundary M and we may smooth ofl there (e.g. use product
pchbourhoods and Tet 71,0 O be fconstant’ near CAM).
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(i) I Q"is a quasi-diffeotopy on M, extend to some diffeomorphism O of M« [ (0.0,
constant on ¢ x 1); this gives a quasi-dilfcotopy of /i, to a map aprecing on A7 with
hys by Lemma 8 .(iii) we can assume fy, iy agree on M. They induce diffcamorphisms of
M’ x Tagreeing on dM’ x 0; by Lemma 8 (iv) these are quasi-diffcotopic, and the quasi-
dilfeotopy is the identity on dM’, so extends by the identity to M’

(iii) Let /2 D" — D" imbed a concentric dise (e.g. multiplication by V). If /s a difico-
morphism of D", then by the Disc Theorem fand /. fare weakly, henee strongly diffeotopic;
i.c. i is difleotopic to a map g which keeps /(D" fixed. But g is quasi-diffcotopic to the
identity by (if). Hence, by Lemma 8 (i) and (iii), so is A.

(iv) By (i) and Lemma 8 (i), any diffcomorphism of 8”7 which extends to onc of
D" is quasi-dilfcotopic to the identity. The converse follows from (i). The result in eencral
follows (by Lemma 8 (iii)).

The group on the right hand side of cquation (iv) was defined by Thom [14] as I,
and is well studied (e.g. it is known that I, is zero for # < 6 and finite for all 7). We shall
now generalize onc of Thom’s results. We first need

HiLessatz. Let M™ be simply connected, D™ be a disc in the interior of AM™. Then
Ry(DIE (M™, D™)) = #(DIT (M™)) Moreover, if M is a sphere,

(DI (D™ rel S™71Y) 25 2 (DilT (S™ rel D) =5 7o DIl (5™, D).

Proof. There is certainly a natural map between the first two groups. Since, by the
disc theorem, any diffeomorphism of A is diffcotopic to one keeping D™ fixed, it is onto,
indeed, so is the natural map of #o(Diff (M™ rel D™), as we nced for the second part. Now
let hy, iy e Dilf (M™, D) be quasi-diffeotopic in M, with quasi-diffeotopy Q. Then for
m z 2 (the result is trivial for m = 1), O (0 x /) is diffcotopic in M x 710 0 x I (we use 0
for the centre of the disc D™); modifying O by a diffeotopy, we may suppose it the identity
on 0 x /. But then D™ x Jand Q(D™ x I)are tubular ncighbourhoods of 0 x 7, and modi-
fying Q by a further diffeotopy (fixed at the ends), we can make these the same point-set,
as required.

For @o(Diff (M™ rel D™)) we proceed as above, but at the last stage. applyving the
tubular neighbourhood theorem, we may suppose that Q induces a bundle map of D" x [
(over T) on itself. The obstruction to making this the identity thus lies in 7,(S0,). and is
represented by a map of 7 to S0,. Now if, for example, M™ is a sphere §”, then SO, acts
on 8", so rotating the whole sphere (for cach 7€ /) by the corresponding element of S0,
we reduce Q to the identity on D™ x /. The remaining assertions follow casily.

Remark. Observe that this discussion can be informally stated as Tollows. There s
A exact sequence.

DIV D) o 7 (DIVD™) - Zo(DIT 1l D)) - F(DITM™, D) - 7 (DIF(D™)).

The last term is zero, the second isomorphic to 4,(S0,). and we have shown that it V7 i

S the first map is onto. In fact even i€ 7, s replaced by i, it is not hard to jusiiiy this

sequence.
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Now let A7 he a closed oriented simply-connected manifold, D" an imbedded disc,
N the closure of M™ - D™ Write {M/N} for the set of diffcomorphism classes of closed
manifolds A, formed from N by attaching a dise to the boundary by some diffcomorphism
g of S" 71 thus M, = M.

-

Turoresm 3. There is an exact sequence
Ui g = T DIT (M) - Ty(DIT(N)) - [, » {M/N} - 0.

Proof. By the last lemma and Hilfssatz the sequence may be written as

x B y . ]

(DT (D™ rel ™7 1)) — f (DT (M™,D™)) - 7o DIT (N™)) = &o(DIfF(S"™ 1)) = {M/N} - 0.
The maps arc now easy todefine: o is induced by inclusion—if fisa diffecomorphism of S

D™ rel ™71 a(f) is defined as the identity on N™ and fon D™; for g € Diff (M"™, D") we !

let fi(g) be the restriction of g to N™. Similarly y is defined by restricting to N = Smt,

Finally, 6(g) = M,. In cach case the definition is compatible with quasi-diffeotopics: this §
is clear for o, 5, 7 and follows for d from Lemma 9 (i). !

Next, px(f) is the idcniity map, hence correspondingly fla is zero for equivalence 2
classes. Also yf8 is zero, for if yf(g) = g’, then g’ can be extended to D™. And dy =0, for
if g can be extended to a diffeomorphism of N, that diffeomorphism (with the identity on ;
D™) induces a diffeomorphism of M, on M, and also of M, on M. %

If now g represents an clement of Ker f, there is a quasi-diffcotopy Q of g|N to 1. ;
Extending Q, we find that g is quasi-diffcotopic to some ¢’, which agrees with 1 on N, so ;
is in the image of «. Extendability follows from Lemma 9 (i) essentially. If the class of /i %
is in Ker y, then 4]S™ 7" is quasi-diffeotopic to 1, so by Lemma 9 (iv), extends to D™, thus ‘
IisinImf. Finally supposeg in Ker 8, so M, diffeomorphic to M. Using the disc theorem, . f
we modify the diffcomorphism of M, on M, to induce the identity on D™; it then gives a |
diffcomorphism of N which agrees with g on the boundary, so that g is in Imy. 1

CorOLLARY. For M = 8", N= D", 6:, = {M]D"}. {

This follows from the Theorem and lemma 9 (iii). This resuit—that T, may be
defined by diffcomorphism classes of manifolds obtainable by attaching 2 discs—is due to
Thom [14]. The other case we have in mind is for M an (s — 1)-connected 2s-manifold;
we shall apply the theorem in a later paper of this series to obtain information on {M/N}.

§5. OBSTRUCTIONS TO DIFFEOTOPY .

We now let M e A(m, k, s) be a handlebody, of the type classified in the preceding
paper--i.ce. s =2, 2m = 3s +3 and scek to classify diffcomorphisms of M up to quasi-
diffeotopy. We first classify them up to homotopy. Now M has the homotopy type of a
bouquct of k s-spheres, and s 2 2, so that (M) 22 H (M). 1t follows that the homotopy
clivs of awmap frof M i itself s determined by the induced map /iy, of 11 = I {M). Now
we have invarianty defined functions o0 /1 = g (80, Jand 2 1T x 1] -» 2 (S™7*); which
must be preserved by any diffeomorphism, i.c. 1, satisfics

(I, () == (X)), A0 (0, (1)) =2 (x, ) Tor x, yell.
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Conversely, let i, be an automorphis « > 7 with this property. Let fe;} bean Lneds of
H 8 if
11; by Proposition 2, M has presentations ¢ o ponding to the bases (eprand (o), But

the formulac above, with Lemma 7, show 727 e presentations have the same invariants

»; and /. Since, by Lemma 6, these gave & omplete set of invariants, there is a diffeo-
morphism of M which carries one presentati= 120 the other, and soinduces I Wewrite

Aut I for the group of automorphisms of /1

Lisisa 10, The homotopy classes of @2 scaorphisms of M are in (1 - D) correspon-
dence with elements of Aut H.

Next we must study when two horotizie diffeomorphisms arc quasi-diffcotopic:
this problem lies somewhat deeper. We a t to build up a quasi-diffcotopy in steps,
I pagqg py |
using a filtration of M by subcomplexes. We Dzt write M = M’ U (OM' % 1), as for Lemma
9 and use a presentation M = D"u; k(s D of Masa handlebody. Our Giltration
H i FAVIED : i Y
starts with D™ then adds D} x 0; then D} » 2 7, and finally 0M’ x 1. The idea is to tse
the disc theorem to deal with D™, use Haue 22r's imbedding theorem (Proposition | for
g i
discs DS % 0. extend to Df x D™ by the 1.z tar neighbourhood theorem, and then out
13 * L 1 =)
to the boundary using a result of Smale.

P

Suppose that bt M —>M is a diffeor - --4ism homotopic to 1. We regard /r as a
diffcomorphisni of M x 1, and seck to citenz Jon Mx1and 1 on M x0 toa diffco-
morphism Q of M x I.

Step 1. By the disc theorem, D" ari D D™ are diffcotopic, and we choosc a diffco-
topy and define it as Q| D" x L

Step 2. We next define Q on Df x I; mow QoD x I) is already given: on ¢Dj x [
by Step 1, on D} x 0 by 1, and on D} x 1 =7 4. We can extend to some map of Df x I-—
this follows since /i is homotopic to 1. By Hzzlig r’s theorem [3], this map may be replaced
by an imbedding, provided that 2 (n+1z3s+1D+3 1 2mz= 3s +4 and M x [is
{2(s + D=(m+1) +1 Y}-connected. The secod condition follows from the first, since M is
certainly exactly (s — 1)—c01}ncctcd, and s < 72 —3. From now on, we shall assume 2z
3s -4,

o

Step 3. We have now defined imbed:i=zs Q(Df x I); however, we have no rcason to
supposc that these will have disjoint imagzs. Since their boundaries were fixed in advance
and disjoint, we can appeal to §1 for a mezs
Thom construction. We obtain clements |

symmetric. Provided that thesc elements vz

2o (A) of their intersection, defined using the
27, (™), for i j, which are (=1t
:h, Haefliger's theorem [3] assures us of the
possibility of separating the images Q(D} » -, and so gettingan imbedding at this step also.

Step 4. By Step 2, Q'is defined on L7 .« Fand on DY x . We now wishi to extend to
DI x DI x I—ie, toa tubular neightoymoed of D} x 1. By the tubular neighbourhood
theorem, it is suflicient to {ind a trivialiseo o~ of the normal bundle with the desired pro-
pertics. As in Step 2, these turn out tobe iz

4 triviadisation is already given on the boun-
dary ¢ (D} x I) (thecorners clearly presert =2 s pecial features). The obstruction to oxtending

(his over D] x I (since this is contractible, < tyndle certainly s teivial) is onetment ol
7.(8S0,..). 16 ;== 0, the extension of the oine and hence of Q. is possible.
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Step 5. We now assume that Steps I-4 have been successfully performed; we assert
that O can then be defined on the whole of A7 x 7, so that /1 and 1 arc indeed quasi-difTco-
tepic. Observe that since A, and M, and M x [ have the same homotopy type, and
QM x IT—- M x Tagrees with the identity on M7 x 0, the inclusionof Q(M' x I)isahomo-
topy c<’1uiva]cnco Let 17 be the closure of the complement. Clearly W is simply connected
(recall s < m —3), so that by a thecorem of Smale [9], W gives an ‘fi-cobordism’ of ¢M" x [
to ¢AM x [, and is diffecomorphic to é¢M x I x I. We can then extend @ using such a
diffcomorphism.

We may summarise the above discussion as fellows.

Lemva 1l Lets = 2,2m = 3s + 4, M e 0(m, k, s); then two homotopic diffeoimorphisms
of M are also quasi-diffeotopic, provided certain obstructions ;€ n(S0,,_ )., p;;€ 7. (S"7F)
(I €i<j<k) vanish.

We warn the reader that this result is far from conclusive (which misled the author
for many months), and we shall make a more complete study in the next section. We also
observe that by taking more care (and using deeper results of Hacfliger), we could have
obtained actual, rather than quasi-diffeotopy, in cach of the first four of the above steps.
For Step 5, however, there does not seem any method to obtain actual diffcotopy.

The next question is, which values of the obstructions f3; and y;; are possible. We
first formulate

LemMA 12, If the diffeomorphisms h, i’ of M, homotopic to 1, admit obstructions [,
Wy and B i as above, then It o e admits i+ B, i + uij

Proof. Given h, ' we construct maps @, Q' as in Step 2 above, defining the given
obstructions. Then for i’ » 1, we can define Q" by
.

forO<t <y, QP 10)=(P;,1,,) where Q(P,21)=(P,,21,);
fory<t<1, QP,0=(hP,y),1,) where Q'(P,2t—1)=(P,,2t,— 1)

Now recalling the definitions of g, by maps of discs, we sce that their additivity
follows at once from the definition of addition in homotopy groups.

Now if arbitrary 8, are assigned, and g;: (D", $*~") — (S0,,_, 1) arec maps rcpresenting
them, we can define a diffcomorphism & of D™ 5., (Df x DI"™%) as the identity on D", and
by the formula

h(P, x) = (P, g,-(l’).x)
for Pe Df, x e D% (Fora diffcomorphism, we ought, strictly, to insist that g; be smooth,
and map a neighbourhood of $°7' to 1). Clearly, h is homotopic to 1, all the p;; are zero
(we can take Q as the identity on D] x 0 x ) and the f§; are as chosen. It remains to con-

sider the g5 this is rather more complicated, but we shall prove

119

Liseaa 130 Gieenarbitrary e 1 (S0, YV < i< k)yand pyjeng, ((S" NI <i<j<h),

there is a diffeomorphisin I of M, homotopic to v, such that B, py,, arise as obstructions to a

lJ,
Jifteotopy to 1.
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Proof. By Lemima 12, the obstructions are additive for compositions, o itis suftficient
to show that any given one can be arbitrary, the rest being zero, as the result follovs on
adding up. We have just shown this for the fi,; we now do it for pyo Cypical for gy s
suflicicnt to obtain arbitrary p,, the other 1t; being zero, and ignore ff;.

We take Q =1 on (D" {J;., Df x 0) » [; we must deline (D5 % 0 # ) to inster-
sect Dy x 0 x I'in V to give the chosen py, and disjoint from the other D20« ] The
folowing argument was suggested by the referce.

Let A" be a disc in M, disjoint from D™ {J,.. (D} % 0), and meeting DY x 0, Dy %26
in discs A}, A3 in their interiors, and naturally imbedded in A™. (For example, first choose
Aj concentric with Df x 0, join A} and A} by an arc avoiding D™ and the Dy« 0, and
thicken). Now take Q@ =1 on (D} x 0 — AY) x 1. Then imbed AS % [ in (A" — A% = |,
to satisfy the following condition. 1t completes disjoint imbeddings of (A} x 1),

CO(AY x T in C(A™ x I), their linking number 1/ € 7 (S"757") is (o satisfy Sy’ =y, (this

is possible since yiy, is in a stable group, so is a suspension clement). Finally, we ‘O in’
O(C(A} x D)) by an (s -+ 1)-disc imbedded in A™ x 1. This completes the definition of Q on
(D™ U; Di x 0) x 15 it is clear that it has the required intersection invariants.

We extend this to a product neighbourhood D x D775 x [ using a trivialisation of
the normal bundle, which agrees with the given maps of M x 0 and D" x I, and is disjoint
from the parts alrcady mapped except in a neighbourhood of V. If we can now extend
QM x 1 to a diffcomorphism /1 of M x 1 the above discussion shows that the obstructions
to a quasi-diffeotopy of 1 and 1 are as stated. But this follows, just as in Step S, by a result
of Smale.

We shall now summarise the results so far obtained. Now what we have shown
(Lemma 11) does not imply that the diffeotopy class of f determines uniquely the obstruc-
tions f3; and p;;, but does imply the converse: a remark reinforced by Lemma 13, We write
L for the direct sum of (§) copies of 7,,,(S™*) and k copics of (S0, _,): L denotes the
total range of values of y;; and f;, varying independently. As we just said, any clement of
L determines uniquely a quasi-diffcotopy class of diffcomorphisms: by Lemma 12 this
defines a homomorphism of L to #,(Diff (A)) and a class arises if and only if it is homotopic
to the identity, by Lemma 11. If we appeal also to Lemma 10, we deduce

Sunumnary. There is an exact sequence
L - 7 (Diff (M)) —» Aut M — 0.

We do not state this formally, since we shall obtain a more complete result below.
Indeed, our next task is to investigate the kernel of the first of the above homomorphisins.

§6. VARIABILITY OF THE OBSTRUCTIONS
It is now necessary to observe that the obstructions g, fi of the preceding paragraph
are indeed not well-determined by . In fact they remain invariant certainly for as fong as
QD™ )F - DY) x I) is only varied by a diffcotopy. and, for 2 > 3y 1 5, we can apply
Haclliger's theorem to obtain ditfeotopics of D% x [in M x 1. Since the boundary of 1/
will be fixed, we will find that the absolute (s - Dst homaetopy group of 3 ophivs ooedle
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In the four steps of §5. we twice had to make a choice, at Steps 1 and 2, In Step |
we chose a diffcotopy of D" to /i (D). Now the proof of the Hilfssatz to Theorem 3 showed
that this ditfeotopy is unique up to a diffeotopy, and operation of 7,(S0,). But varying
O(D™ % 1) by a dilfeotopy is of no concern Lo us, and we now sce that we have the
distinction between s,(Difl (M) = f(DIT (M, D), which we wish to calculate, and
To(DIT (M rel DM)), which is what we have nearly caleulated (in Steps 2--5).

We shall concentrate on #o(Diff (A rel D™). At Step 2, we had Q[é(D} x 0 x D)
given, and chose an extension to a map of D} x 0 x I. For any other such, we have a
diflerence map of ST into M x [. Conversely we can alter Q on Df x 0 x [ by anyclement
of n,.,(3), and by Proposition 1 still take Q an imbedding which, indeed, is unique up
to diffcotopy if 2 = 3s + 5 and up to regular homotopy (by Lemma 1) if 2m = 3s + 4.

Now suppose Q changed, by altering Q on D} x 0 x I by the clement & of gy (M);
then we must calculate the change of the g; and j;;. These are clearly unaltered if /, j == 1.
Now for ji;;, note that Q is unaltered on Df x 0 x 1, 50 the Thom construction defines the
same map f of (M — D") xI to $"*. But the homotopy class of D} x 0 x [ is changed
by &, 50 iy is changed by [f]e ¢, .

We can express this more explicitly. For M has the homotopy type of a bouquet of
k s-spheres, and since 2m = 3s +3, T,y (S™7*) is a stable group. Thus []is determined
by k homotopy classes of maps S*—>S"", and these maps are preciscly the 2;; (by defini-
tion). Likewise, &€ myyq (M), whichis a direet sum of k copics of 7y (S*), provided s 2 3.
We write £;; for the components of & . Then we have [f1o & = E;4;50&; since the &;; are
suspension clements.

Assembling these results we have

Limma 14, Let O be altered so that the components of the change of Q(D; x 0 x 1)
are &,; e gy ((S?). Then
' ¢ ys+ 1
i = iy + Yoy Ao S+ (1) Yo Airolyje
The sccond term is necessary since the variation considercd above must alter not
only j;; but also yy;. Also, since s > 2, the &,; have order 2, so the sign can be omitted.
To compute the change in f;, we first again suppose Q only changed on D} x 0 x I.
Then as remarked after Theorem 1, we can apply that result to calculate the change. The
result is {
Sy =B+ (&) 4 QDT x 0 x 1), &)
But since &, has components &;;, we have by definition
H&y) = Zj F(S»;, Ejl)
dnee the normal bundle in M must be suspended to find that in M x [ and the &;; may
be represented by disjoint maps in M x I, Morcover, since 2 depends on the second argu-
ment enly ap to homotopy, we have
HOWDS x 0 x 1), &)=Y Aj0En-

Assembline these resalts, and again passing to the general case, we have
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Lessa 15, Under the hypotheses of Lenuna 14,

Bi= Pt >4: F(S75.¢50) 1 2, AZijo )

Henee the change in both yi;; and f; depends only on the &, and depends addig oy
on these- by right-distributivity of composition in homotopy grovps, and by (2) of
Lemma 3.

We write K for the direct sum of & copics of x,, (S%), regarded as the range of
possible valucs of the &, We may regard the formulae of Lemmas 14 and 15 as defining
a homomorphism from K to L.

TuroreM 4. Let M e (i, k, 5), s = 3, 2m = 3s + 4. Then there is an exact scquence
K - L (DIl (M rel D)) - Aut H - 0.

Proof. In view of the summary in §5, it remains only to check exactness at L. Clearly
an clement of L determines a diffecomorphism quasi-difTeotopic to the identity if and only if
Q can be changed so that the f; and g;; become zero. But in the last three lemmas we have
shown that the element of L can be changed precisely by some clement in the image of K.

Remark. In this sequence, Aut /1 determines the allowable homotopy equivalences,
and so a part of #y(Map (M, M)). Also we have K =m,(Map (M, M)). The group 1. in-
volves also tangential structure of M. Tt scems that the sequence can be prolenged further
to the lefl, provided suflicient dimensional restrictions hold; for example, the next tern
would be 7 (Difl (M)). Rather than a piccemeal proof on the lines of. this paper, we feel
that the sequence should be obtained abstractly, and then interpreted.

We do not yet possess an expression of the relation of F(Diff (M rel D™) to
fto(DIff (M, D™) = #o(Difl (M)) for general handlebodies of the tvpe considered in
Theorem 4.

There is another respect in which the result of Theorem 4 is incomplete. The group
To(DIfT (M rel D™)) is determined as an extension of L/Im(K) by Aut I7, but gives no infor-
mation as to which extension we have. Now the operation of Aut /{ on L and K (and hence
on the quotient) is natural, since L and K can be regarded (using the formutae of Theorem |
for theextensions) as groups of maps of H or /{1 x I1, and such maps may be simply composed
with automorphisms of F.

To determine the extension, however, we also nced a factor set, and we have only
succeeded in finding this in one special case.

Suppose that the M of Theorems 2 and 4 can be imbedded in R™. Then any s-sphere
has (by Proposition 1) a trivial normal bundle in R™, hence in M, so that the function % is
identically zero. Similarly, 2 must be the same whether reckoned in 3 or R?, and since it
dey ads only on homotopy of the arguments, it too vanishes. Conversely, the conditions
o =20 0 entirely determine Me ' (m by )i Tact, M is a sum of copios of S% < D77,
and so certainly tmbeds in R™,

Write S tor the subgroup of 7,(DHT (3N) of classes of diffeomoryhivns which extend
o R™,
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Lintsia V7. When2m = 3s + 4,5 = 3, and for M e A, k,s), o= 2 = 0, the map from
S 0 Aut I is.an isomorphisn, and so F(DIL (M) is a split extension of L by Aut H.

Proof. Observe that sinee o == 2 == 0, by Lemmas 14 and 15, the image of K in L is
zero.

Now just as the imbeddability of M in R proved that « and 2 were zero, it follows
that for extendability of a diffcomorphism &, # and g must vanish. [Indeced, they must
vanish for any choices of the indeterminates at steps 1 and 2, and since a representative of
the kernel of #(DIfT (M rel D™) — fto(Difl (M) certainly extends, it must have ffand g
zero, so the kernel is zero, and this map is always an isomorphism.] Hence the map from
S to Aut /[ is a monomorphism.

Sinee 2 = 2 =0, Aut I contains all automorphisms of the abelian group 1, and so,
by [13], is generated by

(i) Permutations of the ¢;;
(i) R, where Rey = — ¢; and Re; = ¢; for i > 1;
(iii) T, where Te, =e, —e¢;, Tey = —ey, and Te; =e; fori > 2.

We prove cach generator in turn in the image of S. Recall that M is the sum of &
i g g
copies of $¥ x D"

If k =2, we can interchange 2 copies by a rotation. Using the disc theorem to modify
this to keep a disc fixed, we now sce that we can interchange any two of the summands,
and so obtain (i). Similarly, using the disc thcorem, we reduce the proof of (ii) and (i)
{o the cascs k = 1, k =2 respectively.

If S x D" < R™ as the standard tubular neighbourhood of $° in R"T! < R™, we
can represent R by the rotation which changes the signs of first and last co-ordinates.

Finally, for k =2, note that M is a ‘thickening” of $*u §*—or, cquivalcn'tly, of the
join of $*7' to 3 points. We may imbed M by putting a standard S~ 'in R®, the vertices of
an cquilateral triangle in R2, taking the join, and a smooth neighbourhood of it in R™. For
homology, we can take the thickened join to onc of the points as the basic D", and the
other two as the handles. The required dilfeomorphism is now given by the rotation in R?
through an angle 2n/3.
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