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CLASSIFICATION PROBLEMS IN DIFFERENTIAL
TOPOLOGY—IV

THICKENINGS

C.T.C. WALL

(Received 30 June 1965)

Tuis PAPER is concerned with defining and establishing some basic properties of a functor of
CW-complexes, which we will call the thickening functor: roughly speaking, for K a CW-
complex, I™(K) denotes the set of diffeomorphism classes of m-manifolds homotopy
equivalent to K. Our object is to set up some algebraic machinery for computing this functor
in some special cases: in particular, we obtain comprehensive generalisations of the results
of [I].

It should be noted that there is already in existence an extensive technique, originating
from work of S. P. Novikov [13], for giving diffeomorphism classifications of smooth
manifolds. The overlap of results is very small, since to apply this technique to a manifold
with boundary M, one needs to start from the homotopy type of the CW pair (M, 0M);
whereas we start simply from the homotopy type of M.

The arguments of this paper are applicable equally to differential and to piecewise
linear manifolds. We make the convention that, throughout the paper, the terms “manifold”
and “homeomorphism” are to be interpreted consistently in either the differential or the
piecewise linear sense.

We apologise to readers anticipating the classification of (n — 1)-connected (21 + 1)-
manifolds announced in {I]: this paper had its origin in the discovery of a gap in our
original argument—and provides adequate techniques to fill the gap.

The notion of thickening is in part motivated by results of Mazur in [11]; in particular
his “non-stable neighbourhood theorem”. We will not state this theorem here: it is the
special case of our embedding theorem which corresponds to simple homotopy equivalence.
However, Mazur brought out the relation existing between thickenings (in the sense below),
i.e. simple homotopy equivalences ¢:K¥— M™ of a complex to a manifold which satisfies
m,(0M) = n,(M), and a natural (but hard to define) concept involving a parallelism between
a cell decomposition of K and a handle decomposition of M. Here again, we shall give no
details, but the parallelism is quite clear from the proof of our imbedding theorem.

It is convenient to mention at this point one simple homotopy-theoretic consequence of
this, viz. that the pair (M, dM)is (im — k — 1)-connected, (for there is a handle decomposition
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of M based on dM with handle dimensions = (m — k)). This can easily be shown without
handles: since m; M = 7, M by hypothesis, it is enough to consider the universal covers
and show H,(M, M) = 0 for i < m — k. By duality, this is equivalent to H'K = H/M =0
for j > k (with infinite chains), which is trivially true.

§1. DEFINITION

Let K* be a finite CW-complex with base point * and dimension k, ¢ : K*— M™ a
simple homotopy equivalence (preserving the base point) of K and a manifold M of di-
mension m = k + 3. We suppose also that the base point * of M lies in the boundary éM;
that the inclusion 7 : dM — M induces an isomorphism 7, : 7,(0M) — n,(M) of fundamental
groups, and that the tangent space to A at * is oriented. Then we say that ¢ defines a
thickening (or, more precisely, an m-thickening) of K.

In fact, a thickening is to be an equivalence class of such ¢; we define ¢, : K— M,
and ¢, : K — M, to be equivalent if there is a homeomorphism /1 : M| — M, preserving * and
the given orientations of the tangent space there, such that /i), ~ ¢, : (K, *) — (M5, *).

We write 7 ™(K) for the set of equivalence classes. Then 7 ™(K)—the set of thickenings
of K—is to be our object of study. The extra conditions in the definition are inserted to make
the theory of our functor a little easier (not harder!). Note that ¢ is not assumed to be an
imbedding. As an example, Smale’s solution of the Poincaré conjecture shows that for
m = 6, 7 ™(*) contains only one element. In fact, we will always suppose m = 6:to obtaina
good theory for m < 6, one needs (at present) a more subtle definition.

§2. BASIC OPERATIONS
We have two generally defined and two sometimes defined operations.

Product. We leave to the reader to verify that the ordinary Cartesian product induces

an operation
X T™K) x THL)— T" (K x L)
for all finite CW-complexes K*and L*,and m = k + 3, n = { + 3. The product is associative
also commutative (up to the usual change by (—1)™ of orientation at the base point). We
will not in fact use this operation, but rather products by 7 = [0, 1], which are not included as
a special case. Endow 7 with the usual orientation, and * = 0: then multiplication (on the
right) by / defines an operation
S T™K)—> T"(K)

which we call suspension.

Sum. Let ¢ : K*— M™, yy :L* — N™ represent elements z € 7™(K), f € T™(L). Write
K v L for the one-point union of K and L; then we will define « + fe ™K v L).

Let D™~ ! denote the standard (m — 1)-disc, with a base point * on its boundary, and
S (DT ) > (OM™, %) resp. £, 1 (D™TL, *) — (ON™, *) imbeddings such that the standard
orientation of D™~!, followed by the inward (resp. outward) normal induces the given
orientation at * of M (resp. NV). By a standard result, this determines f; and f, up to isotopy.
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Now form P™ from M™u N™ by identifying points corresponding to each other under
7>/ L. In the differential case, the definition of a differential structure on P involves some
choices (see [12, Theorem 1.4]), but these will not affect the class of the result; in the
piecewise linear case, P inherits at once a structure of that kind.

Now ¢ and y define a simple homotopy equivalence K v L — P; the orientations of M
and N at * agree to define one of P; the condition on fundamental groups is readily verified,
so we have defined a thickening of X v L. This clearly depends only on o and f3, so we have
a map

+ 1 THK)yx T(L)—>T"(Kv L)
defined whenever K and L have dimensions < (m — 3). Addition is also clearly com-
mutative and associative.

Intersection. Let M™ be a manifold, K*¥ and L*CW-complexes, f: K— Mandg:L->M
continuous maps. Consider the product f x g: K x L—>M x M. In the special case when
fand g are imbeddings, their intersection may be measured by the inverse image under /' x g
of the diagonal. Let us write N for a tubular neighbourhood (in the smooth case) or regular
neighbourhood (in the piecewise linear case) of the diagonal in M x M. Form T from
M x M by shrinking the closure of the complement of N to a point—or equivalently from
N by shrinking the frontier to a point. (We sometimes write M* for T.)

Now consider the homotopy class of the composite
g
KxL—MxM->T
Observe that T contains a class of m-spheres—for example, if N is well-chosen, the image of
M x * in Tis a sphere S”. We wish to argue that the map K x L — T is in the image, by
inclusion, of a well-determined homotopy class of maps K x L — S™, i.e. a class in the
cohomotopy set #™(K x L). This follows if the pair (T, S™)is (k + 7 + 1)-connected. Now T
is clearly simply-connected (m = 2),and by the Thom isomorphism H,(M, NSH, (T, S™),
we see that it is sufficient to have M (k +{—m + l)-connected. Finally if (as is
always the case with us) k, / < m — 2, then the projection K x L — K A L (i.e. the map which
identifies the subspace K v L to a point) induces a bijection of 2"(K A L) on 2™(K x L).

Since the construction is entirely in the framework of homotopy classes, we have
associated to the homotopy classes of f: K* > M™and g : L* — M™ an intersection invariant
in 7K A L). The hypotheses necessary for the construction are k, { < m — 2, and that
M™is (k + { — m + 1)-connected.

One could of course go on to define triple (and higher) intersections in an analogous
manner. Also observe that since T'and S™ are simply-connected, there is no need to preserve
base points in the construction.

We have used above (by applying the Thom isomorphism) the fact that 7 is the Thom
space of the tangent bundle of M. Following a suggestion of Atiyah, another construction
can be performed at this point: use the classifying map of the tangent bundle 7, M — BO,,
or M — BPL,, and the induced map of T to the universal Thom space. In this way, we
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obtain an element of the m™ co-bordism, (rather than co-homotopy) group of K A L. Even
better would be to combine the two constructions: if M is r-connected, to map it to the r-
connected covering of BO,, or BPL,, and use r-connected co-bordism. In this paper we
shall stick to cohomotopy, on the grounds that co-bordism is too crude, and r-connected
co-bordism too complicated.

Induced thickening. We shall give in §7 the proof of the following result.

EMBEDDING THEOREM. Suppose M™ a manifold, K* a finite CW-complex. f: K~ M a
(2k — m + 1)-connected map, and k < m — 3. Then there is a compact submanifold N™ of M™,
with n,(0N) = n,(N), and a simple homotopy equivalence g : K — N, such that g ~ f: K— M.
We may suppose that the homotopy keeps the base point fixed. If f is 2k — m + 2)-connected,
the submanifold N will be unique up to concordance in M.

COROLLARY (2.1). If K* and L* are finite CW-complexes, k, 1 Sm — 3, andf: K—Lisa
(2k — m + 2)-connected map( preserving base points) then f induces a map f* : T™(K)« T ™(L).
Proofof Corollary. Given a thickening of L, represented by ¢ : L — M, apply the theorem
to ¢f : K — M. There results a simple homotopy equivalence g : K — N, with 7,(ON) = m;(NV)

and N unique up to homeomorphism (all respecting the base point). Then g defines the,
required thickening of K (we use the orientation at * € N < N induced from that of M.

OQur construction is evidently functorial (i.e. 1* = [, (f9)* = g*(*) but we cannot
present ™ as a functor without losing a number of properties: e.g. the above corollary
may apply to two maps, but not to their composition.

§3. OTHER OPERATIONS
The above operations can be combined in many ways, of which we now indicate a few.

Trivial thickening. In the corollary to the embedding theorem take L to be a point,
and use the thickening defined by the disc D™ (which, at least for m = 6, is the only one).
We deduce that: if K*is (2k — m + 1)-connected, just one class in 7™(K) is represented by
manifolds M™ which can be imbedded in R™.

Intersection. By taking the intersection of the homotopy classes induced by the in-
clusions of K and L in K v L, we obtain a map which we write
AMIT™MKv L)y->a(KAL).
This is defined if K* and L* are both (k + { — m + 1)-connected.
Selfintersection. Similarly, we can take the intersection of an inclusion map with itself.
Hence, if K*is 2k — m + 1)-connected, a map 7 : 7 "(K) - n™(K A K).

Additive structure. If K* is at least (2k — m + 2)-connected, any map V: K- K v K
induces a map V* of thickenings and hence, by composition,
+ v
TK)x T"(K)— T"(K v K)—> T"(K)
a composition operation on the set 7™(K). If, in particular, V endows K with the structure
of H’-space, the composition admits the trivial thickening as a 2-sided unit. If V is also
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homotopy associative, then the addition is associative (using transitivity of induced thicken-
ings and an evident commutative diagram); and, using the theorem [10] that there exists a
map e : K — K which acts as an inverse map for V, we see that 7™(K) has the structure of a
group, which is abelian if V is homotopy commutative.

For example, for all » £ m — 3, F™(S") is an abelian group. For 3 £r <m —4, and
any integer n, 7™(S"~! U, €") is an abelian group.

Simple homotopy. Let f: K* — L* be a homotopy equivalence which need not be simple,
g a homotopy inverse, m = k + 3,/ + 3. By our result on induced thickenings, g* is a 2-sided
inverse to f* which is therefore bijective. This shows that although simple homotopy
entered the definition of Z™(K), it will not figure in our calculations.

It is not difficult to picture the bijection geometrically. For if the thickening  : L — N™
induces ¢ : K— M™, and we deform M a little to lie in the interior of N, then the region
between (i.e. the closure of N-3f) is an /-cobordism of 6M to dN. But, by a remark of
Milnor, h-cobordisms W (of dimension = 6) with one end (say éN) given are classified up
to diffeomorphism by the Whitehead torsion (W, 0N). So the manifolds related by bi-
jections f* are obtained from one another by glueing /i-cobordisms (which we know) onto
the boundary.

It is of course precisely the absence to date of a proof of the /-cobordism theorem in
low dimensions which necessitates our hypothesis m = 6 throughout.

§4. FORMAL PROPERTIES OF THE OPERATIONS
(4.1) Suspension commutes with addition. (This is immediate).

(4.2) Induced maps commute with addition; ie. if f: X - L, f :K' = L', aec T™(L),
o' € T™(L") are such that (f' v f/)*(« + o) is defined, then f*x and f"*a’ are defined, and
(fv a4+ a)=f*o+f* e TK Vv K)
For fand f’ are at least as highly connected as /v /', and if N, N’ represent ¢, o’ and
M < N, M’ = N’ represent /*a, f'*o', then in N + N', M and M’ intersect in the base disc
D™™! on the boundary, so form a sum M + M’, which clearly represents the thickening
induced by fv f'.

(4.3) If K, L are H'-spaces such that ™K and J™L have group structures, and if
/2 K- L is primitive and induces a map /*, then /* is a homomorphism.

For /v f wiil then also induce a map of thickenings; we have (/v /)*(a + f) = f*u +
f*P by (2) for the exterior sum, and since fis primitive, Vg o (f v f) =~ f o V, induce the same
map of I ™.

(4.4) If K is an H'-space, then writing [K: M] for the set of (based) homotopy classes
of maps of K to M, the H'-structure on K defines a group structure on [K: M]. Intersections
defined a map which we now write as

AK:MIx [L:Ml-»a™KAL)

if M is (k + 1 — m + 1)-connected ; we now assert that this map is linear in the first variable.
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Note that z"(K A L) has a priori two group structures: from the H’-structure of K, and
addition in the cohomotopy group: a well-known result asserts that these agree.

The proof of linearity is essentially trivial: it merely consists in performing the con-
struction used to define the intersection for K v K and L, and observing that the con-
struction is natural throughout.

Similarly if L is an H'-space, A’ is linear in the second variable.
(4.5) If K, L are H’-spaces, then K v L has a natural H'-structure. The map
A:T™Kv L)y->aKA L)

is a homomorphism, if K, L are (2 max(k, /) — m 4 2)-connected (so that T™MKvL)isa
monoid).

Recall again that the three group structures on n™(K A L) all agree. Then if «, Je
JT™K v L), and we form o + f8, the induced map of (K v K) A (L v L) to S™ is trivial on
two of the four component copies of K A L: on the other two we have representatives of
Mo and A(B). The result follows.

(4.6) We can also generalize the results of Theorem 1 of [I] to our present context.
Suppose x € [K*: M™] a class represented by (2k — m + 2)-connected maps f: K— M; then
we will write a(x) for the element of ™K which, according to Theorem 1, is induced by f.
Our present « and A’ generalise the « and A of [I].

We have already proved A’ bilinear; the symmetry of A’ is obvious. So is the formula
A'(x, x) = n(x) for x € [K': M] as above: the selfintersection of f can be calculated equally

well using any neighbourhood N of the image. This follows from the homotopy com-
mutative diagram

NxN-—T,

———

The addition formula for o lies somewhat deeper. We must now suppose
K* 2k — m + 1)-connected and M™ (2k — m + 2)-connected, so that any map from K or
from K'v K'to M is (2k — m + 2)-connected. Given x, y e [K : M], we can forma(x v y) e
T ™K v K), and if K is an H'’-space, a(x + p) = V*a(x v y). Let i, i, be the standard in-
clusions of X in K v K: if K is (2k — m + 2)-connected, these induce maps iy, i¥ and we
form the product

[GERIENS]

T™K v K)

T"K) x T"(K) x 2"(K A K).

We shall prove in (6.3) that if 2m = 3k + 3 and K is (2k — m + 2)-connected, (if, 1%, Disa
bijection. In this case, a(x v y) will be determined by

(i, i3, Dalx v p) = (alx), aly), X(x, y)),

using the (trivial) formula A'(x, ») = Aa(x v y) when the right side is defined.
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For the addition theorem, we suppose K admits a map V:K— K v K giving it an H'-
structure which is homotopy commutative and associative. Then K v K also acquires an
H’-structure, and i, is an H'-map, so by (4.3) induces a homomorphism of groups of thicken-
ngs. Also, by (4.5), 2 is a homomorphism. Thus (if, i3, 1) is an isomorphism of groups.
Now as V* is a group homomorphism, we have

a(x + ) = V¥a(x v y) = V¥(a(x), 2(y), X(x, 1)
= a(x) + a(y) + A (x, ¥)

if we write &' : 7K A K)= I ™K v K) for the injection of the third component, and
0, = V*0'.

§6. THE SUSPENSION SEQUENCE AND STABLE THICKENINGS

We first recall a well-known result. Let K* and L* be finite based CW-complexes, with
L c-connected. Then the map induced by suspension

s
[K:L]—> [SK:SL]

is surjective if k£ = 2¢ + 1 and Dijective if k £2ec.

SuspENSION THEOREM. There exists a map O: 7" '(SK A K)—> T™(K), defined if
2m = 3k + 3 and K* is 2k —m + 1)-connected, such that the sequence

s7lon ) s T
.9-'"+2(SK) . 7'Cm+l(SK/\ K) — 7m(K) — jm+l(K) - 7_Em+l(1</\ K)

is exact. For exactness at ™ Y(K), it is enough to have 2m = 3k + 2, and K (2k — m)-con-
nected. If K admits a homotopy commutative and associative H'-structure, and is 2k — m + 2)-
connected, then 8 o S = 0, is the map defined above.

The proof of this result will be given in §8.

Since (evidently), if dim K=k, (K A K) vanishes for m > 2k, the Suspension
Theorem implies that the suspension map

S: T™K)— T HK)

is surjective for m = 2k and monomorphic for m =2k + 1. In fact, S is bijective if m =
2k + 1: the proof is essentially the same. [We have N™*tl =M™ x [ and M™ x 1. Then
M'™ can be “pushed”” off M x 1 in d(M x I), since each is a thickening of K¥, and the mani-
fold has dimension m = 2k + 1. So we can suppose M’ = M. But the inclusion is a simple
homotopy equivalence; applying [16, Theorem 6.4] we deduce M = M’ + (6M’ x I),so both
define the same thickening.]

Write 7 (K) for the constant value of 7™K), mz 2k + 1. We can now determine J(K)
(in the differentiable case, this result is due to Mazur [11]). Take the tangent bundle of M.
This has a classifying map:

K- BO or K— BPL

in the smooth or piecewise linear cases; preserving base points in either. Thus we have a
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natural transformation
K): T(K)— [K: BQ]

where O denotes O, resp. PL.

PropPOSITION 5.1. For any K, ©(K) is a bijection.

Proof. Let ¢: K— M™ be the trivial thickening where. e.g. m=2k + 1, defining
*e 7(K). Since M, is by definition parallelizable, 7(*) is the class of the constant map
K- BQ.

To prove 7 surjective, take any map K — BQ. Since, by definition, Q is the limit of the
0,, the map can be factorised K — BQ,, and so induces a bundle over K with fibre R".
As ¢ is a homotopy equivalence, we obtain a corresponding bundle ¢ over M,. Note that
the tangent bundle of the total space is the direct sum of a trivial bundle and of the bundle
induced from ¢. Hence the thickening o induced by ¢ followed by the zero cross-section
of & has t(«) in the required class.

To prove t injective, we may suppose (after suspension) that the thickenings ¢ : K —
M7 and ¢, : K- M" have the same tangent bundle. According to the classification of
immersions, due to Hirsch [8] in the differential case and to Haefliger and Poenaru [6]
in the piecewise linear case (Hirsch’s statement does not include the case we need, but the
arguments in [6] show how to fill the gap), there is an immersion ¥ : M} — M7% with
Yo, ~ ¢, (relative to *) and preserving orientation at *. Now as m = 2k + 1, we may sup-
pose ¢, an imbedding, and also perform a small regular homotopy of ¢ to make y¢, an
imbedding. As M, can be shrunk to a small neighbourhood of ¢, K (i.e. the identity map is
isotopic to an imbedding into a neighbourhood of ¢,K) and  is an immersion which
imbeds ¢, K, hence also some neighbourhood, we may suppose ¥ an imbedding. But then
we can use the s-cobordism theorem as usual to show that M, and M, define the same
thickening.

The Proposition shows that in the stable range, J is representable. In particular,
there are Mayer—Vietoris sequences. We will extend these in §6 (with some complications)
to the metastable range. Also, combined with the Suspension Theorem, it gives a method for
calculating 7™(K) in the metastable range.

§6. THE MAYER-VIETORIS THEOREM

We observed in §5 that the stable functor J is representable, so if L is a subcomplex

of K, the induced sequence
T (LY~ T(K)« J(K/L)

is exact. It cannot remain exact beyond the stable range, for there may be thickenings
¢ : K— M™, inducing the trivial thickening of L, but such that some r-cycle of L has non-
zero intersection number with an (m—r)-cycle of M. However it turns out that, if we con-
sider our generalised intersection invariant, the above is (in a certain range) essentially the
only obstruction to exactness of the sequence.

For reasons of symmetry, it will be more convenient to study a Mayer—Vietoris type of
sequence: as our proof will proceed by induction on added cells, we first consider the
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situation where thickenings of Ku ¢” and of K U e induce the same thickening M™ of K.
By the arguments of Theorem 1, we may write these thickenings as M v /", M U I, where
I"(h*) denotes an attached r-handle (s-handle). We wish to attach these two handles simul-
taneously, and so we must deform their attaching maps (into dM) to be disjoint. This is
possible if and only if the induced imbeddings
FiSlsoM  G:ST'—0M

can be deformed so as to be disjoint. Here we use a result of Haefliger [4, p. 169] in the
differential case; the corresponding result in the PL case has been obtained by C. Weber:
any homotopy of f x § to a map into dM x dM minus the diagonal is induced by an isotopy
of f and § to disjoint positions, provided that 2(r + s —m) < min(r, s) — 1: if, moreover,
2(r + 5 — m) < min(r, s) — 2 then the isotopy is also unique up to isotopy.

We next observe that finding a homotopy of f x g is equivalent to a problem on our
intersection invariant (when this is defined). For this invariant provides maps

Fi(Kue)x(Kue)-5" G:(Kueée) x(Kue)—-S"
whose restrictions to K x K are homotopic (since the two thickenings induce the same
thickening of K). Modifying F (or G) by the appropriate homotopy, we may suppose

FIK x K=G|K x K. Then F and G combined define a map of all of (Kw e v ef) x
(K U e U ¢*) except the cells " x e and e” x ¢”: we have the induced map on the boundary

a
D" x D*)— S™. Comparing this with the intersection invariant of fand g, which is a map

b
S % §°71 5 §™1 we observe that a is obtained by extending over D" x $*! into one
hemisphere and S$""! x D* into the other, so is moreorless the suspension of b: thus a
nullhomotopy of a induces one of b.

To justify the above, we need a hypothesis that the intersections are all well-defined,
which gives

LEMMA 6.1. With the notation above, suppose K* (2k — m + 1)-connected, similarly for
Kue and Kues let 2m=r+ s+ max(r, s, k) + 2. Then any extension of Fu G over
e x ¢ is induced by a thickening of Kue ve'. If 2mzr+s+ max(r, s, k) + 3, the
resulting thickening is uniquely determined.

[t remains only to check that the intersection invariant of fand g is defined. Now if
r= k, Ku e has dimension r; since r Sm — 3,s0 r— 12 2r—m+ 1), to suppose it
(2r — m + 1)-connected is equivalent to supposing that K is. So our hypothesis implies K
(2 max(r, s, k) — m + 1)-connected, hence certainly M ~ K is (r + s — m)-connected. But
as M is a thickening of K (M, oM)is im—k =Dz (r+s—m+ 1)-connected. Hence
M is (r + s — m)-connected as required.

We observe also, for the case r < k, since Kis (2k — m + 1)-connected, that the assump-
tion that K u ¢ also is equivalent to the inequality r > 2k — m + 1 (which holds anyway
if » = k). Thus the hypotheses of the lemma may be rewritten as:

(H) Let!=max(r, s, k). Then Kis (21 — m + 1)-connected,{ < m — 32mzr4s+ 1+ 2,
and m = 2k — min(r, s) + 2.
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We now integrate this into a theorem.

MAYER-VIETORIS THEOREM. Suppose given finite connected CW-complexes ywith A* N B
= C, A° U B* = DY, thickenings o : A — L",p: B> M™anda homeomorphism of the induced
thickenings of C, so we can suppose the intersection invariants FiAxA—=8" G.:BxB-
S™ agree on C x C. Then if H: A x B— S™ extends F|4 x C and G|C x B, there is u
thickening 6 : D — P™ whose intersection invariant extends F, G and H; provided A is 2a —
m + D-connected (similarly for B, C, D), d <m—3, and 2mza+ b+ d+2. If 2mz
a4+ b+ d+ 3, the thickening § is uniquely determined.

Proof. We attach cells to C in order of increasing dimension:
C=4d, A, - c4d4,=4 A;y=4A,_jue™ 4. <%

similarly for B. We now obtain a thickening of 4; v B;, by induction on i + j, extending
thickenings already obtained of 4;_, v B; and of 4; U B;_; (which, by the inductive hy-
pothesis, agree on A4,_, v B;_;), and with intersection invariant given by Fon 4; x 4, by
G on B; x Byand by Hon 4; % B;. The induction step is performed using the lemma above
it remains, then, to verify the hypothesis of the lemma. The dimensional restrictions are
evidently satisfied in virtue of d<m=—3and2m = a+ b+ d + 2. so we need only check the
connectivity conditions. We shall check in the above that 4; may be taken (2 max(c, 2;) —
m + D-connected); the same arguments will then apply to 4; L B;.

Suppose / is chosen so that ;_; £ ¢ = 2;. Then we want to show 4; 2c —m + 1)-
connected for j < i, and (22; —m + 1)-connected for j=i. But the latter condition is
immediate: A4 is obtained from 4; by attaching cells of dimension = x;, hence (4. A)) is
(o; — 1)-connected; A is (2a —m + 1)-connected, so 4; is connected at least up to the di-
mension min(a; — 2, 2a —m + D) =24 —m+ 1. Asto the other case, note that if C and
A, are both (2¢ — m + I}-connected, then so is (4,, C), so we must have %, = 2¢ —m + 2.
If this does not hold for the given complexes, we shall replace them by (simple) homotopy
equivalent complexes.

We are considering only connected complexes, so may certainly suppose that each has
only one O-cell. Hence %, 2 1, so if the above condition is violated, 1 S, £ 2¢c —m + 1
and all of 4, B, C, D are simply-connected. Then we can suppose that there are no {-cells,
so all the subcomplexes also are simply-connected. But now any set of chain groups con-
sistent with the homology structure of the pair (4, C) can be realised by a pair of cell-com-
plexes, according to an argument of Milnor (see [15, Proposition 4.1, and Lemma 1.2}).
Thus we can suppose «; equal to 1 + the connectivity of (4, C), and so %; 2 min(2a — m + 2,
2e—m+3)z2c—-m+2.

This proves the existence clause of the theorem: the same induction using the unique-
ness part of the lemma establishes also the uniqueness clause.

COROLLARY 6.2. Let L' be a connected subcomplex of K, and suppose max(k, 1+ 1) £
m—3, 2m=k+1+maxtk, I+ 1)+3, L is (21 —m+ D-connected, K (2k —m + 1)-
connected, and K/L {2 max(k, f+ 1) —m + 1}-connected. Let o be a thickening of K*
inducing the trivial thickening of L, let F: K A K— S" be the intersection invariant of K, and
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suppose the induced nullhomotopy of L A L extends over K A L. Then a is induced from a
thickening of K/L.

Apply the theorem with C =L, 4= K, B = the cone on L: the corollary is then
immediate.

COROLLARY 6.3. Let K* and L* be finite connected C W-complexes, m —3Z kz 1,
Imz 2k +1+3, Kand L 2k —m + 2)-connected. Let iy : K— KV Landiy,:L—->Kv L
be the inclusion maps. Then

(S A TNK v Ly - TK X T"L x ™K A L)
is bijective.

This is the case of the theorem when C is a point: note in this case that (K v L) A
(KvLy=EKAK)VvKAL VLA K) v (L A L), so the “extension” of the theorem is
simply a map defined on K A L. The hypotheses of the theorem have been strengthened:
for i¥ to be well-defined we need /, (2k — m + 2)-connected and hence also L. If k> 1, it
would suffice for K to be (2k — m + 1)-connected.

Note that for « € 7™(K). p € T ™(L), we have o + fe IT™Kv L), and evidently (if it is

defined)
(%, % Do+ )= (o B, 0).

Thus the above Corollary implies, except for the weakening of the connectivity assumption,
the

PROPOSITION 6.4. Ler K* and L* be finite connected CW-complexes, m —3 2 kz 1,
2m=2k+1+3, K(k+i—-m+ 1)-connected, and L (2k —m + 1)-connected. Then the
sequence

+ A

FK x T"L — T"(K v L) — n"(K A L)
is exact.

Proof. We give a direct proof which justifies the weakening of the connectivity con-
dition.

Since L is (2k — m + 1)-connected, so is the map K — K v L, hence by the embedding
theorem there is a thickening (not unique):

¢ KM <=M
induced by a thickening M of K v L. Similarly we obtain
¢, L>M, =M.

Now assume that the J-invariant of M vanishes. Then ¢, x ¢, is homotopic to a map which
avoids the diagonal. Now since M, is a thickening of K, so admits a handle decomposition
with all handles of dimension £ k: similarly for M,; and 2mz 2k + /- 3, the result of
Haefliger already used [4, p. 169], modified as on [4, p. 173]—or the corresponding result in
the PL case—shows that the inclusion of M is isotopic to a position avoiding M,.

Thus we may suppose M, and M, disjoint: connect them by a tube, and we now have
M, + M, =M. A simple application of the s-cobordism theorem (or rather of [16, 6.4])
now shows M = M, + M,, and completes the proof.
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Under suitably restrictive assumptions, we can even replace the homotopy hypothesis
in the criterion {6.4) for a connected sum splitting by a homology hypothesis.

PROPOSITION 6.5. Suppose M™ an (r — 1)-connected manifold with M a homotopy sphere,
and m < 3r — 2, r 2 3. Suppose given a homotopy equivalence h: Ky v Ky » M such that
Jor i 0, m, the map ¢ : H(K,) - H,,_(K,) induced by cap product D with the fundamental
class of (M, OM) is an isomorphism. Then M is a boundary-connected sum M, + M,, with
M; a thickening of K.

Proof. ¢ is induced by the natural inclusion and projection and the following
sequence of isomorphisms
LTS D Jow

(Ky v Ky) == H(M)-Z=> H,,_{M, M) <= H, (M) <=

m-—u —_—

Hm—[(/Kl v KZ)

We apply the imbedding theorem to the map f: K| — M induced by A. Since M (and
hence K,) is (r — I)-connected, so is f. Since K, is simply-connected, and its homology
vanishes above dimension (m — r), we may suppose dim K, =m — r £ m — 3. Then the
theorem applies, and we obtain a submanifold V of Int M, homotopy equivalent to X|.

Join JN to OM by an arc in M — N; thicken the arc, and add to N, giving M, ; then
0M, ~n 0M is a disc D"”'. The fundamental class of (M, dM) induces that of (M,, dM,);
our hypothesis gives isomorphisms H'(M,)— H, _(M,;) whose composites H(M,)—
H,_(M)—H,_ (M, éM,) are the isomorphisms induced by cap products. Hence the
map H,_(M;)— H,_(M,, 0M,) is an isomorphism for /4 0, m; since M, is simply-
connected it is a homotopy sphere.

Now if m £ 5, our assumptions imply M contractible, and the result is trivial. Other-
wise, the generalised Poincaré conjecture [14] shows that 0M, is obtained by attaching two
discs D"~ ', Hence the relative boundary of M, is a disc D™ ~"; this cuts M into M, and M,
(say) and M = M, + M, by the definition of sum.

Finally we note that if we take M, and identify M, to a point, the result is homeomor-
h

phic to M,. The composite K, = K, v K, = M — M, is a map of simply-connected spaces
which (by the Five Lemma) induces homology isomorphisms. By results of Whitehead, it is
then a simple homotopy equivalence.

Remark. If we started with a closed manifold L™, we can remove an m-disc to obtain
M™, and use the above to give useful sufficient conditions for separating L™ by a homotopy
S™~'. Only in the PL-case, however, are we then able to write L as a connected sum.

§7. PROOF OF THE IMBEDDING THEOREM

The essential step is contained in the following result, conjectured in part by the
author and proved by J. Hudson [9]:

ProrosiTioN 7.1, If V¥ and M™ are connected manifolds with boundary, m = v + 3,
[V, V)~ (M, dM) is a map, and (V, 0V is (2v — m)-connected, (M, OM) is 2v — m + 1)-
connected, then fis homotopic to an imbedding g - (V, 3V)— (M, 0M). If also (V, 0V) is
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(2v — m + l)-connected and (M, M) is (2v — m + 2)-connected, and g, g, are imbeddings
homotopic to f, there is a homeomorphism I of (M, 0M), homotopic to the identity, with
h°g =g

In accordance with our conventions, this result is to be interpreted in either the smooth
or the piecewise linear sense. The uniqueness clause of Hudson’s result is actually slightly
more precise, in that he obtains a homeomorphism H of (M, ¢A) x I extending the identity
on (M, M) x 0 and h on (M, 6M) x 1;i.e. g; is concordant to g,. However, the above will
suffice for our purposes, and in our case (¥ a disc) it can actually be shown that g; and g, arc
isotopic.

We first neced a reformulation of Proposition (7.1); the result will then follow by
induction.

LEMMA 7.2. Let j: N™ < Int M™ be c-connected, suppose that N has a handle decompo-
sition with handles of dimension £ d £ m — 3, and that s £ min {%(m +e—-ym+c—~d—1,
m — 3}. Then any o€ n (M, N) is representable by an imbedding f: D* — M"™ with f YN =
Ss— 1 .

Proof. Write W =@N, V =the closure of M — N, so VUN=M, VnN=W.
Suppose (¥, W) is (r — 1)-connected and s £ min(m — 3, $(n + r — 2)). Then, by (7.1), any
f3 € n(V, W) can be represented by a disc imbedded as desired. Thus the lemma will follow
if we prove

(a) (V, W)is c-connected, so we can take 7 = ¢ + I,

(b) the map n(V, W)— n(M, N) induced by inclusion is onto.

Now our hypothesis gives a handle decomposition of N; the dual decomposition is
based on W and has handle dimensions =(m — d) = 3. So the inclusion W < Nis (m — d —
1)-connected, and induces an isomorphism 7,(W)= m,(N). Now if ¢ =0, (a) is trivial, if
¢ =1, van Kampen’s theorem gives

T (M) = ”1(1\’)*::1(11')731(” =, (.
so as 7,(N) maps onto 7,(M), (W) must map onto 7,(¥). Forc 2 1, the same argument
shows that all four fundamental groups are isomorphic. Hence applying the Blakers-
Massey theorem [2, Theorem 1] to the triad (M; N, V)—or rather to its universal cover—
we find that (M, N) c-connected implies (¥, W) c-connected.

Now since (¥, W) is c-connected and (N, W) is (m — d — 1)-connected, the Blakers-
Massey theorem as extended by Toda [19, 1.23] shows that the triad (M; N, V) is (m + ¢ —
d — 1)-connected. As s< (m+ ¢ —d— 1), it follows that = (V, W) maps onto n(M, N)
(here, use (W)= n,(N)if s = 1).

This proves the lemma: we now prove the existence clause of the theorem.

We suppose K formed from , by attaching cells in increasing order of dimension: we
now prove, by induction on the number of cells in L, the

ASSERTION. There exist a thickeningh : L — N’ = M and ahomotopy (rel ,)of f|Ltohin M.
The existence clause of the theorem is the special case L = K of the assertion. The induction
starts trivially with L = . Let ¢* be the next cell of K (so dim L £ s). This defines a homotopy
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class #, e n (K, L). We may suppose f|L =h; then fuu, e n(fK, /L) defines a class
aend{M,N').

Now check that x satisfies the conditions of (7.2). We have s =d £ m — 3. Since L
contains the (s — 1)-skeleton of K, if /is c-connected (so ¢ 2 2k —m + 1 2 2s — m + 1), the
pair (M, N') is c-connected if s > ¢ and (s — 1)-connected if s £ ¢. The hypotheses of (7.2)
are thus satisfied, and we can imbed D* to represent x. If we thicken the disc, we have
attached an s-handle /* to N': since the disc represents x, we can perform a homotopy of
FI(L U ¢) to make it a homotopy equivalence (evidently simple) into N’ /i°. This completes
the induction, and the existence part of the conclusion follows.

As to the uniqueness, we must go through the same argument, and sharpen all the
hypotheses to obtain homotopy isomorphisms, and uniqueness of discs up to concordance
at each stage; wc leave the details to the reader.

Remark. We have apparently obtained more than was claimed: the map K— N is
not merely a simple homotopy equivalence, but we have a handle decomposition of N which
resembles the cell decomposition of XK. However, a result of Mazur [I1, VIII] mentioned
in the introduction shows that (assuming 7,(éN) = n,(N)) this is in fact no sharper a con-
dition, at least in dimensions = 6. In dimensions <6, it might well be taken as the definition
of a thickening. However, the resulting theory will be trivial in dimensions <4: in dimen-
sion 5 one would need the following (apparently weaker than the Poincaré conjecture)

CONJECTURE. Let M5 < Int N° be a simple homotopy equivalence of compact S-manifolds,
each admitting a handle decomposition with handles of dimension <2. Then if W is the closure
of N— M, W=dM x I

If this holds, all the resuits of this paper could be developed in dimension 5, with an
appropriately modified definition of thickening. Of course, if the full s-cobcrdism theorem
held, no modifications would be necessary.

§8. PROOF OF THE SUSPENSION THEOREM

Exactness at 7" 1(K). For n to be defined, we must assume K to be (2k — m)-con-
nected. It is then clear that 7 o S = 0, for given (¢, M) representing an element of 7 ™(K).
then ¢ x 0: K—M x 0 is homotopic in M x Ito ¢ x 1 : K— M x 1, and the two images
do not intersect. (As remarked earlier, there is no need to preserve a base point when
computing intersections).

Conversely, let ¢ : K— N™"" represent xe 7 "*'(K) such that n(x) =0. We will
show that this hypothesis implies ¢ homotopic to a map ¥ : K—JN. Now (N, 0N} is
(m — k)-connected; since ¢ is a homotopy equivalence, the homotopy exact sequence of the
triple K — 0N = N shows that n(N, 0N) = m;_,(f), so ¢ is (m — k — 1)-connected. As
2m = 3k + 2, it follows that i is (2k — m + 1)-connected, so by the Imbedding Theorem we
can find a submanifold M of 6N (not unique) such that  ~ ¢, where ¢": K- M is a
simple homotopy equivalence, defining y € 7 ™(K).

Let L = oM x I be a collar attached to M in N. Introduce corners of N along CL.
Then we may regard N as a cobordism of M to some manifold M" which, along the edge
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L, is a product cobordism. Since the submanifold A7 constructed using Theorem 1 has a
k-dimensional spine, whose codimension m — k= 3 by hypothesis, the complement A" has
the same fundamental group as éN, and hence as V. Now the inclusion M <= N is a simple
homotopy equivalence; as m2 6, the strong form [16, Theorem 6.4] of the s-cobordism
theorem implies N =2 M x [, whence S(y)y=x.

[t remains to produce the required homotopy of ¢ to a map . We must first recall the
definition of 7; or rather the discussion surrounding it. Let IV denote the tubular (or regular)
neighbourhood of the diagonal AN in N x N, C the closure of its complement. Wec write
T =N x N/C, and then ¢ : K— N induces

®xd
KXxK—>NxN-»NxNC=T,
our hypothesis is equivalent to the assumption that the composite is nullhomotopic. We
assert that if K is (2k — m)-connected, it follows from this that ¢ x ¢ is homotopic to a map
into C. Now if m= 2k, since the codimension (m + 1) of AN exceeds the dimension of
K x K, this holds without hypothesis. Otherwise, all the spaces in question are simply-
connected, and it will suffice to prove that the identification induces isomorphisms

7N x N, C)= (N x N/C)

for i < 2k. But since (N x N, C) is /m-connected, and so the connectivity of C equals that
of K. which = 2k — m, the assertion follows from [2, Theorem 23

Now let N’ be the complement of a collar neighbourhood of 6N in N, i: N' = N the
inclusion. Since K, N, and N’ all have the same homotopy type, the assertion above shows
that ¢ x i: Kx N'= N x N is homotopic to a map into C, and hence to a map into
Int(N x N — AN). But the projection of Int(N x N — AN) onto the second factor Int Nis a
fibration (it is well known to be locally trivial); the above homotopy projects to one in Int N,
whose inverse lifts to a homotopy of the constructed map K x N'— C'to a map of the form
W’ % i. Thus ¢ =~ ', and the image of y lies in a collar neighbourhood of 6N; a further
evident homotopy sends ' to a map i : K— ¢éN.

We observe that the thickening of K obtained by this construction depends on the
homotopy class of ¥, and hence eventually on the chosen homotopy of ¢ x ¢: this suggests
how to proceed to define .

In fact, if we assume K to be (2k — m + 1)-connected, then the same sequence of argu-
ments shows that if we choose a homotopy class of nullhomotopies of the induced map
K x K- T, there is induced a particular homotopy class of maps ¥ : K— N, homotopic
in N to ¢.

Exactness at 7™ K). We define ¢ as follows. Choose M7 to be the trivial thickening
of K, Ng = My x I, g =¢ x O: K= 0Nj. Then the induced map K x K — T is constant.
Now an x e " (SK A K) defines (using the same sequence of isomorphisms as in the
definition of intersections) a class of maps S(K x K)— T, and hence a nullhomotopy of
the constant map K x K — T. By the remark above, starting with ¥, this induces a homo-
topy class of maps ¥ : K— 0N,. We define Ax to be the thickening induced by /: we need
2m= 3k + 3 for this to be well-determined.
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The same argument as in the exactness proof at 7™ (K) shows that N, itself represents
the suspension of this induced thickening: Sdx is trivial.

Conversely, if M™ represents a thickening whose suspension is trivial, there is a homeo-
morphism of M x [ onto N,. This carries ¢ : K— M to a map y; : K— 0Ny, and our
thickening is induced by ,. Now there is a homotopy ¥, in N of y, to y, ; form the product
W, xi:Kx N - Ny x Ny T. This gives a homotopy of the constant map to itself, and
determines a homotopy class of maps S(K x K)— T, and hence a class x e " HSK A K).
By the definition of @, dx is the given thickening.

Exactness at ©"TYSK A K). Let x represent an element of 7" (SK A K): we have
seen that if X is {2k — m + 1)-connected, x gives rise to a unique homotopy class of maps
W 1 K— 0Ny, and if also 2m = 3k + 3, that / induces a unique thickening K — M™ < ¢N,.
Also, the s-cobordism theorem shows that (ignoring corners) Ny = M x I.

Hence the induced thickening dx (represented by ¢, M) is trivial if and only if there is a
homeomorphism of M on the trivial thickening M, i.e. (as Ny, = Mg x I by definition) a
homeomorphism /i of Ny on itself throwing M, x O on M.

Suppose this satisfied. As M, is induced by the map K — , we have an imbedding
i MM < D" inducing Ny = My x I = D™ x [ <= S™*!. Now take two copies of D"*?*, and
attach along the copies of Ny imbedded in the boundary by &, using /1 as attaching map. We
obtain an (m + 2)-manifold W, with the homotopy type of the suspension of N, i.e. of K:
a homotopy equivalence is given by extending ¢ : K — N, by maps of two cones on K into
the two discs: this still preserves the base point, etc. Also, the complement C of k(N,) in
S™*1is simply-connected, as by van Kampen’s theorem

I =rm (8™ = 1 (k(Ng)) # ry00m1(C) = 1, C

since m,(0C) — m,(k Ny) is an isomorphism. Hence 0W is simply-connected. It follows that
W defines a thickening y € 7™*(SK).

We now show that n(y) equals the suspension of x, Sx e " "}(SK A SK). It will be
convenient to represent W as the union of N, x [ and of two copies of D™*?, where k :
Ny x O <cdD2? and koh: Ny x 1 <dDy*? are used as attaching maps. Similarly.
represent SK as the union of two cones CyK, C;K and an equatorial belt K x /. Then we
define a homotopy equivalence w : SK— W as yq on K x O — N, x O, extended radially
to CoK— Di"2; as y, on Kx I—-Nogx I, and k°h°yy =k°, extended radially to
C,K - D7*2,

Now ,(K) @ My x O = Ny, and we have an imbedding j : M{ < D™, inducing
kiNg=MyxIcD"xIcS"* !,

We can deform i, to i, whose image lies in M, x ¢ = D™ x ¢; likewise deform o on CoK
to w’, disjoint from it, by taking the linear extension of ¥y, joined up to a vertex slightly
above the centre of D2, A similar trick works on C, K, so we can assume that the images
of w and @’ meet only inside Ny x I. A slight further deformation takes iy and ¥ into the
interior of N, : eventually we may suppose Y, = | = ¢, and y; = ¢ is a constant homotopy.
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Recall that x is defined by the homotopy
LR
K——— Ny x Ng—= Ny x NofC « S™H1.
We have now shown that dy is represented by
(¢x 1%y .
(KXxDx (KEx)———(Ngx D x(Nyg x )= (Ng x [} x (Ng x D)J]C" + S""2,
This is essentially the same map, except that we have introduced an extra facter 7 (resulting
eventually in a suspension) which is mapped by the identity, thus giving the suspension
map, as required.

It also follows from the previous discussion that ¢ ° (S~ 'x) = 0, provided we know that
any thickening of SK can be obtained by attaching two copies of D™*? along N,. We
defer the proof of this till §9. It remains, then, only to prove ¢ ° S = d,, when the latter is
defined.

Let x e n"*Y{(SK A K). Then, as above, if My is the trivial thickening of K and N, =
My x I, x induces a map  : K- dN,, homotopic in N, to the natural map ,. If, instead
of starting with vy, we start with a constant map, x similarly induces y : K — dN,. It follows
from our assumptions that

Wov 1 Kv K- 8N,

induces an m-thickening of K. The theorem will follow if we check

(1) The homotopy class [¥] = [¥,] + [x].

(2) 7 induces the trivial thickening of K.

(3) SA (o), [xD = x.
For by (2) and (3), a(f, Vv ) is determined by (i¥, i%, Dx(¥o v 1) = (0, 0, S7'x), and thus
is equal to ¢'S™'x, and by (1), x(y) = 3,5~ !(x), whereas by definition x(y) = o(x).

Proof of (1). We interpreted x by replacing S™*! first. by (N x N/C), then by the pair
(N x N, C), and observed that projection on the second factor N induced {up to homotopy)
a fibration, with fibre the pair (N, dN). Thus we interpret x by an element & of 7(N, 6N; K).

Now the boundary 0, : n,(N, N; K)— 7,(0N; K} = [K: ¢N] is a homomorphism of
abelian groups, and our definitions above amount to [x] = ¢,<&, [Y] =[] + 04&. The
result follows.

Proof of (2). By definition, y is nullhomotopic in N,. Thus it extends to a map of the
cone on K into N,. We assert that we can relativise the embedding theorem to find a
thickening of CK (hence a copy of D™*') in N,, meeting dN, in a manifold representing
(). But then this manifold is imbeddable in S™, and so determines the trivial thickening.

The proof given in §7, in fact, applies to the present situation with only slight changes.
First, (7.1) is true if M is replaced by an (m — 1)-dimensional submanifold of M through-
out (Hudson’s proof covers this case). Next, alter (7.2) to allow N to meet ¢M: write W for
the relative boundary (i.e. the closure of 0N — dM), and let the assumed handle decompo-
sition of N be based on N n 0M. Then the statement and proof need no further alteration.
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Finally, if M, is the thickening induced by 7, we start by taking a collar neighbourhood
M x 1. and attach handles, corresponding to cells of CK not in K, in order of increasing
dimension. Since K is (2k — m + 2)-connected, and we can choose a cell decomposition
with each cell of K having dimension Z(2k —m + 3), we can always take ¢ = 2k — m + 2
in applying the lemma. There are then no difficulties in the induction.

Proof of (3). The left hand sidc is the suspension of the map defined by

Yo Xy

K x K

ONg X NG — (CNy)F = S

But by the definition of y, 7 extends to a map 7' : CK — Ny, and x is represented by
o X g
KX CK———=Nyx Ny— Ny e §"F1L

Here, this last diagram is somewhat inaccurate: in the original discussion, 1, was replaced
by a map into the interior of N,. If such replacement is not made, then (as we just saw)
K x K'is mapped into S™, and this map is extended over X x CK into one hemisphere (since
the first copy of K maps to M, x 0, the arrow joining a point of it to a point of the second
copy always points upward). The replacement is a homotopy, and has the effect of pushing
K x K “downwards™ in S"*! to a point. So, up to homotopy. we have the usual definition
of suspension.

§9. THICKENINGS OF SUSPENSIONS
We will now prove a result which was needed at one point in the last section.

THEOREM (9.1). Suppose K* is (2k — m)-connected, xe T "*XSK). Then if b: K-
No = S™ s the trivial thickening of K, there is a homeomorphisin I of Ny such that « is
obtained by glueing two discs D™** along N, by h.

Proof. We prove the result by induction on the number of cells of K. Write A =
L u;é*. Then applying the imbedding theorem to the inclusion SL < SK, we see that «
induces a thickening f8 of SL, represented (say) by SL — Y, and x is represented by a mani-
fold formed from Y by attaching a (k + I)-handle. Also, L has less cells than K, so the
induction hypothesis applies to give a description of 8. (Note that the lemma is trivial for
K a point, so the induction starts without trouble).

Now N, also induces the trivial thickening T, of L: in fact we have No =Ty u it
by the inductive proof of the imbedding theorem. Let g:S*™! x D"=**! , 5T, be the
attaching map of /4%, g its restriction to S*7! x 0. We have seen that ¥ is of the form
Dy*? v, Dy 2, where hy is a homeomorphism of the imbedded copies of Ty; and we know
that a manifold representing « is formed from Y by adding a handle /#** . Suppose we can
show that the attaching map F of #**! can be chosen such that the attaching sphere S*
has one hemisphere DY the core of 4* in N, = dD7*2, and the other hemisphere D* in
dDy*2. Then we can perform an isotopy of F: S* x Dm=k+1 — 07, fixed on S* x 0O, to
make Im F meet D} %% in DY x D"7**! and D”*'in the handle /*. If we attach /**! to
Dy 2 by FI(DY x D™ **1) then (ignoring corners in the smooth case) we are attaching two
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(m + 2)-discs along a common (m + 1)-face. and the result is again an (m + 2)-disc D7'*?
and our thickening is expressed as D% U D77 ? where the discs meet in N, = 40" as
asserted.

Thus it remains only to deform F]5* x O till the intersection with D™ 7 ? is as required.
Now any two k-discs are isotopic, so we can certainly perform an isotopy of F to make
F|D% as required. Thus the cssential point is to show that FID" can be deformed (relative
to the boundary) off D7 " into DW" 2,

We first show that this can be achieved by a homotopy. This follows at once from the
assertion that the image under m, 0 Y - m(¢Y, ¢ ¥ n 0D 2) of the class of Fis represented
by F|D%. Write Z for 6 ¥ n 6D 2. Now observe that if the centre of D2 is removed. we
can deformation retract what is left onto aD"* 2, Thus also ¢}« D"* 2 is a deformation
retract of ¥ minus a point. Consider the triad (3Y v D¥*2:0Y, D77 ?). Here, the pair
(€Y. Z) has the same homology (and also connectivity, both having the same fundamental
group) as (3Y N D%, Y n aDy** ~ oDy, or as (EDU2, T,), hence its connectivity
exceeds by I that of Ty, so (@Y, Z) is (2k — m + I)-connected. The pair ( D7+, Z) has
connectivity [ greater than that of Z. and Z is homotopy equivalent to D7 %% — T, so is
m-dual to 7)), or to L. so Z is (m — k — )-connected. By the Blakers—-Massey theorem
2, Theorem 1] (see also [19, 1.23]). the triad is (K + )-connected. Hence

MUY, Z) X m(CY v DEF 2 DYy = Y w).

But the homotopy class in ¥ > SL of Fis that of the suspension of /3 F|D* was chosen to
represent this, and our assertion follows.

We now need to treat two cases separately

Case 1. 2m 23k + 2

Let G: (DL, $*" 1= (27, Z) be the map just constructed. We assert that G is homo-
topic (rel S*7') to an imbedding. Indeed. the dimension condition Aim+ D=3k + Dis
satisfied; by the theorem of Haefliger [3] or Irwin (see [17] or [18]) it is sufficient to check
Z 2k — (m + 1) + l-connected. But we saw above that Z was (m — k — 1) = (2k —m + 1)-
connected.

Collating G with F|D* we obtain an imbedding F': S* > 4Y homotopic to F. We now
show F’ isotopic to F, which completes the proof in this case. It suffices to appeal to the
isotopy theorems corresponding to the above, and observe that 6Y is 2k — (m+1) + 2-
connected and 2(m + 1) > 3(k + 1). The connectivity of ¢ Y follows, for example, from that
of Z and the fact that the pair (0 Y, Z) (as we have just seen) has the same connectivity as Y,
or as SL, hence at least 2k — m + 1).

Case 2. K is (r — 1)-connected, where 2r = k + 1

We observed above that Z is Spanier-Whitehead m-dual to L. A corresponding
remark applies to Y n D7*2, which thus has a deformation retract a finite complex L*
homotopy equivalent to one of dimension (m — r): indeed, we may take L* of dimension
(m — r) by applying results of Smale (see [14], or [16, Theorem 5.5]).
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We shall use the relative version of the theorem of Haefliger quoted in §6, to obtain an
isotopy of FID{ to a position disjoint from L* (which can then be pulled back further into
Z). Our result about the class of Fin m (@Y, Z) shows that there is a homotopy which
accomplishes this: to apply the result in question, we need only check the dimension con-
ditions

m+ 1) 2k + (m—r) + max(k, m — r) + 3,

which reduce to 2r 2 k + 1 and r = 2k — m + 1): our two hypotheses.

[t remains only to observe that as K is (2k — m)-connected, we can take r = 2k — m + 1;
thus if Case 2 does not apply, we have k& = 2r = 22k — m + 1), and so Case 1 does.

Note: A simpler proof of Theorem 9 has now been found by J. P. E. Hodgson.

§10. CALCULATIONS

Our intention here is not so much to give specific calculations as to demonstrate the
utility of the concepts introduced above. Note that in §6 we have already performed a
calculation: of thickenings in the stable range. Our next example extends this to the meta-
stable range in a very special case.

PropostTioN (10.1). Let K* be a smooth compact manifold, 2m z 3k + 3, m= k + 3.
Then smooth thickenings are determined by

T™K) = [K: BO,_,]
Proof. Given a map K- BO,,_,, take the induced disc bundle £ over K, and the
inclusion of K as zero cross-section: this evidently defines a thickening. (If X has no boun-

dary, it is necessary to deform the base-point to JE: since the fibre is a disc, hence con-
tractible, this can be done essentially uniquely). Thus we have a natural transformation
«:{K:BO,_.]}—>IT"K).

Conversely, given a thickening ¢ : K*-» M™, by a theorem of Haefliger [3], ¢ is
homotopic to a smooth imbedding in Int M. Moreover, if 2m = 3k + 4, any two such
tmbeddings are isotopic, so the normal bundles are the same, and definc a homotopy
class of classifying maps K— BO,,_,. Thus we havc a map f3: 7™K)— [K: BO,,_,].
Evidently fx = 1, and the relation 8 = | follows by a (by now familiar) application of the
s-cobordism theorem.

In the case 2m = 3k + 3, we assert that two homotopic imbeddings arc regularly
homotopic, which suffices for our argument. The proof of this is essentially the same as for
Lemma 1 of {I]; we shall omit it.

Remark. In the piecewise linear case everything goes through without change, except
where we come to use the normal bundle. Thus we have a natural transformation
a: [K:BPL,_,]— 7™K),
but cannot casily define an inverse. In fact, using the ideas of [7] we obtain easily a natural

transformation
B:T™K)=[K:BPL, ]
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and the composite f§ ° « is induced by the natural inclusion PL,, _; < PL,, . 1t is conjectured
in [7] that this inclusion induces isomorphisms of homotopy groups in the metastable range:
were this so, we could conclude as above. Even failing this, we conjecture that f is always
bijective in the metastable range. (The author now understands that this conjecture has

been proved by Haefliger with PL,,, replaced by I;L,,,,k = lim PL, ¢, 140)-

The next calculation is taken from a paper of Haefliger [5, Theorems 5.3 and 5.7}.
The author had previously obtained part of this result, but Haefliger’s proof is so clear that
there seems no need to repeat it. For comparing our statement of the result with his, note
that the proof of our embedding theorem shows that thickenings in 7~ "*a(S") coincide with
handlebodies in 3#(n + g, 1, n).

PrOPOSITION 10.2 (HAEFLIGER). Let g = 3. Then the group T 4(S") is isomorphic t0 the
" homotopy group of the quadruple

% ———— G

I
¥
SO (or SPLYy—> G

q

Here, G, denotes the space of maps Si71— §17" of degree 1 (with the compact-open
topology), G, < G, by suspension and G = lim G,; similarly SO = lim SO, (and SO, =
G, in an obvious way) and for SPL. As usual, , denotes the base point. The homotopy
group of the quadruple is taken in the sense of Eckmann-Hilton. Of course, if SO is used
in the above it classifies smooth thickenings: use SPL for piecewise-linear thickenings.

Further work of Haefliger gives also a calculation of 7"*7 of a bouquet of spheres 5"
of the same dimension. Note that in the metastable range, n,(SO, SO,) = n,(G, G,) and
our two results coincide. Note also that in the same range. 7,(G, G,) = n,(PL, PL, ., ,), 0
the conjecture above is verified in the case of spheres.

Our last result is less precise, but will be useful in computations using the suspension
sequence. We need the

BARRATT-MAHOWALD THEOREM [1]. The natural fibration Q*BSO(n + 8s) » Q*BSO
has a cross-section over the (n + 4s — 7)-skeleton.

COROLLARY. Let dim L < n + 4s — 7. Then the homomorphism [S¥L : BSO(n + 8s)] —
[S®L : BSO) is a split epimorphism.

ProposITION (10.3). Ler dim L = /< n 4 4s — 7; suppose L r-connected, write Kr=
S®L. Then

9—2k+n—r+ I(K) — 7(]()
is a split epimorphism (smooth case only).

As we already know that 7 *(K)— 7(K) is epi (though not necessarily split) the result is
only really useful if » = n + 2: in any case, only if K is connected up to a large dimension.

Proof. As K is (8s + r)-connected, of dimension (8s + #), there is a trivial thickening M,
in 78*2-rTI(K) The corollary above shows that [K:BSO(n + 8s)]— [K: BSO] =
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J(K) is a split epimorphism: for « € 7(K), take the image in [K: BSO(n + 8s)} and let
N, be the total space of the corresponding disc bundle, over M. Thus N, defines an element
of Fr2¢ttiestn—r+l(gy. it remains only to show that the splitting map defined by x — N, is
a homomorphism.

Now in the same dimension where K has a trivial thickening, Theorem | also shows that
the “diagonal” map K— K v K is such that the trivial thickening M, + M, of K v K
induces a thickening (not unique) of K. But as M, + M, is induced by imbedding in Euc-
lidean space, so is this induced thickening, which thus must be M,. Now ifx, e I (K)
have images «', ' € [K: BSO(n + 85)], we form N,, Ny and ¥, + N, As we have an im-
bedding & : M, © My + M,, and the induced bundle is classified by «” + 8, we have an
imbedding of bundle spaces N,.,; = N, + Ny It follows that our construction is additive,
as required.

COROLLARY. Take L = S* U, ¢?, K¥= S¥L. Then T"K — 7 K is a split epimorphism if
m = 12s + 23, i.e. 2m = 3k + 37.

We conjecture that this result can be substantially inproved.
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