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ABSTRACT

In this essay, we present our interpretation of the work of P. Tait and M. Haseman
on achiral alternating knots. We have tried to elucidate the meaning of several concepts
used by them such as: Amphicheirals, skew-amphicheirals, 1st or 2nd order, 1st or 2nd
class, distorsions, etc. We also comment on some of their many pictures.
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1. Chirality

In this essay, we present the work of P. Tait and M. Haseman on achiral alternating
knots. We are aware of the danger of misunderstanding mathematical texts written
in a style very different from the one we use today. It is therefore more appropriate
to say that this is our interpretation of their work. Fortunately, Tait and Haseman’s
papers are now available on the Net. See [15]. This is why we have decided not to
reproduce here all their knot pictures. We ask the reader to consult directly the
original.

We work in the differentiable category. Knots and links are infinitely differen-
tiable submanifolds of the 3-sphere S*. In this setting, it is useful to be aware of
J. Cerf’s theorem [4] which says that a degree +1 diffeomorphism ¢ : 5% — 5% is iso-
topic to the identity. We restrict our attention to knots, i.e. connected 1-dimensional
submanifolds of S®, although some results are also valid for links.

Definition 1.1. A knot K in 82 is said to be achiral if there exists a diffeomor-
phism A : §* — S3 such that:

(1) h(K) =K.
(2) R reverses the orientation of S%.
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We call h a mirror diffeornorphism for K. A knot K is said to be periodically (or

rigidly) achiral if there exists a mirror diffeomorphism A for K which s
the following condition: L

(3) There exists an integer n > 2 such that A" — id. Note th
oven.

atisfies

at n is necessarily

Achirality has two variants depending on what the action of hon K is. A knot
S oy . . . i ' 0t
K is said to be positively achiral if there exists a mirror diffeomorphisim 4 such that

. 4 47 o] ] . o a 2 . ) I é-ll ‘
h preserves the oricntation of K. Tt iy negatively achiral if there exists an h whicl
reverses the orientation of K. e which

s . L o3 3 . C .

‘Supp%e‘e that .h 8% — 83 is periodic. Smith theary implies that the set Fix(h)
of fixed points of h is either % or SY. If we assume that K is prime (as we do)
then Fix(h) = S In this case, K is +achiral if Fi g st

) his case, s +achiral if Fix(A)N K = § ; —achiral it
B (h) 0 and —achira) if

2. Tait’s Amphicheirals

During the month of J anuary 1867, the Scottish physicist Peter Guthrie Tait pr
ceeded in Edinburgh to experiments on smoke rings. His goal was to lvisuali;e II-JIMT—
mann von Helmholtz’s theorems about vortices in a perfect fluid. William 'lfhglz-ls?)l i
was present and a few weeks later Thomson stated his hypothesis that atoms lt
knotted vortices in the ether. [nitially with the purpose (;f classifying atoﬁw hTE"I'L
decided to classify knots. He soon recognized the importance of (:h'iral?tv quei’%?tiol{j;t
We examine now how he expressed himself in a series of paper?s publisheri
between 1876 and 1885. Tait considers almost exclusively knot diagrams dIl“’i, i
on the sphere §?, rather than on the plane R?. His diagr;\ms are alternatin ‘C-W(rll
prime (i.e. indecomposable with respoct to connected sum of diagrams) (In gadrlsb
cular, they do not have “nugatory crossings”. From now on we shall m’wa. s (L? . ;
that diagrams are alternating and prime. , e
. Tait created the word “amphicheiral” | built on the greek roots amphi = on hoth
.tudes and chir = hand. Presumably, Tait meant that an object is amphicheiral ‘if
it is both left-handed and right-handed. “Amphicheiral” wag widely used unﬁl the
1980s when it was gradually replaced by “achiral”. A good mnem(‘)to(:hnic trick l’a
to remember that both words begin with the same letter “a”. A knot Whichl is not
achiral is chiral. The word “chiral” was coined in 1893 by W. Thomson (thfn Lord
Kelvin). Tait uses “amphicheiral” to refer to diagram of an achirﬂ knc;t .BuL }l;
wdvances by successive approximations. Here is hisrﬁrst definition [18, Se(:.‘ 1] |

Yefinit: 5 ) i ; .
nition 2.1 (Tait). An amphicheiral knot is one which can be deformed into
ts own perversion.
Here knot means diagr: Th versi g i i
£ agram. The perversion of a diagram is the new diagram

btained by exchanging overpasses with underpasses at each crossing. This name
7as already used by J.-B. Listing in [12]. It comes from the latin verb “pervertere”
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which means to turn over. Deformed means “there exists a diffeomorphism ¢ :
52 — 52 preserving the orientation of 5$2”. A mirror diffeomorphism / is essentially
obtained by extending ¢ radially in both hemispheres and then composing it with
the reflection through the 2-sphere on which the diagram is drawn. (As pointed
out by Ray Lickorish, if we wish to perform the extension in the differentiable
category, we should refer to [16]. Tt results from its main theorem that an orientation
preserving diffeomorphism of the 2-sphere extends to the 3-ball). In [18, Sec. 2] Tait
sketches a proof of the following fact: the diffeomorphism ¢ is conjugate to a rotation
of angle 7, with axis a line which cuts the 2-sphere $? in the middle of two opposite
arcs of the diagram. We shall call the corresponding mirror diffeomorphism a Tait
involution. In order to better visualize the involution, Tait draws the diagram in the
plane, sending one of the two fixed points to infinity. The diagram has two threads
which go to infinity and the rotation center is easy to see. It is obvious that the
knot is —achiral. In [17, Secs. 47 and 48], Tait gave procedures to construct such
diagrams. He observed that the number ¢ of crossings is necessarily even and he
showed that these diagrams exist for every even ¢ > 4.

We conclude this section by quoting a few lines from Tait’s paper about Listing.
See [19, Sec. 23]. These lines are quite interesting if we wish to grasp Tait’s view
of the question of chirality. Notice the use of the word “curious” twice. “There is
one very curious point about knots which, so far as I know, has yet no analogue
clsewhere. In general the perversion of a knot (i.e. its image in a plane mirror) is not
congruent with the knot itself. Thus, as in fact Listing points out, it is impossible
to change even the simple form [a left-handed trefoil] into its image [a right-handed
trefoil]. But I have shown that there exists at least one form, for every even number
of crossings which is congruent to its own perversion. The unique form with four
crossings gave me the first hint of this curious fact.”

3. Tait’ s Distorsions

In order to go further, we need to recall an important notion introduced by Tait,
which is at the basis of his work on alternating knots. Consider Fig. 1 representing
a portion of a diagram.

The two dotted circles do not belong to the diagram. They bound the two discs
A and B, which contain what we do not see of the diagram. It is easy to see that the
diagram can be transformed by an isotopy in 3-space into the diagram represented
in Fig. 2.

The disc B is unmoved, while the disc A is modified by a rotation of angle m and
axis a line contained in the projection plane. We remark that this way to represent
the transformation is essentially due to Mary Haseman [7]. Such a transformation
was called a distorsion by Tait. John Conway in his famous article [5] calls it a
flype. This word was given a different meaning by Tait. Today, flype is widely used

in Conway’s sense.



Fig. 2,

Tait’s second definition for an amphicheiral ig essentially the followinge
w xS o

Definition 3.1 (Tait). A diagram is

amphicheiral if it can be distor i i
. b can b rted into its
OWn perversion. o

Clearly “distorted” means transforme
diffeomorphisms of $2).

Let us now recall the Flyping Theorem of !
Thistlethwaite [14], which makes lawful the main
attempt at knot classification.

d by a finite sequence of distorsjong (and

Villiam Menagco and Morwen
principle used by Tait in his

Theorem 3.2 (Me.:naSCOgThistlethwaite). Two prime alternating diagrams
.f"ep-r'esemf the same isotopy cluss of knots if and only if one can be trap sformed
nto the other by a finite sequence of flypes (and diffeomorphisms of §%).
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Actually, the theorem proved by Menasco and Thistlethwaite is stronger because
“knot” can be replaced by “oriented link”. As a consequence, if an alternating prime
knot is achiral, then any minimal diagram representing it can be distorted into its
own perversion. Hence, Tait’s second definition coincides with the present-day one.

4. Tait’s First Order Amphicheirals

We now try to make clear some of Tait’s definitions.

Definition 4.1. (1) A diagram D is an amphicheiral of first order and first class
if it can be transformed into its own perversion by a Tait involution.

(2) A diagram D is an amphicheiral of first order and second class if it is not of
first class, but if it can be distorted into one of first class.

We shall shorten this by saying that D is of type (1,1) (respectively, (1,2)). Tait
and Haseman knew very well how to construct diagrams of second class. See for
instance [18, Sec. 6]. It sufficies to have a diagram of first class and perform dis-
torsions which are not symmetrical with respect to Tait involution. If the original
diagram is complicated enough, the new one will not be invariant by any Tait invo-
lution. Similarly, by performing symmetrical distorsions, one can expect to find
achiral knots which have several different diagrams which admit Tait involutions.
Let us also observe that 1st order implies —achiral.

The question of the existence of a possible third class will be addressed below
in Sec. 9.

5. Planar Graphs Associated to an Alternating Diagram

We introduce now a concept much used by Tait and Haseman. It goes back to
Listing [12]. If D is a diagram in 2, let us call region (determined by D) a connected
component of 5% — D, Following Listing, let us label & and X the sectors located in
the neighborhood of a crossing point, as shown in Fig. 3.

The letter § stands for “dexiotrop” which means turning towards the right. The
letter A stands for “lacotrop” = turning towards the left. Listing had his own opinion




about the meaning of “turning towards right or left”. It is opposite to Maxwell’s
which is the one usually accepted today. | : K
Tait observes that, because 1 is alternating, all sectors which belong to the same
region are either all d or all \. Two adjacent regions have sectors withh a (liff;;'érlt
label. As a consequence, if we consider the checkerboard associated to a dia, La
the colors (black or white) correspond to the labels (6 or A). Hence, we Silalli lln 15?
or A the color of a region. o N
Wi? write A for the planar graph (embedded in 5?1) associated to the regions of
color § and write A for the planar graph associated to the color A. Recall that (for
instance) the planar graph A is constructed in the following way. In ea.cfl reO“ion R (c))lf
color A, we choose a point r which will be the vertex of the grvaph A (:orre;pondin :
to that region. Let P be a CTossing point contiguous to two regions R and R’ 0%'
color . We associate to P an edge Ap Jjoining Sy to Sk and going throuﬂh ]J‘Vi’l
the two sectors of color A near P. Hence, the number of vertices of the gr:Jph A i;
equal to the number of regions of color A and the number of edges of A is equal t
the number ¢ of crossings of D, An example is given in Fig. 4. 1 ’
For more details, see for instance [1, end of the last 7chapter}. Each of these
two graphs is called “partition grouping” by Tait and “compartment symbo]” bv
Haseman. Both knew quite well that it is important to consider these' graphs ah‘
embedded in S2. It is casy to see that they determine each other: th 8]l

' . ey are “dualg”
iy , 3 8
in & . From any of them, we can reconstruct the initial diagram D.

6. Equivalences of Planar Graphs

]?elﬁnition.ﬁ.l. Tw;o ple}l?ar graphs T and TV are +equivalent if there exists a
diffeomorphism ¢ : §2 — §2 of degree +1 such that ol el

‘ The following proposition was probably known to Tait and Haseman. See, for
Instance [17, Sec. 47] where “with the same grouping” is written in italics
Pr.C)pos_ition 62 Let D be a diagram in S2. Then D is invariant by a Tait invo-
lution (i.e. D is of type (1,1)) if and only if A is +equivalent to A.

Fig. 4.
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Here are the broad lines of the proof.

(1) In one direction, the implication is clear. The rotation of angle 7 induces (in
fact is) a +-equivalence between A and A.

(2) Conversely, let v : S§? — S? be a diffeomorphism of degree +1 such that
¥(A) = A. As we can reconstruct the diagram D from A or A, we can modify
¥ by an isotopy such that ¢(D) = D.

(3) As each region determined by D is a 2-cell, we can modify 3 by another isotopy
to make 4 periodic of period say n > 2.

(4) From Smith theory, we deduce that this periodic ¢ has two fixed points. These
fixed points cannot be in the interior of a region, because 1 exchanges the
colors. They cannot be at crossing points of D because D represents a knot
and not a link. Hence, each fixed point is in the middle of an arc of D. It is
noteworthy that most of this argument was known to Tait. See [18, Sec. 2].

(5) Choose one of the two arcs of D which contain a fixed point of 1». As 1 preserves
the orientation of S? and exchanges the two regions adjacent to the arc, 1
reverses the orientation of the arc. Hence, 2 preserves the orientation of the arc.
As 1?2 is of finite order, 2 is the identity on the arc. From Tutte’s arguments
in [21, Sec. 3], we deduce that 2 is the identity. Hence, v is conjugate to a
Tait involution.

Summary.

(1) “Dis of type (1,1)" is equivalent to “A and A are +equivalent”:
(2) “Dis of type (1,2)" is equivalent to “we can modify D by distorsions in order
that A and A be +equivalent”.

Compare with the definitions proposed by Tait in [18, Sec. 13].

Let us now consider —equivalence. Up to the vocabulary used, Tait asks if it is
possible that A and A be —equivalent. This is what he means in [18, Sec. 9] when
he says “left and right meshes” are “similar but not congruent”. He adds that this
is a “curious question” which could mean that he was mostly interested in —achiral
knots and diagrams invariants by a Tait involution. However, Tait immediately
gives an answer to the question and indicates how this can happen. It suffices to
have a diagram drawn in the sphere 52 which is invariant by the antipodal map.
As it is not easy to draw pictures on a sphere, he proposes a clever method to draw
these on a usual sheet of paper. See [18, Secs. 10-12]. For the moment, let us just
remark that if a diagram D C 52 is invariant by the antipodal map, then the knot
K C S? represented by D has a mirror diffeomorphism with two fixed points away
from K and hence K is +achiral. Here are now Tait’s definitions for the second
order of amphicheirality. See [18, Sec. 13].

Definition 6.3. (1) A diagram D is an amphicheiral of second order and first class
if A is —equivalent to A.



(2) A diagram D is an amphicheiral of second order and second class if it is not of
first class, but if it can be distorted into one of first, class.

We shall talk of amphicheirals of type (2, 1) (respectively, (2,2)). Tait seems to
believe that the only way to obtain amphicheirals of type (2,1) is via the antipodal
map. He is wrong here, as we shall see in the next section.

7. Mary Haseman’s Skew-Amphicheirals

Mary Gertrude Haseman now enters our story. Interesting information about her
can be obtained from [15]. She received her PhD at Bryn Mawr College in 1918
with a thesis titled: “On Knots, with a Census of the Amphicheirals with Twelve
Crossings”. It was published in the same journal which welcomed Thait’s papers:
The Transactions of the Royal Society of Edinburgh. She is truly a disciple of Tait
(she was not his student, because Tait died in 1901). She understood him very
well. Indeed her cxplanations prove useful to understand Tait’s writings, which are
often obscure! She introduced the name “tangle” in order to define breciselv the
distorsions. She clearly draws the auxiliary circle which cuts the diagram inb four
points (today called a Conway circle). Her work is mainly devoted to the study
of amphicheirals. As with Tait, she is more interested in diagrams in $? rather
than in knots in S*. Her diagrams are alternating., Her main discovery is what she
calls skew-amphicheiral diagrams. Let us present a definition for it in present-day
language.

Definition 7.1. A diagram is skew-amphicheiral if it is invariant by a rotatory
reflection of even order n > 4.

More precisely, for Haseman, the rotatory reflection is the composition of g
rotation of angle 2 /n whose axis is a line perpendicular to the plane which contains
the diagram, followed by a reflection through a sphere 3 centered at the intersection
point O between the plane and the line. The sphere ¥ cuts the rotation axis in two
points, one above the plane and one below. They are the two fixed points of the
transtormation. The plane cuts ¥ in a circle 7 centered at O. What we see in the
Dlane containing the diagram is a rotation of angle 27 /n centered at O followed by
a reflection through the circle ¥ If n =2 such a rotatory reflection is conjugate to
the antipodal map and hence Haseman generalizes Tait.

A typical example is provided by Conway diagram 10* which is Rolfsen 1045.
In Tait’s plates, it is represented by the knot 1045 and also by picture E. Obviously,
the diagram E is invariant by a rotatory reflection ® of order 10. But % is of order 2
and hence conjugate to the antipodal map. Maybe, this is the fact which prevented
Tait from discovering the skew-amphicheirals. Proposition 7.2 is the counterpart of
Proposition 6.2 for second order amphicheirals.

Proposition 7.2. Let D be q diagram in S°. Then D is invariant by q rotatory
reflection of even order n > 2 if and only if A is —equivalent to A,

s iy Un s UYWL WD GG 13YH

Here are the broad lines of the proof.

(1) Suppose that D is invariant by a rotatory reflection ®. By definition, ® reverses
the orientation of $2. This implies that ® exchanges the colors § and A Asa
consequence, ¢ induces a —equivalence between A and A. That implication was
clearly known to Haseman.

(2) Let us prove the converse, and let ¥ :85% — 52 hea diffeomorphism of degree
—1 such that (A) = A. As in the proof of Proposition 6.2, we can modify
¥ by an isotopy to make 9/(D) = D with ¥ of finite order. As 1 reverses the
orientation of S?, by Smith theory we have Fix(1) = S' or 0. Because D is
assumed to be prime, we have Fix(1) = (.

(3) Consider the diffeomorphism P2 52 5 §2 1t preserves the orientation of §2
and hence Fix(¢?) = S or S%. If Fix(?) = 52, then 1 is of order 2 and hence
conjugate to the antipodal map.

(4) If Fix(¢?) = S°, then ¥? is conjugate to a rotation of order say d > 2. Because
$?(A) = A and ¥*(A) = A, the two fixed points of ¢? must be situated one
inside a region of color ¢ and one of color A (crossing points are excluded because
D represents a knot).

(5) It follows that 1 is conjugate to a rotatory reflection of order 2d >4,

8. Haseman’s Tabulations

At the end of [7], Haseman presents a list of 61 amphicheiral diagrams with 12
crossings. It is known today that there are 54 achiral alternating knot types with
12 crossings. See [9,20]. All of them are represented in Haseman’s list, seven of
them twice. Among them, 16 types are both + and —achiral, 37 types are —achiral
and there is just 1 type which is only +achiral. In Haseman’s list, this last type
is represented by the diagrams 59 and 60. Of course, these pictures do not have
strands which go to infinity.

Haseman’s favorite knot secmns to be the one represented by the 61st (and last)
diagram (see Fig. 5 which represents Haseman’s diagram 61 slightly modified). Tt is
as if she had placed it here as a sweet . .. The corresponding knot is also represented
by the diagram 6 of [7] and by Figs. 2 and 3 of (8] as well as by 4, 4, 4” and 4" of
[7]. Without taking diffcomorphisms into account, there are 16 minimal diagrams
for the knot type which differ by flypes. It is probably that abundance which pushed
Haseman to write the sequel [8] to [7] which corrects certain statements of [7] about
that knot.

The knot is both + and —achiral, and its symmetry group is 124, It has diagrams
which are simultaneously of type (1, 1) and (2,2); others are simultaneously of
type (1,2) and (2,1), still others of type (1,2) and (2,2)! They are the result
of symmetrical or unsymmetrical distorsions. On the diagram 61 (represented in
Fig. 5), one can clearly see the rotatory reflection which generates the subgroup
Cy C Dy. This is typically a case of skew-amphicheiralism because the knot cannot
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have a diagram which is invariant by the antipodal map. Haseman realized that
quite well. Let us remark that the order of the rotatory reflection is equal to 4.
Hence, one cannot argue as in the case of Conway knot 10*, where n could be
written as n = 2d with d odd.

Among the diagrams presented by Haseman, let us also point out [8, p. 600,
Fig. 6]. The diagram has 24 crossings and the corresponding knot is —t—achiral.'
Its symmetry group is isomorphic to Cy (thank you Knotscape!). The rotatory
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reflection of order 4 which generates the group is clearly visible in the picture given
by Haseman.

The last two knot types we have just been talking about are AAA: Alternating,
Achiral and Arborescent in the sense of F. Bonahon and L. Siebenmann [2] (i.e.
Algebraic in Conway’s sense). When such a knot is +-achiral, it very often (but not
always as we shall see in Sec. 9) has a diagram which is invariant by a rotatory
reflection of order 4. We propose to call Haseman symmetry the rotatory reflection
of order 4 whose principle is illustrated in Fig. 6.

This symmetry is the composition of a rotation of angle m/2 centered at the
starred point, followed by a reflection through the large dotted circle.

This phenomenon was also observed by Alain Caudron (student of Larry Sieben-
mann) in his thesis, for knots which are achiral and arborescent. See [3].

9. Amphicheirals of Third Class
We now try to clear things up, without betraying too much Tait and Haseman.

Definition 9.1. (1) We define an amphicheiral of first order to be a minimal
diagram representing an alternating knot which is —achiral.

(2) We define an amphicheiral of second order to be a minimal diagram representing
an alternating knot which is +achiral.

(3) First class means that the symmetry is visible in the diagram.

(4) Second class means that the diagram is not of first class but that it is obtained
by distorsions from one of first class.

By “visible” we mean that the diagram is invariant by a diffeomorphism §2 —
52 of finite order, which essentially describes the mirror diffeomorphism. In the first
order case, it is a Tait involution. In the second order case, it is a rotatory reflection
of even order.

There is an important question which remains open. Tait knew about it and he
admitted to have no answer. See [18, Sec. 8].

Question 1. Do there exist third class amphicheirals ?

By definition an amphicheiral of third class would be a minimal diagram repre-
senting an alternating achiral knot that could not be distorted into one on which the
symunetry is visible. By the Flyping Theorem, all minimal diagrams are equivalent
via, distorsions. Hence Question 1 is equivalent to:

Question 2. Do there exist alternating achiral knots having no diagram on which
the symmetry is visible?

By Propositions 6.2 and 7.2, this is also equivalent to asking:

Question 3. Do there exist alternating achiral knots having no minimal diagram
such that A is equivalent to A7
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In this last form, the question was raised by Lou Kauffman as problem 845 in
[10]. For +achiral knots, we know today that the answer is yes. It was given by O.
Dasbach and S. Hougardy in [6]. See Fig. 7. The example provided by the authors is
very interesting. In fact, one can show that it is the simplest (c minimal) of a quite
large family of knots all having that property. Dasbach-Hougardy example is an
AAA knot with 14 crossings. The planar Bonahon-Siebenmann trees which encode
any of its minimal diagrams have a Haseman symmetry subtly broken. We really
need distorsions to proceed from any minimal diagram to itg perversion. However,
the symmetry group of the knot is also Cy.

The question of the existence of 3rd class amphicheirals for alternating —achiral
knots remains open. It is known today that a hyperbolic —achiral knot hag always
a mirror diffeomorphism of order two. See [11] or [13]. As all achiral alternating
knots are hyperbolic, the question is this: Can we find a mirror involution which is
a Tait involution?

10. Final Comments

L. For ¢ < 10 there are 20 prime alternating achiral knots. Tait exhibits them in
plate VII. Among them, 13 are both + and —achiral, while 7 are only —achiral,
Hence, all of them are (at least) —achiral. For each of them, Tait produces a diagram
which is invariant by what, we call a Tait involution. He also observes that some of
them are +achiral as well. See [18, Sec. 12].

2. Tait payed a little visit to achiral knots with 12 crossings. He considered the
knot represented by figures A, Band Cin Plate VIL In (18, Sec. 12], he says that the
diagram is equivalent by distorsions to its perversion but that it is not “amphicheiral
i1 the ordinary sense”. He means that the knot represented by those three diagrams
s tachiral (the diagrams A and B are obviously invariant by the antipodal map)
ut that it is not —achiral. He is right. This is the unique alternating knot with 12
‘rossings which has this property. Knotscape tells us that its sytumetry group is
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(it is coded as 12a427). Mary Haseman represents it in Figs. 59 and 60 as we haye
already seen. She does not quote Tait for that matter,

3. Haseman has proposed (following a suggestion of Charlotte A Scott, her
thesis advisor) a clever variation on the Gauss Tait word to encode a diagram,
which she calls the “intrinsic symbol”. Her notation has indeed the advantage of
being independent of the symbols used to name the crossings. The intrinsic symbol
is in fact equivalent to the cord diagram, without the necessity to draw a picture.

4. Here and there, there are little mistakes in Haseman. For instance, some
planar graphs A and A are apparently not correctly drawn. In [7], there are a
few wrong statements about the knot represented by the diagram 61, which arc
corrected in [8]. About the skew-amphicheirals (with n > 4) she saw that the ones
she discovered are all also —achiral. She says that this might be always true, but
adds however that counterexamples might exist for large ¢, In tact, the 24-crossing
knot represented by [8, Fig. 6] is such a counterexample. She does not mention this
property.

5. Finally, let us raise high our hat to the remarkable exploration work done by
Tait and Haseman. Both have certainly drawn an enormous quantity of diagrams,
This impressive and hidden work has resulted in the publication of the plates, which
are incredibly exhaustive.

11. Historical Sources Available on the Net

Thanks to Josef Przytycki and Andrew Ranicki, many papers of great historical
interest are now available on the Net. See [15].

Tait’s papers which address chirality questions are: [17] see Secs. 13, 17, 47, 48
and [18] see Secs. 1-16 and also plate VII at the end of the paper.

Interesting from a historical and psychological viewpoint is Tait’s paper about
Listing’s Topologie: [19].

Haseman’s papers are two: [7.8].

Let us not forget Listing’s pioneering work: [12]. Knots are treated in pp. 859-
866.
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ABSTRACT

The image of a polygonal knot K under a spherical inversion of B3 U oo is a simple
closed curve made of arcs of circles, perhaps some line segments, having the same knot
type as the mirror image of K. But suppose we reconnect the vertices of the inverted
polygon with straight lines, making a new polygon K. This may be a dillerent knot type.
For example, a certain T-segment figure-eight knot can be transformed to a figure-eight
knot, a trefoil, or an unknot, by selecting different inverting spheres. Which knot types
can be obtained from a given original polygon K under this process? We show thal
for large n, most n-segment knot types cannot be reached from one initial n-segment
polygon, using a single inversion or even the whole Mobius group.

The number of knot types is bounded by the number of complementary domains of
a certain system of round 2-spheres in B*. We show the number of domains is at most
polynomial in the number of spheres, and the number of spheres is itself a polynomial
function of the number of edges of the original polygon. In the analysis, we obtain an
exact formula for the number of complementary domains of any collection of round
2-spheres in R3. On the other hand, the number of knot types that can be represented
by n-segment. polygons is exponential in 7.

Our construction can be interpreted as a particular instance of building polygonal
knots in non-Euclidean metrics. In particular, start with a list of n vertices in B? and
connect them with arcs of circles instead of line segments: Which knots can be obtained?
Our polygonal inversion construction is equivalent to picking one fixed point p € R? and
replacing each edge of K by an arc of the circle determined by p and the endpoints of
the edge.

Keywords: Polygonal knot; spherical inversion; Mébius transformation; knot energy.
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1. Introduction

Inversion of 3-space through a sphere is a well-known transformation of R U co. If

Sp.r is the round sphere of radius r centered at the point p, the mapping

r’(x — p)

pX)=p+
& x—pP?
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