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CLASSIFICATION OF (s - D-CONNECTED (25 4 1)-MANIFOLIDS

C.T.C. WaALL

(Received 22 September 1966)

IN s paper we first complete the diffeomorphism classification of almost-closed (s — 1)-
connected (25 ++ 1)-manifolds P. We compute the Grothendicck group %2**! of such P
modulo as those obtained {from boundaries of handlebodies. The diffcomorphismclass of the
boundary of P depends only on the class of Pin 92**!, which has order at most 8. We give
applications of this result, and an interpretation of ¥2*** as a cobordism group. In a final
section, we compare our information on exotic spheres with a construction duc to Milnor.

We continue our numbcring from the previous papers of the series [1], [H], [H1].

The appearance of this paper has been delayed for three years by the discovery of a
serious gap in the argument. This has not aflected the results materially, but it has led us
to write [IV], and we will also nced a few calculations based on [IV]. To preserve con-
tinuity of style, these are deferred to another paper [VII] and the present paper retains
almost its original form, except for the introduction of canonical thickenings, which scem
to be a potentially important tool.

§12A. HOMOLOGY INVARJANTS

Before we tackle our main classification problem, as promised above, it is convenient
to list the invariants which will occur later and to cnumerate their properties. We shall
speak of our manifolds as closed. If P is bounded by a homotopy sphere—i.c. is almaost-
closed in the sensc of [15}—we need only add a cone to the boundary to obtain a space
which we can treat as a closed manifold.

Let, then, P be a closed (s — 1)-connected (25 -+ l)»nmhifold. The only nonzero
homology groups are those in dinwensions 0, s, 8 -+ 1, 25 -+ 1. 1f we suppose P oriented (we
assume s = 2 throughout, so P is certainly orientable) the first and last of these are free
cyclic, with preferred generators. We write G for 1 (P). By duality, H,((P) is a free
abclian group, of the same torsion-free rank as G5 in fact,
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v e borrer the symbol i for agroup of homemorphisms, as all the other relevant
nesien and erminology, from our paper [Q]. There is a further eloment of structure, the
o dnvariand (see [T} p. 2530 I8 [14D). This miay be described as follows. The exact
soonenee 0 7o - 5 - 0 of cocfliciont groups induces an exact cohomology sequence
HY(P; Q) — 11°(P; &)y - 1 Y (P 2) > 1P (5 Q).
Since & s injective, MNP S) s H(PYRS. 1t s clear that the kernel of the central map
above is the set of homomorphisms 1/ (£)-» S which annihilate the torsion subgroup; the
jmace is the tossion subgroup of #7°7'(P). Writing t for torsion subgroup, we thus have
a notural isomorphism (without any condition on P)
TH(PY ) S =P (P)
and so a nonsingular bilincar pairing

tH(P)@ I (P) - S.

Bui we can identily #°H(P) with /,(P) using Poincaré duality. Thus, writing G* for the
(or-ion subgroup of G, we have a nonsingular bilincar form

b:G*@G* - S.

Ve recall the geometrical definition of b by linking numbers. Let x € G * have order r,
represerit x by a chain & and let & = r&. Then if y € G * is represented by the chain i, we
have

1
b(x, y) = ;C Ny (mod 1).

We also recall that b s (= 1)* " Tesymmnetric; indeed, if ¢ = gy, and ¥ and { mect normally,
)=+ (=1){niy (since dirn { = 5)
=y nré+ (1) n gy

and the Kronceker index of the O-chain on the left is clearly zero; that on the right is
gr(h(y, X) -+ (== 170y, ), and so by, x) = (- 1)""'b(x, y) as required.

Ve shall study B(x, x) rather more carcfully, and will do this geometrically since
although our hypotheses can be somewhal weakened (cf. Browder [3]), the homotopy
theory §o somewhat complex. Represent x by an imbedded sphere S7 (since P is (s — 1)-
compeeted, w (P)y o H(P)). Let 5 be a tubular neighbourhood of S*: this is a disc bundle
defined by a(xy e, (SO, ). Let S§ be a cross-section of the associated sphere bundle
(e, and let ¢ ¢, (SO,) be the characteristic class of the normal bundle of
Sy o1 we have Szp o= ax). Write X for the manifold /- B; let y; be the homotopy

cles of S a0 X Then y, has infinite order, for if some chain in X is bounded by nS3, on

Cand

i i with dises (ibres of B) we obtain a cycle in P, with intersection number i with x;

o 3s i forsion class, e 00 Since /s formed from X by attaching an (s T-cell and

G0 by ety eonerates the kernel of iy (Y ) - H(P). Now i(y)) == x has order r,

v Sy G and thus ryy s Ay, for some welldetermined integer 2. Moreover,
ooy Al fmod b
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We consider the cffect of changing the cross-section Sy, Domotopy classes of crogs-
oL i 1
scctions are in (1-1) correspondence with the integers, and ~S; 4 1S, in 08 for various 7.
Ve find accordingly (using Theorem 1)

of =0y - O(n)

A =2 nr
where 0@ 2 (S7) -» w1 (SO). Now il s is odd, and not 3 or 7, we demand ¢{z}) = 0. This
determines 1 modulo 2, and hence Afr modulo 2; we call the result ¢(x). I s is cven, then
n(ey) is cven cxeept, perhaps, if s=2,.4 or 8. But if s is 4 or 8, the homomorphism
o: G-, (SO, ) annihilates the torsion class x, so again n(e;) is even. The condition
¢y =0 completely determines # and hence the rational number A/r(s - 2); we denote it
by g(x).

LeMMA 26, Forsz=4,s4 7 we have
4(x +y) = q(x) = q(») = b(x, y) -+ b(y, x).
Le. if s is odd, the left hand side is 2b(x, y) (mod 2); if's is even, it is zero.

Proof. Tor xe G*, we construct S, B, S|, S, as above, and similarly find 7, C, Ty, T,
for y, with C disjoint from B. Join B to C by a tube. Let rx =ry = 0. We note t1* (us
above) the choice of Sy, T determines ¢(x) cte. as rational numbers; vic =* 7
formula in this sensc.

In P — B we have the homologies

rS; ~ rq(x)S, 1Ty ~ rb(y, X)S,
and in P — C similarly
Sy ~1b(x, )T, rTy ~rg(y)7;.
But we can join S and 7' by a tube to obtain an imbedded sphere U representing x + y. A

corresponding cross-section Uy is obtained by joining Sy and 73, and both S, and 7', occur
as fibres to the normal bundle.

By the above, if B, C and the tube are deleted from P, (the tube makes no real
diflerence), '
rUy ~r{q(x) -+ b(y, x)}Sy -+ r{b(x, ¥) + g1} 13
so deleting only the neighbourhood of U, when S, ~ T, ~ U,,

rU ~ r{g(x) + g(p) -+ b(x, y) - by, )} U,.
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P v e 1Uy ~ gl - U, for the characteristic cless of the normal bundle of Uy in
e toundary of a tobuluy peighbourhood of U s the sum of the corresponding clements

i
for S and T w0 (i s is odd), w (i s s even) vanishes for it. The result now follows.
Conorrany 1. If sz Sisodd, s 1, then g defines a homogencous quadratic Jorni on
G *, with associated bilinear map 2b.
The lenna proves all except homogencity: this follows by reversing the orientations
of all the spheres involved.
Tt cces that ¢ is in fact a homotopy type invariant; we will show this elsewhere.

CoroLIARY 2. If s is even, s 2 4, then g Is z¢ro, so b is strictly skew-symmietric (sce

[Q, p. 262)).

Tor ¢ is then a homomorphism of a torsion group into a torsion-free group.
Some cases of this result were obtained in [14].
ConoLLary 3. If s =2, b{x,x) is O or } according as o{x) Is zero or not.

The argument above shows that if a(x) = 0, then b(x, x) = 0. But, identifying 1,(S0;)
with 7, it will also prove g{(x) = Ar—oy2a homomorphism, and so zero. We write «{x)
for b(x, x) when s is even. Then ¢ is a homomorphism; we shall deseribe the last result by
saying, simply, # = 2¢.

Lisnia 27. For sz 2, a closed (s~ N-connected P has homology invariants: A

Cgroup G=11(P); a nonsingular, (—1)% synmmetric bilincar b: G* @ G* =8, with ¢ = 1u

if s= 2, c=0ifs>21scren; a quadratic ¢: G* - Q (mod 271) with associated bilinear
map 2h if s is odd, s 4= 3,71

§128. TANGENTIAL INVARIANTS

VWe have further invariants of P (as above): we next investigate the 4, o of [I}. We
shall consider them both in dimension s and in (s 4+ 1); in the latter case we denote them
by 1, f. Intersections of s-cycles and (s -+ 1)-cycles were discussed above. -Now for dimen-
Gional reasons, 2 s zero and o a homomorphism, 2 G - 7,.,(SO, ). This is defined for
any value of s. '

Jiy Theorem 1, provided s 2 4, we have mappings

By (P) - 1 (SO,) oy (P) % gy (P) - 1y, (S7)
with the vsual propertics. As is well-known (and casy to prove),
1 (P) =2 1 (P) L UI(P) @ Zy),
for c.o. e can yeplace S by an cquival:nt CH-complex, with cells only in dimensions 0,
$ s 1, 251 1. The projection on the first surmmand is the Turewicz map; the injection
O the seennd s Tound by coposing clements of H (P e (P) with the generator g of
(5%, But by results of 8] (recalt that 45 vas defined in §7as a special case of the Jof
Loan 2), dor x e (), yen, () v v
Plx o) = J (),
(X o, ) = 2, )
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These, with the addition formulac (Theorea 1) show that values of | and e on the seeond
cummand above contribute no new invariants -these must then be sought on the find!
cummand. This, however, is not uniquely defined, so fand g have indeterminacies. Lssen-
ially, these are as in Lemmas 14 and 15, and the caleulation as for Lemmi 22, but as the
situation is somewhat different, we give the details.

Let e, ..., e, be a basc for the free part of G = H(P), f1s - s f; the dual base of
G = H,(P), and fi, ..., [} some corresponding, clements of 7y (P). We identify =)
with 1/,(P), and usc x, y for typical torsion clements, so x € G *. By the formulac above,

p(f; + Elapey +x) o n,fi+ @&je + ¥) o) = pu(fi i)+ Ylutleg o, f7)
+ Zléjlll(.f,i; o)
= l‘(f;’af;) + (f:j 4 &.fji)’[’
(signs may be ignored as all terms have order 2), and this may be made zero for i+ j by

choosing the &;; appropriately. So p contributes no new invariant, and we are still free to
. . £ H . - afrt ar i g
modify the f;' using a symmetric matrix £;; and compositions X o H.

Define again the cxceptional case as that in which F{ is nonzero; we recall from {1T]
that this happens when a(G') is nonzero modulo 2 and s = 0, 1 (mod 8), perhaps also when
s = 4. Apart from this case,

PO+ (Eiie; + x) o) = PO+ &ults
so 0y generates the indeterminacy subgroup of p(f;’) for cach i, and Sf remains as a new
invariant. In the exceptional case, the image of Fg is cyclic of order 2, and

Thus if Fgz(x) can be nonzero, we have an indeterminacy independent of the above and
(cf. §10) find the desired invariant is ¢Sp (s = 0 (mod 8)) or 0 (otherwise). If, however,

o vanishes on G ¥, we may choose our basis with Fla(e,) # 0, Fiule;) = 0 for i> 1, and
the above reduces to

B 4 Eudn -+ &1 Fo(0),

so that for i > 1 we have ¢SB(f) or 0 as above, but for 7= 1 an cxtra invariant o as in
Lemma 23.

Note that if s=0 (mod 4), the image of ¢ is torsion-free, so certainly a(G*) = 0.
Here we identily 7, (SOyy 1) with Z, and so «:G -7 with d¢ G. We observe that in
the case above this agrees with fj(mod 2 G).

LEvya 28, For s = 4, the manifold P2 has tangential invarionts: a homomorphism
0 G- 7, 1(SOgyy); in the non-exceptional case a homoniorphisn Sp G- Su(S0,); in
the exceptional case (@) if s = 0 (mod 8) a homomorphisin GpSP < G = Zoy and (0) if a(G¥) = 0,
an clement o € 4iy.

Notice that @ was defined as part of f(4), modulo indeterminacy, if s =0 (mod 4).
The lincarity of S follows from the addition formula for f.
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Wooshiodi fieone

atly consider connected sums of manifolds, and so formulafe a com-
Sewent (o e lost o lemmas, By the sysiens of invariants of P we understand the group G
o > b

togethor with such of the mappings and clements (b, q, o, S, ¢S, @) as are appropriate,
satislying (he conditions of Temmas 27 and 28 also write o = 0 in the non-exceptional case.

The divect i of two such systems, sufitxed by 1 and 2, is given by the group G = G, ® G,

and if
X=Xy ob Xp, )= Yy o,
b(x, y) = by(xy, 1) 4 balxz, ¥2)
g{x) = q(x;) + q.(x;) (similarly o, SB, ¢Sf)
w=w; + o, it (G*) = 0.
ComprLENENT.  The system of invariants of Py 3 Py is the direct sum of the corvesponding
sysicms for Py, P,.

For cortainly H (P, 4 P,) = H(P) ® H,(P,), and a sphere representing a given class
in Py continues to do so in Py 4 P,, retains the same normal bundle and interscetion with
another sphere in P, and fails to intersect a sphere in P,.

If two spheres, representing &, in Py and &, in P, are joined by a tube, we get a sphere
representing 4 in P, and the normal bundles just add: this proves the result for .

The result (and proof) is valid for all s if the invariants involving f# arc deleted.

The above results will not be adequate for our problem, on account of the presence of
torsion in the homology groups of P. We next extract the simplest invariant: the stable
tangent bundie of P, which can be regarded as an elewent of the known group KO(P).
This group lics in the exact sequence

0 — FEYHP; 1 (SO)) — KO(P) - TI'(P; ,_ {(S0)) - 0 ¢))
This sequence arises by caleulating XO(FP) by standard obstruction theory; it can also be
obtained from the spectral sequence of the generalized cohomology theory KO. 1t splits
except when s = 1 (mod 8) and P has torsion of order 2. If we exclude the exceptional case,
our clement of KO(P) is determined by invariants

ae Py, (SO BelT(P; n(S0)).
In the exceptional case, we cannot define a true homology invariant ff, and will ignore it..
Mote that only il s = 0 or 1 (mod 8) are all three terms of (1) nonzero.
¥
In Tomima 28 we considered the unstable group Su(S0,). It is easily shown (or we
iy uwe the calentations of Kervaire [7], of. [11]) that
IFs = 1,3,7, 8:S5n(S0,) ~» 1,(SO) is injective, with image of index 2.
Ty =5 1,3, 7Tisodd, orifs == 2,4 or 8 § as above is bijective.
W b 2,4, 815 even, S is a oplit surjection with kernel of order 2.
Tess in J8VH(P; S (SO)) in the non-exceptional case. Most
b provided by Jrin the third case above we need an additional invariant (say ¢) in

JuniAllveruiie a eohomolopy ¢
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I 7). Such aninvariant js constructed in [VIL Tn the first case above, the injective
map S need not induce an injective cohomolopy map: thus [ is not adequate for our
purposes. As the case s = 3 was already excluded in [IH] we will exclude the coses
s=1,2,3, 7 for the remainder of this paper, except for odd cormpunts,

§12C. THE CANONICAL ’I'IIICE'(HNH‘\’C
In this subparagraph we supposc throughout that s = 1 (mod 8). Then L. LT e
an invariant  in the case a(G *) = 0, and we proved it additive. Our pxcscm ol ctive 3s
to extend the definition to all manifolds P, and again find an addition formula. This will
necessitate a much closer investigation.

First consider the classilying map of the stable tangent bundle of 2, £ — BSO. Since P
is (s — 1)-connccted, this factorises through a map, determined uniquely up to homotopy,
of P to the (s — 1)-connccted covering of BSO. According to Bott [2], the homotopy group
of this last is cyclic of order 2 in dimensions s and (s -+ 1), and zero in dimension (s -- 2);
moreover, the first k-invariant is nonzero. 1t is an easy corollary that, up to homotopy, it
admits a cell decomposition of the form (S* U, e** 1)U cells of dimension =s -+ 3. We write
BY for the (s + 1)-skeleton S%u, ¢!, and conclude that our classifying map can be
resarded oon a1 P BY (each determines +h - ghee upto "motopy).
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this so that it also ddmlts acell dccomposstlon S*u, et lhen since [AY : P]is a stable
group, S-duality gives an isomorphism

D:{P:BY]->[AY: ]
Thus D(z) determines a homotopy class of maps AY — P, which we will call canonical. By
the embedding theorem of [IV], this class determines a (2s -+ 1)-thickening of A Y. This

thickening—or the corresponding clement of THEMAYY—we will call the emnniioof
thickening.

We next need the computation [VII] of I 1(1Y). Lo that given a (25 -+ 1)-
thickening ¢ : AY —» M, we can form M[oM, which will consist of a (2s -+ 1)-cell attached
to an S-dual of 4Y. Up to homotopy, we can write

M[OM = BY U ™"t
Then ¢ determines the homotopy class of fin n, (BY). Also, 75, LSTBY) is stable, and
(18, 1] there is a split short exact scquence
0-»Zy— 1y {BY)— ng\,‘,z(‘SzB)’) - Q.
Let w:m, (BY)— Zg be a splitting. Then fls determined by of) and S/, Morcover, the

stable homotopy class of 7 is determined by the tangent bundle of A7, which is classificd
(cf. above) by a map t:4Y — BY. Thenitis shown in [\’H} that
(r, o(f ) : T HAY)Y > [AY BY] (g x 7y (D 7

is an isomorphism.
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The jnvariant o we seek is o), caleulated for the canonical thickening., Observe that
(1o canonical thickening--hence also @(f)--is additive. This is immediate, as the boundary-
connected sum P = Py 4+ Py 2 Py v Py, and 1p is given by 1p, on the summands; similarly
D preserves the summands, hence D(tp) = D{tp) - D(ap,). Our asscrtion now follows from
Proparty (442) in [IV]

To justify our neglect of t on the canonical thickening, we observe that it is in fact
determined by the value of o(f) on the canonical thickening. Yor since D is defined by
Paincard duslity, the above t—i.c. the composite Tp o D(tp)-—can be identified with the
compositc AY - M > M{OM < BY. But by [18, 11} this is determined by the Hopfl
jnvariant of 7, and so (up to sign) is the same as w(f) reduced mod 4. We also observe
that the map 4Y -» BY determined by duality is then determined by our quadratic form ¢.
In fact, the canonical map AY — P induces a map of the subcomplex S¥, and hence
a homology class ¢ G (with 27 = 0). Then ¢(7) is a multiple of }, calculated mod 2.
Feducing mod 1 gives (g, 2), which is cquivalent to the functional cup product induced
by 7, and henee to the Hopf invariant of f, reduced mod 2. Thus ¢(}) (mod 2) is cquivalent
to the Hop{ invariant of f; and hence to o(f) (Mod 4). We choose the isomorphism of
#g on the value group of o(f) so that

olf) = 29(%) (mod 4).

Observe that o(G¥) = 0 <»% = 0. When this happens, o(f) is a multiple of 4, defined
modulo 81 this is clearly equivalent to the invariant o constructed above for this case.

We surm up our discussion in

esinia 29, Whei s =1 (mod 8) we can define an invariant of P, o(f)e Zg. Thisis
additive for connected sums, and satisfies o(f) = 2¢(y) (mod 4). If «(G¥) = 0, the invariant
w of Leiwnc 28 is determined by o(f) = 4w (mod 8).

§13. THIE DIFFEOMORPIHSAN CLASSITICATION

Again Jet P be a closed, (s - 1)-connected (25 + 1)-manifold, s 2 3. By a theorem of
Smale [12], P admits a handle decomposition with one 0-handle, k s-handles, k (s 4 1)-
handles and one (2s + 1)-handle, for some (large enough) value of k. Write N for the union
of the O-handle and s-handles. N is a thickening of a bouquet of s-spheres representing a
et of k eencrotors of G o (P). It follows by Proposition 1 that these generators deter-
wine N oup o diffeotopy, and by Proposition 2 that the integer k is already sufficient. But
the viion, N, of the (2s -+ D-handle and (s -+ D-handles satisfies the same conditions;hence,
in particnlir, it s diticomorphic to N.

Morcover by Proposition 1 the imbeddings of the s-spheres are unique up to a difico-
morplism of Py taking a smooth regular neighbourhood [6] we sce that the submanifold N
B i 1w to a diffcomorphism of P Hence the imbedding i, : N-» P is vnique up to
st by By f, wihere f, Tare diffeornor phisms of N and P respeetively. Now I is
ol Dot from Ui o copios N, N'of N by matehing the boundarics. We have just scen
mposition of £ into N and N7 s unique up to a diffcomorphism fi; likewise
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the attaching map iy ', (on IN) is unigue up to possible replacerent by (b fy) Yhisfy) =
fi"l(i"l'liz)fz; in other words, up to multiplication on the left and on the vight by diffcomor-
phisms which extend to ones of N. We observe that this discussion has made no real use
of (s — 1)-connectivity of P.

We can argue similarly if 7 is almost-closed. Here, the (25 + D-handle is missing.
It is convenicnt to move the “hole” downwards. Deline N as above, N”as its complement.
Now delete from N’ a tube D? x Ijoining the two boundary componenls. This docs not
change the diffcomorphism type of P, but it makes N’ connected, from which it follows
that N’ is now, like N, a handlebody and so “by the uniqueness, as before-— N’ is diflco-
morphic to N. These are attached to give P by a diffeomorphism of the boundarics, but
with a disc deleted from cach (we ought also to pay attention to corners arising, but it is
casily scen that these make no essential difference to the argument). This diffeomorphism,
just as before, is nearly unique.

Limma 30. Let s 3, P be a closed (resp. almost-closed) (s — 1)-connected (2s -+ 1)-
manifold, such that H{P) admits k generators. Then there is a unique Ne Qs+ 1,k,s),
and a diffeomorphism h of ON (resp. of M), unique up to left and right multiplication by the
group S of diffcomorphisis which extend to N, such that P is obtained by glucing fwo copics
of N together by h.

Here, as in §11, M denotes ON with the interior of a disc D removed.

1t is clear that this lemma, taken with Theorem 6, solves in principle the classification
problem, in the almost-closed casc. We shall proceed to solve it in practice. lLet us first
recall Theorem 6.

A diffeomorphism h of M extends to onc of N if and only if

(i) hy leaves invariant K, the kernel of i, s H{M)- H{N);

(ii) certain obstructions, defined by B(x) for x € K, vanish,

We shall take the two obstructions in turn. let us temporarily proceed as if the
Theorem, with (i) deleted, were true for all s = 2. Then if 7y (K) = hi(K), hYe I teaves
K invariant and so extends to N; multiplying /i on the right by this gives /', so /r and I are
in the same right coset of S. Similarly we see that two right cosets, determined by the
positions K, and K; of 1,(K), arc in the same double coset of S if and only if M has a
diﬂ"c<w111c>r;w]xi§l11 g with g.(K) =K and g.(K;) = K3. Thus double coscts are in (1-1)
correspondence with isomorphism classes of triples (H, K, K;). (Recull that /] = H(M))

1f we remark that by the Corollary to Lemma 2 of [Q] (which is casily extended to take
into account the further elements of structure we have) any two kernels Kin //are cquivalent,
we sce that the above problem is precisely that to which the main part of [Q] was addressed.
We borrow the notation of that paper, and refer particularly to Theorems ] and 2 and the
Proposition which extends them. Now by [15] or by [11] §9, the given structure on
11 == JI (M) consists of:

a (—1)-symmetric nonsingular bilincar A: 11 x 1 - 7.;

a homomorphism 3 11— 1,(SO);

if s 3, 7 is odd, a homogencous quadratic ¢ 11> 753
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if s =24, 8is oven, thei 4 1S even;
if5:=2, 4, 8 and xell, then z(x) and Jix, x) have the same parity; the associated
bilincar map of ¢ is 2 (mod 2).

Now (K, K;) is a pair of kernels in this streciere. The corresponding invariants are the
rank k and:

an abelion group G, admitting k generaters:
a (-~ ]) »syrm‘nctric nonsingular bilincer 1 G* x G* = 53
il s == 3, 713 odd, a homogencous quadruiic ¢ G — Q (mod 2);
a homomorphism y: G - i,.,(SO);
refated by
i s 2,4, 8 is even, b is strictly skew;
if §==2, 4, 8 ¢ and y determine the same homomorphism G¥ — 7, (so if s = 4, 8
c==0,as 7: G- 2);
the associated bilincar map of ¢ is 2b (med 2

Since P has decompositions for all large enougl %, we can drop k from this list.

L iniin 31, The invariants listed above coincide with those of Lemma 21, together with
v G orm (SO ).

Proof. We must first identify G. Trom cur present point of view, P is constructed
from AZ by attaching to it two copics of N. Up to homotopy, attaching a copy of N is equi-
valent to adding k (s -+ 1)-cells, by generators «f £, or K;. Thus H{P) = H(M)K; + K,
2 K| A4 £, == G, and our dcﬁmu()ns; agree.

Since cach g ¢ G is represented by a sphere in M, the normal bundle in P is the suspen-
sion of that in M, and so coincides with the y ebove.

The above deseription of P by cells gives "1e'r aroups C, . (P) = Ky ® Ky, CLP) =11,
and the boundary operator is induced by the inclusion of K and minus that of X,. Other
chain groups vanish, except Co(P). Thus

o (P) = 2y (P) = {(x, x) s e Ky 0 Kb et Ky Ko

To colewlate intersections we need the relevant ns to be transverse, so deform M slightly
nio Ny R chains in Ky Cppy(P) do not mzzt those in C(P), which lic in M; and if
< the corresponding (s -+ 1)-chain meets 1 in the s-chain given by x ¢ //, and so meets
5.1 Ax, y). In particular, this determines

holn y o C(P) =11 with interscetion i

the inteisection numbers of homology classes

The b of Lemime 27 was defined o follows, Lzt x>, y € G have finite order, and represent

then by chains €, 9 \”Mh ré

=2 00, then
b, y) = e (mod 1).
e Ky oand Covp)fr —A-(l/r))((b . But
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with the notation of §2 of [Q1. & = {y/r - {ofr withy {fre K and if Tikewise ip=ay - ai,
we there defined

b(x, y) = ACy[r,m,) = Ayl -+ ) = (A8, m) (mod 1).

Hence the two definitions of b coincide.

Finally we must identify ¢ when s = 3, 7 is odd. Note that the choice of & e If repre-
“senting x € G alrcady gives a representative sphere S¥in M, and so a reduction of the group
of its normal bundle to SO,. If ¢(¢) =0, the ¢ of Lemma 27 is (L E)fr==(]r)2Ly, &)
(mod 2)—in general itis (&) + (1N, —and again this coincides with the alternative
definition of q. _

Tt is now time to take into account (i) of Theorem 6. Let the diffcomorphisms Iy, /i,
of M, used to construct the manifolds P, P,, agree in the invariants of Lemma 31, What
we proved above amounts to this, that we can modify /1, by multiplication on left and right
by diflcomorphisms which extend to N, with the result that hy =~ h,. The obstructions to
quasi-dificotopy of hi; to i,—or cquivalently, of hi' o hy to I—now consist, by Lemma 23,
of a homomorphism Sf : I7 -» Sz ,(SO,) or, in the exceptional case, of w ¢ Z, and, if § =0
(mod 8), of a homomorphism ¢Sfi: /- 7Z,. Now modifying i1, by multiplying on the
right (resp. left) by a gencral diffcomorphism g, homotopic to 1 and extending to N, has
the effect of altering Sf or ¢pSp by a general homomorphism zero on Ky (resp. K5).

We can replace Sf: H - St(SO,) = I, say, by a dual clement of I ®F, or--using
the isomorphism of J7 with its dual-—an clement of @ F. We are allowed to change this
by any clement of K, @ I (resp. Ky @ I'): we obtain an clement of the quotient group

H® Fllm (K, + K,)QF =G®F.
Thus the obstruction can be identificd with an element of I1**'(P; Sn(SO,) or, in the
exceptional case, w e Z, and, if s=0 (mod 8), an clement of J7873(P; 7,). Morcover,
S (SO,) was computed at the end of §12B. We can thus replace the above by:
(1) In the non-cxceptional case, an clement of HTH P e (SOY) or—if s =3 or T—of
I3 Y(P; 1), where Z is regarded as a subgroup of index 2 in n,(SO);
(2) il s+ 2, 4, 8 is cvep, an clement of It (P; Z,y), and
(3) in the exceptional case, an element of Z,.

Now cxclude the cases § = 3,7.

We must identify these obstructions to diffeotopy with the invariants of Leimmas 28
and 29. Observe that they are defined to compare framings of certain s-spheres in ¢V,
In the handle decomposition of P, these spheres are the attaching spheres of the (s -+ 1)-
handles. Now consider the obstructions in turn., The first determines the stable framing
used to attach the (s 4 1-handles, and henee the stable tangent Lundle of P and conversely,
hence is determined by . The second refers to the unstable group 1 (SO, ,), and the homo-
morphism to 7, (when defined) detects the image of

7= Mg l(SS ! 1) Q) ns(Sos-i' 1)
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Conioh i evder 2 for s even and 2, 4, 8). Now the invariant $ defined in [VI] has the

property of also deiecting the eficct on the attachins map (in P x 1) of changing the fr aming
bohis amount. Thus ¢ determines the obstruction under (2).

The third and last obstruction arose by cowwhxmo framings in &N on an s-sphere
rersssenting the homology class 7 e [1 = HAEN). W s=0 (mod 4), 7 is well-determined,
ardis rivial in A thus a representative s-sphere bmmds adisc in N. This, together with the
core of i attached handlke (or any dise spanning it in A”) forms an (s -+ 1)-sphere, embedded
(v may suppose smoothly) in . Comparison of the framings induced on S* from the two

dises determines the normal bundle in 2 of the (s -+ D-sphere. 1tis now clear that the extra

1

(G

Cuction in this case is determined by the invariant e defined in §12B. 1 s = = 1 (mod 8),
7 35 only determined modulo 271, Since 7(K) =0, and K, is a kcrncl, we may choose
7y Ky Sot 7, == (7)) € Kyt this also is dual to 7. But we can not in general choose
= 74, When we can, the above argument suffices. It is casily scen that this choice is

masible precisely when 2(G*) = 0. Now 2y — 7, = 2z for some z ¢ H. We claim that the
closs of 7 in (1 ~ 7 (P) is that of the restriction of the canonical map to S* < AY. For the
cenonical map was defined from =z by duality, and hence by the form b; now 2{z} = 0, and

v e G has representative &,

b({z}, x) = 1A(7;, O = 18  (mod 1).

s the canonical map cen be defined as follows: map §* by z; map two further spheres by

A

7, and 7,, and join by a homotopy in &N corresponding to the cquation 2y ~ 7, = 273
add sanMv (.x' 4 1)-dises spanning 7, and 7, in N and N'. Hence changing the framing
on one of the spheres 7, will change the framing used to attach the (s -+ 1)-handle in the
cun mmu] thi I cning, THence in this case the fnml obstruction to diffcomorphisin of mani-
f0las IPis detected by the canonical thickening, and henee by o(f). This completes the proof
of our main result.

Tinoms 1. For sz 4, s 7, diffeomorphisin classes of almost-closed (s — D-connected
(75 4 Uy-manifolds P are in (1--1) correspondence with sets of invariants as defined in §12, viz,

A finitely cencrated abelian group G == 11(F).

A nonsingular bilincar b1 G* x G* - S such that for s cven, b(x, x) =

1€ 535 odd, a quadratic ¢ 1 G - Q27 with ussociated bilincar map 2b.

A homamorphiom o0 G- g (SO).

[ the noi-exceptional case, a class fe 1117 2(S0O)) ~ G @ w,(SO).

sk 4, 8 0 even, a cluss o V(P 2y = G @ 7.

Prothe exeeptiono] case, iU 41 s an clement e Z,y, and if se2 ] (mod 8) an clement
e [y e 7y such that a(f) = 2q(z) (mod 4).

Lr Py are hvo senifolds of the type considered, the invariants of 1Py + Py are the direct
co i il af Iy Py where defined in the non-exceptional case, o and o(f) must be inter-

S et all follove froms Lemas 27, 28 and 29,
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We conjecture that f can be defined, and the above proved, when s 53, 70 Wheu
s =2, f would be in a zero group anyway and the result, for closed manifolds, has been
proved by Barden [1]. When s == 1, there is a fundameutal group, and the problem is very
much harder. The case s == 0 is trivial.

Corvoriary. A splitting G = G, @ G, corresponds to a splitting I == Py -+ Py if and
only if G*% is orthogonal to G% for b. ‘

For in this case we have indueed splittings of G*, G, and the invariant functions on G
induce those on the Gy, except if only one G is exceptional, when we have some choice
for f3, or if both arc, when we have choices for w(f) and forming the sum we recover the
invariants of G (except if both G; are exceptional, when the chosen @(f) must not be
unrclated).

We shall make much usc of this in the scquel, and observe that we could also prove it
dircctly, using Haefliger’s theorems [4] to imbed an (s 4 1)-complex of the appropriate
homotopy type for G, thickening it and joining to the boundary by a tube, and then using
duality to show that its relative boundary in P is contractible, and hence a disc (cf. [1V, 6.5]).

§14. BOUNDARIES OF HANDLEBODIES

We should now like to proceed to give a complete classification of closed (s — 1)-
connected (25 -+ 1)-manifolds; we are, alas, unable to do this. However, we apply techniques
similar to those of [15] to gain a considerable amount of information, and reduce the
remaining problem to bare essentials. Our method rests on having at hand a sufficicncy of
examples of closed (s — 1)-connected (25 + 1)-manifolds. In fact we have the manifolds
P =0, where Le #(2s + 2, k, s+ 1); it is clear that such P are indeed closed, (s -~ 1)-
conmnected, and (25 + 1)-dimensional. Morcover L, hence also P, is s-parallelisable (N.B.
Here s is an integer, and does not stand for stable). So « vanishes for . The key result of
this paragraph is the converse.

ThroreM 8. Let P be an almost-closed, (s — 1)-connected (25 -+ )-manifold, with = = 0,
Then there is a handlebody L€ A'Q2s + 2, k, s + D) with P = 0L — DAt

A result similar to this'was obtained by Kervaire and Milnor [8] in the case where P
is parallelisable (in our notation, f = ¢ = 0) and independently by the author [14] without
this restriction. It is cusy to verify using these papers that the result holds for all s 2 0,
provided if s == 2 that we assume that 8P is a 4-sphere. Here we confine ourselves to the
case s > 4, where the result follows from the theory above, When s == 3, o = 0; we feel that
this case of the result will be the key to extending Theorem 7.

Proof. By Theorem 2, L is determined by /7 = If (L),

o H 7SO ) ArHx H—-7

satisfying the conditions of Theorem 1. Naturally, we do not now suppose Z unimodular,
Up to dimension 2s, the homotopy type of 1. is determined from that of &I, by attaching
k(s 4 De-cells and a (2s -+ 2)-cell. We used this in [15], where we showed in particalar that
the homology of &L could be caleulated from chain groups

Coyy=1, Co=HNZ=1.
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and Loewendary homomorphism (notation of {Q])
= Al 111

(Svc alio Lelow) Thus G == H(P) =T AN ) and 1 (P) o Ker (A42). Asa check, note
21 G ean be identifiod with the group of homomorphisms JT = Z which annihilate AA(H),
:md s0 with the subgroup of J7 2-orthogonal to 1/, i.e. the radical Ker (47) = 1/, (e

We next caleulate b for 8L, Let x, y € G, with rx == 0, have representatives &, 1 € A,
with 7 = .v»f/':(';'). Then b(x, 3) = ap)fr (mod 1). The interscction of chains is given by
e nntural deal pairing of I and 1, thus b is entirely determined by 4. We assert that this
is the invariant of 2 studied in [Q] §7. For if 47 is a monomorphism, and imbeds H as a
subaroup of finite index in 17, we can identify T with the 117 of [Q]. The natural pairing
extends uniguely to a bilinear map 201 T Q. But now b(x, y) =  nvifr =2(L[r, 1) =
J(E, i1y is precisely the induced product of [Q]

Next suppose s odd, s 4: 3, 7; we must determine ¢. This was defined geometrically,
s0 we must give geometrical descriptions of our chains. Say L has a presentation

B U(S“ ) Dty S
i= 4

Then oL is obtained from S¥'1 by deleting the S x Di*' and replacing by Di*' x S7;
we write Y for the intermediate stage. We take 1 x S} as basis for our s-chains, and our
(s -+ 1)-chains come from those of (JL, ) represented by Di*! x 11 these are to be com-
pleted in some way in Y, with boundarics a lincar combination of the 1 x S§. It is now
clear that ¢ 35 given by the linking numbers of £, and that these are dual basces for inter-
section numbers in &4, which justifics two remarks above,

To definie ¢, we took a tubular neighbourhood B of a re presentative S*. Let yy, y, be
the }omnlouy classes of a cross-section and fibre of the bundle 0B in 0L — B, and sct
Iy, = 2y, ¢(S®) = Zfr (mod 2), provided the cross- section had trivial normal bundle in 0B,
Here we shall only caleulate ¢ on the gencrators 1 x .S7 (its other values can be deduced
from b, since it is quadratic). This Jies in S7 % S7in &L, and it is natural to choose a cross-
ceetion vehich Ties in Ve this forms part of a framing, so satisfies the triviality condition.
I\‘(;‘.‘/ it the bounding (s -4 1-chain {; is appropriately chosen, near the boundary it will
conninb of a cortain numhcr of copics of the mapping cylinder of the projection of the
chionen cross-scction. Deleting (o B, we have a chainin 0L — B3 with boundary ryy — 2y,,
whore 7 is the intersecton number of ¢ and SPx 1. Thus if 80 = (S} x 1), we have
G5 1y = (ST Dy, (mod 2)0 As Im‘ D, we recognise this as the algebraic construc-
Giom of [0 §7-—and 7 is cven precisely when s+ 3, 7.

Mo o vapiches for 24, so the exceptional case does not arise, and the only remaining
Loty are ffand o As the normal bundlc of L in Jds trivial, the stable normal bundle
s hndueed from that of L, so [Lis detesmined by o, Procecding more algebraically,
v eptace the homomorphism Sz 0 H - ,(SO) by a dual element ¢, ¢ [1 ¢ 7(S0), and
Codnen from the above remark that this has image ff e 6 @ n(SO). Now suppose s 4 4, 8
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is even. Write 777 for the subgroup of clements i e 1 with A2 ¢ 201, Clearly 240 <. 11”7,
Moreover, il ye I,

O(x + y) = ¢(x) 1+ ¢(v) forall x ¢ .

Hence, in particular, ¢ induces a homomorphism 1/~ 7, with 277 - 0. This defines a
dual clement ¢ of

Hom(H'[2H, Z.,) & [T](21T 4 ANI) = G @ 7.,.

This agreces with the ¢ defined in §12B. For that ¢ was induced from a functorial invariant
of (25 - 2)-thickenings of complexes with s- and (s -+ 1)-cells only, using the invariant of
Px 1 ButP x1c L, sodforPisinduced from ¢ for I, and all we have done is to express
this algebraically.

We now prove the theorem, Write H (P) as the direct sum of its torsion subgroup and
a free part, then by the Corollary to Theorem 7, P splits correspondingly, and it will be
enough to take the summands separafcly.

If G is free, take I = G, A = 0 and « = Sf. By Theorem 2 this defines a handlebody L;
by the discussion above, 8L has the same invariants as P, so by Theorem 7, P & 0L — Pt

If G is finite, by Theorem 6 of [Q] there is an Jf and a 2 :H x [T - Z with nonzero
determinant inducing the given (G, b), and if s == 3, 7 is odd, we may suppose that 2 is even
and induces ¢; in any case 4 is (= 1) !-symmetric. Define Sz : 17 ->7(SO) to be induced
by f e G @n(SO) ~ (] ANI) ® n(SO). 1f 54, 8 is even, extend 1/'/21] to a basis of
H[2HH, and choose ¢a on the remaining generators (e.g. as zero): this choice, plus the values
on II', then determines ¢a uniquely on # by the usual formulac.

By Theorem 2, this (#7, o, ) determines an L; by the calculation above, éL and P have
the same invariants, and the result again follows.

§15. THIE GROTHENDIECK GROUP

I P is an almost-closed (25 4- 1)-manifold, then by definition &P is a homotopy 2s-
sphere, so by a theorem of Smale [12] if s = 3 it determines an clement of the Thom group
I, [13]. We should like to be able to say which element. It is clementary that 0(P -+ P,) =
P, 4 015, so @ gives a homomorphism of the additive monoid of almost-closed manifolds
to I',,. Theorem 8 gives a large number of clements in the kernel of this homomorphism,
for it states that their boundaries bound also discs. This suggests

DrviNnmioN.  The Grothendieck group G2 is the abelian grovp with one generator [P ]
Jor each diffeomorphisin class of alnost-closed, (s — 1)-connccted (25 + Y-maiifolds, and
relators [Py -+ Py} - [P\ — [P,) for any two such, and also [’ ] when a(P) = 0.

Equivalently, ¢2**! is the universal group for all additive functions on the set of
manifolds P with valucs in an abelian group, which vanish when «(#) == 0. Siace @ is such
a function, it induces a homomorphism

g4 -
9 . {6‘;” ! e ] 2%
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which we refor to as the obstruction, for 9(2) is the obstruction to “closing” the almost-
closed 2, by filling in a dise spanning the boundary.

We Bave also et other additive functions: for example, @ is onc when s = 0 (mod ),
Also il s =0 (mod 4 we have an clement € G which corresponds by duality to
00 Gt (SO ) 3 7 Now il s = 4 (inod 8), and per haps § = 4, SA(&) depends only on
P, s Adm&m, and vanishes when o does. Similarly if s == 0 (mod 8) we have ¢.Sf(4). Finally
let s = 1 (mod §). Then the canonical thickening gives an additive function (/). We now

prove
Throres 9. For s = 3, the groups G211 are as follows:

For s =2,3,5, 6,7 (mod 8), zero.

For s = 0 (mad 8), (0, pSP(E)) defines an isonmorphisi onto £, -+ 2.

For s = 1.(mod 8), o(f) defines an isomorphisnt onto Zy.

For s = 4 (mod 8), SH(&) defines an isomorphism onto Z.,, except perhaps if s =4,
when SB(E)Y or o does.

Proof. M s=3,5,6,7(mod §) then 7y (SO, 4 1) vanishes, « is necessarily zero, and
the result is trivial (even for s = 3).

Now Jet s =22 (mod 8), s>2. Let X bea manifold with U (X)) 4, + Z, and «
nonzero., Since ¢ = 0, by [Q] Lemma 7, (G, b) is unique up to isomorphisin; it is casily
seen that 7 (which ck’tu mines «) can be chosen as the first generator, so by Theorem 7,

7 s essentially unique. Given any P, form P -+ X, The corresponding # is nonzero, and
cince it has a component in X, has height 1. Write I[,(P + X = G* + F with G* finite and
J free. By the proof of Theorem 3 of [Q] there is an orthogonal splitting G* = G, @ G,
vith G, = %, 4+ 7, and 7¢G,. By Theorem 7, Corollary, the splitting JI(P 4+ X) =
(F -+ Gy) -+ Gy determines a splitting P -+ X = P, +P,. Buto(P,) = 0, and P; has the form
of X above. Henee [P]1+[X]1=0+4 [X]andso [P]=0

s = 0 (mod 4), 7, (SO, ) = 7. Write 0 for a gencrator, and write X* for a mani-
fold with J7(X ) = 7, with gencrator x, a(x) =0, £ the dual base of M, (X, and f
the appropriste invariant (one or two of Sfi, $Sp, o) evaluated on £. By Theorem 7, this
i determined up to diffcomorphism by fi. Givenany P, form P -+ X°. Then H{P + X°) =
1YY Ker 2. Correspondingly P - X7 splits, say as X+ P/, with o(P’) = 0. Thus
[ = (X [X7) In cach case, ff s determined uniquely by the additive invariants
alrcady known (one or two of Sf(Z), ¢ GSPH(%), w), which thus define a monomorphist of
@2 Sinee they are elready 1ndc]’>-snd<:nt on the X, they define an isomorphism.

inally Tot s == 1 (mod €). 3f, for a piven P, b7, %) 4 0, then b is nonsingular on the
submroup {75 o by Lemma | (>f (0], G* splits us {7} @ {7}°. Since likewise we can choose

i ‘:,wkz'w'x;:!f-mvm Flo G7 in ¢ on which z vanishes, and tlm splitting G == (I - {7}°) -+ {7}
Lotornsines, say 2o Pyt Py where s(Py) - 0, we have simply [2] = [P, where [/3(1 RE= M
;,):;i c'{s”k,-f) L0, Now the mep induced by 1 from P, to BY is a homotopy cquivalence,

\
]
1o
e

i

Sl caeh Sform SYw, T and the map induces homology isomorphisms. Henee

e Grnonival map A Y -» Py is also a homotopy equivalence, and P, is diffeomorphic to the
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canonical thickening. Iut canonical thickenings form a group %y P, corresponds to o
generator, since for it 7 induces a homotopy cquivalence 4 Y - BY. So there are Tour such
manifolds; let X° be a fixed one. Now if, for 72, b(F, 7) =+ 0, we forn P -1 X7 and split as
above, to obtain an cquation [P]= [X]~[X°]. Hence 2277 has at most 8 clements:
the [X] and the [X]—[X°]. Since these aie preciscly dl,tmmuxhul by the 8 values of
o(f) the result follows.,

§16. CLOSED AND ALMOGLT-CLOSED MANIFOILDS
From the last paragraph we deduce that for any almost-closed (s - 1)-connected
P=F with [P] =0, éP is diffcomorphic to S, so we can fill in by D*'! to obtain a
closed manifold. Lacking further information about the obstruction hormomorphism
0: %X - T, we can say no more. When [P] == 0, filling in by various diffcomorphisms
of $%* on OP gives closed manifolds refated to cach other by forming connected sums with
clements of I',,,: on the problem of classifying these we are again silent,

However we arc now able to say a little about the corresponding problem a dimension
lower (thus fulfilling a promise made in [15]). Let M be a closed, (s — 1)-connected 2s-
manifold, N = M ~ D?. We recall the exact sequence of Theorem 3:

Iygpq = fg(DHE M) - Zo(DIff N) L Ty, — {M/N} - 0.
It follows that {M[N} may be identificd with the sct of coscts of ', modulo the image of 7,
and we shall do our best towards finding this image-—though, to be sure, this will still not
give an explicit classification for such Af (that must be sought in propertics of manifolds
they bound). Our contribution amounts to the following. The map y may be fuctorised as

Fy(DITNYE, @271 0

Now 7, (Diff N)is known explicitly by Theorem 4, and we present below an explicit (except
for (/) calculation of x. This will reduce the problem to that of describing 0. 1t also has
the following consequence.

CoroLLARrY. Let M be a closed, (s — 1)-connected 2s-manifold, ni the order of the
subgroup of elements of ¥, determining spheres T with M 4 T= M. Then for s =
2,3,56,7 (mod 8), m=1; for s =4 (mbd 8), m<2; for s =0 (mod &), m < 4; and for
s==1(mod8), m <8

This holds for all s since if s < 3, "5, = 0. The result extends that of our paper [16];
indeed, the definition of i was essentially given there

Let fbe a diffcomorphism of §"~! kecping the hemisphere D" fixed. Form B, from
Sl 10, 1] by identifying cach (x, 1) with (fx, 0), and 7} from B, by a spherical modificn-
tion on D77 % [0, 13/(x, 1) = (x, 0)—i.c. on D"7' x §'——replacing it by $"° 2 x D2,

Hivessatz Ty can be obtained by attaching two discs D" by the diffeomorphisin f of
the boundary.

The proof is in [16]; the idea is to cut the entire figure in hall (at 720 and 7 = 1,
observe that the two halves of 7', are discs, and that the attaching map is the identity cxeept
on Dt 1,
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oo suppose N almostelosed, ON 2 S‘”' ', and ¢ a diffcomorphism of N. Then
d by attaching (w00 dises A]OH“ S > ¢N by the diffcomorphism f= g S*7 1.
¢ dise theorem, we may suppose that f leaves a hemisphere D71 fixed. Form B,
fremy N0, 17 by identilying cach (v, 1) with (gv, 0): we observe that 0B, == B, containg
U sebmanifold D77 x ST Form 7, from B, by attaching @ handle D"™! x D? along

P e 8Ty then (7, = T, which, by the Hilfssatz, defines y(g).

We have thus constructed a manifold whose boundary represents 1(g). 1t is clear that
N I8 Leconnected, so is the me mlion T, For our application, take for N an (s — 1)-
connected ,?A nanifold; then 7, s an almost-closed, (s - 1)-connected (2s -+ 1)-manifold
cuch that 07 1'cprc‘«.n(,\ W) \‘\’L ddmc w(g) = [1,]; then Ox(g) == y(g) as promiscd.

To deseribe ke explicitly, it is now necessary to caleulate the invariants of T,. We
emark that the comparative case with which such calculations are performed dcmonstmlcs
lho practicability of our system of invariants. For Ne #°(2s, k, s) let e, ..., ¢, denote a
set of generating L-spheres, and also the corresponding homology basis of 7 =11(N).

Vit o and 2 for the invariants of N.
As chains in 7 teke the e; and f; = {e; x J}. These are clearly suflicient for homotopy

The chain groups Cg, C,yy are both naturally isomorphic to /7. The boundary is
givin by

olx x I} = g.(x) ~ x,
LG Coker (gn — 1), 6 22 Ker (g, — D—and indeed, since g, preserves 2, Ker (g:—1)
is the z-annibiiiator of Im (g, — 1). For since A(x, y) = 2(g.(x), g.(3), we have
2%, g (3) = y) == 0 2g(x) =, g:()) = 0

cnd the first vanishes for all y if and only il x is J-orthogonal to Im (g, — ]) the second
(cinve 2 s unimodular) only if g (x) — x = 0.

s

i'o meke s-chains and (s -+ D-chains transverse, so as to define intersections, we deform
e;mep 7 Gloep « b Tt is now clear that

{x > Iy vy = 2(x, »).

W Bt bows wsuale Tet &, e I represent x, ye G¥) and ¢ = g, 0 — (; then b(x, p) =
(200 ) (mod 1), As to g, we observe that an (s - 1)-chain always approaches jts
Bowsdry inadircetion normal to N thus il the boundary is €, with tubular neighbourhood
v chroone o crossssection of 0B an one component of a8 — N; its normal bundle is
Cuny thon GUE)0 Thus gla) == &) -+ (1AL, &) Gmod 2).

A sl Nl o T so normal bundles in Nomust be suspended for those in 7,
s ondead sinee ST I wg (SO, ) I8 gesinvariant, 30 vanishies on Im (g, — 1), and
¢ Cnea homomorphiom gof the quotiont group 6.

Ve ot oy shove Trow to compate the [ invariants which are, of course, 1101. deter-
vt by ale omotopy chivs of g0 Wx o G, the iepresentative £ ¢ 11 has g, &, and we
4 i J v > o ’

SN AN

boocs eleoaty i [ defined an “obstruction” 7)) for ¢ 1, modulo a certain 1ndc:{crn‘qm;‘u:y.
VI it this gives e normal bundie of an (s -+ D-sphere In the homology class x
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diffcotopics, vie can suppose that g leaves fixed a hall=disc 97 in N, mecting 0N in D771,
that % meets D2 in a hemisphere DY, and that ¢g(S%) == . Let i be an imbaodding
of S*70x L in D with #(S*71 x O)==aD%, i(S¥ 1 x )= m < D  and vite
C = i(S*7T % I). Then (D5 L C) x STUY 1 x D2 s a suvitable sphore in 7,3 by suitable
choice of i, we can make the various parts fit together smoothly. We first remove the dise
DYy - [4, 11 from this sphere and frame the remaining disc, This gives a framing for
oD% % [4, 1] which, up to homotopy, is given (say) first at D% x 1, and (since S'* spans
D? inT,) induced by a product along 807, x [ 11. By definition, the obstruction to extend-
ing the framing over DY x [3, 1]1s just f(x). We have not shown how to calculate § or ¢
(we will not need this jn gencral), nor (f) when s =1 (mod 8), except if ¢ can be chosen
in 1] with g..(4) = ¢. This is casily scen to be cquivalent to o(G*) == 0. Indced, if this is not
satisfied, [11] gave no precise definition of the corresponding obstruction for ¢, though if
g1 = g2, wWe know how to compute a diflerence clement. So we have to refer back to the
formal definition of §12C for cach particular case. (One would take an S* in N representing
&, take the image of S* x I'in By, get rid of the 1-cycle as above, and tidy up the ends.)

in 7y Tirst, we must construct such a sphere. Let S% < NV orepresent x. By appropeinte

To describe x(g), it is sufficient by Theorem 9 to give the defining invariants of [7)].
If 5 == 0 (mod 4), S’ : I/ — Z detecrmines by duality 8 e 77, fixed by g, and so in G. Then
the relevant invariants Sf(@), $.SH(@), o are dircetly defined (Lemma 11). 1f s =1 (mod &),
we choosc and e f1 dualto So'. Since g, preserves o, and & is unique imod 277, ¢.(8) — & = 20
for some {. Then for any i € I, using {i} for the class of y in G, and supposing this of finite
order,
b({C}, () = 148, i) = 3S2'(m)  (mod 1),

so that {{} == 2. Hence

q() = @) + 2440 (mod 2).
Letus summarise our findings. Let A% be closed and (s — 1)-connccted, N = M — D5,
Then (Theorem 3) for T'e Ty, M 4 T2 M if and only if N has a difficomorphism ¢ with
T'=7(g) = Ox(g). Morcover, we have just computed w(g).

Throrim 10, Suppose M?S closed and (s — )-connected, T an exotic sphere representing
t€ Vo Then M AT = M if and only if (i) ©=0 or (i) So: H{M)->n, (SO,,,) is
nonzero modulo 2 and t ¢ 0(%2+1),

Proof. Yors<3, 1", == 0and the result s trivial.

If S7 is zero modulo 2 for M, then for any diffcomorphism g of N, « is zero modulo 2
for 7}, so by Theorem 9, k(g) = [T} = 0. It remains to be shown that if S« is nonzero
modulo 2, then for any X ¢ ¢2**', N has a diffcomorphism ¢ with r(y) = X. The only
cases thal arise are s = 0 (mod 4) and s = 1 (mod ).

First let s == 0 (mod 4). Since S : /- 7, is nonzero modulo 2, & is not in 21/, We
choose a basis for 17 with & an odd multiple of ¢;. By Lewimia 13, N has a diffeomorphism
homotopic to 1 with arbitrary f;. By the addition formulae, since 7,(S0,) has exponant 2,
[y = [(4). As this is arbitrary, so is «(g).
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Nextlots o ] gnod 8). We take a symplectic basis {eg, /) for 1 with & = ¢, (imod 241)
Consider the automorphism 77 ol 11 which l ves all ¢, f; fixed except T(e)) = ¢; + 2f).
This is the identity modulo 277, so pxwmm <’) and by Theorem 4 corresponds to diffco-
morphisms. Now = f) so q(7) = ¢e) -+ 1 = &1 Thus o(f) is a generator of Zg. The

correspondine element of (%24 gcncmtcs the whole subgroup, so the result again follows.

$17, GROTHENDIECK GROUPS AND COBORDISAM GROUPS

We shall now give an interpretation of the Grothendieck groups of §15, and of thosc
of 1151, as cobordism groups (in the latter case it was suggested by Milnor that such an
interpretation should exist).

Consider the set of closed, (s — 1)-connected, n-manifolds, where s = 2. These are
orientable, and we suppose them all oriented. Write My ~ M, if for some (s — 1)-connected
¥, CW = My u(—M,). As usual, this is an cquivalence relation, and the cquivalence
classes form a group under the addition defined by the connected sum. We denote this
group by OF: the definition is due to Milnor [9].

Text consider the almost-closed, (s — I)-connected n-manifolds. Here M, ~ M, if
there s an (s — 1)-connected manifold } with corners separating @1 into three parts with
closures Afy, — M,, and an f-cobordism between 0, and dM,. This likewisc is an
cquivalence relation and compatible with sums, and we obtain a group «7%.

M
iy

YA 32,0 There is an exact sequence for s < n
I S O LA O AT O L

Here 67 s the Milnor group of homotopy spheres [8]; by results of Smale (sce c.g. [12])
i is dsomorphic to 1, except, perhaps, if n =3, 4.

Pronf. The map pis defined by taking the boundary, ¢ by observing that a homotopy
n-sphere is (s - 1)-connected if s < n, and 1 by deleting the interior of an imbedded disc
in a representative manifold. chsc constructions arc evidently compatible with the equi-
alence relations and with sums, so define homomorphisms.

The kernel of ¢ is the st of homotopy n-spheres which bound (s — 1)-connccted mani-
foids; this is cactly t h<‘ image of p. A manifold W™ is in the kernel of p if and only if ¢1V
i fi-cobordant to S el il and only i W, with the fi-cobordism glued on, has boundary
St and iy obteined imm a closed nmm[o]c by deleting @ dise. But clearly this modified

prantold o 1

ow ar = 0, for i we take a homotopy sphere and delete a dise, we have just remarked
thut 1t~ o dise, and this defines the zero of 7% Finally Tet A" represent an clement of
Poor o Vhen i N MY DY an (s — 1)-conneeted B!

Bovndary are N o dise D" and an h-cobordism of their boundarics. Rounding the

exists, the three parts of whose

Pa 17 sl (s - 1) conmected, whose boundary s obtained by filling in 6N
Lo horeatopy dise, so hias thie form N 477 for some homotopy sphere 770 It follows

Pt e ddons of YT In QF I minus that of 77, and so in the image of o.



CLASSIFICATION PROBLIEMS IN DIFFERENTIAL TOPOLOGY - v 293

We observe that an almost-closed (s — 1)-connected N 251 is a homotopy disc. Hence
the above sequence ends

} ‘4 . Ty ! : - g
(_)2.\+1 — Qs.wf 1 - ..C/SZ’” 1 — (923 N gl:‘ »_) '-C{f\ N @2.\ 1 N gz;\ 1 -0,

This is another formulation of our obstruction theory for closing almost-closcd manifolds,
though by its generality it Toses some of the powcer of Theorem 3. Our object is to iden tify
PSP with the Grothendicck groups.

LiMMA 330 Let Af "N e (s — D-connected, ON = M S22 41,8 22 and suppose
Soc s H(M ) — 7,1 (SO) onto. Also ifn=2s+1 and T—1(SO) = 0, suppose the ranl of
(M) at least 4. Then there is an (s = D-connceted N, with oN " — Mand IH{N", M) =0,

Proof. We have to kill the group (N, M) = H{N) i (M ); we shall do it by sur-
gery. Choose any generator and represent by x e H(N). Let Y€ (M) have Su(y) = a(x),
and replace v by x — Y. Now if the sphere S* jn N represents this class, it has a (rivial
normal bundle; accordingly we can perform a spherical modilication: 1f 5 > 25 + 1, this
Kills the gencrator represented by x, and we proceed by induction.

If, however, n = 2g - L, new homology is in general introduced, and more carc must
be exercised. Tn the case g = 2 we gave a full proof (with fewer hypotheses) in [17]. A similar
argumentis valid in gencral, If; in fact, x represents an clement of infinite order in 1N, M),
the modification automatically decreases the rank of this group by onc. So we can supposc
N, M) finite. To simplify further we choose an v e H(N) with (i) o(x) = 0, (ii) x deter-
mines a nonzero element of (N, M), (iii) N s primitive in H{N). 1t s casily seen that
when (iii) is satisficd, no new homology is introduced. Note that we now have, by duality,
rank //(N) = L rank 11 (M). If this is at least 2, since 7, ,(SO) is cyclic one casily verifies
that an v must exist satislying (i)-(iii), and we are done. If not, M- 1(SO) = 0, and cither
the rank is I, when we choose v as a gencrator, or zero, when we appeal to [8] or [14] for
a proof of the result.

We recall from [15] that we computed (for s > 3) the Grothendicck group 7, of almost-
closed, (s — D-connected 2s-manifolds: it was (unnaturally) Isomorphic to 7, @ T (SO,
The class of §% x §% (with the interior of a dise removed) was interpreted as (he generator
of the first summand Z; we shall (actor this out and wrife G2 for the quotiznt, Isomorphic
to the second summand,

Ticorist 1. There are natural isomiorpliisimg

R A 3, Kyt @3 it (s = 4).

Proof.  Since addition in 2 s defined by the usual sum of bounded manifolds, by the

universal mapping property there is a homomorphism of Yolo /7 But §° x §° bounds
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y 5 N s . . - Fxl g . . .
S¥ DY so determines 0 ¢ QX and a fortiori 0.7 Thus we have an induced
hmmmo; plism w, of the quoticnt group @Y% Similarly since, by Theorem 8§, an (s — 1)-

W,
consicefed (2s -+ D-manifold with zero o bounds an s-connected manifold, it determines
Gc f“‘”. Again the universal pr oputy gives us a homomorphism x, of @2+ Since

225 f\l]

75,2 e defined by equivalence classes of almost-closed (s — 1)-connected manifolds,
i _

rny cod i, are onto. It remains to prove t kernels zero.

Ve can find an almost-closed (s — 1)-connected A 7¥ with Sz onto and the rank of”
J(i1) at least 2—c.9. by umw the classification (Theorem 1). Now if 43° gives an clement
of Ker xy, so does A = M -+ (—M,) -+ M,. Thus M bounds an (s — 1)-conuccted N
(with appropriale corners, which may be removed). The hypotheses of Lemma 33 are now
fulfitied; by that lemma, we may suppose H(N, M) =0. So II**'(N)=0, N has the
h(;m‘;c;iopy type of a wedge of s-sphercs, so by Smalce [12]is a handlebody, Ne A'(2s + 1,k, 5)
for some k. But now, by the Corollary to Lemma 21, M determines 0 € @2°

The seccond case is similarly reduced to showing that if an (s — 1,-connected M
bounds 1\’?‘ 2 with (N, M) s-connected, M must determine 0 ¢ @747, First let 5=0
(mod 4). Then (with an obvious notation) o, : JI(M ) — Z is induced by oy : H(N) - Z,
so Tor 4y, € ]I (A1), Gy e IE, (N, M) we have &, = 0,8, Thus arcpresentative S5+ for
&\, is null-homologous in N. So its homotopy class in N]ms the form y o, y e 5, (N), 5
the gencrator of 2,(N), so we can write y = i,(x). Modifying the homotopy class of A
in A7 by x o, we still (Proposition 1) obtain an imbedding in M, now null-homotopic
in M. By the relative version of Proposition 1if s 2 5 (Lemma 1 if s = 4), it therefore
bounds an imbedded (mmersed) dise in N, and so has trivial normal bundlc in M. }ence
ichover of SP@), ¢SHE), o are defined all vanish for M, and so [M] =

Pinally Jet s == 1 (mod 8). As (N, M) is s-connecled, N is homotopy cquivalent to an
(s - 1-dimensional complex, and so its stable tangent bundle also can be regarded as
map N~ BY, inducing the stable tangent bundle of M by M < N— BY. Procecding to
S-dunls we see that the canonical map AY — A is null-homotopic in N (it factors through
he desuspension of NJA7). We take the relative thickening induced by the nulthomotopy
(CAY, AY)y-> (N, }1): here C denotes cone (cf. 1V, p. 89 end]). As CAY is contractible,
{is 3s a dise D®'2 with the cenonical thickening for A lying in its boundary, S
Pener the canonica! thickening is trivial, and this completes the proof of the theerem

$18, MILNOR'S FROTIC SPHERES

T his paper [101, Milnor gives a construction which associates to two elements
&
gy, (S0, s e LSO, ) (5 =, aside-condition is necessary) @ diffcomorphism
GOS8 and Diencs o differantial stiucture on S™H determining an element 7y, o)
U e B has elso proved (see potes of Princeton lectures on Differentiable Structures,
Jonly that the mnp
I . 7"//”(‘8{)111 2T (*’(’m i ) > l

t [ZRNIEE

¥ - - . .
. Noreover b constrocts aomanifold B2 ywith (his exotic sphere as boundary.

. i o
S dedined by ;-‘,Iuv_,u'nj; handles of dimensions m -+ 1, n -4 3 to acdise P2 where

v
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the attaching maps have linking number 1§, and (he o, arc used 1o deseribe the norme
bundles. Ttfollows at once from 5] that in the stable range, this desceription chaiue

We now investigate the relation of his constructions to ours: it turns out that in crses of
overlap our results are slightly more precise than the above.

First let m==n = s — 1. Then Wc #(2s, 2, 8) and has interscction matrix

(¢ o)

This is unimodular if either 7t(x;) vanishes; in fact (unless s is 4 or 8 and a n(xz;) odd) by
choosing a different homology basis we can suppose cach a(z) = 0. 1t is now trivial to
calculate the invariants which determine class in the Grothendicck group G,

If 5 is even, the signature o vanishes. We may identify Sz, Sz, with integers 7y, 745
which are even if s = 4, 8, zero il s == 6 (nod 8), and only defined modulo 2if s = 2 (mod §).
Then 7 = y5eq 4 yye, and so 3% = 2y,4,. Accordingly, in the first four cases of [15], the
invariants are (0, xy7,), (0, 371%2), (0, %125 (mod 2)), (0). In cach casc ¢ vanishes, but by
taking suitable x; we get all possible values subject to this.

If 5 is odd, in Case 7, ¥2° vanishes anyway. In Casc 6, ® determines class in @255 here
® = 1if ¢(;) and ¢(e,) are 1, and vanishes otherwise. Case 5is more interesting; here the
defining invariants of ¥2* arc ¢, = P(x), 1 = x(e) (i =1, 2), then 7= e + v, and so

D=y, (mod 2) G = dasa + doy -+ x1xa (mod 2),

and again all clements of @25 appear. .

Let us write 74 (SO,) for the kernel of 7 : m,_,(SO,) - #. The above formulae show
that 7" can be refined to a symmetric bilinear map

Ut nly(50,) x 70-,(S0,) - &2,

with 7= 0 o U. Morcover the cokernel of U is mapped monomorphically by the signature.
We would like to speak of the kernel, so replace U by the associated homomorphism U’
of the symmetric tensor product. This last is isomorphic to # if s = 0 (mod 4), to 0 if
§=06(mod 8),30r7,toZ,ifs=2,3,5,7 (mod 8), and to Ly 7y - 7y il s == 1 (mod §).
In cach case except the last, U’ is a monomorphism. Tn the last case it has Lernel 2.
Thus if ¢y = gy = yp =1, ¢, = 0, we have U(ey, o) = 0 and so also T(ey, o) == 0.

Next consider the case m =51, n=s. Let e en,_,(S0,,,), fic 1, (S0O,), and form
the corresponding . This is an almost-closed (s — 1)-connected (25 -+ D-manifold, so can
be described by our invariants (if s 2 4). In fact G = 7, so b and g do not appear, and «
and fi are determined by the clements above. The corresponding clement of @7%* 7 is zero
unless « is nonzero modulo 2, when ff determines appropriate invariants S, dSf, and/or
w: we have ¢(2) = 0 since there is no torsion.

Hence again we can refine 7' to a homomorphism

U : Ty I(SO.H 1) @ ﬂ.s(SOS) - {{":\ ‘[
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Vb 0. U= 07 Ulds onto except when s == 1 nod 8) in which cese the cokernel is mapped
ooty ‘;”n y b\ g, M ng (S()\ N 1) vamshes, so does @314 if it does not, the domain
of U7, O/ (SO) = w (A‘x() Y-—except when s = 2 (mod S)wﬂnd the kernc! of U reflects
the indeterminacy of ff. This suggests a more general result.

Thoomni 12, Letr > s, 2s 2 v+ 3, £ e = (S%. Then Milnor’s map
Ty I(S(/r) KT I(SOs) - r‘rﬂ s—1
has the property that
T(as B) = T(x, i + F(z, &) 4 86).

Proof.  We consider presentations of the corresponding W by taking D' adding an
s-handle and then an r~handle. By the relative version of Proposition 1, we can alter the
homotopy class of the central r-disc of the r-handle by any clement £ of 7 (S*) < 1 (W).
By @ result of Smale [12], adding the new (thickened) handle still gives a manifold diffeo-
moiphic to 1. But by Theorem 1, the framing £ has changed to f + I1(o, §) -+ oE.
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