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Preface

These notes stem from a ten-week course I taught in Fall 1989 at the
University of Chicago. The goal was to introduce students as rapidly as
possible to techniques and problems that are at the forefront of research
in the topologiCal theory of stratified spaces.

The group who faithfully attended the course was quite heteroge­
neous, including second-year graduate students, junior faculty, and ex­
perts. Because of this I tried to cover aspects of the material that bear
relation to other branches of mathematics, such as algebraic geometry,
discrete groups, operator algebras, and algebraic K-theory. However, it
created the challenge of being understandable and interesting to too
many classes of people.

I assumed a knowledge of a one-year course in algebraic topology (e.g.
[Sp]), a certain familiarity with characteristic classes ([MS]), and a feeling
for the ideas of PL topology (say the first few chapters of [RS4]). After a
while, I found it difficult to avoid the idea of spectra (see e.g., [Ad3]) and
the basic constructions one does with them. However, I could not begin
to make rigorous proofs with such little background. I quickly found that
everyone was happiest when I explained the idea of proofs without giving
the details,' with the conscientious students looking up other accounts to
get the detail they were missing.

This seemed to work well enough, although occasionally it was neces­
sary to take a breather to absorb viscerally the techniques that were only
briefly discussed in class. Th move this along, I found that giving "ex­
ercises", which were only rarely such and which instead developed the
theory further and required an understanding of how and why a given
theorem works, was very valuable. Most students could not get very many
of these without much work, although they helped concentrate the mind
when readit:tg the references.

I have decided to follow here the idea of the course, although these
notes represent a significant expansion. (Many of the appendices were not
covered in the original course, and in Part III, only the bulk of chapters
11 and 12 was covered, due to lack of time, and a sense of exhaustion on
my part and on the part of the fearless class.) This has the implication that
what follows is not a work intended to be read cover to covet; but should be
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read in installments, with significant pauses between chapters, and maybe
between sections, to develop familiarity with the material presented. One
good way to do this is to read, when available, the papers and books
referred to in the text and notes. (Hopefully, this will be a less Herculean
task because of the guidance provided by the text.) Also, the problems
interspersed in the text should be grappled with. Many of the ones later in
the book involve, in my opinion, publishable results, and the solutions of
many of the earlier ones are the main results of published papers written
when those methods were newer. (I have roughly indicated where I think
the line between the publishable and nonpublishable is by calling some
things problems and others exercises.)

1 hope that the chapters are independent enough that seasoned math­
ematicians just interested in small chunks can read those sections and,
with a minimal amount of flipping back, and assuming some theorems to
be "black boxes", find what they are looking for. By reading the notes sec­
tions, which appear at the end of many of the chapters, they should then
be able to find more detailed accounts of the parts they are interested in
pursuing.

This seems like a good place to warn the reader that these notes sec­
tions should not be taken for serious historical scholarship. Through-out
the book, I picked references that I thought would be useful, some­
times a late account because the idea is presented most clearly there,
or sometimes an early account because I felt that would show what the
difficulties involved really are. However, I never picked a reference be­
cause I necessarily wanted the reader to believe that was where the idea
is from. Indeed, I cannot vouch for the accuracy of my own mathematico­
historical ideas, especially regarding events that occurred before by be­
coming aware (early 1980s), so even the implied historical accounts must
be taken with a grain of salt. I apologize to those I have slighted and to
those I so mislead.

In the years since these lecture notes were first written there have
been a number of important developments, mainly in the direction of
foundational papers becoming available, but also some affecting certain
of the applications in Part III. In addition, developments in the theory of
homology manifolds [BFMW] suggest that a larger context of stratified
spaces where the strata are not manifolds would lead to a better theory.
I have tried to take all this into account in updating these lecture notes
but have decided not to make significant changes in the basic structure
to achieve this.

The long delay in these notes' revisions is largely due to my own
inadequacies and the many suggestions and valuable criticisms made by
friends, coworkers, and colleagues, of whom I mention Jonathan Block,
Jeff Cheeger, GQstavo Comezana, Steve Ferry, Mark Goresky, Peter May,
Andrew Ranicki, Jonathan Rosenberg, Julius Shaneson, Min Yan, and
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Bob Zimmer. Their comments have had a large impact on the revision
process.

Mathematically, I have a great many debts. The most pressing are to
Sylvain Cappell, Steve Ferry, Frank Quinn, Mel Rothenberg, and Bruce
Williams. Capell was my teacher and has been a collaborator and friend
since. OUf joint work on various problems in group actions (e.g., [CWl],
and with Julius Shaneson [CSW]) and on "supernormal spaces" [CW2]
was a .major motivation for what follows. Ferry has also been a won­
derful collaborator and friend. He is one of the creators of the field of
"controlled topology", and he has helped me enormously in exploring
these notions. A number of Quinn's ideas were basic and profoundly
influenced my point of view on the general theory that follows. Both
Rothenberg and Williams had many useful conversations with me while
I was working out a set of technical details for the theorems that ensue.
(Their contribution is then critical but, perhaps, invisible.)

I'd also like to record my thanks to the Courant Institute for many
years of hospitality and to those who have attended by courses at Courant
and Chicago. Bar Ilan University, through my membership in their Re­
search Institute of the Mathematical Sciences, provided me with an at­
mosphere wherein I was able to produce at least two earlier drafts. The
Sloan Foundation and the National Science Foundation, through grants
and the Presidential Young Investigator Award, provided financial sup­
port for the research described.

And finally I must thank the people who provided safe haven through­
out the storms, and sometimes the storms. My parents were always there
for me, encouraging and prodding. The ones who were there, but didn't
have to be, are Maidi Katz, Philip Schwartz, Shabsai and Debby Wolfe,
and especially, Devorah Segal, who has become my wife. Without her
tolerance, understanding, patience, and love I would have given up long
ago. I dedicate this work to her.



Introduction

In this introduction, I will, with the help of a few judicious lies, try to
motivate the contents of this book. Scattered within are some statements
that depict where the theory is not yet in perfect form, at least not to
my taste. I will not give references in this introduction; everything will
be developed more fully in due course in the body of this work.

0.1. Classification of manifolds

The work of Smale proving the high dimensional Poincare conjecture
that manifolds that are homotopy equivalent to the sphere are homeo­
morphic to it can be said to begin a long and successful development of
a theory of high dimensional manifolds. The first step, the h-cobordism
theorem, identifies which manifolds with boundary are cylinders (mani­
folds of the form M x I); and the second step, surgery theory, endeavors
to produce cobordisms between homotopy equivalent manifolds that the
h-cobordism theorem can identify as cylinders and, hence, show that the
manifolds were, in fact, the same all along.

Both steps of this program are fraught with difficulties, of a differ­
ent but, after more serious study, somewhat analogous sort. In Smale's
h-cobordism theorem, which dealt with simply connected manifolds ho­
motopy equivalent to cylinders, there is no obstruction at all; any high
dimensional simply connected manifold homotopy equivalent (as a man­
ifold with boundary) to a cylinder is a cylinder.

However, there is a key moment in his proof where the simplest bit of
algebra occurs. A geometric pattern of intersections which has been en­
coded as a unimodular matrix over the integers is decomposed as a prod­
uct of elementary matrices. (Element3D' matrices correspond to some
simple geometric moves that produce"Jihe diffeomorphisms of Smale's
theorem.) .

It is this step that is, in general, impossible. It turns out, as discovered
by Barden, Mazur, and Stallings, that the geometry of intersections in a
nonsimply connected manifold can be successfully encoded in a matrix
over the integral group ring of the fundamental group 7L1l. What happens
then is that unimodular matrices over 7L1f are not necessarily products
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of elementary matrices; indeed the difference between these is encoded
in the algebraic K-group Kl (Zrr), and this obstructs (modulo some small
technicalities) homotopy cylinders from actually being cylinders.

Actually, the algebraic obstruction to the theorem had already been
discovered long before by J. H. C. Whitehead in his theory of simple
homotopy types, a beautiful theory that only involves polyhedra; Le. it is
a theory in which manifolds play no special role. This theory divides ho­
motopy types into a finer subclassification that can be related to Kl (Z1C).
Whitehead's invariant is essentially a measure of how the cells used in
describing the cellular chain complex of a space get twisted around dur­
ing the course of a homotopy equivalence. It is essentially this invariant
that had been used in producing the first examples of manifolds that are
homotopy equivalent, but not diffeomorphic: the lens spaces.

Indeed, the h-cobordism theorem and Whitehead's theory of simple
homotopy types are only beginnings in the rich connection between topol­
ogy and algebraic K-theory, more of which will be discussed below, but
for the purposes of this introduction, let us continue in a different direc­
tion. All we've discussed thus far allows the possibility (an overly opti­
mistic conjecture of Hurewicz) that simply connected homotopy equiva­
lent manifolds are always diffeomorphic.

This is not at all the case. The simplest source of counterexamples
comes from the theory of characteristic classes. Let us consider orthogo­
nal sphere bundles over the 4-sphere. For high enough fiber dimensions
one can see that these are classified by the first Pontrjagin class, an in­
teger. On the other hand, several different homotopical arguments can
be used to show that there are only finitely many homotopy types among
these. (The most conceptual is to try to trivialize the clutching defining
the bundle using self-homotopy equivalences of the fiber sphere in the
place of orthogonal transformations. The obstruction to doing this lies in
the third stable homotopy group of the spheres! This is a finite group, so
for the integers divisible by its order, the sphere bundle has the homotopy
type of the trivial product bundle.)

There are more subtle examples as well, such as Milnor's exotic dif­
ferential structures on the sphere, but before going on, I should mention
that it is a basic and important theorem of Browder and Novikov that
the only rational obstructions to Hurewicz's conjecture, i.e., to the dif­
feomorphism of homotopy equivalent simply connected manifolds, are
the rational Pontrjagin classes. Furthermore, there is a realization the­
orem: any combination of cohomology classes is "rationally realizable"
by a homotopy equivalent manifold if and only if a single relation holds.
(This relation is the Hirzebruch signature formula that asserts that the
signature of an oriented manifold, which is an invariant defined purely in
terms of the cohomology algebra structure and is therefore a homotopy
invariant, can be expressed in terms of Pontrjagin classes.)
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However, it is impossible to understand this rational result of Browder
and Novikov without first understanding the work of Kervaire and Milnor
analyzing the finite group of differential structures on the sphere. Their
analysis begins with the observation that any smooth manifold homotopy
equivalent to the sphere is frameable. That is, its stable normal bundle is
trivial. (So far, we're just doing more careful bundle theory than merely
characteristic classes.)

Therefore, according to the Pontrjagin-Thom method, every homotopy
sphere gives rise to an element of the stable homotopy groups of spheres,
for they have described this stable homotopy group as the cobordism
classes of manifolds with trivialization of their stable normal bundles.
(There is an ambiguity here coming from different framings of the nor­
mal bundle, but let's ignore that difficulty here.) The idea for realizing
the obstruction is this: if we have a manifold M with trivial normal bun­
dle, then every low dimensional sphere inside the manifold has a trivial
normal bundle in M. This means that we can find a neighborhood dif­
feomorphic to sn x DC, where D is a normal disk. One scoops this neigh­
borhood out and glues in a copy of Dn+1 x sc-l, to produce a manifold
with this element of homotopy killed. (This process is called surgery and
gives the name to the whole classification theory of manifolds.)

We start at the O-th homotopy of M, and first make M connected.
This surgery essentially just takes the connected sum of the components.
Then we inductively represent homotopy groups by embedded spheres
(using general position). The Hurewicz theorem and Poincare duality
theorem combine to show that if we succeed in making M highly enough
connected, Le., have vanishing homotopy groups through half the di­
mension of M, M will be homotopy equivalent to the sphere (and PL
homeomorphic to one, by Smale's theorem).

The difficulty in trying to embed spheres and make them disjoint oc­
curs around the middle dimension. (Embedding them is the same as
making different sheets in a generic immersion disjoint, so these are the
same sorts of problem.) Like in the h-cobordism theorem, this leads us
to an intersection type matrix algebra. (Thus, for nonsimply connected
manifolds, the group ring Zrr enters again.) Here there is a more com­
plicated duality aspect, in that in the middle dimension, surgery doesn't
necessarily simplify the manifold, and the condition for doing this in­
volves the transpose of the intersection matrix. Thus, the linear K-theory
of the first obstruction is essentially replaced by a (variant of) Hermitian
K-theory. But, as in the h-cobordism theorem, if an algebraic obstruction
in a functor of the fundamental group vanishes, one can continue the ge­
ometric construction - in this case, produce a cobordism to a homotopy
equivalence.

Similarly, if this basic invariant vanishes, then one tries to replace the
nullcobordism of Pontrjagin-Thom theory by a disk. This is obstructed,
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but one can also study the indeterminacy of the "coboundary"; I'd better
bail out here.

Browder and Novikov extended this analysis to other simply connected
manifolds (and each of them, ad hoc, to certain nonsimply connected
ones). To classify simply connected manifolds within a homotopy type,
one basically has to deal with a fairly complex interaction between bundle
theory and quadratic form theory. When we toss in Sullivan's efficient
analysis of the bundle theory and Wall's analysis of the algebra in the
nonsimply connected case, we get the following exact sequence:

~ [I:M: FjCat] ~ L n+l(.Z1l') ~

SCat(M) ~ [M: FjCat] -+ L nCZ1l')

where sCat (M) denotes the set of Cat (Cat = differentiable, PL, or Top)
manifolds simple homotopy equivalent to M, up to isomorphism. The L­
groups are algebraically defined, and FICat is a classifying space that
encodes the relevant bundle data in the different categories.

However, in its present form, manifold theory certainly does not end.
Many questions remain. What does FjO look like? What does FjTop
look like? Can you compute L n (7L.1r) for different classes of groups?

Another problem concerns the nature of this exact sequence. Most
naively, sCat (M) is just a set, so we have to puzzle a little to decide what
exactness means. FjCat with some work is an infinite loop space, so
that [M : FjCat] gains the structure of an abelian group, but then we
discover, horrors, that [M : FjCat] ~ L n (1L1r) is not a group homomor­
phism. In addition, [M : FICat] is naturally contravariantly functorial
and L n (Z1r) is covariantly functorial. So SCat(M) probably should not be
functorial at all.

Finally, there remains the problem of relating this classification theory
to other direct onslaughts on the problems. What range do basic invari­
ants take when we restrict attention to a homotopy class? (Here we have
in mind the Novikov higher signature conjecture, which deals with char­
acteristic classes and eta invariants. But the question is general.) Can
one analyze the specific manifolds that arise naturally, like homogenous
spaces and symmetric spaces? Also, can one answer purely conceptual
questions, such as whether embedding M in W is homotopy invariant
in M and W? If one manifold fibers over another, is the same true for
anything homotopy equivalent to it? And so on.

Some of these questions were dealt with early in the history of our
subject, and these contributions are summarized in Wall's book (and, to
some extent, in the body of this one), and some of them remain unsolved
to this day. Oddly enough, and the next section of this introduction is
devoted to explaining why, we have a much better hold of the answers
for topological manifolds than for smooth ones. Indeed, for smooth man-
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ifolds, we do not even know if the number of elements in SDiff(M) lying
in different orbits of L n+l (7Lrr) (or, if you prefer, the number of inverse
images of different elements of [M : FlO]) is independent of the orbit.
Another example of our thorough ignorance is that we do not know how
many smooth structures there are on the sphere, even if we restrict at­
tention to those that bound parallelizable manifolds (although this can
be blamed on the homotopy theorists)!

0.2. Topological manifolds

As I noted in the previous section, the theory of topological manifolds
is in much better shape than the theory of smooth manifolds. Before
getting to this, I had better clear up a misunderstanding that I'm sure
I've just caused. It is not an easier subject, at least prima facie.

The smooth and PL categories in fact were studied earlier with much
greater success than the topological category. There are so many tools
available there that are hard to discern on examining topological mani­
folds. Firstly, there are Morse functions, giving rise to handlebody struc­
tures and there are tubular neighborhoods of submanifolds (in PL these
are triangulations and regular neighborhoods). One continues and dis­
covers deep isotopy theorems for pushing subobjects around. Then one
learns the joy of transversality and general position. This combination of
basic tools is critical to the developments I sketched above.

And none of these tools seem, at first glance, to exist in the topological
category.

However, after a long development, they do exist! This subject is ex­
plained in the book of Kirby and Siebenmann, and the proofs actually
depend in a large way on the development of the complete theory of PL
surgery. The critical fact (due to Hsiang-Shaneson and Wall) is that any
PL manifold homotopy equivalent to a torus has a finite cover homeo­
morphic to the torus. That this is useful for the analysis of topological
manifolds is the great insight of Kirby's torus trick, which will play an
important behind...the-scenes role in this book. But, I cannot digress to
explain this now.

I should mention that nowadays using some amazing constructions
of Edwards and Chapman, one can prove this result about tori by pure
geometry, without invoking surgery.l One cannot advertise this as a sim­
plification, only as an important conceptual alternative.

All of this does not explain the advantages that the topological cate­
gory has over the others - it only explains that it need not be neglected.
(What follows is mainly due to Quinn and Ranicki.) In some sense the
source of all of the advantages, as far as manifolds alone are concerned,

I However, it is much more difficult to give such a proof for the whole classification of
"fake tori".
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can be traced to something we've already seen: there is a unique homot­
opy n-sphere topologically, while smoothly there can be many structures.2

Indeed, the main result of smoothing theory traces the differences be­
tween smooth structures and topological ones to a classifying space whose
homotopy groups are isomorphic to the group of differential structures
on the sphere (under connected sum).

The uniqueness of the homotopy n-sphere has enormous implications.
Using the surgery exact sequence (ignoring low dimensional difficulties
that must be dealt with separately), it computes the homotopy groups of
F j Top and shows that they are isomorphic to the L-groups of the trivial
group.

This ultimately leads to a homotopy equivalence between 7L x FjTop
and a space L(e), whose homotopy groups are the L-groups of the trivial
group e. This space has a natural infinite loop space structure coming
straight out of surgery theory, and naturally the map [M : FjTop] ~
Ln(7Lrr) defines a homomorphism using this abelian group structure on
[M: FjTop].

More is true. There is a natural orientation for (oriented) topological
manifolds, so that [M: FjTop] ;;: Hn(M; L(e». In this way, the surgery
exact sequence can be rewritten (aside from a 7L that I must return to)

~ Hn+t(M; L(e» ~ Ln+t(7Lrr) --+
STOP(M) ~ Hn(M; L(e» ~ Ln (7Lrr).

At this point, one guesses (correctly) that STOP(M) is an abelian group,
and that the whole sequence is covariantly functorial. Furthermore, there
is a natural fourfold periodicity (due to Siebenmann) relating STOP(M)
and STOP(M x D4).

All of this leads to a great deal of conceptual clarity and extra com­
putability in the whole topological theory - except for the extra 7L in the
equation 7L x F/Top;;: L(e). This, for instance, actually mars the "peri­
odicity" I just mentioned. STOP(M x D4) might be as much as a 7L larger
than STOP(M), although once M has a boundary this does not happen.3

Since writing the first (three) versions(s) of this book, the explanation
has finally come to light (through work of Bryant, Ferry, Mio, and mine).
There seems to be 7L's worth of local models as pretty as Euclidean space
itself (at least up to s-cobordism, at this point in time), and surgery
theory classifies spaces modeled on these. If we have a boundary, that
determines the local model, of course, so nothing changes. However,
the periodicity requires the extra 7L because one has unwittingly imposed

2While there is a unique PL homotopy sphere in high dimensions, some four­
dimensional pathology (Rochlin's theorem) causes the PL theory to lack some of the
elegance of the topological case.

3This was first observed by Nicas.
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an additional extraneous condition on the natural class of spaces being
classified.

So we will pretend that the 7L is not there. A pretty way to rewrite the
sequence is to use the notation (but it's more than that) L(lRn

) for n-fold
loop space of L(e). Then the sequence is

~ Ho(M; L(~n») ~ Ln+l(7L1l') ~

STOP(M) ~ Ho(M; L(Rn» ~ Ln (lL:n:).

The sequence then takes the form of a local-global principle. L«(Rn) is the
L-theory of the local structure of n-manifold M. L n (7L1l') is a global term,
and all of the information regarding manifolds simple homotopy equiv­
alent to M is the result of the way local pieces globally assemble to the
homotopy type of M. (The astute reader will realize that this formula­
tion is actually more correct than the lies uttered above for nonorientable
manifolds!)

0.3. Stratified spaces

Now, let me tum to the main topic of this book, which is stratified
spaces. For the purposes of this introduction, one should just think of a
stratified space as being a topological space with singularities that occur
in various layers. The difference between layers is a manifold (or, I would
prefer, an ANR homology manifold), and the pieces should fit together
in a not too irregular fashion. We refer to these layers as pure strata.

Th get the gist of things, the reader should be able to see stratified
spaces almost everywhere. Any manifold with boundary is a stratified
space, with two strata. The bottom stratum is the boundary, and the top
stratum is the whole manifold. The pure strata are the boundary and the
interior.

Any polyhedron can be stratified in a reasonable, P L-invariant fash­
ion. Another interesting source of stratified spaces comes from embed­
dings. We artificially create a stratum in the ambient manifold, namely
the submanifold. (Thus we can consider embedding theory as a proper
subset of the theory of stratified spaces.) Similarly, immersions give rise
to at least two interesting stratified spaces: the image of the immersed
manifold and the ambient manifold with the image as a union of strata.

Algebraic varieties are naturally stratified spaces.
Many maps give rise to stratified spaces by taking mapping cylinders,

or simply by looking at the stratification the range would get viewed as a
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subpolyhedron (or subspace) of the mapping cylinder. The domain gets
a stratification by pulling this stratification back.4

When compact groups (or even finite groups) act on a manifold, with
manifold fixed sets (this is an assumption for nonsmooth actions), the
quotient space gets a stratification, indexed by the orbit types of the
group.

A last source of stratified space is compactifications of moduli spaces
or other varieties, or even Riemannian manifolds with appropriate geo­
metric assumptions. (This includes, the well-known, but often maligned,
one point compactification.)5

The lists overlap with each other, and each one suggests its own line
of questioning, vocabulary of invariants, and methods of attack. Each
theory has its historical successes and outstanding problems. One of the
major goals of this book is to view these subjects within one context, so
that some of the ideas that naturally would arise in one area or another
can be applied to all of them. Indeed, our main theorem could have
been guessed on the basis of sufficiently deep analysis of any of these
particular stratified spaces and extrapolation to the general case; what
happened, however, was that many particular cases were studied, with
different special techniques idiosyncratic to the individual problems but
analogous in conclusion, and the general framework was ultimately thrust
upon us.

One fundamental problem in extending the classification of manifolds
to stratified spaces is that we do not have a very good bundle theory for
stratified spaces. Since the local structure changes from point to point,
it is clear that sheaf theoretic ideas should playa role. Moreover, there
is a trivial local-global inseparability built into the theory. By taking the
cone on a space, we transfer a global problem on one stratified space to
a local one on another. In actuality, though, the process reverses: in an
induction on the number of strata global information about spaces with
fewer strata feeds in to solve the local problems that occur with more
strata. By analogy with the surgery exact sequence for manifolds, one
would want a sequence

. · .~ L(X x I) ~ STop(X) ~ Ho(X; L(loc» ~ L(X)

4Por "most" continuous maps the mapping cylinder is not a stratified space, because
of lack of homogeneity, but surprisingly, one can still study the map using ideas from the
theory of stratified spaces by thinking of constructions relative to the "bottom stratum",
Le., the target. It is not unreasonable to expect that one can deal with worse singularities
if one works relative to those "strata" than one can deal with if such strata are to be grist
for the mill themselves, so to speak.

SIt is a good barometer of the reader's feelings about the generality of the notion of
stratified spaces desired to inquire which one point compactifications of which noncompact
manifolds will be allowed as stratified spaces.
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where L(X) is some sort of inductively defined surgery theory built out
of the surgery theory of the strata, and the homology term is a cosheaf
homology adapted to the local structure.

The main new result of this book is that this is almost true. There is
a deviation that can often be ignored and is always 2-torsion, which is
discussed in chapters 6 and 10. But the most important point is that it is
quite close to true.

The most important aspect of the theory might be that it gives a
universally defined place to put the characteristic classes of all stratified
spaces. The fact that these classes together with K-theory (developed
by Quinn and Steinberger and West, which I'll explain in chapter 6)
and a modified version of surgery theory (adapted from earlier work of
Browder and Quinn) suffice for classification problems might well be just
gravy. (Although this was and remains my primary motivation.)

0.4. Some examples

Given the abstract nonsense of the previous section, it is perhaps
remarkable that anything follows just for free. But some things do.

For instance, consider the embedding theory example. In that case
there is one bit of information that one can forget, either the ambient
manifold or the submanifold. (From the point of view of characteristic
classes, one has simply the characteristic classes of ambient manifold and
submanifold, but no relation between them.)

A little calculation (made in chapter 11) shows that if the submani­
fold has codimension at least three, then this pair of forgetful functors
combine to give an equivalence on the L-theory both globally and on
the cosheaf level. This implies that S(W, M) ~ S(W) x S(M). In other
words, we have proven a "decomposition theorem" for an "L-cosheaf"
just by applying forgetful maps, and then fed it into the theory to get a
calculation.

What does this mean? Exactly the following classic beautiful theorem:

THEOREM (BROWDER, CASSON, HAEFLIGER, SULLIVAN, AND WALL).
Topological embeddings of M in W of codimension at least three6 are in a
1-1 correspondence with Poincare embeddings. In partieulat; if M embeds
in W, any manifold homotopy equivalent to M embeds in any manifold
homotopy equivalent to W.

It is not necessary for the reader to know what a Poincare embedding
is to appreciate the result. Just note that a Poincare embedding is a
purely homotopy theoretic notion. On reflection, the theorem is very

6The codimension two situation is much more difficult and complex. For a systematic
study of the BCHSW phenomenon in codimension two, in both locally flat and nODIocally
flat situations, see lCSl,4,8). We discuss this, only a little bit, in 11.5.
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surprising. While it is true in P L and Top, it is totally false in Diff. We
know that the differences of the characteristic classes between M and
Ware restricted in a more and more severe fashion as the codimension
of a putative embedding decreases. Despite the dearth.of differentiable
embeddings, the topological and P L embeddings are, from the point of
view of general theory, just the result of a decomposition theorem, and
one which is proven by mere application of forgetful maps.

The original proof went via an analysis of the potential regular neigh­
borhoods, i.e., a "tubular neighborhood theorem," and via a subsequent
stability theorem for the homotopy theory of unstable classifying spaces.
This second ingredient, when combined with P L Smale-Hirsch immer­
sion theory (due to Haefliger-Poenaru), implies that an immersion of M
in W gives rise to one of any manifold homotopy equivalent to M in
any manifold homotopy equivalent to W. If we apply the surgery theory,
we obtain the conclusion that these new immersions can be taken with
identical singularity sets: Le., the same double points, triple points, etc.,
mapped in exactly the same way.

There is another remarkable thing about this proof, which is a princi­
ple that I would like to highlight in this introduction. The forgetful maps
we used in the proof are actually of very different natures. Restriction of
attention to the submanifold is perfectly reasonable from the stratified
point of view: it is restriction to a stratum. Forgetting the submanifold is
highly nontrivial! Ordinarily, one cannot forget a lower piece of stratifi­
cation and still have a stratified object (recall pure strata are demanded
to be manifolds).

The proof of this theorem requires an operation that is entirely nat­
ural, indeed trivial, in the context within which one would study the
theorem, but that is highly nontrivial from the point of view of general
theory. Indeed, in all the applications I know, the denouement is effected
by application of ideas that are natural to the subject of application (al­
though, perhaps, as in this case, too trivial to even be worth mentioning)
independently of their relevance to the stratified surgery theory, but that
are not predicted just on general grounds.

The other lesson to learn is that decomposition theorems are useful.
Indeed, many geometric problems can be reduced to suitable decompo­
sition theorems for L-cosheaves and the interactions between different
decompositions. An important, if vague, open problem is to determine
"reasonable" conditions under which the cosheaves that arise decompose.
(I have been quite surprised by some that have!)

Another class of spaces where one can get very far in such an analysis
is that of spaces with even codimension singularities. For these, intersec­
tion homology defines all of the intersection forms that we are used to
from ordinary homology theory for manifolds. This enables one to do all
of the quadratic form theory and all of the algebraic surgery theoretic
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constructions on the singular space, just as if it were not singular at all!
In particular, Goresky and MacPherson in their original paper defined
L-classes, and Cheeger even set up a signature operator (which is, in the
manifold case, away from 2 the basic characteristic class in classification
theory).

In our context, this means that for "supernormal spaces", Le., spaces
with the links of all singularities simply connected, one can repeat the
argument as in embedding theory and show that S(X) for such a space
breaks up as a sum of pieces, one for each component of each stratum,
and each of these pieces is given by exactly the surgery exact sequence
written in homological form. Thus, if all components of all strata are
simply connected, the stratified spaces within a given stratified homot­
opy type are determined up to finite ambiguity by the L-classes of all
of the strata, an exact parallel of the result of Browder and Novikov for
simply connected manifolds discussed above. (This result was first proven
in joint work with Cappell a few months before the general theory was
developed.)

Incidentally, this result shows, computationally, how important the
shift to homology is. For manifolds, homology and cohomology are dis­
tinguished only in the subtle world of conceptual frameworks, functorial..
ity, and aesthetics. For spaces like these, homology and cohomology are
not even isomorphic groups. No subtlety is needed in telling what it is
you've actually got!

The last classic cause that I'd like to mention is that of orbifolds, or,
even more classically, finite group actions. In that case, again there is a
natural a priori notion of the relevant characteristic classes given by the
equivariant signature operator (on the ambient manifold and the fixed
set of various subgroups). This concrete characteristic class computes the
abstract characteristic classes of the general theory, away from the prime
2. For odd order groups, Madsen and Rothenberg developed an equi­
variant topological surgery theory from a rather different point of view.
Their magnificent work also contains (in this case) this characteristic
class and equivariant transversality. (In fact, transversality is the center..
piece of their development, on which everything else depends.) Their
main application was the result (also proven independently by Hsiang
and Pardon) that for odd order groups, any two topologically conjugate
linear representations are linearly conjugate.

The topological classification of linear representations was an impor­
tant source of motivation for all workers in this area. That this is a
nontrivial subject is due to the startling examples constructed by Cappell
and Shaneson of distinct representations of Z4n, with only a few isotropy
types, which are topologically conjugate and therefore have homeomor­
phic quotients. While these examples predated the results on odd or­
der groups mentioned in the previous paragraph, they also demonstrate
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that there are restrictions on the continued development of the meth­
ods based on transversality: equivariant transversality fails for the even
order case (and certainly for positive dimensional groups). Historically,
this provided a challenge: to see that these examples arise as part of a
systematic theory of stratified spaces, rather than as the result of some
complicated explicit constructions. Unfortunately, I cannot report on any
significant simplifications of the even order nonlinear similarities from
the current perspective (largely because the difficulties are mainly at the
prime 2 and quickly reduce to the same hard calculations that arose in
the Cappell-Shaneson work). However, the general theory explains quite
well the shape of the theory.

Perhaps a better tack is to recognize that transformation groups are
a classic subject that has many natural and fascinating problems and to
focus on some of these. What are the possible fixed sets of group actions
(for some specific group) on some specific manifold? What are all of
the actions within a given equivariant homotopy type? There are the
replacement questions: If M is the fixed set of an action on Wand M'
is homotopy equivalent to M, is M' the fixed set of an action on W? On
some W'? One also wants to know whether natural actions on Euclidean
spaces or spheres and projective spaces (etc., of course) given by linear
representations are topologically conjugate when their linear structures
are different (the Euclidean case is the nonlinear similarity question,
discussed above). There are also questions related to the connection
between the group action and the action of subgroups. Which proper set
of subgroups determines the actions of the whole group? (For instance,
can a compact actions be reconstructed from the actions of the finite
subgroups?)

All these questions have received enormous amounts of study, which
cannot begin to be surveyed in a short introduction to a book about
something else! Some of them will be reviewed and developed in chap­
ter 13.

Other questions in transformation group theory become clear only af­
ter more profound analysis. The most important of these, in my opinion,
are the following:

The role of p-completion in the geometric theory of group actions is
one such problem. That is, the homological study of group actions natu­
rally leads to p-complete homotopy theory, i.e., through mod p homol­
ogy groups, etc.. (Deeper, there is the Sullivan conjecture, proven by H.
Miller.) The current geometric technique involves p-Iocal homotopy the­
ory. The gap between the p-Iocal and the p-complete is, roughly speak­
ing, rational homotopy theory, a subject about which much is known.
However, it is rare that one can give a complete analysis of the actions
because of this gap. As a concrete example, actions of 7Lp on the sphere
are pretty well classified because in this case there is no gap between
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the p-adic and the p-Iocal (at least in codimension other than two and
assuming some tameness of the fixed set; see chapter 13). For products
of spheres, the problem seems extraordinarily difficult.

Another important conceptual barrier lies in the difference between
equivariance and isovariance. The way stratified theory is relevant to
transformation groups is via consideration of the quotient space. The
notion of morphism that seems relevant is that of stratified map, which is
a map that preserves the pure strata. (For instance, the notion of equiva­
lence in the case of manifolds with boundary is homotopy equivalence of
pairs, not maps of pairs that happen to be homotopy equivalences.) For
group actions this means that the maps in addition to being equivariant
must be isovariant, i.e., satisfy the condition that GIx = Gx. The differ­
ence between equivariant and isovariant homotopy theory leads, by pure
homotopy theory and structural properties of equivariant surgery theory,
to the result that there are many nonhomeomorphic equivariant homot­
opyequivalent K(1l', 1)'s. (This was called7 the equivariant Borel conjec­
ture.) The question then arises, to what extent are the notions defined
by isovariant techniques actually equivariant? Do they have equivariant
definitions or interpretations? Is there equivariant functoriality?

(I should point out that another notion, the gap hypothesis, that arises
in many discussions of equivariant surgery, suffices according to a the­
orem of Browder to bridge the difference between equivariant and iso­
variant homotopy equivalence. The point is that equivariant homotopy
theory is much more tractable than isovariant and is in many ways the
more natural. However, the geometrical analysis of the equivariant cate­
gory only seems possible when the gap hypothesis holds. The isovariant
analysis is always possible but is rarely computable without the gap hy­
pothesis, and then it coincides with the equivariant one. Nonetheless,
and probably needless to say, I think there are real advantages to the
extra generality because of the possibility of ad hoc analysis in special
cases.)

Lastly, I would like to point out that despite all of the progress made
in the past decades, we still do not know what are the possible fixed sets
of PL periodic maps on the disk when the period is composite, say 6
or 15.

0.5. A word about methods

The way we analyze stratified spaces is inductively. 1b see what is
going on consider the situation of singular spaces with two strata.

One method of analyzing such spaces is to work in the PL category.
In that case the bottom stratum is a manifold, and the top pure stratum

7Unfairly to Borel.



14 Introduction

is naturally the interior of a manifold with boundary (the complement of
the interior of a regular neighborhood of the singular stratum). Either
by definition or as a consequence of the homogeneity or the stratified
space, these two strata are glued together by a PL homeomorphism
of the boundary of this manifold to a block bundle over the singular
stratum. Thus, we'd have to analyze this bundle theory to proceed and
integrate all of these data together. For smooth stratified spaces, what
arises is genuine fiber bundle theory, and one has to map into unstable
classifying spaces. These are incredibly difficult to analyze; indeed the
homotopy type of Diff(M) is understood only for some low dimensional
manifolds M. In the PLease, where it is block bundles that occur, it turns
out that surgery theory is adequate for the analysis (see chapter 3). This
enables one to continue the induction, since this method is adequate for
block bundles with two strata fibers.

Although we could, we do not explicitly do this induction here. We
prove the P L result by a slight variant of it in chapter 8. For the topo­
logical category we have to be a bit more indirect because block bundle
neighborhoods do not in general exist, nor are they unique when they do
exist. (The type of neighborhood that exists is a more complicated type
of structure: there is a map of the neighborhood to the bottom stratum
so that the inverse image of each open set is homotopy equivalent to
what homotopy theory would predict the inverse image to look like; see
lO.3.A.)

Our method is instead to redo all of topology with care taken not to
distort metrics too much. This is sometimes called controlled topology
and has been actively developed by a great number of people (for us the
relevant work is mainly due to Chapman, Ferry, Quinn, and Hughes).
These methods could easily be adapted to re-prove all the basic foun­
dational results of topological manifolds (section 0.2), but we won't de­
velop this. The topological invariance of rational Pontrjagin classes, for
instance, is quite literally a weaker version of the problem of intrinsically
computing invariants of the link of the bottom stratum (in a two-stratum
singular space) in terms of the manifold given as the top pure stratum.

Unfortunately, there is no comprehensive treatment of the basic ideas
of controlled topology yet available besides the original papers. We have
tried to partially remedy this in chapter 9, but it is clear that much more
is necessary (another book someday, but maybe by somebody else8 ••• ).

For us, the idea will be that when we remove the bottom stratum, we
should put a convenient metric on the complementary open manifold
that somehow remembers the missing stratum. If there were a single sin-

8Recently, Steve Ferry has made two great strides in this expository direction. He has
written a beautiful introductory geometric topology text and an up-to-date exposition of
recent research in the CBMS lecture note series.
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gular point, the metric would be tubular at infinity and resemble a ray
in the large (which naturally compactifies with only one point at infin­
ity). In general, the metric should have the IO'Yer strata on the horizon,
and the "homotopy link" as "horosphere". Then algebraic K-theory and
surgery adapted to this quasi-isometry class of manifolds will be what is
relevant to performing the inductive step. (Of course, these techniques
are valuable for many other sorts of problems as well-see chapter 9 and
its appendices.)

Remarkably, the answer is quite similar to the PL situation. (Indeed,
in the original argument I developed, I used a topological analogue of a
block structure that exists after crossing with a high dimensional torus,
then did the P L analysis, and tried to remove the tori.) Geometrically,
what occurs is (after shrinking the metric on the complement back to
its original incomplete incarnation) an infinite sequence of surgeries on
smaller and smaller spheres within an open subset of the "normal bundle"
to the singular set. We like to think of this as microsurgery.

The shrunk-down version of this geometry seems quite close in spirit
to microlocal analysis. On the other hand, the blown-up version is close
to the type of analyses of elliptic operators with bounded propagation
speed on noncompact manifolds conducted by Gromov, Lawson, Connes,
Higson, Roe, and others. This connection will be explored a little bit
in chapter 9. There are many parallels between the theories, in terms
of slightly different proofs of various theorems, such as results on the
Novikov conjecture. A hope for the future is that the geometric ideas
presented here will merely boil down to a refined analysis of the signa­
ture operator but that the framework will be suggestive for other opera­
tors, which could lead the way to new sorts of applications. (One might
even expect the operators themselves to suggest new interesting stratified
spaces on which prolongations exist and which could be used to study
the original operator.) We will see ...



PARTI: THETHEORYOF
MANIFOLDS

This part summarizes the classification of high dimensional manifolds as
it is now understood. The chapters need not be read in order. For the
reader who just wants a quick feel for what the theory means, I would
recommend thinking only about compact simply connected manifolds.
Doing this, one can go straight to chapter 2 on surgery and from there
to chapter 4 on applications to read the first four sections. Chapter 3 is a
bit technical but is critical for understanding the statements of the general
stratified theory: it is largely a reformulation of chapter 2. Chapter 1 is, of
course, necessary for the complete picture, and the algebraic K-theoretic
invariants that enter there are among the most important in topology.
Furthermore, there we study some aspects of the theory of noncompaet
manifolds that are absolutely critical to our understanding of even the
simplest compact stratified spaces.

We remind the student that reading this part is not a substitute for
reading the many papers and books dealing with the topic discussed
below. This part is a summary, not a detailed development, and for later
arguments to even make sense, one has to have a feeling for this material,
not a mere ability to quote its contents.



1 Algebraic K-Theory and Topology

This chapter is devoted to some important interactions between algebraic
K-theory and topology. We answer algebraically certain very special geo­
metric questions that will later play a surprisingly central role. The first
two sections consider some geometric!homotopy theoretic questions in
the category of simplicial complexes, and sections 4 and 5 describe vari­
ants of these in the setting of manifolds. In the last sections, we give
some selected applications to manifolds (generalized Poincare conjec­
ture), knot theory, and group actions.

1.1. Wall's finiteness obstruction

Much of what we will be interested in involves the translation of ho­
mological information into geometric (the reverse being usually much
more elementary). We start with finiteness conditions.

When is a CW complex homotopy equivalent to a finite complex?
Historically, this was viewed as a start on the question asked by Bor­

suk at the 1954 Amsterdam International Congress whether all compact
ANR's are homotopically finite complexes (so that all compact topologi­
cal manifolds, in particular, are). The affirmative answer to this question
was a triumph of infinite dimensional topology [We] (see also [ChI]; and
see [KS] for the manifold case).

Another early problem where this comes up is the question of which
groups act freely on some sphere. Swan discovered an algebraic con­
struction that produces infinite finite dimensional CW complexes whose
universal covers are homotopy equivalent to spheres, and the question
arose regarding which of these CW complexes can be taken finite. For
more on this, see 4.8 below and the survey [DM].

Moreover, this problem is archetypical of many problems wherein K­
theory and topology interact.

PROPOSITION. If X is a simply connected CW complex with all homology
groups finitely generated, X is homotopy equivalent to a CW complex with
finitely many cells in each dimension. If the cohomology vanishes above
some dimension, then one needs no cells above that dimension. If both
hold, then X is homotopically a finite complex.
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Let us build these better homotopy X's one dimension at a time. That
is, we will produce spaces Xi of dimension i, with maps Xi -+ Y that
are an isomorphism on homotopy in dimension ~ i -1 and surjective on
1ft. By the Hurewicz isomorphism theorem this condition is equivalent
to the parallel condition on homology. Furthermore, on taking the map­
ping cylinder, one realizes that the i-skeleton of X can be taken to be Xt.
(Compare the proof [Sp] of the Whitehead theorem that recognizes ho­
motopy equivalences as maps that induce an isomorphism on homotopy
groups.)

Let us now build Xi+l. Since X is produced by attaching cells to Xi,
all that one does is add on the cells necessary to kill the extra Hi and to
generate If;+1. The finiteness assumption guarantees that this will occur
with a finite number of cells, so the first part is proven. To obtain finite
dimensionality, consider the place beyond which H; vanishes. Note that
the kernel of II; (Xt) -+ II; (X) is a free group. All the lower maps are
isomorphisms. Therefore, this kernel is generated by the image of '!ri.

Attach i + 1 cells corresponding to generators. A calculation gives a
homology isomorphism in all dimensions, the Hurewicz theorem shows
that one has an equivalence of homotopy groups, and the Whitehead
theorem shows that one has a homot9PY equivalence.

The two arguments are compatible, so the last statement follows.
What about the nonsimply connected case?
The first point is that one cannot immediately use homology to detect

homotopy information, because of the hypothesis of simple connectivity
in the Hurewicz theorem. The standard way to get around this difficulty
is to pass to the universal cover of X. (Note that as a consequence of the
Whitehead theorem, a map is a homotopy equivalence iff it induces an
isomorphism on fundamental groups and is a homotopy equivalence of
universal covers.) Then it is of course important to take into account the
Jr-module structure, so that cells that we find upstairs really come from
downstairs.

With this in mind the case of finitely many cells in a given dimension
is rather straightforward.

The second basic point is then the finite dimensionality. One does not
immediately see that the relevant kernel is free. However, Wall observes
[Wa3] that if twisted cohomology with all coefficients vanishes, then a
little homological algebra shows the projectivity of this module. Now
we can get at finite dimensionality. If we had a free module, the above
argument would work. At the cost of finiteness we can gain freedom:

EXERCISE (THE EISENBERG SWINDLE). If P is a projective R-module,
then there is a, perhaps infinitely generated, free module F so that F E9 P
is free. (Hint: Let Q be a module for which P EI1 Q is free, and group
P ED Q EB P EI1 Q E9 P EB ... in two different ways.)
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Now one can wedge onto Xi a bunch of spheres corresponding to the
generators of F, which will add F onto the homology kernel. This gives
us a free homology kernel, which we can kill by attaching cells.

REMARK. This projectivity is exactly equivalent to a purely geometric
condition, that X is dominated by a finite complex p: K ~ X. This
means that there is a finite complex with a homotopy section for p. Such
an X is said to be finitely dominated.

It is now clear that there should be an obstruction related to the
difference between projective and free modules over 7L1r to obtain a
finite complex.

DEFINITION. If R is a ring, let Ko(R) denote the Grothendieck group of
finitely generated projective R-modules, modulo free modules. Notice that
this is a covariant functor from rings to abelian groups.

The algebra of Ko(R) for various R is fascinating and is often related
to number theory. See e.g. [Ba, Mi6, Re]. For instance, if R is a Dedekind
domain (e.g. the ring of integers in a finite extension of Q), then Ko(R)
is naturally isomorphic to the ideal class group of R, i.e., the group of
ideals modulo principal ideals.

THEOREM (WALL). The class of the homology kernel in Ko(7Ln) is well
defined and vanishes iff X is homotopy equivalent to a finite complex.

EXERCISE. Construct for each element of KoCZ1r) a complex whose Wall
finiteness obstruction is the given element. (Hint: Use the construction
of finite dimensional infinite complexes given above and the previous
exercise.) For 1i = lLp , p a prime, the natural map Z[Zp] ~ Z[~] (~

a primitive p-th root of unity) induces an isomorphism on Ko. If the
cyclotomic field has nontrivial class group, there are spaces that look
homologically like finite complexes but that are not in fact finite (up to
homotopy).

One can set up this whole theory in a more algebraic setting of R­
chain complexes. The finiteness condition on a chain complex suffices
to make it chain homotopy equivalent to a chain complex of finitely
generated projective modules. The Euler characteristic of such a complex
is well defined in Ko(R), and a little thought shows that it measures the
obstruction to making this chain complex chain homotopy equivalent to
a complex of finitely generated free modules.

Wall's element for a space is then the corresponding element for the
cellular chain complex of its universal cover.

EXERCISE. Using Serre's mod C theory [Sp], set up a parallel theory of
R]( finiteness for R a subring of the rationals. Show that for 1r finite
and R = Q the finiteness condition is equivalent to the conclusion of
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the Lefshetz fixed point theorem; i.e., that the Lefshetz number of all
nonidentity covering translates on the universal cover is zero. (Hint: A
rational representation is a multiple of the regular representation iff the
characters of all nonidentity elements vanish.)

EXERCISE/REMARK. If M is a module of finite projective length over R,
show that the Euler characteristic of a resolution gives a well-defined
element of Ko(R). If M is a finite module (Le., contains only finitely
many elements) of order prime to the order of a finite group 1T:, then
it necessarily has finite projective length over 7L1T: (Rim's theorem). A
theorem of Swan implies that every element of KoC~1f) arises this way.

Let 7L(1r) denote 7L with the primes prime to the order of 1f inverted.
If f : X ~ Y is a map which is an isomorphism on H( ; 7L(rr)1f) (this
boils down to an isomorphism on H( ; 7L(1r)1T:) for the regular covers),
then the difference of finiteness obstructions is (up to sign) the Euler
characteristic of the homology of the map f. This is often a very practical
way to compute finiteness obstructions. See [As, Mis, Wei9].

1.2. Simple homotopy theory

Historically, the material of this section was discovered before that of
the previous one. We ask the uniqueness question. How many different
finite complexes are there homotopy equivalent to a given X?

As things stand this is not a very sensible question, since there are
obviously infinitely many different finite complexes. One relatively fancy
resolution of this theory is to use infinite dimensional topology and ask
how many different Hilbert cube manifolds are there homotopy equiva­
lent to X? This smooths out, at least, dimensional issues, and turns out
to be quite sensible (see [ChI]).

Another more pedestrian way to smooth things out is to embed in
Euclidean space and take regular neighborhoods. Recall that any poly­
hedron embedded in a PL manifold has a canonically defined regular
neighborhood, i.e., well defined up to isotopy. We can get rid of all
choices by stabilizing the Euclidean space. (Any finite polyhedron has a
unique embedding up to isotopy in a sufficiently high dimensional Eu­
clidean space by standard general position results.)

Figure 1 shows that rather different looking polyhedra have isomor­
phic regular neighborhoods.

If one attaches a simplex to a polyhedron along one of its faces, then
the regular neighborhood is unchanged (up to isomorphism). (Such a
move is called an elementary expansion. Its reverse is called an elemen­
tary collapse.) Furthermore, every regular neighborhood is actually built
up out of such a successive union (see Fig. 2).
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Figure 1. Regular neighborhoods of a space and an expansion of it

Figure 2. Collapse the two-faces to the polyhedron expanded by the one­
faces, and then collapse the one-faces

Therefore, following J.H.C. Whitehead, we make the definition that
a homotopy equivalence is simple if it is homotopic to the result of a
succession of elementary expansions and collapses. We have sketched the
following conclusion:

THEOREM (see [RS4]). A map between finite polyhedra is a simple homot­
opy equivalence iff, on extending it to a map between regular neighborhoods
in a high dimensional Euclidean space, it is homotopic to a PL homeo­
morphism.

Now we can be more precise. Which homotopy equivalences are sim­
ple?

We can be led to conjecture a complete solution by philosophy alone.
'Typically, when one has a series of functors, the (i + 1)st is defined in
terms of differences between trivializations of elements of the previous.
For instance, by considering the equator of the sphere, one recognizes
homotopy groups as being differences between nullhomotopies of lower
dimensional spheres.

Ko(R) is made up out of projective modules modulo those which are
stably isomorphic to free modules. Therefore Kl (R) should be made out
of different stable isomorphisms to free modules, or, equivalently, the
automorphisms of free modules. More precisely:
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DEFINmON. Kl (R) is the Grothendieck group ofstable automorphisms of
finitely generated free modules: i.e., if one has an exact sequence

o~ (F,a) ~ (G, (3) ~ (H, y) ~ 0,

then [(F, a)] + [(H, y)] + [(G, fJ)]. ~ also view the identity automorphism
of a free module as trivial.

Notice that we can view Kl (R) as generated by invertible matrices.
The equivalence relation kills elementary matrices (i.e. products of upper
triangular matrices) because a matrix of the form

I
In A I
o 1m

fits into an exact sequence of automorphisms with identity on a kernel
Rm and cokernel Rn• This quotient of stable invertible matrices modulo
elementary matrices is equivalent (according to "Whitehead's lemma")
to the abelianization of the infinite general linear group GL(R).

EXERCISE. Show how to associate an element of Kl (R) to any automor­
phism of a projective module.

By virtue of the behavior with respect to resolution inherent in form­
ing a Grothendieck group, one can expand, by an artifice similar to Euler
characteristic, the definition of Kl (R) to include chain equivalences be­
tween based chain complexes or, alternatively, on auto-chain-homotopy
equivalences of finite projective chain complexes.

Geometrically, one gets an element of Kl (7L.rr) from the induced maps
on cellular chain complexes on the universal covers of a cellular ho­
motopy equivalence between finite complexes. Unfortunately, this is not
quite well defined. The difficulty is that because of picking base points
and paths from cells to a fixed base point upstairs, one must mod out
by ±1f. One can (and must, for purposes of well-definedness) check that
the map induced by an elementary expansion, or a subdivision, induces
the trivial element. (See [Co, Mi3].) This explains the necessity of the
following:

THEOREM (WHITEHEAD). A map f : X ~ Y between finite complexes
is a simple homotopy equivalence iff an obstruction r(j) E Wh(rr) =
K1 (7L.) / ± 1r defined above vanishes.

r (f) is called the (Whitehead) torsion of the homotopy equivalence.
The necessity is quite interesting in that it gives examples of homotopy
equivalent manifolds that cannot be PL isomorphic. l In an appendix we

IThat one can make sense of the notion of simple homotopy equivalence for smooth
manifolds is a consequence of the Cairns-Whitehead theorem triangulating smooth
manifolds.
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will give concrete examples of how some torsions can be computed. In
general, one needs some quite explicit geometry to do this.

The sufficiency is proven by a version of Euler characteristic: one
shows that every homotopy equivalence can be replaced by one with
only cells in two consecutive dimensions. (This process is called rolling.)
The boundary map in the relative cellular chain complex then represents
the torsion (up to sign). An explicit geometric construction eliminates
the elementary matrices. What's left is well defined.

EXERCISE. Provide an algebraic definition of torsion for Q-homology
equivalences. In particular, associate to any finite complex K with
H*(K, *; Q) = 0, by the above process, an element of Kt(Q)j{±l} ~ Q*;
namely the rational torsion of the rational homotopy equivalence
K ~ *. Identify this element with the alternating product of the orders
of integral homology groups H;(K, *; Z).

EXERCISE. Show that given a finite complex X and an element of Wh(rr)
there is a finite complex with a map to X realizing the given torsion.

For many groups Wh(rr) = o. This is true for free groups, free abelian
groups, fundamental groups of hyperbolic manifolds (or even torsion­
free discrete subgroups of real Lie groups), and others (see [Higman,
BHS, Wald3, FJ1]); conceivably, it is true for all torsion-free groups. On
the other hand, by comparing to cyclotomic fields, one can show that
Wh(Zn) "# 0 for n = 5 or n ~ 7. (See the example at the end of 1.5.)

C:OROLLARY. If Wh(rr) = 0 then any two homotopy equivalent compact
parallelizable manifolds with fundamental group 1r are P L homeomorphic
l~/ter crossing with some disk.

This is true because their regular neighborhoods are these products,
and their regular neighborhoods are isomorphic by Whitehead's theorem.

I~XERCISE. Prove the result of Mazur: If f : M ~ N pulls back stable
tangent bundles, then for some disks f: M x D ~ N x D' is homotopic
(not necessarily reI boundary) to a P L homeomorphism iff f is simple.

We have begun to see an important principle in high dimensional
t()pology: fundamental group and tangential data govern topology. We
will see much more of this throughout Part I.

1.2.A. Reidemeister torsion and anslytic torsion

One reason that t' is so difficult to compute is that it is an invariant of
.1 map rather than of spaces. The ideal situation is when one has intrinsic
iIlvariants of spaces / (X) and then one obtains invariants of maps by the
formula

len = I(Y) - h/(X).
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Since there are self-homotopy equivalences that induce the identity on
fundamental group but have nontrivial torsion, this cannot be possible
in general. (For an n x n matrix one can find such on any space with
a bouquet of n i-spheres (i arbitrary) wedged on.) However, there are
ways of making torsion more intrinsic in special circumstances. In this
appendix, we mention two.

The first intrinsic invariant, Reidemeister torsion, is defined by the
algebraic observations mentioned toward the end of the previous sec­
tion. If one has a based acyclic chain complex, then one can build a
natural matrix (well defined up to upper triangular matrices) comparing
fficodd ~ ESceven • While no space is ever acyclic in a sense that is imme­
diately useful, because Ho is never 0, it is possible to arrange this when
we have a larger coefficient system.

More concretely, suppose that we have a space X with finite funda­
mental group Jr. As On is a semisimple O-algebra it has a Wedderburn
decomposition: i.e., Orr breaks up into a sum of pieces corresponding to
irreducible rational representations of the group n. Consider the pieces
M not occurring in the action of if on the rational homology of the uni­
versal cover. (M is a ring.) For instance, if the action is trivial on rational
homology, M is the augmentation ideal of Qn (Milnor calls these special
spaces), while if all representations occur (as in the example yielding all
torsions from autohomotopy equivalences), M = o. Then H*(X, M) = O.

Now, the cellular chain complex of X is based (up to ±Jr ambiguity)
and M is acyclic, so that it is possible to define the Reidemeister torsion
of X, Rr (X), as the torsion of this based acyclic complex; it is an element
of Kt(M)/±1C.

Now, there are three properties of Kl (R) that help with the calcu­
lation. The first is that it has Morita invariance: it does not change on
taking matrix rings. (GL(matrix ring) ;: GL(of the ring).) The second is
that it is additive for products of rings. Finally, for fields F, Kt (F) ;: F*
via determinant; this is an exercise in row operations (=products of ele­
mentary matrices) in linear algebra.

Using the Wedderburn decomposition of Qn one gets numbers for
each representation not occurring in the rational homology upstairs.

An alternative way to get these numbers is to directly take the repre­
sentation into M(Q) and apply Morita invariance, which yields so~ething

in Kt(O)/{±l} ~ 0*+ (positive rational numbers under multiplication).
It is sometimes more convenient to use complex representations, and

then one gets nonzero complex numbers well defined up to certain roots
of unity.

The advantage of using representations directly is that one then dis­
penses with the requirement that 1r be finite; however, in the infinite
group case Rr does not play the same role in detecting Whitehead tor­
sion. If X is special, then all that is lost by using Reidemeister torsion is
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clements of finite order. For cyclic groups, for instance, there are none.
(See [01] for the current state of the art in calculation.)

We will not do any examples, but here is how an important one works
out:

EXAMPLE (LENS SPACES; see [Co, KMdR]). Consider the sphere as the
unit sphere in Ci • Let n be an integer and let aj for j = 1, 2, , i be
integers relatively prime to n. We define the lens space L(n; at, a2, , ai)
to be the quotient of the sphere by an action of lLn whose generator is
given by multiplying the j-th coordinate by e21riaj/n.

All of these spaces have the same homotopy groups by covering
space theory. Their homotopy type is determined by the product of the
(Jj modn. When are they diffeomorphic? Certainly, one can change the
order of the a's by a permutation, or change the sign of any of them
(conjugating by complex conjugation). DeRham showed that this is the
only possibility.

The argument for this has two steps. From an explicit cell description
of these spaces (coming from an equivariant cell decomposition of the
sphere) one computes the Reidemeister torsion to be (up to roots of
unity) the product of cyclotomic units:

n(e21riaj/n - 1)/(e21ri / n - 1).

'I"'hen one appeals to a multiplicative independence of cyclotomic units
type fact called the Franz independence lemma to see that these are
never the same for different lens spaces.

We shall on a number of later occasions deal with quotients of disks
and spheres for representations that do not give rise to manifolds. Much
interesting number theory related to cyclotomic fields enters the topol­
(lgy of various types of locally smooth group actions through the above
calculation of torsion.

I~XERCISE (see [Mi9]). Show that if X is a finite complex with the inte­
gral homology of a circle (e.g. the complement of a knot in the sphere),
then H*(X; Q[Z]) is a sum of Q[Z] torsion modules. The annihilators
()f these modules are called the Alexander polynomials of X (viewing
QJ(Z] as Laurent polynomials with Q coefficients). Relate the torsion of
the homology equivalence to the circle to these annihilation torsions..
((~ompare to the exercise in the previous section.)

Use this exercise to show that for codimension two embeddings of one
lens space in another, there are restrictions on the Alexander polynomi­
als. (You will need the material from 1.6 to do this part; see [Sm].)

Now we turn for just a moment to analytic torsion as defined by Ray
and Singer. This is only defined for manifolds and requires the additional
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data of a Riemannian metric. There are two parts to the idea. Firstly,
one does not need a genuinely acyclic complex: it suffices to have a
complex whose homology is free and based, or if C is the coefficient
ring, to assume a Hermitian inner product on the homology groups. For
Riemannian manifolds, one can obtain such a structure by representing
cohomology by harmonic forms and then using the Hodge * operator to
define an inner product.

The second idea is the deeper one. One must deal with the infinite
dimensionality of the DeRham complex. Basically, one defines for ap­
propriate operators, A:

tr(A-S
) = 1/ r(s) f tr(e-tA)ts- 1 dt

for large s. This quantity is the zeta function for the operator A and is
the obvious sum in terms of A's eigenvalues. (Formally, imagine that A is
an infinite diagonal matrix with its eigenvalues along the diagonal. Then

tr(e- tA ) =L e- tA •

The integration then gives E Jts-1e-tA dt = r(s) E A-s, which certainly
deserves to be called a zeta function.)

The product of the eigenvalues, the determinant, should then be given
via

-logdetA = d/dstr(A-S
) for s = o.

(In the formal calculation d/ds tr(A-S
) = - E log(A) A-s, so that we get

the sum of the log A on setting s = 0.) Through a certain amount of
analysis, this trace (d/dstr(A-S») can be shown to actually exist for the
DeRham complex with coefficients in an acyclic representation (as we
did for Reidemeister torsion) for large s and can be meromorphically
continued. In this way, the relevant derivative can be computed at 0 and
one thus obtains analytically a number which is independent of met­
ric ([RaS]) and is equal to the Reidemeister torsion ([Che3, and Mu]).
Needless to say, the real interest in this is because it enables one to
generalize the notion of torsion to other elliptic complexes which do not
have any direct topological interpretation, but this would take us very far
afield indeed to pursue. Another interesting and important direction that
this work ultimately points to is calculations (!) of torsions of families of
manifolds (Le. fiber bU,ndles); see [BiLl.

1.3. Handlebody theory

The transition from the (simple) homotopy theory of CW complexes
(which we have seen connects quite nicely to the algebra of chain com-
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plexes) to the geometry of manifolds is effected with the aid of handle­
hody theory. This technique was first developed by Smale in connection
with his proof of the high dimensional generalized Poincare conjecture
(see 1.7). While CW complexes are unions of cells, manifolds are unions
of handles. In an n-manifold an i-handle is something isomorphic to
I)i X Dn-i attached along Si-l X D n- i • The pair (D i , SI-1) is called the
core, and (Dn-i, sn-i-l) is called the cocore. Si-l X Dn-i is called the
attaching region (see fig. 3).

PROPOSITION. Every manifold can be described as a handlebody; i.e., by a
series of handle attachments (to 0 or to its boundary x I).

In the PLease this comes from thickening (i.e. taking an appropriate
regular neighborhood of the simplices in) a triangulation. In the smooth
case, one starts with a Morse function (these are generic), and a study
()f the change in the topology at a critical point gives the decomposition
(see [Mi2]). In the topological category, this is only true for dimension
other than four.

The point is that there is a handle calculus. One tries to do moves
that simplify a handle decomposition. Here is the first:

PROPOSITION (REORDERING). One can arrange that the handles are at­
tached in ascending ordel:

One uses general position to make the core of a lower handle miss
the cocore of a higher handle, and then slips the lower handle down.

Next, one has ways of eliminating handles of consecutive dimensions
that intersect appropriately.

PROPOSITION. If two handles of consecutive dimension have cores and
cocores that intersect in just one point, then they can be canceled.

One sees that their union is a ball attached along a face.

Cocore---~~....

Figure 3. Handle attachment

Core
Attaching
region
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. PROPOSITION (WHITNEY LEMMA). In dimension at least five, disks' rei
boundary can be moved, in a simply connected space, to intersect in the
intersection number ofpoints.

This is the key point where high and low dimensions differ. The proof
goes like this. If there are too many intersection points, then there is
some pair where they have opposite signs.2 Connect these points on
both disks by arcs, so that one has a circle containing these points. This
circle bounds a 2-disk whose interior is disjoint from the others (since
dimension is at least five). Pushing one disk past the other using this D 2

is the relevant move. See figure 4.

Intersecting Disks

The Whitney Disk

Pushing past the Whitney disk

Figure 4. The Whitney trick

This proposition translates algebra into geometry and enables one to
effectively manipulate handlebody decompositions of manifolds.

There are 7l.1r intersection numbers that can be used for the nonsimply
connected generalization of the above.3 Choosing a base point, and a
path from it to each cell, one then travels in each cell to an intersection
point. This gives a way to attach a group element (in addition to the
sign given by orientation conventions in the usual intersection number)
to each intersection: travel to the intersection point along the first cell,
and back through the second.

Of course, intersections are closely related to boundary maps in chain
complexes. If one takes a cell complex and thickens it to a handlebody,

2Signs are given by comparing the orientation given locally by considering the (first
disk, second disk) and comparing that to the whole manifold.

3These are also relevant to the description of the surgery obstructions in the next
chapter.
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the boundary maps are the intersections of the cores of the i +1 handles
with the cocores of the i-handles.4

This dictionary enables one to go from CW theorems to appropriately
analogous manifold theorems. The next two sections describe examples
of this.

1.4. Completing noncQmpact manifolds

The analogue of making an infinite CW complex finite (up to homot­
opy) is making a noncompact manifold the interior of a compact manifold
with boundary (which is, of course, homotopically a finite complex, and
geometrically, a finite handlebody). The results on this problem are due,
in the case of simply connected ends (see below), to Browder, Livesay,
and Levine [BLL] and, in general, to Siebenmann [Sil].

In order to state the basic results we must first have in place the
analogue of finite homological type.

This condition must exclude the possibility of Jacob's ladder, as shown
in figure 5, or complements of solenoidal constructions (which cannot
always be seen so directly by examining homology: the one pictured in
figure 6 has the integral homology of a circle; however, it does have an
infinitely generated fundamental group).

Figure 5. Jacob's ladder extends infinitely in both directions

The basic condition, tameness, is that the system of complements of
compacta that exhaust the manifold satisfy the Mittag-Leffler condition
()n homotopy groups. That is, let K i be a nested sequence of compact

4This has an interpretation, in Morse theoretic terminology, in terms of stable and un­
stable manifolds associated to the gradient flow of a Morse function. The complex obtained
in this way, while quite classic and already in the work of Smale, has been rediscovered and
reinterpreted by Witten [Wi]. This line of development has extended the ideas of Morse
I hcory to allow one to define chain complexes in infinite dimensional settings, most promi­
nently in the work of Floer on instanton homology and symplectic geometry (see e.g. [FIn,
where gradient flows make sense, as do intersections, but the other terms in the theory do
not.
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Figure 6. Embed a solid torus in another as the regular neighborhood of
the displayed CUlVe. Iterate this procedure, and take the intersection, which is a
connected compact space. The complement is an example of a wild end.

sets that fill the manifold W. Then we can consider the sequence of
complements

W - Kl ~ W - K2 ~ W - K3 ~ ... :) W - K;

and their induced maps on homotopy groups. To begin with, there is the
notion of the ends of W, which is an element of the inverse limit of the
induced sequence on components. (Thus [R has two ends and [R2 has one.
The universal cover of the figure eight (or a genus two handlebody) has
infinitely many ends.) In particular, we assume that there are a finite
number of ends.

It is now not hard to restrict attention to an individual end. We assume
in tameness that in 1fj (W - K;) the images of all of the later complements,
which are a decreasing subsequence of subgroups, ultimately stabilize.
The mother of all examples of the failure of this condition is the sequence
Z +- 71. +- 71. +- Z +- ... where each arrow is multiplication by 2.

Fundamental group tameness implies that there is a sequence of com­
pacta which exhaust the manifold whose complements map by inclusion
to one another, inducing an isomorphism on fundamental groups. This
common group 1f is called the' fundamental group of the end, 1rl(€).
(The complement of a compactum will be called a neighborhood of the
end.) One can readily see that it is well defined, and that if the man­
ifold were compactifiable as a manifold with boundary, the fundamen­
tal group of the boundary would be isomorphic to this group. Having
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fundamental group tameness, one can ask for the Mittag-Leffler condi­
tion for homology with 11(1 (€) coefficients, and that the inverse limit be
finitely generated. (In the presence of the fundamental group condition,
this homological Mittag-Leffler condition is equivalent to the homotopi­
cal one.) If this holds, we say that the end (which is just an element
of the inverse limit of the components of complements of compacta) is
tame.

For simplicity, we shall assume that our manifold W has one end. N is
said to be a neighborhood of the end if it is the complement of a compact
subset of W. Suppose that N is a one-neighborhood of the end, Le., that
N is connected and that 1l'](I;) ~ 1rlN is an isomorphism. Tameness
implies that such a neighborhood exists. We define the Siebenmann end
obstruction via

s(€) = w(N) E Ko(Z1rt{€»).

THEOREM (SIEBENMANN). If € is a tame end, then s(€) is independent
of choices, and if the dimension is at least six, s(€) vanishes iff € can be
completed; i.e. W is the interior of a manifold with boundary such that € is
the deleted neighborhood of a (compact) boundary component.

The independence of the neighborhood of € used to define s is not
that hard to demonstrate. It is similar to the exercise at the end of 1.1.
That s(€) must vanish if W can be completed is clear. We will discuss
the hard half of the proof a bit in the next section after dealing with the
h-cobordism theorem.

For many groups 1f, the quotient KO("~.1r) is known to be 0; as for the
Whitehead group, no torsion-free counterexample is known. For mani­
folds whose ends have such fundamental group, Siebenmann's theorem
takes all the fear out of the noncompactness! Moreover, even if this is
nontrivial, so that the obstruction·to it being compactified can be nonzero,
the fact that this obstruction is understandable should certainly make one
fear these ends that much less.

VAGUE PROBLEM. Is there any kind of theory of nontame ends? A hint
might lie in the classic literature on the tameness of embeddings of Can­
tor sets....

1.5. The h-cobordism theorem

The h-cobordism theorem recognizes products. It is due to Smale in
the simply connected case and to Barden-Mazur-Stallings in general.

DEFINITION. An h-cobordism consists of a manifold triple (W; M, M')
such that MUM' is the boundary of W, and the inclusions M, M' c W
are (both) homotopy equivalences. (If the inclusion maps are equivalences
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on 1ft, then one only needs that H*(W, M; Z1ft) = 0 by duality and the
Hurewicz-Whitehead theorem.)

THEOREM. If M is a manifold of dimension at least five,

'l' : {cobordisms with one boundary component M} ~ Wh(1rt)

is a 1-1 co"espondence. (r is the torsion ofthe inclusion map.) In particulaT;
an h-cobordism is a product iff r(W, M) = O.

Before discussing the proof I would like to point out that the h­
cobordism theorem is really a measure of the nonuniqueness of solu­
tions to the "end completion problem" studied in the previous section.
If one has a boundary, then according to the collaring theorem, there is
a way to push the boundary into the manifold. If one had two bound­
aries for the same open manifold, then the region between one boundary
and the push-in of the other boundary is an h-cobordism. If !' vanishes,
then the two manifolds with boundary are isomorphic. Conversely, we
will see soon that for an h-cobordism (W; M, M'), W - M' ~ M x [0,1),
so that if one glues any h-cobordism onto a completion, one obtains a
new completion.

One proves the theorem by a handlebody variant of the proof of
Whitehead's simplicity criterion. As in 1.3 one finds a handlebody struc­
ture such that all the handles appear in the order of their index. Then
one does a handle trade (which is a version of rolling) which exchanges
a lowest i-handle for an i +2 handle. After doing this enough, one is in
a situation where there are only handles of two consecutive dimensions.
The matrix representing the boundary map, or, if you prefer, intersec­
tions of higher cores with lower cocores, is invertible by virtue of the
original space being an h-cobordism. If this matrix is a product of el­
ementary matrices one can construct a diffeomorphism to the product.
Elementary matrices correspond to sequences of row operations which
can be geometrically mimicked by corresponding handle slides of one
handle over another. By this sequence of operations one ends up with a
geometric situation which corresponds algebraically to the identity ma­
trix. Handle calculus enables one then to isotop the handles so that all
the handles intersect precisely one lower handle in precisely one point,
and therefore all the handles are removable; i.e. one has the desired
product structure.

The realization of torsions is a handle version of the cellular construc­
tion of torsions of homotopy equivalences, an exercise in 1.2.

We conclude this section with a brief discussion of the proof of Sieben­
mann's end theorem. The idea is to show that in every (one) neighbor­
hood of the end there is a codimension one submanifold M, such that the
inclusion of M into the neighborhood of € bounded by E is a homotopy
equivalence.
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If we can do this, then we have been successful according to two
different arguments. The first goes like this. Take a system of smaller
and smaller neighborhoods of € and find a sequence [Mi ] in each one.
We can arrange that M j nMj # 0 for i # j. Note that it is possible to glue
any h-cobordism inside M x I (glue something with torsion -r onto a
r h-cobordism to obtain what is, by the h-cobordism theorem, a product).
'rherefore, we can modify the sequence so that the h-cobordism between
M; and Mi +l has r = O. Therefore, the region at 00 bounded by M is an
infinite union of cylinders M x [i, i + 1], so that W has a neighborhood
()f ooM x [0, (0) which we can easily compactify.

In light of Siebenmann's theorem, we have proven the following:

(X)LLAR DETECTION THEOREM. If a noncompact manifold W with a
lame end having Jrt (I:) = Jrl W is a deformation retract of its boundary,
then it is a half open collar.

This can also be proven directly by a technique called engulfing (due to
Stallings). This is nowadays viewed as a method for turning homotopies
into isotopies, although originally it was viewed as a way of enclosing
contractible sets in balls. (This explains the terminology: the balls expand
to engulf the contractible set.) We shall sketch it for the case of trying
to prove that a homotopy sphere is a sphere. (We will also give a proof
of this from the h-cobordism theorem in 1.7.) The method is not that
hard. Suppose X is a subset of dimension k in a k-connected n-manifold,
" - k 2: 4, and we would like to enclose X in a ball. If eX embedded, then
a regular neighborhood of eX would be a ball, and X would certainly
he contained in it. Stallings's trick is this. Since X is nullhomotopic, we
can extend the given embedding of X to a map of eX. Put this map
into general position (generic self-intersection) and consider the self­
intersections of eX and everything from there to the cone point (along
a join line). This is a low dimensional set, so it can be contained in a
hall. eX collapses .to this set, and the map is an embedding on this piece,
so one can extend the engulfing set one cell at a time as one expands
the set. A little more work does the case of codimension three. Now, by
engulfing a skeleton and a dual skeleton, one sees that the homotopy
sphere is a union of two balls, and from that, it is not too terribly hard
t() show (if one ~nows the Schoenfties theorem, as Stallings did, thanks
t() Morton Brown) that the manifold is topologically a sphere.

To return to Siebenmann's end theorem, one has seen that the dif­
ficulty is finding candidate boundaries within ends. To simplify matters,
suppose that the relative homology of the end reI boundary is just in
sOlne low dimensions; then Wall's work from 1.1 shows that the homot­
(lpy type of the end can be obtained by gluing in a finite complex (of
low dimension) homotopically iff S(E) = O. Since it is low dimensional, it
is possible to geometrically embed these extra cells. The boundary of a
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regular neighborhood is actually the candidate boundary, as excision for
H*( ; 7l.rr) shows, and the argument is complete.

The general case is done by some more careful handle and embedding
arguments, which we will not go through here.

1.5.A. Proper h-cobordism theorem

One can certainly be interested in understanding when a noncompact
manifold with boundary is a product. Siebenmann also solved this prob­
lem, and we record the solution here for later use, assuming that all
ends are tame. (In [Si2] he also discusses some aspects of the nontame.
case, but the results are a bit harder to state and involve an interesting
limt phenomenon involving the lack of Mittag-Leffler on K-groups of
neighborhoods of 00.)

Recall that a map is proper if the inverse image of every compact set
is compact. A proper map f : X ~ Y is a proper homotopy equivalence
if there is a proper map g : Y -+ X such that all compositions are
properly homotopic to the identity. We say that (W, M, M') is a proper
h-cobordism if each inclusion is a proper homotopy equivalence.

THEOREM. If dim M 2:: 5, there is a 1-1 isomorphism

r : {proper h-cobordisms with one boundary M} ~ WhP(M),

where the proper Whitehead group fits into an exact sequence

Wh(Zrrt(E») ~ Wh{Z1rt(M») ~ WhP(M) ~

Ko(Zrrt(E») ~ Ko{Z1rt(M»).

That is, the proper Whitehead group is a relative algebraic K-group in
the sense of Bass [Bal. The interpretation of the sequence is as follows.
Suppose the manifold at the "bottom of the h-cobordism" is the inte­
rior of a manifold with boundary5. Then the map to KO{Z1rl (€») is just
the obstruction to putting a boundary on the h-cobordism. It vanishes in
KO{71.1rl (X») because the end obstruction has homotopy invariance prop­
erties, and to compute over rrt (X) one can take advantage of the fact
that the bottom is a finite complex. If one can put a boundary on the
h-cobordism, then everything is finite, and one can define the torsion of
the inclusion of the bottom in the whole thing, as in the compact case.
(It is now compact!) This will only be well defined up to the image of
Wh (71.rr1(E») in light of our remarks above on uniqueness of boundaries
of noncompact manifolds.

The proof of exactness makes use of either the argument given to
prove the collar detection theorem or the "Eilenberg swindle," discussed

5This is just a convenience, to avoid discussion of "relative finiteness obstructions" of
infinite complexes.
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in some detail in Part II (see e.g. 5.3). (An algebraic version of this trick
is behind the exercise in 1.1 killing the Grothendieck group of infinitely
~cnerated projective modules.)

1.6. Some useful formulae

The first formulae that we shall describe are for the finiteness ob­
slructions and torsions of spaces and maps that are obtained by gluing
t()gether other spaces and maps.

'rIlEOREM (SUM FORMULAE). One has the following:

w(XUy Z) = w(X) + w(Z) - w(Y)

HJhere one uses the maps induced by inclusions to get all elements to lie in
the same group.

If one has f : (X, Y) ~ (X', Y') and h : (Z, Y) ~ (Z', Y') homotopy
t'lfuivalences ofpairs, and fly = hy = g : Y --+ Y', then

1'(f Ug h) = 1'(f) + 1'(h) - 1'(g).

')'he proof is parallel to that of the analogous result for Euler character­
istic x.
II:XERCISE. Deduce the result for Euler characteristics from the theorem.
Actually, the geometric construction of Ferry described below that relates
finiteness obstructions to torsion can be used to deduce the first formula
fnlm the second.

I~XERCISE. Deduce the additivity of torsions under composition from the
sum formula. (Hint: Write down some mapping cylinders.)

The formula for products is also quite simple and is a consequence of
Ihe obvious cell structure on a product of CW complexes.

'I'IIEOREM (PRODUCT FORMULA). For products of spaces and maps one
litis

w(X x Y) = w(X)X(Y) + w(Y)X(X),

ref x g) = 1'(j)x(Y) + r(g)x(X)·

Much more subtle is the nature of these obstructions on taking bun­
dl~s. There the most that can be said is that there is some sort of trans­
"t'r homomorphism defined in some algebraicization of the situation that
I!.( )~S from the K-theory of the base to that of the total space and takes
I he invariant of the base to that of the total space. The study of such
transfers in different settings has been vigorous; in general more than
I he Euler characteristic of the fiber is relevant.
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A special case of the above formulae is where Y = 81, so that X(Y) =
O. In that case, crossing with Y kills all finiteness obstructions and tor­
sions. This will play an important role for us innumerable times later, so
it is worth a closer look.

Let us return to the situation in 1.1. If X is a homologically finite
space, so that the Wall obstruction is defined, then, as we discussed, X
is finitely dominated, which means there is a finite complex K and maps
i : X -+ K and r : K -+ X such that ri is homotopic to the identity. Of
course, K is far from well defined.

EXERCISE/PROPOSITION (MATHER'S TRICK). The mapping torus T(ir) of
ir : K ~ K (obtained by identifying (k,O) with (irk,l) in the cylinder
K x [0,1]) is homotopy equivalent to X x Sl.

This gives us a geometric reason why the finiteness obstruction van­
ishes when crossing with S1.

The finite dominations occur geometrically with a certain frequency
(i.e., not just as an existential fact proven homologically) and variants of
this trick are quite useful.

EXERCISE (MAzUR'S THEOREM). By crossing with S1 and using the ex­
ercise in 1.2, show that any tangential homotopy equivalence between
manifolds is homotopic to a PL homeomorphism after crossing both
manifolds with an appropriate dimensional Euclidean space.

Ferry [Fe2] has observed the strong fact that not only is the homotopy
type of the mapping torus determined from that of X, but actually this
construction gives a canonical simple homotopy type for X x S1. Ferry
then considers the torsion of the map

T(ir) -+ X x S1 ~ X X S1 ~ T(ir)

where the middle map is induced by flipping the circle coordinate. This
is an element of Wh(~ x ]f), which determines the finiteness obstruc­
tion. (Of course, it would be a simple homotopy equivalence if X were
homotopically a finite complex.)

There is an important, loosely related, decomposition formula, of Bass,
Heller, and Swan [BHS]6, which we will also need many times and de­
scribe more fully later:

Wh(~ x 1l') ~ Wh(Jr) x KOC1L1C) x Nils.

We do not at this point have to discuss the Nils. Ferry shows that the
torsion above lies in the KoC1L1C) piece and vanishes iff X is homotopy
finite, i.e. is a geometric description of the finiteness obstruction. This,

6Bass, in his book, takes this formula as defining the negative K-groups, by insisting
that it remain valid for Ko, then K_." K_ 2, etc.
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and the BHS formula, enable one to very often deal with Ko issues by
replacing them, if convenient, by Wh issues, which have a rather different
geometric meaning.

Thus far, all of the formulae described make sense and are valid for
polyhedra (and even ANRs; see [ChI]). The next formulae regard duality
and are truly manifold phenomena, and follow from an examination of
the dual triangulation of a PL manifold. (See [KS] for the topological
case.)

One way to be led to such formulae is to consider an h-cobordism
(W; M, M'). Observe that W = MxI <===> rW = M'x!. In other words,
hecause of the h-cobordism theorem, r(W, M) = 0 <===> (W, M') = o.
'rhis suggests that there is a formula for r(W, M') in terms of r(W, M).

'I'IIEOREM (DUALITY FORMULAE). If W is an n-dimensional h-cobor­
dism, and w : 1f -+ {±1} is the orientation charactet; then one obtains an
tlflti-involution on Zrr by sending a group element g to wg-1 and hence an
involution * on Wh(rr). One has (Milnor duality formula)

!'(W, M') = (-1)n-1'l'(W, M)*.

If .r : M' ~ M is a homotopy equivalence between closed n-manifolds,
'hen

(see fig. 7).

Figure 7. Milnor duality for an h-cobordism

II:XERCISE. Using the Milnor duality formula and the composition for­
IHuia for homotopy equivalences, find the formula for the torsion of the
homotopy equivalence between the ends of an h-cobordism. Using this,
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prove that no two distinct three dimensional lens spaces with fundamen­
tal group 7L7 are h-cobordant.

This method works for all primes with odd class number and in all di­
mensions if we work smoothly (although, naturally enough, this requires
some more number theoretical input). A different method is required
to prove the general (and nonsmooth) non-h-cobordism result. See [AB]
(and also 4.7 and 13.4 below).

1.7. Some applications

In this section we will use without proof the algebraic facts that
Wh(O) = Wh(7L) = 0, which are not that hard. Our first application,
Smale's, was the reason the h-cobordism theorem was ever considered!

THEOREM (GENERALIZED POINCARE CONJECTURE). If ~n, n 2:: 6, is a
homotopy n-sphere, then ~ is P L homeomorphic to the sphere.

Remove the interiors of two small nonoverlapping balls. By a Mayer­
Vietoris sequence argument and excision, one homologically has an h­
cobordism, and general position or Van Kampen's theorem provides us
with the fundamental group data necessary. Now the h-cobordism theo­
rem implies that this region is an annulus. If one glues an annulus to a
ball, one obtains a bigger ball, so that we obtain ~ as the union of two '
balls glued together along their boundaries.

LEMMA (ALEXANDER TRICK). Any (PL) homeomorphism of the sphere
extends to a (PL) homeomorphism of the ball.

Just radially extend.
The Alexander trick enables one to construct a P L homeomorphism

now from I: to the sphere.
The radial extension of a diffeomorphism is not smooth at the origin

unless the diffeomorphism is an orthogonal transformation. In fact, the
lemma is false, and the generalized Poincare conjecture fails smoothly.
These "counterexamples" are the famous exotic differential structures
on the sphere. See [KM].

The above argument does not work for n = 5, but one can do this
case using material from the next chapter.

Now let us turn to knot theory. An embedding is standard if there
is an isomorphism of the ambient manifold sending the submanifold to
some standard embedding of that submanifold. Subspheres have standard
equatorial embeddings, and the next theorem characterizes this embed­
ding among all embeddings.

THEOREM (LEVINE'S CRITERION). A locally flat embedding of sn-2 C sn
is standard, n ~ 6, iff the complement is a homotopy circle.
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(ZEEMAN UNKNOTIING). A locally flat embedding of sn-c c sn is always
.\'Ilindard, n ::: 6, C :::: 3.

Actually, Levine's criterion is true smoothly [LvI] as well, but Zee­
,nan's theorem is very false smoothly [Ha, Lv2]. The proof of both results
in the PL category is similar, so we only do Zeeman unknotting. This
follows quite directly from the following result:

'rIIEOREM (CONCORDANCE IMPLIES ISOTOPY). Any (smooth, PL, or
I()/Jological) embedding Mm x I c WW x I, W - m 2:: 3, is equivalent to a
/JI"()duct embedding (M c W) x I.

(Again, the smooth version of Zeeman unknotting fails because one
cannot cone in the smooth category.)

One constructs the equivalence first on a regular neighborhood V of
M x I and then in the complement of a yet larger neighborhood, and
finally patches these together over the region in between. We have an
isomorphism of the submanifold to M xl, which we can extend to a
regular neighborhood-in the smooth case, by the tubular neighborhood
Ihcorem and the fact that bundles on a cylinder are determined by what
Ihey are on an end, and by some similar principle in the other categories.7

'I'hc complement has the same fundamental group as W, and excision
with the Hurewicz-Whitehead theorem shows the complement is an h­
l"obordism. The sum formula for r shows that r = 0, so it is a product.
'rhe region between two regular neighborhoods is always annular, so all
Ihat remains is extending a homeomorphism of aV x I x {OJ uaV x {OJ x
I U av x I x {I} to av x {x} (analogous to the Alexander lemma). But
this is obviously possible. (aV x I x I ~ [aV x I x {OJ U av x (OJ x I U
iJ V x I x {I}] x I.) (see fig. 8.)

i!
t 1igure 8. Proof of concordance implies isotopy. Build PL homeomorphism

frtUll shaded region to shaded region using the h-cobordism theorem. Finally, do
Ihc unshaded annular region directly, by hand.

'. n the PL case, this is the notion of Block bundle. For the topological case, see [KS]
and ll.3.
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We close this section with the construction of some interesting group
actions on the sphere. It is much more primitive than the results that will
be available in the next chapter but is nonetheless striking as an appli­
cation of algebra to the production of interesting geometric examples.

EXAMPLE Let p ~ 5 be a prime, and let i ~ 2; then there are infinitely
many inequivalent free Zp actions on 82i+1•

Start with a lens space (1.2.A). We will construct infinitely many r E

Wh(Zp) such that the other end of the h-cobordism with torsion '[' is
not diffeomorphic to the lens space. (We leave the fact that they are not
equivalent to each other to the reader.)

Firstly, the elements. There is a pullback (Rim) square of rings:

7L la IFp

where ~ is a primitive p-th root of unity, and IFp is the field w+ith p
elements. From this it follows that the (p-l)st power of any unit in Z[~]

comes back from a unit in Z[7Lp ]. The corresponding 1 x 1 matrix is our
desired element. An example of a unit in Z[~] is (~ +~-l)r. Observe that
this unit is invariant under the duality *, which in Z[~] corresponds to
complex conjugation.

Now why are the ends of these h-cohordisms different?8 One has
(W; L, L'). The map L' ~ L is the composition of the retraction of W
to L with the inclusion of L' into W. Using the composition formula
and the duality formula one finds the torsion of this map is '['2, which is
nontrivial, and therefore not homotopic to a diffeomorphism.

EXERCISE. Use Reidemeister torsion (1.2.A) to distinguish these spaces.

EXERCISE. Prove the result of [RoS] classifying smooth semifree G ac­
tions on the disk with fixed set a subdisk in terms of the Whitehead group
of 1ro(G). (A group action is semifree if any point fixed by a nontrivial
element of the group is fixed by all elements of the group.) When is the
product of two semifree actions linear?

1.8. Notes

All of the constructions of this chapter take place most easily in the PL
category, but they also make sense in the smooth category. The results
are the same in the topological category, but require much more work.
Topological invariance of torsion and the finiteness of ANRs were first

81 recognize that this is the solution to one of the earlier exercises.
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proven by Hilbert manifold techniques by Chapman and West respec­
tively. See [ChI] (and also [ChS]) for an exposition. Another proof can
he obtained using controlled methods that will be discussed in chapter 9.
I.'or manifolds, the missing material can be found in [KS]. This includes
Ihe topological h-cobordism theorem and other analogues of facts that
are much simpler for the PL category. Later, when we get to stratified
spaces, the differences between the topological and PL categories will
hecome much more pronounced. For manifolds, there are almost no dif­
ferences in high dimensions. In dimension four the celebrated work of
Freedman [FrO] and Donaldson shows very striking differences.

A general reference for much of the material in this chapter is [Luck!].
For the finiteness obstruction there is a book [V] that also devotes a
certain amount of space to actual calculations. Cohen's book [Co] is a
heautiful treatment of simple homotopy theory and also contains proofs
of some of the formulae we use. Milnor's expository article [Mi3] is
very valuable. The novice should beware that Milnor believed (but cor­
rected in proof) that Wh (Jr) is torsion free for Jr finite; this is not the
l:ase, and it affects some of the statements that are proven by calcula­
ti()n. However, this forces the reader to really understand what is going
011. The paper also contains the duality formula (due to him) for h­
l'()bordisms. Jonathan Rosenberg has recently written an introduction to
algebraic K-theory that contains a great deal of material of use to read­
ers trying to gain hands-on familiarity with the algebra (and geometry)
discussed here. It will appear as a Springer book. Also, Steve Feny has
recently written notes which contain much related geometric informa­
tion.

A final general reference on torsion and on the h-cobordism theorem
is IKMdR].

A useful reference for PL topology, which contains a proof of the h­
l'ohordism theorem, is [RS4]. Siebenmann's thesis was never published.
An account is contained in [Ke] with an unnecessary Noetherian hypoth­
l·sis on Z1l'l (€) and can also be found, in general, by specializing [02].
Infinite simple homotopy theory (the proper theory) can be found in
ISi2].

Engulfing was invented by Stallings and remains a powerful tool. For
U Inore recent, very valuable extension, see [Ch2].

'fhe sum and product formulae are due to [KwSz]. (See also [Gel]
t.)1" the parallel finiteness calculation.)

~fhe proof of Mazur's theorem, outlined in exercises, I discovered as a
graduate student. See [Maz] for the original proof. Milnor [Mi5] used this
ttl disprove the hauptvermutung for polyhedra9; I will give the argument
in 5.3.

'l'l'his was the conjecture that homeomorphic polyhedra are PL homeomorphic.
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For the precise, subtle connection between Ferry's embedding of
KoClLJr) in Wh(n x Z) and the Bass-Heller-Swan splitting, see [Ra6].

The unknotting theorems and "concordance implies isotopy" theorem
can be found in the book [Hud] with the original proof using an intricate
construction called "sunny collapsing". The proof given here (see also
[RS4]) relies on the h-cobordism theorem. However, sunny collapsing
remains a useful technique; see [G2].

I believe that the kind of examples of nonlinear actions on the sphere
coming out of torsion were first constructed in [MilO]. (His application
was to show that the sphere admitted infinitely many conjugacy classes
of free cyclic group actions except for a few small orders.) A complete
topological and PL classification appears in [BPW] and [Wal] and will
be described below in chapter 2 and reinvestigated in Part III. The results
on Whitehead groups used in our construction are quite primitive; the
reader should consult [01] for the great strides that have been made in
calculation.



2 Surgery Theory

'Ilhis chapter is devoted to developing the theory of surgery as it was clas­
Nically understood, say in [Brl] and [Wal]. The main result asserts that
Ihe manifolds within a simple homotopy type are determined by tangen­
tial data and invariants related to the quadratic form theory associated
III the integral group ring of the fundamental group.

The first two appendices (2.4.A and 2.4.B) describe variants of the
J.tcncral theory that would confuse a first reading but are both of intrinsic
interest and necessary for section 5.2. Appendices 2.5.A-C describe some
()f lhe calculations of the classifying spaces that enter into the theory and
.nake the theory more concrete. (One can actually do examples!)

Interestingly enough, the calculations for the topological and PL cases
have much simpler form. Appendix 2.5.C, on FlO, necessary for the
Hnlooth theory, is included only for reasons of completeness. We have
Iltll developed any theory of smooth stratified spaces for conceptual ge­
(ulletrical reasons that lie deeper than the computational difficulties of
Ihe homotopy theory involved in smooth topology (which are themselves
quite hard; these computational difficulties begin with that holy grail, the
stahle homotopy groups of spheres).

ffhe main result necessary from chapter 1 for an understanding of this
llhapter is the h-cobordism theorem (see 1.5). For the reader interested
in only simply connected manifolds this says that every h-cobordism is a
product (in high dimensions). Such a reader can safely ignore all remarks
involving algebraic K-theory with no great loss. Furthermore, many of the
npplications of chapter 4 are available to readers of only this chapter.

2.1. Poincare duality

As this chapter studies the existence and classification of manifold
structures within a given (simple) homotopy type it behooves us to study
rhe most obvious homotopical restriction on manifolds: Poincare duality.
II()I" notational simplicity we will ignore orientations. (Orientations enter
III describing an anti-involution on 7L1C necessary for describing duality
Il,rations.)
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A finite l complex X is said to be an n-dimensional Poincare com- 1
plex if there is a class [Xl E Hn (X) such that n[Xl : Hi ~ Hn- i is ~

an isomorphism, with 7L1f coefficients (1f = 1ftX). Note that homology ':'j

with 7Lrr coefficients is ordinary homology of the universal cover viewed j
as a 7L1r module via the covering translations, while cohomology means 1
cohomology with compact supports. (One could alternatively use ordi-l
nary cohomology and Borel-Moore homology, i.e., homology with closed ~

supports (see e.g. [Bo]), and would not get a different concept.) This is ~
precisely what one would get by defining cohomology as the homology j
of the dual chain complex. I

Manifolds are Poincare complexes with this definition, but they actu- 1
ally satisfy a stronger form of Poincare duality on the chain level. Let ~t

I

C* and C* denote the cellular chain complex and cochain complex re- 1
spectively. Both of these have natural bases: by cells and the dual basis ~

to t?e cell~ respectively. Using a chain a~pro~mation, o~e can d~fine ~ 1
chaIn dualIty map n[Xl : c* ~ cn-*. M IS saId to be a SImple POIncare ~

complex if this map is a simple chain homotopy equivalence. i
J
~

EXERCISE. Note that simplicity of a Poincare complex is not necessarily .:1

a homotopy invariant. It is a simple homotopy invariant. Show that the .~

torsion of the duality map satisfies duality t' = (-1)n t' *. If Y ~ X is a .:1

homotopy equivalence with torsion a , the difference between the torsions J
of the duality maps of X and Y is given by (1 + (-1)n (J *. Observe that-~

this gives an obstruction, called the simplicity obstruction, to a Poincare ··i

complex being homotopy equivalent to a manifold. See 2.4.A and the]
following exercise for more on this. ;~

EXERCISE. Find a cobordism with fundamental group z.p between the 'j
lens spaces analyzed in the problem at the end of 1.6. (This can be done 1
explicitly, with considerable effort. It is easier to use bordism theory: in :l'~

this situation, the relevant group of bordism classes can be computed to .
vanish.) Glue the ends together by a homotopy equivalence. Show that ~

the resulting Poincare complex is not homotopy equivalent to a simple l
one using the obstruction from the previous exercise. :

REMARK/PROBLEM. A natural class of Poincare spaces consists of the fi-)
nite (dimensional) H-spaces, according to Browder [Br4]. It is not known
whether these are finite complexes, and assuming they are, whether their'
simplicity obstructions are zero. I

In light of the previous exercises, the setting of simple Poincare com- :
J

plexes is most appropriate to the question of whether or not a polyhedron .:~

is simple homotopy equivalent to a manifold. :!

1Browder has shown that finite domination follows from duality if one knows that the
fundamental group is finitely presented.
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There are also relative notions of all this. (Y, X) is said to be a Poincare
I)uir if there is a class relating absolute homology of Y to the relative
l'ohomology of the pair, and X is also Poincare. If X is disconnected, then
Ihere are also various Lefshetz dualities relating the homology relative
t() some components of X to the cohomology relative to the remaining
(JIles. Also, if the fundamental group of X injects into that of Y, then the
Poincare duality for X is automatic.

And, of course, there are obvious notions of simple Poincare pairs
und the like. If one were interested (and there are some good reasons
It) be, although many of them are now historical), then one could also
study Poincare cobordism, simple Poincare cobordism, etc.

Many of the more familiar signature type invariants of manifolds can
he defined using only the underlying Poincare structure. The most simple,
Ihe ordinary signature studied by Thorn and Hirzebruch, is defined from
Ihe middle dimensional cohomology of a 4k dimensional Poincare space.
Poincare duality implies that the inner product on the free part2 of this
l'()homology gives a symmetric unimodular quadratic form, so that one
(:an diagonalize. The signature is the difference between the number of
p()sitive and negative eigenvalues.

For manifolds this is multiplicative in finite sheeted coverings, as a
l'()nsequence of the Hirzebruch signature formula in the smooth case
(see [MS] and below), but for Poincare spaces this fails [Wa5]. This gives
what might be the simplest examples of Poincare complexes not homot­
()py equivalent to manifolds. (An exercise in 2.4 describes how to do
Ihis explicitly, using little machinery.) It is remarkable that one uses an
invariant defined by the Poincare duality~ the homotopical form of the
resemblance to a manifold, to contradict the possibility of the space being
II l11anifold.

~rhe G-signature of [AS, pt. III] is also defined if one has a G action
on a Poincare space.

'rhere are also deeper invariants of quadratic forms that give invari­
nllts of Poincare spaces extending the idea of these previous examples.
For instance, the paper [Mst] uses Fredholm representations for infinite
I-tI'OUpS to define a collection of signatures that are also defined in the
Jtcnerality of Poincare spaces. (Similarly, the "signatures with coefficients
i.. an almost flat bundle" defined by Connes, Gromov, and Moscovici
I( '()GM] are defined for all Poincare complexes. Similarly, all methods
I'.)r dealing with the Novikov conjecture (4.6.A and chapter 14) implicitly
give additional invariants of Poincare complexes.)

In general, it is a very deep problem to try to understand which bor­
dism invariants of manifolds extend to be bordism invariant of Poincare
'I'aces.

"'rhc free part of an abelian group is its quotient by its torsion subgroup.
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2.2. Spivak fibration 1

In the spirit of trying to make Poincare spaces more like manifolds, .:~

we shall next describe the type of bundle theory that Poincare spaces1
have. It is a homotopical version of usual bundle theory. 1

'1

DEFINITION. Let X be a CW complex. A spherical fibration ~ over X:~
1

is a Se"e fibration E ~ X; with homotopy fiber homotopy equivalent to;J
a given sphere. Two of these are fiber homotopy equivalent if there is a j
homotopy equivalence of total spaces which homotopy commutes with the'~

"projection ". .~

We will sometimes refer to maps which are not themselves fibrations ";
as spherical fibrations if they become such after being turned into Serre:;
fibrations by the usual path space construction [Sp]. ~

There is a process for stabilizing spherical fibrations: the (iterated) ~

fibelWise suspension or equivalently the fibelWise join with a trivial bun-.!
dIe. We will use the same symbol for a spherical fibration and its stabiliza- i
tion, and usually identify them. Stable homotopy equivalence classes of~
spherical fibrations over X form a group under join. (The reader should:
observe that join is the analogue of Whitney sum for bundles. Given an'~

orthogonal vector bundle, one obtains a spherical fiber space by look-:
ing at the unit sphere bundle. Then the underlying sphere bundle for a"
Whitney sum is the join of the underlying spherical fiber spaces.) This.:
group is sometimes indicated by KSph.

PROPOSITION. There is a space BF such that KSph(X) ~ [X, BF].
Tfi(BF) = lim1T:i+k-l(Sk). In other words, the homotopy groups of BF arel
the stable homotopy groups of spheres.

The existence of BF was established in [8ts] and can be proven us­
ing the Brown representation theorem [Brne, Sp], which gives a general
criterion for when a homotopy functor can be represented as maps into
some (classifying) space. The statement about its homotopy groups can
be seen by thinking about the clutching maps that describe spherical fi­
brations over a sphere. They are maps from Si-l to the autohomotopy.
equivalences of some sphere. On taking adjoints, one gets the desired l

result.
We have mentioned the map that gives the underlying spherical fibra­

tion to any orthogonal bundle. Of course, orthogonal bundles are given
by KO(X) ~ [X: BO] and this forgetful map is equivalent to a map

J: BO ~ BF.

This is the J-homomorphism long studied by homotopy theorists, as it
can be used to give the first systematic infinite family of nontrivial el­
ements in the stable homotopy groups of spheres. Geometrically it has
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itl' interpretation in terms of the Pontrjagin-Thom construction of sta­
hle homotopy as bordism of framed manifolds. (See [Th3, Mi7].) A map
rnlilt a sphere into 0 corresponds to a change of framing of the trivial
huudle over that sphere. In other words, one has a framed manifold,
wilt lse underlying manifold is a sphere and whose cobordism class is the
tl~"sircd element of stable homotopy.

'rhere are analogues of J for the other categories PL and Top; they
tU'l' just forgetful maps B Cat ~ BF.

'rhese homotopical ideas are the ingredients for the primary obstruc­
lit In lo making a Poincare space into a manifold.

I )HFINITION PROPOSITION EXERCISE. If X is a Poincare space, then if
""t' (~mbeds X in a high dimensional Euclidean space, the map from the
'.tllilidary ofa regular neighborhood to X is a spherical fibration. The stable
JI,Ilt'rical fibration is well defined up to fiber homotopy equivalence. This
,f/uble spherical fibration is called the Spivak fibration.

I lint: Use 1.2 (and 1.6 with the xSl trick to handle silly torsion diffi­
llultics).

I(I~MI\RK. This proposition includes the theorem of Atiyah [A3] that the
tluderlying spherical fibration of the normal bundle to a manifold is a
ItlUllotopy invariant.

I:.XI:.RCISE. Show the converse (see [Brl, Ra2, pt. II]; this is due to Quinn
(unpublished» of the above proposition, namely that if the homotopy
"her of the map from the boundary of a regular neighborhood to X is a
_I,llerc, then X is a Poincare complex. As a corollary deduce that if a finite
t.'oillplex has some cover which is a Poibcare space, then the complex is
u Poincare space. (This is not true for simple Poincare complexes; cf.
11.1tt. (CW6].) More difficult, show that if one has a fibration of finitely
tltuninated (e.g. finite) complexes, F ~ E ~ B, then E is Poincare iff
"~I and Bare [Q8]. (Hint: The homotopy fiber relevant for E is the join
of 1hose for F and B.)

I~ecall that the Thom space of a vector bundle over a compact base
IN 1he one point compactification of the total space. Given a spherical
Ilhralion, one can form its Thorn space as well. It is the mapping cone of
Illl' projection map. (This is the cylinder of the projection with the total
~llace identified with a base point.)

PIH >P()SITION. The top homology class of the Thorn space of the Spivak
/,hrtl/ion is in the image of the Hurewicz homomorphism.

j'l'his breathtaking paper of Thorn introduces transversality, uses it to reduce the cal­
I uJulion of bordism groups to stable homotopy theory, and then does those calculations
In. lllloricnted bordism and rationally for oriented bordism. It was one of my greatest
Itkil~lIrcs to read the original years after I had learned its content from other sources.
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Note the top homology class is the image under the Thorn isomor- 0

phism (valid for oriented spherical fibrations by the same proof as for ~

oriented bundles) of the fundamental class of the Poincare space. It can;:
be viewed as the fundamental class of the regular neighborhood of X.:
This is a codimension zero submanifold of the sphere. The map from
the sphere to the Thorn space which takes the fundamental class of the}
sphere to the top class is simply the collapse map that maps the com­
plement of the regular neighborhood to the base point. This homotopy:
class, by definition of the Hurewicz homomorphism, works. :

REMARK. The proposition actually characterizes homotopically the Spi-'~
vak fibration [Spi]. However, the preimage of the fundamental class un.

f

;;

der Hurewicz is not well defined. There is an ambiguity stemming from;
fiber autohomotopy equivalences.

~

At this point we have a well-defined element Sp(X) E KSph(X). We,
shall close this section with: '

PROPOSITION. A necessary condition for X to be homotopy equivalent
to a Cat manifold is that Sp(X) E 1m KCat(X). :.

The stable Cat normal bundle of an embedding of the correspondin '~;
manifold in Euclidean space would be the lift.

2.3. Reducibility and normal invariants

In this section we will elucidate the geometric meaning of the lifts 0 '

Spivak fibration.

DEFINITION. A spherical fibration will be said to be Cat reducible if then j'

is a Cat bundle ~ which is fiber homotopy equivalent to it. ~, with its iden/
tification with the given fibration, will be called a reduction of the spherica J

fibration.

To rephrase matters we have a diagram

Beat

1
x · BF

and we are concerned with lifts. Given one reduction, the set of all re:
ductions is in a 1-1 correspondence with [X : Fj Cat]. (Fj Cat is th~
homotopy fiber of the natural map B Cat ~ B F.)'~l

An important case where one starts off with a reduction is where ~
is a manifold, and one reduction is given by its stable normal bundle~1
Another interpretation of [X: F / Cat] is that it is given by Cat bundle~
with a fiber homotopy equivalence to a trivial bundle. J



Surgery Theory 51

Now for the geometry:

I)I~FINITION (BROWDER). A (degree one) (Cat) normal invariant4 for a
I)(};ncare complex X consists of a degree one map from a Cat manifold
/' : M --+ ~ a Cat bundle ~ over X; and a stable trivialization of the sum
r AI ffi [*~, where t'M is the tangent bundle of M. A normal cobordism is
,II" same sort of object over X x [.

We will see in the next section that normal invariants are the kind of
ohjects on which we can perform surgery.

PI{()POSITION (SULLIVAN). Normal invariants up to normal cobordism are
naturally in a 1-1 correspondence with reductions of the Spivak fibration.
Iit'/lee for a Cat manifold M, they are naturally in a 1-1 correspondence
u'ith [M : FJ Cat].

rrhe proof is transversality. For instance, to go from a reduction to a
tUlrmal invariant, one takes the map from a sphere to the Thorn space of
the reduction ~ and takes the transverse inverse image of the O-section.
tl'hc fact about Hurewicz homomorphism makes this a degree one map,
lind transversality gives the bundle data. In the reverse direction, one
,)hscrves that the bundle ~ must be equivalent to the Spivak fibration in
li~ht of the latter's homotopy characterization.

For a more direct (but more or less equivalent) proof of the 1-1 cor­
respondence in the manifold case, see [RSu].

2.4. The surgery exact sequence

In this section I would like to explain two things. The first is how
onc goes about answering the question! of when a degree one normal
Illvariant is normally cobordant to a (sim~le) homotopy equivalence. This
Involves a process called surgery, which might be obstructed, and leads,
us in the h-cobordism theorem, to an obstruction group that depends
011 the fundamental group (and the dimension mod 4 and orientation
l'haracter). The second topic is how one goes from this obstruction theory
Ic) a classification of manifolds within a given simple homotopy type (the
Nli rgery exact sequence).

We consider a degree one normal map [ : M --+ X (we'll suppress
Ihl~ bundle data). How does one improve the map [? We consider the
process of surgery, first introduced in [Mil] and then developed in [KM,
Uri, No, SuI, Wall. It is an analogue of the process considered in 1.1
where we improved maps between CW complexes by attaching cells to
Ihe domain. Suppose that [ is already an isomorphism on 1rj for j ~ i-I .

.ILJ nlcss othelWise stated all normal invariants will be degree one. In chapter 6 we will
hUVl' some use for normal invariants of other degree. However, they do not play any role
III 011 r treatment of surgery to a homotopy equivalence.
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Then one can find singular spheres in M (Le. just maps from spheres into
M) that represent the kernel of h*.

EXERCISE. Show that any degree one map induces a surjection on funda- ;!

mental group. (Hint: Otherwise, factor the map through an intermediate;
cover.)

EXERCISE. As an application of Poincare duality, show that the induced J

)

map on homology for any degree one map is split surjective. Therefore,;
the same is true by Hurewicz for the first homotopy group where the,
map is not an isomorphism. J

Suppose that one can represent these singular spheres by disjoint em-',
bedded framed subspheres (Le. subspheres with trivialized normal bun-:
dIe). Then (Mx I)U(Di+1 x D n- i ) will be a cobordism, and one can extend I

the map f and all the bundle data. If i is below the middle dimension,'
then general position produces the subspheres. The bundle data give the
necessary trivializations because the normal bundle of M is pulled back;
from X; therefore, the restriction of the bundle to any sphere in M which
goes nullhomotopically to X must be trivial. Fairly direct Mayer-Vietoris,
calculations give the fact that the homology kernel (and therefore the
homotopy kernel) is killed. (See Fig. 9.)

What happens as we get to the middle dimension?
In even dimensions one runs into two problems: firstly, one must pro­

duce these disjoint embedded spheres with trivial normal bundles, and
secondly, one must guarantee that surgery on them improves f. (Ac­
tually, the first problem is really two: we must embed the spheres, and'
then we must make them disjoint.) In the odd dimensional case, one only
has the second problem. The difficulties are all quantitatively measured
in Grothendieck groups of symmetric or antisymmetric quadratic forms
over 7l.Jr for the even dimensional case, and in automorphisms of such
forms in the harder, odd dimensional case. For even dimensions, one

M xl

Figure 9. Surgering an i-sphere in M.
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tukes framed immersed subspheres and measures intersections and self­
II11crsections5 using the 71.11: intersection number, and in high dimensions,
thesc numbers measure precisely the minimum number of intersections
nlld self-intersections as in the proof of the h-cobordism theorem. If the
llHs()ciated quadratic form is hyperbolic, i.e. has the form

(:1 ~),
thrn surgery will kill the kernel. (The ± is determined by the dimension
nuul 4.) Thus one gets groups that depend on the dimension mod 4, 1T:,

~uullhe orientation character (to describe the type of symmetry) and that
tlllt asure the difficulty in surgery.

·rhe odd dimensional case is much more complicated and is based on
hlltomorphisms of quadratic forms or, more nicely, by thinking of pairs of
fJiclf-annihiiating subspaces of a hyperbolic form. The chapter explaining
lu)w this goes is one of the hardest in [Wal] and represents one of the
hook's central achievements. (One could give a very clumsy approach
It t Ihe problem by crossing with a circle, solving an even dimensional
pn)hlcm, and using Farrell's theorem 4.6 to remove the circle. A beginner
l'(Ulld live with this approach, but, philosophically, it is terrible.) We will
IU tl discuss how this is done here6• To summarize, we have the following
l41'it ical theorem:

'I'III':<>REM ([Wal]). There are (covariantly functorial abelian) groups7
I,,,(in, w) that depend on n mod 4, the ring 7Lrr, and an orienta­
'Itlll character w : 1C ~ 712 such that a degree one normal invariant
I : Mn ~ X, n ~ 5, is normally cobordant to a (simple) homotopy
f~(lllivalence iff an obstruction 8(j) E Ln(Zrr, w) vanishes, where 1t is the
lilfulamental group of X and w is the orientation character:

When there will be no confusion, we will ignore the orientation char­
ul'tcr and just write Ln(71.rr, w) as Ln(rr).

'I'he four dimensional periodicity in L-theory is induced geometrically
I,y xCP2. (In general xK, for K a simply connected manifold with sig­
lIuturc 1, induces a periodicity [Wal, Mo, Ra2].)

I\cfore continuing, we should discuss manifolds with boundary a bit.
,,'eu' 111anifolds with boundary there are two obvious questions: (1) how to

'l'rhc intersections are basically homological in nature, but self-intersections are more
~iuhrlc. 'fhese are actually affected by the stable framing given as part of the definition of
." " InaI invariant.

"'I'he algebraic theory of surgery, discussed below, gives a uniform treatment of the
..11"11 uction groups in odd and even dimensions.

"rile groups are slightly different for the problems of homotopy equivalence and simple
htUlu)lopy equivalence. See appendix 2.4.A.
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classify manifold pairs homotopy equivalent to a given one, and (2) how:
to classify manifold pairs homotopy equivalent to a given one where the '.
boundary is already given as a fixed homotopy equivalence (say a Cat'
isomorphism) to the original boundary.

EXERCISE. Formulate the Poincare versions of these questions and their.
normal invariant theories.

J.
The second problem is the easier one to handle in our framework. ,i

Since the boundary is fixed throughout the entire surgical procegure, the;~

algebra is absolutely unchanged. J

FIRST ADDENDUM (TO SURGERY THEOREM). The same obstruction.~
measures the obstlUction for surgering degree one nonnal invariants reII
boundary. This obstruction is natural with respect to codimension zero ~

inclusions.,

The second statement means that if we include a codimension zero:·~
~

submanifold in a larger manifold and glue a homotopy equivalence to.i
the complement to the reI a normal invariant, then the surgery obstruc- ~

tion of the larger object is the image of the surgery obstruction of the J
submanifold under the map induced by inclusion. .J

For not rei a problems there still is an obstruction theory, but it is'~~

rather more complicated to algebraicize. Still, one can get quite a bit of.~;

information by just thinking about what a relative group should look like.!

SECOND ADDENDUM (TO SURGERY THEOREM). The obstruction to surg- ~

ering a degree one normal invariant (of dimension 2: 6) not rei boundaryj
lies in a group L n (1f, 1f') (with the obvious notation; 1ft will be a groupoid if~

ais disconnected; for a disjoint union, L is additive). It fits into the obvious·:
exact sequence of a pair (a-map given by taking the surgery obstruction of
the restriction to the boundary).

... ~ Ln(rr') ~ Ln (1f) ~ Ln (1f, 1f') ~ Ln-t(1l") -+ Ln-l(rr) -+ ...

We mention a very important special case, whose proof is nicely pre­
sented in Wall's book:

rr - 11: THEOREM ([Wal, THEOREM 3.3]). If (X, aX) is a Poincare pair
with 1ft (aX) -+ 1rtXan isomorphism, then any degree one normal invariant
with target (X, aX) can be surgered to a homotopy equivalence.

This theorem would appear entirely natural if one thought of the no­
tation L n (1f, Jr) as being some sort of relative group, and then "excision"
would show that this group is O. This is not a good way to think about
things, not the least because the labeling of surgery groups is always done
by listing only the fundamental groups of the parts of the manifold to
be surgered: if we were working relative to the boundary, we would be
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using the absolute group. (Also, excision is a complicated topic in surgery
theory.)

IJut this group does vanish. One way to think about the theorem is this
Surgery theory is cobordism invariant (the typical example of a surgery
ohstruction is a signature), so any 7r = rr' problem has vanishing ob­
"truction, as far as the boundary part is concerned. Now, having solved
th~ boundary problem, we would like to solve the absolute (rei bound­
ilry) problem that now remains. This is, indeed, obstructed, but we can
kill this absolute obstruction by changing the solution to the boundary
problem (see the Wall realization theorem, below).

It also asserts that in some sense the obstruction to surgery is cobor­
lIiSITI invariant (if one keeps track of the fundamental group). If a surgery
problem is cobordant to one that is solved, i.e. is already a (simple) ho­
Ill( )topy equivalence, then it is solvable by surgering, relative to the al­
n:ady solved boundary component, the whole cobordism to a homotopy
la'lll ivalence.

Part of the 1C - 7r theorem's fundamental nature can be seen from the
1"1)lIowing exercises. If you get stuck, you can see them all done simulta­
IIC( )usly in [Wal, chapter 9].

14:XI~RCISE. Using the 7f -j( theorem, show that if L(K) is the obstruction
t() doing surgery with target K, then L (K) just depends on the dimension
,)1' K, its fundamental group, and its orientation character. It might help
t() lise the following:

I':XI~RCISE. Using the 1C -7f theorem, show that every surgery obstruction
that occurs for any n-dimensional space with fundamental group 7f occurs
us a reI a problem on a regular neighborhood of a 2-complex.

II:XERCISE. As a consequence of the previous exercise, prove the

WAI ~L REALIZATION THEOREM. Let X be a given n -1 dimensional man­
i/()Id, and let a E Ln(j() be a given element. Then there is an n-manifold
AI with nvo boundary components, XUX', a map M --+ X x I which is a
('(II isomorphism on one component and a (simple) homotopy equivalence
011 the othe1; and whose rei asurgery obstruction is a.

It is possible to prove the realization theorem directly by a construc­
t ic HI called plumbing. To realize an even dimensional = 2k dimensional
uhst ruction, represented by a given j x j matrix over 7Lrr, one starts with
AI x I, where M is an arbitrary 2k -1 dimensional manifold with funda­
,,,ental group 7f. We will attach to M x I k-handles with self-intersections
and which intersect each other according to the matrix. Figure 10 shows
how to realize the 1 x 1 matrix (2) (a self-intersection issue) in the simply
connected case. (See figure 10.)
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Figure 10. Wall realization of the hyperbolic form

To realize intersections between different handles (the off-diagonal \
entries), one has to make identifications of the k-handles Dk x Dk with'j;
Dk x Dk interchanging coordinates; see figure 11. !~

Unimodularity of the matrix is what forces the result of these surgeries':
to be simple homotopy equivalent to M. The surgery obstruction ·of the~

collapse map to M is rigged to be exactly the given matrix. :

EXERCISE. Using the previous exercises and the rr - rr theorem, prove)
the exact sequence for a pair in L-theory. 1

1
EXERCISE. Glue the two ends of the result of a Wall realization tO~ll

gether by the simple homotopy equivalence, to obtain a closed simple,1
Poincare complex. This complex has a degree one normal invariant, with:~

the surgery obstruction the given one. Can you use this to give simple'!
Poincare complexes not homotopy equivalent to manifolds? (Hint: Let~

1! be a finite group and use a quadratic form which violates the multi~~
plicativity of signatures as discussed in 2.1.) .;'

Actually, Wall first does the absolute theorem and then the 1C - 1C

theorem (this is unobstructed, so there is no need to develop the algebraic
machinery of the closed case), and then uses a variant of the above
outline to prove the existence of relative groups and their exact sequence.
In fact, one might say that the Jr - j( theorem is equivalent to the existence
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cOr~-handleS

~ \ \ Attaching regions of
[~ the handles-----

Figure 11. Plumbing. We glue two copies of k-handles together by inter­
,-hanging core and cocore directions.

t~r II surgery theory (where the obstructions might not be computable in
practice).

In any case, we are almost ready for the surgery exact sequence. First
we define the object computed by the surgery sequence:

I>I':FINITION. Let M be a Cat manifold. sCat(M), the Cat structure set of
A1, consists ofpairs (M', f), where M' is a Cat manifold and f : M' ~
~t is a simple homotopy equivalence. Two objects, (M', f) and (kI', I'),
'~'fJresent the same element iff there is a Cat isomorphism g : M' ~ M"
,\'uch that f is homotopic to I'g.

Notice that a nontrivial element of S(M) is either the result of a funny
luanifold (i.e. one not isomorphic to M) or the result of a self-homotopy
l'quivalence that is not homotopic to an isomorphism.

Now we come to the central theorem:

I I'll EOREM (THE SURGERY EXACT SEQUENCE). Let Mn
, n 2:: 5, be a con­

"t'l'ted oriented Cat manifold with fundamental group, 1f and orientation
..haracter w : 1f ~ 71..2. Then there is an exact sequence

... ~ [EM; F/ Cat] ~ Ln+l(1f, w) --. sCat(M) ~

[M; F/ Cat] ~ Ln(H, w).

Note the sequence continues indefinitely to the left.

I{I:.MARK. The surgery exact sequence, which is actually a consequence
()f the 1T: -1T: theorem, has the remarkable philosophical implication that
I() study all manifolds with a given fundamental group (and orientation
character), it is only necessary to study one with that fundamental group
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(and orientation character) in every congruence class mod 4 of dimen­
sions.

EXERCISE. Formulate this theorem for Poincare spaces using the Spivak
fibration.

EXERCISE.8 Making use of the fact that surgery obstructions are the
same in all categories, prove the main result of smoothing, triangulation
theory: the Cat structures on a high dimensional Cat manifold (when this
makes sense) are in a 1-1 correspondence with lifts of the Cat normal
bundle to BCat.

EXERCISE. Formulate both versions ofa surgery exact sequence for man­
ifolds with boundary. One of them uses the groups L(1r,11:') discussed
above.

To prove the surgery exact sequence is not hard given the other basic I

geometric theorems that we've already discussed. All the maps are al­
ready defined. The boundary map is produced using the Wall realization
theorem.

EXERCISE. Show that the X' ~ X produced by that theorem is inde- ,
pendent of the normal cobordism kfJ. (M, of course, is not itself well '
defined.) Composites are tautologously 0 ([EX; FI Cat] consists of nor- 1

mal invariants for X x I that are Cat isomorphisms on both ends).

"Kernel equals image" for [X; FI Cat] is the surgery theorem. If some...
thing in sCat(M) goes to 0 in [X; FICat], one has a normal cobordism,
and one can try to surger to a simple homotopy equivalence to M xl,
giving an obstruction in Ln+l (rr). If an element of Ln+l (11:) goes to 0 in
the structure set, then it represents a surgery problem where both ends,
are X, so that one gets a rei asurgery problem on X x I, lifting back to "
[EX; FI Cat]. For future reference, we record the surgery groups of the I

trivial group:

PROPOSITION. we have

o 1

2
n=

3

o

mod 4 respectively.

8This exercise is slightly dishonest intellectually. It is only good mathematics for putting
smooth structures on P L manifolds. For analyzing topological manifolds it would be very
roundabout to first establish surgery theory.

9you should make use of the h-cobordism theorem of 1.5.
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The 7L is given by (sign M - sign X)18 for a surgery problem M ~ x.
'rhe 7Lz is given by the Kervaire-Arf invariant, which is an invariant (the
only one of Witt type!) of quadratic forms over IFz. See e.g. [Br1, RSu]
f()r a description.

2.4A. The Rothenberg sequences

[n the previous section we were pretty cavalier about whether we
were surgering to achieve a homotopy equivalence or a simple homotopy
equivalence. There are theories for both, with L-groups denoted L~(1T:)

and L~(1l') respectively. (There are similar gadgets for pairs, etc., and one
(:an have a more severe decoration on the boundary than on the interior,
ctc.)

The superscripts are often called decorations. One can actually deco­
rale using an involution invariant (see 1.6) subgroup of the Whitehead
I1.roup to study the obstruction to surgering to achieve a homotopy equiv­
nlence with torsion in that subgroup. (These were first introduced by
('appell in [Ca4].) We will later have situations where we decorate using
other algebraic K-groups.

There are also correspondingly different structure sets SS (M) and
S" (M); the former was defined in the text, and the latter has objects
Ihat are homotopy equivalences to M, and the equivalence relation al­
It)WS h-cobordisms in place of homeomorphisms.

I·:XERCISE. Prove the surgery exact sequence for Sh (M). Why do the
equivalence relations change automatically when the objects do?

Obviously the relationship between LS(rr) and L h(1l') is governed by
Ifh(1l'). (After all, if Wh(rr) = 0, then homotopy equivalence is the same
us simple homotopy equivalence, so the different versions of surgery
Iheory must coincide.) The precise formula is given by the Rothenberg
sequences. Consider, now, to what extent the torsion of a homotopy
equivalence is unchanged by h-cobordisms.

Using the Milnor duality formula, and the fact that the torsion of a
l'( Hllposition is the sum of the torsions, one quickly sees that the torsion
is changed by r ± r*, where r is the torsion of the h-cobordism. One is
Ihen led to the group

{r = ±r*}/{a ± a*}

tll'pending on the dimension as in Milnor duality. The torsion lies in the
JllIlllerator because of the duality relationship that holds for a torsion
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of a homotopy equivalence between closed objects satisfies. (This should
seem familiar to the reader who has been assiduously working out the
exercises.) This group is called the Tate cohomology of 7L2 acting on
the module Wh(lL.:rr). We shall denote it by H d (L:2; Wh(L::rr». A little
geometric work then leads to the Rothenberg sequence

and similarly, in L-theory,

EXERCISE. Rigorously prove these sequences using the h-cobordism the­
orem and the 1r -Jr theorems for s- and h-surgery.

EXERCISE. Work out a Rothenberg sequence for manifolds with bound­
ary. Explain why LS(:rr, 11:) ~ Lh(:rr,:rr) ~ 0 (Le. the :rr - 1f theorem is
true for both simple homotopy and homotopy surgery) yet not every
h-cobordism of a rr - 1C manifold is trivial.

2.4.B. Proper surgery

Everything that we have done so far for compact manifolds and man­
ifolds with boundaries can be done for noncompact manifolds with tame
ends (1.4). The reader probably realizes that noncompact manifolds are
analogous to manifolds with boundary, not reI 8.

One can formulate the notion of a proper Poincare pair and a simple
proper Poincare pair using locally finite homology and the Whitehead
group that enters the proper h-cobordism theorem (I.S.A). The normal
invariants are entirely unchanged.

There is a rr -:rr theorem for proper surgery. One needs to have
the ends be 1r - Jr as well. Thus a whole surgery theory exists. The L­
groups are functors of (dimension, orientation character, and) the proper
fundamental group data of the manifold.

Recall that if Xis compact, then WhP(Xx IR) ~ Ko(lL.rr). This leads to
an essential role for projective modules in proper surgery. For instance,
we have a Rothenberg sequence

... ~ Hd+l(~2; Ko(~1l'») ~ LS(X x IR) ~ Lh(X X IR) ~

H d (lL.2; Ko("Z-rr»).

Now Siebenmann's theorem (1.4) identifies
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hecause with the proper simplicity one can put a boundary on these open
manifolds. Thus, we get a sequence

... ~ Hd+1(ZZ; Ko(Z1r») ~ L h (Z1r) ~

Lh(X X R) ~ Hd (Z2; Ko(Z1r»).

'rhe group Lh(X x R) is often written as LP(Z1r) (called the projective
L-group). Algebraically, it is defined the same way Lh (7L1r) is, except
projective modules are used in place of free ones. (See [No, Ra4] for this
algebra.) Notice that the above sequence is very similar to the L S ~ L h

I{othenberg sequence, with Ko replacing Wh. It is often referred to as
the Rothenberg-Ranicki sequence.

One can also interpret the projective L-groups as measuring the ob­
struction to taking a finitely dominated Poincare complex and making
it a manifold after x S1. See [PRJ. This is closely related to the Bass­
I Ieller-Swan formula and Farrell's fibering theorem (see 4.5). Clearly, it
rncasures the obstruction for surgery after taking the product x 1R1•

Unfortunately it is, in general, difficult to describe a proper L-group
in terms of absolute L-groups of the interior and of the end. One would
want to have Lh in the interior and LP on the ends, but these do not
combine to give the L-theory decorated by the relative K-theory.

2.5. F/ Top and the characteristic variety theorem

All of the previous material isn't worth a whole lot unless one can
compute F / Cat and the various L-groups. The remainder of this chapter
is devoted to F/Cat for the various Cats. Top has the easiest answer, so
we will start with it. L-groups can be studied either geometrically or
algebraically (and in some cases analytically!) and will be returned to in
l'hapter 4.

Firstly, we can easily compute the homotopy groups (at least in high
dimensions) of F/Top from the generalized Poincare conjecture (1.7)
und the surgery exact sequence. The ope asserts that S(Dn rei 8) = 0
f()r n 2: 5. Plugging this into the surgery exact sequence one discovers
lhat

7f; (F/ Top) = L i (e) = 0, 7Lz, 0, Z for i == 1, 2, 3, 0 mod 4 respectively.

Special arguments are needed to verify that this continues through low
dilncnsions. (Except i = O. FjTop is connected.)

Knowing the homotopy groups of F/Top is a good first step for com­
puting what [X: F/Topl is. For instance, since FjTop is an H-space,



62 Theory of Manifolds

general nonsenselO implies that

[X: F/Top] ® CO ~ $Jri(X; Q).

(This holds for F / PLand F /0 as well.)
However, we can go further and describe the integral homotopy type

of F/Top explicitly. Before doing this I would like to say a few words
regarding localization.

Let S be a set of prime numbers. By Z(S) we mean the ring of frac- I

tions whose denominators are relatively prime to the elements of S. For 1:.,",·:·.:

an abelian group, A, a good way to concentrate on information only in-
volving the primes of S is to localize by setting A(s) = A ® 7L(S). One
way to say this is to observe that if (I, S) = 1, xl is an isomorphism on ~

Z(S). Furthermore, any map from A to an abelian group satisfying this I
property factors through A(S). (One way to see this is that by hypothesis, ~

for each t, one can complete the diagram: .~
xt

A -A

1//////
B

in a unique way. Consequently, the map factors through the direct limit,
which is A(S).)

The same can be done for H-spaces. (Actually, one can localize simply
connected spaces in general but H -spaces suffice for our purpose.) If H
is an H -space, then one can produce a localization H(S) which localizes
at S all mapping spaces [-, H], in particular homotopy groups. It also
localizes homology and cohomology, as one can argue using some spec­
tral sequence arguments. One construction of the localization is again as
a direct limit of power (x t = I-th power of an additive group) maps.

Thus, we shall describe the diagram

F/Top -----.. F/Top(2)

1 1
F/Top[1/2] • FjTop ® Q

lOIn short the argument goes like this. The Milnor-Moore theorem on the structure
of Hopf algebras implies that the rational cohomology of F / Top is a graded polynomial
algebra on the generators of rational homotopy (since it is an H-space, via Whitney sum
of bundles). The map to a product of Eilenberg~MacLane spaces given by these primitive
cohomology classes (think of cohomology as maps to an Eilenberg~MacLane space) gives
an isomorphism on rational cohomology. Therefore, by the mod C Hurewicz theorem, for
a finite complex X the induced map of mapping groups [X : -] is a rational isomorphism.
If we knew that F / Top was an infinite loop space (which it is), then one could argue
that the Atiyah-Hirzebruch spectral sequence for the F/ Top cohomology theory rationally
degenerates.
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'I'his will then describe for us for any finite complex X the abelian group
I.\' : F/Top] as the pullback of [X: FjTop(2)] and [X: F/Top[1/2]]
over [X: F/Top® 0] = $H4i (X; 0).

'1'11l~OREM (KIRBY-SIEBENMANN, SULLIVAN). There are homotopy equiv­
"f(,flces

F/Top(2) ~ nK(Z2, 4i - 2) x K(Z,4i) i 2: 1

F/Top[1/2] ~ BO[1/2]

l1,It('re K(A, n) is the Eilenberg-MacLane space that classifies H n(-; A).
'/11<' map to rational cohomology is the obvious one for 2-localization and
;.\' the Pontrjagin character (Chern character of the complexification) for the
1/2-localization.

In other words,

[X: F/Top](2) ~ nH4i - 2(X; Z2) x H 4i (X; 71.(2» i ~ 1

[X: FjTop] [1/2] ~ KOo(X)[1/2]

und there is a short exact sequence

O~[X:F/Top]~

K OO(X)[l/2] x E9 H 4i - 2(X; Z2) x H 4i (X; Z(2» ~

E9 H 4i (X; Q) ~ 0

I~I;,MARK. The proof is not'that hard for the reader who believes every­
Ihing said till now, but it would take us a bit afield to go through the
tll'lails. Suffice it to say that the 1l' -1l' theorem (or rather its consequence,
h(u"dism invariance of surgery obstructions) enables one to build a map

Qn(FjTop) ~ Ln(e)

hy viewing the left (bordism of manifolds with maps into F / Top) as bor­
tliSITI of normal invariants, of which one can take the surgery obstruction.
()nc uses the work of Thorn on bordism [Th] and of Connor and Floyd
1< 'F] relating bordism to K-theory to produce maps which the above cal­
fulation of homotopy groups can show to be homotopy equivalences11 •

Sullivan likes to give his theorem a more geometric sound. He asserts
tl';ll given a manifold M there is a characteristic variety X in M that

II IIere are some of the details. At 2, Thorn shows bordisrn is a product of Eilenberg­
Ma<:Lane spectra. Therefore the homomorphism actually produces classes in Hi(F/Top;
I I (t')) which give the decomposition. For the argument away from 2 one needs to observe
IIll1t hoth sides are modules over a smooth oriented bordism ring Q(*), the left-hand side
Ity +, and the right by taking the product with signature. A variant of the main theorem of
I( 'I") implies that one then gets a map KOo(FjTop) ®Z[1j2] ~ 2:[1/2], which then gives,
ltv a universal coefficient sequence. a map FjTop ~ 80(1/2].
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consists of ordinary manifolds and 7L.n -manifolds (I'll get to those in a
moment), such that a normal invariant is trivial iff the surgery obstruc­
tions on all of these subobjects are trivial.

A 7L.n -manifold is a manifold with n diffeomorphic boundary compo­
nents, all glued together. The reader should verify that signature mod n is
a cobordism invariant of 7L.n-manifolds. (Observe that if M is a manifold,
then nM bounds Mx the cone on n points, so one loses the multiples
of n.) Similarly one can define mod n surgery obstructions for normal
invariants of these. (This is a special case of the general process for
defining surgery obstructions for singular spaces that will be considered
in Part II.) Sullivan's theorem specifies such a subcollection of M, so
that the transverse inverse image for a normal map gives a collection of
7L.n-surgery problems, whose obstructions vanish iff the normal invariant
is trivial. The collection is referred to as the characteristic variety.

Almost always it is the homotopical form of the calculation of F / Top :
that is useful, but the geometric form is handy from time to time. The :'
replacement theorem in 13.5 was first proven using the geometric version, ~;

although the argument presented there does not use the characteristic :~

variety theorem at all! j
~

2.5.A. The signature operator and Sullivan orientations .:1

The discussion away from the prime 2 of FjTop has an important .~
complement. '~

THEOREM (SULLIVAN ORIENTATIONS). There is a class ~(M) E';

K On(Mn) ® 7L.[1/2] which is an orientation. If f: W ~ M is a degree one .
normal invariant, then the normal invariant, localized away from 2, of f is
~(M)/h~(W).

This class ~ can be produced in two ways. The first way is due to
Sullivan, and the second is to apply index theoretic ideas.

The first approach can be implemented in two ways. One can argue
homotopy theoretically using MSPL, the classifying space for PL bor­
dism, in place of F / Top in the previous chapter.

More geometrically, embed M in a Euclidean space with codimension
4r and regular neighborhood (N, aN). We shall describe an element
of K04r (N, aN) which corresponds under (Spanier-Whitehead) duality
(cf. [AdZ]) to ~(M). As in 2.5 it is only necessary to give a pair of
homomorphisms

Q (N, aN) -------+- 7l.

1 1
Q(N, aN; O/7L.[1/2]) , O/7L.[1/2]
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with the right properties with respect to taking products with closed ori­
ented smooth manifolds. For the first map, one takes a bordism class in
(N, aN) and takes the intersection with X and computes the signature.
'rhe second map goes the same way using 7Ln -manifolds to represent the
hordism with coefficients and taking mod n signatures of such spaces.
(Note that 0[1/2] is the direct limit of 7Ln for odd n.)

The second way to define ~ involves two ideas. The first is that
Atiyah [A4] has shown how to assign to every elliptic operator a K­
homology class. (Subsequently Kasparov [Kasl] and Brown, Douglas,
and Fillmore [BDF] gave more complete functional analytic descriptions
of K-homology in these terms; see also [BD] for an entire description
()f K-homology in terms of indices.) Then, to get 6., in the smooth case
()IlC can apply this to the classical signature operator [AS, pt. III], and
for the P L and topological cases, one can use the operator of [Te] and
ISuT] (cf. [Hil]).

Atiyah's idea is simply this: the index with coefficients in bundles gives
II pairing

KO(X) ® Ell(X) ~ 7L

which is almost, but not quite, enough to describe an element of Ko(X).
I I()wever, on inflating this with families parametrized by a space Y one
J.tcts a pairing

KO(X x Y) ® Ell(X) ~ KO(y),

which as one varies Y does suffice for giving the element. One should
think of the use of general Y's as like inflating the bordism cycles to
h()rdism of 7Ln-manifolds to get a hold of torsion phenomena.

I will not review here the definitions of the various types of signature
operators. One can see [Ros!] for an exposition of some of this circle
of ideas and in particular an account of analytic proofs of Sullivan's
theorems.

In [RsW4] we show that the K-theory class at 2 of the signature oper­
"tor is the image under a certain natural transformation from homology
to K-theory of a topological characteristic class of the tangent bundle of
AI.

1.5.8. Rochlin's theorem and F / P L

I~ven before the celebrated work of Donaldson, it was known that the
tht'()ry of smooth four dimensional manifolds was possessed with some
{)lldity. Almost all of the then known peculiarities stemmed from one
theorem:

I{c )('11LIN'S THEOREM. If M is a closed smooth spin 4-manifold, then
Ihi sign(M).
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To put things in perspective slightly, realize first, that we can arrange
for M to be simply connected up to cobordism by some elementary surg­
eries. In that case, M spin boils down to the assertion that x U x == mod 2
for all x E H2(M; Z). Van der Blij's lemma (see [Se1]) says that the
signature of a unimodular quadratic form with evens along the diagonal·} .
(when described as a matrix) is always divisible by 8. Rochlin's theorem
gives an extra divisibility by 2.

One way to prove Rochlin's theorem is to use the fact [AH2] that the
A-genus of any spin manifold of dimension 4mod8 is even. (Nowadays,
we would attribute this to the fact that in these dimensions the complex
spinor representations are quatemionic, so that the kernels and cokemels
of the Dirac operator are of even complex dimension and therefore have
even index.) Now, for any 4-manifold, the index theorem implies that
sign = 8 x (A - genus).

16 is the best possible. The famous Kummer surface has signature 16.
(Topologically, the Kummer surface is obtained by taking the quotient I

of T 4 by the involution that flips all coordinates. This quotient has 16
singular points. The links of these singular points are copies of IR p3. '
IR p3 is the boundary of the unit tangent disk bundle to S2, so we remove i
neighborhoods of the singularity and glue in 16 copies of this unit tangent :;,
disk bundle.) 1

1Rochlin's theorem has profound impact on high dimensional mani- :~~

folds as well. First of all, below dimension eight, every PL manifold has J
a smooth structure (unique till dimension seven). Secondly, all of the ~

1analysis of 2.5 works for F/ PL just as well as it did for F/ Top. Even \
their homotopy groups are abstractly isomorphic. Things only deviate in
dimension 4. Consider now

In the topological case this was onto, and responsible for, a cohomology
class in H4(F/ Top; Z(2)) which evaluated 1 on the image of the Hurewicz
homomorphism. In the PLease, Rochlin's theorem shows that this is
impossible. On the image of the Hurewicz homomorphism, we are com­
puting the simply connected surgery obstruction of a degree one normal
invariant with target a sphere; the domain is a PL spin manifold, so
by Rochlin's theorem this has signature divisible by 16, and hence the
surgery obstruction is even.

One does get all multiples of 2 using appropriate maps from connected
sums of the Kummer surface to s4.

The upshot of all this is that F/ PL ~ F/ Top is an isomorphism on
homotopy groups except in dimension fOUf, where both groups are Z and
the map is multiplication by 2. Consequently, Top/ P L ~ K (Zz, 3). This
proves (and then displays Top/ PL ~ K(~2, 3) there is an obstruction
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(called the Kirby-Siebenmann invariant) in H 4(M; Z2) associated to any
topological manifold, which in high dimensions vanishes iff the manifold
has a P L triangulation; the triangulations are classified by H3(M; Z2).

Indeed, to be more honest about the logical development of the whole
subject, one should realize that all of the surgery theory described must
first be worked out for the PLease, with Rochlin's theorem entering to
produce a low dimensional peculiarity in the homotopy type of FI PL.

Topological manifolds are much harder to analyze. A major step was
Novikov's theorem on the topological invariance of rational Pontrjagin
classes. (We will explain an approach to this using more modern general­
izations of surgery theory in chapter 9.) Precise topological classificatory
information under some hypotheses was then discovered by Sullivan and
(..ashof-Rothenberg.

The real breakthrough which enabled all the further complete analyses
was Kirby's torus trick [Ki], which reduced the isotopy classification of
homeomorphisms of Euclidean space to the problem of classifying PL
rnanifolds homotopy equivalent to the torus (this was solved by Hsiang­
Shaneson and Wall; we will discuss this in chapter 4). In fact, the main
difficulty that then followed was deciding whether Top/ PL is contractible
()r has one nontrivial group. This and the methods needed for mimicking
Ihe usual PL constructions (e.g. transversality, handlebody theory, simple
homotopy theory) were developed in [KS].

1.S.C. FlO

This appendix is included for reasons of completeness only. It sum­
Inarizes the calculation of FlO due to Sullivan. See [MM, MORT] for
nu)re details.

While FIT0 p is analyzed using its interpretation in terms of normal
invariants, F /0 is analyzed in terms of a more purely homotopy theoretic
framework.

({ecall that FlO is the fiber of the classical J-homomorphism BO ~
/I I,' and is related to the issue of how much of an orthogonal bundle
is invariant under fiber homotopy equivalence. This was the object of
Adams's well-known series of papers [Ad] which motivated, stated, and
l'xplained the significance of the Adams conjecture, solved by Sullivan
ISu3j and Ouillen [011] and later given a beautifully simple proof by
Becker and Gottlieb [BGl.

I"or convenience we will p-adically complete all spaces (this is an ana­
It 'l!.lIC of localization but is a bit more drastic; see [Su3]).

'I'he Adams conjecture is more or less the statement that if 1/1* de­
noles the Adams operation (see e.g. [AS]), then one can construct a map
/I S ()1/)I ---+ FlO [p] lifting lfrk - 1, i.e. fill in a missing diagonal arrow in
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the following diagram:

FjO[p]

1
lfrk -1 : BSO[p] --~~ BSO[p]

for k a generator of 7L*2 for p odd and k = 3 for p = 2. Let a : BSO[p] -+p
FjO[p] be a lift. The definition of FjO gives a map the other way
(indeed, it is the vertical map in the diagram above!). These enable one to
decompose (2 B F as a product of two spaces 1m J x Cok J, whose names
describe their homotopy groups. (Im J can be viewed as the homotopy
fiber of 1frk - 1.)

THEOREM (SULLIVAN). For each prime,

FjO[p] ~ BSO[p] x Cok Jp.

This is, in some ways, a very sad result. The second factor involves the}
hard to understand part of the homotopy groups of spheres. Maps into /).

':~

it are what smooth normal invariants are about. j

EXERCISE. Show that Cok J integrally splits off FlO. Warning: There
are many subtle and difficult points regarding the H -space and infinite
loop space structures on these spaces and the maps between them. We
refer the interested reader to [MM, MORT].

PROBLEM. Is there an infinite loop space structure on F j 0 which makes
the surgery exact sequence into a sequence of abelian groups and ho­
momorphisms? In the topological category, this is possible, as will be
explained in the following chapter (3.4).

2.6. Notes

The surgery process was first described by Milnor [Mil] as a "proce­
dure for killing the homotopy groups of a manifold". In [KM], it was
extended to deal with the problem of classifying smooth structures on
the sphere. (These authors noted, in particular, how homotopy groups
of spheres enter, as in 2.5.C.) The general simply connected theory of
surgery on a map was developed by Browder and Novikov; see [Br1].
They were able to apply this idea to classify the smooth manifolds ho­
motopy equivalent to a given simply connected one, up to finite inde­
terminacy. The formulation in terms of Spivak bundles, etc., is due to
Sullivan [Su1,2]. Wall then developed the nonsimply connected theory
extensively, and his opus [Wal] must be studied by all students of high
dimensional topology. The survey of Lees [Ls] is a valuable introduction
to the surgery theorem.
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Both [Brl] and [Wal] spend some space on Poincare complexes. Spi­
vak's original paper is not that hard to read, and [WaS] contains in­
teresting low dimensional information and examples. For some deeper
geometric information, see [Lvtl, Jl, Q4], and especially [HV]. We will
return to more algebraic theory in the next chapter.

The signature-related invariants of Poincare complexes and algebraic
invariants of L-groups do connect quite closely with K-theory of C*­
algebras. The appendix, (2.5.A) on the signature operator and the Sulli­
van orientation is an example of this. Yet others are scattered throughout
the text.

The Rothenberg sequence appears in Shaneson's thesis [Shl]. Proper
surgery appears in [Th] and also [Mau].

The results on classifying spaces are described in this chapter in the or­
der of their simplicity. More information can be found in [MM, MORT].
1··1istorically, Sullivan first analyzed F / P L including the low dimensional
peculiarities. For the low dimensional part he used the smoothing of low
dimensional PL manifolds and the connection between F /0 and the
.I-homomorphism. F/Top came later, after smoothing and triangulation
were understood through the work of [KS], which itself was the culmi­
nation of a long research program that included, [KM, LRl, Sui, 2].
('"rhe original proof of Rochlin's theorem [Ro] was via the connection to
homotopy theory. It was discovered in trying to reconcile an incorrect
calculation by Rochlin of the stable 3-stem using the Pontrjagin-Thom
l~()nstruction, with the correct answer provided by the method of killing
homotopy groups. The proof described here I first heard from S. Stoltz
and is presented in the charming book [LwM].)

The Adams conjecture, as mentioned in the text, is due to Quillen
and Sullivan. Quillen's proof is closely related to his calculation of the
algebraic K-theory of finite fields. One can also try to read [Su4] for
an inspirational "big picture". The method of Becker and Gottlieb is
1l1uch more elementary and is based on a transfer associated to principal
t'()mpact Lie group fibrations and an appropriate "splitting principle".

The method of proving Sullivan's result on orientations from the work
()f Sullivan and Teleman was the joint work of Rosenberg and myself. The
I'esult at 2 settled an enigma that bothered us of how operator theorists
loan produce a topological invariant unknown to topologists (Le., the sig­
nature operator at 2). It wasn't unknown. The invariant is essentially the
class defined in [MoS]. The map from homology to K-theory is best UD­

derstood using intersection homology. We will return to the connection
hctween intersection homology and classifying spaces in Part III.
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~

j
~
~

This chapter deals with a more formal view of the material of the previ-
ous chapter. We shall show how to "spacify" the results of the previous .~

chapter so that all long exact sequences become the long exact sequences}
of fibrations. The various terms have to do with "blocked" versions of .
the problems of surgery theory. (To have a problem blocked over X is a
PL analogue of the smooth notion of a family of problems parametrized
over X.) .

We shall also see that in the topological case we can make the surgery J

exact sequence a sequence of abelian groups and homomorphisms, hav­
ing fourfold periodicity (akin to Bott periodicity). Finally, we shall apply
this to see that surgery theory is actually a covariant functor from spaces
to abelian groups (or, better yet, to spectra). The push forward is rather
similar to Atiyah-Singer's topological index.

These developments are rather technical but seem to provide the cor­
rect framework for the formulation of the classification theorems in chap­
ter 6.

The reader who feels entitled to some applications immediately can
go straight to chapter 4; it is a convenience, which is not absolutely nec­
essary, to take with you the belief that G/ Top has an infinite loop space
structure which makes the surgery map a homomorphism. (Actually, the
group structure is the one implicit in the calculation of F/Top in 2.5;
the addition on [X; F/Top] is given by the addition of the functions on
the characteristic variety of X associated to the elements.)

3.1. Spacification

In this section we describe a formal process that makes spaces out
of the terms in the surgery exact sequence and is such that the various
long exact sequences become exact sequences on homotopy groups of
fibrations. The next section gives a geometric interpretation of this, which
we will use many times later in this text.

Other functors, such as the Whitehead groups, also have "spacified
versions", but for them the spectra are more sophisticated than the ones
we deal with here, and it is not a simple formal process that constructs
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them. If one spacified using the technique of this chapter, one would get
the wrong answers for topological questions (but the correct ones for
certain PL applications!).

The formal apparatus for "spacification" is ~-sets. A very useful ex­
planation of the use of simplicial techniques can be found in [May].
A suitable general reference for ~-sets, and their homotopy theory, is
[RS1]. The general idea is that we describe a space by its simplices and
how they're fitted together. Then one can take a geometric realization
of this space and interpret combinatorially its homotopy groups (under
decent conditions). We will be content to explain how this works in some
examples.

To get the idea, let's start with a very easy example from first-year
topology. Suppose that we define a space by having vertices be points of
a fixed space X. Edges will be paths in X: they connect vertices. Faces
will be maps of the 2-simplex into X and the boundary map is the usual
one. If one geometrically realizes this, one gets the singular complex of
.r. Its homotopy groups, given by the combinatorial data of a map of a
simplex into this complex, assemble into an element of the homotopy of
,r (because the simplices that make up a sphere will fit together and one
will get a map of a sphere into X from these data) and in fact the natural
Inap from the singular complex into X is a weak homotopy equivalence.
In this example, one sees that for a reasonable theory one needs to have
a subdivision property (so that one can realize the homotopies that one
expects to find). This is called the Kan condition.

A more typical example for us goes like this. Let the vertices of Q i
he closed Cat manifolds of dimension i. Edges should be cobordisms. A
simplex ~ should correspond to manifolds with multifaceted boundary,
decomposed with the same combinatorics of ~. In this example one can
readily see (using transversality) that 1l'j(Q) ;: the bordism group of i + j
dimensional Cat manifolds.

Now we can spacify just about any situation where one has suitable
relative theories and gluing operations. (I will not axiomatize this, but
Ihc method is formal enough.) (In bordism, the bordism of manifolds
with some fixed lower dimensional boundary pattern is either empty or
l'losed bordism of the same dimension by a "difference construction".)

For instance, for a manifold M, to spacify the structure set, S(M),
«)I1C considers a simplex ~ to be a map of a space W whose bound..
ury is decomposed according to the combinational data of a~, as in the
hordism example, to M x ~, which is a (decorated appropriately, see
.~.4 and 2.4.A) homotopy equivalence when restricted to each subsim­
Jlll~x. The h-cobordism theorem identifies 1l'o(S(M» ~ S(M). More gen­
tOrally,

~i(S(M» ~ S(M x 6.', ret a).
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:1
Even stronger, there is a loop space statement ~

~
S(M X 6,i, reI)£: QiS(M). 1

~

(The fact that one sees group structures on S(Mx ai •· rei 8), i ~ 1, via the 1
isomorphism to Jri(S(M» is something one can see directly geometrically'.'.
by gluing together two elements of S(M x 6,i, reI 8) along a face in their '~

boundary (and reconfiguring the boundary).) 1
EXERCISE. Show that in all categories, if one us~s this addition of struc- :1
tures, the surgery exact sequence for S(M x 8 1

, reI a), i ~ 0, becomes]
an exact sequence of groups and homomorphisms. .~

The normal invariants can also be spacified; we denote this space by ,~}
NI(M). A simplex 8 corresponds to a normal invariant (decomposed as'~
usual) of M x 8. One has a homotopy equiva1ence::~

'Il

NI(M) ~ Maps[M: FICat]. ~
j

using the material of 2.3 (i.e. the proof that normal cobordism classes o(~
maps into M are given by the homotopy classes of maps into FICat). '~

It remains to spacify the surgery obstructions. The key to doing this is,;~

finding a bordism interpretation of surgery. This can be done using theJ
:rr - :rr theorem and realization. Wall does this in c?apter 9 of his book~

[Wa1J (surgeons always know what people are talking about when they~.

mention chapter 9). ..~

Basically, L(1T) will. be made up out of all ~ur~ery problems with fun-i.~

damental group 1T. Since we only have realIzation when we move on~

to manifolds with boundary, rei 8 (and furthermore, since we'd like to~;~

be able to map manifolds with boundary into the surgery groups), theset;~

must be included among the O..simplices. However, because of the 1C - irjt
theorem, if a map is cobordant to a homotopy equivalence (even chang~:~

ing what the target of the normal invariant is during the cobordism),/~
then it is normally cobordant, in the conventional sense, to a homotopy,,~
equivalence. l~

More explicitly, we define L;(11')1 as follows. A O-simplex consists otJ
a degree one normal map W, 8W ~ M,8M2 with an isomorphism3':~
JrlM ~ 1T, such that the map aw ~ aM is already a homotopy equiva-':j(
lence. A 1-simplex is a cobordism of such objects. The boundary of th~

1We are ignoring orientations as usual.
2In the range it does not matter if we use Cat manifolds or Poincare spaces, as the

reader can see by going through the ensuing arguments.
JOne only needs a homomorphism; see [Wal, chapter 9]. That is the difference between

his version of "restricted" and "unrestricted" objects. With the latter one can define a group
structure just by disjoint union and have the empty set as a base point. We shall not bother
with this because the reader can verify that these spaces are their own fourth loop spaces,
so there is a group structure on components given this way.
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l" )hordism will have three pieces: a top, a bottom, and the side. The
It lp and bottom will be rei a surgery problems, and the side will be a
IUUTIotopy equivalence between manifolds with (usually disconnected)
IttuJndary. i-simplices are similar things.

By crossing with I and "repaving the boundary" one sees that all ho­
tlHltopy equivalences can be connected4 to the base point. Furthermore,
the 7C - j( theorem shows that taking the surgery obstruction provides an
hljective map to L i (iT). Surjectivity is given by realization.s

I~XI~RCISE. Build an assembly map Map [t1 j , a: L;(n)] ~ L;+j(n), and
,du)w that it is a homotopy equivalence. Show that L-spaces actually
t'orln a spectrum. (x with CP2). giL} == L; +j. (See [Ad2] for a basic
I't~fcrence on spectra; [Ad3] provides an informal introduction. For a
I1H )(.1ern version, see [LMS].)

(~ombining all the above spaces one obtains, for M an i-manifold, a
Nt'(luence readily seen to be a fibration (up to homotopy):

S(Mi) ~ NI(M) (~Maps[M: FICat]) ~ Li(fr)

ft U" i ~ 5 as usual. This method of describing surgery groups makes
tll~aling with relative groups and the like simple; they are cobordism
M"tUlps of relative objects or equivalently homotopy groups of homotopy
"hers.

•\.2. Blocked surgery

Now we give a geometric interpretation of the structure and surgery
"paces of the previous section.

I ..et F be a manifold or polyhedron or stratified space. An F block
hUIHJle over a polyhedron6 X consists of the following. Over vertices of
.\' one has F's. Over 1-simplices one has F x 1's. Over a simplex ~ one
flus F x 8'S. This differs from the notion of a bundle in that one doesn't
have a projection map to 8 such that each inverse image is a copy of F,
ttll',

I)oesn't the above definition sound a lot like a 8-set? Thus one forms
till' associated 8-set BC8t(F). Vertices are Cat manifolds isomorphic to
/,', edges are manifolds isomorphic to F x I, etc,.:......,An F block bundle is
then given by a homotopy class of maps X ~ BCat(F). (The reason for

I Sec previous note.
.,I f one defines the L-group formally by this cobordism group, realization is automatic.
h In some places it is convenient to have topological block bundles over nonpolyhedra.

I Ju~ is an awkward notion, but it can be made clear (if messily) for locally triangulable
'.,UICl'S (like manifolds).
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I
the notation is that QBC8t(M) has as components the Cat autoisomor- ~I":'."".
phisms of F up to pseudoisotopy.)7 .1\

A primary reason for the interest in block bundles is that they play
the role in the PL category of fiber bundles in the smooth category. For .!
instance, while the smooth tubular neighborhood theorem identifies vec- 'j
tor bundles with the germ neighborhoods of a given manifold in higher i
dimensional manifolds (i.e., every embedding has a neighborhood which l
is diffeomorphic to the total space of a vector bundle, and the vector .'
bundle is unique up to isomorphism), in the PLease, neighborhoods of 1
locally flat submanifolds look like the mapping cylinder of a "projection" i
of block bundles whose fibers are spheres. (See [RS2] for the general .:~

theory and for many specific calculations. The reader should, as an ex- ;~:;
ercise, re-prove as many of the main results of that paper as she can by ·l
direct blocked surgery arguments.) J

One can also form a similar ~-set BF(M) out of M-fibrations (i.e., ~~
:~ithe homotopy notion). What we called BF before is just the limit under~;

suspension of BF(Si). A little thought shows that (with the s-decoration)!
one has for a manifold, M, a fibration (except that not all components
of S(M) actually occur in the fiber)
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S(M) ~ BC8't(M) ~ BF(M).

This enables one to study the M block bundles surgery theoretically.
Let us apply this to a specific problem (which we will have need for in

chapter 8). Suppose that we have a map E ~ B. When is it homotopic
to a block fibration? We answer this with a theorem whose meaning will
be explained immediately below:

THEOREM (See [01, BLR, LvR, CW8]). Suppose that dim E - dim B ~

5;8 then a map f : E ~ B is homotopic to a block fibration iff
(1) the homotopy fiber F is homotopy equivalent to a finite complex9

so that E is then simple homotopy equivalent to the total space ofa
fibration with finite fiber,
and

(2) an associated obstmction element vanishes; this obstruction is an
element of the set of components of the fiber of an "assembly map"

A : Sections (E(L(F) ~ B)) --+ L(E)

7Autoisomorphisms are isotopic if they can be connected by a I-parameter family of
such; they are pseudoisotopic if there is an autoisomorphism of F x I which restricts on
the boundary components to the given ones.

HOne can do something in lower dimensions, ad hoc, sometimes. For instance, think
"hout the case where dim E =dim B.

I~Rccull fr0l11 the exercise in 2.2 lhelt this implies that F is a Poincare space.
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For condition (1) the reader should note that any fibration over a
finite base with finite fiber has a natural simple homotopy type. E is
only homotopy equivalent to this canonical simple type, and we have the
torsion of this comparison to contend with as a first obstruction.

From the F fibration over B, one obtains an associated fibration with
L(F) fiber by taking L-spaces fiberwise. The sections of this fibration
are referred to in condition (2). Over each simplex ~ in B one takes
the transverse inverse image and tries to do surgery to make the map
(simplexwise) simple homotopy equivalent to the corresponding ~ x F.
This gives a section of the associated bundle, but on assembly, it is trivial,
because when we glue these pieces together (Le., assemble them) we get
the global manifold E, which is homotopy equivalent to the total space
of the associated fibration, Le., is a solved surgery problem!

If this obstruction is trivial, then we can do blocked surgeries to a
blocked fibration and surger the normal cobordism into an s-cobordism.
These together provide the homotopy to a solution.

EXERCISE. Show that elements of 1f1 of the fiber of the assembly map
are the different block bundles fiber homotopy equivalent to E ~ B.

I~XERCISE. Re-prove the above theorem by comparing S(E) and the clas­
sification of F block bundles. Note the exponential or adjoint isomor­
phism NI(E) ~ Sect(E(NI(F» ~ B», as one sees geometrically or via the
isomorphisms of both NI(E) and Sect(E(NI(F) ~ B) to function spaces.

I~XERCISE. If one spacifies Wh(1l') using the ideas of 3.1, what does one
get? Construct an involution on this space. What does it do on homotopy
groups? Can you see a Rothenberg fibration?

I{EMARK. This spacification of Wh is not really that useful. In particular,
it is not the one that arises in pseudoisotopy theory [Wald 1] or even in
()ur later work on stratified spaces. Much more useful and interesting is
the version of Wh that arises as the fiber of the assembly map in Quillen's
(or Waldhausen's) K- (or A-) theory.

~'.3. Algebraic theory of surgery

If one examines things carefully enough, one discovers that many
(t hough not all) of the constructions we've discussed so far in surgery do
Il()t really depend that much on the geometry of manifolds and Poincare
C( lmplexes, but rather on the algebra of their underlying chain complexes
with the Poincare duality map. This is analogous to some of our discus­
sions in K-theory, e.g. the purely chain complex version of the finiteness
ohstruction (1.1).

I do not want to develop this algebraic point of view extensively, but
at several junctures it will be very convenient to have. For one thing, it
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,~

turns out that algebraically, surgery is exactly a cobordism group (of a less :~

cumbersome type than the (Wall) chapter 9 sort we've used before), so :~

that one can manipulate elements using a more geometric language. For 'J.

another, it provides a smaller and simpler model than Poincare bordism
and allows one to do certain arguments.

Here is the basic idea.to An algebraic Poincare complex over a ring
R, with an anti-involution -, consists of a chain complex C* and a chain
map

which has some good properties. First of all, we want cp to be a chain
homotopy equivalence. Secondly, we'd like cp to be €-symmetric. Consider
lfJ*. It also gives a map cn-* ~ C*. Ideally, q;* = E lfJ. (The E comes from
the fact that we occasionally would like to deal with skew-symmetric
forms and the like.) That is, however, too much to ask for, in general.
Instead one requires cp* to be chain homotopic to E cp.

The issue is that now by dualizing again one gets another chain homot- "
opy from q;* to E cp. So one has to assume that these are chain homotopic.
And then we have a symmetry condition on this homotopy. Etc.

All of this can be summarized concisely algebraically as a map from
the standard resolution of 7L. over 7L.[7L.2l into Hom(C*, C*) of degree n.

(Actually, we have explained the idea of a symmetric algebraic
Poincare complex. Ranicki [Rat] also defines the notion of a quadratic:
APe, which is a more refined thing. It captures the more subtle
self-intersections in the definition of surgery obstructions.)

Clearly this definition is closely modeled on the idea of a Poincare
~mplex (2.1). One can define similar algebraic notions related to the
,idea of a Poincare pair. Consequently there are ideas of cobordism of
algebraic Poincare complexes and the like.

, DEFINITION. Ln (R) is th'e cobordism group ofsymmetric algebraic Poincare
complexes. Ln (R) is the cobordism group of quadratic algebraic Poincare'
complexes. .

:R;;lnicki .shows that for R = 7L.TC, L n(R) ~ L n (?LTC) in the sense of
. the' previous chapter; i.e. that the above is a good cobordism theoretic
, algebraic description of the surgery obstruction groups.

··.·RE~K. ,The· reader used to the K-theory literature should not make
. the' mistake of associating variance by subscript and superscript. Both
~ .fuhctors are covariant.

lOActtially, for many purposes the more recently defined visible APes of Weiss [Ws] are
even more useful. The fiber of the visible assembly map (see below) is isomorphic to the
fiber of the quadratic assembly map. See the notes for more discussion.
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REMARK. It is possible to decorate L-groups of this sort. One can insist
that the C's be based and that the torsion of (J) live in some subgroup
of Kl. Similarly, one can use projective modules only living in some
subgroup of Ka.

From a Poincare complex one can derive from its chain complex an ex­
ample of an SAPC. Degree one normal maps naturally gain QAPC struc­
lures on their mapping cones (the framing giving rise to the quadratic
refinement).

There is a forgetful map from QAPC to SAPC. Under this map the
obstruction for a normal map becomes the difference of the SAPC's
range and domain.

Finally, if 1/2 E R or for an arbitrary R if we ®Z[I/2], there is no dif­
ference between Ln(R) and Ln(R). This means that away from the prime
2 surgery obstructions are differences of intrinsic invariants, namely the
SAPC associated to the manifolds. These invariants are sometimes re­
ferred to as the underlying algebraic complex, the Mischenko-Witt el­
ement, or the «Mischenko-)Ranicki) symmetric signature of X. They
are closely related to the class of the signature operator on M, for M
a manifold, in the K..theory of the C*-algebra of the fundamental group
IKaMl, Kas2]. We have seen for Whitehead torsion that it is only oc­
casionally possible to obtain this invariant of a map as the difference
hetween intrinsic invariants of spaces (see I.2.A); in surgery, away from
2, we always can.

One can generalize a bit further and define what a (0, S)APC n-ad
is. It is something modeled on the n-simplex d. Using these complexes,
(Ule defines algebraic spectra Ln(R) and L,,(R) precisely by analogy to
the bordism space nfat defined above. There are maps, for instance,

defined by taking the underlying chain complexes of manifolds. Or, more
~enerally,

Brr /\ n~at ~ Li (Z1T)+ -I '

inducing the map Jr*(Blf+ /\ !2;Qt) = !2~at (Blf) ~ L i (Z1l') and sending a
l'ohordism class to Its symmetric signature.

The reader should be warned that for Ranicki's groups the right-hand
side is not 4-periodic in general. (Jr =Z2 is an example.)

Since the symmetric L-theory resembles manifolds, one can take prod­
ucls and develop a pairing



analogous to taking a surgery problem over S (= 7l.1f) and taking the
product with a manifold over R (= Z1f') to get a surgery problem over
R ® S (= 7l.[Jr X 1f/]).

This can be jazzed up further to give a pairing of spectra. Using the
element C p2 in L 4(Z), one then obtains a map of spectra Lm(S) ~

Lm+4(S), which is a homotopy equivalence. Since Lm+4(S) ~ Q 4Lm (S),
these spectra have fourfold periodicity.

Using, for instance, the calculation

Ln(Z) = 7l., 7l.2, 0, °for n == 0,1,2, 3mod4 respectively,
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one can see that the effect of taking the product of a surgery obstruction I
by a simply connected manifold only depends on its symmetric signature ~~

in these small groups. The 71. is just the ordinary signature, and the 71.2 is .1
the DeRham invariant which counts the number mod 2 of 71.2 summands ;
in the 2i-th homology of the 4i + 1 manifold. This product formula was:
first proven by Morgan by an elaborate geometric argument. ~i

The algebraic theory of surgery is wonderful also for its ease in setting ..~
up exact sequences for the analysis of different L-groups. For instance, ~

Rothenberg sequences have as relative terms APCs with boundary having ~

a simple structure and with interior not having a simple structure (which :~

can then be identified with the Tate cohomology of 2.4.A). Also, one can .~

prove general localization theorems for L-theory analogous to the ones .:1

in algebraic K-theory [Bla, 012]. A remarkable consequence of L-theory;~
that will sometimes be of use to us is due to Ranicki [Ra3]: ~~

~
.~

PROPOSITION. If Z eRe 0, then the map L*(R1f) ~ L *(Q1f) is an ~

isomorphism away from 2. ~;.

.~

REMARK. We have concentrated here on the classification theory of,~
manifold structures on a Poincare complex. Ranicki [Ra1] has also ap- ~
plied these ideas to describe a total surgery obstruction.11 It lies in a group'~

composed naturally of the components of a deloop (or equivalently, third 1
loop) of the structure space. If X is a polyhedron, one can describe the ~:

total surgery obstruction as the obstruction to nullcobording the local 1
obstructions to Poincare duality (the homology of the chain map cor- .~

responding to capping with the orientation class), all the time keeping ~

track that the global "assembled" version is trivial, as X satisfies Poincare
duality. (See also [LvR].)

11 We are essentially ignoring a single Z here that comes from the difference between
F / Top and L(e). As explained in 9.4.C this is accounted for by homology manifolds. An­
other way to get this all right is to work relative to a given manifold structure on a top
cell.
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I£XERCISE. Using this description, show that a polyhedral homology man­
ifold X is canonically simple homotopy equivalent to a topological man­
ifold. (With more effort, show that the map can be taken to be a resolu­
lion, Le., cp : M ~ X such that cp maps cp-10 ~ 0 by a proper homotopy
equivalence for each open subset 0 of X.) This result is due to GaJewski
and Stern [GaS].

I~EMARK. We have only defined here the "connective L-spectra". One
loan (and it's quite useful) invert the xCp2 periodicity to build variants
with homotopy in all dimensions, positive and negative. For most geo­
Inetric purposes, these are indistinguishable.

.I..lA. The structure of L-spectra

We have seen that the L-spectra arise naturally in the geometric prob­
lem of blocked surgery. They will occur many times in the sequel. The
f()llowing is a useful characterization. (We place it here since it applies
Il) the algebraic spectra as well.)

'I'IIEOREM (See [TW]). At the prime 2 all L-spectra are products of
If,'ilenberg-MacLane spectra. Away from 2 they are all products of (loops
(~/) B0 with coefficients.

L is given an infinite loop space structure by crossing with CP2. This
is similar to the method for producing the infinite loop space structure
011 BU, Bott periodicity, given in [AI] where one uses the Dolbeault
l'olnplex on CP2.

The way one introduces A coefficients into a n-spectrum is by taking
thc function space [M(A) : -], where M(A) is the Moore space with
coefficients A.

All L-spectra are modules over L*(Z) by ®. Note that L*(Z) is itself
u .nodule spectrum over MSO (the smooth bordism spectrum), which
is Eilenberg-MacLane at 2. Therefore, the first part follows from gen­
ltral nonsense. The statement away from 2 follows from the method of
Sullivan described in 2.5.

Also, the statement of Sullivan's geometric characteristic variety the...
t)r~m can be rephrased as

I'I{()POSITION. A map of L*(Z)-module spectra is nullhomotopic iff it is
:t'''O on all homotopy groups with coefficients 1ri( ; Zk).

Ilomotopy groups with coefficients are defined using maps of Moore
~paccs. They relate to usual homotopy groups via universal coefficient
I heorcms and Bockstein exact sequences.

In addition to the calculability of L-spectra, we will also see that the
lihrations that arise geometrically (as in Part II) tend to be flat (by which
I Illcan pulled back from fibrations over an aspherical space) and are
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often trivial, even when the original block fibration they come from is .~~
not. An example of this arises in the next section in proving the Thorn
isomorphism for structures. .1

-/f
.~

3.4. Applications to manifold surgery 1

The previous sections of this chapter were more algebraic and homo- :,
topical than is my wont, but we shall now see that there are a number of j
useful implications of these theories. ~

:.~

PROPOSITION. There is a homotopy equivalence 7L x FjTop ~ Lo(e). iJ
.~

Let us not worry about low dimensions. The map from F/ Top to Lo (e) ..~
is given by viewing a simplex in the former as a normal invariant and then :~
map~ing int? the target by taking ~he associated. surgery obstruction. . ,I
. SlIghtly.dlfferently, one can ~nslder the fibratIon for S(~ rel.a), whIch ';j
IS contractible by the h-cobordlsm theorem, and then deloop, sInce both .~;

sides are their own fourth loop spaces (up to components) by 2.5 and 3.1.1
Using this proposition one can give F/Top a new H-space structure,i

as the 0 component of Lo(e). .~

THEOREM. With this H-space structure, the surgery fibration is a map of
infinite loop spaces:

S(Mi ) ~ Maps [M: FjTop] -+ Li(7r).

In particular; the homotopy groups gain abelian group structures, and the'!
maps are homomorphisms. . ;~

The point is that Maps [M : Fj Top] are now part of Maps [M : Lo(e)]'~
and that the assembly map

Maps [Mi
: L.(e)] --+ L* +i(1T)

is naturally an infinite loop map using the infinite loop structure from 3.1.:
The fiber S(Mi ) then inherits an infinite loop structure.

EXERCISE. (For those who read 2.S.A.) Show that there is a unique B-J
space structure on Fj PL so that the map F/ PL to F/ Top is an H-map...:
In this structure, the PL surgery exact sequence is an exact sequence'
of abelian groups and homomorphisms. This structure comes from an
infinite loop space structure, and the map is actually an infinite loop
map_

Now, two of the three terms in the fibrations are (almost) their own
fourth loop space. This should translate into a statement for the third,
the structure set.
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SIEBENMANN PERIODICITY. There is an exact sequence of abelian groups

o ---+ S(M) ---+ S(M x D4 reI 8) ---+ ?L.

'I'he map to 7L vanishes if M is a manifold with boundary being studied reI 8.

I~XERCISE. Prove this.

I~EMARK. These periodicities are geometric forms of Bott periodicity
away from the prime 2.

Actually, we now know [BFMW] that the components of the fiber of
Ihe assembly map correspond to s-cobordism classes of ANR homology
rnanifolds simple homotopy equivalent to X. If we replace manifolds by
I\NR homology manifolds, we then get periodicity exactly. The 7L. element
is a measure of the local structure of the homology manifold. When we
work reI 0, the 0 value determines the local structure. In chapter 9, we
will discuss this further.

Just as Bott periodicity generalizes to a Thorn isomorphism in K­
theory, so too does Siebenmann periodicity in the theory of structures.

'I'IIEOREM. If E(D4k ~ M) is an orientable block fibration over M, then
,h('re is a periodicity map S(M) ~ S(E reI 8) which fits in an exact sequence
tI.\' above.

We shall ignore all issues involving the extra 7L that perturb the pe­
riodicity. The reader can hopefully trace this on his or her own. That
IS, we'll identify F / Top with L(e). Alternatively, we'll be working with
lu)mology manifolds and leave the question of manifoldness as a final
issue that the interested reader can check for.

rro prove the isomorphism theorem, we need to see an isomorphism

[E reI 8 : Lo(e)] ~ [M; Lo(e)]

wh ich spacifies well and commutes with the assembly maps and the iso­
.norphism L;(M) ~ L i+4k(EreI8). We will only produce the isomor­
phism; the details of all the commutativities are a bit of a nuisance.

Well, from 3.2 we have

NI(E reI 8) ~ Sect(E(NI(D4k rei 8» ~ M).

JllIt, there is the canonical surgery equivalence (requiring an orientation
rharacter preserving map to the trivial group, which exists because the
hlllldle is oriented)

with which we can make the identifications

Sect(E(NI(D4k rei a) ~ M» ~ Maps [M; L4k(e)] ~ [M; Lo(e)].
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REMARK. Thorn isomorphisms are usually associated to Thorn classes.
(See [Ad2], but the reader should expect to do some work to connect the

:::~~t~~:r~~t~:~~:~~:;~~~~z;:r~~ud~~~~7~nd~O[~~~~~~~i~~j
that do~s someth~g similar for.topological K-theory.) Given an oriented,;~~
topologIcal n-manlfold, there IS a Thorn class ~(M) E Hn(M; L*(Z»),~~I~

which induces the above Thorn isomorphism theorem. It is produced ..'~.:I;.'I~;~.:.;..'
from the map of spectra from bordism to SAPC discussed above. Away ~:;}

from 2 it is the Sullivan orientation from 2.5. ~;'{j

REMARK. This class was first defined in [Ra1]. He calls it the symmetric I
L-theory orientation of a manifold. (For homology manifolds, it is not :I:'i!
integrally an orientation, even in Z[1/2], unless they are resolvable.) I ,:;~":.:~

prefer t~ call it the signature class,.because it is a refi~e~ent of th.e cl.ass '~

of the sIgnature operator for manIfolds, and so too IS ItS generalIzatIon /.~

in 6.1 when we restrict attention to certain natural classes of stratified '"~~I"~"·.·.ii.'.'..'.iIJ.'~
spaces, as the reader of chapters 12 and 13 will see. ~ ,

Just as Atiyah and Singer use the Thom isomorphism in K-theory (in f
[AS, pt. I]) to define the topological index of an elliptic operator, which :~

is a wrong-way map in K-cohomology, we can use the above theorem to ,,' I

define a covariant functor structure on structure groups .12 :~

DEFINITION. Let X be a finite CW complex. If its dimension is i, we 'Ir~
define, 13 for large j(~ 2i + 3), Sj(X) = S (regular neighborhood of X c:-'···
IRj rei a). Then for smaller values of j one can extend using periodicity. If;~.

X is not finite, we just define S(X) =lim S(K) over K finite, K ~ X <:1

NO~ t~at if M is an oriented i-manifold, then we have an isomorphismll~.
S(M) - S,(M).!.

Now if f : X --+ Y is an orientation true14 map, then we define the~'
induced map Sj(X) ~ Sj(Y) as follows. For j sufficiently large we em-~I

bed the regular neighborhood of X into that of Y as a codimension zeroi~

submanifold (by thickening an embedding of X ~nto a regular ne.igh~r~;1
hood of Y). Now one can extend any structure In Sj(X) by the Identlty:~,~

map on the complement to give an element of Sj(Y). ,",_
Applied to S(M x D3) ~ N I (M) one obtains a covariant functor!

structure on a group that had previously been given a contravariant one"l
from its structure as the homotopy classes of maps. Using this, one real·~

izes that what is actually natural is the following version of the structure I

12Since we are dealing with topological structures we have already promoted the sets to
be groups.

13Here we are ignoring orientation. Strictly speaking one should use a product of an
even dimensional rea) projective space and Euclidean space to capture the theory with
X -+ BZ2•

14I.e., commutes with WI.
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sequence:

or, spacily,15

Functoriality then shows that we have a commutative diagram from a
rnap M ~ B7C:

Hn(M; L(e» ----.- Ln(7C)

1 1
Hn (B7C; L(e» ...-1-- Ln (7C),

with which we can compute the surgery obstruction. The map on the
h()ttom line is often called the assembly map. We will discuss more al­
~ebraic definitions of it in chapter 9; for now it suffices to think of it as
Poincare dual to the assembly provided by assembling simplices.

For instance, immediately from this diagram we see that for 7C finite,
Ihe surgery obstruction for a degree one map between closed manifolds
in Ln(JT) rationally lies in Ln(e). Using the result that Ln(n:) "has no odd
torsion, one can quickly reduce calculations to the case where 11: is a
2..group; see [Wa6]. Indeed, for finite groups the map Hn (B7C; L(e» ~

11::(Jr) is very well understood [HMTW] and one can then view the maps
in the surgery exact sequence as computed. (With the "s-decoration" the
present state of computation is much worse.)

For infinite groups the issues involved in calculating the assembly map
nrc rather different and more closely tied to geometry than to algebra.
Sec 4.5.A and chapter 14.

.'.5. Notes

Spacification was first done in the simply connected case by Casson
I'or purposes of understanding the hauptvermutung (see [Ar]). Quinn,
ill his thesis [Q1], extended this to the nonsimply connected case. In
I.is Cambridge thesis Ranicki also produced these spectra algebraically
hy a complicated method; the version in [Ral,4] is as transparent as
Ihe geometric version using his cobordism of algebraic Poincare com­
plex perspective. The symmetric L-spectrum was also constructed in
(Ms2].

"Note that by this point, we have tacitly inverted the periodicity maps so that the L..
~Iwctra are now nonconnective. As far as 'f(j, i ~ 0, statements are concerned, all that might
flHppcn is an extra l. in 1l'o(S(M».
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The primacy of the 1r - 1r theorem is, of course, observed in [Wal]. :1
Shaneson, in his thesis [Shl], seems to have been the first to realize that ,~

this implies that one really has to understand only one manifold very :!j
.~:~

well to understand all manifolds with that fundamental group. Cappell 'i:~

and Shaneson [CSt] also built their theory of homological surgery on thej
7r - 1r theorem. ~i

The subject of blocked surgery was first studied by Casson [Cs] as a ,).:~

first step to the problem of fibering one manifold over another. Quinn I
points out in his thesis that the surgery spaces have some relevance to this:~

I::d
problem. [BLR] develops the theory in detail (e.g., for instance pointing ,,:~

out that one is really dealing with sections of a bundle rather than a ,I
mapping space) but only in special cases, presumably restricting attention ,~~

to the only cases that seemed calculable. Levitt also used blocked ideas in :~~

several of his papers. The joint paper with Ranicki, [LvR], is particularly i
elegant. The formulation I have chosen was probably first written down ~

in [CW8] (although lectured on many years earlier) and is used there .'.,:.c

to show that one can construct PL group actions on manifolds with a (
plethora of possible fixed sets. I

The algebraic theory of surgery, as presented here, is due to Ranicki, jU.

who has proved much more. Such fundamental topics as localization, ,;!
assembly, arithmetic squares, etc. are best dealt with in this framework. '~

That material is well covered in his book [Ra4]. A more primitive formu- .~

lation is due to Mischenko [Ms2] that only works away from the prime ,~

2. (Mischenko used symmetric duality maps, not chain homotopy sym- ,'(,:
metry as we described in the body of the text.) Weiss [Ws] has provided 't'

a very interesting refinement of the symmetric signature that still sui.. ::1

fices for product formulae and has much better assembly properties. In '.~.!~.',~
his theory, the total surgery obstruction is the obstruction to decompos- ~

ing the visible symmetric signature of X over X, i.e., pulling it back to '
1

H*-l (X; L*(Z». The fiber of Weiss's visible assembly map is the same as:
the fiber of the quadratic assembly map. '~

There are many versions of the assembly map. There have been im-I
portant applications of it to giving formulae for surgery obstructions and ,,;:~

the symmetric signature in [~ WaS]. The structure of L-spectra was J'

observed by both Jones and Thylor-Williams. ,j
The result in the exercise on F/ PL was first observed in work of J.E !

May [MQRT]. ~~
Siebenmann periodicity appears first, as does the group structure on ~

structure sets, in [KS]. [Nil is also a useful reference for this and many ,
of the other concerns of this chapter. A geometric description, which we
will have use for later, appears in [CW3].

One can obtain information on the surgery obstructions on closed
manifolds directly by bordism methods. This is done in [Wal]. However,
the assembly point of view has been indispensable for more recent results.
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(In fact it has been the need for solid descriptions for computational
purposes that has led many authors to give versions of the assembly
map; see [Ra5] and the references included there.)

The functoriality of surgery is a formal consequence of [Rat]. The ge­
ometric form given here I developed jointly with Cappell for the purpose
of computing some homomorphisms of structure sets. The version given
here appears in [Wei4] as well.



4 Applications

;n I

The reader who has made it to this point deserves more than just a:; ,
promise that good things lie ahead and that everything just studied is to ~I

be soon generalized and extended. It is time to learn new things about.i~

manifolds. .
There have been many different applications of surgery to date, and ~

the issue of which ones to choose is a difficult and personal one. I have.:
tried to pick ones that are inherently striking, exhibit a useful technique '::
or unexpected phenomenon, or have served as motivation for other de- I

velopments.
On the other hand, I have not done any actual calculations of surgery,t

groups and obstructions in these pages. For finite groups, this has a well-.i
developed, highly complex algebraic theory that every surgeon must at:
some point come to terms with, but is outside the scope of these notes);\,
I refer the reader to the lectures of Hambleton [Hm] and the reference .;:.
there for an in-depth study of this important topic. When necessary ini1
the following pages, I will invoke a calculation, but here we'll stress how{~

far it is possible to go on geometric insight with a minimal amount o~

calculation. ··:f

The calculations that arise for infinite torsion-free groups have bee~:.
attacked by methods that are, for the most part, "geometric". (The ide .':~"

that one solves a geometric problem by reducing it to algebra is far t ..'j
facile. Often the algebraic problems that arise are quite eccentric fro~;

the algebraic point of view, for instance, when is Z1f a decent, Noetheria ~ ,~

ring?) We will see some of this here and in the applications in chapte'
9. Infinite groups with torsion really seem to mix the phenomena '
both, and we will analyze this, in some cases, using the geometry 0

certain natural stratified spaces in chapter 14. Farrell and Jones hav.:
recently developed some powerful new methods for this problem as well:
[FJ5]. -:'1

Some of the applications here are almost trivial given all the machinery~
that we have developed; some are more challenging. In some cases, I wil1;~

give inefficient arguments for why something is true if I feel that there~

is a pedagogical benefit in doing this. I hope that the next pages bring
the reader as much joy as their contents brought me. '
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4.1. Homotopy cpn,s

Everything done in this section follows more easily from the material
of the next. We know enough to compute with the surgery exact sequence
and see anything there is by plugging in M = cpn. However, we will be
more ad hoc and geometrical using the 7r - 7r theorem and calculation
of the simply connected surgery obstruction groups.

First, recognition.

PROPOSITION. A simply connected CW complex has the homotopy type of
cpn iff its cohomology algebra is a truncated polynomial algebra on one
two dimensional generator Z[c]/cn+1 = O. There are two homotopy classes
ofhomotopy equivalences to cpn, which differ by composition with complex
conjugation.

The two dimensional cohomology class of a generator (there are two)
gives a map to CPOO (= K(Z,2), the classifying space for 2nd integral
cohomology). By the cellular approximation theorem one can arrange
for the image to lie in cpn. Moreover, a little obstruction theory shows
that the homotopy class of such a compression is unique. This map is a
homotopy equivalence by the Whitehead theorem.

For another interpretation:

PROPOSITION. The quotient spaces of free Sl actions on s2n+l have the
homotopy type of cpn. The actions are conjugate iff there is an isomorphism
of the quotients preserving the two dimensional cohomology class.

One sees that the quotient is of the correct type by a Gysin sequence
and the previous proposition.

In the smooth and PL categories, the quotient is automatically a mani­
fold. In the topological situation, this is not the case; see e.g. [Bi] or [Dvr]
for many examples. Nonetheless, it will follow from later discussions (in
13.2) that these exotic actions can all be deformed into nice locally smooth
(i.e. with manifold quotient) actions.

Let us recall what cpn looks like. One has a decomposition of

which preserves the group action. This describes cpn as the union of
the total space of a D2 Hopf bundle over cpn-l and a cell D2n • This
decomposition can be thought of as the compactification of affine space
as projective space where one glues in a projective space at 00.

We also have copies of Cpi, i :s n, sitting "equatorially" in cpn.
Now let W be a homotopy cpn and f : W ---+ cpn a homotopy

l'c.luivalence. By making f transverse to these subprojective spaces, we
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can define the splitting invariants as follows:

Si(W) = surgery obstruction of

(/I/-lepi : I-lepi ~ CPi) E L2i(e), i ~ n -1.

Recall that these groups are 7L or 7L2 according to whether i is even or
odd.

THEOREM. The set of splitting invariants determines a topological homot­
opy cpn for n 2: 3. Furthermore, all values of these invariants arise.

REMARKS. Freedman [Fr2] has extended this to n = 2. We will see in
4.3 that Si (W) = 0 iff we can make I transverse to Cpi with the inverse
image a homotopy Cpi. For i = n - 1 this means that W is the Thorn
space of the Hopf bundle over a lower dimensional homotopy complex
projective space. Equivalently, the circle action on the sphere is a join of
an action on a lower dimensional sphere and the obvious action on the
circle. This desuspension, when it exists, is unique by the above theorem.

This theorem can be viewed as just the statement that the union of
the subprojective spaces is the characteristic variety.

For all values of i :1:= n - 1; if one relaxes the condition that I be
transverse, we will see in 4.4 that one can always arrange for /-lCPi =
Cpi. For i = n - 1, the transversality is (up to homotopy reI 1-1 when
it's a submanifold) automatic. (This is related to chapter 14's material,
but can be done by hand using the spacified version of 4.6.)

EXERCISE. Show that the even splitting invariants determine and are
determined by the Pontrjagin classes of W.

One can prove the above theorem as follows. If one punctures (Wand)
cpn by removing a small open ball, then one sees that s(cpn - ball) ~
[E; FjTop] £: [cpn-l; FjTop] (where the union is the total space of the
2-disk bundle over cpn-l), which is detected by these invariants. (Just
compute, using obstruction theory or 2.5.)

By the ope (1.7) one knows that the boundary is automatically a
sphere and one can therefore glue the missing ball back in. (There is
only one way to glue the ball back in because of the Alexander trick.)

Actually, to do this calculation, one does not need the homotopy type
of F / Top, only its homotopy groups. Rothenberg, early in the history
of surgery, before Sullivan's classification of normal invariants, did the
whole calculation in that way. He realized explicitly the splitting invari­
ants and used the geometry of the previous remark to show they charac­
terized.

To realize all of these invariants by hand we need to know about
Milnor and Kervaire manifolds. These are PL manifolds Mi (a) ~ Si for
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each a E Lj(e) realizing the surgery obstruction a. These exist for i 2: 5.1

One way to see them is to apply the Wall realization theorem to Si-l and
cap off the other end using the ope. KelVaire (i = 2 mod 4) and Milnor
(i = omod 4) constructed these manifolds by hand, using plumbing, and
Wall's proof of his realization theorem (which we outlined in chapter 2)
is an extension of their construction. These were (for suitable a and i)
the original nonsmoothable manifolds.

EXERCISE. Knowing topological invariance of rational Pontrjagin classes,
show that M 8(1) is not smoothable. (Hint: Use the Hirzebruch signature
formula to show that P2 would not be an integer.)

REMARK. If f is a (weighted) homogenous polynomial of several com­
plex variables with the origin as an isolated singularity, then the inter­
section of the unit ball with the €-level set is often a Kervaire or Milnor
manifold. (They are called Brieskorn varieties.) See [Mi8] for more in­
formation, such as specific calculations for specific polynomials. Often
the Brieskorn description of an exotic sphere enables one to understand
it better, such as by putting a group action on it or embedding it some­
where.

Suppose now that we've realized a sequence of splitting invariants for
i ~ n. To do n + 1, connect sum this lower realization with a Kervaire or
Milnor manifold as appropriate to realize the splitting invariant. Then
the total space of the Hopf bundle mapping to the cpn+l ball is a 1r -1r

problem, so that one can surger this to a homotopy equivalence of pairs.
'rhen cone the boundary (which, as a homotopy sphere, is a genuine
sphere).

I~XERCISE. Do the PL classification.

I~:XERCISE. Show that the map W ~ W that sends c ~ -c on H 2 is
homotopic to a homeomorphism.

PROBLEM. (Fairly hard at this point, but return to it from time to time.)
In which cases can you make this homeomorphism an involution?

I~EMARK (FOR A SECOND READING?). The reason such involutions are
still somewhat more mysterious than many others is because (1) the fixed
set is in the middle dimension, so the gap hypothesis does not hold, and
(2) the action is not homologically trivial, so the only extant techniques
(hat apply without the gap hypothesis do not apply in this case. However,

I We have tacitly used their existence in our description of the homotopy types of FITop
HIHJ PI PL. We gave cohomology classes to describe a homotopy equivalence (at 2), but
I(l verify that these do provide such an equivalence we need ,to compute that they are an
I~( )l11orphism at 2. The Ketvaire and Milnor manifolds correspond to elements of homotopy
that generate.



4.2. Simply connected manifolds

The general case of simply connected manifolds is no different than
that of complex projective space.

We start with existence.

Theory of Manifolds
i
i

one can classify, using the material of chapter 14, the actions that have :1
the isovariant homotopy type of the linear action. ,~

EXERCISE. Work out the parallel theory of homotopy quaternionic pro-:i
jective spaces. '1

REMARK. I should mention that Brumfiel has done some analysis of the"
smooth case. As far as I know, the only copies of this manuscript can be ;'~

found in the Fine Hall Library (Princeton). ::~
,~

,~
I~

.~f
~/.

]
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;:~
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THEOREM. A simply connected Poincare space is homotopy equivalent to :,:1

a topological manifold iff its Spivak bundle has a topological reduction. :1

REMARK. The reader should verify this for n ~ 3 by classifying simply
connected Poincare complexes. For n = 4 this follows from Freedman's
work. The proof that follows also works for P L for n ~ 5. This result is
false for the smooth case (Exercise: Using the material on G/0 work out
which Milnor manifolds are homotopy equivalent to smooth manifolds)
and for PL for n = 4 (Donaldson).

Suppose n ~ 5. Then the issue is whether the surgery obstruction is ,
O. If it isn't, correct for this by taking the connected sum with a Kervaire
or Milnor (KM) manifold.

COROLLARY. Every simply connected finite H-space is homotopy equiva­
lent to a closed manifold. Every connected finite H-space has a finite cover
homotopy equivalent to a closed manifold.

REMARK. It is not known whether one really has to take finite covers.
It is also not known whether or not the manifold can always be taken
smooth (or parallelizable). For more information, see [CW6,7]. However,
even without taking finite covers, the result is "locally" true [Wei9].

To prove this in the simply connected case, one notes that Browder
[Br4] has shown that finite H-spaces are Poincare spaces and that their
Spivak bundles are trivial, so the result follows. If the fundamental group
is torsion free, then it is an elementary exercise in covering space theory2
to show that one can split off a torus. The general result follows.

2Pirst split off a single circle. Observe that the circle is a homotopy retract of the
H-space, and argue that such are split factors of the H-space. Alternatively, realize that
every space with a map to a circle is homotopy equivalent to the mapping torus of the
monodromy on the associated infinite cyclic cover. Argue that if this is a connected cover
of an H-space, the monodromy is homotopic to the identity.
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Classification is not that hard. We will not bother to make it more
explicit than the following:

THEOREM. If M is a simply connected manifold, then S(M) ~ [M-point;
FjTop}. Equivalently, it is the kemel of the suTjection [M : FjTop] ~
L(e).

Away from 2 the manifolds are classified by the ratios of their Sullivan
orientations. The rational L-classes can be varied at will (within a Z­
lattice in cohomology) subject only to the Hirzebruch signature formula.

The second formulation follows from the first. Equivalently, one uses
Kervaire and Milnor manifolds to show that the action of L n+l is trivial
(i.e. each element of Ln+l arises as a cylinder connected sum with a KM
manifold).

4.3. Browder's splitting theorem

The results of this section are true in all categories.
The splitting problem is the following. One is given f : M' ~ M, a

(simple) homotopy equivalence, and N c M, a submanifold. The goal is
to homotop f so that the transverse inverse image, N', of N is homotopy
equivalent to N. If this is possible, we say that f is splittable along N.

In codimension one, if the normal bundle is trivial, the answer is
close to always; see [Cal]. With nontrivial normal bundle there is a more
complicated, beautiful theory; see [CS2]. In codimension two the problem
is quite subtle, see [CS1] for some discussion. In higher codimensions one
has:

'rHEOREM (BROWDER [Br2]). Suppose that f : M' ~ M is a simple
homotopy equivalence, and N c M is a submanifold of codimension ~

~ and dimension ~ 5. Then f is splittable iff the surgery obstruction of
,r-1(N) ~ N in Ln C1L1C1N) is trivial.

The proof is quite simple, instructive, and summarized in figures 12
.lnd 13 (sometimes called the top hat trick for a reason the reader who
draws a picture of the range of the following surgery problem will see).

First one surgers abstractly N' assuming the vanishing of the obstruc­
li()n. One can thicken the normal cobordism of N' by the normal bundle
()r N in M and glue it onto a copy of M' x I. Then one has the pic­
ture in figure 13 and works rei M x 0 U a neighborhood of N' x I to
slirger the expanded cobordism. We succeed using the 1C - 1C theorem
(the codimension hypothesis is used here to see that we are in a 1f - 1C

situation). The target is just a redrawing of M x I so the domain is now
an h-cobordism. However, since the fundamental group of the comple­
IBent is 1T:, we can glue an h-cobordism with the negative of the torsion
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~.~~
Figure 12. Normal cobordism extension. One first surgers the submanifold 1'r

to obtain a homotopy equivalence and then does surgery relative to the darkened :~
regions (which is possible by the Jr -Jr theorem) to produce an s-cobordism. ;

.~

Just look at me and
QEDI

Figure 13.

onto the complement. The s-cobordism theorem then asserts that this is
a homotopy to a patently split homotopy equivalence. QED.

Note that one does not really need M and N to be manifolds. All one
needs is some Poincare structure for the surgery and bundle data normal
to N for the transversality.

EXERCISE. Prove that one can always split along a codimension one sub­
manifold V which divides the ambient manifold into two components Wi
if the map V ~ WI induces an isomorphism on fundamental groups.

REMARK. The splitting problem without this hypothesis is analyzed in
[Cal-4]. We will soon see applications of this to certain types of topolog­
ical rigidity.
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EXERCISE. Using Browder's splitting theorem interpret the splitting in­
variants for homotopy cpn geometrically. (The only thing remaining to
see is how to split along the codimension two subprojective space. Re­
prove Browder's theorem in this special codimension two case.)

While you're at it, prove that there is a unique embedding of cpn in
cpn+l in the usual homology class.3 (Hint: This is not a surgery exercise!)

4.4. Embedding theory
The main result of this section is the reduction of the question of the

existence of PL or topological locally flat embedding to homotopy theory.
This is due to Browder, Casson, Haefliger, Sullivan, and Wall (cf. [Wall).
Here we will present more or less the classical proof. It's possible to give
a more efficient proof using blocked surgery (it's the first exercise). In
chapter 11, we will present yet another approach and give a significant
generalization of this theorem outside the realm of manifolds.

DEFINITION. A Poincare embedding of X in Y consists ofa spherical fibra­
tion ~ ~ ~ a Poincare pair (Z, E), and homotopy equivalences between E
and the total space of~, and of Y with the union of the mapping cylinder
of g and Z along E.

THEOREM. M m C Nn (locally flatly), m - n ~ 3, iff M Poincare embeds
in N. More precisely, every Poincare embedding comes from a geometric
embedding.

EXERCISE. Prove the theorem as follows. Codimension one split along
the sphere bundle of ~ (exercise from the last section). This provides a
codimension zero submanifold of N homotopy equivalent to M. Observe
that there is no obstruction to block fibering this over M (Le., observe
that the obstruction space to block fibering is contractible because of the
T{ - Jr theorem). The fiber is a disk. Now, M embeds in any block disk
hundle over itself.

I~XERCISE. Formulate a relative version of the theorem. Using the con­
cordance implies isotopy theorem (see 1.7) show that there is a unique
embedding realizing a given Poincare embedding.

I~XERCISE. Deduce from the embedding theorem that Fq / PLq stabilizes
for q > 2. Prove this directly by relating this space to 8(81) and using
hlocked surgery to show that that space is independent of q (for q > 2).

I~XERCISE ([STANKO]). Show that every (Le., even wild) topological em­
hedding in codimension at least three gives rise to a Poincare embedding.

'I've always loved this fact. If one takes the connected sum of the usual embedding with
it knotted sphere pair, and there are infinitely many of these, the projective space manages
In unknot itself. Perhaps one should view this as a flexibility result rather than a rigidity
(U1C!
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(For locally flat embeddings, this is clear; in general the local neighbor­
hood system is homologically alright by Alexander duality applied locally,
and then one must apply a + construction; see [Ad3].) Deduce that if
a manifold embeds in any way in codimension at least three, it embeds
locally flatly. Do this argument carefully with respect to an open cover to
prove that every topological embedding can be approximated by a locally
flat embedding, which is unique up to small isotopy. (This is a taming
theorem.)

REMARK. The PL codimension two situation is very different [CS1,4]
with respect to existence, uniqueness, and approximation. The topological
situation is very poorly understood at present, although on some evidence
(related to the material in chapters 9 and 10) I have conjectured that the
above theorem is true (nonlocally flatly) although "concordance implies
isotopy" fails. In other words, in a nonlocally flat concordance sense,
codimension two is identical to all higher codimensions topologically.

As for codimension one, Cappell's splitting theorem implies that often
for a Poincare embedding there is a unique embedding of some unique
manifold simple homotopy equivalent to M in W. (See 11.5.) In partic­
ular, M itself will not usually realize the Poincare embedding. After all,
for M' homotopy equivalent to M, M Poincare embeds in M' x I, but
will embed there iff M is h-cobordant to M'.

Let us now (anticlimactically?) sketch the classical proof of this theo­
rem. We build an analogue of classical surgery. A normal invariant for a
Poincare embedding is a degree one map of a manifold pair realizing the
various stable and unstable bundle data of the embedding. One identi­
fies the aggregate of these with [Y: F/Cat] x [X: Fc/Catc], where BFc
and BCatc denote the classifying space of c - 1 dimensional spherical
fibrations and c-dimensional Cat (block) bundles, respectively.

The surgery obstructions for this theory are just the product L(Y) x
L(X). This is essentially the content of the Browder splitting theorem,
which asserts that surgery can be done on a submanifold ambiently if it
can be done at all. (The fact about surgery being possible on the ambient
manifold is just 1f - 1r; the submanifold is too small to prevent any of
the necessary surgeries.)

Consequently, the key issue is to see that [X: Fc/Catc ] ~ [X: FICat]
is an isomorphism for all X (a fact which was already sketched once in
the exercises).

As in the case of manifolds, all we have to do is understand one
situation well enough to get this homotopical information. In this case it is
the Zeeman unknotting theorem (1.7) that saves us. Zeeman unknotting,
for Si in Si+c, when interpreted in the present context, boils down to an
isomorphism of homotopy groups 1rj(Fc /Catc) ~ 1rj(F/Cat) for Cat =
PL, Top and c ~ 3 (or if plugged into the original surgery exact sequence
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gives the isomorphism Jri(Fc/Catc) ~ Li(e), which amounts to the same
thing). This says that Fc/Catc --? FICat is a weak homotopy equivalence,
so that for any X, [X: Fe/Calc] ~ [X: FjCat] is an isomorphism, and
the proof is complete.

4.5. Extension of group actions

The material in this section is much more recent than any of the other
results in this chapter. Nonetheless I include it because it is a pleas­
ant geometric result whose statement involves no surgery or, seemingly,
classification theory, but its proof, while surgical, involves no calculation.
Also, because the details of homotopy theory of classifying spaces do not
enter, the results are equally true in all categories. On the other hand,
we are making real use of the generality implicit in allowing arbitrary
Poincare spaces as targets; OUf targets are constructed as homotopy pull­
hacks. The results here are, however, only the tip of an iceberg. The most
recent survey of the developments that followed this material is the now
hopelessly outdated [Wei2].

'rHEOREM (ASSADI-BROWDER (unpublished),4 WEINBERGER [Wei9,
pt. I] (Extension across homology collars). Let (W; M, M') be a simply
t'()nnected Z(g)-homology h-cobordism. 5 Suppose that a group G of order
~ acts freely on M and that the action is trivial (i.e. each element induces
the identity) on H*(M; Z[1jg]). Then there is an extension of the action to
.'luch an action on W iff

2:(-1); [Hi(W, M; Z)] = 0 E KoCZG)

~Ihere we are following the exercise in 1.1 in viewing every finite module of
{Jrder prime to G as giving an element of Ko(lLG). If an action exists, it is
unique up to an element of Wh(G).

(One can change an action by Wh(G) by gluing an h-cobordism onto
Ihe quotient of one of the ends.)

We remind the reader that for cyclic groups the Ko condition of the
theorem is automatic. This theorem answers a problem in [J2].

I~I~MARK. The philosophical context of this theorem is given by Smith
1heory, which deduces Z(g)-homological results from a group action. (See
(o.g. [Bre] for a textbook reference.) The above theorem is a first step in
systematically deducing geometric converses. In that regard, and some
,)1 hers, it is like the h-cobordism theorem. The analogue of surgery in
this program can be found in [CW4, DW]. The extension problem in
the nonfree case is more complex. We refer the reader to [CW5] for a

,ISee also [AVj for a nonsimply connected extension.
"In other words, both inclusions are homology equivalences with coefficients in Zeg" i.e.

It tl'uli1.cd at the primes dividing g.
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beginning. Hopefully the stratified surgery exact sequence will have more
to say about this in the future.6

To prove the theorem, we merely have to construct a Poincare pair (to
be the putative quotient) (2.1), determine when it has a vanishing Wall
obstruction (1.1), construct a normal invariant (2.3), do surgery (this is
easy-the simple connectivity shows that we're in a Jr - Jr situation) to
obtain a manifold, and finally arrange that the universal cover of this
manifold be W.

;:~
The first step, constructing the putative quotient, is a little delicate. -tAl

It uses a functorial extension of the localization theory we described in ~~
2.5. Basically, the quotient for W looks like W away from g and MIG ~
at g, mixed together by the rational homotopy data given by the inclu-.,:~_,,;,
sion. (This construction only works nicely if the homological triviality is
assumed.) (To build the other boundary piece for our pair, do the same !~
for M'.) One checks that one gets a Poincare pair. :~~

~::

The finiteness is dealt with using the exercises of 1.1. ..~'
:~;

The existence of normal invariants is guaranteed by general nonsense. -r~

One is trying to extend the normal invariant we already have on MIG. '!J
The obstruction to doing this can be computed (by localization theory) .~~

one prime at a time. For the primes dividing the order of G, the obstruc- _:~

tion group is 0 because of our homology 'collar condition. For the others, :~

one compares to W, which, being a manifold, has a normal invariant! ~\

Finally, a little homological argument and the Atiyah-Hirzebruch spec- .~

tral sequence show that [WIM : FICat] +- [<WIG)/(M/G) : FICat]
is an isomorphism. Since we are 11: - 11:, the transfer from structures on 1
the quotient to structures on the manifold is an isomorphism, so we now 1
have existence.

;~

We also have uniqueness, but it is important to realize that we've been ~;

using h-surgery (2.4.A), so the uniqueness is only up to h-cobordism. ,1
Hence the Wh(G) ambiguity. !j

The interested reader can consult the original source [Wei9, pte I] for
the details of all of these arguments.

96

4.6. Farrell fibering and Shaneson's formula

Farrell's theorem describes when a high dimensional manifold fibers
over the circle.? We state informally the result [Fal]:

6Actually, the characteristic class material of chapter 13 implies a major extension of the
results of [CW5] for even order groups (where one is entitled to invert 2 by the condition
that we are dealing with a homology collar).

7In dimension three, this question is answered by Stallings [Sta2]. Above dimension
five, the case of simply connected fibers was analyzed by Browder and Levine [BLe]. For
some remarks and counterexamples in the low dimensional case, see [Weil]. In dimension
five, the result is correct if one uses the notion of "approximate fibration" to replace fiber
bundle. This is conceivably true even in dimension four.
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THEOREM. A map M --+ 81 is homotopic to a fibration iff the infinite cyclic
cover associated to the map (pulling back ~ ~ S1) is homotopy equivalent
to a finite complex and an element of Wh(Jr) vanishes.

We sketch the proof from [Fa2]. One sees that the infinite cyclic cover
has a tame end, and if the Siebenmann obstruction vanishes, one can
produce a boundary, B, which one pushes into the interior. This should
be a single fiber. Unfortunately, the covering translate may intersect B.
(If not, the region between Band T B would be an h-cobordism, and if
the torsion vanished, M would then be described as a mapping torus.)
By compactness, there is an n such that both Tn B n B = 0 and Tn+1B n
B = 0. One glues the regions bounded by B and Tn B and by Band
r n+1B together along B. Hopefully, as before, the resulting h-cobordism
is trivial. One can now glue Tn+1B to Tn B and produce something h­
cobordant to the original manifold. If enough Whitehead obstructions
vanish, the original manifold can be fibered over S1 with fiber B.

With more work involving the Bass-Heller-Swan splitting (see 4.5 be­
low) one can identify the obstructions with the torsion of the homotopy
equivalence to the space HI x T B, i.e., the mapping torus of the self­
homotopy equivalence of B obtained via the generator of the group of
covering translations. (See also [SiS, Ra6].)

Shaneson's thesis8 takes off from this starting point and yields a cal­
culation of surgery groups. For simplicity we work topologically.

'rHEOREM. SS(M x S1) ~ SS(M x Irela) x Sh(M), and similarly in L­
theory, L~+l(Z x Jr) ~ L~+l(1l') x L:(Jr).

In general, one gets a fibration for the structures on a manifold which
fibers over S1.

The map SS(M x 81) ~ Sh(M) is obtained by looking at the fiber
produced by Farrell's fibration theorem. (One can spacify Farrell's theo­
rem, because it has a relative version for manifolds with boundary, whose
houndaries are already fibered over the circle.) By x Sl, there is a section
of this map.

If this map to Sh(M) vanishes on some element,9 one cuts open
the manifold along this fiber and glues on both boundary components
the h-cobordism from this fiber to M, yielding an element in SS (M x

HThe periodicity and functoriality were unavailable at the time, so more complicated
III'!!.uments were employed. One first proved the result for LMgroups using, basically, chapter
f' of (Wall and Farrell's thesis, and then one used the surgery exact sequence for computing.
III fact, one of Shaneson's key ideas was avoiding low dimensional problems by using the
J)l' riodicity of L-groups.

I) I am confusing groups and spaces here. The reader should get used to this kind of
~~t ling back and forth between spaces and elements of their homotopy groups. While perhaps
,'onfusing, it is prevalent.
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Irel boundary). The reader can see that on gluing the ends together, ,.t
one is not changing the ambient manifold. ::~

These constructions together prove Shaneson's first result. :1
The result abOllt L-groups follows by taking the fiber to the obvious jJ

splitting of normal invariants. (The splittings are compatible with each .~(
::!&other.) .. ,~

REMARK. Strictly speaking, there should be a dimension assumption (as '~
such is necessary in surgery and in Farrell's theorem) in the theorem, ,J
but if we interpret structure sets algebraically, then as a consequence of ;~!p
the theorem for high dimensions (geometrically), one obtains it even in ~I

low dimensions. We will thus use Shaneson's fonnula uncritically in all:~
dimensions ~5.1
EXERQSE. By functoriality, we have a map SS(M x SI) ~ S~+I(M) ~ ,f
SS(M x I reI 0). Show that the composition Sh(M) --+ SS(M x S1) --+ ~~

S~+1(M) can be nontrivial. (Hint: Work in L-theory and compute using jl~~
the fact that by crossing with the 2-disk D2 one obtains a way of killing:!'
the composite Lb~M) --+ LS(M x 81) -+ L:+1(M) that. does not work in .~
L:+1(M). Trace thIS back to the Tate cohomology term In the Rothenberg ..~
sequence.) ';:;}

Now, for a torus, Wh = 0, so Sh(M) :,;: SS(M), and one reduces the .~
calculation of S(Tk X nO), after unraveling the induction, to S(DO+k) = *. :~
Consequently, homotopy tori are tori if n + k 2:: 5. The same argument :;:~
applies to iterated circle bundles (nilmanifolds). We will discuss other ;;j
aspherical manifolds in chapter9..~

. j
.~

EXERCISE. Show that the obstruction to block fibering over a torus or .'1
nilmanifold is governed by Wh obstructions. .~~

t

EXERCISE (DUE TO RANICKI). Using the proper h-cobordism theorem ~
(I.5.A) and proper surgery (2.4.B) prove the analogues of Shaneson's .;~

theorems Sh(M x SI) ~ Sh(M x I, rela) x SP(M) and, similarly in L- .~i

theory, L:+1(Z x if) 8f L:+1(3T) x L::(if). .::i

;J.~

This is a good place to briefly discuss some of the low dimensional·~

points we avoided in discussing F/ Top. 1-
:1,

EXERCISE (See [Shl]). Using Shaneson's formula for L and Rochlin's ";
theorem (2.5.B), compute SPL(S3 x S1 X SI).

EXERCISE (See [HsSh, Wal]). By the same approach, compute
SPjPL(Tn).

Using the double suspension theorem (DST) (cf. [Dvr]), which states
that the double suspension of a manifold homology n-sphere is a manifold
(and hence by ope the sphere), one can do the following:
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Apply the plumbing construction (Wall realization) to the 3-sphere to
obtain a homology 3-sphere at the "other end". Ifwe take the cone on the
boundary components, we get a nonmanifold with just one singular point.
However, the DST asserts that after x S1 this is a topological manifold.
(Why?) Using this result do the following:

EXERCISE. Show that the two elements of SPL(S3 x S1 X S1) coming from
the action of L6ClL x Z) are topologically s ..cobordant.

I~EMARK. As we've mentioned in 2.5.B, to be logically correct, one first
calculates F/ P L and through much work (the classification of PL tori
is one of the ingredients) establishes many of the formal aspects of the
topological category. After having done all that, one is still left with an
ambiguity of whether Top/PL is contractible or K(Z2,3). The above
example is approximately what was involved in settling this (local con­
tractibility of homeomorphism spaces was used rather than DS~ which
was then only a conjecture). Nowadays one could use Freedman's work
to directly produce a 4-manifold, rather than the 5-manifold obtained by
crossing with a circle. For the complete development of the foundations
of topological manifolds, see [KS].

4.6.11. The Novikov conjecture

In this appendix I want to give just an introduction to this important
problem. We will on other occasions, especially chapters 9 and 14, return
10 it, and deepen our understanding. I have written elsewhere a more
comprehensive survey of some aspects of this problem [Wei5].

We have seen (4.2) that for simply connected manifolds the charac­
teristic classes of homotopy equivalent manifolds are entirely variable
subject only to the Hirzebruch relation.

I~XERCISE (MISCHENKO). Using the factorization of the surgery obstruc­
tion through the assembly map (3.4), show that the only possible restric­
tions on the rational characteristic classes of homotopy equivalent man­
ifolds with fundamental group rr are describable in terms of h(L(M) n
IMl) E H*(Brr; Q) where f: M ~ Brr classifies the fundamental group.
(1)0 the same for I1(M) in K 0[1/2].)

N<>VIKOV CONJECTURE. If g: M' ~ M is a homotopy equivalence, then

11lis element is called the higher signature of M because, by HilZebruch's
ItJrlnu!a, when Jr = e, this is the usual signature.

Now, in general it is not possible to expect the integral version of this
class to be exactly homotopy invariant. The high dimensional lens spaces
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(xS1) are (simple) homotopy equivalent but sometimes have different
images for higher signature class in H*(B1f; iE). It is possible, however,
that the only counterexamples to the integral version involve fundamental
groups with torsion.

INTEGRAL NOVIKOV CONJECfURE. If g : M' ~ M is a homotopy equiv­
alence, and 1t is torsion free, then

where ~ is the class described in 3.3 (and restricts to the signature operator
away from 2)

EXERCISE. Show that the Novikov conjecture is equivalent to the rational
injectivity of the L-theory assembly map. The integral injectivity is also
equivalent to the integral Novikov, but the only proof I know of this
equivalence relies on [Ws]. However, you should be able to show that
integral Novikov follows from the injectivity of assembly.

COROLLARY. The integral Novikov conjecture is true for the free abelian
groups and for fundamental groups of nilmanifolds.

We showed earlier that the assembly map is an isomorphism, as the
structure spaces are contractible. In general, there is the following:

BOREL CONJECTURE. If f: M' --+ M is a homotopy equivalence between
aspherical manifolds that is a homeomorphism on the boundary, then f
can be homotoped reI a to a homeomorphism.

For the state of the art on this problem, see [FJl,2,3,4].
If we assume that f is a simple homotopy equivalence, the Borel

conjecture would be equivalent to the assertion that the assembly map is
an isomorphism. As stated, the conjecture also has the implication that

CONJECTURE. If M is as above, then Wh(rr) = o.
And again, one might expect that one doesn't really need a finite di­

mensional K(rr, 1) for these "isomorphism" or "vanishing" conjectures, .
but rather that for all torsion-free groups the assembly map is an iso­
morphism.

EXERCISE. Show that integral Novikov implies Borel stably, i.e., that
after crossing with Euclidean space M' and M become homeomorphic.
(Hint: Use 1f - rr.)

The statement Wh = 0 follows from the components of the following
conjecture, which is rather parallel to the Borel;
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K-THEORY BOREL. The algebraic K-theory assembly maplO

H*(Brr; K(~») --+ K*(~1C)

is an isomorphism for 1C torsion free.

The Bass-Heller-Swan formula (1.6), generalized to twisted Laurent
extensions and higher algebraic K-theory by Ouillen [012], establishes
this conjecture for the free abelian and fundamental group of nilmanifold
cases.

Recently [BHM] have solved the K-theory Novikov (rationally) for
all groups with finitely generated homology by a homotopy theoretic
adaptation of an idea of [Cn] to Waldhausen's algebraic K-theory of
spaces [Waldl]. (This asserts injectivity of the K-theory assembly map.)

In this setting, it is reasonable to replace 7L (in both K and L settings)
hy other rings. We have seen that even for 1r = 7L this cannot be correct
hecause of the Nil terms in the BHS formula. It now seems possible
that the Nils that arise for 7L are the whole difficulty for all torsion-free
groups, and that the fibers of the assemblies are functors of this Nil. For
some evidence, see [FJ1, pt. II, ConS, Gl], but I will not be more specific
here.

One can extend this philosophy to other situations where there are
assembly maps. A very powerful instance of this is where one uses the K­
theory of C*-algebras. C*1C is a certain completion of the complex group
ring of 1C. In the case where 1C is free abelian, this should be thought of
as the space of continuous functions on the torus (via Fourier series).
'rhere is a natural map

where one can, as before, make various injectivity and isomorphism
l'onjectures. Actually the C*1C version implies rational (in fact, ~[1/2])

Novikov because there is a commutative diagram (defined using the spec­
tral theorem):

where the left vertical is a 7L[1/2] injection. Perhaps for this reason it is
called in the literature the strong Novikov conjecture. (Note that it does
not imply the integral Novikov conjecture!) It also has the virtue of ap­
plyinJ to elliptic operators other than the signature operator, and enables

IllNol defined here.
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EXERCISE 2. Cappell [Cal] proved that one can codimension one split
a homotopy equivalence, modulo Wh, if the submanifold's fundamental
group injects and is "square root closed"; i.e. any element whose square
lies in the subgroup lies in the subgroup. Using this (and the technique
of Shaneson's thesis), prove a Mayer-Vietoris sequence for L-groups of
such amalgamated free products. Apply this to Borel. (See rCa 5,4].)

one to prove results parallel to Novikov in other geometric settings. For
a prototypical example of this, see [Ros2].

Needless to say, there has been enormous activity on all of these
problems. References for proofs of various cases of Novikov by various
methods are [Lus] [HsSh] [CaS,3] [FH2] [Kas2] [KaS] [FRW] [FeWl,2]
[Car] [eM] [CoGM]. What happens for groups with torsion will have'to
wait for chapter 14....

The following are some (numbered) exercises (with references) related
to the Novikov conjecture. I have to admit that these exercises are not
at all routine (even while admitting that others in this book can also
be quite difficult). Almost always the cited references contain additional
information.
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REMARK. Waldhausen [Wald3] has proven such a Mayer-Vietoris se­
quence, modulo Nils, for the K-theory Borel. Cappell has found coun­
terexamples to codimension one splitting when the square root closed
condition does not hold. These are based on UNit groups, an analogue
of Waldhausen's groups. These examples, and UNil phenomena in gen­
eral, are among the most mysterious in topology.

\

EXERCISE 1 (KAMINKER-MIUER). Using Ranicki's result on localiza- J
tion (3.4) prove a version of Novikov for rational homology equivalence. .,.~.r,·
See [Wei9, pt. II] for how to deal with maps that are not degree one. ~,
(Or do it yourself!) I~

;~

J..!
'~B

!.m

t
~;

·Ii'J
'~1
.:~,

.~
.~
i~
"~:

EXERCISE 3 (LUSZTIG [LUS]). Let T be the dual torus to zn; i.e. T = ..,;.~.I
Hom(Zn, S1). Thus T parametrizes the flat bundles over a manifold with :;:
free abelian fundamental group. If one twists the signature operator by :.:1

these flat bundles and considers the index of this family [AS, pt. IV] to :~1

give an element of K*(T), then it captures the higher signature of M and ':i!

it is homotopy invariant.

EXERCISE 4 (GROMov-LAwsoN [GL1]). One of the early applications
of the index theorem was to show that (A(M), [M]} = 0 for a spin
manifold with positive scalar curvature. (See [AS, pt. III].) The argu­
ment, due to Lichnerowicz, is based on the Bochner-Weitzenboch for­
mula D*D = ~+K/4 where D is the Dirac operator, ~ is the Laplacian,
and K is the scalar curvature. Ind D = (A(M), [M]} K positive implies
that D* and D have no kernel, so the index vanishes. Apply Lusztig's
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argument to see that the higher A-genus vanishes for spin manifolds
of positive scalar curvature with free abelian fundamental group. The
Gromov-Lawson (-Rosenberg) conjecture is the same statement in gen­
eral and sometimes refers to a converse (for spin manifolds with torsion­
freell fundamental group) as well.

EXERCISE 5 (CAPPELL [Ca5]). Show that if Novikov holds for a group
TT:, it holds for any group containing rr as a subgroup of finite index.

EXERCISE 6 ([Wei9, pt. II]). Suppose that G is a group that acts freely
on M, TrlM --* 1rlM/G splits, and the action of G induced on twisted
homology is trivial. Then Novikov implies that the higher signature of M
vanishes. (Hint: Compute this signature directly and from exercise 1.)

In fact, this vanishing is equivalent to the Novikov conjecture.

I{EMARK. While one cannot see equivalence from the C*-algebra ver­
sion, more subtle formulae for the homologically trivial actions with fixed
points or other singular data can be derived. This is based on extending a
(;-signature theorem proof of the simply connected case of the previous
exercise. See [RsW5].

PROBLEM. Show that in addition if M is Kaehler and G acts holomor­
phically preseIVing the Kaehler class and the fundamental group is free
abelian, then the higher Todd genus (or even the higher Todd polynomial;
sec [Hi]) vanishes.

I~XERCISE 7 ([RsW3]). Show that if the Borel conjecture holds for aw,
and (integral) Novikov for W, then any homotopy equivalence of pairs
(V, aV) -+ (W, aW) induces an equality between higher signatures of
V and W in the relative group homology. The same does not hold just
f()r maps of pairs which are homotopy equivalences. (However, there are
s()me invariance properties even for this more general class of maps: the
IHost obvious of which follow from the fact that the double of such a
.'lap is a homotopy equivalence.)

In [Lo], p. 229, Lott considers a type of Novikov conjecture for man­
if()lds with boundary of a special sort. These boundary conditions seem
ttl give a homotopy invariant algebraic Poincare nullcobordism for the
IHHlndary, so that one is lifted from a Novikov conjecture of pairs to an
uhsolute one.

II Rosenberg has even suggested a converse for groups with torsion, but which is not
Itlways as explicit. However, he has worked out explicitly what it means for manifolds with
U"ill' fundamental group (and appropriate spin conditions), but it is far from verified. In
I {'cent work, he and Stoltz have verified, for spin manifolds with finite fundamental group,
II ~luhle version of this conjecture.
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:'o:U

.~
I~

i;
The classification of manifolds with the homotopy type of lens spaces .~~

!';.,

with odd order fundamental group was one of the early great triumphs '~~j

of surgery theory; see [BPW] and [Wal]. In an incredible, complex tour .;;
de force, these have been classified in every dimension. By direct com- o~'

parison, one then gets thefollowing::~
0,1·;
01".

DESUSPENSION THEOREM. For k odd, suspension (equivariant join with ~~

rotation on S1) provides a 1-1 equivalence between free lLk actions on spheres '::.~~..~
of consecutive odd dimensions 2: 5. .-'.

.~
Here I will sketch a more direct proof of the desuspension theorem, :~

which can then be used to prove the classification theorem. Unfortu- ~j
nately, we will have to invoke certain algebraic facts regarding the L- }i

~

~=·FICATION THEOREM. A homotopy lens space with odd order fun- ~
damental group is determined up to homeomorphism by its Reidemeister ~
torsion t' and the p invariant defined below. :,

~.

Recall the Reidemeister torsion was defined in 1.2.A. Before defining ,,:?~
the p invariant, let us recall the definition of the G-signature: ;

~~

DEFINITION. If G acts orientation preseIVingly on a manifold M4k, then ..~
we define G -sign(M) E RO(G) = [H+] - [H_] where H± are maximal .:~

,If

±-definite G-invariant pieces ofthe middle dimensional intersection pairing. :~

If g E G, we sometimes write sign(g, M) = Tr(gl[H+]) - Tr(gt[H-]), i.e. ...~
for the character of this virtual representation. .~t

There is a similar definition [AS, pt. III, p. 579] for dimensions 4k+2, oj
except that in these dimensions one obtains a totally imaginary character. ::~

REMARK. Atiyah and Singer prove as a corollary of the a-signature
theorem (which we will return to in chapter 13) that for G acting smoothly .'~

(but it's true more generally) sign(g, M) only depends on the action of
g on a neighborhood of the fixed set Mg. In particular, if g has no fixed
points, the character of the representation G -sign(M) vanishes on g.

REMARK. There is another point of view on the G-signature. One can:;·
view it as assigning a number to every representation, namely, the sig­
nature of M with coefficients in the associated flat bundle. The reader
should check that these different versions contain exactly the same infor­
mation. (This is just the relation between characters and representations,
Le. how the traces of the matrices representing the group elements act­
ing on the vector space determine a representation.) For instance, the
signature of a manifold with coefficients in an arbitrary flat bundle is just
the dimension of the bundle multiplied by the sign~ture of the manifold,
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which is equivalent to the characters vanishing for all g i= e, which is, in
tum, equivalent to G-sign being a multiple of the regular representation
for the free G-manifold obtained by taking a finite cover.

EXERCISE. Give another proof by bordism theoretic (or assembly theo­
retic) means that for a free closed G-manifold, G-sign is a multiple of
the regular representation. (Hint: Reexamine the remarks about surgery
obstructions on closed manifolds in 3.4.) Gilmer has given a proof of the
G-signature theorem by purely bordism theoretic arguments in [Gi].

This invariant is an equivariant bordism invariant, by the usual
argument for ordinary signature, and just depends on a G-invariant
±-symmetric inner product, and therefore defines an invariant of
L2i(~G,+). This invariant was studied by Wall (in [Wa1] by a rather
more complicated, equivalent, algebraic definition). He calls it the mul­
tisignature. We will see important connections between this invariant
and classification theory, largely because of the following:

THEOREM. For finite G, the L-groups L*(71.G) are finitely generated and,
except for 2-torsion, are detected by the multisignature.

Note this includes the statement that the odd L-groups are 2-torsion.

I~XERCISE. Show that this is not true for infinite groups, e.g. free abelian
groups. (A little harder: Give a group with odd torsion in its L-theory.)

The p invariant12 is defined as follows. If L is a homotopy lens space,
then a bordism argument shows that for some n, k" L bounds some man­
ifold W with fundamental group 7Lk. Remembering that one can take
the signature of a manifold with boundary, just as for a closed manifold
(we just have to mod out by the torsion in the possibly singular bilinear
form), we define

1. RO(Zk) [1]
p(L) = kn (G -:-Slgn(W») E imRO(e) @Z k ·

This is well defined because of Novikov additivity: the signature of
two manifolds glued together along their mutual boundary is the sum
((lr difference, depending on orientation conventions) of the signatures
()f the manifolds.

The difference of the G-signatures of the cobounding manifolds will
he the G-signature of a closed manifold, which by Atiyah-Singer (in the
".l1ooth case) is a multiple of the regular representation.

I·:XERCISE. Identify RO(Zk)/imRO(e) ®l[ljk] ~ 7L[ljk][~] where ~ is
a primitive k-th root of unity.

I.' It was essentially by a calculation of this invariant that [AB] showed that linear lens
'ipUl'CS arc not h-cobordant (unless they're linearly diffeomorphic).
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EXERCISE. Show that p can be defined for arbitrary odd dimensional
manifolds with fundamental group G but that one might have to relax
the ring to (in, say, dimension 4k - 1) RO(G)/imRO(e) x Q.

To prove Wall's theorem, we will rely on some algebraic facts, which
we'll state as we go along, and some exercises.

EXERCISE. By modifying the argument given above for complex projec­
tive space, show that every quotient of the sphere by a free Zk-action
is homotopy equivalent to a lens space. There are cp(k) (the Euler cp­
function) distinct homotopy types.

EXERCISE. Show that the Reidemeister torsions of homotopy lens spaces
that are not homotopy equivalent cannot be equal. (Hint: Look at the
formula for the linear case in 1.2 and recall that the torsion of a homotopy
equivalence is the ratio of the Reidemeister torsions and is also in the
image of Z[~]*.)

FACTS. Wh(Zk) is torsion free. The involution on it is trivial. L S is torsion ~i

free except for the Kervaire element coming from L2(e). ,i~
,~
~

,1
,~~

,if
'i:ti

:1
~:;1

J
,'1

~~
,f~

EXERCISE. Show that suspension induces a 1-1 correspondence between '0';'\':;

simple homotopy types of polyhedral homotopy lens spaces.
',;1

Now we can concentrate our attention on STOP(L). (In chapter 13 we 0/;

will give another approach based on equivariant Bott periodicity [AI].) :J
i

We can now see why desuspension is pretty surprising; just consider the j
surgery exact sequence ..

One quickly sees from the definition of p and the detection of L-groups ';
by multisignature (aside from torsion, which we've been told vanishes .:
here)13 that aside from k torsion STOP,S(L) is detected by p. ;

But what about the k torsion? The normal invariant group which is,'
k torsion is growing in size with dimension. (For k odd, the number of I

summands is fixed, but the exponent grows.)
What is happening is that the extension is not split and the p invariant

is still detecting. Furthermore, the range of the p invariant is increas­
ing (more denominators creep in) as normally cobordant homotopy lens
spaces suspend into ones that are not normally cobordant!

Here is a way to reduce this phenomenon just to the algebra of
L-groups. (This is fairly easy given the algebraic state of the art.) We

13Exercise: Deal with the Kervaire invariant (using a Kervaire manifold).
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prove desuspension, and then we desuspend down to (virtual) dimension
three,14 where the normal invariant set vanishes, and we're all done!

EXERCISE. Use periodicity to eliminate the seeming violation of the di­
mension restrictions in surgery.

We have discussed the SI equivariant decomposition of odd dimen­
sional spheres in 4.1. This gives rise to a decomposition of lens spaces

L 2/+ 1 = E(~ t L 2/- 1) U S1 x D 2i •

Here ~ is the flat n2 bundle associated to the representation of the
fundamental group on the circle of rotation (that we're joining with). Now
using the splitting exercise from 4.3, one can split along the Sl x S2i-1.

This leads to a fibration

S(SI x D 2i , rei 8) ~ S(L2;+I) ~ S(E(~ t L 2/- 1) not reI a).

We have seen in 4.6 that the fiber is contractible. Thus we have to deal
with E. This falls nicely into a commutative diagram associated geomet~

rically by pulling back the disk bundle:

L2iCl.k) ----+ STOP,S(L 2i - 1) ---+ [L : FjTop] -----+ L2i-l(Zk)

1 1 ~l I
L2i+2Cl.k, Z) -----+ STOP,S(E) ----+ [E : F/Top] ----. L2i+1(7L.k, 7L.)

'rhe arrow labeled an isomorphism is because E ~ L is a homotopy
equivalence. We want to see the isomorphism of structure sets, but this
follows from a purely algebraic fact:

FACf. The "L...theory transfers" above are isomorphisms for k odd.

I~XPLANATION/ExERCISE. The L-theory for finite groups is a compli­
cated business, but for the most part the ingredients of the calculations
are assembled from the rational representation theory of the group. The
real and quaternionic pieces behave differently in different dimensions.
'rhe unitary pieces behave the same in dimensions of the Same parity.
For a cyclic group of odd order, everything except the trivial represen­
tation is complex, so most of the periodicity is forced. The trivial piece
is different in different dimensions (7L.2 or Z). Here the reader should
check that the 7L. saves the day via Shaneson's formula from the previous
sl~ction.

14That is, we do not have to consider the geometric meaning of the three dimensional
t Ihject at all; we just consider it algebraically as part of an algebraic calculation of the struc­
lure set of the higher dimensional lens space. Alternatively, using Freedman's work, one
cun geometrically interpret the three-dimensional structure set as the topological homology
\ ('ohordism classes of homology 3-spheres with free cyclic action. See [FrO].



The p invariant studied in this section is closely related to Atiyah­
Patodi-Singer's [APS, esp. pt. II] invariant for the signature operator. I
will here briefly review this theory.

[APS] was an attempt to analyze the failure of Hirzebruch's signature
formula for manifolds with boundary.ls Recall that the (Chern's) Gauss­
Bonnet formula

x(W) =LEuler form

Theory of Manifolds

4.7A. Eta invariants

PROBLEM. For k even, there is exactly one other real representation.
Show that desuspension fails. (You will rediscover the Browder-Livesay
invariant in the process.) This leads to a rather different classification.

~ :;i;
See [Wall or [LdM] for the case of ~pn• ,;:~

.\~~One can combine these calculations. One sees that the relative group ~\~:

S(lRp2i-1, £2;-1), where one maps L2i- 1 ~ IRp2i-1 degree one, has peri- ';."~
odicity. Thus there are the invariants of projective spaces (which are not ~j

periodic at all) and then the p and 'r as for the odd ordercase.'~
':~~

:1
:1
~~!

~~

.~

~.~~
,·It}
~'~~

remains valid for manifolds with boundary if 0W is Riemannian collared. .~

This is not true of the Hirzebruch signature formula. Moreover, since ~1

signature is not multiplicative in coverings for manifolds with boundary,j
the error term cannot just be a local expression integrated over the a. ;,
EXEROSE. Verify (using cobordisms between homotopy lens spaces!) I
that signature is not multiplicative in coverings for manifolds with bound-:i
ary. ~

.)'I~

The remarkable theorem of [APS] is that the error is an explicit spec- .;~

tral invariant of the boundary. ;:i
'~~J

EXERCISE. Use Novikov additivity to show that the error is an invariant ,~
of the boundary. .'~~

;\~

On the space of all exterior differential forms of even degree on an :~~~
odd dimensional manifold V21- 1, define the self.-adjoint operator B by';~~,

108

Btn -_ z·/(-1)1+1<*d - d*)tn ;~
." T 'J~

- ~

:'1

where degq; = 2r, * is the Hodge operator, and d is exterior differenti-)
ation. The eigenvalues are then real, and they define ·~t

~

y/(s) = Lsign(A)jAS

15They do, however, put their theory in the wider context of studying indices of operators ';
with an appropriate global boundary condition.
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where we sum excluding o. We define 11(Y) = 11(0) for this operator (after
analytic continuation of what is shown to be a meromorphic function
regular at Of).

ATIYAH-PATODI-SINGER INDEX THEOREM. Sign(W) = Jw L + f](8W)
for L the differential form representative of the Hinebruch class.

We can do the same thing for signature coupled to a flat bundle. If we
take the difference between this construction for a flat bundle a and that
for a trivial bundle of the same dimension k, the characteristic classes
wash out. Better yet, for an arbitrary Y we can define

even if Y is not a boundary (or the flat bundle does not extend to a
coboundary). This defines an invariant of the smooth manifold Y.

Atiyah-Patodi-Singer observe that by varying a one can use this in­
variant to distinguish lens spaces from one another. In particular, it is
not a homotopy invariant.

The following exercises develop some of the role of f] in the classifi­
cation of manifolds.

I~XERCISE (ATIYAH-PATODI-SINGER). Show that for (the holonomy of)
(1 factoring through a finite group, ijo:(Y) is rational. Show that for Sl
and the representation of 7L by multiplication by (J one gets 1 - 20.

I~XERCISE. Relate ijo:(Y) as a varies to p(Y) if the fundamental group is
finite.

I~XERCISE. Show that manifolds with finite fundamental group within a
simple homotopy type are determined up to finite ambiguity by their
rational L-classes and by their reduced etas.

Remember, though, that the simple type cannot in general be deter­
ruined by intrinsic invariants (1.2.A).

I have recently shown that the deviation ijo:(Y') - ija(Y) is rational for
IUlmotopy equivalent manifolds with arbitrary fundamental groups (and
urhitrary representations). We will see later many examples of torsion­
free groups for which ijo: is actually a homotopy invariant (12.3.A). How­
laver, in the opposite direction, there is the following:

II:XERCISE ([Wei6]). Show that if r is a residually finite or virtually
It )rsion-free group with nontrivial torsion, then there are (simple)
ht HTIotopy equivalent manifolds with fundamental group r and a
Il'presentation a (flat bundle) of r for which ija distinguishes these
lu"nifolds.

I~la will return in Part III when we look at signature operators on sin­
~'.lIlar spaces. Indeed, we will study eta for manifolds via singular spa~es.
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4.8. The space form problem -

" ~

I will now give a very rapid sketch (making use of the more functorial :,~~
approach that we've developed to do some key steps) of one of the high ", ~

is to classify those finite groups which can act freely16 on a sphere. The :;';
classic criterion for doing this by orthogonal transformations is: .~~

I,jj;'

THEOREM. A finite group rr acts freely and linearly on some sphere iff all :;1
subgroups of order pq, where p and q are not necessarily distinct primes, ';Ilt
are cyclic. :} .

See [Wo] for a proof. The first result in this direction topologically isiq
due to EA. Smith: .;~,'

THEOREM. Ifa finite group 1f acts freely on some sphere, then all subgroups ,;(;
of order p2 are cyclic. ,,~,~

Here's the idea. We have to eliminate 7l.p x 7l.p • Without loss of gen-'"
erality, we can assume that we're on a rather high dimensional sphere.;~1

The quotient manifold is a K(7Lp x 7L.p , 1) through a high dimension, sorl1
we can compute its cohomology, contradicting Poincare duality. ,i~

'AJ
EXE~~.cISE. Show !hat the only finite abelian fundamental groups of 3-.1
manIfolds are cyclIc.. .~~

Conversely, Swan [Sw] proved: ·:!~t
.. IM

THEOREM. If 1'l is a finite group for which all subgroups of order p2 arei~

cyclic, then 1'l acts freely on some finite complex homotopy equivalent to the.(;
h ~
~~ ~

.,-:,'.
The proof is by construction of an appropriate chain complex mod4

for the quotient, and then using the ideas from 1.1 to geometrically rea~~

ize it. In contrast to this Milnor [Mi4] gave a beautiful simple argument~

for: ti
THEOREM. No dihedral group acts freely on the sphere. :'::~~~

jH~

Ronnie Lee [Le] gave another, more algebraic proof of this (that als,il
led to more precise results in other directions) and subsequently JUj
Davis [Da1] found an elegant surgery theoretic argument, using calcul~

tions of L«(F2[~p]) and the fact that if one had a manifold all surge~
obstructions would be in the image of the assembly map (3.4). The cori~:

tradiction is deduced by comparing the transfer in L-theory to that ii
homology. ;~;)

It turns out that for our original question, Milnor's condition is thi
last word.

16A more refined version that I won't get to is to classify the manifolds whose universal
cover is the sphere. See [DM] for a useful survey.
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THEOREM (MADSEN-THOMAS-WALL [MTW]). A group acts freely on
some sphere iff all subgroups of order p2 and 2p are cyclic.

The proof is an application to surgery of the induction theory of A.
Dress [Dr], which is itself a variation (or generalization) of the classical
induction theory of representations of finite groups (see e.g. [Se2]).17
We will outline an argument using a subsequent extension of this theory
due to Nicas [Ni]. (His work, in turn, has been put into a useful general
framework by [HmTW].)

Suppose we have a surjection r ~ 1C where 1C is a finite group. The
theory relates the structures (and L-theory) of a manifold with funda­
mental group r to those associated to an appropriately thick set of finite
covers corresponding to subgroups of 1C.

THEOREM. An element of the structure set is trivial, localized at p, iff the
transfer to the covers associated to p-hyperelementary subgroups of 1C is
trivial at p. The element is rationally trivial iff its transfers to the covers
corresponding to cyclic subgroups are rationally trivial.

Recall that a group is p-hyperelementary iff it is a p-group extension
of a cyclic group.

EXERCISE!PROBLEM. Use this, Bieberbach's theorem that a flat mani­
fold has a finite cover which is a torus, and the fact that the Borel con­
jecture is known for Poly-Z groups (nilmanifolds; see 4.6.A) to deduce
the rational L-theory Borel. (See [FH3].) Do the same (this is harder)
llsing Brauer induction theory in representation theory to establish the
(~*-algebra "rational Borel conjecture" for these groups.

At this point the method of proof can be described as follows. One
finds a Poincare complex (as Swan had) S/1C whose 2-hyperelementary
subgroups are homotopy equivalent to quotients of linear representa­
tions. (This uses the Milnor conditions as well.) The obstruction to being
homotopy equivalent to a manifold is a component of delooped structure
space18(by the total surgery obstruction idea discussed at the end of 3.3).
IJy assumption, at 2, the obstruction vanishes. Away from 2, thinking in
terms of the surgery exact sequence, one sees the difficulty is just that of
finding a normal invariant. However, this can be checked one prime at
it time and therefore by transfer to an appropriate cyclic subgroup (see
IAd3] for why this transfer is injective), where the problem is trivial: that
(,"()ver is a homotopy lens space (by an exercise in the previous section)!

J7The relation between these is apparent on consideration of the multisignature, which
1mks the theories.

IKThe reader can argue more classically with a surgery exact sequence and discussing
luduction on the structure set term.



PART II: THE GENERAL
THEORY OF STRATIFIED
SPACES

I-Iaving developed the classification theory of topological manifolds in
Part I, we develop here the theory of stratified spaces. That is, we aim to
solve the question, given two naturally occurring stratified spaces, when
are they homeomorphic?

OUf choice of central problem to some extent dictates the category of
stratified spaces that we work in. The commonly used Whitney stratified
spaces are not very suitable, because they include much additional struc­
ture that is not topologically invariant. (One could insist on homeomor­
phisms preserving that extra structure. With one interpretation this yields
the Browder-Quinn theory, which we'll develop in chapter 7. In another
interpretation, this project is well outside the capabilities of topology at
this point in time.)

The idea of a Whitney stratification is that one has a filtration of the
space X into pieces, called strata, such that differences between con­
sccutive strata are open manifolds, and that each of these consecutive
differences has a neighborhood given as a fiber bundle. Moreover, these
ncighborhoods are demanded to fit together nicely.

A great part of the difficulty involved in trying to classify the Whit­
ncy stratified spaces is that the structure groups of fiber bundles with
11lanifold fibers are unknown for any fiber of dimension greater than
three. In addition, this kind of structure is not very suitable for many
applications. Often one would want the structure group to be restricted
I() a subgroup, with the reduction as part of the data: consider what
(tilC would need to view smooth embeddings as stratified spaces so that
lliffcrentiably equivalent embeddings correspond to equivalent stratified
Silaces.

In the polyhedral category, it turns out that the Whitney idea is, in fact,
...ore reasonable. With the conceptually slight difference of substituting
hl()ck bundles for fiber bundles, "Whitney stratifications" (which will be
railed" PL stratified spaces" in the text) are P L invariant and lead to
uSl~ful P L classification theories. The answer to the analogous question
\\It" asked about embeddings in the P L case would be that these sets are
.n a 1-1 correspondence. (The implications of this will be investigated
III chapter 11.) The classification theory for the P L category is given
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in chapter 8 and is considerably simpler than the topological theory to
establish.

In the topological setting, we shall use a (slight extension of a) class
of spaces introduced by Quinn. What is most remarkable, perhaps, about
these spaces is that one only assumes that the stratification is homoge­
nous in some weak homotopical sense: i.e. that "normal links" at differ­
ent points on a component of (pure) stratum are the same. Nonetheless,
these are (most often) genuinely homogenous, have useful isotopy exten­
sion lemmas, and can be effectively classified. And, as in the PLease, this
classification corresponds to interesting classifications when restricted to
natural sources of stratified spaces.

The proofs in the topological category are based on a wonderful elab­
oration of topology to the bounded (and controlled) setting(s). What
this means is that one imposes metrics on all topological spaces and
tries to keep track of the "sizes" of various constructions, perhaps when
measured in some auxiliary space. This idea is one of the most fruitful
ones of topology, which is, unfortunately, nowhere adequately exposed.1

(There are many fine research papers explaining one controlled problem
or another or applying such theorems, but the big picture is yet to have';~\,"

its convenient exposition.) I have given a quick and dirty presentation in AI
chapter 9, which is adequate for the purposes of this book, but the subject .:)~

certainly deserves more attention than I could have given it. However, ~il
I do hope that the rough presentation I have given achieves two goals: .1
that it encourages readers to try to work their way through the literature :~~~
in this difficult and extremely rewarding area, and that it renders the ·,:1
following chapter, which completes the topological classification theory,:1
readable.. \f

The reader interested in only the applications presented in Part III can :'ir.~

glance at chapter 5 for definitions and read chapter 6, which presents the'~i~
classification theorems. Chapter 7 is devoted to the theory of Browdet,i!~

and Quinn, which is well adapted to (say) Whitney stratified spaces if one}!
only tries to classify stratified. spaces where t~e bundle ~ata th~t glue th~i,H

strata together are totally pinned down. It IS a beautifully sImple the~\,:~

ory, and critical for what follows, but its defect is that too much of th~~~
stratification information is fixed in advance. The PLease is treated i~/~i
the following chapter, and all but the most dedicated reader could stoA~

there. Despite this, chapter 9 would be a mistake to miss, and indeed ca!t;
be read immediately by the reader not particularly interested in strati~~

fled spaces! In this book, the material in chapter 9 is only used for th~::

explanation of the proofs for the topological category in chapter 10 and'j
in our discussion of rigidity.

I Steve Ferry is in the process of rectifying this with a forthcoming book and CBMS
lecture notes.



5 Definitions and Examples

The definitions in this chapter are, of course, critical. The contents of the
sections are self-explanatory. The point of 5.2 is that one needs some sort
of transversality for many constructions that involve (self-) duality, in~er­

section theory, and the like, but that one has some degree of choice in
defining this critical notion. In some sense, transversality and its variants
are at the heart of all of our work.

5.1. Stratified spaces

There are several different, but analogous, types of stratified spaces
that we shall deal with. We shall define several classes:

{PL stratified spaces}

n
{PL weakly stratified spaces}

n
{manifold stratified spaces}

n
{stratified Poincare spaces}

n

{stratified homotopy type}

()f the most intrinsic interest are the PL and manifold stratified cate­
A(lries, but the others have their uses.

At the very least, to begin we need the idea of a filtered space. X is said
() be a filtered space (on a finite partially ordered indexing set S) if one
has a closed subset Xs for each S E S, so that s ~ s' implies that Xs C Xs'.
()nc also assumes that the inclusions Xs c X s' are cofibrations. The Xs

•• r~ called the (closed) strata of X. A difference of the form Xs - Ut<sXt

will be called a pure stratum. We will denote this pure stratum by XS.
A filtered map between filtered spaces (filtered using the same in­

dexing set) is a continuous function! : X --+ Y such that !(Xs ) c f,·.
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[X, Y]filtered = [X, Y]stratified,

!.~

!'

Filtered spaces and maps form a category, and there are obvious notions ,~:,

of filtered homotopy in this category. For instance, if the indexing set ~~
S = {O, 1} with 0 < 1, then the category of S-filtered spaces is the usual .~ ~
notion of the category of pairs. Besides S = {O, 1,2, ... , n}, other useful "I~~
indexing sets are conjugacy classes of subgroups of a group G and the i:.

set of faces of the n-simplex. i,';,"

A map f : X ~ Y will be said to be stratified if f(XS) c y s • This also
leads to a notion of homotopy, and therefore homotopy equivalence. In 'I,~~,',~
general it is much harder to deal with the homotopy theory of stratified '~I

maps than it is to deal with the filtered category. Nonetheless, all of ~
the categories we will use demand that the morphisms be stratified; this .'~}

seems more natural geometrically.

EXERCISE. Show that every object in the filtered category for S = to, 1}
is filtered homotopy equivalent to one where Xo has a neighborhood

:l~:~~' ~:~~~~:~a~~Xo x [0,1). Show that for such "boundary .~

;1
tli

where [X, Y] means homotopy classes ofmaps.1

bF~om our pobi1nt of vliew, this e~erlcdise ~xp~ains why it was possible to':"'.'~':;~I:•._o'.."".:~:,.!
o tam reasona e resu 18 on maniLo pairs m Part I. ~

Another good example to keep in mind comes from embeddings.
,,'If;

Given an embedding, one constructs a stratified space by viewing the ~

submanifold as the bottom stratum and the whole ambient manifold asiY
ti"

the next (top) stratum. 'Bvo embeddings of N in M give stratified spaces ;!~

in the same filtered homotopy type1 iff they are homotopic. They have the ...~
same stratified homotopy type iff they represent the same Poincare em- :~~

bedding (see 4.4), and hence iff (assuming codimension at least three) o~

they are isotopic. Concretely, it is quite simple to give embeddings of ;;~

sa u Sb in SC in which the components are linked, but all such are null- '.~

homotopic as maps.

REMARK. This example illustrates another important phenomenon that
is not yet adequately understood. If c is larger than 2 max (a, b) + 1,
then all of the embeddings are isotopic, and the filtered theory coin­
cides with the stratified homotopy theory. Presumably this demarcates t'

the border between stable and unstable homotopy theory. It seems that
"gap hypotheses" can be used to analyze stratified theory quite effec­
tively in many situations. See the beginning of chapter 13 for some more
discussion.

I Strictly speaking this is only correct if we assume that the filtered homotopy equiva­
lence is homotopic to the identity as map M ~ M (forgetting stratifications).
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In general it is very hard to deal geometrically with filtered spaces, and
we must assume some form of homogeneity condition to make progress.

DEFINITION. A filtered space X is a PL stratified space if all the Xs are
polyhedra and for any two points x, y in a component ofsome pure stratum
there is a PL isotopy it : X --+ X; to = id, and fi(x) = y.

It is automatic that one can choose the isotopy to be supported in the
neighborhood of an arc connecting x and y within their pure stratum.
A simple consequence of the definition is that the pure strata are open
manifolds.

We leave to the reader the slight changes necessary to allow manifolds
with boundary as "pure strata" without changing the indexing set.

Actually, for our purposes it is convenient to have a slightly weaker
notion available.

DEFINITION. A filtered space X is a PL weakly stratified space ifall the X s

are polyhedra and for any two points x, y in a component ofpure stratum
there is a topological isotopy It : X --+ .x; fo = i d, and fi (x) = y.

This is actually not very hard to check, as we shall soon see. The princi­
pal advantage is a technical one. While there is a reasonable classification
theory for P L weakly stratified spaces, up to concordance (h-cobordism),
within a stratified homotopy type, the theory for P L stratified spaces is
more awkward. One requires an extra algebraic K-theoretic assumption
on the local nature of the stratified homotopy equivalence implicit in
setting up the classification problem.2 Nonetheless, in many interesting
cases, this condition on the map does hold, and one can then ignore the
PL weakly stratified category.

The prototypical example of the phenomenon is the following. Let
(W; M, M') be a P L h-cobordism. Let X be obtained as the suspension
of W U eM U eM'. If W were a product then one could PL stratify X with
a circle (the suspension of the union of the cone points) as a stratum. In
a PL-stratified space this would not be possible if the h-cobordism had
nontrivial torsion, as the reader can check. However, we still could weakly
stratify this example, as we shall see: the circle inside this polyhedron is
lopologically homogenous but not P L homogenous. (This can be seen
hy using the fact that for any h-cobordism W - M ~ M' x [0, 1), as shown
in 1.3, and which also follows immediately from the proper h-cobordism
theorem (1.5.A) or from an "Eilenberg swindle" (see 5.3 below).)

One could derive from the material of the next chapter an obstruction
(heory to concording a weakly stratified P L space to a stratified one.

~ I.e. in surgery theory we classify manifolds simple homotopy equivalent to a given one
altd in the stratified theory one wants stratified simple homotopy equivalences, but one
w()uld be forced to add an additional local simplicity condition on the map as well.
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In a slightly less general setting this was considered in [CW1,S], where
"Rothenberg classes" were defined that describe the obstruction.

At this point, we should emphasize that our classification theory is not
stratification independent; the stratification is part of the data. This will
at times be useful, but at other times artificial (we cannot directly study
when polyhedra are homeomorphic, for instance). For this reason, we
introduce the idea of a coarsening of a stratification. A stratified space
V with strata indexed by S is coarsened by a stratified space V' with
strata indexed by T and maps a : S ==> T and f : V ~ V' so that Vs ..~:..:
is mapped into V;(S)' and the map Va-l(t) ~ V: is an equivalence. For .
instance, to consider a manifold with a distinguished submanifold as a
stratified space with two strata, one can coarsen this stratified space so
that it consists of just the ambient manifold, viewed as a space with just
one stratum.

We now turn to the topological manifold analogue of these definitions,
due to Quinn. Of course, in the topological case there is no need to /ti

make subtle distinctions between the types of isotopies allowed. Actually, ~
Quinn discovered that one can assume some local homotopical conditions l;~:i

that prima facie seem much weaker than homogeneity but actually imPly:;;

all tklhe isoto~fiY edxtension. pri~ciPlles one cloul~ wIahnt. Cons~qullentIY, a.fiPL
d

':".'I~.':i.:.;.;
wea y stratI e space IS simp y a topo oglca omotoplca y strati e ...
space, where all strata have PL structures. We will not re-prove all of fI
Quinn's results, but they serve to enable one to think of these spaces as .~\

being essentially not so different from P L stratified spaces. The main .~
difference, as we will see, is the lack of existence and uniqueness of .~:~\

..1
regular neighborhoods.

118

.~

DEFINITION. A subspace A C X is called tame if there is a neighborhood :~
:;,;.

N of A and a one-parameter family of functions It : N ~ X that are the ':~!

identity on A and on all of X for t = q and that for t :f. 1 are a stratified .;;;
map of the pair (N, A) ~ (X, A), but fi (N) C A. ~~

PROPOSITION ([03, §2.S]). A is tame iff A is locally tame.

Examples of tame 'embeddings are given by PL embeddings. Observe
that the definition is topological in nature, and according to the propo­
sition, local. A good example to keep in mind is the one point com­
pactification of a noncompact manifold. The inclusion of 00 is tame iff
the end is tame in the sense of Siebenmann (see 1.4). One can verify .
tameness by local fundamental group conditions (i.e. conditions about
the ends of small deleted neighborhoods of points in A) together with
local homology conditions.

REMARK. We also sometimes need "reverse tameness" for certain con­
structions. That means that X - A can be pulled outside neighborhoods
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of A. If all local fundamental groups are finitely generated, then tame­
ness is equivalent to reverse tameness. See [Hu3]. We assume this in all
of our examples and theorems.

The following definition is a homotopical analogue of the deleted
regular neighborhood of A c X.

DEFINITION. The homotopy link, abbreviated holink, is given as the space
of stratified maps (1, 0) ~ (X, A), I = [0, 1].

This is really semilocal (i.e. local around A) since one can shrink
the size of any path to lie within a prescribed neighborhood. For us, it
provides a homotopical shadow of the geometry of a neighborhood of a
stratum. For instance, for the cone cP, the holink of the cone point is
homotopy equivalent to P.

I)EFINITION. A filtered space X is homotopically stratified if whenever
s ~ t, XS C (XS U XI) is tame and the natural map holink (XS C (XS U
.rt » ~ XS is a fibration.

This should be thought of as saying that there is a local type of homo­
geneity that holds for X. Quinn shows that homotopy versions of all of
the compatibility conditions one often assumes in other types of stratified
spaces are a consequence of this compatibility just for pairs of strata.

It is sometimes more useful to think about the homotopical strati­
fication condition like this. Let S be a finite index set. Let 0 E S be
a minimal element. An S-stratified homotopy type is inductively a pair
()f T-homotopically stratified homotopy types, where T = S - 0, (A, B)
with a T fibration (i.e. the homotopical structure group involves only
T-stratified maps) p : B ~ Xo• (Notice that this map does not lie in the
category!) The stratified space corresponds to A UB Cyl(p) (the mapping
l-ylinder of p). It is obviously an S filtered space and it satisfies Quinn's
conditions. Conversely, a filtered space is homotopically stratified iff it
is stratified homotopy equivalent to a stratified homotopy type. We will
s( )metimes refer to B (as aT-stratified homotopy type) as the (stratified)
holink of Xo, and the (T-stratified) fiber as the local (stratified) holink.
( I f we are not on a minimal stratum, just remove all lower strata.) It is
the analogue of the PL notion of the link of the highest codimensional
face of a pure stratum.

A manifold stratified space is a homotopically stratified space for
which all pure strata are manifolds. A manifold stratified space with
houndary is the obvious thing, with the additional condition that if one
glues on an open collar to the boundary, the resulting object is still a
,uanifold stratified space. (This again has a local homological interpreta­
li()n.) This condition implies that the boundary is collared.
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REMARK. A PL filtered space is a PL weakly stratified space if all pure
strata are manifolds and it is stratified homotopy equivalent to a stratified
homotopy type. This can be proven by a type of engulfing or by the
isotopy theorems in [03], such as: I
THEORE~. If p a~d q are points in a sing~e com~nen~ ofa pure stratum ,~
ofa manifold stratified space, A'; then there lS a stratified Isotopy X x I ~ X ·:li~~...!1
from the identity to a homeomorphism moving p to q. (The isotopy can be :~.,

taken to be supported in any neighborhood of an arc connecting p and q l:~ ,rJ

in the given pure stratum.)

The inductive approach also enables one to formulate the homotopical
ideas of Poincare duality. Of an S-stratifted Poincare space, one demands ";':'
that the minimal strata are Poincare complexes in the conventional sense ~:~~<
(2.1), that (A. B) is a T-Poincare pair, and that the local holinks are T- ':1
Poincare. (The last actually implies that B is T -Poincare.) A standardt~.'i~

example for S = {O, 1} would be a Poincare embedding or a Poincare.: ..'
p~~ :~

We leave to the dutiful reader the notion of stratified Poincare pair. :;.;~
In the next chapter we will study which stratified Poincare spaces .~{'

are stratified homotopy equivalent to manifold (or P L weakly) strati-,j
tied spaces, and when a stratified homotopy equivalence between twQ·j~~

m~ifold (or PL stratified) stratified spaces is stratified homotopic to an::1
~~~~ ~

J1!~_\

REMARK. We shall sometimes be interested in a variant of manifold,,·;g~

stratified spaces wherein all pure strata are ANR homology manifolds,\1
(see 9.4.D). These should be called homology manifold stratified spaces ?~~
(of course). ·..t~

/~
5.2. Transversalities ..~

'.."1:;;••

Corresponding to the I different types of spaces considered in the pre.::~·

vious section there are different types of transversality conditions that '.~~. .~

one can Impose on amap..':::f~
Suppose first that one has a PL stratified space. Then around each·(~·~

stratum one has the structure of a stratified block bundle with fiber the ...~
(geometric) stratified link (stratified homotopy equivalent to the stratified:i{
local holink). The proof is similar to that for the existence of block bundle i~~

structures for submanifolds of a P L manifold; see [RS2] or [8to] for a :~l
complete proof. ~~

Knowing this, define a map f : X ~ Y to be stratified transverse J
(sometimes the adjectives are used in the reverse order) if f is a P L map, !i
stratified, and f defines a PL homeomorphism between the boundary Ofl~

a regular neighborhood of each pure stratum in X and the pullback of,~!

the corresponding stratified block bundle over the target stratum in Y. ~;
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This is the notion that Browder and Quinn use in [BO] to set up a
stratified surgery theory. We will review their theory in chapter 7 because
it is very elegant and is foundational for our main results. This same
notion is used in [FM] and [GMt] and is called "normal smoothness".

REMARK!EXERCISE. This condition is valuable for defining various types
of functorialities. For instance, show that such a map induces wrong­
way maps in homology and cohomology. (Remember that PL stratified
spaces, as defined in the previous section, are automatically manifold
stratified.)

The notion that is of more interest to us is homotopy transverse. It
is best defined for stratified homotopy types. Observe that a stratified
map f : X --+ Y induces a map on all (stratified) holinks of all (pure)
strata. One can now insist that over each pure stratum the map from the
holink to the transverse homotopy pullback of the holink fibration over
the target is a stratified homotopy equivalence.

The significance of this notion is underscored in the following simple
result of supreme ideological importance:

'rHEOREM. A stratified homotopy equivalence is automatically homotopy
transverse.

PROOF. This is true almost by definition,3 because stratified maps take
the system of deleted neighborhoods in any stratum touching a point to
the corresponding neighborhood system in the target space. By using a
Inap and its homotopy inverse, one sets up an equivalence between the
holink fibrations in domain and range.

For instance, in a stratified map between cones of manifolds, the link
()f one vertex is mapped into a deleted neighborhood of the other vertex,
which deform retracts to its link. If the map were a stratified homotopy
t:quivalence, this process would quickly give a homotopy equivalence of
links and hence a homotopy transverse map between the cones.

I{EMARK. Similar discussions appear in [CW1,2, 010].

Unfortunately, in the PLease, this will not suffice if we are interested
in notions that enable an isomorphism classification; it is necessary, for
Ihe reasons discussed in 2.4, to have simple homotopy equivalences. Hap­
pily, it is possible to make sense of a stronger notion of homotopy equiv­
alence that gives the type of simple stratified transversality we need.
Moreover, a P L stratified map homotopic to a PL homeomorphism is
;Iutomatically one of these.

-'Indeed, a stratified homotopy equivalence sets up an equivalence in the category of
...1ratified homotopy types discussed in the previous section, and part of the data of this
homotopy category is the collection of holink fibrations.
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EXERCISE. Show that simple homotopy transversality is invariant under ,::.f.•,:·~.,~.:.~.•,~..;,.
stratified PL homotopies of maps. :..

ItO!J

:i::;

5.3. Examples :~

The main difference between the P L and topological categories is.:i:;
that in the former there are links of simplices and there are regular .:1~
neighborhoods, while in the latter these do not exist. In an appendix to or!
chapter 10, we shall describe the local structure of the neighborhoods of :~;

a minimal stratum in a manifold stratified space. In this section I would;:~
like to give some examples of stratified spaces and some phenomena that .~~
occur in their study. !~

Examples of intrinsic mathematical interest were mentioned in the '.~

Introduction and will be the subject of Part III. The examples to follow '~$
.,;!:

are of pedagogical interest as prototypes of certain behavior. ):
,,;~

EXAMPLE 1. A one-point compactification of a noncompact manifold ']:
is a manifold stratified space iff the noncompact manifold is tame. It '~J
has the structure of a P L stratified space iff the complement has a PL .:~:
structure and can be compactified as a manifold with boundary; Le. the
Siebenmann obstruction of the end vanishes (1.4).

If this exists, the P L structure need not be unique. One can modify .;~
the boundary structure by gluing in an h-cobordism (1.5). (This is, inci- .i

dentally, a variant of. Milnor's original examples of counterexamples to
the hauptvermutung [MiS].)

EXAMPLE 2. There are nontrivial PL h-cobordisms that are not topolog­
ically products. This will show a difference in simple homotopy theory 0

in different categories. Let (W, M) be a manifold with boundary with
T(tM ~ 1ftW an isomorphism. Erect an h-cobordism on W relative to
M. Glue onto M x I a copy of eM x I. One easily sees that this is not a
product in the piecewise linear sense.

However, it is topologically a product. Consider figure 14.
The product structure between two copies of M near the I (which is

the rightmost vertical line in fig. 14) can be made to contain the neg­
ative of the torsion of the original h-cobordism. Consequently the re­
gions bounded by the broken lines are products! These successive copies
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w M M M

Figure 14. Eilenberg swindle.

of t' and -r are constructed to be smaller and smaller. The sizes of
the homeomorphisms produced by the h-cobordism theorem are con­
sequently getting smaller themselves as we approach I, so the process
converges.

This is our first example of how we can do geometric constructions
(here a quite simple one) with control on the sizes of the various mod­
ifications to get information about the topological category. We will see
Inany more. Chapters 9 and 10 study this systematically.

EXAMPLE 3. A more interesting example of how invariants of closed
pure strata can be killed on gluing in lower strata is this. We will look at
the analogue of a coning example, but involving a circle.

Consider an h-cobordism on the manifold with boundary M x I X S1.
Now one glues onto the bottom boundary component eM x I x S1. Are
these all homeomorphic? Certainly all of these have homeomorphic pure
strata. (Why?)

The answer (due to Steinberger [St] and Ouinn [03], and which also
follows from Anderson and Hsiang [AH2]) involves the Bass, Heller, and
Swan formula [BHS] (mentioned in 1.6):

Wh(7L x Jr) ;;: Wh(Jr) x Ko(rr) x Nils.

In terms of h-cobordisms, there is a transfer map induced by taking k-fold
cyclic covers. The k-transfer is multiplication by k on the Wh(Jr) piece
(h-cobordisms which are supported near a copy of M), the identity on the
A'o piece, and, for each element of Nil, there is a k which kills it. We know
how to kill the W h (1r) piece using an infinite process (which converges at
a point on the circle). There is a more subtle infinite process, pictured in
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Figure 15, us::::~r ::::::v~~::::::~:o :::~. (This figure ~ ',I
from [RtWl, where it is called the transfer invariant Alexander lemma.) Jm

There are an infinite number of layers in the shaded region. Trans- ::1
fer invariance makes neighboring regions cancel. With a little care, the .:~!

resulting homeomorphism converges on the innermost circle. :;
The reason for the convergence is that each transfer of an h-cobordism :~;~

makes t.he ~isting ?f the handle structure closer and closer to preserving ::,
the projection to S . ~:;:;'fi

Th~ issue remains: Are the Nil pi~ces topological in~a?a~ts? The an-:~I
swer IS yes. The most conceptually direct way to see this IS via the "con..!;~

trolled end theory" discussed in chapter 9. '~·;r:~

For now, we shall be content in having seen that obstructions involv- /~~
ing the K-theory of the interior can "leak off" the noncompact part over.;
the lower strata, and that there are infinite processes that make use of :;~~

points, circles, tori, etc. (and, by some toral geometry, intervals, 2-disks, ~r~1

gluing) that dig deeper and deeper into the K-theory of fiber germ (= 10- ..j~
cal holink). (There are similar 7L x 1t formulae for the negative K-groups; ·,·,,1.r

in fact, Bass defines them to make the Bass-Heller-Swan formula true.)'i'::~
Analogous phenomena arise in L-theory. The main results regarding ""!:t
"leaking" consist geometrically in the assertion that these infinite con.)~

structions ~ener~t~.~Il phenomena, .an~ in some so~ of organization ~f' i:;,
all of these posslblhttes. Of course, It WIll be stated m a more systematic '.:!
algebraic fashion. ';;i

.~

EXAMPLE 4. As mentioned, because of the L(il x G) formula, the same ~i

type of leaking displayed in the previous examples also occurs in L-theory
(although not in a particularly more striking fashion topologically than ~

in PL). The first naturally occurring examples of this phenomenon were
examples by Cappell and Shaneson of linear representations of cyclic
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groups which are topologically conjugate, although linearly (and PL )
distinct [CS3].

Another interesting example that follows from the method of example
2 is the following: Schultz has produced differentiable 7Lp actions on the
sphere with the 2-sphere as fixed set, and for which the normal bundle
has (with a certain natural almost complex structure) nontrivial Chern
classes [Scz2]. These actions are all topologically equivalent to the linear
action that has trivial Chern classes.

5.4. Notes

There are many different notions of stratified spaces in the literature.
It seems that most of the examples outside the topological literature are
at least as refined as P L stratified, and the examples studied within the
topological literature seem to be included within the class of manifold
stratified spaces (or, as I feel most convenient, the homology manifold
stratified spaces). Siebenmann [Si4] introduced and studied another in­
teresting category of stratified topological spaces, which have local cone­
like structure. These are included in the manifold stratified category.

We shall discuss the role of transversality again in chapters 7 and 12.
Examples like the first two were first discovered by Milnor. Milnor

actually used Mazur's thesis (see the exercises in 1.5 and 1.7) to produce
homeomorphisms be~een the one point compactifications of different
lens spaces x Euclidean space. Stallings formalized the Eilenberg swindle
in a very pretty paper [Sta1]. One can equally well use engulfing.

The transfer invariant Eilenberg swindle (Alexander lemma) was mo­
tivated by many uses in the literature of using transfers to gain control. A
notable use is [FH1], where certain rigidity theorems are proven by this
technique. In [RtW] this was done to have a more explicit hold on how
PL nonisomorphic polyhedra become homeomorphic, so that we could
rnake the homeomorphisms Lipschitz and apply analytic techniques to
the topological category (see [RsWl]).

The nonlinear similarities discussed in example 4 were a major impe­
tus in the development of much of what has been learned about topo­
logical group actions in the last decade. (For instance, the papers [HsP]
IMR] [03] [RtW] [St], as well as the theory presented here, provide de­
velopments of the general theory that were designed to shed light on
the existence and nonexistence of such examples.) The classification of
nonlinear similarities still remains a valuable test case of machinery de­
veloped in this subject.
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This chapter will state the main results of the general theory. Because of '~~

the lack of homogeneity in the spaces we are classifying, it is necessary ~
to make use of (generalized) homology theories whose nature changes :Itt

.':~from point to point. This is formalized in the notion of a cosheaf :I~"

of spectra. (Spectra give rise to generalized (co)homology theories. :j
With sheaves, we take cohomology; cosheaves, the dual notion, permit J..

the construction of homology. We have already seen that structure ~
sets are naturally covariant functors, so that homology is the correct 'I;;

:;f
notion.) "~J

While this is a fairly abstruse language, the objects produced are not iii
::"

actually that exotic. We shall discuss this idea briefly in an appendix. Very "~

often, the types of homology that enter can be fairly explicitly computed, ':;~
.:~~as we will see in Part III. ':Jo
0\

The PL and topological classifications, while quite similar, have dif... ~'
.,;?~

ferent peculiarities. The PL classification has some additional codimen- ~i:f

sional conditions that the topological case does not have because of low i~

dimensional considerations. (In both cases one must avoid low dimen- ::.
sional strata, but in the P L case, low codimensional ones cause trouble ':~
as well because of the existence of links.1 In the topological case, the i!!

impossibility of such constructions and the consequent nonuniqueness~:

of links - even when they exist - allow the possibility of complete clas- J
sification!) Also, there is a bump in the theory because of Rochlin's f
theorem (or equivalently, the nontrivial k-invariant at 2 for F/ PL);
see 2.5.B.

The topological case is a bit unusual in that the structure sets are
not fibers of assembly maps. This is perturbed at the prime 2 by a re­
quirement of first stabilizing and then destabilizing. This is related to
the obvious notions of controlled surgery (in the sense of chapter 9) not
being calculable as homology theories.

Both theories are plagued by a formal ugliness: the failure of
Siebenmann periodicity (3.4) to be an isomorphism. Consequently, there

I More precisely, since there is a PL construction of links, they are well defined as PL
objects.
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are some additional Z's, one for each component of pure stratum, that
change the theory. In short, the usual structure sets inject into "period­
icitized structure sets" which have a nice form, and they correspond to
elements where certain Z obstructions vanish.

Rather than correct for these difficulties, we will classify homology
manifold stratified spaces up to s-cobordism. The difference between
these and manifold stratified spaces is determined by a collection of
"resolution obstructions" (see 9.4). Thus, there is a classification theo­
rem for a more general class of objects, and the classification of more
conventional objects in terms of them must be obtained by examining
where some particular invariants vanish. Those who are just interested
in the manifold case will almost never have much difficulty pulling this
out of the general classification.

6.1. PL Classification

We start with the Whitehead theory. If X is a P L stratified space,
we define WhBQ(X) = ffi Wh(X

s
). Since PL stratified homotopy equiv­

alences preserve closed pure strata, one can define for a PL stratified
homotopy equivalence f: Y ~ X a torsion r(f) E Wh(X). An induction
on strata enables one to prove the following:

h-COBORDISM THEOREM. Let X be a PL stratified space. Then

1" : {h-cobordisms with one boundary component ~ X that
are products on strata of dimension :s 4}

++ WhBQ(X, rei strata of dimension :s 4}.

There are similar extensions of all the theorems in chapter 1. It is
interesting, though, to observe that the involution on WhBQ(X) obtained
by turning h-cobordisms upside down does not necessarily presetve the
product decomposition. It is not difficult to see why. If one has a stratified
h-cobordism, then one can map two obvious subsets into the closed pure
stratum of the largest space. One can map in the corresponding closed
pure stratum of the bottom space, or alternatively one can map in the
union of this set with the boundary of a regular neighborhood of the
h-cobordism on the lower strata (see fig. 16).

These torsions differ by the "transfer" (to be made a bit more clear
later) of the torsion of the h-cobordism on the lower strata. The Milnor
duality formula holds verbatim (with respect to a naive EB involution) if
()11 one side the decomposition of the Whitehead group is given in terms
of one of these decompositions, and on the other it is the other.
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Figure 16. Two decompositions of W HBQ. One can include either just x-i :i.~
or x- i with the boundary of the striped region into y-i. ;;/t.'

~I
if'

EXERCISE. Show that if we view a manifold with boundary as a two- ;~~
stratum stratified space, and one is in the rr - rr case, then the Tate .~
cohQll1ology vanishes, H*(Z2; WhBQ(X)) = O. ..I

!:'l~

Transfer is a very important construction. (A special case of this ap- ::;.~~

peared in 4.7.) If one has a certain type of geometric problem (say trivi-f
alizing an h-cobordism) and a fiber bundle or a block bundle or even a ti
stratified system of fibrations (the reader can supply the definition) and IV

if the problem would be automatically solved if solved downstairs, then '~
one can often define a "transfer" from the obstruction group of the base ~:~'

to that of the total space. All one needs formally is a realization theorem ..:j!:i

for the obstruction group: each element must arise for some problem ·:'f
associated with that given base. One realizes, lifts to the total space, and .'1
computes there. :}

We warn the reader that this is only loosely related to what algebraic .)J

topologists call transfer, which has to do with "wrong way maps." For the ·ii
geometrician, the question of whether or not a map is "wrong-way" is of- 'j

ten a matter of taste. In a homological version of surgery the "transfer" on
normal invariants is indeed "wrong way," but in the more old-fashioned
cohomological form (which is the only form one knows for the smooth
category, for instance), it is simply the induced map on cohomology.

There is a large literature on giving purely algebraic definitions of
different transfers. It is quite important to isolate to what extent the
detailed geometry of the bundle is (ir)relevant. A classic instance of this
is the issue of computing the signature of a fiber bundle [A2]; in that case,
arbitrary bundles over a simply connected space have as signature the
product of the signatures of base and fiber, while there are "monodromy
corrections" for nonsimply connected bases.
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For our purposes, we just shall assume that we have a transfer. For the
spectra that arise here that have geometric interpretations, one obtains
an infinite loop space map realizing the transfer when needed.

For the L-theory, we define stratified L-groups, sometimes called
Browder-Quinn L-groups, inductively as follows. They will be homot­
opy groups of certain spectra. If Xo is a minimal stratum, and we form
the closed complement c/(X-Xo), its boundary acl(X-Xo) is a stratified
block bundle over X. Now we let

LBQ(X):= homotopy fiber of the composite,
L(X) ~ LBQ(a c/(X - Xo» ~ BLBQ(cl(X - Xo) reI a),

where the first map is induced by transfer, and the second by inclusion.2

In other words, the L-groups fit into a long exact sequence and are built
up out of the L-groups of the various closed pure strata. While this is
similar to the situation for the Wh theory, it is not the case that LBQ(X)
breaks up into a product of conventional L-spectra.

EXERCISE. Give an example of LBQ(X) not breaking up into L-spectra
of the strata. (Hint: Consider manifolds with boundary.)

THEOREM. If f: X ~ Y is
(a) a simple homotopy transverse map, then there is an induced map

LBQ(X) ~ LBQ(y), or
(b) the inclusion ofa closed (impure) stratum, then there is an induced

restriction map LBQ(y) ~ LBQ(X), or
(c) the projection map of a stratified system of fibrations, then there is

an induced map LBQ(y) ~ LBQ(X).

These functorialities are critical for conceptual analyses of these func­
tors.

PROPOSITION. In case (b) above, the fiber is LBQ(cl(Y - X) reI a).

This is immediate from the definition for a minimal stratum. All of
these results will be somewhat clearer after they recur in the next chapter
in a more geometric guise. Only case (a) of the theorem demands any
comment. It is proven by observing that the LBQ definition makes sense
in the stratified Poincare category, by induction.

Note also that we have been working with simple L-groups. One can
also work with other decorations and change the type of transversality

2Note that the L-spectra are indexed here by dimensions of spaces. The map
I.UQ(o c/(X - Xo» --+ BLBQ(c/(X - Xo) reI 8) is then the delooping of the map induced
hy the codimension zero inclusion 8 cl(X - XO) x I C cl(X - XO). Multiplication by J
has the effect of looping the L-spectrum. Recall, too, that all L..spectra are their own
J()urth-Ioopspaces, so there is no difficulty in delooping any maps.
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accordingly. For instance one can use the Lh version to classify PL weakly
stratified spaces within a stratified homotopy type up to concordance.

Let X be a stratified space. For each open subset U one has
LBQ(Ureloo).3 If U C V, then there is an induced corestriction map
LBQ(U rei 00) ~ LBQ(V reI (0). This leads one to see an L-cosheaf on X
(see the appendix). We will denote this cosheaf as ~BQ. As mentioned
in the introduction to this chapter (again, see the appendix), one can
then take homology of such a gadget.

CLASSIFICATION THEOREM. Let X be a PL stratified space with no four
dimensional strata and no neighboring strata whose dimension differs
by less than five. Then there is a fibration for computing SPL(X) =
{simple homotopy transverse simple homotopy equivalences Y -+ Xl/ PL
homeomorphism:

(For simplicity, we have labeled dim Xi by i.)

There is a similar existence theorem, where obstructions to existence,
given a stratified simple Poincare complex, lie in the component set of
the delooping of SPL(X).

The codimension five restrictions are a nuisance and can often be re­
moved at the cost of complicating the sequence some more. They mask
our ignorance of low dimensional topology and the failure of low dimen­
sional h-cobordism theorems.. An example of where this is possible is the
case of manifolds with boundary, which certainly violates the codimen­
sion condition! Also, one can certainly deal with situations where these
bad situations occur, if one works relative to them.

The EJjHi-4(Xi ; Z2) is basically a bunch of Kirby-Siebenmann (trian­
gulation of manifold) obstructions of pur~ strata. A homology calculation
shows that these classes can actually be made to lie in the homology group
of the closed stratum, due to th~ codimension assumption.

The Z's are a reflection of the difference between G/Top and L(e).
The map from Ho(X, ~BQ) into the i-th 7l. can be computed as the result
of applying a restriction of the cosheaf to the i-th pure stratum, and there
restricting further to any small copy of (Ri. In the topological case, these
Z's can be removed at the cost of allowing homology manifold stratified
spaces, as mentioned above.

We will refer to the homology term as the stratified normal invari­
ant set. Certain simple homotopy transverse maps with bundle data give

3For noncompact spaces we usually work with surgery groups and spaces that are rei 00.

This means that we consider the inverse limit of LBQ(U reI U - K) where K ranges through
compact sets. If the end is tame, then this reduces to a conventional L-space.
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rise to elements of this group.4 This then makes it possible to define
characteristic classes for arbitrary stratified spaces. It is necessary first to
introduce coefficients into the theory.

DEFINITION. LBQ(X; 7L [1/2]) is obtained using the above definitions using
7L [1/2]Jr instead of7L1f throughout. One can extend this to produce a similar
cosheaf of spectra.

DEFINITION. ~(X) E Ho{X, ~BQ(Z [1/2])), called the signature class of
X; is the class associated to the degree two surgery problem X U X ~ x:

If X is an oriented manifold and one inverts 2 and identifies the
cosheaf homology with K 0 [1/2]-homology via the characteristic vari­
ety theorem, one obtains the Sullivan orientation or, if X is smooth (or
topological), the class of the (Teleman) signature operator. Other cases
where one can interpret this class will appear in Part III.

REMARKS. 1) Using Weiss's visible L-theory [Ws] one can define this
class in a related homology group that is quite useful at the prime 2.
One can also rephrase the whole classification theory in these terms. The
main thing lost is that L-theory will no longer be a functor of fundamental
groups, so we won't consider this extension here.

2) Using the signature class, one can describe the normal invariant for
a map as a difference of intrinsic invariants, away from the prime 2.

3) Finally, we remark that the PL simple structure set is functorial
with respect to simple homotopy transverse stratified maps.

6.2. Topological classification

In this section we would like to explain how to calculate the structure
set of a manifold stratified set, Le. the (homology) manifold stratified
spaces simple homotopy equivalent to a given X, up to homeomorphism
(or s-cobordism).

To begin with, we need to understand the simple homotopy theory of
such spaces. To motivate the h-cobordism theorem, realize that there is
t)ne nontrivial stratified space for which we have already described the h­
cobordism theorem, namely one point compactifications of noncompact
rnanifolds with tame ends. In that case, WhTopW+ = WhPW. Actually
there is a nontrivial point here. The map WhTopW+ ~ WhPW is fairly
clear. To build the map the other way, one point compactify a proper
It-cobordism and glue collars on the boundaries (see fig. 17).

This produces a map from the proper Whitehead group to the topo­
It19ical Whitehead group of the one point compactification. One needs

"As usual we will interchange spaces and groups; the group is usually a homotopy group
ul rhe space (which is almost always a spectrum).



an engulfing argument to show that this map is onto. Trusting this, we
have

Figure 17. Singular h-cobordism from proper ones. One point compactify
an h-cobordism and glue collars on the boundaries.
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Wh(Zrrt(€» ~ Wh(Zrrt(W» ~

WhTopW+ ~ Ko(Zrrt(€» ~ KO(Z1rl(W»

We have seen in chapter 5 that the topologically invariant part of
torsion involves modding out by terms involving the lower K theories
of holinks that can be coupled with cells of appropriate codimensions. ;"
This is very suggestive of a spectral sequence for computing a general­
ized homology theory.5 In addition, we are used to, by now, viewing long
exact sequences as homotopy groups of a fibration. Consequently, we
should build a spectrum whose negative homotopy groups are the nega- '.
tive K-groups. We will do this in chapter 9 geometrically. Recall from the .:
previous section the notation WhBQ(X) = E9 Wh(Xs), which we extend"
to all K-groups and spectra. As in note 3, we mean the Whitehead group

SIn orbifold cases one could also get the essential ingredients of a topological s­
cobordism theorem by combining the fact that (1) triangulabJe things have the Browder­
Quinn type of h-cobordism theorem, (2) there is an equivariant triangulation theory [LR2]
(parallel to the theory sketched for manifolds in an exercise in 2.4), and (3) there is a strat­
ified triangulation theory [AH2] that involves bundle lifting (on a bottom, closed manifold
stratum), which is cohomological, and is expressible in terms of lower algebraic K-theory
(and, therefore, by Poincare duality, capable of being described homologically).
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of the noncompact manifold XS reI 00. Supposing this, one is led to

T -BQ -BQ
Wh opX ~ H(X; KO (neighborhood» ~ KO (X).

The spectrum KgQ is a nonconnective delooping of a sum of algebraic K­
spectra,6 so that we can get all of the negative K-groups of links arising. In
this sequence, the coefficient spectrum changes from point to point. This
is only to be expected, because the nature of the space also so changes. It
is remarkable that this wasn't necessary in the PLease! (That was due,
ultimately, to the existence of closed regular neighborhoods, which form
a barrier to "leaking" of obstructions from one stratum onto another.)
Notice that the middle homology theory is entirely supported on the
singular set (at least as far as homotopy groups in dimension ~ 0, which
is all that is relevant for us).

THEOREM ([Q2, 5t]). noWhTop X is in a 1-1 co"espondence with h-cobor­
disms on X provided that all strata of X are of dimension 2:: 5.

Note that there is now a beautiful parallelism between surgery and
Whitehead theory that was not apparent in the nonsingular case: WhTop X
is now also the fiber of an assembly map. Actually, the same is true in
an interesting way in the nonsingular case when one pays appropriate
attention to higher homotopy groups: this is Waldhausen's parametrized
version of the s-cobordism theorem [Waldl]. Also, we begin to realize
that the parallel of the Whitehead group is not the surgery group but the
structure set!

Unfortunately, the surgery theory is not quite so simple. We need two
fibrations, one for a "stable calculation" and one for destabilizing. This is
related to the difficulties described in 2.4.B in trying to describe proper
surgery in terms of absolute groups.

First, some formal setup (closely paralleling discussion in the previous
section):

For the L-theory, it is necessary to describe stabilization first and
lhen stratification. We define L -OO(Zn) as the direct limit of the transfer
invariant part of L(Z [Zi x n ]). We now define stratified L-groups, or
IJrowder-Quinn L-groups, inductively as follows for a stratified Poincare
space. They will be homotopy groups of certain spectra. If Xo is a minimal
stratum, we form the closed complement? cl(X - Xo) (this is explicitly
part of the definition) and ocl(X- Xo), a stratified fibration over X. Now

1I For group rings, this is the delooping presented in [PW1].
7Note that after crossing with tori, as is implicit in forming L -00, it is possible to form

,'h )scd complements in the topological case as a consequence of Siebenmann's end theorem
( 1.4 and 1.6).
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we let

LBQ,-OO(X):= homotopy fiber of the composite,

L-0:> (X) ~ LBQ,-OCl(ocl(X - Xo» ~ BLBQ,-o:> (cl(X - Xo) reI 8)

where we are using stable L-spectra throughout. In other words, the L­
groups fit into a long exact sequence and are built up out of the L-groups
of the various closed pure strata.

T~EOREM. If f: X ~ Y is
(a) a homotopy transverse map, then there is an induced map LBQ,-oo

(X) ~ LBQ,-OCl(y), or
(b) the inclusion of a closed (impure) stratum, then there is an in­

duced restriction map LBQ,-OO(y) ~ LBQ,-OO(X), and the fiber is
LBQ,-o:>(y - Xrel (0), or

(c) the projection map of a stratified system of fibrations, then there is
an induced map LBQ,-o:>(y) --+ LBQ,-OO(X).

The only difference between this and the analogous theorem in the
previous section is that there are no closed strata here, and one can
work only with the stable spectra, because the unstable ones simply do
not exist! ·

Now we can describe our analysis of STOp(X). The -00 in the structure
part of the next theorem is parallel to its meaning in the L-group. It is
the limit of various transfer invariant structure sets.

STABLE CLASSIFICATION THEOREM. Let X be a manifold stratified
space with no four dimensional strata. Then there is a fibration for
computing STop(X) = {Topologically simple homotopy equivalences
y ~ Xl/homeomorphism:

STop,-o:>(X) ~ Ho(X, ~BQ,-oo) ~ LBQ,-OO(X) x EJ1Z.

If one works with homology manifold stratified spaces up to s-cobordism,
the sequence is a fibration without the EJ1Z

We already described in §6.1 how to compute the map to EJ1Z.
We will refer to the homology term as the stable stratified normal

invariant. Sometimes we will neglect to emphasize the stability, but it will
always be tacit, unless otherwise stated. Homotopy transverse maps with
appropriate "bundle data" give rise to elements of this homology group.
However, we remind the reader that for the stratified spaces considered
here there isn't quite a conventional normal bundle of pure stratum in
the ambient space.

As before, one can introduce a characteristic class for stratified spaces
using the theory with coefficients (or visible theory). An important con­
sequence of defining it in the topological theory is the topological invari­
ance of this class.
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DEFINITION. 8(X) E Ho(X,~BQ,-OO(Z[1/2])), called the signature class
of~ is the class associated to the degree two surgery problem X U X --+ X.

This does indeed generalize the classes discussed in Part I for the man­
ifold case and, in particular, tacitly includes the topological invariance of
rational Pontrjagin classes.

To destabilize, we truncate the WhTop spectrum above dimension zero.
This new spectrum still has an involution. Given a spectrum with invo­
lution one can take its Tate cohomology [GrM, ww, ACD]. With such a
notion, we have

DESTABILIZATION THEOREM. For X a stratified space all of whose strata
are ofdimension at least fiveS there is a fibration

Ss(.X) --+ S-OO(X) ---+ H*(Z2; WhTop(X)~O),

where WhTOP(X)~O is the result of killing the homotopy groups of
WhTop(X)~O in dimensions greater than o.

There is a spectral sequence starting from the Tate cohomologies
of the various negative K-groups that abuts the homotopy groups of
H*(.~2;WhToP(X)so). (See [GrM] for this spectral sequence and a dis­
cussion of when it converges, and [HsM] for examples where it does
not.)

I should also remark that one can extend the whole theory to "strat­
ified spaces" where some of the strata are not manifolds but are only
ANRs,9 provided we work relative to those strata. This can be of great
use in applications (when the stratified space occurs in the middle of
some construction, rather than as an object of primary interest).

"
REMARK. We will usually skip the -00 decoration in our notations if it
is clear from the context that we are dealing with an application of the
stable topological surgery sequence.

6.2.A. Homology with coefficients in a coshea!ofspectra

This appendix is just about terminology. Additional references are
[BG, Tho, Q2, pt. II].

Let us first give definitions for cohomology with coefficients in a sheaf
of spectra. (Since we will only be taking cohomology and homology, there
is no need for us to distinguish between presheaves and sheaves.)

DEFINITION. A presheaf of spectra ~ is a contravariant functor from the
category of open subsets of X to spectra.

SOne can work relative to strata of lower dimension; some four dimensional strata can
he allowed using [FrO].

()Even the ANR condition can sometimes be weakened, but then the meaning of the
terms involved requires more care.
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H*(O; 9'(0»

1

The idea is now this. For each open set (j we can form H*(O; f/(O», if
one likes, concretely, by taking mapping spaces. (That way cohomology
groups are homotopy groups of the cohomology space.) Now, if we have
two open sets, (J and 0', we can form the pullback
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The maps are given by the composition H*(O; ~«(J» -+ H*(O; f:f(O n
0'» ~ H*(OnO'; f:f(OnO'» given by the presheaf data and the restriction
on cohomology. Of course, one can do this for an arbitrary cover au
of X and get H*(<JU(X); ff), taking an appropriate pullback (holirn). If
au' < ff is a refinement then there is a canonical map H*(ou'(X); ff) ~
H*(OU'(X); ~). We then define H*(X; f/) as the limit of these cohomology
spaces under refinement.

There are many natural examples. Constant sheaves of spectra are
just spectra. Many other examples come from functorial constructions
on spaces: fI(U) = L(7L.1T:l(U». Or if one has a map f : Y ~ X, one
can push fOlWard sheaves on Y to X. (It is actually often best to use
pushforward rather than the derived functor.) An important example
comes from a fiber bundle over X with an infinite loop space as fiber.
Then the "twisted cohomology" makes sense, defined as sections of this
bundle, and is the cohomology with coefficients in the sheaf.

The above example is basically what one would call a locally trivial
sheaf of spectra. From this, it is quite simple to go further and describe
what one means by a constructible sheaf of spectra. (We'd say that fJ is
constructible with respect to a stratification of X if whenever U c V is
a stratified homotopy equivalence of open subsets, the induced map on

~~~spectra is a homotopy equivalence.) :r,

Now, cosheaves are exactly the dual notion, with all arrows reversed. ':~:~

For them, one has corestriction maps induced by inclusions. The maps .;ii

induced by refinement go in the opposite direction, so that one has to ";:1;:

take inverse limits, which makes the general theory a little less pretty.
More precisely, one forms, for an open cover fI, hocolim (0 /\ ~(O».

The homotopy groups of this are the Cech homology groups associated
with the given cover. For a refinement ou,' < au there is an induced
map H*(OU,(X); ff) -+ H*(OU,'(X); fJ), so we take the holirn, to define the
spectrum H*(X; ff), whose homotopy groups are the homology groups of
the cosheaf fl.

With constructibility assumptions the homology theories are quite
computable using Mayer-Vietoris exact sequences or Leray covers and
Atiyah-Hirzebruch type spectral sequences. This also includes "simpli-
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cial" homology if the cosheaf is described simplicially. One also can de­
fine morphisms associated to cosheaf preserving maps between cosheaved
spaces, and anything else that seems reasonable.

The cosheaves that arise for us are (controlled, sometimes) h­
cobordism or surgery obstruction spectra for the open sets rei infinity.
Note that the corestriction maps follow from the relativity condition
when we consider open manifolds. Constructibility follows from asser­
tions regarding how these types of functors just depend on homotopy
type and the stratification conditions on our spaces.

EXERCISE (TO GAIN FAMILIARITY WITH THE RELEVANT NOTIONS AND
HOW THEY APPLY TO US). Reformulate the theorem in 3.2. Associated
to a fibration E --+ B construct a twisted homology and an assembly
map H*(B; L(Fb» --+ L(E). Show that the obstruction to block fibering
a manifold simple homotopy to E over B is an element of the component
group of the homotopy fiber of this map.

As another example, consider a codimension one submanifold of W,
and map W to the interval (or circle) with the complementary regions
going to endpoints. Show that there is an assembly map H*(I; L(Wi » --+

L(W). The obstruction to codimension one splitting lies in this fiber.
Relate this to Mayer-Vietoris sequences in L-theory as in exercise 4.6.A.2.

REMARK. In chapter 9 we will find it useful to use certain restricted
classes of open covers. In particular, we will want to study properties of
spaces that hold "in the large" and will thus be interested in studying
the effects of coarsening covers, rather than refining them. In that case
homology will be a direct limit and cohomology an inverse limit!

6.3. Notes

The BOs throughout this chapter denote Browder and Quinn, whose
early work is explained in the next chapter. As the reader can see, their
definition was sufficient for the algebra of describing surgery groups.

The P L Whitehead theory was discovered by many people [BO, Rot;
and see Luck!]. The fact that the involution does not preserve the pieces
enters in many people's work and leads to a number of subtle phenomena
[CL, DoR1, Luck2, Wei7]. At first this was described by saying that even
smooth G-manifolds do not satisfy simple duality, but that there is a
correction formula. in terms of fixed sets of various subgroups. I prefer
the point of view that they have the simple duality that is appropriate to
themselves. Substantively, there is no difference, of course.

Transfers appear in many places. The fact that they lead to infinite
loop maps probably appeared first in Quinn's thesis [01]. There has
heen a large literature, both for calculations and for purely algebraic de­
scriptions. See [LuR, Luck1, 01], the section on transfers in volume 2
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()t' the conference series of the Canadian Mathematics Society, and the
rtfcrcnces in these places. [LM] applies these ideas to giving an algebraic
description of equivariant surgery obstruction groups, which are a spe­
cial case of Browder..Quinn groups (but are described in terms of more
convenient equivariant data).

The topological simple homotopy theory was developed in the orb­
ifold case by Steinberger and West and led to an h-cobordism theorem
in [St]. The general case is due to [Q3]. The beautiful paper [Q3] de­
velops manifold stratified spaces and proves a large number of their
important properties. Their homogeneity properties were foreshadowed
in an example in [Q2, pt. II] and the generality of the method was ap­
plied to solve some natural problems in group actions in [Wei2]. In [Q3]
Quinn does not prove the realization part of the h-cobordism theorem
but promises that it will appear in a future installment of [Q2]. One can
prove realization by other techniques. Steinberger did succeed in giving
a proof of realization for the case of orbifolds by using a special trick.
It seems to me that his trick is general enough for the application of
the simple homotopy theory to destabilization, at least if all of the alge­
braic K-theory of all of the holinks vanishes below dimension -1. In any
case, we will sketch a different proof (without extra assumptions) of the
realization theorem, following [HTWW], in lO.3.A.

The surgery theory is new. A number of special cases were already
known, although they were written in a very different language; see
Part III. I would like to mention my work with Cappell, especially [CW2],
as having been critical in guessing and verifying these results.

The PL perspective follows a basic idea of [Sto]. The first version
of that work was actually called "block bundle sheaves". The topological
case follows the PL case quite closely, despite the absence of most of the
usual P L constructions, as the reader will discern. Essentially, "controlled
topology" fashions alternatives to these constructions.



7 Thansverse Stratified
Classification

7.1. Browder-Quinn theory

The theory presented here, due to Browder and Quinn, is very ele­
gant, uses the "right" surgery groups (and spectra), and, unlike the other
material in Part II, has application to the smooth category. Also, the
whole theory only takes a couple of pages to set up. What a bargain!

Consider a category of manifold stratified spaces where neighborhoods
are given structures which can be pulled back. (In the smooth case, for
instance, this might be genuine fiber bundle structure.) We will call a
space stratified in this way a strongly stratified space. Given the notion
of pullback, one can discuss transversality. A map is transverse if there is
an isomorphism between a neighborhood of the stratum and the pullback
such that the composite of the identification with the maps of total spaces
agrees with the restriction of the original map to the neighborhood.

We consider maps that are stratified and transverse to each pure
stratum. These maps are called "transverse" by Browder and "normally
smooth" by [FM, GM1]. We shall denote by sns(X) the structure set in
this category. It consists of (Cat) manifold strongly stratified spaces with
a map of this sort and a simple homotopy equivalence (in this category,
Le., the homotopy inverse must also lie in this categoryl) up to transverse
stratified homotopy.

Interestingly, the classification theorem is independent of the type of
local structure with pullback.

The h-cobordism theorem in this category is identical to that in 6.1.
This is because in the PL case inclusions of boundary components are
automatically transverse, and PL homeomorphisms, by definition, pre­
selVe all block structures.

The main result is the following:

THEOREM. There are groups LBQ(X) for a strongly stratified space X such
that the following is a long exact sequence:

... ~ [:EX; FICat] ~ LBQ(XxI) ~ Sns(X) ~ [X; FICat] ~ LBQ(X).

I Exercise. This is equivalent to the map restricted to all pure strata being a (not nec­
essarily proper!) homotopy equivalence. Can you find circumstances where pure strata can
he replaced by strata'!
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The groups fit into an exact sequence

... -+ L(Xo x I) --+ LBQ(X - Xoreloo) --+ LBQ(X) --+ L(Xo)

'-;'J
~i

,J
'~~

':;1

if Xo is the bottom stratum. ',~,J

See 6.1 for more exact sequences for strata besides the bottom. Such :,l

generalizations can be proven in exactly the same way. Also, this whole c

theory spacifies nicely (3.1), so that all sequences are really exact se- j
quences on homotopy groups of a fibration of spaces denoted by thej
same character in bold. :.'

To prove the above theorem one needs to do three things. First, iden- ~

tify normal invariants with [X; F/Cat]. This is very neat in the spacified .~.~
version. Second, one has to prove a Jr - 1C theorem (2.4). This is an .~

induction on strata and the usual 1r - 1r theorem. Having this, one can :1
use the spacification techniques and define L(X) as in chapter 3 (or, ~

more elementarily, using [Wa1, chap. 9] for the groups). The proof of ~
:~~ t~:~::: third thing as well: proving the exact sequence asserted inj

Normal invariants are defined exactly as they were in 2.3. ;\~

'k'PROPOSITION. NIns(X) ~ Map[X: FICat]. "~

This can be proven by induction over strata or all at once by redoing ,1
the constructions of [RSu] (2.3). Simply observe that a normal invariant 'j;

of X is exactly equivalent to a normal invariant of Xo together with an ex- .•~
tension of the "transfer" of the normal invariant of Xo to the boundary of;~
the closed complement of Xo to the closed complement. This "transfer" %,~.;

is just the map on [: FjCat] induced by projection. By induction on the 4

number of strata, this is simply (homotopy equivalent to) [X: FICat]. ~!~

PROPosmON. (1hlDsverse isovariant 11' - 11' theorem). Suppose (Y, X) is ':1
a strongly stratifiedpair, X = aY, and each pure stratum ofY touches exactly }~

one stratum of X for which the inclusion is a l-equivalence (Stratified ;~~

11' - 11' condition). If aU strata of X are of dimension ~ 5, then any ~
normal invariant of (W, V) ~ (Y, X) can be surgered to a simple homotopy ~:

equivalence.

We prove this by induction on the number of strata on which the nor- :,~

mal invariant is not assumed to be homotopy equivalence. By hypothesis, ~

one can do surgery on (Wo, Vo) ~ (Yo, Xo). Glue onto W x I the pull­
back over the normal cobordism of the bundle over Yo. This is possible
because of the strong stratification of Y and the transversality of f. See
figure 12. This produces a normal cobordism to another Jr - 11: situation
where there are fewer strata that must be fixed.

EXERCISE. Complete the proof of the theorem. Also, show that the def­
inition given in this chapter for L-groups is equivalent to the definition
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used in chapter 6 as the fiber of the composition of a transfer with (the
map induced by) inclusion.

EXERCISE. Re-prove Browder's splitting theorem in terms of LBQ(X).

EXERCISE. Show that with the good H-space structure on F/Top, for any
X the surgery obstruction map is a homomorphism.

PROBLEM. How can one compute this homomorphism? That is, what
replaces aspherical spaces as the terminal object to which one should
map X, in order to use the resulting map to factor the assembly map.
The main difficulty already occurs in the general two stratum situation
where the holink fibration over the bottom stratum will not pull back
from any fibration over an aspherical space. (The ray of hope is that
quite often, although not for, say, the Hopf fibration, the cosheaf of
spectra comes from an aspherical space.)

EXERCISE ([Wei8l). Show that if X is a smoothly strongly stratified space,
the map sns. Diff(X) -+ sns, Top(X) has finite kernel, and that the image
contains a subgroup of finite index.

These exercises pave the way to using BQ theory to prove nontrivial
results in the smooth category. See [Wei8] for an application to smooth
transformation groups.

EXERCISE. By varying bundle data on a Poincare object in the BO cate­
gory, classify smooth knots of codimension ~ 3 as the relative homotopy
of (FlO, Fe-lIOe)' (This is due to Haefliger and Levine; see [Ha, Lv2].)
As a corollary, show that the group (under connected sum) of embedded
83 C sfJ ~ Z. This is in striking contrast to Zeeman's unknotting theorem
(1.7).

7.2. Notes

This chapter is just an exposition of [BOl. Some of the exercises are
my own creation.

The main difficulty with applying the Browder-Quinn machinery is that
it presumes a great deal of local structure on both the spaces (often not
so serious) and the maps (usually very serious). In one sense, the theory
is just the most straightfolWard extension of surgery to the nonmanifold
setting. However, the real phenomena that one needs to understand often
lie in the neighborhood theory.

Consequently, most further work concentrated on the case of group
actions (orbifolds) and avoided the transversality (and stratification) hy­
pothesis. This theory is very complicated. I will discuss some of its aspects
in chapter 13.

As far as I know, the only paper in transverse isovariant theory after
(80] by Katz [Ka], where he shows that the surgery obstruction map can
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have a fairly large image for problems coming from closed G-manifolds,
unlike the phenomenon we saw in 3.4 for surgery on closed manifolds
with finite fundamental group. Oddly enough, this was viewed by many
as evidence that one would not get a good calculational hold on the
obstruction map, since it could not be factored rationally through some­
thing of the form BTC/ G (for then the arguments of 3.4 that detect certain
equivariant surgery obstructions for normal maps between closed free G­
manifolds in terms of the unequivariant obstruction would apply and limit
the possibilities enormously). What happens is that the functoriality of
the Browder-Quinn theory is with respect to transverse maps, and there
is no equivariant ETC that serves as a terminal object for all spaces with
fundamental group TC. This is the motivation for the one problem in this
chapter.

Browder and Quinn envisioned that their theory would be applied in
ways similar to the final exercise. Our approach in the next chapter is
somewhat different. In addition to the surgery, the "bundle theory" itself
will also be inductively handled by BQ-surgery spectra. The "normal in­
variants" themselves will not be of any direct geometric importance to us:
they can be viewed, for all practical purposes, as just the not reI boundary
structures on X x D3• (Of course, it would be nice to see some explicit
nontransverse normal invariants arising naturally and having computable
surgery obstructions ...)



8 PTCategory

This chapter is devoted to explaining how the main theorems are proven
for the P L category. However, we will not want to deal with the nuisance
of the exotic k-invariant in F/ PL (2.5.B) so we will modify the category
slightly to allow a bit of nontriangulability in. The reader can deduce the
P L theory from the PT theory presented here.

The PT category is defined inductively, as follows. An object X (with
boundary) of type n has a decomposition into two pieces A U B, where
A is a mapping cylinder of a (type n -1) block bundle over a topological
manifold (with boundary) glued via a type n -1 homeomorphism to (part
of) the boundary of B, which is a type n -1 space. Morphisms are strat­
ified maps preselVing the block structure. Notice that as a consequence
of a theorem of Stone [Sto] asserting general existence and uniqueness
results for block structures in the P L case, the PT category really dif­
fers from the category of polyhedra and stratified maps only by way of
manifolds with nonzero Kirby-Siebenmann obstruction.

For instance, a PT space with two strata' is the same thing as a man­
ifold whose boundary is given as block fibered over another one. If the
strata were triangulated, the PT space would boil down to a PL stratified
space with two strata.

The h-cobordism theorem in this category is identical to the Browder­
Quinn theorem, as in the PLease, because the inclusion of a boundary
component in a PT stratified space is automatically transverse, and PT
homeomorphisms, by definition, will preserve the block bundle structure.
Of course, this does not settle the problem of when a PT h-cobordism
is topologically trivial; that is the point of the topological s-cobordism
theorem in chapter 10 (or 6.2).

Before dealing with the proof in section 3, we need two sections of
preliminaries.

8.1. Surgery obstructions for homotopy transverse maps

OUf program depends critically on two simple facts: that stratified ho­
1l1otopy equivalences are automatically homotopy transverse and that ho­
I1H)lopy transvcrsality suffices for defining Browder-Quinn obstructions.



Furthermore, these obstructions are bordism invariant and vanish for
homotopy equivalences. In this section we consider the surgical steps.

The key example to keep in mind occurs for maps between spaces
with one point singularity, and the point there is that the surgery theory
for working relative to a homotopy equivalence is identical to the one
for working relative to an isomorphism.

In fact, since polyhedra are built up inductively from manifolds by
coning, taking products, and gluing, one could deduce the result from
this.

The most natural way to proceed uses ideas from Poincare surgery.
We have discussed in 3.3 the fact that one can define surgery obstruc­
tions for maps between Poincare complexes. According to [JI, Q8, HV]
there is even a 11: - 1r theorem for Poincare surgery, and the obstruc­
tions that are defined actually measure the obstruction to normal cobor­
dism to a homotopy equivalence. If one took this approach to its logical
next step, one would define a Poincare-Browder-Quinn category, which
would be equivalent to the stratified Poincare complexes in chapter 5.1.
In this category, transversality (in the strongest possible sense) is sim­
ply homotopy transversality, and the methods of the previous chapter
apply.

A natural way to get around the reliance on geometric Poincare
surgery is to use the algebraic theory of surgery and use an algebraic
analogue of the Browder-Quinn groups, defined as fibers of (the
composite of inclusion with) the transfer from the bottom stratum to
the boundary of its regular neighborhood.

A final way to do this is to set up surgery theory and use the [Wal,
chapter 9] approach, as we did in the previous chapter for Browder-
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Quinn theory. .i;
_ .1(~

DEFINmoN. Let X be a PL stratified space. An isovariant normal invariant ':~
for X is a 4-tuple consisting of the following: ~::~

(a) a normal invariant for Xo, the bottom stratum, O!;;'

(b) a normal invariant for the closed complement cl(X - Xo), o;~

(c) a block bundle over Xo fiber simple homotopy equivalent to the ,~~

fibration of the boundary of cl(X - Xo) over Xo, and o::~

(d) a normal cobordism between the pullback ofthe block bundle in (c)
and the boundary restriction of the normal invariant in (b).

Note that this is a 4-tuple in name only! It encodes a much more
elaborate set of data by induction, which we suppress. Note, too, that
an isovariant homotopy equivalence gives a normal invariant. And, also,
note that to make sense of the definition, one needs to verify that the
pullback of a block bundle over a normal invariant is a normal invariant
with fewer strata (using the definition for fewer strata).
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We leave the proof of the following to the reader; it is a modification
using the bundle data in (c) of the Browder-Quinn argument given in
the previous chapter:

THEOREM (PT Jr - 1r THEOREM). Suppose (Y, X) is a strongly stratified
pair satisfying the stratified 1r - 1r condition. If all strata of X are ofdimen­
sion ~ 5, then any isovariant normal invariant (W, V) ~ (Y,'X) can be
surgered to a simple homotopy equivalence.

Now, one can define Browder-Quinn groups as before. Another ir.l­
duction shows that the inclusion of the transverse isovariant category into
the isovariant category induces an isomorphism between the two sets of
surgery obstruction groups.

8.2. Homology as cohomology with vanishing conditions

This section is more a philosophy - it is so general (and trivial) ­
than mathematics. Since I like the concept so much and it is widely
useful,1 I will isolate it. The idea is that to define homology classes on
a singular object one often succeeds by having cohomology classes on
the nonsingular part, with some type of control on their nature at 00. As
the simplest example, cohomology with compact supports is the reduced
homology of the one point compactification.

A much more sophisticated variant of this point is that often growth
(or vanishing) conditions on cohomology classes suggest compactifica­
tions of spaces where they give rise to homology classes. We will not
discuss this here, but refer the reader to [Chel, Lo, 88].

To be concrete, here is an example:

PROPOSITION. If X is a stratified space with two strata, Ho(X, ~BQ) is
canonically given as the fiber of

[X - Xo : FjTop] ~ ILl (Xo, ~BQ(germs)).

rrhe cosheaf occurring in the right-hand side is the restriction of the cosheaf
I~BQ to Xo, which is quite different from the LBQ sheaf of Xo (viewed as a
singular space in its own right).

One Poincare dualizes the right-hand side and recognizes this as the
exact sequence of a pair in sheaf theory. In general,

... ~ M(X) -+ ~(Y) -+ ~(Y - X) -+ ~-1(X) ~ ...

ISO much so that I think it is probably hopeless to try to trace its early history.
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Note that as is usual in sheaf theory, we are following the convention
that homology of a noncompact object is defined using the locally finite
chains2 (Borel-Moore homology).

Geometrically this proposition and variants of this are important in
that [X- Xo : F/Top] represents unrestricted normal invariants of the top
pure stratum and the "-1 (Xo, ~BQ (germs» term can be identified with
block fibering obstructions through some inductive scheme (although we
will argue somewhat differently). Thus, we will have a process for defining
global classes inductively.

;',

8.3. The inductive proof t
~

Let us now turn to the proof of the theorem of 6.1. Recall that we have :;"
seen in 3.1-2 that knowing relative surgery for spaces formally implies
the theory of blocked surgery. This means we are free to invoke blocked ,'~~

surgery for less complicated stratified spaces. Equivalently, the inductive ,~:

method of proof works just as well for the spacified version. ,
First we need to define a map from SPT(X) to Ho(X, LBQ). (Actually,

this cosheaf homology group is isomorphic to the normal invariants in- .
troduced in 8.1, but this is not necessary.) We produce a characteristic
class in this homology more generally for any homotopy transverse map
that has normal data on the pure strata, henceforth called a geomet­
ric stratified normal invariant. This is done, characteristically enough,
inductively. Consider the sequence

Ho(X, ~BQ) ~ Ho(X - Xo, ~BQ) ~ ILl (Xo, ~BQ(germ)).

To produce an element of the fiber of the second map it suffices to
have a normal invariant of X - Xo which restricts on its boundary (i.e.
has a neighborhood of 00 with boundary) to a surgery problem over the
holink of Xo that extends to a problem blocked over Xo with prescribed
singularities. (The reader is recommended to think about this for awhile.)

Now suppose the local structure near Xo looks like lRi x cL. Then
ILl (Xo, ~BQ(germ) ~ Hi(Xo, ~BQ(cL» ~ [Xo : LBQ(cL)] (or actually
sections of a bundle over Xo with fiber LBQ(cL»). However, this
nullcobordism in homotopy is precisely what is given by the homotopy
transversality of the map as one moves near the singularity. But we have
seen in 8.1 that homotopy is good enough for surgery purposes.

From the above description it follows that the map from SPT(X) to
Ho(X, ~BQ) factors through the fiber of Ho(X, ~BQ) ~ LBQ(X). Let us
show that this is an equivalence.

2A definition of locally finite homology of a noncompact space is the reduced ho­
mology of the one point compactification. A little better is lim h*(U, U - K) as K runs
through compact subsets of U. For nice U, these coincide, and nice U suffice for all of our
applications.
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Consider the sequence of fibrations (written horizontally)

sPf(X, Xo) • SPf(X) t S(Xo)

1 1 1
Ho(X, LBQ(rel Xo» I Ho(X, LBQ) J Hi(Xo,k)

1 1 1
LBQ(X - Xoreloo) I LBQ(X) • L(Xo)

The rightmost vertical composite is a fibration by ordinary surgery. To
prove the middle one is a fibration it suffices to deal with the left­
most. (Remember the relative form of stratified surgery still deals with
a cosheaf for all of X; it just reflects the relative nature of the problem
in its stalks.) Consider the diagram

SPf(X, Xo) • SPT(X - Xo) I Fiber of assembly

1
Hi(Xo, ~BQ (localholink»

1~
Ho(X, 1BQ(rel Xo» ---+ Ho(X - XO, 1BQ) --. Ho(Xo, ~BQ(germs rei Xo»

1 1 1
LBQ(X - Xo reI 00) ----+ LBQ(X - Xo) -----.. L(holink of Xo)

The space denoted Fiber of assembly is just the fiber of the vertical
assembly map. By blocked stratified surgery with fewer strata it measures
the obstruction to homotoping to stratified block fibering a map stratified
homotopy equivalent to a fibration with fiber the local holink of Xo. The
definition of the PT category then shows that the top line is a fibration .
and therefore the leftmost vertical sequence is, since all other rows and
columns are now seen to be fibrations. This leftmost sequence is precisely
the leftmost sequence of the previous diagram, so that diagram, too,
consists of fibrations, and the proof is complete.



9 Controlled Topology

This chapter is a frankly revisionist approach l to a subject that has been
flowering over the past decade. Basically, the idea is to redo the con­
structions of the first four chapters while keeping track of sizes of things.

I cannot overemphasize the importance of these ideas. In addition to
the role they play in the theory of stratified spaces, they also have had
many applications both within and without2 topology. Several appendices
will develop a small part of this. .

There are many different types of control used in the literature. Just
to give an idea of what's involved, let's reconsider the theory of non­
compact manifolds. (See 1.5.A and 2.4.B.) Rather than study homotopy
equivalences between these, we found it preferable to study proper ho­
motopy equivalences. Now, every noncompact manifold has a (unique
up to proper homotopy) proper surjection to a ray. Using this map we
can compactify all of our spaces (this is simply the one point compact­
ification). The condition of propriety is equivalent to the continuity of
the map obtained between compactifications defined by extending our
original maps via the identity at 00. We have seen that as far as White­
head theory is concerned, the point at 00 contributes via Ko, and that
in surgery theory it behaves (modulo decorations) just as if it were a
boundary. In both cases, it is the "functor shifted one degree."

This suggests using maps to other "control spaces" and using other 0

compactifications in the course of our investigations. If one does this,
not all proper maps will continuously extend, but if the sizes of point
inverses get smaller (from the point of view of the control space) as one
moves out to 00, this continuity can be achieved. We will see that the
reduced homology (with coefficients in a certain spectrum) of the "space
at 00" computes the contribution of the compactification points.

A good example to keep in mind for understanding the way controlled
topology enters the theory of stratified spaces is the topologically trivial
PL nontrivial h-cobordism, with the singularity set a circle, constructed in
5.3. Before invoking transfer invariant Eilenberg swindles (or Alexander

I I suppose the earlier ones were as well, but I am more aware of my tendencies in this
direction in discussing more recent work.

210 the sense of the Beatles.
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trick), we already had seen that an h-cobordism is trivialized on remov­
ing a boundary component, a fact that suffices to trivialize the one point
compactification (i.e. the mapping cylinder of the map from the bound­
ary to a point). When we inflated that point to be a circle, we had to be
more careful in constructing this homeomorphism of the complement of
the boundary component, because not all homeomorphisms of the com­
plement will automatically extend continuously to the circle. Indeed, we
were only successful for h-cobordisms that had no Nil component in the
Bass-Heller-Swan decomposition of the Whitehead group. The lesson we
learn from there is the importance of measuring the size of the "handle
slides" (used in proving the s-cobordism theorem) as one approaches the
circle and demanding that they become smaller and smaller. (Note too
that Nil is what is left over when one tries to approximate Wh(Z x rr) by
H*(Sl; Wh(rr».)

As I said, the subject of controlled topology reexamines all of the
problems studied in Part I from the point of view of measuring the sizes
of their solutions. There are many ways to do this. The idea sketched
above is called "continuously controlled at 00." We will also have use
for "controlled" and "bounded categories." Of course, the subject and
methodology suggest new problems as well.

The idea that such a subject might exist was first broached in a paper of
Connell and Hollingsworth [CoHo]. They made a number of conjectures
that they showed would imply many of the then unknown properties of
topological manifolds, but these conjectures seemed quite difficult. Un­
fortunately this work was not followed up on for quite some time. Instead,
Kirby and Siebenmann directly dealt with the foundational problems of
topology, without, at least explicitly, invoking controlled theory. For ex­
ample, Edwards and Kirby and Cernavski proved the local contractibility
of homeomorphism spaces, which is essentially a controlled theorem: it
gives canonical isotopies to the identity of homeomorphisms close to the
identity. Chapman and Ferry proved very obviously controlled theorems3

(such as the a-approximation theorem [ChF]) but, again, did not place
them in the general context of geometric groups. In some ways, one could
view their approach to their theorems as akin to proving the GPC with­
out first getting the h-cobordism theorem (1.6). The results were very
impressive and useful, but one did not realize that they were "universal
problems."4 Quinn realized this in his well-known "end papers" [02] and
set up controlled algebraic K-theory and the analogues of the results of
chapter 1 in this setting. Furthermore, he provided a number of signif-

310 some, but not all, cases, modeled on the ideas of Kirby and Siebenmann.
4By a "universal problem" I mean one whose solution, after the development of an

appropriate general framework, solves all problems of that sort. For instance, once one
knows the h-cobordism theorem, one realizes that the GPe is no simpler or harder than
I rivializing arbitrary simply connected h-cobordisms.
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icant applications in these papers and others that led to the extensive
development of both theory and applications by many others,S some of
which will be discussed below.

Similar ideas were pursued by operator theorists with rather different
applications in mind (see appendix 9.4.A). The analogue of the bounded­
ness in the topological bounded category is the finiteness of the propaga­
tion speed for kernels of certain geometric elliptic operators; see [Roe 4].

I should point out that during this period of explicit development of
controlled topology there were many competing redevelopments of the
foundations, other settings (one of which, the bounded category, seems
quite useful and will be central to our presentation), and, what I believe to
be most important, working out of examples. Many topologists, especially
those working in transformation groups, worked out examples that were
either "universal" or important motivation for what the general theory
should look like. Because of this, it sometimes becomes difficult to assign
the credit for an idea to anyone specific worker. After all, is it the first
one to use the idea, the one to explicitly recognize its importance, or the
one who puts it into its right general contextual framework (and what if
there are several such frameworks)? Who is the hero?

Be that as it may, the goal of this chapter is to explain the basic
theorems of bounded and controlled K-theory and surgery and describe
how they get used. I will not give much in the way of proofs for some
things but will instead try to be the reader's guide through some of the
literature.

9.1. The bounded and controlled categories

Let X be a metric space. We shall use X as a place to measure sizes
of geometric constructions on (other) spaces. There are (at least) two
different ways to use X for measurements.

DEFINITION. Y is a space over X if we endow Y with a map p : Y ~ X

So far, nothing interesting. We need to decide what are the morphisms
we allow and, especially, what are the equivalent spaces over X.

DEFINITION. The bounded category ofspaces over X consists ofspaces over
X and morphisms maps f : Y' ~ Y such that there is a uniform bound on
the deviation dist(p', pf).

51 should also mention the work of Anderson and Hsiang [AHl] and its immediate
pre-Quinn applications by Lashof and Rothenberg [LR2] to equivariant smoothing theory.
These, too, formed universal problems in K..theory and also are part of a cohomological
tradition in the subject which is often quite useful in thinking about problems. However, as
in surgery (3.4 superseding 2.4), for many purposes the homological viewpoint is the more
natural.
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This category was originally introduced to study the controlled cate­
gory which follows:

DEFINITION. The controlled category of spaces over X consists ofspaces
over X and one parameter families of maps It, 0 ~ t < 00, such that
dist(p', pit) ~ 0 (uniformly) as t gets large.

(The category mentioned in the introduction is called "continuously
controlled at infinity" and was introduced in [ACFP]. In many ways it
is more elementary and more suitable for the applications of controlled
topology to stratified spaces, but we will, in any case, concentrate on the
theories already described.)

There are two relations between these categories: The first is the inclu­
sion of the controlled category into the bounded one. Surprisingly, there
are situations where this inclusion is quite interesting to study. However,
if X is compact, this inclusion is in some sense almost devoid of interest.6

Usually it is more interesting to relate the controlled category of a
metric space X to the bounded category on eX, the open cone on X.
The open cone is usually metrized by the same formula that cones of
subsets in one Euclidean space are given when embedding in Euclidean
space one dimension higher. The functor inflates a space Y --+ X to
Y x [1, 00) ~ eX in the obvious way. Then a bounded map between the
inflations corresponds quite directly with a controlled map. (Actually,
weighted cones can be used quite effectively as well.)

IMPORTANT REMARK. In 9.3, we will discuss an important phenomenon
that ultimately justifies the controlled theory: for many problems there is
a critical threshold, E, for which problems with data below E can be made
controlled. This principle is behind many, but not all, of the applications
of the bounded theory to ordinary topology of manifolds. See e.g. 9.4.B.

Note the bounded category is interesting only when X is a space of
infinite diameter; finite diameter spaces can be replaced by a point. On
the other hand, the controlled category is very sensitive to the nature of
X as a space. Indeed, we do not really need to use continuous maps (as
control maps) when studying problems in bounded topology, since the
equivalence relation on control maps allows a fixed "modulus of discon..
tinuity." Thus, for instance, there is no essential difference, in bounded
topology, between using zn and IRn as control spaces. Of course, without
continuity, controlled topology would be chaos.

Now the general program should be more comprehensible. For rea­
sonable spaces over (reasonable) X redo the theories of Part I. Which

bThat is, it can often be interpreted as the assembly map in some algebraic theory, a
map we're already familiar with.
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spaces are finite complexes over X (i.e. homotopy equivalent, in the cat­
egory, to spaces that have only a finite number of cells over any bounded
region in X)? What is the difference between homotopy equivalences
over X and simple homotopy equivalences over X? When are homotopy
equivalent manifolds over X homeomorphic over X? Etc.

Why should we care about all this? Is this all just some meaningless
generalization? Or, are there some interesting examples?

EXAMPLE 1. If M is a compact manifold, then there is a natural map
it --+ r where if is the cover of M associated to r. Compact problems
with target M give rise to bounded problems over r. We will find this
quite useful when r is the fundamental group of M.

REMARK. This example can be generalized to leaves of foliations.

EXAMPLE 2. For many Riemannian manifolds, e.g. Hadamard manifolds
(complete simply connected manifolds of nonpositive curvature), or
groups r given the word metric, there are natural compactifications
that are useful for bounded problems. (There might, for instance, be
a good M with that fundamental group for which it has a natural
compactification and one is then in both situations.) Then the bounded
problem often gives rise to a controlled problem over the space at
infinity. (See [ACFP] for a systematic study of this relationship.)

REMARK. These two examples are implicit or explicit in many ap­
proaches to the Novikov conjecture as we'll see in chapter 14.

REMARK. The analogue for an elliptic operator of being in the bounded ;1}
I ~.;

category of the Riemannian manifold itself is having bounded propaga-r~

tion speed. In that setting, this relation to compactifications is essentially {~

Higson's corona idea. (See 9.4.A.) ·~:~.f

{.II

EXAMPLE 3. Collapsing Riemannian manifolds [ChGrl, Fu] give rise to ··t·

manifolds with interesting control spaces, namely the Gromov-Hausdorff
limit of the collapsing spaces. We will discuss a related interesting differ­
ential geometric example in 9.4.B.

EXAMPLE 4 (THE REASON THIS CHAPTER IS IN THIS BOOK). We will see
many examples related to stratified spaces. The fact that each stratum ';.
is an ANR implies that one has a control map for small neighborhoods .~:

of strata in X over the the strata. A variant of this map controls any
stratum over the cone on the next lower one. (The bulk of the higher it

~
stratum is mapped to the cone point.) If one solves problems on the Yi
pure stratum controlled with respect to this map, then the solutions will:~

extend continuously to the lower strata. ;}
.~

We have not quite given examples of specific problems of the sort -1
discussed in Part I that occur naturally, but this too will come. .}~

·,l~
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REMARK. It might seem more natural to the reader to deal with a
category where the maps to X genuinely commute. We call this the
parametrized category, and there is a natural map to the controlled cate­
gory. The parametrized category (1) is much harder to analyze in practice
(e.g. higher algebraic K-theory enters, and one can compute only in a sta­
ble range; cf. [Waldl]) and (2) seems to arise less frequently in nature.
However, this category is the one relevant to the smooth classification of
stratified spaces.

9.2. Geometric algebra

Whereas the solutions of the problems in Part I involve algebra of
group rings, the problems of controlled and bounded topology involve a
more complex type of algebra, "geometric algebra."

Parallel to the two types of control categories, there are also two
types of geometric algebra, bounded and controlled. This section will be
devoted to the reduction of controlled and bounded geometric problems
to the geometric groups; the next section will deal with the calculation
of certain geometric K- and L-groups. In view of some of the examples
of 9.1, it is of quite great interest to technically refine the theorems
described below to more general situations (such as nonlocally constant
fundamental group), but I am only trying to give the general shape of
the theory, which will suffice for the applications to stratified spaces in
the following chapter.

For convenience, let us concentrate on K-theory in the bounded cat­
egory. (We refer the reader to [09] for the controlled situation.) .

To establish a setting for this, we "recall" that there is a general for­
mal procedure for dealing with simple homotopy theory, a procedure
that generalizes to many other settings and can be used to define a for­
mal solution to the simple homotopy problem over X. One defines the
obstruction group as being made up out of problems, with the 0 element
representing problems that can be solved!7 In other words, the obstruc­
tion group is built up out of pairs over X (with a given fundamental
group over X). The pairs are to be bounded deformation retractions. We
view two pairs as being equivalent if there is a series of expansions and
collapses using cells of uniformly bounded size that takes one to another.
'rhe trivial elements are those equivalent to an identity pair. Cohen, in
his beautiful book, verifies 'that this forms a group, and that it solves the
problem of simple homotopy theory, Le. if something is equivalent to a
trivial element, then it's trivial itself.

With this approach, the Wall finiteness theory can also be set up purely
geometrically along the lines of Ferry's [FeZ] method (described in 1.6).

'elf course, in L-thcory. this is essentially the Wall, chapter 9, approach (see 3.1).
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If one defines the obstruction groups this way, then the entire burden
of theory is calculation! In other words, what is the algebraicization of
the Whitehead group or the finiteness group? If we set up the algebra
correctly, the proofs that the algebra and geometry appropriately reflect
each other should be close to the classic case.

Let's think a little before proceeding. A very first requirement is to
be able to recognize homotopy equivalences. Of course, in such a task
the fundamental group plays a special role (which is why the group ring
7L1r is so important). Suppose that we start with a manifold M = UM;
(with the M; connected), which we map to f\I, the natural numbers. On
reflection, we discover that anything bounded homotopy equivalent to
this is of the form UM; where each M' is homotopy equivalent to some
M according to a reindexing that takes no integer more than a fixed
number D away. A bounded map is a bounded homotopy equivalence
iff it is a homotopy equivalence on each component.

However, checking this (say, by trying to compute with twisted ho­
mology, as we do throughout chapter 1) requires using a different fun­
damental group at different places.

Furthermore, this is not just something artificial due to disconnected­
ness. Imagine taking the connected sum of all of these manifolds (with
tubes attaching manifolds with adjacent subscripts).

For machinery handling these complications see [AMl].
We shall make as 'an assumption (which we will, in fact, sometimes

have to violate) that the map p : M -+ X has boundedly constant fun­
damental group n-.8 What does this mean? We want a map cp : M -+ Bn
which in some sense is an isomorphism on the fundamental groups of
the fibers of p. More precisely, we assume that there is a positive real
valued function ! : IR+ ~ IR+ such that for every x and r

cp*: Im[1rt(p-l(B(r, x»)) ~ 1l:t(p-l(B(r + !(r),x»)] ~ Tl.

EXERCISE. This condition just depends on the bounded homotopy type
of M.

To understand what happens under a bounded homotopy equivalence,
we must consider the sequence of balls and follow them a,ound. One
cannot find any particular scale where M' and M look the same. However,
whatever deviations there are between the (inverse images--of the) r-ball!
of the two spaces die by the time we get to balls of specified radius, say,
r + !(r). That is, the homology of the map restricted to the r-ball maps
trivially into that of the r + !(r) ball. This condition on the pro-system
of the homologies of maps on the various balls, at all points of X, can

8The formulation I am giving here also avoids twisting. I recommend that the reader on
a second or third reading try to think through how to deal with more complicated situations
lI~in'l sheaf theoretic ideas.
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be used to describe a Whitehead and Hurewicz theorem to recognize
homotopy equivalences.

Let us return to our bounded homotopy equivalence and try to alge­
braicize on the chain level, based on our experience with the classic case.
What type of object is the cellular chain complex of such a guy?

Obviously, a good first step is to insist that all of the cells are relatively
small, say of radius 1 when projected into X. (After all, our description
of a simple expansion is gluing on locally finite collections of cells along
faces, where the cells have a uniform diameter.) Then we obtain a free
7L1T: module, based by the cells, with a point in X given for each of the
generators of this complex. (The precise location of the basis element
does not matter; it can be placed anywhere in the image of the ball.) The
boundary maps send generators to linear combinations of generators, of
which none are more than some uniform distance D away.

We obtain "finitely generated" modules if we impose propriety on
M ~ X. Finite generation follows from the fact that there are only
finitely many cells that map into any particular ball of finite radius. (Much
more would be unreasonable;9 any less would flirt with killing the group
by an Eilenberg swindle.)

The set of such chain complexes (with D varying) form a category with
morphisms that are chain maps of bounded diameter (Le. no generator
gets mapped to an element whose components, in terms of the range
basis, are more than a specific distance away). We also now inherit a
notion of bounded chain homotopy equivalence.

A map (between spaces with constant bounded fundamental group
1T:) is a bounded homotopy equivalence iff it induces a bounded chain
homotopy equivalence of the cellular chain complexes.

DEFINITION. Kfdd (1l' x X ~ X) is the Grothendieck group of bounded
chain homotopy contractible based 7Llr chain complexes over X

Now one can formulate and prove a bounded simple homotopy theory
and h-cobordism theorem involving Whbdd (1l' X X ~ X) directly along
the lines of 1.5. For concreteness:

BOUNDED h-COBORDISM THEOREM. Suppose X is a boundedly simply
connected space, and that M ~ X is a Cat manifold of dimension at least
five, with uniformly bounded fundamental group 7r over X' Then bounded
h-cobordisms with one bO£l,ndary component M up to Cat equivalence are
in a 1-1 co"espondence with Whbdd(rr x X ~ X).

REMARK. The controlled theory takes on a quite similar form. L-theory
can be described by using the above technique to vary the usual defini..

9Actually, it is quite reasonable to insist on uniform boundedness of the number of
ACl1crators of the modules as a function of the radius of the balls. See [At, AB~ BWl~3,

( ic2J.
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tions. In particular, the bounded 1C - 1C theorem holds (see e.g. [FPl])
by a more careful version of the usual proof. The calculation of these
theories is the topic of our next section.

9.3. Recognition as homology

Again for simplicity, I will assume that we are in a situation of constant
bounded (or local, for the controlled case) fundamental group.

The main result is that, in appropriate situations, the geometric K­
groups are homology theories.

In this game the theories end up being quite similar in the bounded
and controlled cases, but the issues involved in setting things up seem to
be a bit different. First let me state the main theorem:

MAIN THEOREM OF CONTROLLED TOPOLOGY ([Q2,6, PW2, Ya, FPl,
ACFP; cf. HTWl, RtW]). The controlled K-spectmm of a finite dimen­
sional ANR X is just Ho(X; K('n"».10 The bounded K-spectmm over the
open cone cX is also isomorphic to this (with a shift).

The same holds true for L-theory by the time we go to L -00, but is
not true unstably.

Before continuing, I should point out that the precise metric used in
metrizing the open cone is a bit of a red herring. One can reparametrize
the open cones and use various weightings and the proof can be com­
pleted in extremely similar terms. This is done in [HTW2] to allow one to
deal with hyperbolic space as a cone of the sphere and more generally in
[FPl and FeW2] (see also [ACFP]). However, it is useful and interesting
to study the bounded topology of much more general spaces than open
cones, as we shall see later. One cannot expect the theorem to be correct
as stands for general X: there is too much topology in the compact sets
that we ignore in bounded topology. (After all, IRn = 7Ln in this setting.)
The following definition describes a class of spaces that do not suffer
from this defect.

DEFINITION. A space X is uniformly contractible if there is a function
f such that for each x, the inclusions of the ball around x of radius r is
nullhomotopic in the ball of radius f(r).

It has been conjectured that for such a space, the bounded K-theory
defined as in the previous section ~ HI!(X; K) (and similarly for L).
However, Dranishnikov, Ferry, and I have recently disproved this [DFW].
Nonetheless, for most common examples, one can use this as a guide of
what should be true.

Note that for a space satisfying the conjecture, one knows that the
inclusion of controlled into bounded is an equivalence! This means that

IOWhen X is noncompact we intend locally finite homology. .

OJ

,
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any bounded problem is boundedly equivalent to a controlled one, and
bounded solutions suffice for controlled problems, a very useful principle
indeed!

Notice that open cones are uniformly contractible, and the conjecture
is affirmed by the main theorem. This conjecture is indeed quite strong;
in [FeW2] and [CP] it is shown to imply the integral Novikov conjecture
for a group r for which Dr is a finite complex.

There is a slightly different conjecture that applies to metric spaces
that are not uniformly contractible, discussed in 9.4.A. (It also accounts
for the examples of [DFW] and suffices for the applications to the
Novikov conjecture.)

There are two main approaches to the proof of the main theorem.
The first is via splitting theorems. It is easiest to describe this method
for the case of L-theory.

Consider a manifold M mapping to a control space of the form c P, P
a polyhedron. For simplicity, let us suppose that M is simply connected
over cP. Let Q C P be a codimension one subpolyhedron. Thke N c
M a codimension one submanifold lying over cP. (This can always be
arranged.) We consider an element of Sbdd(M), e.g. a bounded structure
on M, M' ~ M. The techniques of splitting theory (see e.g. [Cal] and
4.4, 4.6.A) adapt nicely to this situation (with some extra work) and the
obstruction lies in a bounded K-group (see [FP2]). We will cross with a
circle to kill this obstruction (the source of stability in the bounded L­
theory version). Doing this allows us to assume solvable all codimension
one splitting problems associated to codimension one subpolyhedra of
the end.

The idea of the proof is now this: to show that Lbdd (cP) is a homology
theory; the only difficult part is to p~ove excision or, equivalently, Mayer­
Vietoris. As discussed in 4.6.A, Mayer-Vietoris sequences for L-groups
are equivalent to codimension one splitting theorems. (Thus, one could
organize the proof by induction on the cells of P.) Following [Ca5] (in
another context) one would start with cases of 0 and * (a point) and
show that the assembly map is an isomorphism. The case of 0 is ordinary
surgery theory. The case of * is handled by an Eilenberg swindle (the
o= 1 - 1+ 1 - 1 + - ... = 1 trick; see e.g. 5.3).

The second approach to the main theorem is via systematic gain
of control,11 which gives m.uch more information. This phenomenon is
called "sucking" in the vernacular of many of the workers in the field and
has been referred to as such in print in the paper [HTW3]. I prefer to

II Squeezing seems to be stronger than the main theorem, as far as I can see. Applying
controlled techniques to "approximate" problems involves squeezing. Having squeezed, we
ilrc fortunate that we can then use squeezing again to identify the obstruction group as
Iullnology.
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follow Ferry's advice and call this "squeezing." We state this informally i
as the following metaprinciple (requiring separate proofs in different sit- ~,·.1.;
uations): ~

SQUEEZING PHENOMENON (= STABILITY; d. [Ch2,3, Q2, pt. II, Hu2li
AND OTHERS). For any type of problem over X and E > 0 there is a ",~.~.II;
o> 0 such that any ~ controlled problem over X can be E-approximated by

1)j

some controlled problem. The ~ controlled problems are E-solvable iff the ;~

controlled problem is controlled solvable. ~
:ll

Rather than explain how this is done in many different cases, I would .~

rather discuss an example of squeezing, the original, and then explain ':~

why squeezing is sufficient for the main theorem.12 j
EXAMPLE (KIRBY'S ORIGINAL TORUS TRICK [Ki]). We will prove that .!
any orientation preserving homeomorphism of fRn homotopic to the iden- ::~

tity is isotopic to the identity (n ~ 5). We presume known the same fact ';~

for PL homeomorphisms. iii
~¥]

KEy LEMMA. If f is a homeomorphism of (lr~n ,0), then there is a home- :{!
omorphism of (Tn, 0) whose germ at 0 is identical to the germ of f· 'f,f

:~
The theorem follows from this and two simple lemmas. .~

LEMMA 1. Two homeomorphisms of (lr~n , 0) that have the same germ at 0 ':';'!':1:':

are isotopic. .~

Apply an Alexander trick to the composition of one homeomorphism .~~
with the inverse of the other. Radial expansion expands the region where ·i,;~
the homeomorphisms agree. I~r

The next lemma explains why we want to gain control.!

LEMMA 2. Any homeomorphism of(Rn , 0) that deviates a bounded amount :~~

from the identity is isotopic to the identity. :;~

;1~
One can compactify IRn by adding on a sphere at infinity that corre- ,:~~

sponds to directions of affine linear rays. A homeomorphism that bound- ,'~:{

edly deviates from the identity continuously extends to the ball as the :};;'
~~identity on the boundary. Now one can apply the usual Alexander trick. ,i·i~

Granting the key lemma, one arranges for the homeomorphism of the ",~
torus to be homotopic to the identity (here is where orientation preserv- )~

'~ting is used - one composes with the inverse of another homeomorphism i
that is the identity near 0 and induces the same map on homology). The ,~

lift of the toral automorphism is then boundedly far from the identity (the
bound is in terms of how far the fundamental domain is moved, which is
finite, since the fundamental domain of the 7l.n action is compact, and the

t2Ferry and Pederson do not actually use squeezing in verifying that controlled theory
is homology.
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action is proper) and agrees with the germ of the original homeomor­
phism at 0, so the easy lemmas complete the proof. As squeezing type
statements, we made an arbitrary homeomorphism related to bounded
ones and also took arbitrary bounded homeomorphisms and moved them
boundedly to ones with smaller bound (until they were ultimately the
identity).

Kirby reduces the key lemma to a fact that can be proven using P L
surgery theory (see 4.6): that any homotopy equivalence13 between PL
homotopy tori is homotopic to a homeomorphism after taking a finite
sheeted cover (actually a 2n-fold cover is all that's needed).

Immerse, using immersion theory, a punctured torus in a small ball
around O. (Note that a punctured torus is parallelizable, so this is pos­
sible.) Use f to pull back a new P L structure on the punctured torus.
According to Siebenmann's thesis (1.4) one can put a boundary on this
manifold; it is a homotopy sphere, so that by GPC (1.7) it is a sphere.
Kirby cones this off to form a manifold r. We can extend our map to a
homotopy equivalence between rand T by extending the identification
near O. If we had a PL homeomorphism between l' and T we'd be done
by the relatively easy P L version of the key lemma. Well, we don't know
this for rand T, but we do know the corresponding fact for certain finite
sheeted covers, so we win.

This example is prototypical of the way in which one analyzes many
problems in controlled topology. A problem over ~n is furled over a torus
(filling in the hole is sometimes difficult: here we used Siebenmann's
thesis and lucked out using the strong information surgery theory gives).
One gains control by taking finite covers and rescaling.

If your goal is to get invariants of the controlled situation over Rn,
you'd examine the nonsimply connected invariants over the torus. (We
will see more examples of this in the next section.) Now, if the local
fundamental group were (the constant group) 1r, the relevant functor
would be associated to lRn x 11:. By repeated application of the Bass­
Heller-Swan formula in K-theory (1.6) or Shaneson's thesis in L-theory14
(4.6) one sees a piece that is isomorphic to shifted K and L theory. The
only piece that remains on taking covers of the torus is this piece, which
is isomorphic to Hi!(~n, K or L(1l')).

Therefore, we understand what the spectrum involved must be, pro­
vided that we can see that the controlled theory is a homology theory. IS

In order to see that it is a cosheaf homology theory, what one really
needs is to be able to restrict to open sets, and to see that a solution of

'JKirby uses the Schoenflies theorem of M. Brown [Brnm] to extend this to be a horne­
t unorphism, but we do not need this.

'4Modulo K-theoretic difficulties that necessitate a change of decoration.
I~ Rigorously, this onJy shows that the spectrum has the expected series of homotopy

~rollps; more argument is necessary to prove the spectrum is exactly what one expects.
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the original controlled problem is equivalent to a solution for each ele­
ment of an open cover that agrees (in compatible ways) on the overlaps.
(In the bounded case, one cannot use arbitrary decompositions of the
control space, but the idea is still to decompose with respect to appro­
priate covers.) The trouble is that one cannot simply restrict to an open
set since a controlled solution for an open set uses f-functions that decay
to 0 at the frontier of an open set. However, squeezing achieves this: Le.
it enables one to restrict controlled objects to open sets. Then the result
is quite formal. The spacification (cf. chapter 3) of the problem for the
whole space is simply the homotopy pullback of pieces corresponding to
an open cover. (This is the spectral sequence associated to a cover. It
gives the usual calculation for a Leray cover, i.e. the Atiyah-Hirzebruch
spectral sequence (when the cosheaf is a constant spectrum).)

REMARK. For a verification of a squeezing principle and its use in prov­
ing a calculation of a controlled object, I recommend the highly readable
[HTW3]. They work, however, with a twisted cohomology (twisted by the
structure group of the tangent bundle) rather than homology. Their main
result is discussed in the next section.

That it is a genuine homology theory in the untwisted case we're
discussing in this section, and not just a cosheaf homology theory, is
a consequence of the covariant naturality of our functors with respect
to arbitrary continuous maps, rather than the contravariant functoriality
with respect to open inclusions. (In the bounded case, one needs Lip­
schitz maps or one loses the bounds!) If one maps one control space to
another, then one can use the target as the place to measure smallness.
Of course, by doing tbis, the local fundamental group will change, if one
works geometrically, so one has to use some process that forgets some
extra piece of a groupoid (j.e. corresponding to taking just the simply con­
nected signature of a perhaps disconnected manifold with nonsimply con­
nected components). Then one verifies directly the Eilenberg-Steenrod
axioms.

The extreme case is mapping the control space to a point, which cor­
responds to the assembly map. Then one is going from homology of X
with coefficients in (say) the L-spectrum to L(X). We've spent much of
chapter 3 looking at this case. From the controlled point of view, the
normal invariant in homology associated to a degree one normal map
is simply its controlled surgery obstruction. The main result of surgery
theory is that structures on a manifold are given just by all possible con­
trolled surgery obstructions subject to the restraint that they assemble
to (Le. become, on forgetting control) the trivial obstruction. The same
holds, at least stably, for stratified spaces according to the classification
theorem (6.2).
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9.4. Selected applications

For those readers who, like me, need to see some concrete geometric
examples to understand the meaning of all the formalism of the previ­
ous sections and to appreciate the difficulties involved in proving such
theorems, I am including a number of applications in this section and
some of the appendices. None of these are absolutely necessary for the
reader who's only interested in classifying stratified spaces. At the least,
the reader should observe the recurring themes of squeezing and applied
controlled algebraic K- and L-theories, in conjunction with the techniques
developed in Part II for the classic theory of manifolds.

9.4.1. The a-approximation theorem

This theorem, due to Chapman and Ferry [ChF], is one of the earli­
est examples of a theorem in controlled topology and is in many ways
prototypical.

THEOREM. Let M n, n 2: 5,16 be a closed manifold, and let € > 0 be given;
then there is a 8 > 0 such that any 8-homotopy equivalence f : M --+ N is
E-homotopic to a homeomorphism.

A ~-homotopy equivalence has a homotopy inverse g : N --+ M such
that gf is homotopic to the identity in such a way that the homotopy
does not take any point outside a 8-ball around itself, and similarly for
the image of the homotopy of fg to the identity. When one writes this
theorem for noncompact manifolds it is necessary to use open covers a
and f3 replacing E and d, which is where the theorem gets its name. One
can view it as answering the question of when a map is close to a home­
omorphism. The following theorem of Ferry [Fel], proving a conjecture
of Kirby and Siebenmann, is often easier to use:

THEOREM. Let M n, n 2: 5,17 be a closed manifold, and let f > 0 be given,
then there is a ~ > 0 such that any map !-: M --+ N to a manifold of no
higher dimension with the diameters ofall inverse images /-1 (x) X E N no
larger than 8 is € -homotopic to a homeomorphism.

To see the difficulty, try to show that such an f is necessarily onto. If
it were, then it would be pretty easy to see how to build g and be in a
situation where one could try to use the a-approximation theorem.

Nowadays, there are at least two rather different ways to prove the the­
orem geometrically. The first is the original method, which is closely mod­
eled on Siebenmann's CE approximation theorem [Si3], which is based
()n a variant of Kirby's torus trick (and its extension as the main diagram

It'This is also true for n = 4; see [Au] and [FeWl].
l7'rhis is also true for Il = 4; see [FeW]].
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in [KS]), with surgery theory used as an essential component at the last
step. The second proof, due to Chapman [Ch2], uses controlled engulf­
ing (also established via torus geometry) to squeeze an a-approximation
and make it an €-homotopy equivalence for all E. This means that the
inverse g is a CE map, so Siebenmann's theorem or, better, Edwards's
disjoint disk theorem [Dvr, Ed] (see also 9.4.D for the statement), im­
plies that g is approximable by homeomorphisms. Edwards's theorem is
proven by pure geometry18 and this variant is a little more convenient
for parametrized purposes.

In terms of the machinery, the proof is almost mindless. For small
enough a, one has an approximate structure set that is isomorphic to the
controlled one (squeezing). Now the controlled surgery exact sequence
is

[1: N; F/Top] -+ LC(N x I ~ N) ~

SC(N ~ N) ~ [N; FjTop] ~ LC(N -+ N).

However, by the main theorem, and the equivalence L(e) ;;: Z x F/Top,
the map [1: N; FjTop] ~ LC(N x I ~ N) is an isomorphism and
[N; FjTop] ~ LC(N ~ N) is an injection. These immediately yield
the vanishing of the controlled structure set, and hence the theorem.

9.4.2. Approximate fibrations

This subsection is both a substantial generalization of the previous
one and useful in one approach to the analysis of controlled surgery and
germ neighborhoods in a stratified space. (See lO.3.A.)

A fibration is, of course, a map P : E ~ B which has the homotopy
lifting property. An a-approximate fibration is a map which has the ho­
motopy lifting property within a. (In other words, given a map X ~ E
and a homotopy of the composite map to B, one can lift the homotopy
back up to E, at least up to a small error.) An approximate fibration is.
one which is an a-approximate fibration for all a. These were first intro­
duced and studied by Coram and Duvall [CD1,2] and then were studied
in [Ch2, Q2, pt. I, Hul,2, HTWl]. An a-homotopy equivalence as in the
previous subsection is an example of an a-approximate fibration. If the
total space and base are manifolds, we call this a manifold approximate
fibration (MAF).

The first theorem is Chapman's squeezing theorem:

THEOREM. Given Band € > 0 there is a a for which every manifold ~­

approximate fibration over B is within E of an approximate fibration.

18And amazing geometry it is! He makes good use of the following object: take a simplex
and barycentrically subdivide infinitely often and then take the 2-skeleton of this.
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Chapman applied this to do some special MAP classification prob­
lems that are useful for various purposes (such as homotopical charac­
terization of local flatness; see [Ch2, Q2, pt. II] and 11.3 below). These
problems determine the "coefficients" for controlled surgery:

THEOREM. Any manifold bounded homotopy equivalent to IRn x Mover
Dln is boundedly homeomorphic to the 7L.n-fold cover of a manifold homot­
opy equivalent to Tn X M. This manifold can be taken homeomorphic to
its own finite covers (i.e. transfer invariant) and is well defined up to
homeomorphism.

The reader should compare our remarks from the last section. Note
that we're relating a bounded surgical classification question, via squeez­
ing, to one about MAPs. This is the general point of view in [HTW2].

The classification of MAPs with a general base B given in [HTWl],
which extends earlier work of the first author (e.g. [Hul,2]), is "cohomo­
logical" in nature and takes some preparation to state.

Suppose that p : E ~ B is an MAP. Then we can restrict the MAP
to any open set in B (this is, of course, not obvious). Thus, picking a
small ball, we get a local type MAP (N --+ Dlb ). It is not obvious, but is
nonetheless true, that the controlled homeomorphism type of this local
germ is independent of the open ball chosen. Note that the homeomor­
phisms of IRb act on MAP (N --+ IRb), so that one can take the MAP
(N ~ IRb ) bundle over B associated to the tangent bundle of B.

THEOREM. There is a homotopy equivalence between the space of MAFs
over B with N --+ IRb the local germ and sections of the induced MAF
(N --+ IRb) bundle over B.

The relevant homotopy groups are given by a generalization of Chap­
man's calculation. For instance, 1Ti MAP (F X [Rb --+ IRb) ~ MAP (F X

I)i x IRb- i --+ IRb- i ) if i :5 b. It is slightly more difficult to phrase the
result in general since one cannot peel off some directions in the fiber
germ.

Again, these results can be approached via the general methodology of
the previous sections. 8 fibrations are "8 structures" on the total space of
a fibration over B. As such, 8 surgery theory is appropriate. However, for
small 8 f, surgery is independent of f, (L-theory squeezing), so that one
()htains Chapman's first theorem. The next theorems don;t quite follow
from the material of the previous section, because we've only analyzed
stable controlled surgery, but weaker stable versions of them do follow
from this materia1.19

19Also, those theorems describe spaces of parametrized MAFs, while our methods do
1101 give information ,,!'lout the higher homotopy groups of these spaces.
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How does one reconcile the cohomological view implicit in this clas­
sification of MAPs with the homological view we've been describing 'til
this point? If one already believes in controlled surgery (which is an issue
of proving an appropriate Jr -rr theorem as in [Wal, chapter 9] or 3.1)
then the connection is quite simple. If X is an arbitrary control space,
we can thicken it to be a manifold with boundary. (Imagine then a "uni­
versal" problem which is boiled down to be the construction of an MAP
structure.) Then, cohomologically, one would get the rei boundary coho­
mology with coefficients in a shifted L-theory (because the dimension of
the putative fiber goes down), which is Poincare dual to homology.

EXERCISE. Using the results of this section, show that if all the K-groups
of rr vanish below dimension two (Le. Wh(rr x 7L.n ) = 0 for all n) then
every MAP with homotopy fiber having fundamental group 1f can be
approximated by a block bundle. This result was first proven by Quinn
[02, pt. I] as an application of his end theorem.

9.4.3. End theorems

I will here review some of the work of Quinn [02, pts. I,ll] on the
controlled version of the problem considered in 1.4. Indeed, this was the
problem chosen to motivate the geometric algebra! The reader would
do very well to read §3 of [Q2, pte I] for a very lucid account of how to
use end theorems effectively. The historical remarks in that paper are
also very interesting. They show how well he understood the shape of
the theory even in its embryonic form (although it developed, in detail,
somewhat differently).

THEOREM [02, pt. II]. Let f : W ~ X be a map with a tame end with
a constant local fundamental group at 00 of rr and X a finite dimensional
ANR; then the obstruction to embedding W in V as the interior ofa manifold
with boundary and extending f as a proper map to X lies in Ho(X; K(7L.rr».

The boundary is unique up to a controlled h-cobordism which is classi­
fied by an element of Ho(X; Wh(Z1l'», whose loopspace is Ho(%; K(7L.1l'».

REMARK. Quinn also allows the possibility of the end having a stratified
system of fundamental groups, but we will not consider that difficulty
here. Also, there are approximate end theorems and h-cobordism theo­
rems, but I will leave the formulation of these to the reader.

The proof is a combination of the results of the previous sections.
(ANRs are treated by viewing them as subsets of a decreasing sequence
of finite dimensional polyhedra.)

Here's an example of how this gets applied:
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COROLLARY. An ANR subspace X of a manifold W which is 1 - Le
embedded (i.e. the local fundamental group of the complement at each
point of X is trivial) has a mapping cylinder structure. (It is unique in an
appropriate sense.)

A mapping cylinder structure is a manifold V with a map to X whose
mapping cylinder is homeomorphic to a neighborhood of X. P L embed­
dings always have mapping cylinder structures because of regular neigh­
borhood theory. (See 1.2.)

The proof is that we can complete the retraction that's defined on a
small deleted neighborhood of X. Since we are 1 - Le, the coefficient
spectrum is contractible through dimension one, so there is no obstruc­
tion to existence or uniqueness of the completion. The mapping cylinder
of this map can be identified with a neighborhood of X using the collar
directions and the control.

COROLLARY (WEST'S THEOREM [We]. Any finite dimensionalANR is ho­
motopy equivalent to a finite complex.

The mapping cylinder neighborhood is a nice compact manifold with
boundary. (By starting with- an embedding into a PL manifold, one can
even avoid some of the difficulty of the theory of topological manifolds.)

EXERCISE. Use the uniqueness of the mapping cylinder structure to show
that the Whitehead torsion (1.2) of a homeomorphism between polyhe­
dra is trivial. This is originally due to Chapman [ChI]. This proof is more
in the spirit of his second proof [Ch4]. More direct is to view the tor­
sion of a homeomorphism between polyhedra as a controlled homotopy
equivalence whose controlled torsion lies in a group that on inspection
is O! A fortiori, the uncontrolled torsion vanishes as well.

REMARK. The nontrivial end obstructions occur if one is interested in
equivariant mapping cylinder structures around the fixed sets of group
actions and equivariant finiteness of ANRs. In [Q2, pt. II] Quinn gave
the first example of a locally linear group action for which equivariant
finiteness failed. This led to a very vigorous development by many authors
and to other different examples that demonstrated how central these
sorts of actions are to an understanding of the equivariant topological
category (see [DoR2] and [Wei2]). AIl of these phenomena can now be
said to be understood as a result of the stratified h-cobordism theorem
(see 6.2 and 13.0.)

9.4.4. Triangulation

After triangulation of manifolds was settled through the work of Kirby
and Siebenmann rKS] it became natural to analyze the question of when
locally triangulahle spaces are triangulable. We have already seen in 5.3
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nonuniqueness of triangulations due to K-theory phenomena (Milnor's
examples, for instance). The first result I know of showing nonexistence
is due to Siebenmann: an unpublished example referred to in his ICM
talk on topological manifolds, reprinted in [KS].

The problem was systematically analyzed (cohomologically, presag­
ing20 some of the work on MAFs already described) in papers of D.
Anderson and W. C. Hsiang [AH1,2]. Quinn also analyzed the problem,
but, somewhat differently, from the end point of view. I will not give his
analysis or that of Anderson and Hsiang, although the reader would do
well to read these papers; instead I'll just point out one result that occurs
in all of their approaches.

THEOREM. Suppose all the pure strata ofa stratified space have all holinks
(see 5.1) with vanishing lower K-theory, and suppose there are no low codi­
mensional situations; then the space has a PT (see 8.1) structure, which is
unique if the Whitehead groups vanish as well.

REMARKS 1. It is straightfolWard to put in Kirby-Siebenmann obstruc­
tions (2.5.B) to get a PL theorem.

2. In light of this theorem, one can now obtain the topological clas­
sification of such stratified spaces using chapter 8. It should not be sur­
prising that we almost have enough technology to do the general case.
(The ingredients will be assembled in the next chapter.)

In deference to laziness, and not wanting to go through complicated
inductions as in chapter 8, let's just look at the case of two strata. How
shall we triangulate? By the end theorem, we will have no trouble putting
a boundary (uniquely) on the complement. So let's examine the mapping
cylinder structure. First consider the case where the bottom stratum is
a circle. We subdivide the circle into many arcs, intersecting in points.
Over the interior of these arcs, we have exactly the inverse images we
would desire for a block bundle projection. Now, to get a good inverse
image for a point, we put an end on the manifold inverse image of an
arc this point is incident to. (We must combine the different choices of
"ends" of the different arcs this point is incident to, but this is really not
that hard.) A controlled s-cobordism argument shows that the original
mapping cylinder neighborhood is homeomorphic to one produced from
the cylinder of the block bundle projection just constructed.

To deal with the more general bottom stratum, imagine the base put
together rather like a brick wall, so that triangulating is essentially the
same as finding the "blocks" over codimension one submanifolds of codi­
mension one submanifolds of .... Each of these is inductively solving an

20The precise connection between MAFs and triangulation is discussed in [H1WW] and
the appendix to the following chapter.
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end problem by taking the inverse image of a corresponding open set bor­
dering on the relevant face. As before, this is always possible, uniquely,
under the hypotheses.

9.4.A. Index theory on noncompact manifolds

I would like to discuss an interaction between bounded topology and
some aspects of analysis on noncompact manifolds21 that I find very inter­
esting. Some aspects of the analogy in the compact case have been dealt
with in the appendices to 2.5 and 4.6. Further, equivariant extensions of
these parallel developments will be discussed in 14.2.

This appendix demands more familiarity with index theory than any
other section of this book. I recommend [Bla, Hig3] as useful references
for aspects of the K..theory of C*-algebras.

I believe that the general theory of stratified spaces developed in this
book will also have an interesting analytic counterpart.

Let me reiterate some of the basic ideas of the analogy between
surgery and index theory. The collection of surgery problems and el­
liptic operators are both combined in homology theories. Miraculously
these agree (using Real operators) away from the prime 2. The theories
are given by the L-spectrum (F/Top) and by K-theory respectively. (See
2.5.A.) The obstructions (indices) associated to these objects lie in an
algebraically defined group associated to (a completed) group ring. Fur­
thermore, consideration of the index of the signature operator leads to
a map from the topology to the analytic theory.

We'll summarize the situation for closed manifolds in the chart on the
following page, much of which we have already seen. The reader might
want to consult [Wei5] for more information.

If we study the question of which manifolds have positive scalar cur­
vature, then one can expand the table slightly, with Gromov-Lawson's
spin cobordism invariance [GL2] (see also [ScYl])22 being a more fitting
companion to the 1r - 1T theorem. This is a lovely test problem for index
theory.

Now our goal is to extend this diagram to noncompact manifolds
somewhat. Many of the problems that have been studied thus far have
reasonable extensions to general operators and connect nicely to work

210liver Attie is doing interesting work on the analogies between Roe's work [Roel]
and topology regarding the complexity of diffeomorphisms on noncompact manifolds. Block
and I have refined some of this index theory partially exploiting the analogies described in
this appendix. Whether there are geometric topological cognates of the index theorems of
Cheeger-Gromov [ChGr2] or Stern [Ste] I do not know.

22They have also done the analogue of the Cappell, Waldhausen, and Pimsner line for
this problem.
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Index Theory Topology Algebraic K-Theory

Operator Surgery problem Chain complex

C*-algebra Ring Ring

C*1T 7l.Jr 7l.1T

K-theory L-theory K-theory

Commutative algebra Space

K-homology L(e)-homology K(Z)-homology

D*D>O Homotopy equivalence AcycIicity

Cobordism invariance Jr - 1f theorem

Pimsner-Voiculesciou [PV] Shaneson's formula (4.6)1 Bass-Heller-Swan formula
(1.6)2

Pimsner [Pi] Cappell [Ca4] (see exercise Waldhausen [Wald3]
in 4.6)

Strong Novikov conjecture Novikov conjecture K..theory Novikov (4.6)
conjecture

Special case of Borel conjecture Assembly isomorphism
Baum-Connes conjecture3

BC injectivity4 Equivariant Novikov (see See 14.4
14.2, 14.4)

BC conjecture Equivariant Borel5 See 14.4

? Stratified Borel See 14.4

Yl-invariant p-invariant ~'Semitorsion," e.g. [DR]

[APS] (4.7)

[Lo] Higher p (14.4)

1This has a twisted generalization for 7L x a G.
2This has a twisted generalization for 7L X a G.
3If one writes the assembly map for arbitrary rings, this cannot be true because of Nils.
4Pormally, this is another problem, but the connection was realized in work of [RsW2] and,
subsequently, [BDO].
5This is false; see [Wei5]

done on complete Riemannian manifolds.23 Information travels in both
directions.

We'll begin with the use of almost flat bundles. These made their debut
in papers of Gromov and Lawson for the positive scalar curvature prob­
lem [GL1,3] and were recently adapted by Connes-Gromov-Moscovici
for use on the Novikov conjecture on the homotopy invariance of the
higher signatures [CoGM].

To explain the idea, I will be more or less historical.

231t is fairly routine to develop the analogue in index theory of the proper theory as
developed in §§1.5.A and 2.4.B.
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THEOREM [GLl].24 Hyperbolic manifolds do not have positive scalar cur­
vature.

SKETCH PROOF. We begin by recalling (again, see the exercises in 4.6.A)
the Lichnerowicz method. If D is the Dirac operator on a spin manifold25

D*D = !J.+K where 8 is the usual Laplacian and K is the scalar curvature.
Thus, positive scalar CUIVature implies that ker D* = ker D = 0, so the
Atiyah-Singer index theorem implies vanishing of the A-genus.

Suppose we were to pair with a flat bundle. We'd repeat the argument
to get vanishing but we'd learn nothing new because the higher Chern
classes of a flat bundle vanish. If we take a bundle which isn't flat, though,
we'd lose because the CUIVature of the bundle could defeat the positive
scalar curvature of the manifold, and the coupled Dirac operator might
gain index.

However, if the curvature of the bundle were small enough compared
to the curvature of the manifold, we'd be able to repeat the argument
and get a new obstruction to positive scalar curvature.

If M is hyperbolic, then one can find large finite sheeted covers with
large injectivity radius (using the residual finiteness of the fundamental
group of M). Collapsing the complement of a large ball onto the sphere
and using the Bott bundle on the sphere, we have a bundle on the cover
with interesting topology and small curvature. The scalar curvature of
the cover is as large as it was downstairs, so we win.

REMARK!EXERCISE. This proof only makes sense as written for dimen­
sions == 0 mod 4. Modify it to apply in all dimensions.

In [GL3] this idea was put into a noncompact setting, where it gained
much additional power.26 In that paper they prove a relative index the­
orem for manifolds and operators (with a positivity condition at infinity)
that are identified outside some compact set. (The index so defined is
independent of which compact set the manifolds are identified in the
complement of). The formula for the index is the same as the Atiyah­
Singer formula. One subtracts the integrand on one manifold from the
corresponding integrand on the other (using the identifications outside
the compact sets to avoid 00 - 00 problems). This is the index of a certain
Fredholm operator which I will not define. Here is an application.

25Exercise: Show that hyperbolic manifolds are spin.
26Especially when combined with the families version (see §13 of [GL3]). The use of

families to do descent arguments from "noncompact Novikov conjectures" on a universal
cover to ordinary Novikovs on a manifold is explained (in differing degrees of coherence)
in (FR~ Wei5, FcWL21 and 14.3.
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THEOREM [OD]. Nonpositively curved manifolds do not have positive
scalar curvature.

The difficulty in applying the previous argument stems from the fact
that we do not know whether such manifolds are spin or whether they
have any finite covers at all. However, they certainly have a universal
cover, which is (diffeomorphic to) Euclidean space, and hence spin.

The inverse of the exponential map is a Lipschitz diffeomorphism to
Euclidean space, so we can pull back any model of the Bott element with­
out increasing its curvature too much. On Euclidean space, by rescaling
we can make the Bott element have as small a curvature as we like (at
the cost of increasing its support) so the relative index of Dirac coupled
to the pullback of the (rescaled) Bott bundle (and the trivial bundle) is 0,
but it is the integral of the Atiyah-Singer integrand, with the Chern class
of the Bott element tossed in, and is therefore not O. This contradiction
proves the theorem.

The topological use of Lipschitz diffeomorphisms that do not have
Lipschitz inverses is mentioned in [FRW]. We recognize this as being
a feature of the bounded category. (There is a morphism induced by a
Lipschitz map of the bounded categories over differing control spaces.)
See [Or2] for more discussion of such maps in differential geometry.

It seems possible to adapt the almost flat bundle idea to the purely
topological situation.

The idea following [CoGM] is this. Again let's start from flat bundles.
Let's try to get an invariant of quadratic forms over Orr (which is more
or less equivalent to the higher signature problem, because L-groups are
made up out of such forms and they measure the entire obstruction to
constructing homotopy equivalences; see 4.6.A). We take the holonomy
representation and transform the matrix of our quadratic form into one
over ~ (of larger size) and then take the signature of that.

Now if the bundle has a little cUlVature, we still can use an expression
of group elements as words in fixed generators and use holonomy to get
a matrix over R. Fixing our initial matrix, one can estimate how small
a CUlVature is necessary to guarantee that the image will be nonsingu­
lar. If one has a Witt equivalence between two matrices, a yet smaller
threshold of curvature might be necessary to get the same signatures
for both. Thus, if we take limits with CUlVature going to 0, we obtain a
priori homotopy invariants of manifolds which a generalized Hirzebruch
signature formula (proven by an extension of the methods developed in
[CM]) identifies with a higher signature. In [eoGM] they assert that for
many interesting groups the Chern classes of almost flat bundles in fact
generate H*(Br; 0), and they deduce the Novikov conjecture.

I would like to point out that one can do this rescaling trick on any
open cone eX, to obtain trivialized at 00 almost flat. bundles correspond-



Controlled Topology 171

ing to shifted K-theory of X. Pairing this with bounded algebraic Poincare
complexes over eX one obtains27 (assuming a combination generalized
Hirzebruch formula/relative index theorem) at least rationally, although
probably ®Z [1/2] if one uses care, the injectivity of the map

H*-l (X; L(Z» --+ Bounded L(Z)-theory over eX.

We of course know, by the main theorem, that for all rings this is an
isomorphism (if we decorate with -(0). Nonetheless, even this injection
is a very useful result.

EXERCISE. Show that, as a corollary of this injection, if M is a manifold
with a proper map to IRn, then the signature of the transverse inverse
image of a point is a bounded homotopy invariant. As a corollary, de­
duce the topological invariance of rational Pontrjagin classes.28 (See also
[Weil0] for more details of this step and another, variant, analytic proof.)

It seems to me that almost flat bundles usually measure the bundle
theory of a space at infinity (shifted). The same sort of thing arises in
"exotic" theory, which I will now turn to. (I do not know the connection
between these two theories, although one can certainly make conjectures,
especially over uniformly contractible manifolds and the like.)

REMARK. This method does not seem to suffice to prove the main the­
orem of bounded algebraic K-theory, or even an injectivity version of it.
However, I believe, because of the work of [BHM, Til that the overall
cyclic homology techniques that are used in the details of [eoGM] can
be used to verify this (and the conjecture made in 9.3) for special rings
(and metric spaces, with only very slight additional hypotheses).

PROBLEM. Prove the Bass-Heller-Swan injection using cyclic techniques.

Let me now describe some work of Roe, which is based on [eM] and
[Higl].29 Let's talk topology before discussing indices.

If X is a space, Roe forms the coarse cohomology as follows.30 Take
Cech covers of X. Then one can take the cohomology associated to
the given cover. By taking coarsenings, one gets an inverse limit system.
Without restricting the covers, this limit is uninteresting; one simply has
a terminal object corresponding to the cover of X by itself, and the
cohomology vanishes. However, if we give X a metric, one can insist that

27Recall that L(Z)®Z [1/2] ~ BO®Z [1/2].
28 Recall the Thorn-Milnor construction of L-classes. This will be reviewed in the ap­

pendix to 12.4.
29Higson and Roe have succeeded in proving for operator theory the analogue of the

calculations of bounded L-theory of weighted cones.
30He defines it otherwise, to make the definition of an index simpler, and then shows

that it can be computed by the prescription I'm giving.
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all covers have some uniform bound on the diameter of their elements
(the open sets). Then one obtains something interesting. This inverse
limit is what Roe calls the coarse cohomology.

The following proposition shows that coarse cohomology isn't exotic.

PROPOSITION [Roe3]. If X is uniformly contractible, then the exotic coho­
mology of X is the cohomology with compact supports.

We will denote exotic cohomology by HR since it is the result of
a kind of reduction of all bounded topology to contractibility and also
because it is related to Rips's construction of a certain cell complex
for the study of hyperbolic groups. In his paper Roe describes how to
pair exotic cohomology classes with operators of bounded propagation
speed (like the lift of an elliptic operator from a compact manifold to its
universal cover) to define an index and then provides an index theorem
(following from [CM]) giving a topological expression for this index.

Unfortunately, this index is not of much use unless the operator ex­
tends to a certain completion of the algebra of bounded propagation
speed operators. (This algebra is then the closure of the algebra gener­
ated by kernels supported within a finite distance of the diagonal.) The
reason for this is that one knows how to define homotopy invariant sig­
natures for Poincare complexes only over a C*-algebra or, similarly, that
positivity of D*D only gives a vanishing of the index when one is dealing
with a C*-algebra. (See [KaMl] and [Roe2,3].)

It is therefore important to understand the K-theory of the completion
of these operators. Higson [Hig2] has shown that if X is an open cone
cP, this is the shifted K-theory of P.

More generally one considers compactifications of X by gluing on
ideal points V (called a corona for X) with the property that functions
of bounded variation on X extend to the compactification. Then there is a
map H Ri - 1(V) ~ H Ri (X). These classes give rise to indices that extend
over the C* completion of the bounded propagation speed operators.

COROLLARY [ROE3]. If M is a manifold with positive scalar curvature,
then the evaluation of the A -class of M on any class coming from a corona
vanishes.

Similarly, the value of L(M) on such a class is a homotopy invariant
in the category of bounded homotopy equivalences over M. (We remark
that one can put the same corona onto quasi-isometric spaces.)

This discussion certainly should remind readers of the main theorem
of bounded topology.31

31 In fact, Higson's proof for open cones seems to me to be reminiscent of the Pederson­
Weibel proof of the corresponding result in algebraic K-theory. He and Roe have given
another proof based on some nice homotopy invariance principles for the K-theory of these
algebras.
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Let me shift perspective slightly. Rather than trying to pair opera­
tors with cohomology classes, one wants to assign to operators homology
classes. (This is in keeping with the ideas of [A4, Kasl, BDF, and BD]
described in 2.5.A.) This just involves dualizing, and one in the happy
circumstance of having direct limits rather than inverse ones in the con­
struction of our "exotic" objects.

The analogue of the transgression map is a boundary map associated
to a corona HRi(X) ~ H;-l(V), under whose image one finds obstruc­
tions to putting on metrics of positive scalar curvature, and whose image
should be an appropriate homotopy invariant.

Also, as usual in operator theory, one should really be working with
K-theory rather than homology. There is no real difference in the con­
struction. To produce K R (not to be confused with Atiyah's object de­
noted by the same letters) one takes the K-homologies of the geometric
realizations of the nerves of the various covers and then takes direct
limits under coarsenings.

(Incidentally, there is a type of surgery theory where LR naturally
arises. Suppose that one is in a category of spaces over X, and let's as­
sume for simplicity that the bounded local fundamental group is trivial.
If, instead of trying to produce a bounded homotopy equivalence of man­
ifolds over X, one tries to do surgery to achieve a decomposed homotopy
equivalence over X, Le. a map that preserves some particular bounded
decomposition of X, and on each of the pieces of the decomposition, the
map is actually a homotopy equivalence. I will leave the verification to
the reader. The basic theorem of controlled topology describes situations
where bounded is equivalent to decomposed.)

Finally, it is clearly advantageous to allow our operators to keep track
of their "semilocal" fundamental groups. After all, in the compact case,
we've seen how to use K*(C*rr) to great effect. That is, one should be
using a cosheaf of spectra. (See ,6.2.A.) For each simplex in the nerve
of an open cover one assigns the spectrum which gives the K-theory
of the C*-algebra of the fundamental groupoid of the relevant open
set. If one believes in the standard (Novikov, Baum-Connes, Borel...)
conjectures, one might replace this cosheaf of spectra by one that is
more homologically defined in terms of the groupoid. I will call this
the enriched exotic K-homology (or algebraically enriched if we use
the C*-algebra) or enriched exotic homology. Let's denote these by
EKR(X), EHR(X), EKRa1g(X), EHRalg(X), etc. I warn you though
that these functors are not bounded homotopy invariants any more
and are somewhat more sensitive to the actual geometry of the spaces.
(They are homotopy invariants in the bounded category of spaces
over X.)

EXERCISE. What is the geometric significance of ELRa1g(X)?
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PROBLEM. Using Stoltz's theorem [Stoltz] and the Gromov-Lawson
surgery theorem [GL2], show that if M is quasi-isometric to a Hadamard
manifold of sufficiently smaller dimension (say, five dimensions lower)
and M has free abelian local fundamental group of not too large a rank
relative to its dimension (e.g. it's simply connected), then M has positive
scalar curvature with a Lipschitzly larger metric iff the class of the Dirac
operator in EKOR*(M) vanishes.

PROBLEM. Suppose we look at a one-ended noncompact manifold quasi­
isometric to a ray. Then EKORalg(M) ~ KO(C*rr, C*rr') where rr is
the fundamental group of the interior and 11:' that of the end. Use this
theory to produce obstructions in this group to metries of positive scalar
curvature on noncompact manifolds. The boundary map to KO(C*rr')
describes "bad ends," i.e. ends that cannot be ends of positive scalar
curvature manifolds. (See [GL3].) Show that the punctured torus is a
manifold with a good end but no metric of positive scalar curvature.

EXERCISE. Prove that if rr' ~ 1T: is an isomorphism in the last exercise,
and one is in a high dimension, one can always produce a metric of
positive scalar curvature.

Thus one should continue the chart as follows:

Index Theory

Algebra of bounded
propagation speed
operators

EKR(X)

K (completion of the
enriched Higson algebra)

[Hig2]

Topology

Bounded algebraic
Poincare complexes

ELR(X)

Bounded algebraic
L-theory over X

[FPl]

~gebraicK-Theory

Bounded projective chain
complexes

EKa1gR(X)

Bounded K-theory over X

[PW2] [02, pt. II]

In the constant fundamental group situation it is reasonable to make
an "exotic Novikov conjecture" that if X is quasi-isometric to a uniformly
contractible space, then the map from the exotic object to the bounded
algebraic object is an isomorphism. We will see (following [FeW2, CP])
situations where this implies usual Novikov conjectures in chapter 14. In
any case, here it just seems like a useful analogy.

Presumably for a more general case one wants a condition that makes
X quasi-isometric to a uniformly contractible stratified space, where the
stratification is constructible and relates to the semilocal fundamental
group of the corresponding pieces of X.

In the topological case (i.e. for algebraic K-theory and L-theory) cer­
tain cases of this package of conjectures are available to the perspicacious
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reader of these notes (for instance, when there is a Lipschitz map to a
stratified open cone with the system of fundamental groups constructible
with respect to the stratification).32

REMARK. The use of KR, LR, etc. essentially allows one to avoid the
assumption of being coarse quasi-isometric to a uniformly contractible
space. Such metric spaces do, in fact, arise quite naturally in the study
of S-arithmetic groups. However, while I certainly believe in these cases
of the isomorphism conjectures, I am not aware of any proofs.

9.4.B. The rigidity package for infranilmanifolds (after FarreU-Hsiang)

Farrell and Hsiang gave a beautiful argument for the following:

THEOREM [PHl]. A closed manifold of dimension n =F 3,4 has a flat
structure iff it is aspherical and its fundamental group contains an abelian
subgroup of finite index. It has an almost flat structure iff it is aspherical
and its fundamental group contains a nilpotent subgroup offinite index.

Almost flat means that one can find a uniformly bounded series of
metrics on the manifold whose curvatures are going to zero. This the­
orem is equivalent, in light of the Bieberbach theorem (characterizing
flat manifolds as manifolds with finite cover a torus) and Gromov's work
[Gr3] on almost flat manifolds, to the Borel conjecture for flat manifolds
and infranilmanifolds.

Their argument in full detail and generality is a little long and com­
plicated, but the idea is simple and easily explained. I'll focus on the
structure set result; the K-theory goes rather similarly.

The key case is really the understanding of crystallographic groups,
and the general infranilmanifold case follows from this by an analysis of
block bundles over such bases. (One really shows inductively that the as­
sembly m~p for blocked surgery theory problems over a Bieberbach base
is an isomorphism if the K-groups of the fiber vanish. Infranilmanifolds
tend to fiber over Bieberbach manifolds with smaller fibers. In particular,
if the fibers have contractible structure spaces, then the total spaces will
as well.)

So let's concentrate on understanding Bieberbach (= flat) manifolds;
and for simplicity, I'll only describe the case of odd order holonomy.
(The general case is a bit more involved and can be elucidated from a
stratified point of view; see the sketch of a related result in [Q6].) These
have fundamental group 1 --+ 7Ln --+ r --+ G --+ 1 where G is a finite
group called the holonomy of the manifold.

32This theorem, in K-theory, is closely related to the result on controlled K-theory of a
stratified system of fibrations in [02, pt. II].
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9.4.C. The Grove-Peterson-Wu finiteness theorem

Another remarkable application of controlled topology in recent years
is the following theorem:

EXERCISE. Prove a variant of Shaneson's formula (4.6) for extensions of
infranilgroups 1 -+ 1C -+ E(r) -+ r -+ 1 whenever there is no K-theory
in the fiber. (In other words, generalize the discussion of block bundles
to the case where the fibers might not be rigid.)

If G is cyclic, for instance, then r is poly-Z and the arguments in
4.6.A suffice. Now, using Dress induction on structure sets, more or less
as in 4.8 (see [Ni]), one can see that for such a manifold S(M)(g)Z(2) = 0
(since the only 2-hyperelementary subgroups of the odd order group G
are, by definition, cyclic).

However, we will not do this immediately. Instead, we will do double
induction on the rank of r and the order of the holonomy, making use
of the following algebraic fact:

FACT. If r has odd order holonomy, then either there is a nontrivial
homomorphism of r to 7L with a lower rank Bieberbach kernel, or there
is an infinite sequence of quotients Gk of r which project onto G so that
any hyperelementary subgroup of Gk maps surjectively to G.

Now the proof can be completed. In the first case, one uses 4.6.A
again. In the other case, one wants to use Dress induction, which means
that we have to worry about the hyperelementary subgroups of these quo­
tients. All of these manifolds are homeomorphic to M (they are rigged by
the fact to have the same fundamental group, and a little geometric anal­
ysis of tJ:te situation shows that the diffeomorphism statement is correct).
On going to these larger and larger covers and rescaling (think about the
case of a torus) one arranges for the induced homotopy equivalence to
have smaller and smaller diameter, (on the same manifold!), so Ferry's
theorem (see 9.4.1) can be applied to give the homeomorphism on these
covers and, hence, by induction for the original homotopy equivalence.

The careful reader will note that here I've cheated: the induction re­
quires that one handles bundles instead. This refinement follows from
squeezing for approximate fibrations (9.4.2) and use of the assumption
that all fibers involved have vanishing structure sets to prove the suit- ~.;,'
able generalization of Ferry's theorem. (One could just as well use end ~

~

theorems to do this: see [Q2, pt. I].) .1

1
j
]

i
j
i
1
.'~

FINITENESS THEOREM ([GPW]). The number ofhomeomorphism (diffeo­
morphism) types ofclosed n-manifolds, n =I=- 3 (and n -# 4), with given upper
bound on diameter and lower bounds on volume and curvature is finite.
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For more complete expositions of the fact that there are a finite num­
ber of homotopy types, let me recommend [GP] and [Che5]. The result
on finiteness of homeomorphism types is a slightly delicate further step
where the controlled topology is used.

The idea is this. We take an infinite sequence of such manifolds; they
will converge in the Gromov-Hausdorff sense [Or4] to a metric space x.
(This simply means that there are a metric space (X, d) and metrics on
the disjoint union UMk U X for which each point of M and X is within E
of the other space, at least for k large enough.)

Then one in effect (see 9.4.D for the relevant concepts) shows that (1)
X is a finite dimensional ANR homology manifold, and (2) the natural
homotopy equivalences among these manifolds are all the result of a
natural map to X with an "approximate resolution." (This means that, for
each E, by going sufficiently far out in the sequence, we can arrange that
the inverse images of tiny balls become contractible in the inverse images
of E-balls.) One could prove a squeezing result and apply uniqueness
of resolutions (see the following appendix), but instead they make do
with varying Quinn's argument and proving uniqueness of approximate
resolutions.

The result on diffeomorphism is a consequence of the fact [KM] that
except in dimension four, every compact topological manifold has at most
finitely many differentiable structures.

REMARK. The result on diffeomorphism is certainly more natural than
the one on homeomorphism. The counterexamples to the hauptvermu­
tung in 5.3 and the examples of infinitely many smooth embeddings that
are topologically the same (1.7, Haefliger knots) show how little we un­
derstand the mechanism of finiteness. Is there differentiable finiteness
for embeddings or isometric group actions under hypotheses similar to
the Grove-Peterson-Wu theorem? (The topological part should not be
too difficult to get using the material presented here.)

REMARK. 1: Engel-Moore has given examples in her thesis of sequences
of metric manifolds that have a local contractibility function (a major con­
sequence of the hypothesis of the [GPW] theorem) but that converge to
an infinite dimensional homology manifold. Subsequently, Dranishnikov
and Ferry [DF] analyzed the situation and proved that in this case (1)
one can have different (i.e. nonhomeomorphic) sequences of manifolds
converging to the same space, and (2) this reflects a nonuniqueness of
resolutions of infinite dimensional homology manifolds. Ferry has also
shown that only finitely many different manifolds can be converging to
lhis space.

The nonrigidity displayed in [DF] is responsible for the "flexible ~n 's"
constructed in fDFW] that disproved the conjecture discussed in 9.3.
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There, rescaled metric spheres form a sequence converging to an infinite
dimensional homology manifold.

9.4.D. Homology manifolds

Let X be an ANR homology manifold; Le. X is an ANR and its local
homology H(X, X -x) agrees with that of Euclidean space at every point. 0

We will assume that X has dimension at least five and is connected. A
fundamental question is whether X can be resolved. That is, is there "
a manifold M ~ X which is an approximate homotopy equivalence
(equivalently, with cell-like inverse images)?

If the answer to this were yes, then homology manifolds would indeed
be quite close to manifolds. As things develop, I believe that they will '
be viewed as being a natural, geometric extension of manifolds, Le. ba- ~

sically spaces that should be regarded as being on an equal footing with
manifolds.

In any case, to return to a more or less historical approach: although
they were early viewed with great interest through the work of Bing
and his school, resolutions gain much practical value from the following
theorem of Edwards (see [Dvr, Ed]).

DISJOINT DISK THEOREM.33 A resolution ofan ANR homology manifold
X of dimension ~ 5 can be approximated by homeomorphisms iff X has
the disjoint 2-disk property, i.e. that any two maps from the 2-disk into X
can be separated by small homotopies.

EXERCISE. Deduce from this the double suspension theorem ([Can]) that
the double suspension of any manifold homology sphere is a (manifold
and therefore a) sphere.

Indeed, during the course of our constructions of group actions and j

embeddings, it will be clear that our constructions produce ANR homol- .;
ogy manifolds. We are, of course, more interested in manifolds. One way :1

to deal with this problem is to produce resolutions of the constructed ;
homology manifolds and then it will usually be a simple matter to verify ~,~

the disjoint disk condition and Edwards saves the day. (For our appli- ,~
cations, there is another approach, obtained by comparing Thp and PT ,:
classification theory; see 11.3.)

THEOREM [05].34 X has a resolution iff some open subset of X does. In
fact, there is an integer valued obstruction to resolution that can be computed
by restricting to any open set.

33See note 18.
34Suppose that X is connected.
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A proof can be constructed as follows.35 The total surgery obstruction
(see 3.3, 3.4) of X in BS(X) vanishes, because that can be looked at as
the obstruction to taking all of the local deviations from self-duality that
are given assembled to 0 (since X satisfies Poincare duality) and cobor­
ding them to something with trivial self-duality. Since X satisfies duality
for local reasons, this obstruction vanishes. Again, since the vanishing is
completely local, we can make each open set homotopy equivalent to a
manifold and do all of these compatibly, so that one gets a(n approximate
Of, by squeezing, genuine) resolution. Now, the difference between the
genuine obstruction to being homotopy equivalent to a manifold and the
algebraic version is a 7l. that comes from the difference between GjTop
and L(e).36 Thus we have a 7l. for each component, and we can measure
it locally around any point.

The same argument actually shows:

THEOREM [02, pte I] (UNIQUENESS OF RESOLUTIONS). Let fi : M; ~
Xi = 1,2 be 01'0 resolutions of X; then for each E > 0, there is a homeo­
morphism g: Ml ~ M2 such that d(gfi, fi) < E.

In [02, pt. I] there is a more elementary proof of this using Edwards's
theorem and no controlled surgery. By Edwards, T 2 x fi are approximable
by homeomorphisms (this is not quite obvious). We can now unwrap a
circle and apply the end theorem (local fundamental groups are trivial)
complete and see a controlled h..cobordism, which is a controlled product
for fundamental group reasons, giving us the result that the products
r 1 x M; are homeomorphic in a controlled way. We can then unwrap
again and remove the second circle as well.

However, now let us return to the question of whether nonresolvable
homology manifolds exist. .

THEOREM [BFMW]. For every integer there is a homotopy n-sphere, n ?: 6,
with arbitrary resolution obstruction.

In fact, the following stronger result is correct:

THEOREM [BFMW]. S-cobordism classes of homology manifolds simple
homotopy equivalent to X are in a 1-1 correspondence with the fiber of the
assembly map, i.e. exactly as predicted by surgery theory.

COROLLARY. Siebenmann periodicity (~.4) holds for homology manifolds.

In other words, we've seen that periodicity fails for manifolds because
FjTop differs from L(e) by a factor of lL. Homology manifolds fill in

J5Quinn uses the end theorems more extensively and makes use of Edwards's theorem
in the proof of his own, but this is not actually necessary.

3(lThe differences coming from negative homotopy groups in periodic L-theory are rel­
evant only in infinite dimensional situations. See [D~ DFW].
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this lacuna. Indeed with homology manifold stratified spaces, the clas­
sification theorem of (6.2) takes a more beautiful form, but only up to
s-cobordism at this date (August 1993).37

The proofs of these theorems use controlled surgery on certain types
of Poincare spaces to produce better and better approximate homology
manifolds. The homology manifolds are produced by an appropriate limit
of these approximations. Any sufficiently good constructive method given
a homotopy type, when combined with controlled refinements, allows one
to produce s-cobordisms.

More precisely, take a reduction of the Spivak fibration of Poincare
spaces X. If the controlled surgery obstruction of this were 0 (which is
equivalent to the vanishing of the resolution obstruction) we'd normally
cobord to a resolution. The idea is to now take a very fine 2-skeleton of
the domain, Wall-realize the negative of the controlled surgery obstruc­
tion on the boundary of a regular neighborhood of this skeleton, and
glue the "other side" of the cobordism to the complement of this neigh­
borhood of the 2-skeleton. This gives a Poincare complex, with small
duality from X's point of view (although not from the complex's point of
view), which, with effort, can be surgered to a (different scale intended!)
homotopy equivalence to X.

Now, we take better and better approximations and begin measuring
the control over previous stages in the constructions since these are, after
all, now somewhat controlled Poincare complexes. The limit, as I said,
is our space. The result is a homology manifold, essentially because the
i-th approximation has small duality over the (i - 1)8t stage, giving the
limit self-duality over itself, which is the same thing as being a homology
manifold.

There's one amusing technical detail I'd like to point out. We're using
the interpretation of controlled surgery as homology = normal invariants
to make this argument. This requires the control map to have locally
constant trivial fundamental group of the fiber. We achieve this using the
following beautiful theorem of Ferry (which is partially responsible for
the unfortunate dimension assumption in the construction of homology
manifolds):

~
i
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J
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~
~
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THEOREM [Fe3]. Let Mrn ~ P be a map from a compact manifold to ',,;
a compact polyhedron whose homotopy fiber has a finite k-skeleton. Then j
one can homotop f to have all point inverses Uhomotopy equivalent to" this
fiber through dimension k, if 2k + 2 < m.

Homotopy equivalence is here meant in the sense of a limit of open
sets containing the point inverses. The point inverses themselves can be
quite pathological. The reader should examine what this says for P of

37Sadly, these lines were first written in July 1992.
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larger dimension than M, and for the case where M and P are spheres of
the same dimension (but the map is not degree one) - see also [Wal, Bes]
for earlier work.

I would like to close with a number of conjectures that seem plausible
to me.

MODIFIED RESOLUTION CONJECTURE. Every ANR homology manifold is
resolvable by a unique ANR homology manifold with the disjoint 2-disk
property.

HOMOGENEITY CONJECTURE. Any ANR homology manifold with the dis­
joint 2-disk property is homogenous. (More speculative would be that they
have locally contractible homeomorphism groups.)

S-COBORDISM CONJECTURE. S-cobordisms that satisfy the disjoint 2-disk
condition are products.

These conjectures lead one to believe that there is a whole new set of
local types as beautiful as Euclidean spaces. Spaces modeled on these will
be the best homology manifolds and should resolve arbitrary homology
manifolds. Surgery theory for classification up to homeomorphism will
then be as correct for these as for manifolds. However, for the most
perfect view of surgery, it is best to consider as a whole the aggregate of
spaces with all the local types together.

Finally, I mention one last conjecture:

DIMENSION CONJECTURE.. The theory described above is correct for n ::::
4. For n = 3 all homology manifolds are resolvable, at least modulo the
Poincare conjecture.

REMARK. We don't yet have a good substitute for the disjoint disk con­
dition for n < 5. Consequently, resolutions of those lower dimensional
objects would only immediately imply higher dimensional results, e.g.
that after xlR2 they were (or weren't) manifolds.



THEOREM ([02,8t]). Let WhTop X be defined by the following fibration:

WhTop X ~ H(X; KgQ(neighborhood)) ~ KgQ(X).

ffiHo(X;; Wh(local fundamental group») ~ ffiWh(Z1l't(~»)

~ Wh Top X ~ ffiHo(X;; Ko(local fundamental group»)

~ ffiKo(ZJrt(X»).

10 ProofofMain Theorems in Top

In this chapter I will complete my discussion of the proof of the main
theorems (6.2) in the topological case. I will not give complete arguments
ab initio but instead describe where they differ from the PT discussion
given in chapter 8. We've already seen that controlled topological tech­
nique suffices to reduce to the PT case whenever holinks have vanishing
algebraic K-theory, so it should be of no surprise that the same technol­
ogy can be applied to deal with the general case.

10.1. The h-cobordism theorem

We recall the statement:

.~
J

.~
~

1

no WhTopX is in a 1-1 correspondence with h-cobordisms on X provided ~
:~that all strata of X are of dimension at least four. ~
~

Actually, the statements in [02] and [8t] are slightly different and ~

make use of the general splitting that we've seen in chapter 7 of Browder- ~
Quinn K-groups into the K-groups of the closed pure strata (or more ~

precisely, the fundamental groups of the interiors of the pure strata). '::~

This means that WhTopX decomposes into a sum, one piece for each 1

pure stratum. Let's write this decomposition out and see what it says i
about homotopy groups: ~

:~
~

·fl
;~

:,
i

where sum is taken over all strata. Note also that on X' C Xi, the local
fundamental group is trivial, so these homology groups are supported on
the union of the lower strata.

Let us rephrase it one more time:

Wh TopX~ ffiWhTOP(Xi reI Xi-I)
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and

... ~ Wh (Z1l'1(~») ~ WhTop(Xz reI Xi-I)

---+ Ho ( Xi -1; Ko ('zrr(holink») ---+ Ko (,Zrr1(.r))

where the holink is taken in Xi.
This is the form in which Quinn and Steinberger phrase their theo­

rems. It is also a form that is more convenient for the proof.
Once we see the description of WhTop(Xi reI Xi-I), the fact that

WhTop(X) has a map into the product will be quite clear; one defines
directly an obstruction to h-cobordism that lies in a group isomorphic
to this one (via the description of WhTop(Xi reI Xi-I) as the controlled
Whitehead group for a certain map). It is then a formality that the map
Wh Top X --+ EBWhTop(Xj reI Xi-I) is injective.

Surjectivity is also easy for the piece corresponding to the top stra­
tum. Unfortunately, the literature does not explain how to extend h­
cobordisms from a lower closed stratum. This is rather delicate and can
be done with more advanced end machinery (a future paper promised by
Quinn), the €-surgery of Ferry and Pederson [FP1], or as a consequence
of the teardrop neighborhood theorem (see 10.3.A). In any case, I will
not discuss this issue in this section.

So let's move on to the calculation of WhTop(Xi rei Xi-I). For con­
venience of exposition, let's suppose that Xi is a PT space, although
this makes no serious difference. (We would otherwise have to deal with
relative finiteness obstructions rather than absolute ones.)

The map WhTop(Xi reI Xi-I) ~ HO(Xi -l; Ko(Zrr(holink») is the ob­
struction to taking an h...cobordism on Xi reI Xi-l and extending the
mapping cylinder structure around Xi-I to a neighborhood of Xi-l x I.
(The obstruction group should be HO(Xz-l x I; Ko(Zrr(holink»)) but ho­
motopy invariance reduces it to what is written.) In other words, it is an
end obstruction.!

The end obstruction vanishes by the time we go to Ko(Zrr Xi) since
this relaxation is a Siebenmann end obstruction, which always vanishes
in the K-group of the interior of the manifold (1.4). That is, if one has
an open manifold W, then, by definition, the end obstruction in Ko(Zrr')
vanishes by the time we pass to Ko(Z1l') (where as usual1l' and rr' denote
the fundamental groups of the interior and end respectively).

If the controlled end obstruction itself vanishes, then we can put a
(controlled) boundary on this complementary part of the h-cobordism.

I In the previous chapter we've discussed the obstruction when the holink has constant
fundamental group. This case requires the general stratified system of fibrations general­
ization from r02, pt. II]. It can be dealt with by the same formal steps as the constant
casco
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Then consider the torsion of the inclusion of the closed complement on
the boundary into our newly constructed closed complement. This is the
lift to Wh(Xi).

This lift is not quite well defined. It depends on which mapping cylin­
der structure we choose. These structures are h-cobordisms controlled
with respect to the retraction to the singular set Xi-I. These are classi­
fied by a controlled Whitehead group (see chapter 9), which, in turn, is a
cosheaf homology group, as described. Thus, a change of the controlled
boundary will kill this obstruction if (and only if) it lies in the image of
the assembly map HO(Xi-l; Wh(Z1l'(holink)) ~ Wh(ZJrt(xJ».

EXERCISE ([03]). The text only sketched the fact that an h-cobordism is
a product if the topological torsion vanishes. Prove the realization of all
elements of WhTop(Xn rei Xn-l) as h-cobordisms, for Xn the top stratum.

NOTE. Similar arguments to those we've just given produce an end the­
orem for stratified spaces with obstructions in EBKci°P(X; rei Xi-I).

10.2. Stable surgery

Now I want to explain the proof of the stable classification theorem
using controlled surgery. The reader can appreciate why we have to sta­
bilize in the stratified situation but not in the classic one, because of
the main theorem of controlled L-theory (9.3). Only stable surgery is a
homology theory. For the manifold case, the normal invariants involve
controlled L-theory with a local fundamental group with no K-theory,
so stable = unstable, but, in general, we are forced to deal with the

stabTihlized version. 1 dOf'.C h h I ·ft · h j
ere are severa 1 J.erent approac es to t e c assl catIon t eorem ~

possible, and these are somewhat interrelated. ~
:~

One way is to redo the arguments from the PT category using con- .n

trolled surgery to replace blocked surgery and making use of the result '~
that stable controlled surgery is a homology theory [FPl]. .'.:'~~:.i.

Another way would be to map the structure space into the fiber of the
surgery map and inductively use the picture given in the appendix to this ;
chapter to verify stable isomorphism. i:.~

;~

The way that I would like to describe is a little different. While it is )~

not true that every manifold stratified space has a PT structure, even ~)

stably, one can produce an analogue of a PT structure stably. ~~,

In unpublished lectures and manuscripts I have called these structures ~~
STIBBs for stable transfer invariant block bundles, and their first mathe- ~

matical application was my work with Rothenberg on the stable existence
of equivariant Lipschitz structures for certain group actions [RtW]. I do
not really want to maintain the name in perpetuity, since it is an awk-
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ward notion whose time probably has both come and gone, but it is quite
intuitive.

In any case, the idea of the proof is this. To begin with, let's think
about a space X with an isolated singularity. This corresponds to the one
point compactification of a manifold with a tame end. The lack of a PT
structure is determined by Siebenmann's end obstruction. However, after
crossing with a circle, this completion exists.

This is not of much help in understanding our stratified space, how­
ever, because the one point compactification of this manifold is a singular
space with a single point as singularity, not the circle that we need.

The way to achieve this is to improve the control on the boundary
in the Sl direction. It turns out that there is a canonical boundary on
products with SI. It is obtained as follows (compare 1.6): if V is any
sufficiently small closed neighborhood of the singular point, and V' is
any smaller neighborhood, there is an isotopy (constructed by engulfing
using tameness) Fr of V within X that starts embedding V as V and ends
up embedding it inside V'.

Now use this isotopy to embed the mapping torus of this self-embed­
ding in S1 x X. This is a manifold with boundary, and the boundary is actu­
ally a completion of S1 x X - SI X 00. I leave the verification to the reader.

(By the way, I have found that this makes for some beautiful pictures
that the reader should draw or model with clay. A nice case is to consider
the neighborhood in S1 x D2 of Sl produced by starting with an annular
neighborhood of a point of D 2• After unraveling it, you will of course
see a torus.)

Figure 18 is a simple picture of the process.
The controlled boundary is independent of all choices as well (because

there is a contractible choice of isotopies). Consequently, it is the same
as its twofold cover (the TI part of STIBB).2 Taking iterated covers one
can improve the control in the circle direction as much as one wants
(or improve it as much as one needs in order to squeeze). The result
of the transfer invariant gluings gives a good neighborhood of the circle.
(Compare 5.3.) .

Now, if the singularity is not just a point, then one can do this to get
a mapping cylinder structure after crossing with a circle. Recall from 9.4
that the difficulty in putting a block structure on a neighborhood is the
result of solving a series of end probl~ms. Solve these, after crossing with
more and more circles, as necessary.

The end result is that for each simplex ~ of the original stratum one
obtains a "block" that looks like a transfer invariant structure on ~ x T x
holink and that is then canonically glued in over ~ x T. Such things can

2For our purposes, it suffices to argue using x Rn and working boundedly over IRn as
opposed to crossing with tori and working transfer invariantly.
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circle x *

Figure 18. The neighborhood of a circle in annulus. Taking the mapping
torus of a self-embedding of a (nonregular) neighborhood of a point produces a
regular neighborhood of a circle (after crossing with a circle).

be classified by a (negatively decorated) version of blocked surgery, and
one can now repeat verbatim the proof from chapter 8.

With which we close aUf sketch of the stable theorem.

REMARK. This repeated crossing with tori to obtain the analogue of
block structures is quite similar to two other similar discussions in the
literature that were discovered independently. (1) Ferry and Pederson
[FP1] prove that the stable bounded surgery theory is a suitable ho­
mology theory by repeated splitting. However, this is obstructed by a
bounded K-obstruction. By stabilizing, they kill this obstruction. (2) Weiss
and Williams [WW] are interested in analyzing the topological space
BTop(M) which classifies fiber bundles with fiber M. They show that sta­
bly this space coincides with the classifying space of block bundles with J

fiber M x ~i bounded in the Euclidean direction. Weiss and Williams
were also interested in the destabilization problem, and they, too, relate
it to Tate cohomology of an appropriate spectrum, but this is the topic
of the following section.
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10.3. Destabilization

I now would like to sketch a bit of what is involved in the destabiliza­
tion theorem. Actually, we will prove a little less. The theorem asserts
that there is a fibration

SS(.X) ~ S-OO(X) ~ H*(iE2; WhTOP(X)~O).

We will only sketch a looped version of this:

H*+l (£:2; WhTOP(X)~O) ~ SS(X) ~ S-OO(X).

The delooping is a bit indirect. The current, weaker, destabilization suf­
fices for the embedding theory developed in 11.3. There, following [CW3]
for manifolds, we give a geometric form of Siebenmann periodicity, which
puts a self four-fold loop space, and hence 00 loop space, structure on
the whole theory, which in particular deloops the fibration here.

Now, as for the fibration, one should consider the following diagram,
where the horizontal rows are fibrations and the vertical arrows are ho­
motopy equivalences:

Of course, bdd denotes bounded. The isomorphisms of various h­
structure sets with bounded s-structure sets of bounded objects are com­
pletely analogous to the theorem of Chapman referred to in 9.4. The
horizontal fibrations are Rothenberg sequences and are a formal conse­
quence of the (full) h-cobordism theorem (i.e. including realization of
obstructions) as in the classic case (Le. as in 2.4.A or [Shl]). (We do
not need Milnor duality here, because we define the duality by turning
h-cobordisms upside down!)

One can see that the spaces H*+1(Z2; K~fP(X) are in fact Eilenberg­
MacLane with the expected homotopy groups. This gives a spectral se­
quence for computing the homotopy group of the fiber of the stabilization
Inap.



REMARK. At the present there is no known group for which K i (ZJr) "# 0
for i below - 2. Thus, the same lack of knowledge prevails for stratified
spaces, so the spectra we are taking late cohomology of never have more
than three nontrivial homotopy groups, and the homotopy groups of the
Tate cohomology are thus of exponent 8.

Tate cohomology of spectra (see [GrM, WW]) behaves well with re­
spect to fibrations, so that at least one formally obtains the same spectral
sequence3 for computing the fiber and computing the Tate cohomol­
ogy. (This spectral sequence is described for general Tate cohomology
of spectra in [GrM]. This paper contains much information regarding
its convergence, or failure of convergence, as well as a number of very
interesting calculations.)

It is not impossible to make these approximating fibrations compati­
ble with each other and deduce the theorem on the space level. In other
words, one can compare the structures with differing amounts of stabi­
lization inductively, and then take the direct limit, recognizing the fiber
(of the limit = the limit of the fibers) as the Tate cohomology.

A nice apparatus for doing this type of argument is given in [WW],
where they have to do considerably more work than is necessary here
because their Tate cohomology involves the whole Whitehead spectrum,
Le. the higher as well as the lower algebraic K-groups. We will leave
the details of the interactions between these Rothenberg sequences out,
since they are rather complicated and combinatorial in nature.
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10.3.A. The structure ofneighborhoods ..~

This book would not a description of be complete without a discus- ,j
sion of what neighborhoods really look like: not a description of what ;1
they look like stably and an obstruction theory for how to destabilize 1
them. One knows, by the tubular neighborhood theorem, that (germs of) .~

neighborhoods of manifolds in manifolds are the same thing as vector ,~
:o:~

bundles, and in the PLease, they are the same thing as block bundles. 'r
What do the neighborhoods of strata in a manifold stratified space lookj
like? ':1

.~The answer, in [HTW~ Hu3], involves manifold stratified approxi- ;~

mate fibrations (MSAFs). These are analogous to the one stratum case ~

and they have a similar general theory (calculation as sections of a fibra- .I

tion). This is proven by induction on the number of strata simultaneously ,
with the following (answer) theorem:

3This spectral sequence is described for general Tate cohomologies and analyzed in
some cases in [GrM].
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THEOREM. There is a homotopy equivalence of appropriate spaces

IGerm neighborhoods of B as a stratum of a manifold stratified space I
~ IMSAFs over B x IR I.

The map from the right-hand side to the left is a nice construction,
called the "teardrop". Let f: W ~ B x IR be an MSAF with k strata.
T D(/) = W U B topologized by a basis of open sets consisting of open
sets of W, and the union of open sets 0 in B with the inverse image
of sets of the form 0 x (i, 00). In other words, for a sequence of points
outside B to converge to a point in B they must lie in a certain teardrop­
shaped region of this space. The MSAF condition on p guarantees that
this is an MSAF with k + 1 strata.

The main geometry involved in showing that every neighborhood is a
teardrop is a controlled stratified engulfing. The reader is invited to play
with the construction in 10.2 and for MAF squeezing (9.4) to build the
MAF associated to a stratified space with an isolated singularity.

This theorem allows an analysis of manifold stratified spaces that is
inductive in the same way that the definition in the PL category can be
formulated.

REMARKS. 1. Bruce Hughes has extended this theorem to an analysis of
germs of embeddings of stratified spaces in one another.

2. That one looks at MSAFs over B x IR is useful for applications to
h-cobordisms. After all, all h-cobordisms become products after crossing
with a copy of ~. (This observation suffices for proving the realization of
torsions in the s-cobordism theorem.)

3. The theorem can be used to provide an alternative approach to the
proofs of the main theorems in the topological category. The idea for
this is to induct on the number of strata, as in the PLease, and use the
ideas of [Ch2, Hul, HTWl,3] for the beginning of the induction, Le. for
providing a sufficient analysis of the space of MAFs. (See also 9.4.2)



PART III: APPLICATIONS

This part is devoted to applications of the theory developed in Part II to
specific stratified spaces, and occasionally to obtain some deeper under­
standing of manifolds.

Chapter 11 reviews some aspects of manifold and embedding theories
from the stratified point of view and extends the main embedding the­
orem to stratified spaces. In addition, we prove some interesting results
on immersions of stratified homotopy equivalent spaces. The embedding
theorems have a general theoretical importance because they are used
for putting an infinite loop space structure on the microsurgery sequence.

Chapter 12 is devoted to a deeper understanding of singular spaces
that have simply connected links and that somehow resemble algebraic
varieties. Intersection homology is an important tool in this development,
so this chapter reviews some of that theory as well. The theory here is
very computable and closely resembles the theory for manifolds. There
are a number of applications here to questions about eta invariants of
manifolds and to singular algebraic varieties.

Chapter 13 contains the deepest applications to date of the theory
and is devoted to many aspects of G-manifolds of group actions. We
shall examine some of the foundational aspects of the theory, as well as
compute in many cases an equivariant surgery exact sequence. The results
here also show how to modify given actions to produce new ones with
exotic fixed point sets purely from the point of view of the general theory.
We will also give the first substantial results on topological actions of
compact Lie groups. Here the theory does not seem to resemble anything
else that is more or less standard.

Chapter 14, the final chapter, is mainly about conjectures. These are
extensions of the standard Novikov and Borel conjectures (see 4.6 and
the 9.4.A and B) to the singular case. I will try to make these extensions
plausible and show what additional information they entail. They also
lead to new information about the geometry and topology of manifolds,
especially with fundamental group which is not torsion free. This final
chapter will not go to any great lengths to bring the reader to the state
()f the art on proofs of special cases of these conjectures. The front is
Illoving day by day, but the picture of the situation outlined in chapter
14 seems to be more or less stable.



11 Manifolds and Embedding
Theory Revisited

This chapter contains the simplest illustrations of the general theory. In
the first two sections nothing new will be proven; rather we will consider
manifolds with boundary and with isolated singularities from the strati­
fied point of view to compare with what should be familiar to the reader
from Part I. In the third section I will turn to embedding theory and
simultaneously re-prove and generalize the codimension three embed­
ding theory for manifolds (see 4.4) to stratified spaces. In the topological
case this, inter alia, re-proves the homotopical characterization of local
flatness due to Ferry [Fel] in codimension one, Bryant in high codimen­
sions, and Quinn [02, pt. I] (see also [Ch2]). The final sections deal with
immersions and with low codimensions.

The reader who has read chapters 5 and 6 should have no problem
following the treatment here.

11.1. Manifolds with boundary

I will not bother writing down theorems. Presumably, the reader knows
what I'm trying to do.

There are two questions to be addressed. Firstly, what does the clas­
sification theorem say, and secondly, what is the classification theorem
classifying?

In the PLease, the theorem is at first glance not saying anything
since we are violating the codimension five assumption about strata. As
pointed out in 6.1 this condition is sometimes avoidable by special low
dimensional considerations. The point for us is that if we decide that we
are studying manifolds with boundary, then we already know what the
link of each simplex on the boundary is. The holink is a point, which
has the same geometry as predicted by surgery theory! In other words,
surgery predicts that its structure set should be contractible and therefore
so should spaces of point block bundles, but this is clearly the case by
inspection.

A similar discussion is necessary for proving the results of low oodi­
1l1cnsional embedding theory (4.4).

Now, the Whitehead groups of the links are trivial, so simple homot­
(lpy transversality is just homotopy transversality; i.e. we are after strati-
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fled homotopy equivalence, which is equivalent to just a homotopy equiv­
alence of pairs (see 5.2).

Wh PL is just the sum of the Whitehead groups of the strata. Note
however that the involution is unusual, i.e. does not preserve the sum
decomposition but must be modified by the map on Whitehead groups
induced by the inclusion (see 7.1).

The L-group is clearly the usual relative L-group.
The cosheaf of L-spectra is interesting here. There are two kinds of

points, interior and boundary points. For an interior point, one has the
usual L(lRn), which isl a shifted L(e). At boundary points, one has the
cosheaf L(lR~, IRn-l) corresponding to the closed upper half plane. The
7r - 1l' theorem (2.4) asserts that this is contractible. Thus, the cosheaf
homology is simply relative L(e) homology.

Note that this is Poincare dual to absolute L(e) cohomology = maps
into FjTop, the form we had in 2.4 for the surgery sequence (aside from
Kirby-Siebenmann difficulties (2.5.B)).

Also note that had we done reI a classification, we'd have obtained
the L(IR~, lRn- 1 rellRn- 1) cosheaf, which is isomorphic to L(lRn), and the
whole cosheaf homology would be absolute L(e) homology, which, again,
Poincare duality identifies with the sequence in 2.4.

The topological case is a little different. The codimensional issue does
not arise. Wh Top = Wh PL in this case because the links are simply con­
nected. A little thought then identifies the topological and PL structure
sets (modulo the Kirby-Siebenmann obstruction; actually, the PT struc­
ture set would be more appropriate; see chapter 8).

It is more interesting to think about what is being computed: Rather
than manifolds with boundary what one gets a priori are manifold strat­
ified spaces with two strata and hoIink homotopy equivalent to a point.
Given that one has the same answer as for manifolds with boundary, one
recovers the following result of Ferry:

THEOREM [Fel]. A space is a manifold with boundary if it is a manifold
stratified space with two strata with contractible holink

This can be viewed as a local homotopical characterization of local
flatness in codimension one.

11.2. Isolated singularities

Again, this section doesn't really contain anything new; it is here for
illustration purposes. Suppose that X is a space with an isolated singu­
larity. In the P L (or PT) case this means that X is given the structure
of a manifold with boundary with the cone on the boundary glued on.

1The reader should think through this identification; it makes use of an orientation.
For unorientable manifolds one gets twisted homology.
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Then the simple homotopy transversality implies that any equivalences
we consider will restrict to simple equivalences on the boundary com­
ponents, and Wh PL is simply the Whitehead group of the closed pure
stratum.

For simplicity, let's only describe the reI singularity theory. The L­
group is the ordinary absolute L-group of the complement. In the classi­
cal theory, however, the L-group would be the relative L-group, because
the boundary is not fixed by a mere simple homotopy transversality. This
difference is accounted for by the difference in the normal invariant
terms.

Classically, the singular point doesn't contribute at all and we have the
relative L(e) homology of the complement. From the stratified point of
view the cosheaf homology has different stalks at the manifold points and
at the singularity: at the manifold points we get the usual L(e), but at the
singular point we get a L(1r) where 1r is the groupoid of the boundary,
which is precisely the difference in the surgery terms between the classic
and our sequence. This is summarized in the following diagram:

H*(*, L(1rlM» +-if--- L(1rlM)

1 1
sew, M) ..-.. ---- H*(W, M; L(e» • L(1rl W, 1rlM)

1 i 1
sew U eM, rel*) +-- H*(W U eM; !!BQ(rel*» ......-- L(1rlW)

Note also that here we can see quite clearly the need for the codimen­
sional assumption; without it, we'd be claiming surgical classification of
low dimensional manifolds. (Note that in the P L case, modulo simplicity
issues, a direct argument shows that SeeM x Ri ) = S(M).)

The topological case corresponds to one point compactification of
a noncompact manifold with tame ends. The Whitehead group is the
proper Whitehead group of the top open stratum.

The surgery sequence that comes out of the stratified theory is some­
what more complicated than that described in 2.4.A because we have to
stabilize and destabilize. In this example one can see the difficulty in just
describing the structure set as the fiber of an assembly map: it is akin to
trying to describe the L-spectrum'decorated by a relative K-group as the
fiber of some map between appropriately decorated absolute L-spectra.
(It would involve h in the interior and p at the end, but this doesn't work
because in the 1r - 1r case one does get vanishing.) Thus, the fact that
there is a nice conventional surgery theory in this case seems obscured
hy our trying to force it to be a global (Le. no points excluded) fiber of
a spectral coshcaf assembly map.
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The sequence is simply the one obtained by stabilizing and destabiliz­
ing the sequence of 2.4.A. By the time we have removed all the K-theory,
the relative L-group (spectrum) is the fiber of the map of corresponding
absolute groups (spectra), and we measure the deviation in terms of a
global object: Tate cohomology of a truncated global Wh Top•

11.3. Embedding theory

Let us now return to the results of 4.4. We will ignore the low codi­
mensional PL difficulties, since they are of the same nature as those of
the manifold with boundary case.

DEFINITION. An embedding i : X -+ Y is said to be pure if for each i
there is a j such that i(Xi) C yi. In other words, pure strata are mapped
into (not necessarily corresponding2) pure strata.

DEFINITION. A pure embedding is locally flat if restricted to each pure
stratum it is a locally flat embedding into the corresponding pure stratum.

DEFINITION. A pure embedding has codimension at least c if the inclusion
ofeach pure stratum in the stratum in which it lies has codimension at least
c. Note that not every pure embedding has a codimension, although it is
sometimes useful to view the codimension as a multi-index or to restrict
attention to either the top stratum or the lowest codimensional strata or
similar intrinsic combinations of strata.

REMARK. Local flatness for codimension at least three embeddings of
manifolds can be checked by verifying that the local fundamental group
at each point (Le. the fundamental group of the holink) vanishes. This
follows from the material in 9.4, e.g. by putting a block bundle structure
on the neighborhood or classifying an associated MAF (see [Ch2, Q2, pte
II]). In codimension two, one has to specify the local homotopy types; the '
cone of a nontrivial knot whose complement has fundamental group 7L
shows that local flatness cannot be characterized in terms of fundamental
group alone.

DEFINITION. A Poincare embedding of X in Y consists ofa Poincare strati­
fied object Z (see 5.1) where X is stratified homotopy equivalent to a closed
union of strata, such that Z has a "coarsening" that is stratified homotopy
equivalent to Y.

Recall that a coarsening of a stratified space V is just another stratified
space where strata are unions of old strata. It is not always possible to
coarsen a stratification, but in the situation of an embedding it is possible
to just ignore the subobject.

2Assuming the index sets are the same.
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A Poincare embedding is always pure in the above definition. Each
pure stratum of X Poincare embeds into a pure stratum of Y. If each of
these has codimension at least c, then we say the Poincare embedding
has codimension at least c.

THEOREM. Locally flat embeddings of X C Yofcodimension at least three
are in 1-1 correspondence with Poincare embeddings of X C Y.

Note that when X and Yare manifolds this is the result of 4.4 (the
Browder-Casson-Haefliger-Sullivan-Wall theorem).

COROLLARY. If X and Yare respectively stratified homotopy equivalent to
X' and Y', then there is a 1-1 correspondence between codimension ~ 3
embeddings X C Y and those of X' C Y'.

This corollary can be used to give a pleasant description of an analogue
of Siebenmann periodicity (3.4) for structure sets.

Here's the construction (see [CW3]) of a map S(X) ---+ S(Xx D4 reI 8)
which is an isomorphism modulo the component ~'s (see 6.2). Let X'
represent an element of S(X). Using the corollary embed it in X x D 3 ;

now take the pullback over the complement of X' of the Hopf bundle
(SI ---+ S3 ~ 82) via the natural map to S2. Make the radii of the circles
shrink as you approach X' and glue X' in. This is a branched Sl.fibration.
This gives an element of S(X x D 4 reI 8).

It is not hard to parlay the argument given in [CW3] into a calculation
of this map in our case; we will not do this here for two reasons. Firstly,
the main application we had in mind was to produce circle actions on
certain spaces; these results fall out much more simply from the results
of the next chapter. Secondly, a more interesting view of the calculation
will be described in 13.1 ("exotic products").

REMARK. This periodicity is a little surprising in that there are no K­
theory difficulties. In terms of MAFs (see 9.4.B) and the geometry of
germ neighborhoods (lO.3.A) what is involved here is an isomorphi~mof
homotopy groups:

1l'i+4 (MAF(E x (R4 ---+ IRn
+

4
)) ~ 1l'i (MAF(E ~ )Rn))

at least in a stable range, where E is produced out of the local germ
along a singular stratum. Thus the periodicity of structure sets is not
quite the reflection of a periodicity. of homotopy groups of a space of
MAPs (which in fact only have the periodicity away from the prime 2,
hecause of K-theoretic difficulties).

This geometric periodicity also geometrically gives the abelian group
structure on structure sets and is therefore a useful thing to have around.

Another interesting example of the corollary is the case of group ac­
tions. The uncquivariant case of the embedding theorem, proven in 4.4,



198 Applications

depends on Fe/Cate stability. This is not true equivariantly (see 13.1), so
it is pretty remarkable that the embedding problem remains homotopy ~

theoretic. .J
o~J

Back to the proof of the theorem. Since one has a coarsening avail-t
able, one can map F(Y, X) ~ F(Y) x F(X) for any of the functors of ~

stratified spaces we've considered, i.e. W h in its B Q group and cosheaf ..~
versions and similarly for the various L's. In general one has a fibration ~
F(Y - X reI end) ~ F(Y, X) ~ F(X) (see 7.1) so that the codimension ;~

assumption (together with the way these functors depend on fundamental
group data) shows that the map F(Y, X) ~ F(Y) x F(X) is an equiva­
lence. Therefore the induced map on Wh Top , its Tate cohomology, and
the stable structure sets are all equivalences, and therefore the map

S(Y, X) ~ S(Y) x SeX)

..~

is an equivalence as well. This is precisely the statement of the theorem _~

except for the local flatness of the embedding. ..l

The local flatness follows from the manifold case of the theorem. In J
that case, one argues that (see 8.1) SPT (Y, X) ~ STOp(y, X) is an equiv-
alence, and that the domain, built up out of block bundles, corresponds
to topologically locally flat embeddings.

REMARK. There is an interesting point here. The forgetful map built by
surgery S(Y, X) ~ S(Y) is geometrically interesting: it produces a mani­
fold from a weakly stratified space with "homotopically mild" singularities
(this means that all the holinks are homotopy spheres) along X. One can
see that the manifold produced by the forgetful map "resolves" the orig­
inal stratified space (this means that there is a map to the stratified space
where the point inverses are contractible in any small neighborhood of I

themselves). In our codimension three setting, Edwards's theorem [Dvr]
shows that any resolution can be approximated by homeomorphisms, so
that, in particular, the original stratified space is a manifold. (We essen­
tially used local simple connectivity to compare to the PT category and
avoid Edwards's result.)

The reader might want to first think through the case where X is just a
point. Then what has occurred is that the most natural forgetful map has
led us to a "slightly singular manifold", i.e., a manifold with an isolated
singularity whose holink is a sphere. Removing the point, one obtains
a manifold with a tame end. It is simply connected (since the sphere
is), so one can complete it by Siebenmann's thesis. The completion is a
homotopy sphere, and therefore a sphere, so that the original singular
space was a manifold.
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We will use versions of this argument extensively in chapter 13.
See [Q5] (or our discussion in 9.4.D) for the general proof that an

ANR homology manifold has a resolution if some open subset does,
even if the singularities do not form part of a smaller stratified space.

11.4. Immersions

Classical immersion theory of Smale, Hirsch, Haefliger-Poenaru [HP],
Lees, etc. reduces the problem of immersing one manifold in another
to bundle theory. (An immersion is a map that is locally a locally flat
embedding.) As a consequence of the stability theorems (4.4), one sees
that homotopy equivalent manifolds simultaneously immerse in homot­
opy equivalent manifolds in the PL and topological categories (although
not in the smooth category).

I do not know how to produce immersions via stratified space theory
from bundle reductions, but below I sketch a more refined version of
the homotopy invariance of immersion. As with the embedding theory,
it also applies to general codimension three pure immersions, and hence
applies to situations where bundle stability fails.

With a good solution to the following problem, one should be able to
deduce the stratified homotopy invariance of immersion from the results
of the previous secti~n.

PROBLEM. Construct a stratified immersion theory for pure immersions.

THEOREM. Consider an immersion i : M ~ W that is transverse to itself
(i.e. in general position) and of codimension at least three. Then,

S(W, i(M), rei sing i(M») ~ S(W) x S(M).

In particular, anything homotopy equivalent to M immerses in anything
homotopy equivalent to W, and furthermore, these immersions have
homeomorphic double,. triple, and quadruple point sets, etc. in exactly
the same configurations. (See also [Lvt2] for related results.)

That S(W,i(M), relsingi(M)) ~ S(W) x S(i(M), relsingS(M»)
follows from the previous section. Now, we need to see that the "res­
olution of singularities map,,3 (blowing up!) S(i(M), reI sing i(M») ~
S(M) is an isomorphism. Using the codimension three assumption, Van
Kampen implies isomorphism on Whitehead and global surgery theoretic
terms.

To complete the argument one observes a quasi isomorphism of
cosheaves i*!!(M) with!! (i(M) rei sing), which follows from examining
how i-1(U) is a union of sheets, for any open set u.

:lThere is no general resolution of singularities in the theory of singular spaces. Here
one is just associating the normalization which consists of pairs (x, g) where x lies in X
and g is a "sheet" of X at x, suitably topologized. Each d-tuple point has d inverse images.
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11.5. On codimensions one and two

The methods of this chapter do not directly apply to the situations of
codimension one and codimension two submanifolds. However, here are
some remarks on these submanifolds.

Codimension one.
I leave the following to the reader:

PROPOSITION. The forgetful map LBQ(lRn, IRn- 1) ~ L B Q(lRn) is a homot­
opy equivalence.

As a consequence, the normal invariant part in computing S(W, M) for
M of codimension one is, independently of M, the conventional normal
invariant of W!

COROLLARY (See [Wall). There is a fibration L(<I» ~ S(W, M) ~
S(W), where <I> is the diagram offundamental groups of M, W - M, and
w.

One just has to identify this L-group of a diagram of groups with the
fiber of the map LBQ(W, M) ~ L(W).

The issue is then how to compute this L-group. The discussion varies
according to whether or not the normal bundle of M in W is trivial. In
the trivial case, Cappell's codimension one splitting theorem is equivalent
to the following (see [Cal-4], 4.6.A):

THEOREM. If MeW is a codimension one submanifold with trivial nor­
mal bundle, whose fundamental group injects, then the fiber S(W, M) ~
S(W) has 2-torsion homotopygroups. Furthermore, if the fundamental group
of M includes that of W in a square root closed fashion (for g E 1ftW,
g2 E 1l'1M implies g E 1l'J M), and assuming some algebraic K-theory condi­
tions, then this map is a homotopy equivalence.

~

The algebraic K-theory conditions can be obviated through careful o:~lo
choices of decorations. Indeed Cappell introduced decorations to specif- I~

ically handle this difficulty! '1
If the submanifold has nontrivial normal bundle, then the fiber can oJ

,1

indeed have highly nontrivial homotopy groups. For the classical case of '.~.~Il

IRpn c IRpn+l, the analysis was given by Browder and Livesay [BLi]. The :~

general case is discussed in [CS2]. 1

Codimension two.
Again we have a local calculation:

PROPOSITION. The forgetful map L BQ(lRn, Rn-2) ~ LBQ(lRn) is a homot­
opy equivalence.

This leads to a similar corollary regarding classification of embed­
dings in a given Poincare embedding class. However, this is not such an
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interesting viewpoint for this problem, in general. It ignores the whole
existence of knot theory, a large classical and still thriving subject!

A development of knot theory and more general codimension two em­
bedding theory from the point of view of Poincare embeddings appears
in [CSl]. They also apply their methods beautifully to P L nonlocally flat
embeddings in [CS4]. The basic idea is that codimension two embeddings
naturally give rise to surgery problems in which one only tries to achieve
homology equivalences. (After all, for knots in the sphere, all of the
complements have the homology of a circle, but only the unknot's com­
plement has the homotopy type of a circle.) Then, codimension two can
be approached in a formally analogous way to the higher codimensions,
with just other calculations entering. An important feature is a compar­
ison theorem between homology surgery groups ~nd conventional ones,
which leads to qualitatively different results in odd and even dimensions.
(See [CS8] for a survey of some of this work. It would be useful for some­
one to write a more modern survey of this approach to codimension two
phenomena.)

Yet more recently, Ie Dimet [10] has shown that it is convenient to
weaken further the notion of Poincare embedding for codimension two
problems (or more precisely, lump many Poincare embeddings together
and classify them homotopy theoretically). An important application of
this idea to link theory is given in [CO]. (See also [GiL].)

I believe that these ideas can be incorporated into the general frame­
work of this book, at least in the PL case. (Cappell and Ire-proved
the nonlocally flat embedding theorem of [CS4] using ideas similar to
those used for the replacement theorems in chapter 13.) The topological
nonlocally flat theory seems harder in that controlled homology surgery
must be developed, and there are certainly some new wrinkles. (Ferry
and I have some tentative results for the odd dimensional case.) Le
Dimet's idea can also probably be adapted to the more general homo­
topical framework of Poincare stratified homotopy types. Whether or not
this can be done efficiently and fruitfully is yet to be seen and seems to
present a nice group of problems.



12 Supernormal Spaces and Varieties

In this chapter we will give a more substantial application of the theory
of the previous chapters to some special classes of stratified spaces. We
will assume that the spaces are supernormal, Le. that the local holinks
of all strata are simply connected and, for the more global results, in
addition, that the space has only even codimensional strata. Algebraic
varieties over C are important examples of spaces all of whose strata are
even dimensional. It turns out that for these spaces one has a very close
analogue of surgery theory for manifolds. Also, intersection homology
fits into the picture very nicely, and we will be able to distinguish some
spaces that very closely resemble varieties from varieties.

I would like to point out that most of the main results of this chapter
are joint work with Sylvain Cappell and preceded the general theory. (It
might therefore not be such a surprise that they fall out so easily from
the general theory!) Many of the remaining results are due to the author,
Cappell, and Julius Shaneson in various combinations.

12.1. Supernormal spaces

DEFINITION. A manifold stratified space is supernormal if all the local
holinks (see 5.1) ofeach stratum in all higher strata (i.e. Xi c Xi U Xi) are
simply connected.

This terminology is suggested by familiar definitions in algebraic ge­
ometry. One can always normalize a variety to obtain a normal one,
which has the property that the link of each simplex in the singular set
is connected. One can elaborate this to make higher connectivity as- 0

sumptions. Sometimes one can deduce super(duper) normality from a
codimensional assumption for a singular variety; see the "theorems of !

Barth type" [Full, GM2].

THEOREM ([CW2]). If X is an n-dimensional supernormal space, n ~ 5,
with singularities S, then S(X, S) ~ fiber Hn(X; L(e» ~ Ln(JftX). In
other words, the rei S structure set is given by the same homological descrip­
tion as for manifolds.

This is because the rei S sheaves are just L(e). Note also that one only
needs the simple connectivity of the holinks in the top stratum.
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I would like to sketch an example from our original paper that means
a lot to me.

EXAMPLE. If M and N are simply connected manifolds, the join M *N
is a supernormal space. There is a fibration

We know how to calculate all the terms but the middle. However, there
is a section to this fibration, given by joining! Thus one has

S(M*N) ~ S(M*NrelMUN) x S(M) x S(N).

This is quite odd from the stratified point of view (6.1 and 6.2). The
L-spectra around the singular components depend strongly on the ho­
motopy types of M and N. This collapse of the fibration is an example
of an important principle: 1\ivial constructions in some special situa­
tions give rise to difficult calculations of the surgery sequence. (If one
is very lucky, these calculations can then be applied to other situations
where the "trivial construction" is unavailable.) In our case, joining is a
construction that the general stratified theory finds hard to assimilate.
If the signature of M and/or N are/is 1, then this collapse is related to
Siebenmann periodicity (3.4). If the signatures are otherwise, then this
is a sort of periodicity with coefficients.

If M and N are complex projective spaces, then the structures on
the quotient are the isovariant (see 13.1) structures on the linear action
of Sl on cpn. This calculation, by a much more awkward method, was
one of the main results of the 1987 CBMS lectures on group actions on
manifolds ([CW1]).

EXERCISE ([CW1]). What relationships are there between the splitting
invariants of the fixed sets, the normal representations (i.e. the local
holinks of the quotient) at the various components, and the invariants of
the ambient homotopy cpn? (See 4.1 for splitting invariants of homotopy
cpn,s.)

In particular, there are examples of locally linear SI actions on fake
cpn's with exotic Pontrjagin classes. A well-known, much studied conjec­
ture of Petrie [Pel] asserts that this cannot happen in the smooth case.
'rhese locally linear examples were first constructed in [CW3] as an ap­
plication of the geometric construction of Siebenmann periodicity (see
also 11.3). By Petrie's work, none of these are smoothable.
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12.2. Intersection homology ,~
.~

t/

Homology is, of course, the homology of the chain complex built up .'1

out of all chains on a pseudomanifold1 X. If one only allows chains that }
are transverse to the singular set, i.e. that intersect any stratum of the '~

singular set in a subset of the codimension of that stratum, then one ob- ~

tains a complex that computes (according to an old theorem of McCrory) i
the cohomology (in the dual dimension) of X. In a manifold, there is no
difficulty in moving all chains to be transverse, and the identification of
these groups is Poincare duality.

The failure, then, of Poincare duality is related to the difficulty in
making chains transverse to the stratification. Goresky and MacPher­
son [GMI, pt. I] had the bold idea of introducing many more homol- 0

ogy groups, based on different perversities, Le. failures of transversal­
ity. These groups interpolate between homology and cohomology. The
groups in complementary dimensions with opposite perversities are dual
as a type of Poincare duality that is true for all pseudomanifolds.

More precisely, a perversity is a nondecreasing function p : 2, 3, ... ,
n ~ N such that p(2) = 0 and p(n+l) ::s p(n)+l. There are two extreme
perversities: the zero perversity, O(c) ~ 0; and the total perversity, t(c) =
c - 2. Perversities m and n are dual if m + n = t.

A k-chain will be said to be p-transverse if its intersection with the
codimension c stratum of X has dimension ::s k - c + p(c) (and similarly
for its algebraic2 boundary). Closed k-chains modulo boundaries as usual
form a homology group, denoted I HP(X).

THEOREM ([GMl, pt. I]). I H(X) is a topological invariant, independent
of the choice of stratification. If we take field coefficients, iF, then the in­
tersection homology groups in dual dimensions with dual perversities are
paired perfectly by taking intersections of chains.

More explicitly, chains of complementary dimensions with comple­
mentary perversities can be isotoped slightly to intersect3 in a finite
number of points, whose sum with sign e IF is well defined, yielding a
pairing I Ht ® I ~q --+ IF when k + I = n, p + q = t. Furthermore, this
gives an isomorphism I H{ ~ Hom(IH(, IF).

For many spaces, it is unnecessary to give all values of the perversity.
After all, if there is no codimension c stratum present, then p(c) is irrel-

1A pseudomanifold is a polyhedron with codimension two singularities whose comple­
ment is a dense open set.

2The fact that we use algebraic boundary leads to a lack of identification of Ie ( ; R)
with IC( ) ® R, so that, in general, one does not have a universal coefficient sequence in
I H. See [OS] for cases when the sequence is valid for more subtle reasons.

3More generally, one can intersect chains of different perversities to obtain a chain of
the right codimension with coefficients in the sum of the perversities (assuming this is a
perversity).
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evant. For instance, if X has only even codimensional strata, then if we
consider the two middle perversities m and n, m = {O,O, 1, 1,2,2, ...),
n = to, 1, 1,2,2,3, ...}, then I Hm(X) = I Hn(X).

COROLLARY. If X has only even codimensional strata, then the middle
intersection homology groups (with 0= coefficients) have a "Poincare" self­
duality.

If we write an intersection homology group without specifying its per­
versity, then we will always mean with middle perversity.

REMARK. It is not true that any X with even codimensional singularities
has a 7L self-duality. The case of isolated singularities is instructive (for
seeing this as well as many other things about I H). Below some dimen­
sion (determined by the perversity), chains and their boundaries are not
allowed to touch the singular points, so that the homology is ordinary
homology (with compact supports) of the complement. In high dimen­
sions (again determined by the perversity), everything will be allowed
through the singular points, so that one obtains the ordinary homology
of the space = locally finite homology (= rei ahomology) of the (closed)
complement of the singularities. In the critical dimension, one has chains
in the complement with coboundaries allowed to extend through the sin­
gular set, which can be described as the image of an ordinary group into
a relative one.

Also, it is very useful to extend, following Siegel [Sg] and Cheeger
[Chel,2], to a larger class of spaces, the Witt spaces. One allows there
to be some odd codimensional strata but demands that their middle
dimensional middle perversity I H vanish. If you think about it, you'll
see that the open cone on such a space (thought of as having an isolated
singularity of a new type) satisfies Poincare duality, so that these are the
I H analogues of homology manifolds in the usual theory: they are the
spaces which have self~duality for a local reason.

rrHEOREM ([8g, Che2, Gml, pt. II]). Witt spaces have self-dual I H.

Isomorphic (or, better, dual) cohomology groups were discovered en­
tirely independently at around the same time by Cheeger [Chel,2] in the
course of other, more analytic invest~gations. Sullivan, having spoken to
hoth sets of workers and heard that they had discovered groups that sat­
isfy self-duality for spaces with even codimensional strata, immediately
conjectured that the groups are the same; a proof of this appears in
IUMl, pt. II] as a consequence of verifying that both satisfy a certain
characterizing set of axioms.

I will be brief with my description of Cheeger's work since I have noth­
ing to add to his papers. He considers spaces which have locally conical



metrics.4 For an isolated point this means that the metric looks like the
metric one would put on a Euclidean cone. Then for a product of such a
cone with a manifold, one uses the product metric. All pseudomanifolds
are built up out of these.

Then he considers the L 2 DeRham complex on the incomplete mani­
fold X - S, where S is the singular set. Happily, there is a Hodge decom­
position for Witt spaces given such a metric, and the *-operator induces
the Poincare duality ([Chel]). An immediate consequence of this is:

THEOREM ([Che2]; KUNNETH FORMULA). If X and Yare Witt spaces,
then I H(X x Y) ~ I H(X) (jJ) I H(Y).

where the sum is taken over all ~ of dimension n - 4k. One way to
prove this is to observe that this formula is correct for n = 4k. This is
the content of an Atiyah-Patodi-Singer formula. Then one observes that
this expression behaves correctly with respect to taking products with
lRi and to taking open subsets. The method of Thorn-Milnor (see [MS])
for defining L-classes then shows that the L-class agrees with any other
definition.

Once we have gotten to this point, we can define the expression
E 1](link (~»~ for any Witt space and see that it's independent of
choices of metries and the like. Alternatively, and this is done in [GMl,
pte I], one can follow the °Thom-Milnor approach directly using I H sig­
nature, its cobordism invariance, and a little transversality to define L­
classes for Witt spaces. And, of course, the results agree.

Now, I shall tum to the "Deligne construction" [GMl, pt. II]. It is
defined sheaf theoretically and therefore has the advantage of being de­
finable, for instance, in characteristic p. One needs only a few formal
operations on sheaves and a decent stratification theory to define it.

In addition to its theoretical advantages, it is also incredibly useful for
formal manipulations and calculations. We shall be using this approach
below.

L n-4k = E l1(link (~»d
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It would be a real challenge to prove this from the combinatorial point :j
of view. (An axiomatic treatment is given in [GMl, pt. II].) l

Furthermore, there is a version of the Atiyah-Patodi-Singer [APS] .~
index theorem; see [CheZ]. The main application that Cheeger gives to o.~

his ideas is a local formula for L-classes.5 In terms of putting piecewise :j
flat metrics on the simplices of X one gets a formula }

J
'~1
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o~
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40ne of the remarkable new emphases suggested by his work was to focus attention
on what happens for other classes of metrics. This issue is at the core of many important
phenomena; see e.g. [COM, SS, Lo].

SIn certain cases, [eSS] extends the sheaf-theoretic approach to give local formulae for
characteristic classes.
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In [GM1, pt. II] sheaf-theoretic ideas are applied to proving the Kun­
neth formula and a Lefshetz hyperplane section theorem for singular
varieties. In [OS] the Deligne construction is used for describing when
integral Poincare duality holds and for analyzing the universal coeffi­
cient theorem. Also, I cannot imagine how the proofs of the formulae in
[CS5,6] would go without the formalism of the derived category.

Before explaining Deligne's construction and how this leads to a proof
of duality, I must describe the derived category, its various derived func­
tors and pushforwards, and Verdier duality. Useful references are [GMl,
pt. II, Bo, Iv]. For us, all sheaves are henceforth assumed to be con­
structible (Le. locally cohomologically constant with respect to some
stratification).

Two bounded complexes of sheaves C and D are equivalent in the
derived category if there is a third complex E with maps C ~ E ~ D
which are quasi isomorphisms, Le., which induce homotopy equivalences
on every stalk. A morphism in the derived category is represented by a
morphism of complexes of sheaves up to a quasi isomorphism. In the
derived category, one replaces complexes of sheaves by injective reso­
lutions, so that the homological algebra becomes nicer. The topologist
might find it useful to think about the analogous homotopy category of
spaces over X (without control, i.e. morphisms must strictly commute
with the map to' X).

Verdier introduced an interesting complex of sheaves Dx, called the
dualizing complex, with the property that its stalk cohomology at x is the
local cohomology of X at x, Hi (X, X - x). (In fact, Dx is equivalent to
the local singular chain complex; for an open U we get Cp(X, X - U).)
Global cohomology of X with coefficients in the dualizing complex is
ordinary homology. Geometrically, this is dual to the fact we started
this section with: homology defined using transverse chains is cohomol­
ogy. Dualizing is closely related to local Spanier-Whitehead duality and
defining homology as the cohomology of the Spanier-Whitehead dual. If
Ii is in the derived category, we define DE = RHom (E : Dx ) and it is
called the dual of ~.

We can define some interesting functors between different derived
categories on different spaces associated to a map. If f : X ~ Y is a con­
linuous function, then there are at least the following induced maps on
derived categories. We can take the c;lerived functors of pushforward and
pullback Rf;c and Rf*, and we can take the analogous proper analogues
1(/i and Rf!. These latter have nice descriptions in terms of dualizing:
Il.l! = DRf;cD. For proper maps, Rf* = Rf! and for closed inclusions
R.I~ = Rfi., but in general these notions disagree. Verdier duality asserts
Ihat

R.I~RHom(d,R.l!!1) ~ RHom(R.I!A., 11).
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Verdier duality implies that the induced pairing of hypercohomology q~

groups Hi(A) ® H-il(DA) -+ HO(Dx) -+ IF is perfect. 'ij
It is quite feasible to do homological algebra in the derived category; ,~:

?~

indeed it is built for that. The reader should realize that it is not an ,I"

abelian category, so that one cannot take kernels and cokernels. What :]
replaces this is the distinguished triangle. It is the obvious extension of 1
the situation one gets by considering a mapping cone, where one gets in ~~~

addition to the usual degree zero maps of complexes a degree one map ,~l
-.!.l,from the cone to the domain of the map. ',i~

The final ingredient in the construction is the collection of truncations:1
of complexes. {~

~
••I~

I,I
There is a similar definition for cotrun~ation. Furthermore, one c~n trun- :1
cate over a closed subset by sheafificatlon of the result of truncating only ~i

on the op~n sets that touch the closed set. All of these constructions pass:~
to the derived category. ;~

'THEoREM ([GMl, pt. II)). Let X be a stratified space and let Uk = X - Xk]
be a filtration by open sets, and ik the inclusion Uk -+ Uk+l. Let j~

';~
'.~i

P = T~p(n)-n Rin* ... T~p(2)-nRiz·Fx-s[n). 1
The final [n) is a shift by n. Then P is quasi-isomorphic to ICP(}{). {~

;:~

The proof, in the spirit of Eilenberg and Steenrod, is axiomatic. There ;~
are various axiomatizations of intersection homology with the following .:~~~
ingredients: constructibility, normalization (IF on the nonsingular part,),~

i.e. the analogue of the dimension axiom), a lower bound axiom for the :~~

vanishing of homology, and an upper bound axiom. One also has some ..~
choice. One can assume an attaching axiom that tells how the pieces are:l
connected. Alternatively, one can use support and cosupport conditions i1.
restricting the dimensions of pieces with high dimensional local homology .lJ.

I~~

and cohomology. For the purposes of these notes we do not need any J
specific characterization, so I will not quote any. ':~

From this point of view Kunneth becomes quite easy; one simply veri- :~~~
ties the axioms for the Ie(X) ® Ie(Y). This is typical of the way in which .:~

the abstract uniqueness theorem for I H becomes a powerful computa- :'
tional tool.

I will not explain how one proves these uniqueness theorems in detail.
Roughly speaking, one does obstruction theory in the derived category.
The basic lemma for producing maps is the following:
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LEMMA ([GM1, pte II]). Suppose that a : A. ~ C and fJ : B ~ ~ are
morphisms in the derived category, that Hi (4) = 0 for i 2:: k + 1, and that
fJ is a cohomology isomorphism for i :::; k; then a has a unique lift A~ B.

The proof is not that hard and resembles in an algebraic language the
proof of the analogous results for extending maps between spaces with
low dimensional cofibers to spaces with highly connected fibers.

The duality of I H P and I Hq is now deduced by verifying the q axioms
for the dual of IeP•

12.3. Characteristic classes of self-dual sheaves

The sheaf-theoretic construction of the Poincare duality in I H em­
phasizes the significance of self-duality of I H on the sheaf level. I would
like to continue the development by explaining how to associate a char­
acteristic class to any self-dual sheaf, so that the L-classes obtained via
the Cheeger-Goresky-MacPherson procedures are equal to the Pontrja­
gin character of a K-homology class associated to the IC sheaf. In an
appendix we will find some further applications of this additional gener­
ality.

The idea of this section is joint work with Cappell and Shaneson
ICSWl (restricted to the case of trivial group). Although I will be working
with fields throughout, if one assumes a torsion-freeness condition as in
IGS] one can work over more general rings. These results apply equally
well to equivariant situations and so will be of some use in the following
chapter.

I )EFINITION. A sheaf E on X is self-dual if the following data exist: A quasi
isomorphism cp : E ~ D E, a homotopy from cp to Dlp (identifying D DE
with E), a homotopy of this homotopy to its dual, etc.

H.EMARK. If the field IF has characteristic ¥= 2, then one just needs a
homotopy from cp to Dlp.

PROPOSITION. If X is a Witt space, then IC(X) is self-dual.

The higher coherencies are produced using the obstruction theory
lemma from the previous section.

I)ROPOSITION. There is a functor from self-dual f sheaves on X ---+ con­
InJlled visible algebraic Poincare IF complexes on X

We will not go through the necessary visible theory here; see [Ws].
I f we invert 2, we can use the pairing L *(IF) ® L*(Z) ~ L*(IF) and the
quadratic theory we discussed in chapter 9. In the PLease one can use
Iransversality and the methods of 2.5 and its appendices.
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COROLLARY. One can associate a symmetric signature of a Witt space in .~~
L*(F.1r). It has all of the usual cobordism invariance properties.

COROLLARY.

nWitt (2) ® 7L [1/2] ~ K O(Z) ® Z [1/2].

Q~itt(Z) ® Z(2) ~ Hn(Z; 12:)(2) $ J{,·(Z; Ln-i(O) ® 12:(2»

);,;
'J.

COROLLARY. We can associate to any self-dual sheaf on X a characteristic j
class in H*(X; VL*-OO(IF». For IC(X) this hits the class of the previous .(1

corollary under assembly. t.l
.'~~

This enables one to redo many of the arguments of manifold theory ~
for Witt spaces (away from 2 and for Goresky-Siegel spaces even at 2). :i~
For some first steps in this direction, see [Cu]. As another corollary one ,~~~~

sees that these characteristic classes are topological invariants. 'ff:
"al
-Jj;

12.3.A. Applications of Witt spaces .~~

The Witt spaces that have been introduced as the I H homology man- ~
'.,l}

ifolds also have some remarkable applications to the parts of topology .~

that involve the signature operator (which is a large chunk).6 ,:~{
·.~:1One should start with the first theorem of this sort: :~

:~;

,~:

THEOREM (SIEGEL [SG]). The map sign : Q~itt ---+ L *(0) is an isomor- I~

phism (above dimension zero). I~,
.~~

;~
"1
~
"K
.~ ~

;f
where the sum of the right is taken over i < n. ~

~

The corollary follows from the methods of 2.5 and 2.5.A. Siegel's proof :~i
of the theorem is beautifully geometric. :~

Recently Goresky and Pardon lap] have computed additional bordism;~~
of interesting singular spaces. Pardon [Pa] has shown that the bordism :~

of the spaces introduced in [OS] defines L*(Z)-homology. These results .~
have a useful consequence: ;~

COROlLARY ([RSW4]). There is a natural transformation;i

:9ffi Hn-4i(X; 12:(2» ~ Kn(X) ® 7L(2) 1
Ii
J

such that if X is a manifold there is a natural refinement of the class of the I
signature operator to homology at 2. i

61 hate to suggest this, but it might require another book to do this topic justice.
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In that paper, Rosenberg and I also identify the preimage in terms
of the characteristic class of topological manifolds introduced in [MoS].
This class enters in proper integral forms of the Novikov conjecture (see
4.6.A). This also requires the identification of the class of the signature
operator with what is produced by PL techniques..

Cappell and I noticed that one can apply this cobordism result to
re-prove, without serious analysis, the disproof of the integral Hodge
conjecture given in [AtHl]. From the fact that algebraic varieties are
Witt, one sees:7

COROLLARY. Any algebraic cycle in H*(Z; 7L [1/2]) comes from K 0(2) ®
7L [1/2].

You should look at the original paper to see how this restricts coho­
mology operations on algebraic cycles and how to construct the coun­
terexample varieties and classes from this criterion. The [AtHl] result
at 2 is an immediate consequence of resolution of singularities and the
results in [Th]. In fact, one sees that for any algebraic cycle, any Steenrod
operation Sq/ with any odd index vanishes (e.g. anything like Sq9 and
Sq3 Sq2 must vanish). See [FuI2] for more information.

There have been some additional applications of this cobordism calcu­
lation to do interesting calculations of signatures and peripheral invari­
ants. One of the nicest is in the paper [Sg]. Using the "pinch cobordism"
he proves Novikov additivity for the signature of the union of two mani­
folds along a boundary component. (The pinch cobordism is obtained by
taking the mapping cylinder of the collapse map collapsing the boundary
component to a point, and adding a collar to the target; see fig. 19.)
A more complicated version gives the formula for the deviation from
additivity when one glues along a piece of boundary.

THEOREM ([WEI6]). The invariant 'fJp(M) associated to an odd dimen­
sional manifold and a unitary representation p : n: --+ U(n) by lAPS] (see
also 4. ZA) is a homotopy invariant for any group n: satisfying the Borel
conjecture (rationally) or its C*-algebra K-theory analogue.

See 4.6.A for the Borel conjecture. The free abelian cases and, more
generally, the case of the Cappell-Waldhausen class are verified in that
appendix. Farrell and Jones have recently announced that it holds for
at least all lattices in connected real Lie groups. For more information
and applications of this theorem see (Wei6]. In the exercises in 4.7.A we
have already seen that for familiar groups with torsion this invariant is
not a homotopy invariant. However, I recently combined the following

7For this argument one does not need an isomorphism of Witt bordism to K..theory,
.i ust the existence of a map related to signature.

~In this case Neumann [Neu] has given not only a proof of this theorem but also a
homotopy invariant formul<l for the invariant.
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Figure 19.

argument with work of Farber and Levine to show that for homotopy
equivalent manifolds M, M', 'YJp(M) - 'YJp(M') is rational.

The argument goes like this. The Novikov conjecture asserts that for
homotopy equivalent manifolds the higher signatures agree, and there­
fore homotopy equivalent manifolds are Witt cobordant (rationally).
By [APS], extended by Cheeger [Che2] to Witt spaces, the difference
'YJp(M') - Yjp(M) = signp(X) where X is this cobordism. By Novikov
additivity, this signature does not change if we glue the ends together
by the homotopy equivalence to obtain a closed object. This is a bad
object since it now has codimension one singularities. Nonetheless, if
we use the ordinary constant sheaf away from the old singularities and
the Deligne sheaf at those, we obtain a closed Cll' Poincare complex.
According to (C*-algebra K-theory) Borel, the (signature of the)
underlying algebraic Poincare complex is cobordant (rationally) to one
coming from a smooth closed manifold. For these, the Atiyah-Singer
theorem gives the vanishing of signp.

REMARK. The method of this example applies as well to other secondary
(peripheral) invariants.

EXERCISE. Show that the same argument can be made for rational equiv­
alences. Deduce a vanishing theorem (for certain fundamental groups)
for 'YJp(M) if M supports a free action of a finite group such that M ~

M / G splits on fundamental groups, and the action of G on twisted ho­
mology is trivial.

EXERCISE. Show that all of the above results hold true for Witt spaces
and homotopy transverse maps.

EXERCISE. Using the Goresky-Siegel structure on cCpodd show that if
M and M' are homotopy equivalent and E ---+ M is a block fibration
with Cpodd as fiber, then the map E ---+ M' is also homotopic to a block
fibration. (See also 3.3, 4.4, and 13.4.)
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EXERCISE (1) ([GMl, pt. II]). Show that if f : X ~ Y is a small reso­
lution of singularities, which means, by definition, that for each r, codim
{yl dim f-l(y) ~ r} ~ 2r + 1, then I H(X) ~ I H(Y). (Hint: Prove that
Rf*IC(X) ~ IC(Y).)

(2) (Cappell, Shaneson, and Weinberger) Show that AL(X) = L(Y)
(and similarly for Sullivan classes). In particular, a variety with a small
resolution has L-class in the image of intersection homology.

REMARK. In 12.4.A we will extend this final exercise to restrict L-classes
of arbitrary singular varieties.

12.4. Spaces with only even codimensional strata

Now let's apply the general theory to supernormal spaces with only
even codimensional strata.9 We have the following result:

PROPOSITION (SEE [CW2]). If X is a supernormal space with only even
codimensional strata, then LBQ(X) @ Z [1/2] ~ Ef) L(Z.1fl (Xi» ® 7L [1/2].
Furthermore, the same is true on the sheaf level.

Note that supernormality implies that 1ft (Xi) ~ 1ft (Xi). The previous
section produces a map LBQ(X) ~ L(Q1fl (X». Remember that L(Q1l')®
7L [1/2] ~ L (~1l') ® 7L [1/2]. Thus we get a map L BQ(X) ® 7l. [1/2] ~
L(7LJrl (X» ® 7L [1/2]. By restriction we get a map into the right-hand
sum. Now, thinking about how LBQ(X) is built up out of the L(7l.1rl (Xi»
makes the result clear.

EXERCISE. Verify that Wh Top ~ Ef) Wh(Xj ).

COROLlARY ([CW2]). Away from the prime 2, if X is a supernormal space
with only even codimensional strata, then

S(X) ® 7L [1/2] ~ Ef)[fiber H(Xj ; L(e» ~ L(iln:l (Xj»] ® 7L [1/2].

This means that one can vary the L-classes (or the l1-class in K 0 [1/2]) of
such spaces at will only subject to the condition that these give rise to the
.\ymmetric signature after assembly, just as for manifolds.

One also can then phrase analogues of the Novikov conjecture for
stratified homotopy equivalences, and the like.

REMARK. The proposition in this section shows that the universal char­
acteristic class explained in chapter 6 (both sections) just reduces to the
direct sum of standard l1-classes for the various closed strata.

() Actually, we could work with Witt spaces all of whose strata are Witt, or work relative
to strata that arc not.
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We also see that for some of the joins of the projective spaces consid­
ered in 12.1 (when both projective spaces are odd complex dimensional)
the classification is in terms of a priori invariants, since these are super...
normal Goresky-Siegel spaces. It still is a little mysterious to interpret
the surgery theory of that example in the more general case, since the
links have nonvanishing signatures, so that it seems to take a stratified
homotopy equivalence to define the characteristic classes involved.

12.4.A. The BBDG decomposition theorem and its application
to characteristic classes of singular varieties

In this appendix, I will try to describe some implications of algebraic
structure for the characteristic classes considered in the previous sections.
I believe that we are just seeing the tip of the iceberg, so I will be content
with just indicating the direction.

We have seen that intersection homology has for certain nonmanifolds
such as varieties many of the same properties that ordinary homology has
for manifolds. In addition to Poincare duality, we have added the tools
of surgery theory and indices of the signature operator.

It is not all that (conceptually) difficult to add to the list the Lefshetz
hyperplane section theorem. In [GM1, pt. II] a proof is given by the
sheaf-theoretic techniques, and in [GM2] a proof is given by a stratified
extension of Morse theory and the argument given in [Mi8].

The consequences of Hodge theory have proven more resistant. Hard
Lefshetz is due to A. Beilinson, J. Bernstein, ~ Deligne, and o. Gabber
and appears in [BBD]; Hodge structure, first conjectured in [CGM] was
proven by M. Saito [Sail by D-module techniques.

The method in [BBD] is via an analysis of the category of algebraically
constructible perverse sheaves (these are constructible sheaves that have
slightly worse connectivity and coconnectivity properties than the inter­
section chain sheaves) and a comparison with characteristic p. Their 'I

theory has many more remarkable consequences for the topology of al­
gebraic maps. (See [GM3] for some of these: collapse of spectral se­
quences, generalized invariant cycle theorems...) Their main result is a
decomposition theorem for perverse sheaves:

THEOREM ([BBD]).
a) The category of perverse sheaves on X is an artinian abelian cate­

gory whose simple objects are the complexes I C(V; L) where V is an
iITeducible subvariety of X and L is an irreducible local system on V.

b) One has all ofthe usualpushforward and! maps defined for algebraic
maps.

c) RhIC(X) is actually a sum of simple objects.
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Furthermore, they show that in part c the sum looks like a Hodge
decomposition to some extent. 4This "refinement" includes the hard Lef..
shetz, so there is certainly much important information that I am leaving
out.

Cappell and Shaneson [CS6] have proven a very general decomposi­
tion theorem for self-dual complexes of sheaves (under an appropriate
cobordism relation) under arbitrary stratified maps. (To contrast, [BBD]
only deals with algebraic maps.) Their theorem could be used just as
effectively for most of the following arguement. In fact the restrictions
given below on characteristic classes for algebraic varieties were first ob­
tained in that paper. The only novelty in this appendix lies in showing
how much of this follows from the formal structure of the theory together
with [BBD].

To reiterate the theorem, if W ~ X is a resolution of singularities,
then one can write

Here we are denoting all the singular strata of X by Vp and L is
some local system on V. Now combining the decomposition theorem with
resolution of singularities, one inductively sees that L(X) = L(W) + E
correction terms associated to the V's. (This is proven in [CS6] with
an explicit formula10 for the corrections.) The L(W) piece, according to
[BBD], comes from the I H*(X) piece. Therefore, we see that the L­
classes of an arbitrary variety are a sum of pieces each of which lifts to
an intersection homology group. In particular:

COROLLARY. If X is a variety, and a is the boundary of the regular neigh­
borhood of the singular set, then its L-classes pushed into H(X) lift to
IH(X).

This can be applied to all of the strata. It is asserting a kind of vanish­
ing theorem for L-classes as one approaches singularities. (Just consider
what is asserted about a when the singularity set consists of a point.)
Using the material of the previous section one can now produce polyhe­
dra with almost complex structures on their pure strata that are stratified
homotopy equivalent to varieties but are not themselves varieties.

REMARK. In [CS9] Cappell and Shaneson have described a more
algebraic-geometric version of their decomposition theorem (although
the relation between the two versions and their relation to [BBD] are
not entirely clear) and applications of this to the theory of characteristic
classes of singular varieties. This leads to a formula for Todd classes of

IOThe relation between their explicit formula and [BBD] seems somewhat unclear, at
least to me. Maybe the later work of Cappell and Shaneson mentioned at the end of the
section will shed some light on this connection.
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toric varieties. (Note that we have by now left the topologically invariant
setting of L-classes.) This, in turn, by work of Danilov, yields a formula
for the number of lattice points inside a convex polytope whose vertices
lie in the lattice. All in all, this work shows, in an extraordinary way, the
calculational feasability of computation by the "decomposition method".



13 Group Actions

Problems concerning group actions on manifolds are among the most
interesting and important in topology and are studied by a wide variety
of different techniques. In this chapter I will explain some of the ap­
plications of the ideas of this book to various sorts of topological and
P L actions. The reader will need to have read chapter 6 to understand
this chapter (although occasionally some tricks are used that have been
discussed in chapters 11 and 12).

The first section deals with basic properties of topological G-manifolds
like handlebody structures, transversality, and the like. It turns out that
these do not hold equivariantly the way they do for manifolds. As a
consequence, it is not such a good idea to try to develop the theory by
equivariant analogy with usual topology. This was, in fact, a source of
much consternation until recently. However, as we will see further in
the chapter, it is possible to get around these difficulties and still obtain
profound geometric results.

Section 2 develops an equivariant characteristic class for finite group
actions with manifold fixed sets, extending the (Sullivan orientation) class
~ that has played such a fundamental role in, say, 2.5.A and in the
previous chapter. It calculates the relevant cosheaf homology for us, away
from the prime 2.

This class was first constructed for odd order group actions by Mad­
sen and Rothenberg [MR] as a consequence of equivariant transversality,
more or less along the lines of Sullivan's original P L construction. Be­
cause of the failure of transversality for even order groups, it was neces­
sary to develop different techniques. Rothenberg and I [RtW] extended
the class to arbitrary compact Lie groups acting locally linearly by produc­
ing stable Lipshitz structures and appealing to the work of Teleman [Tel.
(See also [Rosl, RsW3] for the necessary analysis.) Subsequently, Cap­
pell, Shaneson, and I have given a purely topological approach [CSW]
that works for all finite groups and applies as well to group actions on
Witt spaces. The approach I will take here mediates between these latter
two approaches.

I will also describe in section 2 what is known about equivariant
Siebenmann periodicity. This topic falls between equivariant and strat­
ified views of the sub.iect of group actions. For this reason, it is also a
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13.1. Remarks on the foundational theorems of manifolds

useful technical device for solving problems of one sort by the methods
of the other.. (13.6 gives an example of this.).

The next section explains what we can say about compact Lie groups. It
turns out that for actions that are locally free, i.e. that have finite isotropy,
the analogue of ~ plays exactly the same role in classification, and we
have a nice theory. If some points have positive dimensional isotropy,
it is clear that different phenomena occur and examples of this will be ,r.

studied in both this section and section 6. Hopefully, a new paradigm that ~
shifts away from equivariant K-theory will develop by thinking through '~~

the theory in this case. '~
,~Section 4 specializes the previous material to the "nonlinear similarity :.,

problem". This is the question of when two linear representations are
topologically conjugate. Much is known about this question, but it has not
been completely resolved. I will not prove the state of the art theorems
but will just show how some of the main results of the subject arise from
our point of view. (An interesting exercise or problem would be to prove
the results of [CSS~ CSSWWl,2] from the point of view of this book.)

Sections 5 and 6 study in a little more detail questions about fixed
sets of group actions that resemble some standard given ones. We prove
theorems that enable one to modify the fixed sets to be related manifolds,
or to obtain nonmanifolds as fixed sets. These are subjects with long
involved histories, but I should mention the early work of L. Jones here
in this introduction; he studied these problems in the case of actions on
the disk in an acutely insightful way (at least implicitly using a number ;:
of techniques that were completely elucidated only much later). .!'

't

I also should say that many of the results presented in this chapter are ,~

not the last word on the problems they confront; there are often extra ,~
·l1

hypotheses that need removing. These often concern fundamental group :i
r

;

restriction, parity of group order, finiteness of groups, etc. :~i

We delay discussion of the equivariant Novikov conjecture and related
rigidity phenomena to the next chapter. However, a "higher G-signature
theorem" is presented in the exercises in 13.2. More detailed histories
will appear in the sections that discuss the individual problems.

~
~:j
";J

Of,::

'.~
~

.~

~
:1
.~

~.

As I stated before, the early theory of G-manifolds was developed from ",
the point of view that all manifold notions should have G-analogues. '
The two most serious problems stemmed from the failure of there to
be G-handlebody structures (which interfered with the analysis of h­
cobordisms) and the failure of G-transversality (which made cobordism
calculations of all sorts impossible). Although interesting, the results of
this section will not be used in any of the later sections.
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These problems were, for the most part, systematically analyzed by
Steinberger and West and Quinn and by Madsen and Rothenberg re­
spectively. I should mention that these authors work in the locally linear
topological category. This means that each orbit has a smooth equivariant
neighborhood. (Thus, for instance, arbitrary free actions on topological
manifolds are automatically locally linear: the manifold structure gives
appropriate coordinate charts.)

EXERCISE. Prove that a manifold stratified action (i.e. an action where
all fixed sets are locally flat submanifolds), abbreviated MS, is locally
linear iff it is locally linear at some point in each component of each
pure stratum.

Therefore, we view the issue of local linearity as something artificial
to demand in a construction. If one is interested in it, one checks it at
the very end.1

The issues about handlebodies are most easily understood. The diffi­
culty stems from the fact that we are in a manifold stratified category, not
a PT category. Nonuniqueness of handlebody structures arises from PL
nontrivial h-cobordisms that are topologically products (e.g. 5.1). Very
natural examples of the failure of uniqueness occur in the nonlinear sim­
ilarity problem. DeRham had shown that PL conjugate representation
spheres are linearly conjugate (see [Rot, Luckl] for modern versions).
However, Cappell and Shaneson gave examples that show that differ­
ent representation spheres can be homeomorphic (see [CS3,7] and 13.4
below).

Here is a very simple example of a locally linear G-manifold with no
equivariant handle decomposition:

EXAMPLE. Suppose that G acts on IRn semifreely2 and smoothly so that
its fixed set is a punctured manifold, whose complement has a finitely
dominated quotient with nontrivial Wall finiteness obstruction (1.1). We
will produce such shortly using the material from 4.5. Then one point
compactify to produce an MS action.

If this did have an equivariant handle decomposition, one could fit
the pieces containing parts of the fixed set together and thus produce
an equivariant closed complement. The quotient would then have the
homotopy type of a finite complex since it would be homotopy equivalent

)This is parallel to our point ofview on using homology manifolds with nontrivial resolu­
tion obstruction for doing manifold classification. The "right" thing to do in the equivariant
setting is to deal with homology-manifold stratified actions and check (manifoldness and)
I<leal linearity at the very end, if one is interested in these features.

2Recall that a group action is semifree if each point is fixed either by the whole group
(lr .iust by the identity element.
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to a compact manifold (the quotient of the closed complement), which
violates our assumption on the Wall finiteness obstruction.

Now to produce the action. Start with your favorite submanifold of sn
which is a mod 2 homology sphere for which the Swan obstruction (4.5)
is nonzero for, say, Q8 (the quatemion group of order eight). It is more
elementary to perform this construction with a submanifold with trivial
normal bundle; using a lens space we can arrange for the normal bundle
to be trivial but for the Swan obstruction to not be so. The trivial normal
bundle allows one to build a semifree action on a neighborhood of the
submanifold. Let's puncture the submanifold and try to extend to the
complement in IRn. If we remove an open disk and try to do this PL, we
run into the Wall obstruction, as in 4.5. By puncturing, we don't, because
we can do a proper surgery version of the argument in 4.5 to produce
the extension.

REMARK. In 13.6 we will remove the condition of triviality of the normal
bundle.

The question of whether or not a locally linear G-manifold has an
equivariant handle structure has a very nice answer:

THEOREM (STEINBERGER-WEST [STW]). If M is a locally linear G­
manifold, there is an obstruction in Ho(M/G; KgQ) which vanishes iff M
has an equivariant handle structure.

Steinberger and West write their answer in a form that makes the
equivariant nature of the obstruction clearer, but I will leave it as I've
stated it. This oQstruction is just the obstruction to controlled finiteness.
The proof of this uses the same ingredients as the proof of equivariant
h-cobordism [St, 03].

The issue of transversality is more complicated. One must be careful
about what one means. (See [Pe2, CoW].) We cannot make a map from
M ---+ IR transverse to the origin if M has a trivial action and IR has the
flip 7L2 action. However, in the smooth category, if the domain has a very
large equivariant tangent bundle in comparison to the range (in terms of
the dimensions of the subbundles associated to the various irreducible
representations), one can do the transversality.

THEOREM (MADSEN AND ROTHENBERG [MR]). For odd order G­
manifolds stable G-transversality holds, but for G = 7Lz it does not.

The proof for odd order groups is very long and complex. It is not so
hard to reduce the problem to analyzing the stability properties of spaces
of equivariant homeomorphisms for representations Top(V) -+ Top(V x
W). (We suggest the reader think through how smooth transversality to
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a submanifold with nontrivial normal bundle is proven.) These results of
[MR] can be obtained from the surgery results of the following section.3

I should remark that stable transversality is enough for certain applica­
tions, like reducing the calculation of normal invariants to an equivariant
cohomology theory. This is part and parcel of the [MR] approach.

The failure for G = 7Lz comes quite easily out of the work of Browder
and Livesay [BLi] (see the exercise in 4.7). Cappell and I noticed this
failure independently in [CW5]. Madsen and Rothenberg were motivated
by the observation that their perspective on nonlinear similarity related
nontrivial topological similarities between representations to failures of
stable transversality, and for cyclic groups of larger order, nonlinear sim­
ilarities had already been produced in [CS3].

EXERCISE. Fill in the details of the following argument. Use Wall real­
ization of an element of L n+2k(7LZ) that defies desuspension (4.7) on the
boundary of the regular neighborhood of the interior of a top simplex
of the fixed set of the involution on sn x D2k which is trivial on the first
factor. This will still be locally linear after coning, by an Eilenberg swin­
dle (see 5.3). This yields a new action on sn x D2k • However, show that
this cannot be made transverse to the trivial flip action on sn x IR.

ALTERNATIVE EXERCISE. Show that the forgetful map from equivari­

ant to nonequivariant block bundle theory BPi~2 ~ BPik is a Z[1/2]
equivalence for k even but not for k odd. Deduce the failure of equi­
variant stability from the validity of unequivariant stability!

13.2. Equivariant surgery for finite group actions

Before discussing the main substantive theorems, I would like to get
one thorny problem out of the way.4 A map is equivariant if it commutes
with the group action. Such maps give filtered maps of the quotient
spaces. To obtain stratified maps of the quotients, one needs isovariant
maps, i.e. maps with Gf(x) = G x for isotropy groups. The following result
relates these notions in an important special case:

PROPOSITION ([Br3]; SEE ALSO [Do]). If M and N are G-manifolds sat­
isfying the (large) gap hypothesis that dim M H 2:: 2 dim M H' + 1 whenever

3Again, I think it is an interesting exercise to re-prove all of the results of [MR] from
the point of view of this book; one discovers that a large chunk of their theory follows
formally from the machinery and ideas here, but some of their more precise results still
require the same sorts of difficult calculations that they do. The results on higher homotopy
groups of homeomorphism spaces still require the kind of geometrical analyses that they
do or, alternatively, something like the machinery of lO.3A.

4The entire discussion in this section applies, with only the slightest changes, to proper
actions of discrete groups. One must work with "proper equivariant K-homology". See [Be]
and [Phi].
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MH' C M H, M H' =F M H, then any equivariant homotopy equivalence be­
tween M and N can be equivariantly homotoped to an isovariant homotopy
equivalence; i.e. the quotient spaces are stratified homotopy equivalent.

This is rather more challenging to show than the parallel result in
embedding theory, i.e. that homotopic inclusions of low dimensional ol]

manifolds in a much higher dimensional one (large gap condition) are 1
stratified homotopy equivalent; one knows by a simple general position .~

argument that they are even isotopic! As an exercise, you should try to ::.~

prove these results by hand. If you despair, see Dovermann's paper [Do] lit.
~I

for a surgical proof of a closely related result, and then try again! .'.;.;~1.,~.io','
This result is ideologically a cornerstone to our conception of the ;I!

theory. We will not make any essential use of the equivariant category S
anywhere. All equivariant classifications that I know of can be obtained .,,~

:i~
from isovariant ones, either through this proposition or through argu- ~~

ments special to that situation (as in the results of 13.6). ,~

It is a fundamental problem to make our theory more equivariantly J
natural. For instance, are equivariant (or isovariant) structure spaces ',f.1:

equivariantly natural? Some pieces of the theory are natural, but I do not ~
;f

know if the whole theory is. (See [CWY] for our current partial result.) :~
,;

This would even have interesting computational significance. ~.~

In any case, if we, say, invert 2, the key issues surround the calcula- "~
tion of the L-cosheaves (because we will see that the surgery obstruction :~~
group always decomposes into a sum of ordinary L-groups), which we ~

';t~
do below in three steps. We decompose the cosheaves into simpler ones, i~

geometrically interpret these simpler cosheaves, and, finally, use the sig- ~

nature operator to build a morphism from these geometric versions of ~
the homology to K-theory. This morphism is an equivalence. .~

o;~

IPRoposmON. Away from 2, for G finite, there is a decomposition of the
L-cosheaf !!BQ(MjG) as a sum EI1 !!(MH / N H, reI sing) where H ranges
through the subgroups and N H is the normalizer of H in G, assuming that .~

G acts with small gaps, i.e., dim M H 2::: dim M H' +3 whenever M H' C M H, i:!~

##~ ~
:.~

In other words, the cosheaf (and the L-spectra) breaks up away from ~
2 into a sum of pieces, each of which is an L-cosheaf supported on a ··~oi.o..
closed stratum.

The proof, as in the Witt case of the previous chapter, relies on Ran- :;
icki's localization result that working rationally in the coefficient ring
does not change an L-group (or spectrum or cosheaf) away from the I

prime 2. We thus have to produce a map LBQ(MjG) ~ L(QG) natu­
rally, and the result will follow, on localization. Think of LBQ(MjG) as
being built out of (certain) equivariant surgery problems. Unfortunately
there are fixed points for various subgroups so that the chain complexes
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are only 7L free, not 71.G free, but by the time we pass to the rationals all
finitely generated modules become projective and we get a well-defined
O-surgery obstruction. It is now not hard to see that the sum of the maps
associated by restriction to each stratum with these rationalizations gives
an isomorphism ®Z[1/2] (using Ranicki and the fibrations in 6.1, 6.2).

These "simple" cosheaves were actually used in [CSW] prior to the
invention of the surgery theory to study certain analytically defined topo­
logically invariant characteristic classes5 purely topologically. Here I will
reverse the process and use surgery to interpret these cosheaf homolo­
gies geometrically and then analytically define classes which calculate the
homology.

REMARK. Recently Cappell, Yan, and I extended the calculation of equi­
variant L-groups in [LM] to the cosheaf level, showing the existence of
a similar splitting of structure sets for odd order locally linear group ac­
tions into pieces corresponding to individual strata [CWY]. These inte­
gral splittings are not compatible with the 71.[1/2] splitting just discussed!

In any case here is the result regarding these simple pieces:

THEOREM ([CSW]). There is an isomorphism Ho(M/G; !!(M/G, reI sing»)
~ Z[1/2] 7 K O~ (M) ~ 71.[1/2].

COROLLARY. One can topologically intrinsically define a class ~(M) E

K O~ (M) ® Z[1/2] associated to any ANR G-manifold. 6

This class, when M is a smooth G-manifold, is the class of the equi­
variant signature operator and can be viewed as more or less computable
by classic index theory [AS].

The corollary follows from the theorem via an identification of the
homology as controlled (as in chapter 9), visible (see [Ws]), equivariant
algebraic Poincare complexes (as in chapter 3) extending the nonequivari­
ant recognition theorem discussed in chapter 9. The class in the corollary
is associated to the equivariant self-dual sheaf on M given by the singular
chain complex of M. This corollary was first proven for odd order G in
[MR] and even order G in [RtW].7 The map that forgets control

Ho(M/G; ~(M/G, reI sing») ® Z[1/2]

~ L(Z1fl (M - singularities)/G) ® Z[1/2]

5The paper [CSW] also develops the characteristic classes more generally. The addi­
tional generality stems from the remarks on Witt spaces in 12.3 with calculation that we
redo here of the cosheaf homology.

60r, following [CSW], any G-ANR Witt space.
7[MR] show that in the locally linear setting this class is actually an orientation for

K 0(; ® Z[l /2); this is not in general true for even order groups or for odd order groups if
the action is not locally linear.
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takes the characteristic class to an equivariant symmetric signature of
M; this statement can be viewed as a (higher) G-signature theorem (see
[RsW5, CSw, RsW2,1].

EXERCISE. Verify that this is a G-signature formula when M is sim­
ply connected by using the multisignature (see 4.7) to map L(QG) -+

RO(G) ® Q. In the nonsimply connected case, show that if the action
on fundamental groups is unextended as in the exercises in 12.3.A, then
one obtains the higher index theorem of [RsW5].

EXERCISE ([RsW2]). The target of the forgetful map contains an invari­
ant that is invariant under equivariant maps that are homotopy equiva­
lences (called pseudoequivalences in [Pe2]). Use this to reduce an equi­
variant Novikov conjecture to an injectivity statement. We will discuss
this in more detail in the next chapter.

To prove the theorem, first one reduces to the construction of the nat­
ural transformation from homology to K-theory in the case where M is
a P L manifold and G acts on it by P L transformations. By crossing with
D3 and applying the Jr - 1f theorem, this homology now corresponds to
equivariant PL structures ®Z[1/2]. Now we can use [Che2] to produce
an equivariant signature operator on domain and range. To our original
homology class we assign the difference in K OG ® Z[1/2] of these sig­
nature operators. Then one checks that this element is independent of
choices.

How does one see that this map is an isomorphism?8 One has to check
that the induced map on homotopy groups is an isomorphism at the stalks
around orbits. This is basically a consequence of the G-signature formula,
the stratified structure sequence, and the calculations of KO!/(point) and
L(QH), both away from 2, for various subquotients of G.

REMARK. This construction is related to the original construction
Rothenberg and I used. We produced stably (after crossing with tori)
equivariant Lipschitz structures on M x T and then used [Te] to produce
a signature operator. The stable construction makes use of the geometric
picture of stable structures described in the proof of stable surgery in
10.2. Here we've assembled the ingredients differently. We've used the
structure of stable structures to show that there's little difference from
the PL case and then used Cheeger's rather simpler signature operator.
Along the way, we've picked up the benefit of the calculation of an
interesting controlled L-group (®Z[1/2]).

REMARK. We also have computed, inter alia, the "universal signature
class", also denoted ~, away from 2 mentioned at the end of 6.1 and 6.2.

SOne does not need this for many of the applications, e.g. to nonlinear similarity.
However, it is critical for classification results.
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It is just the direct sum of these (NHIH)-equivariant classes associated
to all of the fixed sets of all of the subgroups H C G.

Putting everything together we obtain:

EQUIVARIANT SURGERY EXACT SEQUENCE. Suppose that G is a finite
group acting orientation preservingly on a manifold M with small gaps
and with all fixed point sets locally flat submanifolds. Suppose also that all
fixed sets have dimension at least five.9 Then we have an exact sequence
for isovariant structure sets ~Z[1/2]:

... ~ EaLdimMH + 1 ( Z1rl(MH
- singularities)/(NHI H») ~ Z[1/2]

~ sG-iso (M) ~ EaKONHIH (MH) ~ Z[1/2]

-+ EaLdimMH(Z1ft (MH
- singularities)/(NHIH») ~ Z[I/2].

REMARK. For odd order groups acting locally linearly this was obtained
in an equivalent form by Madsen and Rothenberg [MR]. The homology
term was replaced by an equivariant normal invariant which was viewed,
via transversality, as maps into an equivariant version of FITop which
was computed to be a sum of equivariant BO's. The Poincare duality
needed to identify their cohomology with the homology here is given by
the fundamental class ~. If we are not locally linear or G is even order,
then there are two failures: firstly, ~ is harder to define and is in any
case not an orientation, and secondly, there is no transversality so we
cannot get a cohomological description of normal invariants. Happily,
our technique solves these two problems at one shot.

REMARK. In [CWY] the normal invariants are computed at 2 for odd
order locally linear group actions. See also [Na] for the odd order abelian
case, proven using the Madsen-Rothenberg technique. These results pro­
vide generalizations of Sullivan's calculations of unequivariant normal
invariants (2.5). For even order groups, the calculation, at the prime 2,
doesn't parallel Sullivan's.

EXERCISE. Prove the Wall desuspension theorem (4.7) by relating struc­
tures on a lens space to those on a representation space and by applying
Atiyah's proof of equivariant Bott periodicity [AI]. (Note that we are
using the signature operator, not the Dirac operator. This is responsible
for the failure of desuspension for even order groups.)

REMARK. One can extend this to arbitrary linear representations of an
odd order group and nonsemifree "suspension". In a stable range, this is
due to Madsen and Rothenberg [MR].

9As usual, one can work relative to low dimensional strata and also can handle some
four dimensional difficulties using [FrO]_
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EXERCISE ([CSW]). If G acts on an odd dimensional simply connected
manifold with simply connected fixed point sets, then analyze the surgery
exact sequence associated to the cone of M viewed as a Witt space.

PROBLE~. C~mpute the normal invariants f( \ actions that do not pre-
serve orientations. r

Note that away from the prime 2, both normal invariants via their
identification with equivariant K-theory and surgery obstruction groups
via their decomposition into L-groups of pure strata suggest that there
is a form of Siebenmann periodicity true for some nontrivial represen­
tations. (For 4 x trivial representation, this follows from the stratified
Siebenmann periodicity proven in 11.3.) The following was proven by
Min Yan:

THEOREM ([Yo]). Let G be an odd order group. If V = 4 x permutation
representation, and if M x V and M have the same isotropy structure,

SG-iso,-OO(M) ;: SG-iso,-OO(M x V),

except for at worst one 7L per cf!mponent ofpure stratum, as usual.

In particular, one can stabilize by 4 x regular representation. Ulti­
mately Yan deduces his theorem from the fact that for arbitrary G-sets,
S, crossing an equivariant surgery problem with xCp2 where one takes
the product of S copies and the action is given by permutation of coordi­
nates induces a periodicity of L-groups. (See also [DoS).) In [WY] there
is the following improvement in a special case:

THEOREM ([WY]). For G an abelian group one has a(n unstable) period­
icity for any V which is twice a complex representation:

I do not want to go into the detailed proofs here. For the second the­
orem [WY] it was necessary, for reasons related to equivariant bordism
theory, to define some new products in stratified surgery. These seem
worth exposing here:

CONSTRUCI10N (EXOTIC PRODUCTS). Suppose that X is a stratified space
and S is a closed union of strata such that S = aT is a stratified 1t: - 1t:

situation. (That is, each pure stratum of S is in the closure of exactly one
pure stratum of T - S, with the corresponding union ofpure strata actually
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a manifold with boundary of rr ~- 1f type.) Then given any Y, these data
define a product map

L(Y) ~ L(Y x (X - S) reI (0).

To see what's involved in this, realize that to most straightfoIWardly
define a product map one would need a coboundary (over its own funda­
mental group) of the holink of S. If the hoiink fibration extended over T,
then the above data would easily produce this, but we have not assumed
this.

An important example is X = Cp2, S = cpt = 82, and T = D3•

Then the associated exotic product induces L(Y) ~ L(Y X D 4 reI 8) and
is responsible for the usual Siebenmann periodicity.

It is in fact critical that S bound over its own fundamental group and
not over anything smaller, because of phenomena like nonmultiplicativ­
ity of signature in bundles [A2]. One cannot see that a signature of a
bundle vanishes just from knowing that the signature of the base is triv­
ial. Atiyah has shown that the deviation of such a vanishing statement
is a characteristic number involving the monodromy map of 7L.rr, so that
if one knew that the base bounded over its own fundamental group,
even if the bundle didn't extend, one would get vanishing (or, in general,
multiplicativity).

What is implicitly involved in these products is an extension to all sorts
of signatures, and not just for manifolds but also for stratified spaces.
Nonetheless, the proof that exotic products exist is quite direct.

EXERCISE. Using the definitions of BQ-groups in chapters 6 and 7, give
a three line construction of the exotic products.

EXERCISE (REGARDING CHARACTERISTIC NUMBERS OF BUNDLES).
Show that no characteristic numbers besides the higher signatures can
be multiplicative in arbitrary (block or fiber) bundles with connected
structural group. Show that these in fact are multiplicative, assuming
the Novikov conjecture.

(Hint: This is not so easy. The first part for block bundles uses blocked
surgery. Then one must produce fiber bundles: [WW] is convenient for
this. The converse is based on facts about transfer; if you get stuck, the
material in 13.5 should help. This converse fact, for higher signatures
of manifolds with free abelian fundamental group that fiber over a 2­
connected manifold, was first proven in [Lus].)

REMARK. The starting point for all of the recent work in elliptic co­
homology is that there are additional genera that are multiplicative for
finite dimensional connected structural groups. The A-genus is one such.
'rhese genera have analogues of many of the familiar formulae for sig­
nature. Thus, for instance, the formulae for fixed point sets in the next
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r
section should be true for smooth actions; [CS9] have formulae for some
such genera in algebraic-geometric situations. The above exercise shows
that for PL actions and stratified maps, there can be no such similar
theory.

EXERCISE ([WY]). Exotic products can be used to kill products as well
as define them. Th make x A trivial, one need not find a stratified object
with boundary A which is stratifed rr - rr. All one needs is a stratified
coboundary that is "exotically" rr - 7C (Le. there can be extra strata in
the coboundary, but they must be glued together to form a singular
substratified space with contractible LBQ). Use this to show that x IRp4k+3
always induces 0 on surgery groups. (Its symmetric signature does not
always vanish!)

EXERCISE. Deduce from Yan's theorem and from the stable transversal...
ity of Madsen and Rothenberg that nv F/Top ~ FjTop for V ~ 4x
permutation representation of an odd order group. (Here F j Top de­
notes the equivariant version of this space.)

13.3. Locally free compact actions
••j

I ~

EXERCISE. Let S1 act on s2r-l (viewed as the unit sphere in Cr ) by
multiplication by (exp(2n iatt), exp(2n;a2/), ... , exp(2niart»), 0 ~ t ~ 1.
What is the rank of the equivariant structures of this space?

However, for general actions of compact Lie groups the signature
operator does not seem to play the same role: equivariant K-homology
does not seem to be the correct measure of tangential data. What re­
places this I cannot yet guess. I have done some calculations in special
cases but have not yet discerned a pattern.

The following theorem is the simplest result showing why things are
different in general:

Everything done in the previous section applies equally well to actions
of compact groups where the isotropy groups are finite. Such actions are
called locally free. The key is simply to use the equivariant signature A
operator.

THEOREM. If G acts locally freely on a manifold, then one has the universal .:~

class t1(M) E $KONH/H(MH ) 0 Z[1j2]. The difference of these classes ·.f.'
:'~i

detects the stratified normal invariant away from 2. .~

This is proven by the same technique as the result of the previous '1
section. This means that we have completely analyzed (away from 2) the .'?~

surgery sequence for locally free actions. .:;;
'·1;
~

.~~
:~
.~~
.J;
:~
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THEOREM. 10

a) Suppose G = SI or SU(2) acts semifreelyl1 on a manifold M, and
F is a component of fixed set of codimension an even multiple of
dim G + 1, then stably

SG-iso ~ SG-iso(Mrel F) x S(F).

If F is of another codimension, then

SG-iso (M) ~ sG-iso (M - F).

b) For such an action one has an equality of higher signatures:

h(L(M) n [M]) = L(!i)*(L(F) n [F]) E H*(B1C; Q),

where f: M -,)- B1C classifies the fundamental group,12 and the sum
is taken over the components of codimension == omod 2(dim G).

The two parts of the theorem are obviously related. The first part says
that in appropriate codimensions, the complement of the action deter­
mines what the fixed set is and how it is glued in. For the other codi­
mensions, the fixed set and the total stratified space are as independent
as possible. The second part describes the relationships of characteris­
tic classes: the higher signature of the manifold acted upon is precisely
that of the "flexible" components of fixed set. Replacing a fixed point
set will change the ambient manifold. Alternatively, the manifold acted
upon forces some conditions on fixed points.13

The universal characteristic class encodes all relations among the L­
classes of the various closed strata, and then encodes whatever secondary
classes are implicit in the universality of the relations among these L­
classes.

EXERCISE. Prove the theorem. (Hint: Observe that all quotients are su­
pernormal. In the rigid codimensions, verify that the local stalks of the
L-cosheaf are contractible, and compute LBQ to deduce the result. In the
other dimensions observe that one has a Goresky-Siegel space, so that

IOStrietly speaking this theorem is only correct with Siebenmann-periodic or homology­
manifold structure theory. Otherwise the right-hand side might be one 7L. larger for each
component of fixed set-the missing fixed set can be a nonresolvable homology manifold.

II Recall that a group action is semifree if each point is fixed either by the whole group
t If just by the identity element.

12This formula presupposes that F =10. Otherwise, one has to take instead pi/(orbit).
Remember that the orbit of any point gives a central loop in the fundamental group which
is independent of the point chosen. This formula is also valid, at least in the circle case,
h)r actions that are not semifree; see [Wei11, pt. II].

IJThese conditions on higher signature can be refined to an integral statement even in
rases where the higher signatures arc not homotopy invariant.



230 Applications

the machinery of the previous chapter gives the independence. For part
b, try to use the action to build an appropriate cobordism between M
and a projective bundle around the fixed set, and use the exercise from
the previous section on multiplicativity of higher signatures in bundles.)

EXERCISE. Compute the L-cosheaf homology ®Z[1/2] for an arbitrary
81 action on a manifold using the material of this section. Interpret the

:!.'

universal class. (Hint: It is important to separate the elements of finite ~)

order in whose fixed sets the fixed set of the group has codimension ':~

2mod4 from those in which the codimension is omod 4.) ';t
.o~

.i;~
13.4. Nonlinear similarity ·;;L

The nonlinear similarity problem is to determine when two orthogonal ,~
representations V and W of a finite group are topologically conjugate.14 ,.~.I
This is a problem which is still the object of considerable research. Much .~

of the material in this book was developed for proving and understanding:~

the theorems I will sketch in this section. Not surprisingly, it turns outi
that we can now describe the essential features of the current state of,~

'1

the~;n~~~:c~~~~~ringwork of DeRham (the PL case), the first ,!
progress was due to Schultz [Sczl] and Sullivan independently, who ,~

~~~:~~. that topological and linear conjugacy are identical for odd p- 'I
~J!~

EXERCISE (DERHAM; SEE ALSO [Rot, Luckl]). Prove DeRham's result ·~tt

using Reidemeister torsion and the method of calculation for lens spaces ,i

~::~~~~. Prove the theorem of Schultz and Sullivan in the following I
steps. First reduce to the case of a cyclic group. Then show that one ~

can assume that the difference between the two representations is inl.~

primitive eigenvalues. Show that the corresponding lens spaces are nor- ~

mally cobordant. By taking products with semifree representations show ';~
that the lens spaces remain normally cobordant after any number of l~

suspensions. (Compare 4.7.) Now show that homotopy lens spaces with .:,~~

odd p-group fundamental group are homeomorphic if all suspensions are .,~.,l.:
normally cobordant. (Hint: Use the connection between normal invariant e
and p-invariant; Atiyah's theorem on K(Brr) is useful but not essential.) J!

The subject can really be said to have become nontrivial with the .:~
breakthrough by Cappell and Shaneson [CS3], who showed that nonlin-i
ear similarities exist for Z4k for k ~ 2; that paper also gave a complete )~I

14Actually, it is a very interesting question to study this for noncompact groups of linear
transformations as well. The history in the case of individual matrices as well as the situation
for compact groups is surveyed in [Sh2], which, although somewhat outdated, remains
useful, especially for its overview of related problems.
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classification of certain very special representations. Over the following
few years, the main results were:

(ODD ORDER GROUP) THEOREM ([HP] AND [MR]). For odd order
groups, topologically conjugate linear representations are linearly conjugate.

(TOPOLOGICAL RATIONALITY) THEOREM ([CS7]). Let K be the real sub­
field obtained as the extension of Q by all odd roots of unity. Then letting
RToP(G) denote the Grothendieck group of linear representations modulo
topological equivalence, one has

RTOP(G) ® Z[1/2] ~ RK(G) ® Z[1/2].

(ALGEBRAIC) EXERCISE ([CS7]). Deduce the odd order group theorem
from the topological rationality theorem. Furthermore, deduce which
groups have nontrivial topological similarities. Use a density argument
and continuity of characters to work out the compact Lie case.

These theorems are not that hard to understand from the point of
view of the G-surgery results of 13.2. A concrete description of what the
d-class means for linear representations was discovered in [CSSWW1,2]
(see also [RtW] for the essential point):

PROPOSITION. The renormalized Atiyah-Bott numbers (01; bettet; charac­
ters) are topological invariants of linear representations.

The renormalized Atiyah.Bott numbers are defined as follows for a
group element g. If yg = 0, define AB(g, Y) by the formula in [AB]. If
yg::j:. 0, let V ~ yg + W, and define AB(g, Y) = AB(g, W).

The way one proves the result on Atiyah-Bott numbers is to first do the
discrete case. The identity follows from the topological G-signature for­
mula (of 13.2), and the localization formula in equivariant K-homology.
(The Atiyah-Bott numbers from the smooth theory are given a purely
topological interpretation by this formula: they compute the contribu­
tion of fixed points to g-signature, just as in the smooth case [AS, pt.
III].) If the fixed set is not discrete, then one knows that there will be a
homeomorphism IRn x W ;: lRn x W' which is the identity on the ~n fac­
tor (why?). This implies that Wand W' are homeomorphic after crossing
with a torus. (This follows from the argument in 10.2, for instance.) Now
the topological "higher G-signature formula" gives the result.

Now, we return to the odd order group theorem. The Franz indepen­
dence lemma (used in the Reidemeister torsion argument for classic lens
spaces) is used to show that inequivalent representations have different
renormalized Atiyah-Bott numbers. It takes a little more care to show
that RK(G) ® Z[lj2] is a lower bound for the size of RToP(G) ® Z[1/2].
(What happens is that when one has a group element with -1 as an
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eigenvalue, the Atiyah-Bott number vanishes and we lose precious infor­
mation about the other eigenvalues of the element.)

To show that RToP(G) is not larger than this, one has to produce some
explicit nonlinear similarities. The simplest examples I know are those
in [CSSW]; they deal with a case where one can see a priori that there
will be no 2-torsion in the calculation, so the ~-class actually detects.
(Of course, they necessarily have to argue more ad hoc.) The onus of
the paper [CW7] is now to show that what is obtained by induction and
restriction from these examples actually cuts RO(G) down to the stated
size, and this is done purely algebraically.

EXERCISE (FOR THOSE WITH A LITTLE HANDS-ON COMPUTATIONAL

KNOWLEDGE). Verify the example in [CSSW] by filling in the details
in the above sketch. Show that if we take two representations of
G = 7L4k for k > 2 as the sum of 2 copies of rotation by 2rra/4k (or
21l'(a + 2k)/4k), the one dimensional nontrivial representation of G and
the one dimensional trivial representation, they are topologically conju­
gate. (Hint: First show that any two homotopy equivalent 3-manifolds
are normally cobordant.15 To compute an inevitable surgery obstruction,
make use of the fact that for cyclic groups LP is torsion free except for
KelVaire invariant and codimension one Kervaire invariants. These finite
order obstructions can be eliminated because they are in the image of
the assembly map, or by comparing 7L4k to 7Lzk. The nontorsion part of
the obstruction can be computed from the p-invariants, which are given
by Atiyah-Bott numbers.)

The most precise information that we now have on this problem is
a complete calculation for cyclic 2-groups [CSSWWl]. The reader can
find there some information on the normal invariants at 2 and how to
calculate these. Using this, one can find elements of RTop with arbitrarily
high exponent (at 2, of course).

In [CSSWW2] the complete low dimensional situation is worked out.
This is done using the renormalized Atiyah-Bott numbers and a num­
ber/algebraic K-theoretic argument based on examination of the proper
Whitehead group of the top pure stratum (which turns out to be ~ WhTop
in all the relevant cases). The result is that the only six dimensional exam­
ples are the ones of the previous exercise (and that there are no examples
in any lower dimensions).

It seems that we can reasonably expect to someday have, at least stably
(with respect to trivial representations), a complete topological classifi­
cation of linear representations of cyclic groups. Unstable and other cal­
culations are apt to involve number theoretic and algebraic K-theoretic

15Hint for this step: The normal invariants of a 3-manifold are determined by its funda­
mental group, and L3 (Z2) ;: Z2 is determined by a codimension one Kervaire element.
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difficulties. (I am not sure whether the successful resolution of these is­
sues announced in [CSSWW1] .. can be extended beyond the situation of
2-groups.)

13.5. Replacement theorems

Replacement theorems describe situations where one manifold can be
replaced by any other in a certain class as the fixed set of a group action.

EXERCISE. Suppose that G acts smoothly, PLly, or MSly on a simply con­
nected manifold M with fixed set F, and suppose that F' is h-cobordant
to F. Then there is a concordant action of G on M with F' as fixed set.
In fact, one only needs a semi-h-cobordism from F' to F. (A semi-h­
cobordism is a manifold with boundary where the inclusion of one of the
boundary components is a homotopy equivalence.)16 What if M is not
simply connected?

Recall that actions are concordant if there is an action on M x I
that restricts on the boundary components to the given actions. This
exercise introduces our theme: under certain circumstances one can take
a given action with a given fixed point set and automatically find another
action with a related manifold as the fixed set. Now, I'd like to study the
replacement problem within a given equivariant simple homotopy type.

THEOREM ([CW8]). Suppose that G is an odd order group acting PL lo­
cally linearly and smoothly on a neighborhood ofan equivariant l-skeleton,
satisfying the small gap hypothesis on a manifold M; then any PL manifold
simple homotopy equivalent to the fixed set is in fact the fixed set of an­
other PL locally linear G-action on M that is equivariant simple homotopy
equivalent to the initial action.

ADDENDUM. The theorem remains valid for G abelian if the smoothness
assumption is dropped. This assumption can also be dropped if the sphere
bundle of the normal representation satisfies the "large gap hypothesis".

In this theorem, the new actions are strong replacements of F' for F.
Strong replacement means that there is an isovariant homotopy equiva­
lence of the group actions that is a homeomorphi~ in the complement
of a small neighborhood of the fixed set and is n :pequivariantly homo­
topic to a homeomorphism relative to this complement, as an ordinary
unequivariant map between manifolds.

To describe some obstructions that arise for even order groups, we
need some characteristic classes. The Kervaire classes of a homotopy
equivalence can be viewed as the composite of the associated normal

16This is a useful notion. For instance, every PL Z-homology sphere is semi-h-cobordant
to the sphere.
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invariant F --+ F / Top ~ L(e) with the natural map L(e) --+ L(Z2' -) ~nK(Z2' 2i). (These can be normalized to be trivial for i even.)

THEOREM ([CW8]). Let G be an even order group that acts semifreely and
P L locally linearly on a PL manifold with the small gap hypothesis and
with simply connected fixed set. It is possible to strongly replace the fixed set
iff the Kervaire classes of the homotopy equivalence vanish.

We conjecture that this criterion applies to all even order group ac­
tions. There is some evidence for this in the work of [HMTW] in surgery
theory.

As the name "strong replacement" suggests, there are weaker types
of replacement possible, and they can be approached via the classifi­
cation theory as well. For instance, decomposition theorems for struc­
ture sets imply that one can often replace a fixed set, but at the cost
of changing the manifold acted upon! [CW8, CWY] give some exam­
ples where this weaker type of replacement is possible, but strong re­
placement is not. (An example of this is implicit in the results of 13.3
for semifree 81 actions.) One might also want to analyze what hap­
pens when the map isn't an equivariant homotopy equivalence, only
a pseudoequivalence: this can be handled (for certain actions of p­
groups) through a merger of the techniques of this and the following
sections.

PROBLEM. Work out the replacement theory for circle actions using the
results of the previous section. There should be no difference between the
pseudoequivalence version and the equivariant homotopy equivalence
version.

To get a quick idea of how obstructions to replacement arise, let's
suppose we could replace. In that case, since the complements are the
same, the quotient of the boundary of the regular neighborhood must
block fiber over the new fixed set. If we were dealing with circle ac­
tions, the putative fiber would be a complex projective space. To fiber,
the transverse inverse image of a submanifold must have signature =
signature(submanifold) x signature(fiber) (ignoring monodromy issues).
Since it already fibers over the original fixed set, we obtain a condition-if
the signature of the fiber is nontrivial.

Even assuming we can change the base of the fibration, we then have
to deal with the difficulty of identifying the manifold obtained by pasting
in the new fixed set, which can lead to more obstructions.

I will now indicate how the proof goes in a little more detail. This is
mainly a reorganization of part of what's in [CW1,8] in light of better
technology; the main advantage is that some conditions which seemed
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useful as sufficient conditions for performing the constructions in those
papers can be shown to be necessary using the present treatment.

For simplicity, I would like to start off by describing the semifree PL
locally linear case and then describe the modifications necessary for the
general case.

To deal with strong replacement it helps to have an auxiliary construc­
tion, called the bubble quotient. This consists of the identification space
made by identifying to points all orbits that do not get too close to the
fixed set. Figure 20 illustrates a bubble quotient for the flip involution.

Now we are interested in the issue of base change for the bubble
fibration over F. In other words, the bubbled neighborhood of F is a
stratified block bundle over F, and we would like to know whether the
map to F' can be homotoped to be a stratified block fibration as well.

In the simply connected case, the point is that the inclusion of the
"open local holink" into the whole holink is a stratified rr - rr open
inclusion, which induces an isomorphism of L-spectra, which trivializes
the L-cosheaf. In general, we use a trick to trivialize the cosheaf of
spectra that relies on the reduction of transfers to analysis of monodromy.
The following is the relevant assertion at the level of surgery obstructions
(see [LuR, CW8]):

LEMMA. If a fibration is trivialized over the l-skeleton of a manifold, and
the fundamental group ofeach pure stratum is isomorphic to the product of
the fundamental groups of the base and the corresponding pure stratum of
the fiber, and these isomorphisms are compatible with the trivialization over
the l-skeleton, then the transfer equals the product.

•

0)
f'igure 20. A bubble quotient
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Now, the base change obstruction is the transfer of the obstruction to
fibering F' --+ F, i.e. the structure this simple homotopy equivalence is.
This transfer is trivialized (on the cosheaf level) assuming trivial mon­
odromy and vanishing "stratified symmetric signature".17 This is sufficient
to prove the first theorem and the addendum in the stable case. The fact
that the fibers bound in a relevant sense is proven by a bordism argument
(see [LM] for a slightly less refined version).

The difficulty in general is that the monodromy is an isovariant self­
homotopy equivalence, and these are hard to analyze without a large
gap hypothesis. What one does in the general case of odd order abelian
groups is apply the periodicity theorem of [WY], described in 13.2, to
reduce to the stable case. There Browder's theorem (see 13.2) is available
and reduces isovariant monodromy considerations to equivariant ones.

The result for even order groups is done by analyzing characteris­
tic classes (systematizing the heuristic given above) and following them
around as one transfers from F/ P L to other L-spectra. According to
[Wal], the product of the Ketvaire problem with an even projective space
has nontrivial obstruction, so we see that we cannot get rid of the pri­
mary obstruction to blocked fibering (3.2) unless the Kervaire classes
vanish. Accordingly, strong replacement is then impossible (since either
the boundary of the regular neighborhood or the total space of the buh­
ble has a cover which is an even projective space). Conversely, if these
vanish, then the product obstruction vanishes as well, by direct calcula­
tion.

In the simply connected case we can avoid the secondary obstruction
to block fibering by puncturing the manifold, producing a rr - rr situation,
and then verifying that the action is locally linear on the boundary, using
the techniques of, say, [Wei3].

REMARK. For many problems in surgery theory, and especially replace­
ment problems, the following principle is very useful and is implicit in
the lemma above:

FLAlTENING OF L-COSHEAVES. Any L-cosheaf associated to a stratum
of a stratified space is trivial over a two-connected base. If the funda­
mental group of the local holink maps injectively into that of the holink,
then it is trivial assuming that a monodromy vanishes. More generally,
assuming a 1r2 condition, there is always a fibration of L-spectra over B1r
from which the given bundle can be pulled back.

PROBLEM. Work out a good replacement theory for even order groups.
This is especially interesting for nonsimply connected manifolds.

17This notion does not quite exist as a useful computational tool, but we'll use it for
heuristic purposes.
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EXERCISE. As a direct consequence of the results of 13.2, prove a general
replacement theorem ® Z[lj2] for all orientation-preselVing actions of
finite groups.

PROBLEM. When can one replace strata above the fixed set? This in­
cludes bottom strata, Le. fixed sets of subgroups that do not contain fixed
sets of any larger group, and also involves understanding what happens
above the bottom. Some results on weak replacement in these situations
follow from the decomposition theorem [CWY].

REMARK!PROBLEM. I have verified (in old unpublished joint work with
Bruce Williams) that the odd order group replacement theorem remains
for topological semifree actions. I believe that all of the theorems in this
section actually hold in the category of MS actions. However, I have not
verified this (although I have convinced myself of the locally linear case.)

13.6. Semifree actions

By considering the quotient space, semifree group actions give a much
studied class of stratified spaces which, with typical assumptions, have
two strata. From the point of view of group action theory these form an
interesting special case and are often the first stage in an induction. Here
I will consider just some classic results on the disk and sphere. For some
history, the reader might see [Wei2,3]. Cappell and I have combined
the methods of the previous section with those that follow to obtain a
homological replacement theory for semifree actions on more general
manifolds.

Before discussing the delicate geometry of locally linear actions, I
would like to sketch a result first announced (in a special case) long ago
in [J2]. Indeed, the proof in broad outline involves many of the same
steps as Jones's.

THEOREM. Suppose that G is an even order group that ean aet freely on
S2d-l, and K is a subeomplex of the disk of eodimension 2d, d ~ 2; then
there is a PL semifree G-aetion with fixed set K iff

1) H*(K; lLG) = 0,
2) K is a Zj G homology manifold properly embedded, and
3) the Swan element of every loeallink and for K vanish (see 4.5).

The necessity of the first two conditions is due to ~A. Smith and is
the first result of what is nowadays called Smith theory. See [Bre] for a
textbook reference. The third condition is essentially dUj.... to Assadi; it
arises for the same reason as the condition arises in 4.5. i

The sufficiency goes like this. Using the homotopy theol' of 4.5 locally
(on holinks) and globally (on the complement of the putative fixed point
set), one can construct a Poincare object in the stratified category of



238 Applications

the correct type. (Note that if the polyhedron is not a manifold, this
object can have quite a large number of strata.) We'll puncture first and
work on the disk. The total surgery obstruction (reI singularities) then
lives in K O~_l [1/2] since we are mod 2 acyclic by condition 1 and the
calculation in 13.2 of the cosheaf homology. We'll first concentrate on
the neighborhood of the bottom stratum. (One can just as well make use
of 3.3.A.)

Now the local surgery obstruction (Le. in L(Z[G])[1/2]) can be com­
puted by working rationally (i.e. with the group ring ®G) and viewing
this as a calculation for the original embedding problem x BG (which is
a QG Poincare complex, and S x BG is rationally equivalent to the local
stratified Poincare space). This suffices because of Ranicki's localization
theorem [Ra3]. This local obstruction vanishes (in LP, which is good
enough for us, since 2 is inverted),18 since the obstruction to embedding
vanishes, as we are specifically dealing with embedded polyhedra! One
can now use the extension theorem from 4.5 to extend to an action on
the disk, which can then be coned to produce an action on the sphere.

EXERCISE. Prove the parallel theorem in the topological case for MS
semifree actions without condition 3.

REMARK. I expect that the work of [FP1] yields a proof of the topolog­
ical analogue without assuming MS; i.e., arbitrary ANR ZI G homology
manifolds will be made into fixed point sets.

REMARK. For odd order groups the above proof naturally leads to ob­
structions that are mod 2 homology classes. (In fact one can explicitly
identify these mod 2 obstructions in terms of the exact sequence of a lo­
calization in L-theory (spacified, of course). This leads to the remaining
results in [J2].)

EXERCISE. Give another argument using the fact that one can view
the local problem as the obstruction to controlled surgery on a certain
Poincare complex, and that it is a controlled closed manifold problem, so oj

that away from the order of G, the obstruction can be lifted to the sim­
ply connected case. (See e.g. 3.4; this is because obstructions for closed
manifolds are in the image of the assembly map, whose domain is a ho­
mology theory.) The simply connected obstruction vanishes by the 1r -rr 0

theorem Of, better, because one started off with K embedded.

REMARK ([CWl]). This second proof works just as well for PL locally
linear actions on manifolds and combines to show the vanishing of the
primary obstruction away from the order of G. At the order of G, Smith

18We are led into projective L...theory because BG is a finitely dominated CG Poincare
complex but has nontrivial finiteness obstruction.
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theory shows that for pseudoequivalences one gets a homology equiva­
lence of fixed sets, so one can use the base change ideas from the previous
section to get pseudoequivalence replacement theorems for locally linear
actions for semifree G-manifolds.

For P L or topological locally linear actions, the previous exercises give
an argument that shows that any manifold satisfying condition 1 (and 3
for the PLease) can be made into a fixed set. These were first proven in
[CW5] and [Wei2]. The same classification also applies to the topological
locally linear case on the sphere [Wei2] by one point compactifying and
using the homogeneity of manifold stratified spaces [03]. The proofs in
[CW5, Wei2] make use of Atiyah-Singer classes which for the more subtle
odd order group case are refinements of the class ~ from 13.2.19 This is
related to subtle divisibility questions regarding the G-signature of PL
locally linear manifolds. For instance, there is a nontrivial restriction on
the G-signature of a PL locally linear manifold for G = lLp , p prime, iff
the class number of p is even,20 but there is never any restriction on the
G-signature in the topological case.

Semifree P L locally linear fixed sets on the sphere and their classifi­
cation were achieved by quite ad hoc arguments (equivariant rather than
stratified in some places) in [Wei3] (after the case of p-groups was set­
tled in [CW5]). I believe that it is important to understand these results
more intrinsically before progress can be made on the issues regarding
the secondary obstructions in these types of replacement problems. The
results are:

THEOREMS.
a) A P L locally flat submanifold En of sn+k for k > 2 is the fixed set of

an orientation preserving semifree P L locally linear G-action on sn+k

iff 1: is a 7Lj G homology sphere, IRk has a free linear representation
of G, and certain purely algebraically describable conditions hold for
the torsion in the homology of I;.

b) Two orientation-preserving semifree P L locally linear G-actions on
sn+k with E as fixed set differ by equivariant connected sum with
a semilinear sphere21 iff the equivariant Atiyah-Singer classes for the
two actions coincide.

To make these theorems more explicit one needs some definitions. We
denote by i(E) the product nIH2; (E-point) 1/ nIH2i+l (E-point) I. This

19These Atiyah-Singer classes enter also in relative versions of the pseudoequivalence
replacement problem. For instance, in extending the extension across homology collars
result of 4.5 to the semifree case, these classes enter [CW5]. In fact it was from this "hard
extension" theorem that the PL locally linear classification on disks fiT ~~~ose.

20See [Wei7] for this and deeper results regarding the composite case )
21 A semilinear sphere is a sphere with group action with the property that the fixed set

()1' each subgroup is a sphere.
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is a multiplicative analogue of the usual Euler characteristic. Poincare .~

duality implies that it vanishes (i.e. equals 1) if n is even. In this case, f;
one defines t'1/2(I:) to be the same product but with indices only running :~
through integers at most half the dimension of the manifold. Part a asserts "{
that the question of whether or not 1: is a fixed set can be determined ._.!.o~o~::,;
purely algebraically from i and il/Z. For odd order groups the condition:.!
is that the Swan homomorphism applied to i is trivial. "~l

JFor even order groups, in addition to the Swan condition, we must .~~

make use of some constructions of Jim Davis [Da2]. The numerical o:~
"Jsurgery element is defined depending on the dimension as follows. If o:~
~1: is even dimensional, say dimension 2k, one takes il/Z(1:) and applies ~

the Swan homomorphism to this element to get an element of Ko which ..~
defines an element in Thte cohomology and thus in L-theory via the .~
Rothenberg sequence. In dimension 4k + lone obselVes that H2k(I:),'
in virtue of its possession of a skew-symmetric linking form, has square .~

order (since it's odd order). Consequently i(1:) is a square, and one ap- .~

plies the same process to its square root to get an element of L-theory. ij

Finally, in dimension 4k + 3, following Davis [Da2], hone must b; more J
devious. Davis first shows that in dimension three, L (lLG) -* L (ZrG) .~

injects, where LA denotes an intermediate Wall group (see 2.4.A) and ~

A is the image of KIClLG). Thus to determine an element of Lh(ZG) I
must specify an element of LA(lLrG), and this is determined by viewing
-r(I:) as an element of Kl (lLG, S) (the relative term in Bass's localization
sequence [Ba]) and, as usual by now, pushing forward in an appropriate .~

Rothenberg sequence. (This element only depends on i mod4f.) These
elements are defined so that if one has certain sorts of surgery problems
with finite surgery kernels of order prime to r, then the surgery obstruc­
tion is the given element. Finally the condition on even order groups is J

that the image of the numerical surgery element of Lh(lLG) associated
to H*(!) is zero in H*(71.z; Wh(ZG)).

The proof of this has a number of steps and is quite complicated and,
unlike the earlier results, is quite closely geared to the specific question
it addresses (Le. uses properties of homology spheres). (See [Wei3].) For
further progress on pseudoequivalence replacement questions beyond
cyclic groups in the PL locally linear category, it will be necessary to get
a more conceptual hold on this characterization theorem.

240



14 Rigidity Conjectures

This chapter discusses the question, which stratified spaces are rigid? In
other words, for which stratified spaces does stratified homotopy equiva­
lence imply homeomorphism? We shall see that this is quite an important
problem with many implications. However, the chapter is mainly about
conjectures and the area is a fast-moving one.

Indeed, we shall see that much information about K- and L-theories
for group rings is encoded in rigidity conjectures, and such information
has great impact on our picture of arbitrary (nonrigid) manifolds. Philo­
sophically, every manifold seems to best approximate some rigid space,
and then the deviation of homotopy to homeomorphism is identical to
the difference between the manifold and the rigid model.

On the other hand, it does not seem to me that the rigidity conjec­
tures have the same direct global implications for the study of stratified
spaces (in general)-nonetheless, one can often use rigidity to indirectly
get information even about stratified spaces which have no rigid approx­
imation.

This chapter is divided into four sections. The first gives some differ­
ential geometric motivation for rigidity. The second discusses topological
forms of rigidity conjectures motivated by section 1, and gives algebraic
reformulations of these. We also give counterexamples to "wrong" topo­
logical versions of the geometric rigidity conjectures. Section 3, perhaps
the most tentative in this book, is devoted to presenting some evidence
for (perhaps slightly modified versions of) these conjectures. Undoubt­
edly, by the time you read it, it will be obsolete. The final section is
devoted to pointing out some of the implications of the rigidity conjec­
tures, when applied to special cases.

14.1. Motivation

The goal of this section is to motivate the topological rigidity con­
jectures. The most direct source of motivation is found in )e beautiful
rigidity theorems of Bicberbach, Mostow, Margulis, and others.



1This form of rigidity excludes the sphere despite the generalized Poincare conjecture's
validity. A sphere S(SC) ~ F/Top for c ::: 2. The nonrigidity is reflected in the existence
of nonresolvable homology manifolds which are homotopy spheres. The Borel conjecture
plausibly embraces homology manifolds with equanimity.
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Tori are given by lattices in Euclidean space. Let T be the standard '~

rectilinear torus. If we form the space ~~

'§ = {Z, qJ : Z ~ T I Z is a torus of volume one, and qJ is ,j
a homotopy class of homotopy equivalences}/isometry'j

then C§ ~ SL(n, lR)/O(n), which is abstractly a Euclidean space. Accord- (1

ing to Bieberbach, every flat manifold has a canonical cover which is in :.~~
fact a flat torus. Thus, for instance, one can deduce that the space of flat ~{~

manifolds with a homotopy equivalence to a given one is always diffeo- :.~,.:..,.r,~.;
morphic to Euclidean space. Since these are connected spaces, any two I
homTho~opy aleq~ivalent flat hmfani~holds;re.diffeomorphhl

f

e

c. e ed
e

h .:..:.'.~.~"
IS an YSIS goes muc urt ere rOr Instance, t e amous ngl tty t e- :~

orem of Mostow asserts that if we look at symmetric spaces of rank .~
at least two or hyperbolic manifolds of dimension at least three, every :~

homotopy equivalence is homotopic to a unique isometry. .:~~

In dimension two this fails, but the analogue of~ still is a topologically ~,~.~.~l
Euclidean space, the so-called Teichmuller space. ~

As manifolds, the key feature that all of these manifolds share is that ~.f.:

they are aspherical. Since aspherical manifolds with the same fundamen- ~

tal group are homotopy equivalent by obstruction theory, and since dif- .;~

feomorphism is too strong a conclusion to ever expect from a homotopy ?i

assumption (since the sphere has different differential structures, and Jj
one can always connect sum with a sphere) Borel reportedly suggested :~j
the following question: j

)!
BOREL CONJECfURE. Any two closed aspherical manifolds with the same ~.i

fundamental group are homeomorphiCe Indeed, the space S(M) for an as- i1:

pherical manifold is contractible. 1 ~

In 4.6.A we discussed this problem and showed that it is equivalent tOl
the vanishing of the Whitehead group of any such manifold and to the ;~
statement that the assembly map in L-theory for the fundamental groupld
of any such manifold is an isomorphism. These statements suffice to ex- '::~

tend the Borel phenomenon to manifolds with boundary or noncompact:~l

manifolds relative to a homeomorphism at 00. .!t
In turn, this would suggest that there are (differential geometric) rigid.. ,Jj

ity theorems for symmetric spaces with convex boundaries or reI 00. I do I
not know much about this. :~

Now, let's turn to other rigidity theorems in differential geometry and .j
see what kind of topological conjectures one can make parallel to the ]

!~
~~

'j
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Borel conjecture. In the remaining sections of the chapter we will ex­
plore these conjectures and their consequences. A natural program that
we do not touch on is to find geometric concomitants of the topological
conjectures that seem to fit the context (like the above suggested gen­
eralizations to noncompact manifolds of the usual rigidity-which cause
no pain to the topologist but are somewhat serious for the geometer).

The first generalization that one can study, which is no additional
trouble at all, is equivariant rigidity.

PROPOSITION. If G is a finite group of isometries of a compact hyperbolic
manifold M of dim 2: 3, or an irreducible symmetric space of rank 2: 2,
then the action of G on the fundamental group of M, i. e. the map G ~
Out(j(), determines the action up to conjugation by an isometry.

Actually, Out(1l') is isomorphic to the isometry group of M. This is
because Out(.1l') is the collection of autohomotopy equivalences of M up
to (free) homotopy, and each such class contains a unique isometry.

As a consequence there is rigidity for actions on a hyperbolic manifold.
The same rigidity holds for actions on symmetric spaces of higher rank.
We leave the verification of differentiable rigidity for flat manifolds to
the reader. (This is an interesting exercise, because the homomorphism
to Out(.1l') does not determine the action.) This suggests:

EQUIVARIANT TOPOLOGICAL RIGIDITY CONJECTURE. If (M, G) is an
equivariantly aspherical manifold (i.e. arbitrary subgroups of the fixed
set are unions of aspherical manifolds), then any (N, G) equivariantly
homotopy equivalent to M is equivariantly homeomorphic to it.

We will see in the next section that this conjecture is quite false. How­
ever, assuming the gap hypothesis (see 13.2) and avoiding certain torsion
phenomena, it does seem to stand a chance. And, as in the classic man...
ifold case, the rigidity conjecture suggests a "Novikov type conjecture,"
which has a great deal more validity.

Mostow's rigidity theorem can be rephrased as the assertion that iso­
morphisms between lattices in appropriate Lie groups extend to isomor­
phisms of the Lie groups. Margulis's theorem is an extraordinary gener­
alization of this: it asserts that any homomorphism with sufficiently large
image of a lattice to another Lie group extends to a homomorphism of
the ambient Lie group. (See [Mar, Zi] for precise hypotheses, proofs,
applications, and much fascinating discussion.)

This has a number of simple geometric implications:

COROLLARY. The embeddings of a compact symmetric space in another
are rigid.

COROLLARY. An exact sequence 1 ~ r' ~ r ~ r" ~ 1 with r', r"
lattices in higher rank symmetric spaces implies that r i~ ·lt~, 'fa lattice in a
Lie group.
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This second corollary means that one can inductively realize homot­
opy fibrations by manifolds; it is similarly related to rigidity of certain
fibrations over aspherical manifolds.

This then suggests the notion of cylindrical rigidity. We say that M
is cylindrically rigid if for any stratified space X, S(M x cXrel M x X)
is contractible; or better yet, if for any p : E ~ M a MSAF (e.g. block
bundle; see 9.4), S(Cyl(p) reI E) is contractible.

CYLINDRICAL BOREL CONJECTURE. If M is an aspherical manifold, then
it is cylindrically rigid.

We warn the reader that cylindrical rigidity can fail because of Nil
phenomena, so that it is perhaps best to consider the above statement as
being asserted for s-oo.

We will see in the next section how a simple variant of the rigidity
phenomenon that follows quickly from surgery, modulo rigidity itself,
when combined with cylindrical rigidity leads to an important class of
rigid stratified spaces.

For now, we will content ourselves with some exercises and remarks.
In what follows, we will always be dealing with stable structure sets (see
6.2 for the definition).

EXERCISE. Show that if M is cylindrically rigid, and the fiber of p is
(cylindrically) rigid, then E is (cylindrically) rigid.

EXERCISE. Using Farrell's fibering theorem 4.6 and the classification the­
orem (6.2), show that a circle (and hence a torus, in light of the previous
exercise) is cylindrically rigid.

Alternatively, re-prove the Farrell fibering theorem directly for strati­
fied spaces, and then interpret this result as cylindrical rigidity.

Also, show that nilmanifolds are cylindrically rigid.

EXERCISE. Modify the arguments in 9.4.B to show that Bieberbach man­
ifolds and infranilmanifolds are cylindrically rigid.

EXERCISE. Using Cappell's splitting theorem (or alternatively Mayer­
Vietoris sequences) as in 4.6.A, show that surfaces are cylindrically rigid.

The following two exercises display somewhat different types of rigid­
ity.

EXERCISE. If p : E ~ B has rigid fibers, then S(Cyl(p) reI B) is con­
tractible. Furthermore, if B has a stratification for which p is a stratified
system of fibrations with rigid fibers, then the same holds.

REMARK. According to [CFG] this is the situation when Riemannian
manifolds collapse. This suggests that there might be a theorem of [GPW]
type (see 9.4.C) for other collapsing situations ([GPW] relying on the
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rigidity of a point!), with more sophisticated invariants entering to un­
derstand the topology of the collapse.

EXERCISE. The following total space of an MAP is always rigid, despite
neither base nor fiber is aspherical: Let X be arbitrary and p : E ~ X
be an MAP with fiber a simply connected manifold of signature 1. Then
(Cyl (p) reI E) is rigid.

14.2. Variant forms of the conjecture

Last section we saw how the rigidity theorems of differential geometry
lead one to more topological conjectures than merely the Borel conjec­
ture. In particular, we saw that embeddings are rigid and that there are
equivariant and cylindrical forms of rigidity.

In this section I would like to (1) make a stratified rigidity conjecture
that includes all of those cases, (2) point out some of its drawbacks, yet
(3) make explicit its implications for characteristic classes in certain cases,
and (4) point out its analogues in algebraic and analytic K-theories. In
the next section, I will discuss the evidence for it a little bit more and a
way around some of the difficulties.

Before dealing with our conjectures, I would like to point out that
equivariant rigidity is false, quite generally, because it is not properly
stratified! We will follow [Weil2] and give a certain number of details,
since the constructiOll- is slightly computational.

THEOREM (COUNTEREXAMPLES TO EQUIVARIANT BOREL CONJEC­

TURE). For every finite G there is an affine G-torus with an equivariantly
homotopy equivalent manifold not G-homeomorphic to it or even isovari­
antly homotopy equivalent to it. These examples are stable in that crossing
with Euclidean spaces does not change the situation.

We consider a torus T with a G-action with isolated fixed points. We
assume that T satisfies a very large gap hypothesis (= large+4) and that
the Borel conjecture is true for T.

LEMMA O. The space of equivariant homotopy equivalences Equi(T) has
vanishing homotopy groups above dimension one.

PROOF. This is immediate from equivariant obstruction theory and the
fact that T is equivariantly Eilenberg-MacLane.

Let Ck(T) denote the configuration space of k ordered points in the
torus T.

LEMMA 1. There is a natural map QCk(T) ~ Aut(T, k).
)

PROOF. A map X ~ QCk(T) gives k-sections of T x I x (¥" over X x I.
Remove these sections and view this complement as a fibration.



2Since writing the first draft of this section, I received [DS], which begins the develop~

ment of a systematic theory for analyzing the difference between isovariant and equivariant
maps. Presumably their work will lead to a less ad hoc and more systematic approach to
the issues considered here.

PROOF. A fibration over a Poincare space with Poincare fibers is
Poincare. Lemma 0 gives the equivariant result, and the proof of
lemma 3 gives the isovariant one.

LEMMA 5. This total space is isovariantly a G-manifold. Equivariantly, this
manifold is an affine tofUS.
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Note that if k is at most the number of fixed points, we can build a
group action on nCk(T), where the loops are based at a subset of the
fixed set.

LEMMA 2. The action of G on OCk(T) leaves fixed nontrivial elements of
Jri·

We first prove this for k = 2. We compute 1fn-l(C2(T» = z[zn], since
(as usual) there is a fibration

(T - p) ~ C2(T) ~ T.

The G-action corresponds to the action on homology (since we are deal­
ing with a split crystallographic manifold). Since the G-invariants of z[zn]
are nontrivial (e.g. ~g(e) # 0 is invariant) we have verified the lemma.

Now, the same fibration for larger k shows that Jrn-l(Ck(T» --+
1l'n-l(Ck-l(T» surjects, so Schur's lemma gives the result on fixed sets.

LEMMA 3.2 The image of such an element gives ®Z[l/G] a nontrivial
element of 1fn-l IsoG (T).

PROOF. First of all, away from G the homotopy groups of IsoG (T) are
the invariant elements of the homotopy of Aut(T, k) where k is the num­
ber of fixed points. This is immediate from the Federer spectral sequence
[Fe] (which gives a method of computing homotopy of function spaces),
the decomposition of the E2 term of this sequence according to rep­
resentations, and the existence of transfer yielding an isomorphism on
the E2 level of the invariant part of the spectral sequence for stratified
self-maps of (T, k) and the whole E2 term of IsoG(T).

.~ ..

Next consider the fibration over the sphere associated to an element .~
of homotopy. The fixed sets link each other. That is, if one considers the ii,

map of one sphere into the complement of the first, one sees that this is .?m

a nontrivial element. .:~

LEMMA 4. The map T' ~ 8;+1 ~ B IsoG (T) gives rise to an isovariant ';;~j

Poincare G...space, equivariantlyan affine toms, but not isovariantly an affine .:~:~~
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PROOF. By rigidity and gap hypotheses we know rigidity for T and T x
low dimensional tori. This then implies that the inclusion H6iiieo(T) ~
Iso(T) is a homotopy equivalence, since it is for the first four homotopy
groups. (See the periodicity result of 11.3.) Consequently, the isovariant
bundle can be realized by a geometric block bundle, whose total space
is the desired G-torus. Since it comes from the fiber of BIso ~ B Equi,
it is equivariantly linear.

These lemmas complete the proof of the theorem, since we have an
equivariantly affine torus that is not isovariantly affine. However, the
disproof shows that the whole problem stems from the fact that the equi­
variant conjecture is not appropriately stratified, which, consequently,
suggests that the isovariant conjecture might be correct.

Even this is not correct, because of difficulties involving Nil and UNil.
The Nil difficulty can be removed if (following a suggestion of Frank
Connolly) we restrict attention to isovariant homotopy equivalences that
are topologically simple (see 10.1). However, here is an example that
shows that UNil difficulties actually arise:

COUNTEREXAMPLE (TO ISOVARIANT BOREL CONJECTURE), Ifwe take a
torus T and let 7Lz act on it by flipping an odd number of coordinates and
being trivial on a few additional coordinates (three or more will certainly
suffice), then the quotient is predicted to be rigid but is neither simply nor
stably rigid. In other words, this involution on the torus is not equivariantly
rigid.

The construction makes use of a remarkable example of Cappell [Ca2]
of a manifold W homotopy equivalent to lRp4k+l#lRp4k+1 but not itself
a connected sum. He detects this via mapping to a finite dihedral group
and comparing various Kervaire-Arf invariants, Le. by a stable technique.

What is remarkable about Cappell's example is that it is based on
the failure of codimension one splitting in the non-square root-closed
case (see 4.4 and 4.6.A). One would try to homotop the map so that the
inverse image of the sphere in the #-decomposition of IRp4k+1#lRp4k+1

is a homotopy sphere, and hence a sphere, decomposing W. The failure
of this means that a Mayer-Vietoris sequence is not valid in L-theory
(again, see 4.6.A). The fundamental groups of the top strata in these
examples have a split surjection to the infinite dihedral group, so we
can make use of this element.3 This, in tum, is interpretable in terms of
the surgery sequence, which, after all, describes structures as being the
difference between genuine L-theory and the homology version of it (Le.

3A more intelligent thing to do would be to consider the element of S(IRJ.:4k+1#Rp4k+1)
and use an embedding into the quotient of the top stratum and functoriali' Aperhaps after
crossing with some circles to get the dimmod4 correct) to get a structure \{ the top pure
stratum rei its end, and therefore a structure of the top pure stratum.
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the version satisfying some sort of Mayer-Vietoris and giving a nontrivial
element in the structure set).

It is not that hard to fill in the details of this, especially given the
discussion below of the algebraic reinterpretation of the conjecture, but
even easier is to make use of the fact that Cappell actually produced an
infinitely generated group of counterexamples. Consequently, inspection
shows that the homology term in the surgery sequence is finitely gener...
ated, so there is certainly enough room to construct counterexamples.

PROBLEM (SUGGESTED BY CAPPELL). Simplicity is a property that just
involves chain complexes and is therefore defined for homotopy equiva­
lences between polyhedra. Is there some notion that involves duality that
is only defined for simple Poincare complexes?4

When this is done, is it the case that the obstruction to topological
self-dual simplicity is the UNil contribution to the structure set?

This is probably a good place to mention a positive bit of evidence for
our conjecturing (but which does not simplify by use of the framework
described in the next section).

THEOREM [CKl]. If G is an odd order group acting affinely on a torus T
with small gaps, 5 then T is simply isovariantly rigid.

REMARK. A similar result on the calculation of L-groups of crystallo­
graphic groups is due to Yamasaki [Ya]. The theory here deduces the
L-result from the geometric rigidity. Quinn in [06] proves something
quite like the algebraic K-theory component of this result. (He does not
actually compute the Tate cohomology.) All of these results are proven
by extensions of the techniques of [FHI]. The proof given in [CKl, pt. II]
is especially elegant.

In 14.3, we will mention a suggestion of Farrell and Jones for dealing
with Nil and UNil. For now, we will formulate conjectures modulo these
contributions. (This will make some sense when we discuss algebraic
reformulations of the conjectures.)

To continue, let us first generalize the Borel conjecture to a larger
class of manifolds.

DEFINITION. A compact manifold Mis haspherical (= homology aspher­
ical) if the map M ~ BTl} (M) is a 7L-homology isomorphism.

4An answer to this is given by the theory of supersimple homotopy equivalences; the
first one involving H(Z2; Wh 2 (tr» was defined by Cappell (unpublished) and developed in
general in~ III].

5Recall that this means that all fixed point sets that are included in one another differ
in dimension by at least three.
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We note that if A and B are manifolds and CfJ : A ~ B is an isomor­
phism on fundamental group and integral homology, then CfJ* : S(A) .....
8(B) is an isomorphism. Thus, if BTl is a closed manifold for which the
Borel conjecture is true, and if M is haspherical with fundamental group
Tl, then M is rigid.

Haspherical rigidity is also equivalent to the isomorphism of the as­
sembly map (as in 4.6.A and below). Thus, in some sense, this is as well
founded as the usual Borel conjecture.6

DEFINITION, CONTINUED. If M has boundary or is noncompact, then we
say that Mis haspherical ifthe proper map from M to the triad (Bn, BTl(8),
Bn(oo) x [0, 00» is a (locally finite) 7L.-homology isomorphism in relative
homology. There is a similar notion if we choose to work relative some
boundary component or end as well; then we work with absolute homology
in that direction.

There are many more haspherical manifolds than aspherical ones, as
we will see shortly.

PROBLEM. When is there a finite dimensional haspherical (Poincare)
complex with fundamental group Jr?

REMARK. We can make hasphericality yet more general by picking a
coefficient system other than 7L.. Other convenient choices are Zj27L. and 0
(Le. no condition). In the conjecture below, one should then only assume
hasphericality with respect to coefficient systems arising from the local
holinks. That is, some holinks have small L-theory, and one shouldn't
then require 7L.-hasphericality of the corresponding stratum.

STRATIFIED RIGIDITY CONJECTURE. (Modulo Nils)7 If X is a stratified
space such that (1) all holinks map injectively on fundamental groups to the
holinks in which they are included, and (2) all pure strata are haspherical,
then X is rigid. ~ will call a space satisfying (1) and (2) crigid 8

The problem that condition 1 avoids is the following:

EXAMPLE/EXERCISE. Suppose that X = (B3, I C Int B3, {OJ U [l}) and
we consider X rei S2. Verify that all pure strata are relatively haspherical,
yet show that X is not relatively rigid. Compute the structure set.

6Note also that the Gromov-Lawson-Rosenberg conjecture would preclude haspherical
manifolds from having positive scalar CUIVature.

7There are various ways to make precise "true conjectures" (i.e. conjectures that might
turn out to assert true" statements, as opposed to, say, theorems or statements known to be
false but still worth trying to prove since although any such attempt must fail, interesting
theorems will be proven along the way) out of this false one, especially on examining its
algebraic counterparts below. One geometric way, which does not always make sense, is to
assert that the rigidity is virtual, i.e. only starts on passing to a sut- ;cup of finite index.
Alternatively, one would expect that this is correct for structure set ~Z[1/2].

xFor conjecturally rigid.
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The difficulty here is that the local holink at an interior point of I is
a circle with fundamental group lL, but it is included in the holink of the
whole I stratum which is an S2, a simply connected space.

REMARK. As in 9.4.A it is possible to combine this conjecture with quasi­
isometric phenomena. I will not be explicit about this; the connection
between some of these ideas will be discussed in the following section.

REMARK. There are some people who talk about the "existence part
of the Borel conjecture." This would assert that if Bn is a Poincare
space, then there is a topological manifold realizing it. This is not as
well founded as the Borel conjecture; but if one used homology mani­
folds (9.4.D), it would be. Then the haspherical version would also be
as well founded, and one would assert the stratified version as well. To
understand this, do the following:

EXERCISE (COUNTEREXAMPLE TO HASPHERICAL MANIFOLD EXISTENCE
CONJECTURE). Start with M 2k the boundary of a regular neighborhood
of the torus T2k+1; it has fundamental group lL2k+1• Do a Wall realiza­
tion on the element T2k+1 x (1 E Lo(e». According to [CS1], we can
surger this normal cobordism to be alL-homology h-cobordism. Attach
this to the complement of the 2-skeleton and glue the other end to the
neighborhood of the 2-skeleton to obtain a haspherical Poincare com­
plex. Show that it is not homotopy equivalent to a manifold but that,
using 9.4.D [BFMW], it is homotopy equivalent to a homology manifold.

One big advantage of the stratified rigidity conjecture is that it enables
one to move the rigidity framework to situations that have torsion in the
fundamental group, unlike the unstratified version of 4.6.A.

To appreciate the conjecture one needs some examples of crigid
spaces.

EXAMPLE 1. Mapping cylinders of MSAFs to crigid spaces reI the do­
main.

EXAMPLE 2. The inclusion of a pure embedding of one crigid space in
another of codimension at least three.

EXAMPLE 3. If X is crigid, then so is XI r for any group r acting freely
and properly discontinuously on X. This includes K\GI r for r a discrete
subgroup of a Lie group G and for K the maximal compact of G. The
second exercise below includes a more general statement.

EXAMPLE 4. Mapping cylinders of maps with crigid local fibers rei the
base are crigid.

EXERCISE. Show that in the case of embeddings of symmetric spaces in
one another, one has crigidity using example 3. (Hint: Excise.)
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EXERCISE. Suppose that G acts by isometries on a manifold of nonposi­
tive curvature; show that the quotient is crigid. (Hint: First observe that
the stratified space obtained by labeling components of fixed set strata is
crigid, and then use example 3.) More generally, if G acts properly dis­
continuously on a contractible manifold with all fixed sets contractible,
then the quotient is crigid. Given an action on a locally finite simplicial
complex with this property, one can equivariantly thicken the complex to
obtain a manifold example.

Surgery theory, as in 4.6.A, "reduces" the stratified conjecture to the
following two:

K-THEORY CONJECTURE. Let X be crigid rel8, then for any ring R,

Ho(X; KBQ(rel S; R» ~ KBQ(Xrel S; R)

is an isomorphism.

L-THEORY CONJECTURE. Let X be crigid relS, then for any ring R,

Ho(X; ~BQ(relS; R») ~ LBQ(Xrel S; R)

is an isomorphism.

Recall from 6.1 that one introduces R coefficients in Browder-Quinn
spectra by formally using the spectra for Rn instead of 7Ln and then
inductively building up, as before.

It is of course just the 1l'o statements that carry directly geometric
information.9

EXERCISE (USING 6.2). The 1l'o statements of the algebraic conjectures
are jointly equivalent to the stratified rigidity conjecture when we restrict
to R = 7L..

If R is a a-module, then the K-theory version might be true as far
as we can tell, and similarly, if 1/2 E R, the L-theory version also has
a shot. In those cases, Nil and UNil vanish. There is also a similar C*­
algebra version, which I only see how to phrase reI the whole singular
set; then the sheaves decay into being K-functors of the C*-algebras of
the fundamental groups of the local holinks. (This is closely related to
the Baum-Connes conjecture [BC] when we restrict attention to the case
of r acting properly discontinuously on a contractible space with all fixed
sets contractible.)

\
9The higher homotopy groups of these conjectures are related to JlUI Ametrized rigidity

theorems, see (0 I].
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REMARK. We will see that these conjectures include the Mayer-Vietoris
sequences of Waldhausen, Cappell, and Pimsner [Wald3, Ca4, Pi] in
these various settings. They also contain formulae for K- and L-theory of
twisted group rings (cross product algebras) by reflecting on the case of
cylinders of bundles. Furthermore, in 14.4, we will see that for all groups
of finite virtual cohomological dimension (or, stretching the imagination,
all discrete groups) the conjectures give predictions of the algebraic and
analytic K-theories as well as the L-theory.

STRATIFIED NOVIKOV CONJECTURE(S). All of the maps described above
are split injective over 7L

I'm emphasizing the over 7L part because our earlier versions of
Novikov were essentially rational; here the 7L version does stand a
chance of being true. All of the Nils and UNils that are known to
occur naturally split off (and although it is hard to imagine why they
must continue to do so in the course of an inductive argument, they
nonetheless seem to!).

I want to close this section by returning to the equivariant situation.
Despite our difficulties with equivariant rigidity conjectures, the equivar­
iant Novikov conjecture is quite reasonable when thought about carefully
and has some interesting additional aspects to it. Basically these come
about because the problem natural to group actions is an equivariant
one, and we have dealt only with functoriality associated to homotopy
transverse maps.

CRUDE EQUIVARIANT NOVIKOV CONJECTURE. If X is an equivariant
Bn, then for f : M ~ Bn an equivariant map, the class f*(I1(M) E

K OG (M) ® Q is an equivariant homotopy invariant. 10

For the finite case, an equivariant BJr means that all components of
all fixed sets are aspherical. For the compact case, I recommend the
appendix by Peter May to (RsW2].

This conjecture is crude for several reasons. Firstly, there is the shame­
ful ®Q. Also, the usual G-signature is invariant under a larger class of
maps: those that are equivariant and a homotopy equivalence. Follow­
ing Petrie [Pe2], we shall call such maps pseudoequivalences. Finally, for
compact groups, we might want to use the really rather different theo­
ries discussed in 13.3. Even with all of this, the conjecture is incorrect:
for G = S1, the space E S1 is an equivariantly aspherical space, and this
conjecture contradicts the classification of homotopy cpn's (4.1).

lOWe are tacitly assuming in all of this that G is compact. It only takes a small amount of
reformulation to allow locally compact groups, but then one wants cocompact quotients (or
more subtlety at infinity of the sort we've already seen e.g. in 9.9.A) and more importantly
locally uniformly compact isotropy.
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The solution I will adopt provisionally is to assume that Bn: is a finite
dimensional space. (However, this is not necessary; probably one wants
the quotient to be a "filtered aspherical space", which is just equivariant
asphericality, when the group acting is finite.) In that case, we can better
use the universal classes of 6.1, 6.2; however, note that for finite groups
the argument in 13.2 splits off the top piece of the homology theory away
from 2; by using L -00 and taking coefficients in Ql1 (or even just Z[1jG])
one can break this piece off, and ask that this top homology piece be a
pseudoequivalence invariant.

In the compact Lie case, one still can ask that the equivariant signature
operator give a pseudoequivalence invariant. This was studied in [FR~

RsW2]. I do not believe that this can play the same role in understanding
the geometry of G-actions as it does in the finite case (because of the
discussion in 13.3). In fact, in those papers, we essentially reduce to the
finite case.

EQUIVARIANT NOVIKOV CONJECTURE. If Brr is a finite dimensional
equivariant aspherical complex, and f : M --+ Brr is equivariant, then
h(I::1(M)) E H*(BrrjG; L(QGx )) is a pseudoequivalence invariant (as is
the class of the equivariant signature operator in K OG(Bn:)).

I should point out that there might be more than one Bn: that one
can map to, both with the same (unequivariant) fundamental group as M.
With infinite dimensions, this is quite simple (restricting to finite groups,
I see no reason not to make a Q conjecture allowing infinite dimensions).
One can use a point or EG or even contractible spaces whose fixed sets
are various unions of other aspherical spaces (like 2 points)!

These various conjectures can be related to the stratified conjecture
by making use of the interpretation of the domain of the surgery map as
being (1/2IGI E coefficients) the controlled equivariant visible algebraic
Poincare complexes over B7r (as in 6.2), a description which is explicitly
functorial in the equivariant category, and obseIVing that the splitting off
of the top L piece (in the groups, spaces, and cosheaves) is dependent
on only the pseudoequivalence type.

REMARK. It is often possible to use the techniques from harmonic maps
to produce maps to specific equivariant Brr's (see [RsW2, ScY2] for
a discussion). For instance, given an action on a manifold there is an
affine action on a torus and an equivariant map M --+ T inducing an iso­
morphism on H l ( ; Z). The proof is a pleasant exercise in the Hodge
theorem on harmonic representatives of DeRham cohomology. Conse­
quently, we see that the equivariant Novikov conjecture for affine tori
implies restrictions on arbitrary G-manifolds.

IIThis still gives interesting infonnation at the prime 2; I think th~ .Ais theory still has
a map to equivurinnt K ()-homology integrally.
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14.3. Evidence

Why should we believe anything like the previous conjectures? We've
seen some evidence already in 4.6, 4.6.A, 9.4.A, 9.4.8, and at the end of
the last section. In this section I would like to make the following argu­
ment. In light of Cappell's codimension one splitting theorem and our
remarks on haspherical generalization of the Borel conjecture, stratified
rigidity follows inductively from cylindrical rigidity of strata. As for cylin­
drical rigidity, this is as well founded a conjecture as rigidity in that the
main methods for proving rigidity apply just as well to cylindrical rigidity.
That this is correct for codimension one splitting techniques is essentially
the exercise about surfaces in 14.2; we will here discuss the Novikov type
methods of [FeWl,2] and the remarkable dynamical-foliation idea of
[FJl-3].

Note that even in this sketch-proof I show my cavalier approach to Nil
and UNiI. Cappell's splitting theorem is obstructed by a UNit obstruction.
In addition, cylindrical rigidity is related to replacing Z's in the usual
conjectures about group rings by Z1l'S, perhaps twisted by an action of
the group r. Since Z is a regular ring, Nil vanishes for it, but this will
not be the case for cylindrical rigidity when the fiber has a nonregular
group ring. However, some of these objections can be handled by an idea
developed in [FJ3, ConS, G1].

The first step in the alleged justification of the conjecture is reducing
(modulo UNils) the conjecture inductively to cylindrical rigidity via the
splitting theorem. The following example is instructive.

EXAMPLE (RElATION BETWEEN RIGIDITY AND MAYER-VIETORIS =
SPLIlTING). 12 Consider a manifold W with a two-sided codimension one
submanifold V. We can form a stratified space by taking the mapping
cylinder of a map W ~ [0, 1] (or the circle if V is only locally two-sided)
which projects a tubular neighborhood of V to [0,1] and collapses the
complementary regions to the endpoints. If the fundamental group of V
injects into that of W, we can conjecture that this space is rigid relative
to W U [0,1] (which is the singular set) or even just reI W.

If one thinks geometrically, one sees this statement as asserting that
any other splitting of W along a manifold h.e. to V is the original splitting.
Applying this principle to W x tori would also lead, via a periodicity
argument, to the existence of splittings! (See 3.3 for the total surgery
obstruction, which explains why existence and uniqueness questions are
of the same sort in topological surgery theory.)

If we work algebraically using the surgery exact sequence of 6.2, the
rigidity statement becomes equivalent to the statement that the global

12This is a somewhat sophisticated solution to a problem in 4.6.A.
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L-term of the top stratum (which is L of an amalgamated free product)
is identical to the homology term, which can be computed by Mayer­
Vietoris sequence. The sequence looks like this:

(This is a Mayer-Vietoris sequence because the W - V term breaks up
into two pieces, one for each component of this complement.)

It is interesting to note that this case shows that in general rigidity is
false because of UNiI. However, here the Novikov version is correct and
corresponds to a theorem of Cappell [Ca3] that the UNit term splits off
the L-theory of the amalgamated free product!

The analysis of this example shows how to inductively reduce the rigid­
ity conjecture to other cylindrical rigidity conjectures. We try to use cylin­
drical rigidity to remove the bottom stratum, together with a teardrop
neighborhood (lO.3.A).

EXERCISE. Using the codimension one splitting theorem, 6.2, and the
discussion above, prove a codimension one splitting theorem for stratified
spaces.

When we remove the bottom stratum we now have a stratified space
with fewer strata; the issue is to see its rigidity. Once it has been verified
rigid, there will be a unique way to glue in the missing stratum because
of its cylindrical rigidity.

EXERCISE. Show that conjecturally S(X) ~ S(X - S) if S is cylindrically
rigid.

However, by the conjecture, to see that it is rigid is a homological cal­
culation comparing manifold homology to group homology. The desired
result holds because group homology has excision for injective homo­
morphisms (see [Bmk]).

REMARK. L-theory also has the same excision, so one can reduce to the
rei 00 version for the space with fewer strata if desired.

In any case, let us return to methods for verifying Novikov and Borel
conjectures, and discuss how well they behave under the extension of the
conjecture to the cylindrical case.

14.3.1. The method of descent

This method is developed explicitly in [FeW2] and is implicit in one
form or another in [GL3, Kas2, CoGM, Car, CPl. The idea is to deduce
Novikov conjectures for a group r from bounded \ \sipns for the metric
space r (see 9.4.A) via a families bounded transfer.
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We will first sketch the proof of Novikov for manifolds with nonpos­
itive curvature, where the method looks more geometric. Then we will
rephrase it to apply to many assembly maps besides the L (Z) one, and the
consequence will be cylindrical Novikov theorems as well as an extension
to many other groups (compactifiable groups).

REMARK. In [FRW] we explained that the geometric version of the
method actually leads to cylindrical Novikov as well as equivariant
Novikov theorems (by replacing the tangent bundle by the equivariant
tangent bundle). The same method yields (integral) results for arbitrary
groups with torsion, not only the virtually torsion free ones which [FRW]
and [RsW2] were restricted to for notational simplicity. However, these
integral results do not include integral injectivity of the conventional
assembly map when the groups have torsion. Indeed, that is false! 13 (See
[BDO, Gn, Og1] for related results in the C*-algebra context.)

The geometric version goes like this. We assume that f : £'/ r ~
E / r is a homotopy equivalence of aspherical manifolds. Consider the
map

E' x r £' ~ E x r E'.

Actually, E' x r E' ~ E' / r is equivalent to the tangent bundle. (After
all, what is the tangent bundle if not the best Euclidean approximation
to the manifold at each point, but here we have a bundle whose fibers
are rigged to be locally diffeomorphic to the manifold!) To show that f
is tangential, we must move, in a parametrized way, the universal cover
of f (based at various points) to be a homeomorphism E' ~ E. Note
that the map is bounded in the universal cover. If we knew the bounded
structure set vanished, then we'd be done. (Note this is a question about
the nature of the universal cover.)

If E' has nonpositive curvature, then the a-approximation theorem
(9.4) gives the vanishing of the structure set, at least if we use the log­
arithm map (the inverse of the exponential map) to map the bounded
structures of E over E to the bounded structures of E over Euclidean
space, because Euclidean space has no intrinsic scale, so bounded =
controlled. (Actually the original bounded structure set vanishes; see
[HTW2, FeW2].) A little more care enables one to handle noncompact
complete manifolds of nonpositive CUIVature.

In any case, let us reformulate the argument now. The a-approxi­
mation theorem for lRn is essentially equivalent to the statement that

l3Recently, Farrell and Jones have given a calculation of the K- and L-groups of discrete
subgroups of real connected Lie groups in terms of their finite subgroups and ideas similar
to the ones that follow here.
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H(lRn ; L(e» ~ Lbdd(Rn) is a homotopy equivalence. We argued in terms
of the following diagram:

H*(Br; L(e» ------.- L*(Zr)

1 1
II;(Br; H*(£r; L(e») • ~(Br; Lbdd(Er»

1 1
II;(Br; H*(fRn; L(e») • ~(Br; Lbdd(fRn»

The first line is the usual assembly map. The second is the map on the
level of space of sections of the family of assembly maps associated to
the fibration E x r E ~ Br.14 The bottom line is the same sequence
after identifying via the logarithm map £r with IRn • The first set of
vertical arrows indicates family bounded transfers. Geometrically, a chain
or surgery problem with target Br gives rise, for each point of Br, to
the transfer of that chain or problem to the copy of Er based at a lift
of that point.

The fact that the left-hand side vertical arrows are homotopy equiv­
alences is due to a form of Spanier-Whitehead duality and the fact that
Er to lRn is a proper homotopy equivalence.

Putting together the maps L*(Zr) ~ H~ (Hr; L~dd(Er» ~

H~(Bf; Lbdd(Rn» ~ H~(Br;H*(lRn; L(e») ~ 8*(Br; L(e», we have
split the assembly map.

There are now several extensions possible of the argument. Firstly,
we would not need to compare to Euclidean space if we knew that
"*(Er; L(e» ~ Lbdd(Ef) was a homotopy equivalence. Another al­
ternative (to the use of the logarithm map) would be if we knew that the
map was split injective in a f-equivariant fashion by some other method.

Another point is that one can use other functors and assembly maps,
like L of an arbitrary (twisted) ring or K-theory or the coefficient systems
arising from an MSAF (which is why cylindrical Novikov follows with
no further ado) or A-theory or pseudoisotopy theory Of••. This will be
discussed further in [FeW2], but enough has been said for our purposes.

As for the verification of the bounded Novikov conjecture equivari­
antly or the bounded rigidity statement, for all functors this is possible
with many different hypotheses. One alternative is an equivariant con­
tractible compactification of Er or an unequivariant Z-set compactifica­
tion of £f for Novikov and Borel respectively. Another possibility is an
appropriate type of combing of the group; see [CEHPT] and see [FeW2]
for more details. \ ,

14The notation H:) is intended to capture the idea of "twisted cohomology."
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But, in any case, this method implies all integral versions with arbitrary
coefficients for all of the Novikov type conjectures for hyperbolic groups,
discrete subgroups of real and p-adic Lie groups (or products of such),
groups that act properly discontinuously on Cat(O) spaces, and many
others. However, I have had no success at all in promoting these (or
the following) methods to "groups of infinite rank" and other seemingly
ungeometric groups. I also should point out that bounded rigidity does
sometimes fail for uniformly contractible manifolds [DFW].

14.3.2. The dynamic/foliation method

This method is quite simple in conception, difficult in detail, and has
led to a number of really terrific results. I can't do it justice in a couple of
paragraphs; the reader must consult the original papers and the further
installments of the series as they appear.

For simplicity, let us consider the problem of showing that for an odd
dimensional negatively curved manifold Wh(1t) has exponent 2. Consider
an uncontrolled geometric module on M. Consider its transfer to the
unit sphere bundle. Since the dimension is odd, this sphere has Euler
characteristic two, so this step loses some information.

The sphere bundle has a geodesic flow on it, which then foliates it into
one dimensional leaves. Applying the flow yields modules that are better
and better controlled with respect to this foliation. (This is analo~ous to
the gaining of control using self-maps of almost flat manifolds in 9.4.A.)
Thus Farrell and Jones are led to a foliated control situation. It turns out
that the lines contribute nothing unusual, but everything concentrates
around the closed leaves, the circles which correspond to closed prime
geodesics in the manifold. These behave like R[t, t- 1] where t generates
the geodesic.

This then gives a formula K(Rr) ~ H(Br; K(R)) ED 1: Nil(R) where
the sum is taken over the closed geodesics of r.

There are several difficulties to be dealt with in general; one must find
good bundles to transfer to that have nice flows with dynamical properties
that enable one to gain control without losing information. One must
also prove foliated control theorems with respect to appropriate types of
leaves to study the effect.

Farrell and Jones have been quite successful at this project and
have used this technique to prove the Borel conjecture for all discrete
subgroups of connected real Lie groups (the K-theory Borel conjecture
follows from their work on pseudoisotopy according to Goodwillie
[GI]).

Note that the method is built to give information about Nils; they
come up here parametrized by conjugacy classes of elements of the group.
This is quite similar to the description of cyclic homology of group rings
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(see [Bu]); this cannot be accidental, and the connection between cyclic
techniques, K-theory, and these dynamical ideas is a fascinating subject.
It is remarkable that cyclic homology, introduced for expressing index
theorems as generalized traces, is entering as such a fundamental tool in
the most geometric investigations.

Farrell and Jones have suggested ([FJ3] for pseudoisotopy, but it
doesn't take much imagination to extend this to other functors) that
there is a "circular assembly map" that gives the best approximation to
~(Br) for a "continuous spectrum valued functor of spaces" from the
knowledge of ~(S1). It is based on looking at the space of maps from 81

into Br and modding out by the action of Aut(Sl) = automorphisms of
S1. (This is slightly different from what is conventional in cyclic homol­
ogy, where one considers the quotient under the rotational action on the
circles, in that it involves power maps as well. This is somewhat similar
to [BHM], which also seems to me quite thought provoking....)

If one computes what this says about Zk, it yields for an arbitrary ring
R a formula for all of the Nils of R in terms of the first one. This was
discovered for R = 7LJr, Jr finite, by Connolly and da Silva [ConS] by
algebraic methods.

The fact that one works geometrically using flows (or if one were to
algebraically rewrite their work using geometric modules as suggested
above) allows one to see that the cylindrical setup is just a special case
of the general expected perspective. In [FJ2] they prove the cylindri­
cal version of rigidity for hyperbolic manifolds simultaneously with the
ordinary rigidity.

REMARKS. 1) Oddly enough, despite the power of the Farrell-Jones
methods there seems to be an advantage (besides generality) to de­
scent: nowhere does one stabilize. Since unstable diffeomorphism and
homeomorphism spaces are nowhere near algebraicization, we have no
methods, as far as I know, for destabilizing results. In [FeWl] the A­
theory assembly map was split by stabilizing an unstable result proven by
the descent method. One shows that at least on the identity component,
Diff(M) ~ Homeo(M) has a section (arbitrarily close to the identity)
for nonpositively curved manifolds. Such theorems do not yet seem to fit
into any general framework.

2) The other use of "spaces of circles" or, relatedly, cyclic homology
in Novikov type problems is via the construction of trace maps; see [eM,
BHM] for related implementations of this idea. This method essentially
gives characteristic classes that can detect elements of K-theory (think of
L-theory as a Hermitian analogue of K-theory, if you are optimistic). If
one is successful, one can detect by such methods big parts of K(Rr);
however, it is dependent on being able to find t \trllce way" of detecting
K(R) to begin with. Roughly speaking, whatever one can detect of a
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K(R) via traces, one seems to be able to continue detecting (in "higher
versions") after assembly in K(Rr).

Inversely, the fact that some assembly maps are not injective for finite
groups somehow forces certain traces not to detect too much for the
coefficient ring!

Finally, needless to say, this method does not adapt gracefully to cylin­
drical generalization.

14.4. Applications

Here I'd like to discuss some implications or applications of the con­
jectures discussed above. In the cases where these conjectures have been
verified, the applications are quite genuine. I cannot claim, however, that
the applications surpass the conjectures themselves in beauty.

14.4.1. Spaces with crigid holinks

The following is a calculation of the cosheaf homology:

THEOREM. Let X be a stratified space with all holinks crigid. The rigidity
conjecture for the holinks implies that

and of course the genuine manifold theoretic (i.e. no nonresolvable homol­
ogy manifolds) normal invariants can be computed simply by removing the
z.

As an example, if we study codimension two locally flat embeddings
from the point of view of chapter 10, then one is led to a stratified
space with Sl holinks. The theorem then shows that the submanifold is
irrelevant to the normal invariant theory, which goes a long way towards
explaining the paucity of locally flat codimension two embeddings.

In addition, it asserts that the difference of whatever homology char­
acteristic classes we have for homotopy equivalent objects has a natural
lift to cohomology. It is indeed rare, however, for such characteristic
classes themselves to be definable in cohomology. (For certain spaces
with crigid holinks occurring in algebraic geometry, Goresky and Pardon
have found such liftings.)

The theorem is quite believable. Intuitively,- the rigidity of the links
forces transversality in the traditional sense (7.1), which we've seen has
conventional normal invariants. The actual proof is roughly speaking
"Verdier duality for spectra over L*(Z)" and then plugging in the alge­
braic form of the rigidity conjecture.
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REMARK. As in manifold theory, this cohomological form of the nor­
mal invariant does not have good functoriality properties. However, it is
useful for calculations, and the surgery sequence is then a sequence of
group homomorphisms.

EXERCISE. What does this show about crigid spaces all of whose holinks
are crigid? In particular, what are the L-groups of the top stratum?

14.4.2. Proper actions and groups with torsion

Let us consider a discrete group r acting properly and discontinuously
on a manifold (although one could go further to Witt spaces for much
of the discussion). All of the discussion regarding Whitehead groups and
L-spectra in chapter 13 applies to this case because the quotient is an
orbifold. The analogue of the statement that the homology is equivariant
K O-homology uses the K-theory of proper actions [Phi] but the differ­
ences are insignificant.

In this setting Baum and Connes have written down a pretty Chern
character [Be], at least in the complex case, but it is not too difficult to
modify it for the real case.

If the action of r is on a finite dimensional contractible simplicial
complex K with the fixed sets of all subgroups empty or contractible,
then we can thicken the complex equivariantly to produce a manifold
whose quotient is crigid reI 00. If we work reI singularities, we obtain:

CONJECfURES.

H*(K/ f; K(Zrk») ~ K(Zf),

H*(K/ r; ~(Zrk») ~ L(Zr), and

K; (K) ~ K*(C*r)

are all isomorphisms. 15

As usual, these conjectures must be modified because of the Nil type
phenomenon; so one should, say, use Q coefficients in the rings, or de­
mand only split injectivity, or one could utilize the suggestion of Farrell
and Jones discussed in 14.3, and implicate the nearly cyclic subgroups of
r.

Once one has gotten to here, it's possible to go further and ask the
same thing when K is not finite dimensional but the action resembles one
that is: namely that the fixed sets of the finite subgroups are nonempty
(and contractible). This permits the general construction of a universal
complex which conjecturally computes the various theories.

15Because of examples involving Kazhdan's property i \ t must insist here on using
the maximal C··ulgebra [Be].
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Baum and Connes were led to make the final conjecture in the C*­
algebra context just by thinking about proper actions, and for them K
was E'f, the universal space for proper f -actions (which is unique up
to r-homotopy equivalence). They also have an extension to foliations,
which should be studied in the more topological settings as well. See
[Be, Bau] for more discussion.

These maps can be proven to be injections quite often and can pre­
sumably be seen to be isomorphisms under more restrictive conditions
(as discussed in the previous section). For instance, the ideas in [FJl-3]
suffice to prove the result for discrete subgroups of O(n, 1). They have
recently extended this to discrete subgroups of arbitrary connected real
Lie groups.

COROLLARY. If (the above conjecture is true for injectivity and) r acts
properly discontinuously with compact quotient on M and N, and f : M ~

N is a f -map which is a homotopy equivalence, then the pushfoIWard of
the Usignature classes" of M and N into K are the same.

Note there are really two different corollaries depending on whether
one is working in the analytic or L-theoretic context; both apply to the
higher signature (although L is a bit more refined at 2), but the analytic
approach has applications to other operators, as we have seen in 4.6.A.

14.4.3. Hp

The fact that we conjecturally have a calculation of L-groups cer­
tainly has implications for ordinary (even smooth) manifolds. In [Wei4]
I defined an invariant for homotopy equivalences of manifolds with fun­
damental group a discrete subgroup of a real semisimple group, but the
construction applies whenever one knows the rational split injectivity of
the maps of the previous section. I called it Hp, for higher p, because it
generalizes the p invariant we considered in thinking about lens spaces
in 4.7. It should also be possible to use operator techniques to relate it
to eta type invariants of a more subtle type than usual, but so far this
has only been done for a few groups; see [Lo].

Unlike p this invariant needs some sort of acyclicity hypothesis for
its definition. Again, [Wei4] discusses how to do this in some cases by
making use of some of the theory of analysis on Witt spaces [Che2]. Here
is the problem that requires the acyclicity:

EXAMPLE. If Land L' are homotopy equivalent three dimensional lens
spaces, then (SI x L)#k(S2 X 82) ~ (81 X 1)#k(82 X 82) for k sufficiently
large. Therefore we cannot pick up the codimension one p invariant from
the lens space for general 7L x 7Lp situations.

In any case, here is the idea. Suppose one knows the conjectures of
the previous section ®O for r. Then:
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EXERCISE. One also has the spljt injectivity of the usual assembly map
for i.

In fact let's choose a splitting. This then gives a map

where S(Br) is just the fiber of the assembly map I (we aren't taking a
geometric model of Hi). Now given any element of S(M) for a closed
manifold with fundamental group r one can take the composition with
this map to define Hp. To be a little more explicit, one can combine
this with the Chern character of [BC] to get an element of H*+1 (r; F'r)
where F'r is the free ({) vector space on nontrivial elements of finite
order acted on by r by conjugation.

PROBLEM. Show how to associate an element of H*+l (r; Fr) to a pair of
Metrics of positive scalar curvature on a manifold which gives an obstruc­
tion to them lying in the same component of the space of such metrics.
Is there any realization of this invariant?

PROPOSITION. If the Q-isomorphism conjectures are true, then for any man­
ifold, there are maps

the first of which is a "solution to the Novikov conjecture" and the second
is given by Hp, which together yield an isomorphism.

I leave this as an exercise to the reader.
It is beautiful how the rigidity theorems for stratified spaces yield (and

seem necessary for) conjectures on exactly how flexible arbitrary mani­
folds are. Unfortunately, there does not seem to be enough functoriality
in our present theory to enable one to do the same for stratified spaces.
(For orbifolds, there are reasonable conjectures one can make, but they
are also tied to functoriality issues in equivariant topology.)

14.4.4. Approximate fibering

If we combine the rigidity conjecture with the picture of stratified
spaces described in lO.3.A (and believe everything is true for families of
spaces as well as individual spaces), we get:

CONJECTURE. Suppose that M is a manifold and Hr = N is a closed
aspherical manifold which has fundamental grou~ quotient of the funda­
mental group of M. If the induced cover has finitt; _/;e, then modulo a Nil
obstruction, the natural map M ~ N is homotopic to an MAF.
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Indeed, one would conjecture the same assuming that Bf was finitely
dominated; then Br would, conjecturally, exist as a homology manifold,
and we'd still want the approximate fibering.

There is a similar thing one can say for stratified spaces and MSAFs.
In other words, one cannot achieve a fiber bundle or even a block

fibration over N, because these notions require a homogeneity of the
map from the point of view of closed sets, but one can arrange for this
homogeneity to be correct from the point of view of open subsets.

The results of Farrell and Jones mentioned above suffice to verify this
conjecture for nonpositively curved manifolds.
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Index

a-approximation theorem (of
Chapman-FenY)t 161-62

acyclic representation, 26
Adams conjecture, 67
Alexander polynomial (and its relation to

torsions), 27
Alexander trick (or lemma), 40, 41, 158;

transfer invariant version, 124
algebraic Poincare complex, 75-79;

equivariant, 223; quadratic, 76;
relation to surgery, 77; symmetric,
76, 83; visible, 76, 84

almost flat bundles, 169-71
almost flat manifolds, 175-76; and the

classification of lens spaces, 109
annulus conjecture, 158-59
Approximate fibrations, 162-64, 188-89,

263-64
aspherical space, 9, 100, 102, 103, 242-45,

254-60, 263-64
Assembly map, 73-75, 78, 80, 81, 83-85,

100-101, 105, 130, 137, 147-51,
157, 160, 168, 175, 179, 184t 210,
231, 238

Atiyah-Bott numbers. See nonlinear
similarities

Atiyah-Patodi-Singer invariant, 109;
homotopy invariance of, 211;
homotopy invariance of, up
to rationals, 212; homotopy
noninvariance of, 109; and the
classification of lens spaces,
109; role in classification of
manifolds, 109. See also Rho
invariant

Atiyah-Singer classes, 239
Atiyah-Singer Index theorem, 65, 169;

G-signature formula, 103, 104-5;
G-signature formula, and
topological analogue, 223-24

attaching region (of a handle), 29

base change, 235-36
Bass-Heller-Swan formula, 38, 43, 61, 101,

123, 168, 171
Bieberbach's theorem, 111, 175, 242
Block bundle, 73-75, 113, 120, 166;

fibration obstruction theory, 74;
surgery, 73-75, 93. See also base
change

Borel conjecture, 100-103, 156, 168;
proof for flat and almost flat
manifolds, 175-76; the method of
Farrell and Jones, 258-59. See also
Rigidity

boundedly constant fundamental group,
154

Bounded propagation speed operators,
algebra of, 172

Browder-Casson-Haefliger-Sullivan-Wall
theorem, 93, 197. See embeddings

Browder·Livesay invariant, 108
Browder-Novikov theorem, 2, 91
Browder-Quinn theory, 139-41
Browder's splitting theorem, 91
bubble quotient, 235

Cappell's splitting theorem, 92, 94, 102,
208,254-55

CE maps: Edwards' approximation
theorem = Disjoint Disks
theorem, 178; Siebenmann's
approximation theorem, 161--62

cell-like set, 178
characteristic classes: of algebraic

varieties, 215; of arbitrary stratified
spaces, 131, 135; of G-manifolds,
223-25; of homotopy equivalences,
61-69; of manifolds, 64--65; of Witt
spaces, 209-10. See also Novikov
conjecture; Signature, operator

Characteristic ct.ass formulae: Capell­
Shanesol IProjection formula,
214-1l .. theeger's formula, 206;



280 Index

Characteristic class formulae (continued)
circle actions, 229; for bundles
(formula), 227

characteristic variety, 63
characteristic variety theorem, 61-64,

78, 88
classification of degree one normal

maps, 57; of embeddings, 93-95,
196-99, 200-201; of fake
cpn's, 87-90; of fake lens
spaces, 104-7; of fake tori, 98; of
free involutions on the sphere, 108;
of groups which act freely on
the sphere, 110-11; of homology
manifolds, 178-80; of lens spaces,
27; of semifree actions on the
sphere, 237-40; of semifree
semilinear actions on the sphere, 42

cocore,29
coarse homology, cohomology, K­

theory, and bounded propagation
speed operators, 171-73

collar detection theorem, 35
complex: bounded chain, 155; controlled

chain, 155; finitely dominated,
21; Intersection chain, 204-10; of
sheaves, 206; Poincare (and simple
Poincare complex), 46

control, 148-49; approximate, 157, 158;
bounded, 150; continuous at
infinity, 149, 151

controlled: h..cobordism, 155;
h-cobordism theorem, 155; surgery
obstruction, 155

core,29
corona, 172
cosheaf, 136
cosheaf homology, 136
crigid, 249; spaces with crigid

holinks, 260-61
cyclic cohomology, 258, 263
cylindrical rigidity, 244, 263

Davis numerical surgery obstruction, 240
decomposition theorem of BBDO, 214; for

L-cosheaves, 198, 199, 213, 222
decorations, 59
t:. set, 71
t:.(~,64-65, 131, 135,223-25
descent and the Novikov conjecture, 255-58
destabilization theorem for

structures, 135-87
desuspension theorem for homotopy lens

spaces, 104-7, 225; for odd order
group actions on the sphere, 225

dictionary between surgery theory and
operator theory, 167-75

double suspension theorem, 98-99, 178
Dress induction, 111
dynamical/foliated control method, 258-60

Eilenberg swindle, 20, 34, 122-23, 155
elementary collapse, 22
elementary expansion, 22
elementary matrix, 24, 34
elliptic operator, K-homology class

associated to, 46
embeddings: codimension 1, 200;

codimension 2, 200-201; higher
codimensions, 93, 197; pure
embeddings, 196

end, 32; fundamental group of, 32;
neighborhood of, 32; obstruction
to completing, 32; tame, 32;
theorem, 33, 164

engulfing, 35, 162, 189
Equivariant Bott periodicity and the

desuspension theorem, 225
equivariant handlebody structures, 220
equivariant transversality, 220
Eta invariant. See Atiyah-Patodi-Singer

invariant; Rho invariant
Euler characteristic, 22
existence of nonlinear similarities. See

Nonlinear similarities
exotic products, 226
Exotic spheres, 3, 40
Exponential isomorphism, 75

Farrell fibering theorem, 97, 244
Farrell-Hsiang theorem on rigidity of flat

and almost flat manifolds, 175-F76'
Ferry's theorem on a-dominations, 161;

application to the Novikov
conjecture, 255-56

FlO, 67-68
F/PL, 65-67
F/Top, 61-65
filtered category, 115-16
finiteness of ANR's, 19,42, 165
Finiteness obstruction, 19-22; Ferry's

geometric version, 38, 153;
Vanishing for ANR's (West's
theorem), 165; Wall's original, 21

Gap hypothesis, 13, 221-22, 245-47
generalized Poincare conjecture, 2, 39
geometric algebra, 153-56
geometric group. See geometric algebra
geometric module. See geometric algebra



geometric morphism. See geometric
algebra

Germ neighborhood, 188-89
Germ of a MAF; 163
Gromov-Lawson-Rosenberg

conjecture, 102, 168-75
Grove-Peterson-Wu finiteness

theorem, 176-77

Haefliger knots, 40, 177
handles, 28, 29; equivariant (theorem of

Steinberger-West), 220; handlebody
structures, 29, 30

harmonic maps, 253
haspherical space, 248
hauptvermutung: counterexamples, 122;

relation to Rochlin's theorem,
65-67; triangulation, 65-67, 165-67

h-cobordism theorem, 33-35; bounded and
controlled, 155; equivariant, 219;
PL stratified, 127; proper, 35-36;
topological stratified, 133, 182-84

Hirzebruch signature formula, 2, 89, 91
Hodge conjecture, 211
holink (=homotopy link), 119
homologically trivial group actions, 95, 103
homology collars: extension across, 95;

and converses to Smith theory,
95, 237-40

homology manifolds, 177-81;
conjectures regarding their
geometry, 181; nonresolvable, 179;
resolutions, 178, 179, 198; surgery
theory for, 179

homology propagation of group actions, 95
homotopically stratified space, 119
homotopy equivalence: bounded and

controlled, 151; simple, 23
homotopy link, 119
hyperbolic form, 53
hyperbolic group, 258
hyperbolic manifold, 169, 242, 255-59
Hughes sectioning theorem. See

Approximate fibrations

Immersions, 53, 199
index, 29,65,102-3,167-75
induction theory. See Dress induction
Intermediate L-groups, 240. See also

decorations
Intersection number, 30, 52
Intersection form, 53
Intersection homology, 204-9; BBDG

decomposition theorem, 214;
definition, 204; Kunneth

Index 281

formula, 206; L-classes and
signature classes, 206; and
L2-cohomology, 206; self
duality, 209; sheaf description
(Deligne construction), 208; and
small resolutions, 213

involution on Wh, 39, 127
isovariant category, 13, 221-25
isovariant surgery, 221-25

J-homomorphism, 48, 67-68
Jacob's ladder, 31

Ko,21
K:Q, 127
K}, 24
K- i , 124, 156, 166, 187-88
Kervaire manifold, 88-89
Kirby-Siebenmann obstruction, 66-67, 130

L-cosheaf, 130, flattening, 236
L -group (=surgery obstruction group:

see also surgery): for compact
manifolds, 53; for manifolds with
boundary, 54; for noncompact
manifolds, 59-60; for stratified
spaces, 129, 133-34, 139-40; of finite
groups, 105, 105-7, 224, 240. See
also algebraic Poincare complexes

L-space,72
L -spectrum, 73
Lens spaces, 27; classification

of, 27, 104-8, 231
Levine's unknotting criterion, 40
Lichnerowicz's theorem, 102
Lipschitz category, 125, 160, 256
local flatness, homotopy characterization

of, 196
local holink, 119
Localization, 62
Localization theorem of Ranicki, 78

Madsen-Thomas-Wall theorem, 110-11
Main theorem of controlled topology, 156;

applications of, 161-67; for
K..theory, 156; for L-theory, 157;
parallel in operator theory, 167-75

manifold approximate fibration (MAF), 162
manifold stratified group action, 219
manifold stratified space, 119
mapping cylinder neighbor-

hood, 119, 165, 183
mapping torus, 38
Mather's trick "fB
Mayer-Viet, ./sequences, 102, 136-37, 255



282 Index

Mazur's (stable classification) theorem, 38
Milnor duality formula, 39
Milnor manifold, 88-89
-00 decoration, 133
Mittag-Leffler condition, 31
modules, bounded and controlled:

geometric, 153-55; projective, 20

Nil, 38, 101, 123, 149, 244
Nonlinear similarities, 12, 124-25, 230,

231-33
Normal invariant, 51
normally smooth map, 139
Novikovadditivity, 105; via Witt space

cobordism, 211-12
Novikov conjecture, 99-103, 170-71,

255-58; equivariant, 224;
Gromov..Lawson-Rosenberg
conjecture, 168-75; index theory
methods, 102, 170-71; the method
of descent, 255-58; splitting
methods, 102; stratified, 252

Numerical formulae for Ko
obstructions, 22; for surgery
obstructions, 240

Odd order group theorem. See Nonlinear
similarities

Orientation true map, 82

1f - 1f theorem, 54-58, 140, 144, 145;
and the existence of surgery
theory, 55-56

Periodicity of L..groups, 54, 77, 197, 226.
See also Siebenmann periodicity

Petrie conjecture, 203
PL stratified structure sequence, 130,

141-47
PL stratified space, 117
PL weakly stratified space, 117
Plumbing,55-56
Poincare: complex, 46; complex, geometric

and algebraic, 76-77;
conjecture, 3, 39; duality, 46;
embedding, 9, 93, 197; surgery, 144

Positive scalar curvature. See
Gromov..Lawson-Rosenberg
conjecture

Product formula: for surgery
obstructions, 77-78; for torsion, 37

proper actions, Novikov conjecture for, 261
proper h-cobordism theorem, 35-36
proper map, 35
proper surgery, 60-61
PT category, 143

PT stratified structure sequence, 143-47
Pure embedding, 196
Pure stratum: open, 115; closed, 122

Ranicki's total surgery obstruc-
tion, 78, 111, 179, 238. See also
surgery

Reducible spherical fibration, 50-51
Regular neighborhoods in PL, 5, 22;

nonexistence and nonuniqueness in
Top, 122

renormalized Atiyah-Bott numbers. See
Nonlinear similarities

replacement theorems, 233-37
Rho invariant, 105; Higher, 262-63
Rochlin's theorem, and the Kirby-

Siebenmann obstruction, 65-67
Rothenberg sequence, 59-60, 60-61,

187, 240
Rothenberg-Sondow theorem, 42
Rigidity: equivariant (proofs and

counterexamples), 245-47, 248;
Farrell..Hsiang, 175-76;
Farrell-Jones, 258-59; Hsiang­
Shaneson-Wall, 98; isovariant, 247;
large-scale, 156; Mostow and
Margulis, 242, 243; stratified, 269;
stratified, and Cappell's splitting
theorem, 254; stratified, and Nil and
UNit obstructions to, 247-54; the
role of the gap hypothesis, 247

Rim square, 41

semifree group actions, 42, 219, 237-40
Shaneson's formula, 96-99
Siebenmann end obstruction, 32
Siebenmann periodicity, 6, 179;

equivariant, 226; geometric
interpretation, 197; stratified, 197

Signature: and Cheeger operator, 206;
class, 64-65, 131, 135, 223-25;
and equivariant operator, 223;
higher, 99, 223-24; (Mischenko­
Ranicki) symmetric, 77, 84;
operator, 64-65; theorem
(=formula), 2, 89, 91. See also
Atiyah-Singer Index theorem

simple space (in the sense of Milnor), 26
Smith theory, 95, 110, 237-40
smooth knots, 40, 177
solenoid, 31
Space form problem, 110-11
space over X, 150
spectra, 73, 79



Spivak fibration, 48-50; relation to normal
invariants, 50-51

Splitting invariants, 88, 93, 203
Splitting problem, 91
Splitting theorem: codimension one

(CappelI's), 92, 94, 102, 208,
254-55; codimension three
(Browder's), 91-93; relation to
the main theorem of controlled
topology, 157

squeezing, 157-59, 162
Stanko's taming theorem, 94
Steenrod squares, 211
stratified approximate fibration, 189
Stratified holink, 119
stratified homotopy type, 119
stratified L-group, 129, 134, 139
stratified Poincare space, 120
stratified rigidity. See rigidity
stratified transverse, 120; simply stratified

transverse, 121
strong replacement. See replacement

theorems
Structure set, 57; calculation, 57, 130, 134;

functoriality of, 82; group
structure on in the topological
category, 80, 197; stratified, 130, 134

sucking. See squeezing
Sullivan orientation for manifolds, for

homology manifolds, for
G-manifolds. See characteristic
classes

sum formula for torsions, 37
supernormal spaces, 202
superrigidity, 243
Surgery: algebraic theoty, 76-77;

Browder-Quinn theoty, 139-41;
obstruction, 53; on homology
manifolds, 179; on manifold
stratified spaces, 134; on Poincare
spaces, 144; total surgety
obstruction, 78. See also L-group

surgery exact sequence, 57, 130, 134
Swan homomorphism, 22,95,240

tame embedding, 93,97,196; and Stanko's
theorem, 94

tame end, 32
Tate cohomology, 60,135,187-88

Index 283

teardrop neighborhood, 189
teardrop neighborhood theorem, 189
Thorn space, 49
Top hat trick, 91
Top/PL, 66
topological invariance of characteristic

classes. See characteristic classes
topological invariance of torsion, 42, 165
topologically trivial h-cobordisms, 122-24
topological rationality of linear

representations, 231
tori: flat, 242; G-, 245-48; homotopy, 98
torsion: Analytic (Ray-Singer), 28; and

the classification of lens spaces, 27;
Reidemeister, 26-27; Stratified
PL torsion, 127; Stratified Top
torsion, 133; topological invariance
of, 165; Whitehead, 24

torus trick, 158
transfer, 37, 107, 111, 123, 127-28, 235
transfer invariant structures, 163, 184-85
transversality, equivariant, 220
triangulations of manifolds, 65-67; of

locally triangulable spaces, 165-67

uniformly contractible space, 156, 172
1J~il, 102, 247, 252, 254-55

Van der Blij's lemma, 66
visible L-theory, 76, 84, 131

Wall chapter 9, 54-57
Wall finiteness obstruction, 19-22
Wall realization theorem, 55
weak replacement. See replacement
West's theorem, 19, 42, 165
Whitney disk, 30-31
Whitney stratified space, 113
Whitney trick, 30
Whitehead group (=Wh(): see also

torsion), 24; controlled, 155
VVrttspace, 205, 209, 210-13

Zeeman's unknotting theorem, 40-41,
94-95

Zn-manifolds,64
Zn -surgety obstruction, 64


