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Classification Froblems in Differential Topology. V
Cn Certain ¢-Manifolds

. 'C.T. C. WaLL (Liverpool)

The object of this paper is, first to give the classification up to diffeo-
morphis m of ciosed, swoocth, simply-connected 6-manifolds: and then
to vse this to study other cfassifications and related questions. Most of
our yesults are valid only for manifolds which satisfy the additicnal
hypothesis.

(1} The homology of M is torsion-free, and w, (M) =0,

Since, by smoothing theory, it is known that any pieccwice-lincar
e-manifcld admits a differsntial structure, unique up to concordance, it
follows that our clussifications apply equally to this case.

The problem was suggesied to the author by P. E. NEWSTEAD, as one
of the imanifelds atove arises in his classification of holomorvhic vector
hunadles of rank 2 and degres 1 over a Riemann surface of genus 2. Therf;‘r
is no dependence on the nrevious papers in the series — most of tl
problems investignted in them belonged to the “metastable” or qm.drdiif‘
range: here for the first time we consider cubic forms.

1. Splitting Theorem

Theovem Y. Let M be a closed, smooth, 1-connected 6-manifold. Then
e cax write M as a connected sum M # M,, where 1y (M) is finite and
My Is a counected sum of copies of S° x S3.

Progf. Write H3 (M) for the quotient of H, (M) by its torsion sub-
group. Then Hy(M) is a finitely gencrated free abelian group, and
intersection numbers induce a skew-symmetric integer-valued bilinear
form on it which, by the Poincaré dua ality thecrem, is nonsingular. 1t
mllm\s by a standard result that /Y (M) admits a sympleciic bas
{o; e[ 1€iSr}, so that

ene;=eine =0, enej=a,;

Now (M) maps onto HY(M). Also, since M is simiply-connected,
the Hurewicz theorsmy implies that 75 (M) maps onto 113(/11) Choose
elements of w;(a1) wn!h weak homology classes e;, e/, and represent
ther by maps f,, /71 8% M. Since M is simply-connected, a theorem of
HaerLiGer [3] shows that these maps can be taken 1o be embeddings.
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Also we may suppose (by a general position argument) that the gy,
spheres meet each other transversely in a finite sct of points “
which lies on more than two of the spheres.

The above-quoted result of HAEFLIGER depends on an argumery |
WHITNEY [23] which shows how to remove a pair of intersccting, -
opposite sign. Using this argument (which applies here since M i st
connected and our spheres have codimension 3) we find that We oL
remove all interscctions except those forced on us: i.e. for each i
transverse intersection of f; and f.

Let = be 2 basc point in S*: we may suppose our intersections -,
Si(=)=f{(*). Also, since the intersection is transversal, we can fing
neighbourhood D? x D? of * x  in $3 x S° to which

s e | f

HRNES

XUl x £)): (S x ) U(xx 8% M

extends as an embedding. Now the normal bundle of each sphere i 1
is trivial, as 7,(S0;) vanishes, so we can extend our imbedding
(closed) neighbourhood N of (S?x#)u(xxS$%) in §Ix 3. we
suppose N chosen so that the closure of its complement is a disc D®
small enough for us to have embeddings (for cach i) FiiN-M, wi
are disjoint.

If we remove from M the interior of each F;(N) and attach in
place the disc Df, we obtain a closed manifold M. Tt is clear from the
construction that M is diffeomorphic to the connected sum of A7 p s
of a number of copies of $* x §* — say of M,. Also the original choice !
the ¢; and e shows that the map

—

M

tHO

Hy (M) — I, (M) > HY (M)

is an isomorphism. Thus H;(M,) is finite.

We observe that since the fundamental group of a connected sir
(in dimension >2) is a free product, M 1 is simply-connected.

2. A Mormal Form

The proof below could replace that of Theorem 1 in our case,
does not appear to generalise uselully.

Tacorem 2. Let M satisfy (H) and Hy(M)=0. Then M can be obtaiz: -
from S by surgery on a disjoint set of embeddings g;: 5% x D®—S®.

Lroof. By duality, H,(M) is a free abelian group: choose a free ha-
{e;}. By the Hurewicz theorem, we can represent the e; by mapsf;:S* - ’
by a general position argument, these may be supposed disjoint eniis
dings. Now #,(50,)=Z, classifics SO, -bundles over 2, and is detect

Classification Problem

s, the second Stiefel class w,. S
aormal bundles, and f; extends t¢

Forma W' from M x I by usin
1« 1. Since, by construction,
somerphism, W' is 3-connecte¢
1« 0of & W', we see by auality tt
ior (44, and for i=4 is the isi
Sines V7 ois clcarly simply-connect
ding to SmMALe [17], V is diffeoma

Reversing the construction al
from S°2 V" by surgery as stated
N7 to W along V, 1o give a man|
handlebody, formed by attaching:
on to consiruct embeddings of M

3. Invariants of 11

We now consider closed, ﬂ
M with torston-free homology. B
to manifolds with H;{#M)=90. T
(or cohontelogy) groups are in ¢
so the groups in dimensions 0 ar
Write # for the free abelian grou

H= Homl(ﬁ

the isomorphisms being natural .
cup and cap products.

There is also the cup product
sbove notation Hx H-H. Tc
terated product p: Hx Hx H-»7
siine the entire homolegy aud cot
vperations, u already determines ¢
irom 7% to 1% is Sg? (with mod

We next come to characterist
class 140, determining the Stiefe
vanish, And v, is determined as d

Sq*: HYM; Z.

Apart from the Euler class, whic
~aly integral characteristic class i




jon argunient) that the i image
fimte set of points, none of

. derends on an argument of
e & pair of intersections of
pplics here since M is simply-
siont 3) we find that we can
on us: i.e. for each i a single

UPpose our infersections are
s transversal, we can find a
"o which

(xx 8% M

J* bundle of each sphere in M

‘cxlmd our imbedding to a
x$%) in $*x % We may

:omplement is a disc D%, and

or cach 1) F;: N — M, which

ach F;(N) and attach in its
k)]d M. It is clear from the
2 conncctea sum of A, and

.. Also the original choice of

'W (Af)

group of a connected sum
imply-connected.

H

theorem 1 in our case, but

=0. Then M can be obtained
dngs g;:18% x D3 80,

. group: choose a free basis
nthe e; by maps f;: 82— M
¢ supposed disjoint embed-
les over $2, and is detected

Classification Problems in Differential Topology. V 357

by the second Stiefel class w,. Since w,(M)=0, the f:(S? have trivial
normal bundles, and f; extends to an embedding f,: $2 x D* - M.

Form W' from M x [ by using the f; to attach copics of D3 x D* to
Mx1. Since, by construction, the map Hy(W’', M)—-IH,(M) is an
isomorphism, W is 3-connected. If V¥ is the component other than
M > 00t dW’, we see by duality that H;(W', V)Y H7 (W', M) vanishes
for i+:4, and for i=4 is the isomorphic image of H, (W) H (M).
Since ¥ is clearly simply-connccted, it is a homotopy 6-sphere. Accor-
ding to SMALE [I7], V is diffeomorphic to S°.

Reversing the construction above, we see that M can be obtained
from S°~V by surgery as stated. We also observe that we can attach
D7 to W’ along V, to give a manifold W with boundary M. And Wisa
handlebody, formed by attaching handles 4* to D”. We shall use i¥ later
on to construct embeddings of M.

3. Invariants of Torsion-Free 6-Manifolds

We now consider closed, smooth, simply-connected G-manifolds
M with tersion-free homolony By Theorem 1, we may restrict attention
to manifolds with H;(M)=0. Then the only nonvanishing homology
(or cohomology) groups are in dimensions 0, 2, 4 and 6. We orient M,
so the groups in dimensions 0 and 6 have given isomorphisms with Z.
Write H for the free abelian group H?(M)= H,(M), and H for its dual

H=Homy (H, Z)~H,(M)~H*(M),

the isomorphisms being natural given the orientation, and induced by
cup and cap products.

There is also the cup product H*(M)x H*(M)—>H*(M), or in the
above notation Hx H—H. To give this is equivalent to giving the
iterated product pu: H x Hx IH-»Z. Then p is symmetric; H and u deter-
mine the entire homology and cohomology structure. As to cohomology
operations, y already determines the 4-type of M, and the only operation
from H* to H® is Sq* (with mod 2 coefficients).

We next come to characteristic classes. Modulo 2 we have the Wu
class 140, determining the Stiefel classes w, =v,, w, =v% =w2; other w,
vanish. And v, is determined as dual to

Sq?: HY(M;Z,) » HS(M; Z,)=7Z,.

Apart from the Euler class, which is determined by the homology, the
only integral characteristic class is p, e H*(M; Z)~H.
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There are no relations between these invariants over the integers,
but certain congruence relations hold. Certainly w? is the mod 2 reduc-
tion of p;. We also obtain a relation mod 2 by considering Sg? on
decomposable elements x y(x, ye H). For by the Cartan formula,

Sq*(xy)=Sq’x-y+Sq'x-Sq" y+x-Sq*y
=x?y+0+xyp* (mod 2).

But, modulo 2 again, Sq*(xy)=0v,xy=w,xy. An analogous argument
provides also

x’=2'(x)=p,-x (mod3).

Finally, results of Wu [24] lead to a congruence mod 4.
To sum up, we have
Theorem 3. The invariants of a closed, smooth, sinmply-connected
6-manifold M with torsion-free homology can be described as:
Two free abelian groups H=H?*(M), G=H?>(M).
A symmetric trilinear map p:Hx HxX H—Z.
A homomorphism p,: H—Z.
An element wy,e HQ Z,, the image say of W,ell.
These satisfy the relations:
For x,ye H,
(e, y,x+y+W,)=0 (mod?2).
For xeH,
P =plx, W, W) (mod 4y,

pi(N=plx,x,x)  (mod3).

We observe that the reintroduction of H5(M) does not affect the
remaining invariants,

We conjecture that the above invariants determine M up to diffeo-
morphism. We shall prove this below in the case when M satisfies (H)—
which amounts here to the extra hypothesis w, (M) =0. Alter Theorem 1,
it will be sufficient to consider only the case when H;{41)=0; and by
Theoren1 2, A is then obtainable by surgery on a framed fink of 3-spheres
in S°. ’

4. The Classification of Framed Links of 5° in §°

First consider the case when we have oaly a single S7, so we have
just a framed knot. Fortunately, HAEFLIGER gives a detailed discussion
at the end of § 5 of [7] of precisely the case which interests us. Write
FC3 for the group of isotopy classes of embeddings g:5° x D* -S89, €}
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for the group of isotopy classes of embeddings g:5%-S5. There is a
natural homomorphism ¢:FC;—C3, obtained by taking g as the
restriction of g to 8% x 0. From [7] (or we can easily see directly) there is a
short exact sequence

0—-7;(S03)-5F C3-5C3 —0,

where 7 is the map which twists the tubular neighbourhood g of g. Also,
75(S03) is infinite cyclic. Finally, C3 is also infinite cyclic (so the sequence
splits), and a generator is given by the explicit embedding g, 153556 of
([5], p- 403).

We note in passing that the gap in [6] for k=1 — where HAEFLIGER
would like to perform surgery on a simply-connected framed manifold V
with boundary S® and signature zero — can be filled by using a result
of [20] which implies that by taking a connected sum of ¥ with many
copics of §%xS? we obtain a connected sum of D* with copics of the
same. This observation is due to B. STEER.

Next we consider the classification of framed links, i.e. of embeddings
in §¢ of a disjoint union of copies of S*x D*. The group of such links
was studicd in [6]: we shall use the final theorem of that paper. Although
the case d=2 is excluded by tae statement of the theorem, the obser-
vation above (also a more recent argument by HAEFLIGER) justifies our
repairing the omission. (The cases d=3, 7 are more truly exceptional,
owing to the existence of maps of Hopf invariant one).

Proposition. The class of a link as above is determined by the knot
class of eacl component and the linking elements Ay, Ay These are sub-

ject to the sole relations SA%=S2{, and that X,y is symmetric in i, j and k.

Here Aiem;(S?) is the homotopy class of the composite of the embed-
ding g; of S? in S(’—gj(S3), and a homotopy equivalence of the latter
with 2, chosen using an embedded copy of $? whose linking number
with g;(S%) is +1 (to fix signs). Write now S? =g,(5?).

More complicated is A, : the complement of S} L S has the homotopy
type of $2 v 82, and S? maps into this. But, using the easiest case of the
Hilton-Milnor theorem (or the Blakers-Massey theorem),

n3(S? v %) 2y (ST @13 (S @15 (S?),

the third summand being injected by the Whitehead product of the
inclusion maps of the two copies of S2. Write l;ken3(S3) for the projec-
tion on this summand of the class of S7.

Since 75(S?) and 7,(S?) are infinite cyclic, our links can bc charac-
terised by a set of integers. To fix these, we choose generators: the Hopf
map for 7, (S?) and the identity map for n3(S*). We must also choosc a
left inverse to 7. Now if g: 8% x D?— 5% is an embedding; we can use it to



360 C.T.C. WALL:

attach a 4-handle to D7, and the stable tangent bundle of the resyl
determines an element of 7,(S0), which can be shown to be an evey
multiple of the generator, and hence to lic in the (monomorphic) ima,.
of 75(S0,). (In fact it suffices to check this with some framing of g;\,_
Thus we have defined a map p':FC3;-»15(SO;) which gives stabiv
B:FC3—1,(SO). As Bt is clearly induced by suspension, 't is ti
identity.

To sum up, our framed link is determined by a set of integers, which
we can write as f3f, ¢;, A5, A5, which are subject to the sole relations
that 1%, be symmetric and that A=A/ (mod 2).

5. Identification of the Invariants

Suppose g,:5% x D3 = 5% a disjoint set of embeddings. Use them to
attach 4-handles to D7 to obtain W; set A =0 W. The handles have
homology classes in H,(W, DY H,(W)= i, (M)= H*(M); denote
these classes in H?*(M) by e;. The two previous sections are now ticd
together by

Theorem 4. We have, for i<j<k,

u(ei:ej;ek)=)~j‘k ,u(ei,ei’ej)='1ij
ule;,e;,e)=6p;+fi pi(e)==4pi.

Proof. Form X from S° by deleting the interiors of the images of the g;.
Then X has the homotopy type of a wedge of copies of S2 (plus various
5-cells), and we can choose S7 to link S? once and the other 5} not at all.
M is formed by attaching copies of D*x S? to X; hence by attaching
4-cells and 6-cells. The attaching maps of the 4-cells are null-homologous
in X so they represent homology classes in A in fact the classes corre-
sponding to e;. The above choice of linking numbers shows that the S;
represent the dual base of H,(M).

We now sce that (up to homotopy) A is obtained from VS7 by
attaching 4-cells D and a 6-cell. We calculate the attaching maps of the
Di. By the Hilton-Milnor thcorem again,

n3(V SHx @in3(5?)@i<,‘ 753(5?1')-

Thus the class of 8D is determined by integers, which in turn Jdetermine
products in cohomology. Also, by definition, the component of this class
in 3 (S?) for ik is AF and in 7y (S7) for ki, j is A¥;.

Now the isomorphism of 7,(S?) with Z is defincd by the Hop!
invariant, which is a functional square. Hence the value on the homology
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l ézﬁg;:ts}::i:f}ct:f} Ei-}’c resys class of D¢ of the square of ¢; gthc dfi,al basc to S7) is /’L'Z‘. As this homology
‘e in the (x‘nonomor ‘)}% an evey cass is dual to ey, we have e? e, =¥, Also, the functional product takes
. : phic) iz the value 1 on a Whitehead product clement, so e;e; has value A¥; on the
this with some framing of 7. class of D}, and ¢;e;¢ :=}f,-. !
»73(50;) which gives stab, The remaining two cquations are related only to our classification of
ed by suspension, f'r is (. framed knots. By definition, the restriction to D¢ of the stable tangent
o ) nundle of W (hence alsc of M) gives 2 8 times the generator of n5(S0).
fned byﬁ ',d set of integers, WIA”‘\E" Thus the Pontrjagin class takes the value 4 f; on this homology class, so
J(iu;;Jebi to the sole relation: p,(c)=4pi. Finally, ¢ is (as above) determined by a class in 75 (S?),
) thus we must evaluate the map FC3 —n3(S?). On the subgroup 73 (S03)

it is casy to see that the map is induced by the {ibre projection SO5—S?,
Mnvariants hence is an isomorphism. Also, HAEFLIGER has shown ([7], end of § 5)
that the framed knot g, detcrmines 6 times the generator of 15 (S%). It
can now be checked without difficulty that the signs in the stated result
are correct.
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::M ; mbfﬁcli‘ ;hc 01335{95 C””g Proof. By Theorem 3, these are ind:ccd invariants of diffcom.orphism

g numbers shows that the 5, class. To demonstrate existence and uniqueness of a manifold with given
‘ _ invariants, it suffices (by Theorem 1) to consider only the case G =0.

M is obtained from VS b Choose a base {¢;} for H. By Theorem 2, there exists a framed link of

late the attaching maps of th: A-spheres in S¢ on which surgery can be performed to give M, with the

given base {e;} for H2(M). By the Proposition and Theorem 4, and p,

" determine the framed link, and satisfy the given congruence relation.
EACHHE Henee they also determine M. To prove existence of M with the given
invariants, we only have to choose a framed link as specified by Theo-

:gers, which i crmine
gers, which in turn determine tem 4 and perform surgery.

?;thc 901;,})0116m of this cla~ We note that the final congrucnce condition is stronger than that
: Z”J 15 2ije . obtained in Theorem 3. A direct proof can be given by applying ADEM’S
v Z is defined by the Hor sccondary cohomology operation: to the Thom class of the tangent (or

ice the value on the homolo:? normaf) bundle of M.
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6. Homeomorphism and Homotopy Classifications

Since cup products are certainly homotopy type invariants, i j.
only necessary to investigate the Pontrjagin class p,. Now Novikov ha.
shown [/6] that the image of p, in rational cohomology is a topologic.
invariant of M [parts of his original proof are unclcar, but sce Izvestia
Akad. Nauk SSSR. 30 (1966) 208 —246]. Thus wc have

Theorem 6. Two manifolds satisfying (H) are homeomorphic if and
only if they are diffeomorphic.

We leave unsolved the problem whether a topological 6-manifold
satisfying (H) is homeomorphic to a smooth manifold. (For homotopy
spheres this has recently been shown by M.H.A. Newman). We next
come to homotopy classification.

Theovem 7. Two manifolds satisfying (H) admit an orientation-preser-
ving homotopy equivalence if and only if the corresponding groups G have
the same rank, and there is an isomorphism beiween the groups H which
preserves i, and py (mod 48).

Oniy the final condition calls for comment: invariance of p; (mod 24)
was previously known, but follows trivially in our casc by the relation
with p. In fact, after Theorem 4, if u is given we know p, (mod 24): to
determine p, (mod 48) is equivalent to determining the numbers ¢;
(mod 2).

Proof. We first give an indirect proof of the mod 48 invariance of p,,
which indicates a reason for the fact; then we give a computational
proof which will establish also the sufficiency clause.

We follow MiLNor and KERVAIRE [[0]. Since w, (M) ==0, the tangent
bundle of M is trivial on the 3-skeleton; if $ is the obstruction to trivial-
ising on the 4-skeleton we bave p, =29. Now extend the structure monoid
from SO, to SG4 (=self-maps of degree 1 of $%). The resulting fibration
is (at least stably) a homotopy type invariant of M, by a result of Sp1vax
(Princcton thesis, 1964). Hence so is the image of 3 under

HY(M; Z)~ HY (M ; 15(S06)) > H*(M; n5(SGy)).

But we can identify 75(SGg) with mo(S®), and the coefficient map with
the J-homomorphism, which reduces mod 24. Hence 8 is a homotapy
invariant mod 24, hence also 23=p, mod 43.

Our second proof is valid only when G=0; by Theorem 1, we only
need prove the sufficiency clause in this case. Choose a base {¢;} of
H?*(M) giving rise by duality to bases of #,(M) and of 17, (M). Since M
is 1-connected and H, (M) is torsion-free, M is (homotopy equivalent to)
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a cell complex whose cells determine these basis clements for homology:
this follows from arguments of SmMaLe [/7] up to homeomorphism — a
simpler argument of MILNOR (sec [21]) provides homotopy equivalence.
Ve have already mentioned that functional cup products detect the
third homotopy group of a wedge K2 of 2-spheres, so the homotopy type
of the d-skeleton K* of M is determined by p. Now the sequence

s (K?)-ns(K)—ms (K% K?)

is cxact, and a simple computation shows that ns(K*, K?} is detected by
functional cup-product and functional Sgq?, hence in our case the image
of the attaching map of the 6-cell of M inzs (K*, K?) is well-determined.
Unfortunately, ms(K?) is exceedingly large (if » is the rank of A, it has
rank (§)) and most of its summands map injectively to m5(K*). But the
class in 75 (K#) of the attaching map is not a homotopy invariant of M, as
K* has many self-homotopy equivalences homologous to the identity.

We must thus argue differently. Now consider 47 as obtained from S°
by surgery on a framed link, and take the piecewisc lincar point of view.
in this sense, S® unknots in S°. If M, and M, have corresponding forms p,
the two framed links must arise from the same unframed link; also we
may supposc the regular neighbourhoods which are the images of the
¢85 x D3-S are identical: only the actual maps differ. To form M,
we delete the interior of the image of g; and attach D*x S%:ad-celland a
6-cell. Only the attaching maps distinguish M, from A,.

The 4-cell is attached by a map S*—»S* x §%: on the first component,
the degree is 1; on the second, if we use the standard framing, the Hopf
invariant is p(e;, €;, ¢;) (c.f. proof of Theorem 4). Thus its homotopy
class is uniquely determined. Twist S$? x §? by the corresponding element
of 1,(SO;)~7m;(S?). Then the attaching map becomes the class of
§% % x. Adding the 4-cell to S? x §* now changes its homotopy type to
that of S v §2.

It remains, for each i, to attach a G-cell to S* v §? by a map of degree 1
on S°. But we have

7s(S° Vsz)zﬂs(ss)@ns(sz),

so only the class in 75(S?)~Z, remains to be considered. That it is
cquivalent to ¢@; (mod 2) is now clear from the first argument, but we
may see it directly as follows.

_ The fibration 2 8?—SG, —S? (here S, is the space of self-maps of
5% of degree 1, and the projection is the natural one) induces a short exact
sequence

-9-)735 SZ——)TC3 SGy-—7; 529
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which necessarily splits. As 73(G, SO)=0, the exact szquence of Hatr.
LIGER [7, 5. 17] shows that FC3 maps onto 7, (SG,). We thus have

0—m3(S0;) - FC3; -% C3 —0

!
0— 75(S*) —713(SG3)—>m3(S?) 0

and the composite 75 (SO;)—n4 (S%) is evidently the isomorphism induced
by the natural projection. This splits the second sequence, and our sphit
of the first induces a surjection C3—n(S?), so that the class in 75 (82
is just the class ¢; in C3 reduced mod 2.

Finally, the image of g,e FC3 in n,(SG,) induces up to homotopy au
automorphism of the fibration $% x §2—5>: this is the attaching map for
D* x §? to obtain M. Perform the automorphism in two stages: first by
73(S?) ~7m3(S0,) as a bundle automorphism. What remains is just the
element of 75(S?) needed above.

Theorem 8. Let X be a simply-connected C¥W -complex, with H (X7
zero, satisfying Poincaré duality with a fundemenial class ze Hy (X). Then
X is homotopy equivalent to a closed smooth manifold.

Proof. By SeIvaK’s thesis, for N large there is a unique (up to homo-
. topy) [ibration with base X, with fibre bomotopy equivalent to $¥
the fundamental homology class of whose Thom space is spherical.
By a result of Stasuprr [/8], this is classified by a map X—BG. The
obstructions to factorising this map through 850 lic in the groups
H(X; 7, (G, SO)). Now the homotopy group vanishes for i=2, 4, 6;
the cohomology group vanishes for i=1, 5 since X is simply-connected
and satisfics duality, and for i==3 by hypothesis. Thus the map can be
factorised through BSO; we see that a homotopy equivalent fibration
is a bundle with group SOy, ,.

We now apply the technique of surgery (due to Novikov and Brow-
DER [0] for this situation) as follows: let 7" be the Thom space, f: S¥ 67
the map of degree 1. We identify X with the zero cross-section <7,
let M =f""'(X), and usc a transversality argument to make M a manifold,
and then surgery to make the map f | M:M — X a homotopy equivalence.
The only obstruction (at the Jast step of the argument) is an Arf invariant,
but since any 3-sphere in M has trivial normal bundie (7, (S0,) =0), we
can still do surgery, provided we are willing to change the bundle defincd
by the map X—LS0. This proves the result.

If the hypothesis H?(X; Z,)=0 be dropped, then there is an obstruc-
tion in this group to the first step in the arguraent. This is the “‘exotic
characteristic class” computed by GITLER and STASHEFF [2].
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7. Almost Complex Structures

Since our problem arose by considering a complex manifold, it is now
natural to turn to the question of complex structures. The obstructions
1o reducing the group of the tangent bundle from SO to U, (i.c. to fin-
ding an almost complex structure) lie in the groups H(M; m;— (S0, Us)).
Now we have

Lemma. 7,(SOg, U)=Z. For i=0,1,3,4,5,6: 71;(SO¢, U3)=0.
vor i<6, these are given by Massey [/4]: the case i=6 follows by a
«imilar elementary computation. (In fact, SOg/Us= Py (€).) We thus have

Thecrem 9. Let M be a smooth oriented 6-manifold. Then M has an
almost complex structure if and only if W3 (M y=0. When this is so,
there is just one (homotopy class of ) almost complex structure for each
e € H2(M) whose mod 2 reduction is W,(M).

The other Chern classes are determined by the usual relations:
n =ci=2c¢, and ¢y is the Euler class (when H, (M) has 2-torsion, more
care is necessary with ¢,).

When we wish to consider complex structures we meet the disturbing
fact that there is no known necessary condition for a homotopy class of
almost complex structures to contain a complex structure: also Do
inown sufficient condition (except by listing manifolds). We must leave
these problems open.

However, it is well known (sce. e.g. [25]) that a necessary condition
for M to admit a Kithler complex structure is that there exist we [T 2(M;IR),
with @* =0, cup product with which induces an isomorphism

HX(M; R) —» H*(M; R).

Moreover, if the structure is projective algebraic, then o comes from a
well defined integral class (which we also denote by ), which is (up to
«ign) dual to the homology class of a hyperplane section. We now rewrite
this result in the notation introduced in § 3.

Proposition. Let M be a closed oriented 6-manifold satisfying (H).
Suppose M homeomorphic to a nonsingular projective algebraic variety.
Ihen for some we H we have p(w, @, ®)+0, and the quadratic Sform of the
symmetric bilinear map Hx H-+Z defined by {(x, y) (o, x, y) is non-
avgenerate.

We observe finally that the manifold of NEWSTEAD (which is projective
alyebraic) has the following invariants:

G has rank 4;

M has rank 1, generator e (say): let é be the dual generator of H;
t=dd, 0 =2e, 0,=128, 50 p=—8¢.
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8. Immersions

We next determine the least dimensions of Euclidean spaces in:.
which our muanifolds can be immersed. We {irst consider smooth iy,
sions.

Theorem 10. Let M satisfy (H). Then for smooth inunersions we by

(i) M does not immerse in R®.
(ii) M immerses in R7 <>p; (M) =0.

(iii) M immerses in R® <> for some Xe2 H, p (M) + X?=0.

(iv) M immerses in R,

Proof. Since M =M?® is closed, it cannot immerse in RS, For ¢,
there is by [9] an obstruction theory for immersing M in RE*9 wis
obstruction groups

H{(M;m;_1(50, SQ).

If g =1, the nonzero groups are those with i=2 or 4. the first obstruction
is casily identified with w,(M)=0. The second maps to p, under ihe
map of coefficicnt groups

7[3(30, SOI): 77:3(50)2;7'[4([380) - }{4(1350);214

and herice vanishes if and only if p, does.

If ¢ =2, the nonzero groups have i=3 or 4. The first gives the obstruc-
tion W, (M)=0. When we come to evaluate the second, we have aliead:
made a choice of immersion, hence of normal Z-plane bundle y, over the
1.skeleton. Let X be the Euler class of y. Then X* is the Pontrjagin s
of the extension of 7 over the 4-skeleton K (which exists and is unique
n3(BS0O,) and 7,(BSO,) vanish). Since we wish this extension to bw
inverse to the tangent bundle, we need X% 4+p,(M)=0. Asn3(S0, 502~
75(50) is infinite cyclic, it is clear that conversely, this condition suffics-
for our obstruction to vanish. It remains only to note that X defines 7.
and yisin factinverse to the tangent bundle (on the 3-skeleton) <> w, (3)
w, (1) =0, i.e. 0=, (), the mod 2 reduction of X.

Finally consider ¢=3: here the nonzero groups are for i=4 and 6
The first obstruction is wy (M), which is zero as we saw in § 3. For thy
final obstruction, the coefficient group is

75(S0, SO;) =1, (S03).

We can interpret the obstruction as follows. A4 can be obtained from
4.complex by attaching a 6-cell: call the attaching map 85K W
have already immersed a neighbourhood of the 4-complex, and so definet
a normal bundle y over K. The ohstruction is the same as that to
vialising a*(y). But w,(y)=0,s0 7y is trivial on the 3-skeleton of X, and o
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induced by a map 2 of K to a wedge of 4-spheres. But foa is detected
by the functional cohomology operation Sg?, i.e. by Sg* in M, which is
sero. Thus foo is nullhomotopic and a*y trivial, so our obstruction
vanishes and we obtain the required immersion.

We next consider piccewise linear and topological immersions,
restricted as follows. A map f: M-V of topological manifolds is a

.(locaily flat) embedding if each P € /(M) kas a coordinate neighbourhood

e:U-IR” in V with (U n f(M))=R". It is a (locally {lat) immersion
if cach point of M has a neighbourhood embedded (locally flat) by f.

Theovem 11, Let M satisfy (H). Then for topological immersions,
(i) M does not immerse in R°.
(ii) M immerses in R7<>p (M) =0.

_(iii) If M immerses in R® with a normal (micro-) bundle; in particular,
if there is a (locally flat) PL-immersion, we have an X €2 H with
Pi(M)+X?=0.

(iv) M immerses in JR°.
We have not succeeded in deriving the condition p,(M)+X?=0
without the extra hypothesis in (iii).

Proof. (i) The image of such an immersion would be open (by invari-
ance of domain) and compact, hence closed; contradicting connectedness
of RS,

(iv) and the other sufficiency statements {ollow from theorem 10.

(i) By a result of HarrLIGER and PoeNARrU ([8], Preposition 1), such
an immersion induces a “neighbourhood” N of M. Cut N along M: the
local flatness shows that we obtain a manifold with boundary. By a
theorem of Brown [/], the boundary has a collar neighbourhood.
Hence M has a normal line bundle: let £ be the total space. Since £
immerses in IR”, it has trivial tangent bundle; in particuiar p, (£)=0.
But E~M, and its tangent bundle is that of M plus a trivial linc bundie.
Hence p, (M) =0.

(iil) First note that by the main result of [22], any locally [lat PL
embedding (hence, as above, also immersion) with codimension 2 has a
normal PL-bundle. Also, by [/2] microbundles are equivalent to bundles.
So we assume M immersed in IR® with a topological normal bundle y,
with total space £: E has trivial tangent bundle.

By a result of MILNOR [/5], the tangent bundle of E is the sum of the
tangent bundle of M and the normal bundle of M in E — ic. vy itself.
Now the structure group of y is the group orientation-preserving homeo-
morphisms of IR? Jeaving the origin fixed. But by (/3] this is homotopy

3% Invent. math,, Bd. 1
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equivalent to SO,. Thus we can give y the siructure of a vector bundle,
Then, as before, y has Euler class X, and X*=p,(y), X>+p, (A7) =
21(E)=0, and X reduces mod 2 to w,(y) =w, (M) =0.

9. Embeddings

Now we consider the more difficult problem of embeddings: we first
give necessary conditions.

Theoremi 12. Let M satisfy (H). Necessary conditions for topological
embeddings of M are:

(i) M embeds in R7=p (M)=0, p=0<>0 is a connected sum of
f

copies of S* x S* and S*x S*.

(ii) If M embeds in R® with a normal (micro-) bundle; in particular,
if there is a (locally flat) PL-embedding, we have p, (M) =0.

(iii) M embeds in R®=> for some X e€2H,p,(M)+X*=0 (mod 8).

Proof. (i) By Alexander duality, M separates IR7; let B be the closure
of the bounded complementary component, 4 of the unbounded. The
Mayer-Vietoris exact sequence of the triad (R7; 4, B) viclds isomorphisms

H=H*(M)x~H*(A)® H*(B)==11, ® H,,

H=H*(M)~H"(4)® H"(B).
And by Alexander duality, H*(4)~ H,(B) = '72 The inclusion itAc M
is compatible with the cup product, so if xe H, ye H, we have 0=i*y,
hence 0=i*(xy), so for zeH,,O0=pu(x, y,z). Hence g vanishes on
H, xH,x H, and on H,x H,x H,, and similarly with I, and },
interchanged. Since u is symmetric, and H -+ H, == H, p vanishes identi-
cally. The conclusion p, (M) =0 follows from Theorem 11 (ii). The final
equivalence follows at once from Theorem 3.

(ii) Follows by combining (ii) of Theorem 11 with a standard argu-
ment which shows that the Euler class of the normal bundle of an embed-
ding always vanishes.

(i) If /: M—1R® is continuous and injective, then (x, y)—f(x)—/(»)
defines a map M x M—R® in which the inverse image of the origin s
the dingonal AM. Removing this, and retracting 12 --0 radially (by 7!
onto S8 we have a map F: M x M- AM--5® which is equivariant for the
Z,-actions by interchange of factors on the left, and by the antipodal
map on the right. We will show that our condition is necessary for the
existence of such a map F; it will follow from our arguments that the
condition is also sufficient.
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'structzurc of a chtor bundi., Form the manifold M, from M by deleting the interior of an embedded
nd X==p,(y), X*+p, (M} Jisc. Then M, is a smooth regular neighbourhood of the 4-skeleton K*
Wy (M)=0. {or a suitable C.W.-structure on A{. By a theorem of HAEFLIGER [4]

o the map F|(Mgx My--4My) corresponds a smooth embedding
: o My,—TR?, unique up to isotopy, with F equivariantly homotopic to
ro(fo%fo). Form M, from M, by removing a collar neighbourhood of
&M, (or equivalently, from M by removing a larger cencentric disc).
Then M, =K, and d My~ S* is embedded in R°—M, ==C, say. We assert

blem of embeddings: we firs;

ary conditions for topologicii that the inclusion map j:$°—C is nullhomotopic.
: To prove this, note that IR® may be replaced by S? in the above.
le> M is a connected sum of Then C is S-dual to K. Since dim K=4, C is 3-connccted, and so it is

|

sufficicnt to prove j stably nullhomotopic. But Map (M, S%) is also
S-dual to K, and  corresponds to I |(S°x M,):S°x M,—S®, or rather

‘micro-) bundle; i ficular . . e . ..
ro-) bundle; in particular, (o its adjoint S*—Map (M, , S®). This is nullhomotopic, and j is stably so.

have p, (M) =0. . oL .
The obstruction to finding a cross-section of the normal bundle y of

Y, py (M) + X =0 (mod §). f,(M}) is an element '
-ates IR7; let B be the closure 4 2 4 ” :
; € HY(M 3 ma(S?)~ HY (M Z) =11 .
» A of the vnbounded. The 4 (My375(5%) ( )=H
.75 4, B) yicids isomorphisi (The first obstruction is zero, as we see casily that y is trivial on the

-skeleton). We first compute g. The cross-section can first be chosen
on the 2-skeleton, and will than split y=¢@® yo, where ¢ is a trivial line
bundle and y, a plane bundle. The Euler class X (yo) can be anything
reducing mod 2 to w, (), hence Xe2 H. Now X determines a bundle yo
over M, and the desired obstruction is that to extending the isomor-
phism y—e@ y4 from the 2-skeleton to the 4-skeleton. Now Py =
~p (M) and p, (e ® y5) =X?; also, the generator of 7;(S0O3) (which is
isomorphic by projection to m3(S%)) has Pontrjagin class 4. Hence
4g=p, (M)+X? (up to sign). It thus remains to show that j~0 implies
4 =0 (mod 2); in fact we will see that these two conditions are equivalent.

Since C is connected, and the only nonzero reduced homology groups

Y=H, @ H,,
7*(B).
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normal bundle of an embud- d-cells, S-cells and 6-cells, and the attaching maps all homologically

trivial. The attaching maps of the 6-cells are detcrmined by Sq* in C,
tive, then (x, y)—f(x)~/(+ benee {by S-duality) by S¢* in K, which amounts to cup square f/— H,
verse' image of the origin - reduced mod 2. Then as ns(SY)=Z,, we have ns(C)m Hy(C; Z,)@
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ns(C)~ Y (M3 Z,)]Sq* H* (M 7,) @ H*(M).

q(mod 2)==1 p,(mod 2)+Sq* H*(M; Z,)

T BA'-\'I_D‘Z';
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determines an element of the first summand. With this identification, we
assert that ¢ (mod 2) is the homotopy class of j.

First let ¢ =0. Then we can find a nonzero section o of y, and hence
an embedding g, of M, disjoint from f,, except on d M, (where they agree).
The image by g, of the 2-skeleton L of M, is nullhomotopic in C, so
extends to a map AM,/L - C. But S°— M - Mo[L is stably nulliomotopic,
hence so is j, and thus j~0. For M/L is homotopy equivalent to the
4-skeleton of M modulo the 2-skeleton, and hence to a wedge of 3-spheres
and 4-spheres, and 75 (M,/L) splits correspordingly as a direct sum, We
have zero in the component involving the 4-spheres, since

Sq*: HY(M;Z,) —» H (M3 Z,)

vanishes. In the other, by Theorem 1, we have the attaching map of the
ton cell for a connected sum of copies of S7x S°. But this is a sum of
Whitehead products, so its suspension is nullhomotopic.

In the general case, we-construct a sectivn which 1s nonzero on the
3-skeleton of K, and such that the intersection invariant of the resulting
2o (M) with a 4-cell E of K can be identified with ¢(£) (mod 2). The
intersection invariant is that of [£9]: the reduction mod 2 comes about
since the map (£, dE)—(D?, S$2)->(S3, %), defining it has homotopy class
g, S the suspension of g(E)en;(S?). By adding a suitable tangential
component at the zeroes, we can ensure (since dim K=4) that g,(K) ix
disjoint from £, (K); and hence also (since M, is a rezular neighbourhood
of K in Int M) that go(M,) is disjoint from £, (M,). 1t then follows as
above that go(é M) is nulthomotepic in €. Now let A=My—Int M.
Then go) A gives an isotopy of j to g0 M, which is nullhomotopic, so
the linking of j and fo(K) is measured by the intersection of 4 with
fo(K) and hence, by the above, by ¢ (mod 2), as asserted.

We now come to sufficient conditions: herc our object is to obtain
smooth embeddings, and so prove that tepological embeddability
implies smooth embeddability.

‘Theorem 13. (i) A connected sum of copies of S*x S* and S x s?
embeds smoothly in R7.

Let M satisfy (H). Sufficient conditions for smooth embeddability are:

(i) If p (M) =0, M embeds in R®.

(iii) M embeds in R'. )

Proof. (i) is trivial, since cmbeddability of two manifolds easily
implies that of their connected sum. In fact by Theorem 1 we can restrict
ourselves throughout to manifolds M with H;(21) =0.

By Theorem 2, and the remark at the end of §2, we can now write
M =0 W, with W a handlebody.
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(i) Now Wx I (with corners rounded) is again a handlebody, given
by a framed link of 3-spheres in S7, the suspension of the earlier link.
gince all the 3-spheres lie in the equator S°, they are in fact all unlinked.
The framing is given by an element of 1,(S0,) which determines the
pontrjagin classes of W, and of M. Since p, (M)=0, we have the standard
framing. Hence c.f. [79] Wx Iis the standard handlebody, diffeomorphic
to a boundary-connected sum of copies of S% % D*. Hence W x I embeds
in R®: so does M =0 W.

(iii) We again use W, but now construct a bundle E with fibre D* over
1. The choice of basis of M gave an expression of W as a wedge of
4-spheres: we choose that bundle such that the characteristic class on the
i sphere is given by —fien;, (SO5). By the definition of fi, it follows
that E has trivial tangent bundle. But £ (with corners roundcd) is again a
handlebody; since we are now in the stable range, E is a sum of copies of
$t% DS So E cmbeds in R'; so do the zero cross-section W, and
M=0W. v

Finally, we must consider embeddings in IR®. These secm to be
considerably more difficult to study. The cleanest result we can give
concerns “almost smooth embeddings” — i.c. embeddings which are
smooth except on a disc, where they are piecewise smooth. Here we have

Theorem 14. A necessary and sufficient condition for the existence of
an almost smooth embedding M®—TR® is that there exist a class X e2H
with X*+p, (M) =0.

Tt follows at once that our condition is necessary for smooth embed-
dings and sufficient for piecewise smooth, hence for piccewisc lincar ones.
We conjecture that it is also necessary for a PL embedding.

Proof. Necessity. Let M, be the closure of the complement of the
had disc. Take a tubular neighbourhood of M, and extend to a smooth
reeular neighbourhood A of M. Extend the projection of the normal
bundle of M, to the natural collapsing map of the neighbourhood onto
17. The fibre over sach point is collapsible, and mects 4 in a homology
2-sphere. We have a spectral sequence

HY(M; 119(S%)) = H"(34) .

The sequence restricted to M, is that of the fibration, and so is induced
from the universal example, the sequence of the fibration S*—BS0O,—
“;5'();. Work with tational coefficients: then this sequence is trivial;
{ L 1{’, is the tensor product of the exterior algebra on the gencrator s of
HYS*:7) in ES? and the polynomial algebra on the universal Pontr-
s class pre b0 But H*(BSO,) is the polynomial algebra on the
suiversal Luler class X3 we have X2 =p,, and the restriction of X to the
fibte 87 gives the Euler class of the tangent bundle of S2, i.c. 2.
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We deduce in our spectral sequence, since there is no torsion, that 1+
differentials vanish (only d; was in doubt), and that we can idennt
H*(0A) with H* (M) ® 11*(S?) as groups, with ring structure given b
(25)* =p, (M). '

Now let B be the closure of the other complementary component
dAin S°. The inclusions & 4~» A4 and § A-> B induce ring homomorphism:
H* (M)~ H*(A)—>H*(@4) and H*(B)—>H*(64): in dimensions oth:
than 0, 8, we know by duality that Hi@MN~H (M)® H(B). The rea
of the proof is now purely algebraic.

Let ey, ..., e, be a base of f12(M), z of HS(M), and &, ..., ¢, 1.
dual base of H*(M). Using the dummy sulfix convention, write

2_—1 — ’ A- - A
st=%pi=Phies eiej’“lijkek

as before. We only look at even dimensions; suppose bases of {the image.
of) the H'(B) are:
s+a;e; (dimension 2)

seq+b;;¢;  (dimension4)
sétez (dimension 6) .

We now write down the conditions for these to define a subring. Products
which lic in dimension 8 must vanish: this yieldsa; +¢;=0and b;;+b;;=0.
Writing down the conditions for the product of s+a;e; by itsell, resp.
by H*(B), to lie in H*(B), resp. H®(B) we find

’ . - R
2 a; bij=ﬂj+ai dy ’Iijk’ b ; cj'jf'lijk Cj ay=fi+bija;

from which we deduce b;; a;=0 and dieazag=~—fi. Thus if Y=a;c,.
we have

v2 _. A [ W2
Y —"l"jkajakei-—-_ i(.’i-—--b .

So we set 2Y=X €2 H, and X?=—4s>=—p (M), as required.

Sufficiency

By Theorem 10, M immerses smoothly in JR?. Let v be the normui
bundle, 4 the total space of the corresponding disc bundle. Obtain Y.
as usual from M by removing the interior of a smoothly embedded dise 1"
Let A, be the sub-bundle with base M,. We identify M with the zete
cross-section in A. Our plan is to attach handles to A, along AgnCd
make it contractible, and hence a 9-disc. 1t will then follow that we cad
embed M, smoothly in D?, meeting $® in 6 M. We can change this by

piccewise smooth isotopy near M, to make it PL on 0 M. The erbed-

e
R
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mentary disc to D° in S°. As in the previous theorem, we can assume
il (M)=0.

Note that any closed subset of §4 not mecting the fibre S? over the
central point of D° can be isotoped to lie in Ao N dA: hence this is so for
4 subset of dimension £35.

We will first attach 3-cells to kill H,(A): we must select clements of
n, (0 ) H, (0 A). We choose a basis of the subgroup of IH,(0A)
annihilated by the cohomology class s+ Y, where X=2Y and s are as in
the first part of the proof. Represent the chosen clements by disjointly
embedded spheres, and perform framed surgery ({111, p. 520): note
that by construction A is framed. Write C, for 4, with the handles
attached, and C=Cou 4. Then, up to homotopy, Co is a wedge of
4-spheres, and C is obtained from it by attaching a 6-cell (by a trivial
map: the functional Sg* vanishes since Sq*  HY (M5 Zy)~H(M; Zy)
does).

Now dC is simply-connected, and H,(0C) is free, H3(0C) vanishes.
We assert that from these facts follows that an clement of H,(0C) is
spherical if and only if it is annihilated by the cup product of any two
clements of H72(0C). It suffices to prove this for a CW complex K with
only 2-cells and 4-cells. Then 7, (K, K= H,(K), and we have an exact
sequence

g K -7, (K, K?) - (K?)

and cap identify n,(K?) with the subgroup of symmetric elements of
11,(K)® H,(K), and the boundary map as the dual of the cup product
H2(K)® H*(K)— H*(X). Our assertion follows.

Now H?2(C) is generated by a class which we will call s+ 7Y, and
(s-+Y)*=2sY. Thus if Ay, ..., h,, is the base of H,(@C) dual to the
base €, ..., 6,,5€;,...,5¢, of H*(@C), hy, ..., h, are spherical. They
are dual to the cohomology classes sey, ..., §¢,, any two of which have
product zero. Thus we can represent them by 4-spheres with intersection
numbers zero; by an argument of [/1] we can make all the 4-spheres
disjointly cmbedded, with trivial normal bundles. These can be pushed
mito C, "3 C. Attaching corresponding handles to Co makes it contrac-
tble; we verily easily that the boundary of the result is simply-connected.
By a result of SMALE [17], we have a disc. This completes the proof.

The insufficiency of the condition of Theorem 12 (iii) is of interest.
i he obvious way of obtaining an embedding would be to ecmbed M, by
+ veneral position argument, use that condition to obtain a nullhomo-
topy of M, in the complement C of M, and then apply a general
!‘;mrcm.. But the geucgal thcorem (Hudson, unpublished) gives an
“Sstruction in 1, (€)= H to further progress. Our work suggests that the
“truction is in fact $(pg + X 7).
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IDONALD W

The stable Lomotopy group
ring under the operation of con
by 7 and i{ X is a space,

(Y )=3

the stable homotopy of X, is a (
of the stable homotopy categot
description of these modules, |
within the reach of prescut met!
properties of these =*-modulcs, |

1t is clear that #3(8™) is a fq
dimension w1, while 55 (ST v ... 3
in dimensions m,, ..., i2l,. Or\e
7¥-module, whenever X is a finit
question in the negative. In see
3 celis for which #J (X} is not u,
contains an application o the ¢
stable homotopy category. h\.
preliminaries,

1. We work in the category «
of a 1-connected CW-complex, e
goual group SO. All spaces hi
points from the notation. We us

We recall that a Postaikov sys
where a1 X, X, is a princig
P X - X, 5 an n-coutvalence, ar
P, are fibrations, and set F, =P,
give rise to an exaci couple,

Ay =L, (FF) >
whose spe f.tm! sequence is the sp
for X (see [4)). We denote it {&£7

1. 11 S x(‘tr-ii Seqguence conl
7. 1, e iy \1”\ (up(i 1)),A
3 By g, (X),
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