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CONSTRUCTING HOMOTOPY EQUIVALENCES

SHMUEL WEINBERGER

(Received for publication 25 January 1984)

IN THIS paper we study the following construction of homotopy equivalences: Take a
codimension one separating submanifold N"~' of M", cut along N and glue the pieces
together by a homeomorphism of N homotopic to the identity. Aside from the question
of which homotopy equivalences can be so obtained, we will study qualitative questions
such as stability, type of submanifold, etc. Relations to X2, the oozing problem in surgery
theory, and Kervaire classes will be discussed.

INTRODUCTION

It is well known that in dimension at least five that every smooth homotopy sphere

can be obtained by cutting the standard sphere along the equator and pasting the

hemispheres together by a diffeomorphism homotopic to the identity. Here we study to

what extent similar statements hold for other homotopy equivalences between manifolds.

Throughout we will work in the topological category. |
Roughly speaking, a homotopy equivalence is cut-pastable (CP) if after composing

with a homeomorphism it can be obtained by cutting along a codimension-one sub-

manifold and glueing the pieces together by a homeomorphism homotopic to the identity.

(If general homeomorphisms are allowed see [12].) A more precise definition will be given

in §1. A homotopy equivalence is specially cut-pastable (SCP) if the codimension-one

submanifold can be taken to have the same fundamental group as the ambient manifold.

The object of this paper is to study and classify those homotopy equivalences which are

CP, SCP or the result of a sequence of such operations. Related problems are to find the

“most efficient” fundamental group for the submanifold, (a bound on) the number of CP’s

necessary in a sequence, and behavior under homology equivalences.

We start with a classification of SCP homotopy equivalences.

THEOREM 3.5. Let h: M'—>M" (n > 5) be a homotopy equivalence, then h is SCP iff:
(1) h is a simple homotopy equivalence

(2) v(h): M — G/Top the normal invariant of h, lifts to Z2(G/Top) and

(3) v(h)*(k,) = 0 where k, € H? (G/Top; Z,) is the Kervaire class.

Actually, the first two conditions are necessary for £ to be CP. This suggests that there
is a basic interplay between = (N) and »(h)*(k;). (Recall N is the codimension-one
submanifold CP along.)

Definition. A homotopy equivalence is twisted if v(h)*(k,)# 0 lies in the image of
H*(m\M; Z,)~»H%M; Z,). Otherwise, k is untwisted. Note that if H*(n;M; Z,) == 0 then all
homotopy equivalences are untwisted.

A geometric interpretation of twistedness can be given as follows: If h: M'—» M is CP,
then the submanifold N CP along can be taken to divide M into two components M, and
M _ for each of which ker ;M , —+m, M has order at most two, see §2. This leads quite
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naturally to five normal forms for the quadruple (m,M,mM ,mM_, m,N) (with given
homeomorphisms induced by the geometric inclusions). The most interesting normal form
occurs when A is twisted. h is twisted iff m,M,—>m M are nontrivial Z, extensions.
Extensions 1—Z,— E —m,M —1 are classified by elements of H*(m,M ; Z,). If the homotopy
equivalence is twisted, the preimage of v(h)*(k,) in H*(n\M ; Z,) corresponds to exactly the
extension 1-2Z,»>m M, >t M —1.

For untwisted homotopy equivalences there is a quite satisfactory theorem:

THEOREM 4.14 (+4.15). Let h: M' — M" (n = 5) be an untwisted homotopy equivalence
between manifolds of dimension at least five (which restricts to a homeomorphism of any,
perhaps empty, boundary). Suppose =\ M is

(a) finite with 2-sylow subgroup a product of elementary abelian groups and dihedral
groups (or. just abelian x dihedral if dim M > 6).

(b) abelian dim M > max (5, (rank m,M) + 3); or

(c) such that H y(m,M;Z ) =0 for * >dim M — 2 (e.g. mM a classical knot group or
a surface group);
then h is CP iff

(1) k is a simple homotopy equivalence; and

(2) v(h) lifts to ZQ(G/Top).

In the untwisted case the property of being CP is actually a normal cobordism
invariant, but in the twisted case we find (§4A) another obstruction. This requires a
technique of ambient surgery on homeomorphisms homotopic to the identity, which
extends the familiar handle trading ideas of other codimension one contexts. This leads
to an example (§4D) of a non-CP homotopy equivalence satisfying (1) and (2) of 4.14.

In [38] we show by example that these results fail in dimension four both PL and
topologically even after taking connect sums with S% x S

For working out specific examples, the above theorems often suffice. For example, for

highly connected manifolds we have:

THEOREM 5.1. Let M™ be n — 1 connected n > 8. Then h: M'—M is CP iff h is SCP.
If n is not a multiple of four this is always the case. On the other hand, if n = 4k and M 8k
is not a sphere there always exists a non-CP homotopy equivalence to M. Moreover, if the
quadratic form H*(M;Q) ® H*(M;Q)—-Q is

(a) definite, then h is CP iff h is homotopic to a homeomorphism

(b) indefinite, then every homotopy equivalence is the result of a sequence of CP’s.

In particular, there are non-CP homotopy equivalences to S* x $* which are the result
of a sequence of CP’s. A class of spaces for which this does not occur includes various
quotients of spheres by group actions.

THEOREM 5.4 (+5.5). Let M" be a homotopy real, complex or quaternionic projective
space or a homotopy lens space with the order of m, squarefree, n at least five. Let h: M'—>M
be a homotopy equivalence, then the following are equivalent:

(1) his CP,

(2) hisSCP,

(3) his the result of a sequence of CPs (SCP’s),

(4) h is a simple homotopy equivalence, and the first half of the splitting invariants (see
[26] for CP"[14] for RP", and [11] for lens spaces. The case of quaternionic projective space
is analogous and easier) of M and M’ coincide,

(5) h is a simple homotopy equivalence and v(h)|ymn is nullhomotopic, where M k is the
k-skeleton of M", and
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(6) h is the result of cutting and pasting along the boundary of the regular neighborhood
of M c M.

Surprisingly, if the fundamental group of the lens space has a square factor, the
conclusion of Theorem 6.5 can fail:

THEOREM 5.6. For LY%*' with 8k + 1 less than 2p + 1, condition (1) does not imply
condition (5) in the above theorem; however, for an arbitrary manifold (of dimension at least
Sive) (5) implies (1) and (2).

For further calculations and qualitative results see §5. The organization is as follows:

§1. Preliminaries.

§2. Smoothing Pre-Cut-Pastes into Cut-Pastes.

§3. Special Cut-Pastes.

§4. Which homotopy equivalences are Cut-Pastable?

§5. Calculations.

The results here form part of the author’s thesis submitted June 1982 to N.Y.U. I would
like to thank my advisor Sylvain Cappell for his unfailing encouragement and many
perspicacious comments.

Some of these results have been announced in [39].

§1. DEFINITIONS AND PRELIMINARIES

Let M" be a compact manifold, perhaps with boundary, * a base point in M, and N"~!
a codimension-one properly embedded compact submanifold of M — *. If & is a homeo-
morphism 4: N— N, the manifold obtained by cutting M along N and glueing M +» (the
component of M — N containing *), to M_ with h, i.e. h(n_)=n, will be denoted by
M, U, \M_ or M(N,h). Thus, for any N, M(N,1,) = M, and if & is homotopic to the
identity M (N, h) has the same homotopy type as M. A cut-paste (abbreviated CP)is a
triple (N, h, H) consisting of a separating codimension-one submanifold, N, a homeo-
morphism, A, from N to itself, which restricts to the identity relative to the boundary and
a homotopy H from 4 to the identity. Given a CP (N, h, H) there is a canonical homotopy
equivalence (rel 9) H : M(N,h)—-M given by

Ly, UHULy

H:M,UNxIU,_M_

A homotopy equivalence f: M’—M is cut-pastable if there is a CP (N, h, H) and a
homeomorphism F: M’ — M(N, h) such that f~ H o F, i.e.

M—L M
N/
M(N, h)

commutes up to homotopy (rel §). A CP homotopy equivalence between manifolds with
boundary can be taken to have N =@ by Fig. 1. A homotopy equivalence is specially
cut-pastable (SCP) if the CP (N, h, H) can be taken to have n,N »m,M an isomorphism.
The problem is to classify those homotopy equivalences which can be obtained by cutting
and pasting, special cutting and pasting, and sequences of such operations.

Remark. There is no loss in generality in assuming N connected since we can pipe the
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Fig. 1. Replaces a CP by one which has the submanifold in Int M.

components, homeomorphisms, and homotopies. Similarly, there is no loss of generality
in assuming N separating rather than merely two-sided since we can push a copy of a
2-sided N off itself to obtain a separating submanifold and take (h,H) to be the identity
on the second copy of N.

The useful notion in what follows is that of a pre-cut-paste (abbreviated PCP), which
captures the homotopy data underlying a CP. A PCP is a pair (N,n), consisting of a
codimension-one submanifold N of Int M, and a map n: N +Q(G /Top). A CP gives rise
to a PCP as follows. Let A:XIN—G/Top be the normal invariant of
H:N x Iteld >N x Irel 0 and the map N —»Q(G/Top) is the adjoint. Two PCP’s, (N, n,)
and (NV,, n,) are cobordant if there is a manifold P ¢ M x I and a map p: P — £2(G/Top)
such that P = N, x 0U N, x 1 and Pl,,,lx(, =n, P'lel = n,.

PROPOSITION 1. PCP cobordism in M", n >5 is in a one—one correspondence with
[M,,: = Q(G/Top), cone point]. (For M with boundary, with [(M,0M U*): (£ Q(G/Top), the
two cone points)).)

Proof. Let cy: M—XIN be the collapse map. From a PCP (N,n) cyoZn: M—
X Q(G{Top) is the desired map.

From a map M—XQ(G/Top), the transverse inverse image of Q(G/Top) is a
codimension-one separating submanifold equipped, by restriction, with a map to
Q(G/Top).

Clearly these operations are inverse to each other and behave correctly under the
equivalence relations above. (

Remarks. (1) That Q(G/Top) < £ Q(G/Top) is not an inclusion of manifolds presents
no problem in applying transversality. All that is necessary is a “normal structure”.
Alternatively one can take manifold-pairs that homotopically approximate this inclusion.

(2) We have applied topological transversality which is justified for n > 6 by [13] and
for n =5 by Freedman’s amazing construction of a simply connected topological
four-manifold with intersection form E; and [36]. Actually the following elementary
consequence of PL transversality and triangulation theory[13] would suffice for n =5:

LemMA. Topological transversality holds for five dimensional manifolds and maps into
simply connected spaces. O

Given a PCP (N, n) one can construct a normal invariant M -G [Top as cyo# (7 is the
adjoint of n). It is clear that the normal invariant associated to the PCP associated to the
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CP (N, h,H) is the same as the normal invariant associated to H: M(N,h)—»M. A
homotopy theoretic version of this construct then is useful.

PROPOSITION 2. The map from PCP’s to normal invariants above is just composition

10(G/Top)*
M:ZQ(G [Top)l— [M:G/Top].

Proof. This just commutativity of:

Y.Q(G/Top)

In Q(G/Top)

#

M———C-N——-> ZN——H——fG/Top

COROLLARY 3. If f: M — M is a CP homotopy equivalence then there is a lift:

¥ Q(G/Top)

/ lio(crrop)

v(f)
M ——G/[Top

(v(f) is the normal invariant of ) O

Much of the rest of the paper is devoted to studying the extent to which the converse
to Corollary 3 holds. The following proposition gives another essential necessary
condition:

PROPOSITION 4. All CP homotopy equivalences are simple.

Proof. By topological invariance of Whitehead torsion[13] we just must calculate 7(H)
for the CP (N, h, H).
7(H) = 7(1y,) + 7(1y) — 7(H)  see [9]

= —t(H)=0

as H is homotopic to a homeomorphism.

§2. SMOOTHING PRE-CUT-PASTES INTO CUT-PASTES

In this section we describe precisely which PCP’s are PCP-cobordant to ones arising
from CP’s. We use ambient surgery to choose normal forms for every PCP-cobordism
class. There are five essentially different normal forms which can be distinguished for the
most part by cohomological invariants and give rise to obstructions in surgery obstruction
groups of three classes of groups which are extensions of mM.

Let f: M—G[Top be a pormal map. The 2.dimensional Kervaire invariant of f,
k(f)e H(M;Z,) is the pullback of the unique nontrivial element of H*G/Top; Z,). For
M with boundary we will be interested in both ky(f)eH XM;Z,) and
k() & HY(M,0M; Z,). When ky(f)#0 the normal form of all the lifts of f to
¥ Q(G/Top) will coincide and can be calculated directly from k(f). When ky(f) = 0 there
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are several normal forms and the normal form depends on a further lifting problem (see
§3).

A normal form is a sextuple (G, H,, H,, h;, hy, h;) consisting of three groups and three
homeomorphism &,: G — H), hy: G — H,, hy;: G — Z,, of concern here are the following:

(D (m,m,m,1,1,k) h arbitrary

(D) (= x Z,,m x Z,,7,1,p,,py) p; projection to ith coordinate
(D) (m X Z, x Zy, ;0 X Zyp, T X Zyp, Py X Py, Py X P3, Py + P3)

(IV) (TC X ZZ: T, n’pl’ppr)

(V) (E X Z,,E,E,p\,p, +€,p))

€
1-2Z,—» E—n a nontrivial Z, extension.

PropositioN 1. Any PCP is cobordant to a (N,n) such that
(N, mM (,tM i, g, iz4,ny) IS in one of the five normal forms described above with
n=mnM.

Proof. In order to describe PCP’s the following is useful:

LEMMA. Let N = M. There is some n: N —QG [Top such that f: M —G[Top comes from
(N,n) ifff | u—n is nullhomotopic.

Proof. This is direct from the Baratt-Puppe sequence [40 (III. 6.13)].

When describing PCP cobordisms we will only describe the change in the submanifold
and check that the normal invariant remains trivial on all components of the complement.
It is easy to see how the map to Q(G/Top) changes. When there is no confusion the
modified submanifold will also be called N. ‘

Step 1. Making N connected. Pipe together two components. This changes the
homotopy type of the complement as follows. One component is slightly smaller so the
normal invariant is certainly nullhomotopic on that component. Also two components are
now joined by an arc. The obstruction to extending the old nullhomotopies is in
n,(G/Top) = 0. Repeating this finitely many times yields N connected.

Step 11. Making mN-mM, and mN—-mM_ both onto. As m M, are finitely
generated there are finitely many circles which generate these groups. As before N piped
with the boundaries of tubular neighborhoods of these circles will work.

Py XNy

Step 1I1. Making m;N ——— n,M, x Z, (both) injective. Recall:

LEMMA. If ¢:G—H is a surjection of finitely presented groups then ker ¢ is finitely
normally generated, see [6).

First we make n,N»n,M, x Z, injective and then do the same for m, N»m,M_ x Z,.
To apply the above lemma use the fact that m, N »n,M, x Z, has image isomorphic to
either mM, or mM, x Z,. Thus mN->m,M, x Z, has finitely normally generated
kernel = (¢, ... ¢, ). Let C; denote a circle representing ¢,. Each C; bounds a disk D,in M,
and we can assume D;ND; = for i # j. As n,[C] =0 we can extend n: N-Q(G/Top) to
a map n: NUUD,—~Q(G/Top), and therefore to a regular neighborhood of the latter

complex. This provides a PCP-cobordism between (N, n) and (N’, 7 lw) where N’ is the
result of doing surgery on C,. Note that after these surgeries either m,N—>m,M 4+ or
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mN-omM, x Z, is an isomorphism and mN—-n,M_ is still onto. Since the former
property remains after surgeries on circles, we can perform surgeries as above to guarantee
the same for m; Non,M_ x Z,.

At this point we check that (m,N,m, M, ;M _,i.4,ny) is one of the forms I-V.

Case I: m,N—n,M, are isomorphisms, then we are clearly in Form 1.

Case II: m,N -, M, an isomorphism as is ;N »>mM_ x Z,, then clearly we are in
Form II.

Case III: n,N—-m,M_ x Z, are isomorphisms. Let u, be the unique nontrivial elements
of kerm,N»m,M . Again there are two cases: u, =u_ and u, #u_. In the first case we
are in Form IV. Suppose now u, # u_. Write ;N = m M, x Z, where n,,g|,,lM+ is trivial
and Z, is generated by u,. Van Kampen’s  theorem  implies
mM =mN[{u,u_y=mM,[(u, —u_) so letting &: Z,~>m M, by sending generator to
u, —u_ we see that ;M is a Z, extension of m,M and that we are in Forms III or V
depending on whether or not the extension is trivial. ]

Remark. We will soon see the need to distinguish Forms III and V which at the moment
must-seen artificial.

PROPOSITION 2. If a PCP corresponding to the normal invariant f is in Forms I, 11 or III
then k(f) = 0. Conversely, if ky( /) = O then the-normal form for any PCP lifting f is of Type
I, IT or IIL

Proof. In Cases 1-111 we have H,(N) — H\(M ) @ H,(M ) injective. Consider

H{M,)® HAM _)—— HyM)—— H(N)—— H\(M,,) ® H\(M_)

I

0 HZ(Z (G /Top)>——:—> H,(Q(G/Top))—0

lz

H,G|Top) (Z, coefficients understood)

A siraightforward diagram chase shows H,(M )——f:—> H,(G/Top) s trivial, so that ky(f) = 0.
A similar argument shows the converse using the fact that in Types IV and V
ker H,(N)—H,(M,)® H,(M_) is mapped isomorphically H,(2(G/Top)). (For Form V
this uses the observation that for Z,—E—n a nontrivial extension €: H(Z)—»H(E) is
trivial.) O

We postpone further discussion of ky(f) =0 until the next section, where it will be
shown, for closed manifolds, that this together with the existence of a PCP is equivalent
to the homotopy equivalence being SCP. Suppose then k, (f) # 0. We need some criterion
to distinguish when the normal form will be Type IV and when Type V, and if the latter,
how to calculate the extension.

First we digress to discuss Z, extensions of groups. Usually Z, extensions of 7 are
classified by elements of H*(n; Z,). This is equivalent to subgroups of index (at most) two
in Hy(n; Z,) by examining the kernel of the Kronecker pairing. To get a handle on this
subgroup, consider the Serre spectral sequence of the fibration:
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K(E, 1)—— K(z, 1)

which yields the exact sequence:
HAE; Z))—Hy(n; Z,))>Z,~ H(E; Z,)— H\(r; Z,)—0.
Then, the relevant subgroup is just the image of H,(E;Z,).

THEOREM 3. Let

Y.Q(G/Top)

7

f
M——G[Top

ky(f) #0. Then the normal form of the PCP corresponds to f is either Type IV or V. It is:
(a) Type IV iff f: n,M —7,(G/Top) is nontrivial.
(b) Type V iff ky(felm H¥(%; Z,).

Moreover, the extension of = is that determined by the preimage in H(r; Z,).

Proof. The first part of this theorem was Proposition 2. To see the next statement one
shows that f: n,M —n,(G/Top) is nontrivial iff there is an S* = M on which f'is essential
such that S? N N is a circle. This circle would be an element of Ker, N Ker_. Conversely,
glueing D? ¢ M, and D’ C M_ along u, = u_ gives an element of 7,M on which f is
essential. The last statement follows from the following calculation. Suppose the PCP is
of Type V, then we have:

HyM,)® HAM ) H(M)—— H,(N)— H,(M,) ® H,(M_)

| \ |

H,(C(G/Top)) @ HYC(GTop))— H2<}: QG /Top> = H,(2G/Top) — 0

lz

0 H,(G/Top)

Therefore, H,(M)—H,G/Top) is exactly the boundary map H,(M)—H,(N). Thus
ker k() = Im Hy(M ) ® H,(M_). Let us examine the image of this kernal in Hy(r).

Hy(M ) ® Hy(M_)—— H(M)

I

HYE)® HyE) — Hy(n).
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Thus, the kernel has the image classification of the extension. By the (Hopf) exact sequence
0——— H¥m, Z,))— H*(M;Z,)— Hom (mM:Z,)

we are done.
If the normal form of v(h) is of Type V, hwill be called twisted; otherwise h is untwisted.

Although it is not yet essential, the following proposition will be useful later:

PROPOSITION 4. If h: M —>M (dim M > 5) is a CP homotopy equivalence, then it can be
obtained by cutting and pasting along a submanifold in normal form. (Moreover, this can be
arranged without changing the underlying PCP cobordism class.)

Proof. Proposition 1 is a homotopy version of this, and implies, by surgery theoretic
arguments, below that h is normally cobordant to a CP homotopy equivalence, CP in
normal form.

In order to get the more precise result that the CP for h itself can be taken in normal
form, more powerful tools are necessary. We will now repeat the proof of Proposition 1
with ambient surgery on CP’s replacing the ambient surgery on PCP’s performed in that
proof.

Let (N,h,H) be a CP. Note that if G:N x [ —+NxIis a homeomorphism with
Glyxo= 1w xo» then (N,h oGy« HG) is another CP with M(N,h)= M(N,hoGlnx1)
and underlying PCP’s PCP bordant. Thus, there is no loss in generality in composing with

such pseudoisotopes when necessary.
Steps I and II of the proof of Proposition 1 can be repeated with no difficulty. In order

to complete Step III the circles C; on which we would like to do surgery must have
h|c, = 1|c,and H |¢, = 1|c, Then we can replace N by N surgered along the circles, N, with
h and H being the identity outside of N —UC,. (Actually, we must also arrange that on
a neighborhood of the circles h and H are the identity which a priori leads to an additional
obstruction in m,(0) = Z, (and then in 7,(0) = 0); but since h is homotopic to the identity
this obstruction is easily seen to vanish, see [8].)

First homotop H rel d so that:

HlH"l(C,-X[): H‘I(C,' X I)—’C, x I

is a (reld) homotopy equivalence. The Browder splitting theorem [5] indentifies the
obstruction to doing this with the surgery obstruction of O(H |-, 0°
HNC,x )»C;x1 Ye L(Z) = L,(0) = Z,. This vanishes since we can identify 0 with 7
N -1, Q2(G /Top) and n., vanishes on each of the C;.

It of course, follows that these HYC;x I)are abstractly twisted and tangled cylinders.

Let G be a pseudoisotopy
G:N xI-NxI
GleO"—_ lle()
G:HNC;x )-C;x I

Then (N, ho(G|yx) ™ HoG -1) js a CP which we can surger since k and N are the identity
on C, The existence of G is guaranteed by the Straightening Lemma. O

Straightening Lemma. Let N — M be a codimension at least 3 embedding (dim M > 5;
for dim M = 4, the “stable ” version of what follows is claimed). Let c: N x I —M x Ibe
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a proper embedding e],,,x(J coinciding with the “standard” embedding and
e(N x1)c M x 1. Then there is a pseudoisotopy G: M x I-M x I sending e to the
product embedding (N = M) x I.

Proof. We will construct G in stages. Let K = K’ and L = L’ be concentric regular
neighborhoods of (N = M) x I and e(N x I) which agree on M x 0. One uses the
s-cobordism theorem to build homeomorphisms from L—K and M xI—L'—
M x I — K’, which are the identity on the portion lying on M x 0. There is no problem
extending the homeomorphism to the “annular” region L’ — L-K’'— K (see Fig. 2,
construct the Pseudoisotopy on the shaded regions first.)

Remark. One can use the straightening lemma to give a proof of the Zeeman
Unknotting Theorem [41].

At this point we can define the obstruction to smoothing, up to cobordism, a PCP
(N, n) coming from a normal invariant f: M"—G /Top with ky(f) # 0 into an actual CP.
Let / be the lift of £ to 2 Q(G/Top) corresponding to (N, n). Define

®(f) = 0(A)e L, (m,N)
for (¥, n) in normal form.

PROPOSITION 5. ®(f) is well defined; i.e. it does not depend on which representative in
nrormal  form of the PCP cobordism class is  chosen. Moreover,
&(f)eker L (m,N )= L, (n,M) and vanishes if f comes Sfrom a CP.

Note. As ky(f) # 0 we can identify, a priori, mN by Theorem 3.

Proof. The difficult case is when the normal form is of Type V. Let (N, n,)) and (N,, n,)
be two representatives in normal form for fand (P,p) a PCP-cobordism between them.
Without loss of generality (P,p) is also in normal form. We thus have a diagram

|l—Z,® Z,—> o N—s 1M — 1
1—Z,®Z,—>mP—s M x I 1.
To show that n,N,—m P is an isomorphism it suffices to show that the maps on the

Z, ® Z,’s are injective. This is clear since the generators are characterized by being
elements of 7, P dying on one of the two sides but being nonzero on p, and the images

Mx - L' Mx =K'

-~

l

Fig. 2.
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of the generators of the Z, ® Z,’s corresponding to 7, N; have these properties so generator
goes to generator.

The proof for Type IV goes through the same way but we give an alternate description
of @ below which will make this trivial.

The next statement follows from the fact that the addition formula for surgery
obstructions implies that the image of 0(A) in L, (n,M ) is the same as that of 6(f) which
is zero since f comes from a simple homotopy equivalence.

The last statement follows from Proposition 4, or directly to handle dim M =5. [

Remark. The penultimate statement shows that there is no obstruction to smoothing
Type I CP into a SCP, see Theorem 7.
One can give an a priori definition of the obstruction to smoothing PCP’s for Types
II and IV, leaving only Type III to the next section. Let (N,n) be an arbitrary PCP
O (f) = (ix x ny)B()e L(n X Z)(n =mM)

([ L(m,N)—>L(mM % Z,).

PROPOSITION 6. ¢(F) is well defined. For Type IV PCP’s d(H=e()

Proof. Surgery obstructions in L(G) only depend on the element of
Q,(K(G,1) x G[Top, * x G[Top). All manifolds and cobordisms are equipped with such
maps so the element in cobordism of K(n x Z,,1) x G/Top is well defined. The second
statement follows trivially from the first. |

We close the section with:

THEOREM 7. Let h: M'—>M be a simple homotopy equivalence with normal invariant
f: M —G|[Top lifting to 7: M —>G|Top, and with ky f)#0. Then there is cut-paste in the
PCP cobordism class of fiff ®(f)=0.

Remarks. (1) In the next section we will extend the definition of & to all PCP’s so that
this theorem will hold in general.

(2) There is no claim that the homotopy equivalence obtained by cutting and. pasting
with a “smoothed” PCP in a class with ¢ =0 is h. It will only be normally cobordant to
h. There is a further obstruction which will be discussed in §4 where the question of “what
are the CP homotopy equivalences?” will be studied.

Proof. The necessity of the vanishing of ® was already proven. Conversely, ® =0
implies that for (N,n) in normal form, 0(A)=0. Thus there is a simple homotopy
equivalence H: N,0 —»N x I,0 with normal invariant n. By the s-cobordism theorem Nis
abstractly N x I and comparing the identifications given by the s-cobordism theorem and
by H we obtain the pasting map. It is clearly homotopic to the identity by H. O

§3. SPECIAL CUT-PASTES
In this section we classify specially cut-pastable simple homotopy equivalences. For
closed manifolds, the result is surprisingly simple; the existence of a PCP together with
k,(f) =0 is necessary and sufficient. The same techniques solve the problem of smoothing
PCP’s when k,(f)=0.
There is a unique (up to homotopy) essential map Q(G/Top)—K(Z,, 1). Let cyl denote
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the mapping cylinder of this map. Define:
BSCP = ¢yl U ggrop) €Y1
BLI = cy1U grrupy C(@(G/Top))
BRI = C(Q(G/Top)) U n6/rop €Yl

where CX denotes the cone of X. (Notice that BLI and BRI are exactly the same space.)
We will be concerned with the following tower of spaces

/BSCP\

BLI BRI

— /
Y Q(G/Top)

G/Top

where the top diamond of maps are defined by collapsing appropriate K(Z,, 1)’s to cone
points. The notation BSCP, BLI, BRI is intended to suggest classifying spaces for special
cut-pastes, PCP’s with m, N —Left, Right sides injective, respectively.

Theorem 1. Let h: M',0M’—>M", M, n > 5, be a homotopy equivalence restricting to a
homeomorphism h|yy: OM’—0M. Then h is SCP iff:

(1) h is a simple homotopy equivalence, and

(2) there is a lift

BSCP, K(Z,,)UK(Z,,1)
7
/ l
/
T
M,0 ——— G [Top,
where v{h) in the normal invariant of h.

Proof. The necessity of (1) is Proposition 1.4. To show the necessity of (2) we show
that the lift of v(h) to £ Q(G/Top) defined in §1 lifts to BSCP given a SCP. Let (N,h, H)
be the data for a SCP and (N, n) the associated PCP. The lift to £ Q(G/Top) rel * U x is
given by cyoZA. The map to BSCP is defined thus: There is an onto map

I x Q(G/Top)—— BSCP

given by crushing 07 x Q(G/Top) to 0I x K(Z,,1). Now there is a map
1, xA: I x N->I x Q(G/Top)—BSCP. Now we just have to extend this over M, UM._
sending both sides to K(Z,, 1). This is no problem since we just have to be able to solve:

nlN"L’ K(Z,1)

e
e
-
-

mM,

which is clearly possible.
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Conversely, let ;(h—): M,—BSCP be a lift of v(h). We will get a Type I PCP by taking
the transverse inverse image of Q(G/Top) < BSCP. The quick way of doing this is to
observe:

BSCP = K(Z,,1) x ¥ Q(G/Top)®

where (G /Top)? is the second connective cover of (G/Top), and then take the transverse
inverse image of Q(G/Top)’ < ZQ(G /Top)? and do surgery as in the proof of Proposition
2.1 to get a Type I PCP. The splitting BSCP = K(Z,,1) x ZQ(G/[Top)’ is immediate from
a splitting G /Top ~ (G [Top)? x K(Z,,2). At the prime 2 there is such a splitting as G/Top
is a product of Eilenberg-Maclane spaces[13, 26], and at the odd primes both sides are
identical. Since all this is compatible over the rationals, there is such a splitting.

Now let (N, n) be a Type I PCP. As in the proof of Proposition 2.7 we can describe
M”=M,UNUM_ which is an SCP homotopy equivalence normally cobordant (§1) to

M’ %> M.AsL,, (m,N) — L,, (7 M) is onto we can, by taking the action of L,.(mN)on
hTop(N,d), arrange that the surgery obstruction of the normal cobordism between
M,UNUM_ and M’ be trivial, and therefore (M’,h) coincides with (M, U NUM_,
natural map to M). As in Proposition 2.7 N is abstractly N x I or, when dim N =4, after
first taking # k(S? x S x I) so we get a map

1uGUlL

M,U,(N x DU _M_———M

equivalent to h: M'—>M. O

PROPOSITION 2. A PCP cobordism class f: M > Q(G/Top) contains a Type 1 represen-
tative iff it lifts to BSCP.

Remark. The proof of Theorem 1 shows that it suffices that two obstructions vanish
for a PCP to represent a CP for a fixed simple homotopy equivalence h. The first is some
version of @; we will complete the definition of @ in this section. The second is an element
of cok[L, ,(mN)—L, . (m;M)] where ,N is determined by the normal form. We will
briefly discuss this invariant in §4.

ProposITION 3. A PCP cobordism class - M—>XQ(G/|Top) contains only Type III
normal forms iff J does not lift to BLLU BRI and ky(f) = 0.
The proof of this is an ambient surgery argument which we omit. O

Now define

®(f) as defined in 2 if k(f) #0

&(f)={ 0(i) (N,n) in normal form if f does not lift
to BLIUBRI
¢ (f) otherwise.

The proof of Proposition 2.5 shows that @ is well defined and Theorem 2.7 can now be
extended to the following:

PROPOSITION 4. A PCP f: M X Q(G/Top) is smoothable into a CP iff #(f)=0.

Remark. Until this point, all the theorems and proofs apply equally well to the
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Topological, Piecewise linear and smooth categories. (The proof of Theorem 1 has to be
slightly changed though.) It is starting here that facts peculiar to the topological category
begin being important.

For closed manifolds the lifting problem

BSCP

’ l
/

/

/

// Y Q(G/Top)

/
/
/
/

M—— G/Top

to BSCP can be analyzed in terms of that to X Q(G[Top). (For manifolds with boundary
it is a relative lifting problem which turns out to be much more difficult.)

THEOREM 5. 4 homotopy equivalence between closed manifolds h: M’ — M is SCP iff
(1) h is a simple homotopy equivalence

(2) v(h) lifts 1o ZQ(G/Top)

() ky(v(h))=0.

Proof. Necessity was already done.

For sufficiency, it is convenient to observe that there is a map X Q(G/Top)*-»BSCP
which is a 2-fold cover. It is not hard to see that a PCP has a representative (N, n) with
ny: N —Z, trivial iff there is a lift to X Q(G/Top)>. We now observe that if (N, n) is any
PCP for a normal invariant S with ky(f) = 0 then there is an 7 such that (N, 7) is a PCP
for fand 77, = 0 and hence a lift to 2 Q(G/Top)* proving the theorem. 7 is produced by
Theorem 1 as follows: Regard G/Top as (G /Top)* x K(Z,,2) and 2(G/Top) as
(G /Top)* x K(Z,, 1) and let 7 agree with n as a map to Q(G/Top)? but instead be trivial
on the K(Z,, 1) coordinate. It is straightforward that this new PCP also gives f as
S M—K(Z,2)is nullhomotopic. O

Remarks. 1t is only in the last line that the closedness of M is used. For M with
boundary we thus see that the vanishing of k,’( ) together with the existence of a PCP
is sufficient. However, it is easy to give examples showing that k’(f) # 0 even for normal
invariants of SCP homotopy equivalences.

COROLLARY 6. For a closed manifold M", with n > 5 and Sq* H AM;Z)~HY(M; Z,)
injective then the following are equivalent for a homotopy equivalence h: M" M

(1) his CP

(2) his SCP

(3) h is a simple homotopy equivalence and v(h) lifts 10 2Q(G /Top).

Proof. We only have to show that (3) implies (2). Thus we only have to show that (3)
implies k,(f) =0, but this is clear as Sq* HYZ Q(G/[Top); Z))~>HYZQ(G[Top); Z,)
vanishes by the commutative diagram

Sq2
HYZQ(G/Top); Z)—— HY (= Q(G /Top); Z,)
x| 48 ~|é

Sg2=0

H(Q(G/[Top): Z,) ——— HYQ(G/Top); Z,)
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§4. WHICH HOMOTOPY EQUIVALENCES ARE CUT-PASTABLE?
4A. The invariant Y (f,h)

The first problem we will discuss is the obstruction to obtaining a particular (simple)
homotopy equivalence 4: M’— M with normal invariant f/: M —G /Top by a CP within a
given PCP cobordism class flifting f to £ Q(G/Top). Using the fact that for all the normal
forms (N,n) except Type V, L, (m,N)—L,, (n,M) is onto, in these cases the only
obstruction is @( f), the smoothing obstruction. We therefore assume that the normal form
is of Type V (see the proof of Theorem 2.1). In this case of twisted A, the vanishing of
& seems only to imply that A: M’—> M is normally cobordant to a CP homotopy
equivalence. The first goal of this section is to describe precisely the obstruction to
obtaining exactly A. Recall the surgery exact sequence of Wall and Sullivan{32).

[Z M:G /Top]-o» (M) S ETop(M)—[M: G [Top]— L, (x,M).

Let f be a lifting of f to ZQ(G/Top) with 0# k* f)elm H¥n,M;Z,) the preimage
corresponding to Z,—E-—n, and h: M’— M a simple homotopy equivalence with normal
invariant f. Suppose further that #(f)=0. We define

¢ (F k) € Ly, (M) /(Im 6 ([Z M: G/Topl) @ L, ,(E))

as follows: As ®(f) = 0 we can smooth fto a CP (N, g, G) with G: M (N, g)— M normally
cobordant to A. Wy (f, h) is the surgery obstruction of this normal cobordism rel § reduced
to this quotient.

THEOREM 1. y( f, h) is_well defined. Moreover, y( f, h) = 0 iff h is cut pastable by a CP
in the cobordism class of f.

Proof. The key point of the well definedness of ¢ was already done. According to
Proposition 2.4 we can assume that the CP used to define ¢ is in normal form. Suppose
(Ny, 81, GY), (N,, £2, Gy) are two normal form CP’s and (P, p) is a PCP cobordism between
their underlying PCP’s also in normal form. Naturality implies that the surgery obstruction
of the normal cobordism between M(N,,g,) and M(N_, g,) is the image of 6(5) under the
map L, , (m,P)—L,, (n,M) which factors through L, ,(E). Thus the indeterminacy is
killed by taking the quotient Im[Z M: G/Top]® L, ., (E).

By definition, if & is CP within the class of f,¥ (f,h)=0. Conversely, we take a CP
(N,g,G) in normal form. As y(f,#) = 0 we can let L, . ,(E) act on hTop(N x I,0) so that
h is normally cobordant to a CP homotopy equivalence by normal cobordism with surgery
obstruction in Im[X M: G/Top] but this image acts trivially on HTop(M), so 4 is in fact
CP. : O

Remarks. (1) The realization theorem for surgery obstructions implies that ¥ (f,-) is
onto its range.

(2) In many cases of interest the cokernel of L, (E)—L,, (n) is trivial. For example,
this is the case if 7 is cyclic. This is trivially always the case if H(n,Z,)=0,e.g. 1 =Z
or 7 finite of odd order. The most elementary example where it is nonzerois t =Z @ Z,
E the (unique) nontrivial extension. In this case:

(This Z, is always in the image of [EM:G/Top] however.)

e
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COROLLARY 2. A simple homotopy equivalence h: M’ —~M is normally cobordant to a CP
homotopy equivalence iff there is a lift v(h) of the normal invariant v(h) to ZQ(G [Top) such
that ®(v(h)) = 0. h is itself CP iff in addition k,(v(h)) = 0, v(h) is nontrivial on T,M, or for
the above lift Wy (h,v(h))=0. O

Corollary 2 is an effective summary of the classification of CP homotopy equivalences
that the methods described so far can produce. It is undesirable that secondary, and
sometimes tertiary obstructions arise. We would like to have just a single computable
obstruction. Corollary 3.6 gives a case where the existence of a PCP implies the existence
of a CP. We will try to extend this to other cases. Much success can be achieved in the
untwisted case.

Even in the twisted case one can often show that the existence of a PCP implies that
the homotopy equivalence is the result of a sequence of CP’s.

4B. Avoiding ® for Type II and IV PCP’s (untwisted h)

In this subsection we develop two techniques for changing the lift of a normal invariant
to £ Q(G/Top). The first is based on the idea of the old result that a simply connected
Poincaré complex has the homotopy type of a (topological) manifold iff it possesses a
normal invariant. The second technique roughly speaking trades low dimensional Kervaire
classes for higher ones until one can show that @ vanishes.

Since we are dealing only with Type II and IV PCP’s we can use the a priori definition
¢ given in §2 for .

Notation: n =, M"

h: M’— M a homotopy equivalence

f: M —G/[Top its normal invariant, f a lift of f to £Q(G/Top),
(N,n) a PCP corresponding to h, or f, or f of Type Il or IV
ker,(n) = ker (L,}(n x Zy)—Ly'(n))

¢ (J) = o(f)eker,(n).

If M is simply connected then we are concerned with ker,(0) = Z,0,0, Z,,n =0, 1, 2,3
mod 4.

PROPOSITION 3. If 1, M" = 0 then ¢(f) = 0 unless n =3 mod 4. For n = 3 mod 4 there
is a PCP (N,n) on S" such that ¢(N,n)#0.

Proof. If n=0mod 4, L(Z;)=Z ® Z and the surgery obstruction is calculable by
signatures and signatures of 2-fold covers. Since the obstructions arising here are from
closed manifolds, the vanishing of the simply connected obstruction, i.c. signatures, implies
the vanishing of signatures of two-fold covers and hence the obstruction in Ly(Z,) vanishes.

For n = 4k + 3, Ly(Z,) = Z, and we have an isomorphism Ly(Z)—Ly(Z,) induced by
the group homeomorphism. Let (N, n) be (S' x S**' kyp, + kar,1P2), Where
ky,:S¥t'—>Q(G/Top) are induced by Kervaire problems and p; is the ith projection (N, n)
is a PCP for S*+? which by [25] is easily seen to have 6(N,n) #0. O

COROLLARY 4. For M", n > 5, closed and simply connected h: M ' M is CP iff v(h) lifts
to LQ(G[Top).

Proof. We just have to show this for M*"*>. Let (N,n) be a PCP of Type IV for (N, n).
(Theorem 2.3 guarantees that we do not have Type V PCP’s ever occurring.) If 0(N,n) # 0,
we can connect sum with the above PCP on S**3 It does not change the normal
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invariants, but ¢ is clearly additive so that on the connected sum ¢ vanishes. Corollary
2 now applies. O

This corollary holds even if M has boundary, see §4C.
Using [33, Theorem 12], Corollary 4 holds for 7 of odd order. We will be able to prove
this in more generality later, e.g. if Hy(m;Zp)=0 Corollary 4 holds.

Definition. kerg(x) is the subgroup of ker L,S(n x Z,)—L,(n) realizable by problems
on closed topological manifolds.

Example. kerd(0) =0, n # 3(4), ker?(0) = Z,, n = 3(4). Observe that kerd(n) need not
be isomorphic to kery, (x), but by taking products with CP?, is canonically a subgroup
of it.

ProposiTioN. kerd(Z x n) ~ kery(n) @ ker»< (n).
Proof. This is straightforward consequence of [32].

COROLLARY 6. For M" closed orientable withmM"=Z,n > 5, h: M’ —M is CPiff v(h)
lifts to £Q(G/Top).

Addendum. The same result holds if ©,M is n,(S* — K) for K a knot.

Proof. Proposition 5 shows that ker?(Z) = 0 unless n =0, 3 mod 4. For n = 3 mod 4,
kerd(0)—kerd(Z) is an isomorphism so we can argue as in Corollary 4. For n =0 mod 4
consider

§:§' x S ——Y Q(G/Top)

where a is the element of 7, (X Q(G/Top)) constructed in Proposition 3. The normal
invariant of B is trivial and ¢(B) #0. Let C be the generating circle of m,M assumed
without loss of generality not to intersect N for some representative (N,n) for f; then if
7- M>ZQ(G/[Top) is a lift with $(f) # 0 the composite

Jus
M —M"U.S" x S*~'——— ZQ(G/Top)

is another lift with ¢ vanishing.

To prove the addendum it suffices to show for m a classical knot group
ker(Z)—kerd(n) is an isomorphism where Z - is the meridional inclusion. Injectivity
is trivial; the composition with the map induced by abelianization 7 —Z induces a splitting.
For surjectivity observe that

Q(K(Z, 1) x K(Z,, 1) x G [Top)—>2,(K(m, 1) x K(Z;,1) x G/Top)

is onto (in fact an isomorphism by the Atiayah-Hirzebruch spectral sequence). As surgery
obstructions for closed manifolds factor through bordism (see [28, 32]) we are done. O

Using [7] we can prove the same result for free groups. For surface groups we do not
have as general results as H Am;Z,) #0. If we exclude, by hypothesis, Type V CP’s by the
same methods but more detailed calculation one can prove the same characterization.
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COROLLARY 7. If M is closed orientable with m,\M a surface group h:M'—~M an
untwisted homotopy equivalence then h is CP iff v(h) lifts to (G [Top).

This is the apparent limit that these techniques can be used to prove. All these results
can be proven more easily and in more generality using the next method, that of PCP
replication. The above technique however will be used in §4C in an important way.

Let (N,n) be a Type II or IV PCP. Suppose n: N—Q(G/Top) is another map with
Ry =Ny T N>Q(G/Top) and 6(7i") =0e L, (n,N). We now form a new PCP as follows:
(M, )=mn(M). Let N, be a copy of N pushed off into M. The new PCP is (N, UN,
n'U(n — n’)) where (n’ — n) is intended in the loop multiplication sense. It is evident that
these two PCP’s have the same normal invariant.

ProposiTION 8. #(N UN,n'U(n —n’))=0.

Proof. Using the intrinsic definition ¢ of @ it is clearly additive over components.
Clearly ¢(N,,n’)=0. Notice now that (n —n"),: ;,N-om (Q(G/Top)) is trivial, so
¢(N,n —n’)=0. (One can do surgery on u_, in the notation in §2, and then the two
nonintersecting PCP’s both can individually be smoothed, see Fig. 3). O

The rest of this subsection is devoted to giving conditions on G so that for any
homeomorphism #:G — Z, and any closed manifold N with =N = G there is a map
n" " N—-Q(G/Top) with ny=h and 6(#")=0. If this is solvable for G and any
k — 1-manifold and homeomorphism, G will be said to be k-amenable. Observe we have
shown that G x Z, k-amenable implies that the analogue of Corollary 7 holds for
M k-dimensional (k > 4) and 7, M = G. G is amenable if it is k-amenable for all k > 4. After
elementary observations a sufficient condition for k-amenability is given in terms of the
surgery characteristic class studied in the “Oozing problem”.

THEOREM 9. If H (n;Z,) =0, then © and n x Z, are amenable.

Proof. First observe that the trivial group is amenable since by modifying any »n with
n, = h on the top cell we can arrange (1) = 0. Similarly = = Z, is amenable; we have at
most to modify » in the tubular neighborhood of a circle generating n;. Now let 7, N be
as in the hypothesis. There is a map N—Q(G/Top) realizing # by the description of

Fig. 3. PCP Replication L
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Q(G/Top), as a product of Eilenberg-Maclane spaces. The surgery obstructions factor
through

Q,_(K(Zy, 1) x @(G[Top))— L (K(mN, 1) Q(G/Top))

|

L(Z)) > L{(mN)

Since the top line is a Zp isomorphism by multiplying » by an odd number [,
4(In) € Im L,(Z,) so that by further modification on the top two cells we can make 4 = 0.
As lis odd, (In)s = ns = h. O

This implies Corollary 4 and the remarks following it. We also have the following
general fact:

PROPOSITION 10. & is up to indeterminacy (for Types 11 and 1V lifts) of order 2.

Proof. Let n": N—»Q(G/Top) just be the projection of n to K(Z,1), see §3. Then &
(replicated PCP) is of order two. O

This 2-adic nature of @ allows us to study only the surgery obstruction in L(n)® Zy).
(Multiply as in the proof of Theorem 9.) If f: (M,3)—G[Top is a normal invariant there
is a simple formula{28, 33] for O(f ) € La(7) ® Z,). There are homeomorphisms

S Hm; Zog)— Li(n) ® Zg
knt Hy(m3 Z3) — Luio(m) ® Zy
and classes
V = Total Wu Class € H*(BSTop; Z,)
¢ € HY(BSTop; Z(3), the Morgan-Sullivan class[20]

le HYG|Top; Zy), ke H 4+2(G [Top; Z,) (Milnor and Kervaire classes)
such that if

f:(M,0)~G[Top is a normal invariant
g: M —K(r,1) classifies ;M

v: M —»BSTop classifies the normal bundle,

8(f)ay= A& {HDUS* D+ UK
™)
+ S*(*(VSq'V) U f*(k) N [M, oM])
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where J is the Bockstein and
DS, —a®Br, _ gy -2
Ay @ H,_(=; Z(z)) @ H,_4_yx; Zy)

This generalizes the formula of [20] for the simply connected case.

THEOREM 11. If ¢ i-2m) =0, then 7 is k-amenable.

Proof. The formula (

can arrange for f*(k) and

and HY(ZN: Zy). The homeomorphism » — Z, determines f *(k,) and conversely. The

S*(k)e HY(M ; Z,) is there an J: MG /Top with

problem then is : “Given M arbitrary and
F*k) = f*(ky) and 4(F) - o1
If we examine (*) we see that onl

fact, the vanishing of the odd dimensi
We can write

y the even dimensional grades of Q(f) matter. (In
onal Wu ciasses implies that only even grades occur.)

O am =1 *Uam) + C(f*(Kk), i < 4m, f ), J <4m, (M), v (M)

QU amr2 =S *kan 1) + D(S*(ky), i < dm + 2/*), j <4m +2, 2(M), V(M)).

Since f*(k,,,,,) and f*

({4,,) are arbitrary two-torsion for m > 0, we can arrange by setting f
inductively that

S o) = =C(f*), i < m, f*(l),j < dm, & (M), V(M)),m >0

f*(k4m+2) = _D(f*(kl)’ i< 4m + 2’f*(lj)’.1 < 4m’ °?(1‘4)’ V(M))a m>0

S*(ky) is initial data.

For this f, (*) gives

B(f)(z) =X g «(f¥(ky)N [M, oM))e Lk(”lM)(Z)- (**)

By hypothesis Hi_,=0s06
and f*(k,) as desired.

There is a large recent literature re
in various L groups (i.c. L [* L,
comments before Theorem 9 it is eas

sufficiency of the existence of PCP’
example:

(N =0. Multiplying f by an odd number we get 0(f)=0

garding the .# and « classes for various finite groups
L’ etc.)[10, 19, 29, 30]. Using Theorem 11 and the
y to translate the results of [29] into results about the

s when % is untwisted for the existence of CP’s. For

COROLLARY 12, Any abelian

group G is amenable above a certain dimension (de-
pending on G). In particular G is k

-amenable for k > max (5, dimy G ® Q + 3).

CoroOLLARY 13. All ﬁnite‘ groups with abelian 2-sylow subgroups are k-amenable,
k > 5. Addendum: The same is true if th

and abelian groups.

e 2-sylow subgroup is a product of dihedral groups

@ L,_(n)® Z(z)i' Ln)® Zy,.

*) above shows that 6(f) only depends on the graded class
)+ 0¥ VSq'Vy)uf *(k)). Since the k and / classes describe a
s can be seen by calculating Kervaire and Milnor problems) we

S*({) to be arbitrary elements of order two in H**XZ N; Z,)

i>
Gi

sof

hist}

P
9 are

(For 1
or k -
H(Z,

Re
using

()

all ow
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Proofs. If = has abelian 2-sylow subgroup then [29] have shown that A i(m)=0,
i>3, A Mn)=0,i>2, HFn)= 0, i > 1. This implies Corollary 12, and Corollary 13 if
G is finite. Let G = Z* x =, = finite. [Shaneson] and [Ranicki] imply

KH(Z x m)=r}(m) + 1 i(7)
KkHZ x 1) = Kl(m)+ Kf_\(T)

sofori>4,k"Z x 7) =0andi>>5, «(Z* x m) = 0, ete.
For Z, x Dk, x ... X D,k,, « vanishes for i > 1, since Quillen has shown[21]

@ HuW(E; Zz)"’H*(Dzan Zy)

is onto. The Elementary abelian subgroups E of D,k,: Kunneth formula implies the same
holds true for the product, naturality implies the conclusion since x’ (elementary abelian
groups) = 0,i > 1. (Thisis a modification of the proof in [29] for dihedral groups.)
Similarly for G = Z, x Abelian x Dyky x ... X D,k,, the homology is generated by
abelian subgroups so again naturality, together with [29] suffice to show K (G)=0,i>3.

a

Certainly more results of this type can be proven in the same way and any new results
on the oozing problem can be translated into this context. The following theorem, which
closes this subsection, summarizes and extends the results of this subsection:

TuEOREM 14. Let h: M'—M, dim M > 5, be a simple homotopy equivalence rel 0
between manifolds. Suppose v(h) lifts to £Q(G/Top) and that k(v(h)) ¢ HX(mM; Z,). M
is closed we can allow ky(v(h)) =0. In §4C we will extend this to manifolds with boundary.)
Then if M is orientable and any of the following hold:

(1) mM finite with abelian 2-sylow subgroup or 2-sylow subgroup being a product of
dihedral groups

(2) m,M abelian, dim M > max 6, dimgmM @ 0 + 3) or

(3) Hy(mM; Z ) = 0 for *5 pn, dimM>n+ 4
h is then cut-pastable.

Proof. We just havé to prove the sufficiency of (3). (Corollaries 6 and 7 and Theorem
9 are special cases of this.) According to [29] there is a commutative diagram

H{(ZxZ)® H,_{n; Z(z))———'—’ H(Z, x m; Z,)

PR Ky

L AZ)o® Lk i(m)gy— Li+ AZ, x m).

(For the definition and properties of the L* and #* see [23].) For k > n + 2 either i > 2
or k —i>n; in either case #;® #k—i=0. Since the sum of these (over i) generate
H(Z, x 1; Zy), H =0 so above dimension 1 + 4, T x Z, is amenable. 0

Remarks. (1) Using [29] nonorientable results can also be obtained in the same way
using a modified formula (**) and their modified o -classes.

(2) Unfortunately, not all finitely presented groups have finite ooze[37], and for these,
all our techniques fail.
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4C. Remarks on the remaining cases

First we complete the discussion of ky(f) = 0. The remaining case is that of Type III
PCP’s. We exploit the particular form of the induced map n, to give a modified version
of PCP replication.

PROPOSITION 15. Theorem 14 holds even if M has boundary.

Proof. All the groups = listed there have n x Z, x Z, k-amenable in the range given.
(For (3) replace Z, by Z, x Z, in the proof, and use the fact that K'(Zyx Z,)=0,i>1)
We show that if n x Z, x Z, is k-amenable, then we can avoid the obstruction ¢ for
k-dimensional problems. Let N + denote copies of N pushed off into M 4+ Let
m: N—Q(G/Top) be a map inducing P2l X Zy X Zy—Z, and ny: N_—»Q(G/Top) be a map
inducing py: & x Z, x Z,~Z; both having vanishing surgery obstruction. The new PCP
18 (NJUNUN_ nU(n —n, — m)Uny). Clearly this has the correct normal invariant.
Observe that

ker (m N, —»m M) < ker (m, N, »7,(Q(G/Top)))

ker(m N_—n,M_) < ker (mN_—-7,(2(G/Top)))

so that we can do surgery as in §2 on the two kernels 7.V, — mM,, toget N,, i,. Notice
that these surgeries do not intersect N. Let C denote the region bounded between N and
Ny. (n—n — m)x: mN-m(Q(G/Top)) is trivial so there is no obstruction to doing
surgery on ker (m;;,N-m,C,). (Do the surgeries in the “shadows” of the surgeries of NV, .)
Since nICi:nM +» we have succeeded in killing kerm, N -»m,M +» Le. ker ;N -, M. Let

(N,i) be the resulting PCP  component. The surgery  obstructions of
(N,UNUN_, /i, UAU#_) vanish for each component. For (N,,n,) and (N_,7_) this
follows from the fact that 6(4,) = 6(%,) = 0. Now 0((n — A, —my)) = (i) so the image of
0(A) in L,(m,M) is zero, but this is just, as m; N>, M is an isomorphism, 6(i7) = 0 (see
Fig. 4). O

Our most powerful tool available, PCP replication, does not seem to work at all for
Type V PCP’s to get a new lift which is smoothable into a CP, let alone arranging that
for the new lift /, ¢(7,h) = 0. Before we give any general results it is useful to study the
simplest case in detail, that of cyclic groups.

THEOREM 16. If m, M is cyclic the conclusion of Theorem 14 holds even for twisted h.

Proof. The only nontrivial Z, extension of Z,is Z,, and L(Z,)-LX(Z,) is always
onto, so we need only deal with ®; y =0, &(f)eker L(Z, x Z,,)»L(Z,). Replication
shows that up to indeterminacy of lift &(7)eker L(Z,,)— L(Z,): For let (N,n) be a PCP
in normal form. Let n”: N, —Q(G/Top) be a map with ny: mN, —»m,(Q(G/Top)) trivial
and 8(A") = 6(n). This can always be found using Theorem 11 and the calculations of [29].
Now O(N,UN, n’U(n —n")) is a new PCP representing the same normal invariant.
f(n —n’)=0. We can do surgery on ker m; N, »n,M, and it is easy to see that

P(NLUN,n’U(n —n")) = s4ps®(N,n)

Px Li(Z; x E)> L (E)
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szﬂzxﬂ

Fig. 4. PCP Replication IL

s L{E)=L(Z, x E).

For cyclic groups X =0,i> 1, Fi=0,j>0, and o, is 1 — 1. It follows easily that
obstructions for problems between closed manifolds in L,(Z,,) can be detected by their
image in L,(Z,). In particular ¢(f)=0 for F corresponding to the second PCP. O

Remark. The PCP cobordism trick often lets one replace ®(f) up to indeterminacy
with an element of ker L,(E)—L,(n). For example for # = Z, X Z, there are two choices
for E, Z, x Z, and D,. ker LYD)—LNZ, x Z,)=0 and ker LNZ,Z)—~>L{(Z,x Z) =0
unless n = 0(4) when it is Z,€Im Ly(Z x Z) according to [19]. We can kill this element by
the modification technique of §4B. [ |

In general, let ky(f)=Ima(f YeH¥m,M;Z,) and E be the Z, extension of mM
corresponding to ¢(f). Then we have:

PROPOSITION 17. Let h: M'—M?", n > 5, be a simple homotopy equivalence with f = v(h)
lifting to £ Q(G/Top), then if k5 _o((Zy % Eyp) =0, then h is the result of a sequence two
cut-pastes.
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Proof. This hypothesis lets one do PCP replication as in §4B. However, we cannot kill
MmN, —m M by doing surgeries not intersecting N. First cutting and pasting along N and
then doing the surgeries on N, we can do another cut-paste along N, to get exactly
h:M’>M (no normal cobordism problems because L,,,(m,N,)>L,, (n,M) is
onto). ' O

This easily leads to a characterization of which homotopy equivalences are the result
of a sequence of CP’s for many fundamental groups, i.e. those for which «5_,(Z, x E)=0
for all Z, extensions of 7. We leave this to the reader. One can do slightly better by
“stabilizing™ slightly:

PROPOSITION 19. Let h: M'>M" n > 5, be a simple homotopy equivalence and m,M as
in Theorem 14; then if v(h) lifts to £Q(G /Top)

h # lszxs,.-zi M #S8*x S"" 2, M #Stx §"-2
is the result of a sequnece of CP’s.

Proof. vih # 1, o) ~v(h) # k,p, + k,p, and both summands are nontrivial on T, SO
the theory of §4B applies. O

4D. An example

We apply the theory of §4A to produce a simple homotopy equivalence which has a
PCP but is nonetheless not CP. Thus some hypothesis is necessary to gain the conclusion
of Theorem 14, but to what extent the results of §3, §4B and §4C can be strengthened is
yet to be seen.

LEMMA 1. Let E»Z @ Z be the Z, extension, then

cok (L(E)>L(Z @ Z)) = Z,.
Proof. We write E = Z x,(Z x Z,) thinking of the following presentation,

E={st,ulu?=1,sts""= tu, sus ' = u, tut ' = u);

where a:Z x Z, has a(t) = tu, a(u) = u. There is an exact Mayer—Vietoris sequence[7).

1~a é l~a
L(Z x Z))——5 L(Z x Z})—— L(E)—> Ly(Z X Zp)——> L(Z x Z)—— . ..

NN

L(Z) > Ly(Z) » L(Z x Z)—— Ly(2) > 14(Z)

LZ x Z)) = Ly(Z,) x L(Z,). Let Z ={(g), then L2 Z—-Z xZ, given by i(g)=1,
i(g)=1tu gives a basis i(Li(Z) = Z,) for Ly(Z x Z,). (This uses the fact [32] that
Ly(Z)— Ly(Z,) is onto.) To show that cok = Z, we have to show that the codimension 2 arf
invariant is not in the image of Ly(E). If it were, some preimage of arfe Ly(Z) in Ly(Z x Z,)
goes to 0 in Ly(Z x Z,) under 1 — a,,.. Note that oy = I, and ai, = i}, 50 1 — ot in the above

(11 . . . .
basis is < 1 1). The two preimages of L,(Z) in Ly(Z x Z,) are the basis elements neither

of which goes to zero. Od
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COROLLARY 2. cok (L(Z° x E)=L(Z°x Z}) > Z3".

Now let M be the boundary of a regular neighborhood of the 2-skeleton of T7. Note
that

H (M%)~ H(T"), H(M®)—~HT"), H(M*)-0
are all isomorphisms. Let k, € H%(M® Z,) be the pullback of the class in HYZ',Z,)
corresponding to Z°* x E—Z". Let f: M®*—(Z,,2) x (G[Top), be given by k, on the first
coordinate and the constant map on the second (using the splitting given by the Kervaire
classes).

LEMMA 3. 0(f)eLy(Z") is trivial.

Proof. M is stably parallelizable to (/) = gk, NIMY)

(A« @ Hn+4i(Z6; Z(z)) @ Hn+4i+2(Z6; Z,) — Ln(ZG)(z) is1 —1.)

Thus the image in Ly(Z*) = 0. We only need calculate surgery obstruction as codimension
4 arf invariants, i.e. 0(f |g_lmcm < L,(Z%. However we can homotop g so that for any
torus 72 < T% g(M)NT?*=0 so 6(f)=0.

LEMMA 4. f: M -G [Top lifts to ZQ(G[Top).

Proof. As in §1, we only have to show that f factors through a suspension. We have

M—T"— T*——K(Z,,2)— G[Top
T?US' V §1)—— §?

so f factors through S?. a

LEMMA 5. The elements of L{Z") which act trivially on hTop (M®) are in the image of
L(E).

Proof. Apply to [EM: G[Top]—Ly(Z") the proof of Lemma 3. O

LEMMA 6. Let h be a simple homotopy equivalence h: M’ —M with normal invariant f.
Then W (h,f) can take on at most two distinct values for different lifts I

Proof. Let (N,n) be a PCP in normal form. The Eilenberg obstructions to homotoping
two lifts lie in

H(M;n(F)) ~ H(M; Z;) = Hyn; Z,)
HM;ny(F)) = H(M;ms(F)) ~ Hy(n; ns(F))
H(M; 76(F)) ~ m5(F)

where F is the fiber of Z2(G/Top) — G/Top. Thus any PCP is PCP cobordant to (N, n)
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in the complement of a surface (perhaps intersecting N), a circle and a point. Note that
Hy(M ;Z,)~Hy,(M; Z,) has index 2 by the exact sequence of a group extension. Therefore
modulo what can be obtained by modifying the PCP in the neighborhood of a surface ¥
and a circle C not intersecting N, there is at most one other PCP. Thus we have to show
that these modifications do not change ¥ (£ 4). Note that [Z x D%, d; G/Top] and
[C x D% 8; G/Top] both map injectively into [M: G /Top] and their ranges only coincide
with the image of [D%, 3: G {/Top]. Thus without loss of generality we can assume that the
modifications as normal invariants are trivial. The

PCP’s. We observe that they can be smoothed, for the obstruction lies at worst in
ker Lg(m, 22 x Z, x Z))- Ly(m,Z?). Since k' (Zyx Z)=0 for i > 1 this vanishes. Since
hTop(Z? x D* 9) = {1} and A Top (C x D?,8) = {1} these cut-pastes do not change which
element of ATop(M) is produced, so in particular ¥ (f, k) is invariant. O

THEOREM. There is a non-CP simple homotopy equivalence h: M ‘=M for which there
exists a PCP.

Proof. Let hy be given by smoothing out f using surgery theory and Lemma 3. Suppose
hy is CP. Let L,(Z7) act on hy e hTop(M?®) and take hy, hy such that the cobordisms between
h and h,, and h, and hy are not in the image of L,(E). Corollary 2 permits this. Lemma
5 guarantees that for one of hy or hy, Y(f k) #0 for all lifts. Theorem 1 implies that it
is not CP. ' O

Remark. Using more advanced ideas another less computational example can be given.

§5. CALCULATIONS

In this section we apply the theory of §1-§4 to the
the CP h

SA. n —1 connected 2n manifolds (n > 2)

Recall the quadratic form of an (n — 1) connected 2n manifold is given by intersection,
on middle dimensional homology.

THEOREM 1. Let M, M’ be closed n — 1 connected 2n manifolds, f: M’ M 4 homotopy
equivalence, then f is CP iff fis SCP. Moreover, if

(1) n £0mod 4, f is CP and thus SCP

(2) n =0mod 4, then unless M is q Sphere there is a non CP homotopy equivalence to
M. Furthermore, if the quadratic form of M is (@) definite, then fis CPiff fis homotopy
{0 a homeomorphism (b) indefinite andn # 4, 8 then every homotopy equivalence is the result
of a sequence of CPs,

Proof. The first statement follows from Corollary 3.6. For n odd every homotopy
equivalence is homotopic to a homeomorphism so there is nothing to show. For n even
and the cases in the theorem, Adams’ solution to the Hopf invariant problem shows that
the quadratic form of M is even. Let (G/Top)* be the kth connective cover of G/Top, i.e.
2{(G/Top))—n(G/Top) is an isomorphism for i > k, n((G /Top)) =0, i <k. There is a

W . .
lift M — (G /Top) to M i(G /Topy'~! and a commutative diagram:
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¥ Q((G/Topy~")——> L 2(G/Top)

|

M ——(G/Topy ~'—— G/Top.

There is a map (G /Top)" ' = K(L,(0), n) inducing an isomorphism on H,(—,Z). We show
that g lifts to £ Q((G/Top)"~ Y iff the square of the pullback of this cohomology class g *(i,)
vanishes. This shows that n =2mod 4 there is no obstruction and reduces the rest of
Theorem 1 to a number theoretic fact. The necessity of the square vanishing is trivial, since
the cup squares vanish in all suspensions and this class factors through a suspension.
Conversely, the primary and in our case only obstruction to solving the lifting problem

Y. 2(G/Topy"™"

M»——(G[Top)y' ™!

is cup square.

If the quadratic form is definite there is no class whose square vanishes, so only the
trivial normal invariant is CP. If the quadratic form is indefinite, we must show that there
is a basis for H (M™; Z) with elements whose squares vanish. It is well known (see [35])
that all indefinite even unimodular quadratic forms are sums of

2 0 —1 0 0 0 0 0
0 2 0 —1 0 0 0 0
-1 0 2 -1 0 0 0 0 0 1
E;= 0o -1 -1 2 —1 0 0 0 and U=<1 0)-
0 0 0 -1 2 -1 0 0
0 0 0 0 —1 2 -1 0
0 0 0 0 0 -1 2 —1
0 0 0 0 0 0 —1 2

Suppose the quadratic form for M is kE; @ [ U(I = 1). Let x; ... X, th, 1 be a basis for
kE,®IU where Xx,...X, is a basis for E@®(@—NHU. Let x2=2a. Then
Xy — @y — Uy o ooy X — Qulhy — Uy Uy U is a basis of isotropic vectors as desired. O

COROLLARY 2. If M® or M'® is highly connected and the quadratic form is indefinite, then
every homotopy equivalence is the result of a sequence of cut-pastes iff the quadratic form
is even. If the form is odd then “half> of the homotopy equivalences are the result of such
sequences.

Proof. If the form is even the above proof still works. If it is odd any normal invariant
whose cohomology class has odd square is not the result of sequence since reducing mod
2 squaring is a homeomorphism and these are not in the kernel. Conversely it is easy to
see that {xe Z"|x x = 0(2)} is a sublattice of index 2 on which the quadratic form is even
indefinite unimodular, so there is a basis of isotropic vectors. O

Example. Let M® be a Milnor manifold corresponding to E,. Then only homeo-
morphisms to M*® # M* are the result of a cut-paste. On the other hand, for Me# —M?
every homotopy equivalence is the result of a sequence of at most two cut-pastes.
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5B. The various projective spaces
The key facts that we use are the following:

[M: G/Top]— [M:(G[Top)yl =[M: G /Toply, is injective (1).
If x € H(M"; Z or Z,) and x* = 0 then x = 0 or 2 > n; (2)

for M real, complex, or quaternionic projective spaces. (1) is the fact that [M:G/Top] has no
odd torsion which follows from obstruction theory and (2) is a consequence of the polynomial
algebra structure of H*(M).

TaeOREM 3. If M",n > 5, satisfies (1) and (2) then a simple homotopy equivalence
h: M’-M is CP iff v(h)|ym is nullhomotopic.

Proof. If v(h)|pmm is nulthomotopic then v(k)*(k,) = 0 so it suffices to show that v(h)
lifts to X Q(G/Top), so that by Theorem 3.5 h is SCP. This is clear since by hypothesis
v(h) factors through M"/N"? which has the homotopy type of a suspension. (In general
an [n/2] connected n-complex is of the homotopy type of a suspension. One can prove this

using the Freudenthal suspension theorem to “desuspend” the attaching maps for each
cell) and there is a commutative diagram:

ZQ(G/TOP)
%/
ZX——g—e G /Top.

Conversely we have a diagram

2. 2(G/Top)——Y Q(G/Top),,

/ |

M ——(G/Top)— (G/[Top)e ~ TI(Z,, 4n + 2) x T K(Z, 4n).

Thus we must show that the pullbacks of the k; and I, i <n/2 (which determine the.
splitting) vanish so the composite M™?—(G/Top),, is nullhomotopic and hence, by (1)
MG [Top is nullhomotopic. Since the map to (G /Top), factors through a suspension
S*k) = f*(1)* =0 for all i, so by (2) for i < n/2 these pullbacks are trivial. O

Topological homotopy projective spaces have an easy classification. For Quaternionic
and Complex Projective Spaces, there are a number of splitting invariants (see [26]), defined
by taking a homotopy equivalence h:P” — P" and calculating signatures and arf invariants
of subproblems along subprojective spaces, which determine the homotopy type of P". For
RP" the classification is much the same except that for RP*+3 there is an additional
integral Browder-Livesay invariant (see [14]). From the definitions it is clear that
h:P" — P" has V(h)'(pn)k = *iff the splitting invariants corresponding to subproblems of
dimension less than or equal k vanish. Thus, we have:

COROLLARY 4. Let M",n > 5, be a homotopy real, complex, or quaternionic projective
space h: M’'—~M a homotopy equivalence; then the following are equivalent:
(1) his CP
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(2) h is SCP

(3) h is the result of a sequence of cut-pastes

(4) The first half of thé splitting invariants of M and M" coincide

5 v(h)|M(../z) is nullhomotopic.
Compare this to the behavior of highly connected manifolds. In the case of complex
projective space, [23] describes the cut-paste for the top splitting invariant.

5C. Lens spaces

If the conclusion to Theorem 3 holds we say that M is stable, i.e. h is CP iff v(h)|ywnm
is nulthomotopic. The reason for this terminology is that M being stable means that cutting
and pasting M causes the least change in M that one could expect. Thus, all the projective
spaces are stable. Our first theorem is that:

THEOREM 5. L¥*', (2n + 1) = 5, k squarefree, is stable.

Proof. We have to show that if f: L¥*'—»G/Top lifts to ZQ(G/Top) then Sl 1
nulthomotopic. We show this by examining the localizations. If k = p°b, (b,p) =1, then
the Atiyah-Hirzebruch spectral sequence shows [LZ*!: G[Top), = [L{**": G[Top],) This
reduces us to the case of prime powers. If p = 2, then §5B completes the proof. If p is odd
we have to show that if f,: L**'—(G [Top), lifts, then fiplL, is nullhomotopic. For odd
primes (G/Top), ~ BO,,, see [26, 27]. Also BU,,, ~ BO,) x 2°BOy, so it suffices to show
the same thing for BU. We show that if u € KU(L2**") has u = 0 then the image of u in

KU(L,}) is trivial, since in any cohomology theory squares vanish in a suspension. Recall
(see [22]) that

KULP Y= Z[x)/{(x — 1), x*—1)
r Z[Z)/I, where I, = {(g — 1)").

It suffices to deal with the case of L?**' < L¥+!, i.e. to show u’el,, implies uel,. If k
is p* we will see that this is true precisely when a = 1 (or 0 trivially). There is a diagram
generalizing the Rim diagram (see [18])

Z [Zp,,]—al—aZ [#], n a primitive p°th root of unity

k

Z[Zp l—— Zx)x — 1P = Z[Z, ]

Let A, = Z[n] be the image of I,.. (It is the principal ideal {(» — 1)").) Note that Z[n] is
a Dedekind domain so #%€ 4,, implies that & € 4,,. If a = 1 then u*€ I, implies the image
of u in Z[Z,) = Z is trivial. Thus 7 = a(y — 1)". Let v e Z[Z,] have an image «. Then it
is clear that u=v(g—1). If a>1 let u be such that o(u)=(n— 1"~ and
o,(u) = — (g — 1y**". (Such a u exists since the image of these elements in Z,[x]/(x — 1y
is trivial.) Note that u?€l,, .. One can calculate that u ¢ [ O

THEOREM 6. L%*! is unstable for 8k +1<2p + 1.

Proof. 1t is easy to see that [L2"+': G/Top]—[L2"*': (G/Top),] is an isomorphism and
similarly for suspensions of loop spaces. We wish to find the range through which
(G/Top),, is a product of Eilenberg-Maclane spaces. In other words, we must find the first
n for which h,: n4(G /Top)— H,(G/Top) has image a multiple of p.
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LemMA. Im h,, is divisible exactly by the largest odd dipisor of 2k —1)!

Proof of Lemma. That it is an odd number because (G/Top)y, is a product of
Eilenberg-Maclane spaces. Now we have at the odds

(G /Top)———— H,(G [Top)

zl Jz

Tu(BO)——— H,(BO)

3 J lsplit injective

e

The bottom line comes from identifying Ty(BU)—~ H,(BU) with the Chern class and
applying Hirzebruch’s version Bott periodicity (see [1]). Thus if p = 2k — 1 until dimension
4k — 1 <= 2(p + ) —1=2p 41, G/Top is a product of Eilenberg—Maclane spaces.
H*(L,‘f"“";Z(‘,,)=Z(‘,,)[u2]/(u§’“rl =0). Let f: L3*'-G/Top correspond to pU3*+*!, Since
[Lr+1, G/Top]~L,, +1(Z,) is trivial f is the normal invariant of a simple homotopy
equivalence. It suffices to show that FL¥+ Lk (Z,), 4k) given by the above cohomology
class lifts to X K(Z,.4k —1).

Through dimension 8% + 1 the fiber of 2K(Z,), 4k — 1) — K(Z,, 4k) looks like
K(Z,), 8k + 1) with k-invariant cup square, see [2]. Since
make all our lifts and thus the simple homotopy equivalence with normal invariant fis
an unstable SCP homotopy equivalence.

Remark. For p =2 we can remove the hypothesis on & since (G /Top)y, is a product
of Eilenberg-Maclane spaces.

SD. Products with spheres

THEOREM 7. Let h: N> M x Sk be a simple homotopy equivalence, k > 2, with (M)
on the list in Theorem 4.4 ik =2 Then b is the resul of a sequence of cut-pastes iff the
image of v(h) in [M: G [Top] is the sum of elements which lift to TQ(G /Top).

Proof. The necessity of this condition is obvious. Conversely there is a split exact
sequence

[M x D" 9: G/Top]—[M x S™ G/Top)—[M: G /Top]—0.

We can get the image of [M x D", 0: G/Top) by cutting and pasting under the hypothesis
of the theorem. We must show that the image of [M:G[Top]-»[M x §™ G /Top] can be
arrived at by cutting and pasting (or a sequence). Suppose M —G/Top has a lift to
X Q(G/Top) then taking any PCP for the lift and crossing with S” kills the surgery
obstruction and we can smooth the PCP. This yields the result. _ O

COROLLARY 8. For M x S* gs in Theorem 7 to have all simple homotopy equivalences
the result of several cul-pastes it is necessary and sufficient that [M:G /Top] be generated
by the image of [M:Z2(G/Top)].

Example. Any product of spheres other than T* x $2 is covered by Corollary 8. For
this case the smoothing obstruction is zero anyway. So for any product of spheres
sequences of CP’s provide all the homotopy equivalences.
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Remark. One can use PCP replication to show that the obstruction @ always lies in
the indeterminancy of lifts in product situations—even x CP? kills &.

SE. Rational calculations

If one is merely interested in knowing whether or not the CP homotopy equivalences
generate a subgroup of finite index in ATop(M) in many cases one can give a purely
cohomological criterion. One can work simply after tensoring with the rationals. This also
gives a simple way of showing that one or many CP’s are different notions for many
manifolds.

THEOREM 9. Let M" be a manifold with n,M poly Z of rank less than n|2, then the CP
homotopy equivalences generate a subgroup of finite index in hTop(M) iff ker
@ Ho(M; Q)~® Hy(m,M; Q) is generated by elements whose squares vanish.

Proof. We do the simply connected case: the general case is no more difficult. Use a
basis of @ H**(M; Q) whose squares vanish to modify the Pontrjagin classes one at a time.
Of course this is not possible, but by changing the top Pontrjagin class in keeping with
the Hirzebruch signature theorem it is possible once we show that for
x © H*(M; (), x2 = 0 implies x lifts to K(Q, 4* — 1). This is true since S rationally is
just the fiber of K(Q, 4*) — K((Q, 8*) given by cup square. O

SF. Homology propagation

Let £",n>5, be a homology n-sphere, then X£"—S" induces an isomorphism
[£"G [Top]—[S™ G/Top] and thus every simple homotopy X" is SCP. The question we
study is whether or not the questions of whether all simple homotopy equivalences are SCP
or the result of several SCP’s propagate through homology in some sense.

THEOREM 10. Let M’'—M" n > 5, be a tangential homology equivalence. Then if every
simple homotopy equivalence to M is SCP the same can be said for M'. However if every
simple homotopy equivalence to M is the result of several (S)CP’s it need not follow that the
same is true for M’.

Remark. This result shows from some problems it is more conceptually natural to work
with a single CP despite the results of the previous subsections which show the
computational advantage of allowing sequences.

Proof. Let f: M’—M be a tangential map, then there is a commutative diagram:

[M:G/Top] —— L(nm, M)

|

[M’: G[Top]— L, (m;M")

This follows from the formulae of [28, 33]. In fact the images in [K(n,M, 1); G/Top] and
[K(m,M’, 1); G/Top)] replacing L(mM) and L,(m,M’) still results in a commutative
diagram since f*(£(M)) = L(M"), f*(V(M)) = V(M’) where & is the Morgan—Sullivan
class, ¥ the Wu class, and f*(4(M))=4(M’) where 4 is Sullivan’s K-theoretic
orientation, see[27]. Now f: [M: G/Top]—[M": G/Top] is an isomorphism. The image has
surgery obstruction which vanishes only if it had surgery obstruction in L,(z, M). For these
there is a lift to £ Q(G/Top).
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To show that the problem of whether the simple homotopy equivalences to M are all
the result of a sequence of (S)CP’s does not propagate through homology we give an
example. Let M* — ($°)* # M%, where M’ is a Milnor manifold with quadratic form Eg. Let
2’ denote the homology sphere obtained by glueing two trefoil knot complements together
longitude to meridian. It is an irreducible sufficiently large manifold. [(Z*)% G/
Top] — Lyo((x,2)") is an isomorphism. Let M’ = (2*)* # M%. M’ — M is a tangential
homology equivalence. For M everything is the result of several cut-pastes. (This can be seen
by the methods of §SA and §5D.) For M’ only the identity is CP. This is a consequence of the
above result on L-groups and the fact that E; is positive definite.

5G. Stability

Suppose h: M’—M"(n > 5) is the result of a sequence of CP’s, can we give a bound
on the length of the sequence?

Definition. K(M) = o max ] (min a length of a sequence *of CP’s yielding 4)
is the result of
a sequence of CP’s}

Example. If M is stable, K(M)=1.

Example. K((S%")=m.

Proof. K((S*™) < m follows from §6D.
Using the usual basis for the cohomology algebra H*((S*)), let h: M —(S*)™ have
I(h)y =x; + ... + x, H*((S*)™; Z). Suppose h is the result of k CP’s, k < m, then

W=u+...+u, u?=0,

where the u; are /; of the various CP’s. Note that

(u + ...+ u)' =0

However (x; +. ..+ x,)" = me HY(SH)"; z ).

Several considerations make the following plausible:

Conjecture. There is a function f such that

K(M") < f(n).

Perhaps, f(n) = n/2 would suffice.

It is quite easy to use the methods of this paper to produce large classes of manifolds (e.g.
for large classes of ;) for which K(M") < «. In [39], we announced too optimistically that
this holds for all M” n = 5. This should be viewed as an open problem.
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