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ABSTRACT Intersection homology and results related to
the higher signature problem are applied to show that certain
combinations of ig-invariants of the signature operator are
homotopy invariant in various circumstances.

Statement of Results. Atiyah et al. (1-3) introduced the
-invariant in the course of their study of the spectral
asymmetry of elliptic operators on odd dimensional Rieman-
nian manifolds. That is, for any self-adjoint elliptic operator
A on an odd-dimensional manifold, define

,1A(s) = > (sign A)A S, A ranges over nonzero
eigenvalues of A,

rq(A)= 71A(O)9 by analytic continuation.

They made the fundamental discovery ofits connection to the
index problem for manifolds with boundary. Using this
connection they obtained an invariant of smooth manifolds
by twisting the signature operator by a flat bundle (given by
a representation p of the fundamental group) and comparing
to the untwisted operator, by observing that this difference is
independent of the Riemannian metric. The invariant so
obtained, denoted qp(M), is not in general a homotopy
invariant (it distinguishes the linear lens spaces from one
another), but if the flat bundles used in its definition have a
structure group that is free abelian, Neumann has shown (4)
that it is a homotopy invariant and, in fact, gave a homoto-
pical method for computing it. Our main goal is the following.
THEOREM 1. If Ir is the fundamental group of a complete

hyperbolic (or flat) manifold, or is torsion-free poly-finite-
or-cyclic, or lies in the Cappell-Waldhausen class ofgroups,
then all representations p:Irl(M) = IT -* U(n), the Atiyah-
Patodi-Singer invariant, qp(M), is an oriented homotopy
invariant.
The Cappell-Waldhausen class of groups is the smallest

class of groups containing the trivial group and closed under
amalgamated free products and HNN extensions. It includes
all torsion-free fundamental groups of surfaces and of irre-
ducible sufficiently large three manifolds. If Thurston's
geometrization conjecture were correct (up to homotopy
type), Theorem I Would be true for all torsion-free funda-
mental groups of three manifolds. It seems conceivable, but
perhaps is reckless to conjecture, that Theorem 1 is true of all
torsion-free groups. (Amusingly, Theorem I is false for all
residually finite, or virtually torsion-free, groups that contain
nontrivial torsion.)
An interesting question is how to interpret this invariant

homotopically. My proof makes use of intersection homo-
logical ideas as well as the deep work of Kasparov (5),
Yamasaki (6) [extending earlier work of Farrell and Hsiang
(7)], and Cappell (8) on the higher signature problem. The

method also leads to some less interesting (to me) results for
other special situations.
THEOREM 2. If the Novikov conjecture (see below) holds

for a group ir, then the difference of r, for homotopy
equivalent manifolds is a rational number and the question of
homotopy invariance depends only on the homotopy class of
the representation p. For all groups, q is the same for the
total spaces offiber homotopy equivafent bundles over the
same base manifold if p factors through the fundamental
group of the base.
Neumann's theorem follows from either theorem; for

Theorem 2 note that the Novikov conjecture for the free
abelian case is classical and that elementary linear algebra
implies that Hom(Zn: U(k)) is connected.

Ideas of Proofs. The Novikov conjecture asserts that if

f:M -- BiT

is a map, then the generalized Pontrjagin number

f* (L(M)n[M) E H* (B-,,:Q)

is an oriented homotopy invariant (where L(M) is the Hir-
zebruch L-polynomial in the Pontrdagin classes). Although
this is not enough to conclude that oriented homotopy
equivalent manifolds are cobordant (rationally) over their
fundamental group, it is close. To make this precise recall the
notion of a Witt space, introduced by Siegel (9). A pseudo-
manifold is a Witt space if the link of every odd-
codimensional simplex has vanishing middle-dimensional
intersection homology with middle perversity (see refs. 10
and 11). Siegel shows that the bordism of such spaces
describes, away from 2, a cycle theory for KO., so that
rationally, via the Pontrdagin character, the higher signatures
are the only obstruction to Witt cobordism over Bir, so we
assume a Witt cobordism of between our manifolds.
Now, Witt spaces were also introduced by Cheeger,

essentially as the spaces for which the L2-cohomological
signature operator is formally self-adjoint, and he established
Hodge theory (12) and an index theorem (13) for them.
Consequently, one can deduce that the difference of ,1 for
the manifolds here is the "reduced" p-signature oF the
cobounding Witt space, in the sense of intersection homol-
ogy. This immediately leads to the rationality statement in
Theorem 2. To compute this signature, consider the space
obtained by gluing the boundary components together by the
given homotopy equivalence. Although this is not a Witt
space, a little thought shows that it can naturally be given the
structure of an algebraic Poincard complex (APC) whose
signature equals that of the Witt coboundary. (Use a homol-
ogy theory that is ordinary near the codimension one stratum
and intersection homological in a neighborhood of the lower
strata.) If every APC were algebraically cobordant to a
smooth manifold, cobordism invariance of signature would
imply the vanishing of the p-signature by an application of the
index theorem (and the vanishing of Chem classes for flat
bundles). Since cobordism classes ofAPCs are isomorphic to
the algebraic L-theory (see ref. 14), Theorem I results from
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the surdectivity of the L-theory assembly map. This is known
in the second two cases, proven in the references cited. For
the nonpositively curved case, one factors the p-signature
through the K-theory of the C*-algebra C*[ir] and applies the
corresponding surectivity statement there, due to Kasparov.

Penultimately, the statement about homotopy of represen-
tations is a consequence of the constancy of signature over
families of finite-dimensional nondegenerate quadratic
forms. The final statement about fiber homotopy invariance
comes about by "resolving" the fundamental group of the
base to lie in the Cappell-Waldhausen class and applying the
homology surgery of Cappell and Shaneson (15) to produce
a manifold with the better fundamental group and homology
h-cobordant to the given base, which enables one to reduce
to the final case of Theorem 1.
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