
DIFFEOMORPHISMS OF 4-MANIFOLDS

C. T. C. WALL

Recent advances in differential topology (due notably to S. Smale)
have mainly referred to manifolds of high dimension—that is, of dimension
not less than 5. From a different approach, much is also known about
manifolds of dimensions up to 3. The 4-dimensional case, while certainly
no less interesting than the others, has appeared to need deeper results.
Our aim in this and a subsequent paper is to show that methods now
available give considerable—though by no means complete—information
on the structure of 4-manifolds.

Our main idea is a simple construction for diffeomorphisms which was
suggested by a classical construction for surfaces. This, with some number
theory, gives results like the following. For a 4-manifold M, we write
Q(M) for the quadratic form defined by intersection numbers on H2(M).

THEOREM 2. Let N be a simply-connected, closed oriented ^-manifold.
Suppose that either

(i) Q(N) is indefinite, or

(ii) The rank of H2(N) is at most 8.

Then, if M is the connected sum N # (S2 X S2), every automorph of Q{M)
is induced by a diffeomorphism of M.

Using this, and a few imbeddings of S2 in simple manifolds such as
S2 x S2, we obtain results on representation of 2-dimensional homology
classes by imbedded 2-spheres, such as

THEOREM 3. Ld M be as in Case (i) above. Then every primitive,
ordinary element of H2(M) is represented by an imbedded 2-sphere.

The contrast of this with the non-imbedding theorem of Kervaire and
Milnor [1] is interesting; their result refers specifically to characteristic
elements of H2(M); ours to ordinary elements.

We use the number-theoretic terminology of [6]. A quadratic form Q
will be associated with a symmetric bilinear map L of a free abelian group
H to the integers Z, L: HxH-+Z. Let (ej be a basis for H, and
Hfi^ e;j) = aij. Then if au is even for each i, so is any

l 1

and we call Q even; otherwise, Q is odd. Also, Q is nonsingular if
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det (ais) = ± 1 ; all the forms in this paper will be nonsingular, by duality.
An element x = S a ; ^ of H is primitive if the coefficients xi are coprime,
so that x = dy {yeH) implies d — ±1. If L(x, y) = Q(y) (mod 2) for all
yeH, x is characteristic, otherwise it is ordinary; it can be seen that
characteristic elements always exist, and if Q is nonsingular, they are
unique (modulo 2H). Ii, for example, if4 is closed and simply-connected,
H = H2(M), and L is induced by the cup product, Q is non-singular by
Poincare* duality, and xeH is characteristic if and only if its mod 2 reduc-
tion is w2{M)—thus Q is even if and only if w2(M) = 0.

Over the rational numbers, any nonsingular Q can be reduced to the
form

p n

1 P+l

and the signature 2p—n is an invariant of Q. We give Q names as follows:
negative definite, if p = 0; positive definite, if p = n; indefinite otherwise,
and in particular, almost definite if p = 1 or n— 1, strongly indefinite if
2^p^n—2.

Unless otherwise stated, all manifolds in this paper shall be compact
oriented differential 4-manifolds M with boundary dM such that
H-^dM) = 0. This condition has the effect that Lefschetz duality for M
has the same form as Poincare duality for a closed manifold: it means
that either dM is empty (M is closed) or each component of dM is a
homology 3-sphere. We shall always use "imbedding" to mean imbed-
ding as a smooth submanifold.

1. 2-sphere bundles over S2.

We first consider some elementary manifolds, which will later be used
somewhat in the character of "building bricks". Bundles over S2 with
group 8O3 are ^assified by ^(/SOa), which is a group of order 2 (Steenrod
[4; pp.99, 115]). We write S for the product S2xS2, and T for the
2-sphere bundle associated to the nonzero element of the group; both are,
of course, simply-connected closed 4-manifolds.

Next consider reductions of the group to /SO2, classified by
which we identify with the group of integers. This maps onto
so both bundles can be reduced. Write Tk for the £2-bundle associated
with the reduction given by the integer k. Write x for the class in H2(Tk)
of the sphere imbedded as the cross-section, corresponding to the "south
pole", y for the class of a sphere imbedded as a fibre. Intersection
numbers are easy to calculate: clearly, y.y = Q (two fibres do not meet);
x.y=l (we choose the orientation of y to ensure this); and x.x is the
obstruction to existence of a cross-section of the associated cirole bundle,
so equals the Euler class, k.
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For homology bases of S, T we shall reduce the bundles as TQ, Tv The
relation of these bases to those given by a reduction as T2k, ^2k+i *s *na'^
for the latter manifolds, the chosen base is x-\-ky, y (in terms of the
former). This is clear from the definitions.

Further elementary manifolds are P, the complex projective plane,
and Q, the same but with the opposite orientation.

LEMMA 1. The connected sum P#Q £ T.

Proof. The proof is given by Steenrod [4; pp. 135-136]. We briefly
sketch it. In fact the sub-bundle of 2 \ with the equator as fibre is a Hopf
bundle (since the Euler class is 1), so forms a 3-sphere, and decomposes T.
The complements are D2-bundles over 82, with the same Euler class, so
are difiFeomorphic to a neighbourhood of P^C) in P2(C), with complement
a disc. The result follows by taking care of orientations.

We usually denote the homology class of the complex projective line
in P and Q by u and v respectively. It is clear that in the above diffeo-
morphism u and v become the classes x and x—y representing the canonical
cross-sections at south and north poles. One checks that this is compatible
with the given intersection numbers (u.u=l, v.v= — 1).

We remark on the following diffeomorphisms (which, in accordance
with ouu terminology, preserve orientation): for P and Q, complex conju-
gation ; for S the interchange of factors in S2 x S2, and the simultaneous
orientation reversal in each. We shall use these with

LEMMA 2. Let hi be a diffeomorphism of Mi (i= 1, 2). There exists
a diffeomorphism h of M1-^M2 whose induced homology map is the direct
sum of those induced by the ht.

Proof. Let' j i : Di-^Mi be an imbedding. By the Disc Theorem,
hioji is isotopic t o ^ . By the Isotopy Extension Theorem [3], there is a
diffeomorphism kt of Mi} isotopic to the identity, such that ^ o ^ o j ^ =jim

Hence, replacing \ by k^h^ we may suppose that ht keeps^(D4) fixed.
If we now define the connected sum by imbedding discs in the interiors

of the JiiD*), we observe that hx and h2 fit together to give a diffeomorphism
h of the sum, which clearly has the desired properties.

2. The basic construction.

We first explain the general idea. In the theory of surfaces, the classi-
fication implies that forming connected sums of the real prcjective plane
with torus or Klein bottle leads to the same result. This is explained as
follows. Formation of connected sum of a surface with torus or Klein
bottle may be described as "adding a handle"—remove two discs, and
join their boundaries by a tube; the two cases are distinguished by the
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orientations used for the two discs. But for the projective plane, this is
no distinction: a disc may be carried round an orientation reverting path
and back to its former position.

We now attempt to describe this rigorously, at the same time doubling
the dimensions involved.

Let N be any 4-manifold, which it is convenient to assume honio-
logically 1-connected, i.e. that H^N) — 0. Hence the homology invari-
ants reduce to the intersection form on the free abelian group H2(N),
which must be nonsingular. L e t / : S1xD3->N be an imbedding; and
derive M by a spherical modification, that is to say, delete the interior of
the image of/, and glue in its place D2xS2. We shall define diffeomor-
phisms of M by translating the attaching circle f(S1x0) round "paths
in N ".

Suppose given an isotopy of S1 in N, with initial and final position
given by f(S1x0). By the isotopy extension theorem, this is induced
by an isotopy of N on itself. The final map h of the isotopy may not
preserve S1xD* pointwise, but by the tubular neighbourhood theorem
we may suppose that it induces a bundle map of ^ x D 3 (over S1) on itself.
This defines a diffeomorphism of M onto a manifold M' (obtained from
N as was M, but with a different attaching map) induced by h on the
common part of M and N, and by the identity on the attached D2 x S2.

We next calculate the effect of our constructions on homology. We
have the exact sequence

) ^ ) -+H2{N)->0

with first group isomorphic to HS(S
1X D3, S1 X S2) ^ Z. Denote a generator

—or rather its image in H2(N—f(S1xD3)\—by y\ this is represented
b y / ( l x £ 2 ) . We also have

with last group infinite cyclic. We choose an inverse image x of the
generator in H2(M) as follows: let C be a surface in N—f(S1xDs) span-
ning S1 X 1 (not necessarily nonsingular) and take x as the class of the
2-cycle formed from C and D2xl. Observe that y.y = O, x.y=l (if
orientations are suitably chosen); x.x may be anything. Then the group
generated by x, y is in fact an orthogonal direct summand of H9(M) (this
follows since the matrix of intersection numbers on it has determinant — 1),
and the exact sequences above then induce an isomorphism which we
use to identify H2(N) with the orthogonal complement of a; and y in H2(M).

For M' we define basic classes x', y' similarly, using the same surface C.
Write | for homology classes in H2(N); w for the class of the surface
traced out by S1x0 under the isotopy, and E for the isomorphism of
H2{M) on H2(M') induced by the diffeomorphism.
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LEMMA 3. E{£) = £-{!-.w)y\ E{y) = y', E{x) = x'+w.

Proof. Certainly E(y) = y' since a 2-sphere representing y is fixed
by a diffeomorphism. Now the isotopy "drags" the boundary cf C
round a surface in JV [which, w.l.o.g., we suppose disjoint from f{S1 X 0)]
which represents a>, by definition. Hence the image of the cycle defining
a; gives one defining x' together with a surface which represents a>, and

Finally, the diffeomorphism of JV is isotopic to the identity, so induces
the identity map of homology. It follows from the first exact sequence
above that for any £, E(£)—£ is a multiple of y', say E(g) = £-\-ay'. But

and so a= — g.oo, which concludes the proof.
In order to use this to prove results, we need the existence of isotopies

of S1 in JV representing nontrivial classes cu; this is the crucial point of
the whole process. In fact, we prove

LEMMA 4. Suppose to spherical. Then there is an isotopy of S1 in JV,
with initial and final map f(S1 X 0), representing cu.

Proof. We can certainly find a map of a torus representing a>; for
map a torus by projection to f\Sx X 0), and a sphere representing o>; join
by an arc, and hence define a map of the connected sum—another torus—
into JV.

Now in these dimensions {i.e. for 1-manifolds in 4-manifolds) every
homotopy may be replaced by an isotopy. This is a standard result, due
in principle to Whitney; we sketch the proof. In fact we have a map
of S1 X / (defining the above torus) into JV, and the projection on / , hence
a product map to Nxl. Move this slightly into "general position"
(formally this would be expressed using Thorn's transversality theorem).
Then it becomes an imbedding, but still represents a homotopy—hence
an isotopy—of S1 in JV.

3. Simply-connected manifolds.

Now assume JV simply-connected. Then any two circles are homo-
topic, so—by the argument of Lemma 4—isotopic, and so any one spans
an imbedded 2-disc, and lies in the interior of an imbedded 4-disc in JV.
The modification may now be defined by removing such a 4-disc, and
glueing in an alternative manifold, obtained from D4 by the corresponding
modification. But these alternative manifolds are precisely the 2-spbere
bundles S and T over 82, with a disc removed. Hence in general, if
f{S1x0) is homotopic to zero, M^N#S or N#T. Again, for JV
simply-connected, any 2-dimensional homology class is spherical (by the
Hurewicz theorem). We now apply the results of the preceding section,
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using the 2-disc spanning S1 as C. Note that this induces a reduction
of the group of the normal bundle of S1 from SOS to S02 (the directions
normal to the disc); accordingly we distinguish the bundles Tk.

THEOREM 1. Let N be a simply-connected ^-manifold, u)eH2(N) with
o»2 = r. There is a diffeomorphism of N# Tk+r on N# Tk inducing

in 2-dimensional homology.

COROLLARY 1. Let N have odd quadratic form. Then

We can choose any a> with a>2 odd.

COROLLARY 2. / / co2 = 2s, N#Tk admits a diffeomovphism inducing
EJ: £->£-(£.<o)y, x-+x+co-sy, y->y on

We recognise this as the EJ- of [6]. This seems a particularly pleasant
and natural way of deriving the fact that these transformations, due to
Siegel, do indeed give automorphs of the quadratic form (this is, of course,
trivial to verify but hard to predict).

We continue to suppose N simply-connected, and try to see which
automorphs of Q{N# S) can be represented. We use the notation of [6].
Then, by reversing the order in S2 X S2, we see that EJ, as well as EJ,
can be realised. Assume that Q(N) is either indefinite, or definite and of
rank not exceeding 8. Then by [6; (6.12)], the group of automorphs
generated by EJ and EJ contains all those of determinant and spinor
norm 1.

We can improve on even this result. For by Lemma 2, diffeomorphisms
of S induce ones of N # S (taking the identity on N), and by the remark
preceding that lemma, we obtain all automorphs of Q(S) (called U in [6])
from diffeomorphisms of S. Hence the determinant and spinor norm can
be i l independently: for Q{N) even, it follows that we obtain the whole
orthogonal group. To prove this for Q(N) odd, we need only find some
diffeomorphism inducing an automorph of spinor norm ±2 . But by
Theorem 1, Corollary 1,N#8^N#T; by Lemma 2, any diffeomorphism
of T induces one of the sum; by Lemma 1, T^P#Q, and we can use
complex conjugation in P; which has spinor norm 2. Thus we have

THEOREM 2. Let N be a simply-connected 4-manifold with boundary
BN such that Hx(dN) = 0, and such that Q(N) is indefinite, or has rank at
most 8. Then any automorph of Q(N#S) can be represented by a diffeo-
morphism of N#S.

Examples of such manifolds N are connected sums of copies of P, Q
and S {cf. Milnor [2]). The theorem deals with most of these.
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COROLLARY. Let M be a connected sum of copies of P, Q, S and T.
Exclude the case when Q (M) is almost definite, of rank greater than 10. Then
any automorph of Q{M) can be represented by a diffeomorphism.

Proof. First suppose M has no summand 8 or T. Then it is a sum of
copies of P and Q; moreover (Lemma 1) we do not have both. Suppose
w.l.o.g. M a sum of copies of P. Then M admits as diffeomorphisms
permutations of the summands and (Lemma 2) diffeomorphisms of them
—say complex conjugation. But by (1.2) of [6], this shows that we have
all the automorphs already.

Now if one of the summands of M is 8, the result follows at once from
the theorem. If not, M is a sum of copies of P and Q, since by Lemma 1,
T ^ P # Q; and we suppose that each occurs. If there are more than two
summands, M is a sum of T with a manifold with odd quadratic form,
hence (Theorem 1, Corollary 1) admits S as summand, and the result
again follows.

The only remaining case is M^P^Q^T; here we appeal to (1.4)
of [6]—stating that only four automorphs exist—and Lemma 2, using the
identity and complex conjugation in each of the two summands.

4. Application to imbedding spheres.

We continue to suppose M ^N#S, N a simply connected 4-manifold,
and now observe that the existence of imbedded spheres in S, together
with the diffeomorphisms of M, now leads to a wide variety of imbedded
spheres.

THEOREM 3. Let N be a simply-connected ^-manifold, with boundary
dN such that Hx(dN) = 0, and Q(N) indefinite. Let £eH2(N#S) be
primitive and ordinary. Then | is represented by an imbedded S2, with
simply-connected complement.

Proof. Since Q(N#S) is strongly indefinite, the main remits
(Theorems 4 and 6) of [5] show that its orthogonal group is transitive on
primitive ordinary vectors of given square. We shall show that for each
integer r, some primitive ordinary xreH2(N# S) with xr

2 = r is represent-
able b y / : 82->N# S; then the result follows. For if £2 — r, A is an auto-
morph of Q{N# S) with xrA — | , and (by Theorem 2), h a diffeomorphism
of N#S with induced homology map A, then hof is the required
imbedding.

~NowN#8 = N#T0'zN#Tcik (by §1),and in T2k we have the canonical
cross-section representing x2k, with #§& = 2k, and with simply-connected
complement. The same sphere in N#T2k may now be chosen. If £2 is
odd, Q(N) is odd, and so N#S^N# T^N# T2k+1 and the canonical
cross-section now represents x2k+1, with x\k+1 = 2&+1.



138 C. T. C. WALL

If Q(N) is not indefinite, but definite and of rank at most 8, we can
use Theorem 2, but our appeal to [5] fails. We can still obtain results,
and cite the following:

Let £ be a primitive ordinary class in H2(P#P#Q)', if — 8 < £2 < 16,
then £ is represented by an imbedded S2 with simply-connected complement.

For the relevant discussion of transitivity (not in detail) see [6].
We observe that if a non-primitive class £ is represented by a sphere

S2 in a homologically 1-connected manifold M, then H2(M—S2)^Zr,
where r is the divisor of £ (this is very easy); thus the requirement of
simply-connected complement is natural for primitive vectors. For a
few others, imbeddings can be deduced from:

LEMMA 5. Letf: S2-+M represent geH2{M). If | 2 = 0, then any n£t

and if £2 = ± 1> ^hen 2£ can also be represented by an imbedded sphere.

Proof. By a result which we have already uaed, the self-intersection
of an imbedded 2-manifold gives the Euler class of the normal bundle.
Then for £2 = 0, we have a trivial normal bundle, so / can be extended
to imbed S2xl. We thus choose n disjoint imbeddings, and join the
spheres by tubes to obtain a single sphere, representing ni;.

For | 2 = i 1, we can find a cross-section of the normal disc bundle of S2

meeting the zero cross-section in only one point, transversely. Thus we
have two #2's representing £, which meet transversely at a single point.
We remove a small neighbourhood of the point—this leaves as boundary
two circles linked in S3, which we span by an annulus S1xl (with desired
orientation), thus again obtaining an imbedded sphere.

Theorem 3 refers only to ordinary £eH2(M); in other words, we insist
that the dual cohomology class modulo 2 of £ shall not be the second
Stiefel class iv2. We briefly consider the opposite—"characteristic"—
case. The argument leading to Theorem 3 remains valid in principle,

bub the basic representing spheres are now much harder to construct.

LEMMA 6. Let Q{N) be even (i.e. w.z(N) = 0), and let M — N#kP# IQ
where k^l, 1^1, and (k, 1) ^ (1, 1). Exclude the case when Q(M) is
almost definite. Then every primitive characteristic element of H2{M), of
square k—l, is represented by an imbedded S2, with simply-connected
complement.

Proof. Since k^l,l^l, M has a summand T, and since either k or I
is larger, we can deduce from Theorem 1 that it admits a summand S,
and hence from Theorem 2 that any automorph can be realised by a diffeo-
morphism. Referring again to Theorem 4 of [5], we see that the orthogonal
group is transitive on primitive characteristic vectors of given square,
so it will be sufficient to represent one such.
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Now a generator, u, of H^iP) is represented by a complex projective
line, which is certainly a 2-sphere, and its complement is a disc. Corres-
pondingly for veH2{Q). We take k-\-l such 2-spheres, one in each of the
later summands of M, and observe that they are disjoint. Hence we can
connect them by tubes to obtain a single 2-sphere, still with simply-
connected complement. The homology class is characteristic, of norm
k-l.

As before, we can obtain results not included by this, but they are
much weaker (except for the exclusion of the case k == l=-1, which can
probably be avoided). Notice that for a given manifold M, we have only
succeeded in representing characteristic £e//2(J/) with a single value
of £2. In a sequel to this paper, we shall prove that for some manifolds,
several values of £2 can appear.

5. The non-simply'-connected case.

Our arguments have not always needed simple connectivity, and we
now briefly discuss what survives without it. In §2, the hypothesis was
not needed, excepf as a convenience in calculations. As in §3, we observe
that if/: S1xD3->N is null-homotopic, the manifold M obtained by a
spherical modification is of the form N#Tk. The proof of Theorem 1
now shows:

(5.1) Theorem 1 holds for N homologically 1 -connected, provided we
assume to spherical.

(5.2) Assume for some spherical weH2(N) that cu2 is odd. Then

The proof is as before; we have no need to compute the induced
homology map, so no hypotheses on N are necessary.

Theorem 2 appears to break down completely—we do not see how
(even in favourable circumstances) to characterise the representable
automorphs, without further information on spherical classes in H2(N).
The applications to imbedding spheres also break down, but we can show

(5.3) Suppose N homologically 1-connected, that £, coeH2(N) are
spherical, and a>. £ = 1, w2 is even. Then £ can be represented by an imbedded
sphere in N#S.

First suppose | 2 even. Then El^ £ = £+#, and

But by (5.1), E\ and E\^ are represented by diffeornorphisrns, and as
before, x-\-(^2)y is representable by an S2 in S2xS2.

If £2 is odd, we must interpret El_g as corresponding to a diffeomorphism
of N# S on N# T; otherwise the argument is just the same.
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We make several remarks about this result.

(i) The condition o». £ = 1 implies that £ is primitive, and that o»2 is
even implies that £ is ordinary—indeed, they are almost equivalent
conditions.

(ii) The result is not included in any of our results on simply-connected
manifolds.

(iii) Nevertheless, it is unsatisfactory; under suitable conditions on
the signature we would prefer to replace £,U)EH2{N) in the hypothesis by
£, WEH2{N#S). We could obtain extended results by transforming £
by a sequence of 2£-maps, but again do not see how to obtain a useful result
without further information on spherical classes in H2{N).
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